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Abstract

This thesis explores the interaction between lexical resources (LRs) and large language

models (LLMs) in the context of natural language processing, focusing on the evalu-

ation of WordNet (WN)—the de facto lexical database for English—along with the

development of a new dataset and a novel reverse dictionary (RD) method. The invest-

igation starts with an assessment of WN, particularly its examples, both intrinsically

and extrinsically, compared to other resources using the Good Dictionary EXamples

(GDEX) framework. This evaluation shows that WN’s examples are often limited in

length and informativeness. In an extrinsic analysis, we examined WN’s performance

in definition modeling and word similarity tasks, where informative contextual rep-

resentations are essential. Results indicate that LLM-generated examples are more

informative than those from WN.

To overcome limitations in LRs (some uncovered by our analysis), we then introduce a

new dataset called 3D-EX providing terms, definitions, and usage examples. It integ-

rates entries from ten diverse English dictionaries and encyclopedias with varying lin-

guistic styles. We conducted intrinsic experiments on source classification, predicting

the origin of a <term, definition> instance, and RD, which retrieves a ranked

list of terms from a definition. Results indicate that 3D-EX enhances performance in

both tasks, highlighting its usefulness for NLP.

This thesis further explores RD by introducing GEAR, a lightweight and unsupervised

approach to RD tasks. GEAR operates through four stages: Generate, Embed, Average,
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and Rank. It was evaluated using the Hill dataset, a leading benchmark for RD tasks,

and it consistently outperformed existing methods.

In conclusion, this thesis investigates how LLMs and LRs can benefit each other. We

identified limitations in some resources and found that LLMs are a suitable tool for

addressing them. Additionally, LLMs can automatically improve language resources

by unifying them with different anchors. Datasets and code are publicly available.
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Chapter 1

Introduction

1.1 Background and Motivation

Natural language Processing (NLP) is the field that explores how computers can inter-

act with humans by understanding and manipulating natural language [45]. Different

technologies and applications we use in our daily life are based on NLP. For instance,

machine translation applications, which generate the best possible translation without

human assistance, like Google translate [190]; chatbot applications, which simulate hu-

man conversation for purposes such as customer service and personal assistance [50];

speech recognition software, which recognizes patterns in speech like Apple’s Siri and

Amazon’s Alexa [170]; or e-mail phishing detection, which filters mailboxes from un-

wanted junk mails [141]. Most of the current NLP technologies are based on Language

Models (LMs). These models use machine learning to predict the probabilities of fu-

ture or missing words by examining word distributions [226].

Initially, LMs are pre-trained on a large amount of text data. During this pre-training

phase, the model learns word representations, which are defined as "a mathematical ob-

ject associated with each word, often a vector. Each dimension’s value corresponds to

a feature and might even have a semantic or grammatical interpretation" [200]. These

learned representations are then used in supervised training for downstream tasks, with

optional fine-tuning of both the representations and the network from the initial (pre-

training) stage [84]. Fine-tuning involves adjusting the parameters of a pre-trained
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language model to fit a specific task or domain without the need to train the model

from scratch. For example, a LM can be fine-tuned using labeled datasets for text clas-

sification, where texts are automatically categorized based on predefined labels [36].

Fine-tuning pre-trained LMs such as BERT [53], RoBERTa [126] or GPT-2 [167] is

common to get high-quality lexical and sentence representations [123, 124], as they

have been shown to generate sub-optimal embeddings when used directly, without ad-

ditional task-specific fine-tuning [117, 68]. In this context, LMs learn to perform well

on a given task or dataset by observing past examples, which are typically manually

labeled or assigned soft labels derived from metadata, geographical information, etc.

[161, 146]. A further development in LMs is the emergence of large language mod-

els (LLMs), which are significantly larger in size and number of parameters. LLMS

such as LLaMA [198] and GPT-4 [2] are capable of handling more complex and di-

verse language tasks with greater efficiency [86]. LLMs, commonly associated with

text generation tasks, can produce high quality text that it is sometimes preferred over

human-generated content [213, 33]. Unlike the LMs discussed earlier, LLMs are much

larger and have stronger language skills [140], but this comes with drawbacks such

as slow training and inference, high hardware requirements, and increased operational

costs [147]. As a result of these limitations, efforts have been made in creating more

efficient architectures [44, 223], and better training strategies [172, 169].

Due to the fact that LMs and LLMs learn from diverse, often noisy sources like web

content, this can cause biases and incorrect information. Using Lexical Resources

(LRs) provides structured data and high-quality lexical information, which is import-

ant for improving models’ understanding of language and their performance in NLP

tasks. LRs serve as a fundamental repository of knowledge, containing different details

about words, including definitions, usage examples, morphology (the forms of words),

syntax, and etymology (the origin and history of a particular word). These features

make LRs a fundamental tool for learning new languages because they help learners

to enhance their vocabulary, word usage, and more generally, improve their language

skills. The relationship between LRs and NLP is strongly interdependent, with each
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enhancing the capabilities of the other. Providing valuable information about word

meaning, syntactic structures, and semantic relationships empowers NLP systems to

analyze, process, and generate human-like texts accurately and efficiently [34]. What

follows are some examples of the interplay between NLP and LR.

LRs for NLP For example, in the Word Sense Disambiguation (WSD) NLP task,

which aims to map an ambiguous (multi-sense) word in a context to the correct sense

[171] and where the de-facto sense inventory in WSD is WordNet [135], the use of

LRs to obtain more context can assist in disambiguation. For instance, consider these

two examples:

• (a) I can hear bass sounds,

• (b) They like grilled bass.

The word bass clearly shows different meanings—referring to low-frequency tones

in example (a) and a type of fish in example (b) [148]. Therefore, context or usage

examples provided in LRs can effectively help resolve ambiguity. It is also important

to highlight that usage examples are more effective than random mentions of terms in

sentences because they are intended to be informative, easy to understand, and helpful

for learning definitions [108].

Additional instances of using LRs in NLP are in information retrieval systems, which

involve finding documents that match a user’s query from among a large collection of

documents [204]. Here, LRs assist in understanding the meaning and context of search

queries, enabling more accurate results. Moreover, in information extraction tasks,

such as named entity recognition, which is the process of identifying the names of or-

ganizations, people, locations, or other entities in text [130], and entity linking, which

involves connecting mentions of entities in text to their metadata, such as synonyms or

translations in a knowledge base, which often consists of a collection of LRs [188].
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NLP for LRs Conversely, NLP techniques have also been effectively used in creating

and improving LRs. For instance, updating LRs for newly emerged terms requires a

collaborative effort by a team of domain experts. NLP tasks such as definition extrac-

tion, which involves finding meanings in sentences automatically, and the automatic

extraction of examples can be easily done to include definitions and usage examples

for these new terms [151, 24, 108]. Enriching LRs with lexical collocations that should

greatly aid second language learning by automatically extracting these combinations

from corpora [59, 61]. Additionally, Velardi et al. [203] and Alfarone and Davis [5]

applied techniques to automatically extract hypernymy relations1 from text corpora.

Despite the range of applications and interactions between NLP and LRs mentioned

above, their effectiveness is strongly dependent on the quality of the LRs under con-

sideration. To properly evaluate and understand the quality of these resources, it is

necessary to conduct in-depth evaluations. However, performing these evaluations,

while essential, is also not trivial due to the absence of gold standard for comparison,

as different resources may have different scopes. Additionally, defining a single eval-

uation metric that captures all aspects of the resource’s quality and usefulness across

different tasks is difficult [18]. Evaluating LRs could be intrinsic, focusing on the qual-

ity of the lexical resource itself, independent of specific NLP tasks such as evaluating

their lexical coverage [165] and the connectedness between terms in taxonomy-based

LRs (which organize terms in hierarchical structures) [26], or extrinsic, measuring how

well an NLP system performs with the resource in a given task [195].

Motivation: This thesis will investigate the interplay between particular elements

in lexicography (dictionary terms, definitions and examples) and NLP. We first aim

to evaluate LRs, such as WordNet—the primary LR used in NLP applications—from

different perspectives, and identify their limitations or issues. Current resources often

lack completeness, as they fail to provide example usages for some terms, and inform-

1A semantic relation where one word is a general category (hypernym) that includes more specific

words (hyponyms). For example, “vehicle” is a hypernym of “car.”.
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ativeness, as the provided examples may lack usefulness. Additionally, by exploring

advanced models like ChatGPT, we aim to generate more informative and reliable

resources. Moreover, developing a homogeneous and comprehensive dataset from dif-

ferent resources can solve the issues of inconsistency and provide a rich base for NLP

tasks.

1.2 Hypothesis and Research Questions

Dictionary examples serve as essential tools for elucidating the contextual and semantic

meanings of terms. Within the scope of lexical resources, these examples play an

important role in providing clarity and depth to language understanding. The main

hypothesis underpinning this thesis is that the quality of dictionary examples signific-

antly influences the performance of NLP models that rely on word- and sentence-level

semantics. Specifically, it suggests that when dictionary examples are detailed and in-

formative, they empower NLP models to better understand term usage and meanings.

In order to verify this hypothesis, the following research questions are addressed:

Research Question 1: How does the quality and length of dictionary examples within

LRs, such as WordNet, impact the performance of NLP models in tasks such as defin-

ition modeling?

Research Question 2: How can embeddings for words, phrases, and sentences be

improved by leveraging dictionary examples?

Research Question 3: How does the integration of multiple lexical resources into a

centralized knowledge repository contribute to improving NLP models across different

downstream tasks?
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Research Question 4: Can the task of reverse dictionary improve by combining “the

best of both worlds”, i.e., LLM generation capabilities as well as semantic similarities

derived from dictionary embeddings?

1.3 Contributions

• We perform an in-depth evaluation on WordNet, and find that despite its proven

quality and adoption, it also does not seem to be an optimal resource when in-

formative contexts (i.e., dictionary examples) are required for downstream tasks

such as definition modeling or deriving contextualised representations. These

findings were later supported by Giulianelli et al. [81].

• We introduced 3D-EX, a dataset that combines different English resources into

one, providing <term, definition, example, source> sets. This dataset aims to

serve as a standardized benchmark for lexical semantics tasks. 3D-EX has already

proven valuable as a source for LM pre-training, as demonstrated by Gajbhiye

et al. [76].

• We proposed GEAR (generate, embed, average and rank), a state of the art

method for Reverse Dictionary (RD) that utilizes an LLM for generating a set

of candidates given an input definition, and pools their corresponding embed-

dings into a vector used for KNN search.

1.4 Thesis Structure

• Chapter 2 – Background and Related Work – provides an in-depth review of the

interplay between LRs and NLP, and some of the other related areas.

• Chapter 3 – WordNet under Scrutiny: An Empirical Analysis – presents intrinsic

and extrinsic evaluation of of the well-known lexical database WordNet, focus-
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ing specifically on its dictionary examples. We assess these examples both dir-

ectly, by comparing them against criteria for well-constructed dictionaries, and

indirectly, through NLP tasks.

• Chapter 4 – 3D- EX : A Unified Dataset of Definitions and Dictionary Examples

– introduces 3D-EX, a centralized repository that unifies a diverse set of English

dictionaries and encyclopedias. It can be used to train and test definition model-

ing systems, explore out-of-domain generalization, and, most importantly, act as

a unified test bed for lexical semantics tasks.

• Chapter 5 - GEAR: A Simple GENERATE, EMBED, AVERAGE AND RANK Ap-

proach for Unsupervised Reverse Dictionary - proposes a simple approach to RD

tasks that leverages LLMs in combination with embedding models. Despite its

simplicity, this approach outperforms supervised baselines in well studied RD

datasets, while also showing less over-fitting.

• Chapter 6 - Conclusion and Future Work - concludes the thesis by summarizing

our contributions and findings, while also highlighting potential areas for future

research.

1.5 Summary

In this chapter, we have introduced the background and the motivation to work on

the considered topic. We also discussed the hypothesis, the main research questions,

the thesis contributions and structure. The next chapter will provide more detailed

background information and focus on the literature of the considered topic.
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Chapter 2

Background and Related Work

2.1 Introduction

This thesis aims to explore the interplay between LRs and NLP. LRs play a crucial

role in various NLP tasks, enhancing the performance and accuracy of systems across

different applications. This chapter will present the required background knowledge

about LRs and their main components, in addition to reviewing existing research on

the integration of LRs into NLP systems.

The chapter is divided into two main sections. Section 2.2 provides a general overview

of LRs, explaining what they are, showing a few examples, and then detailing WordNet

as the primary source used in NLP in Section 2.2.1. The main components in LRs are

discussed then in Section 2.2.2 and 2.2.3. Section 2.3 examines how LRs are used in

different areas of NLP, with a focus on how each component (definitions or examples)

contributes to various NLP tasks. Finally, this thesis examines two NLP tasks: Word

Similarity and Reverse Dictionary, which are covered in Section 2.3.3.

2.2 Lexical Resources

A LR is a database that may consist of one or more dictionaries, depending on its

language scope [181]. LRs describe words and relations between them by providing
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essential lexicographic and contextual information such as definitions, examples, and

translations. Dictionaries are the primary example of LRs and have long served as

essential tools for both language learners and teachers, as they provide the fundamental

information needed to understand word meanings [207]. They can be monolingual or

bilingual, and may be intended for general audiences or specialized domains.

Some common examples of lexical resources include WordNet (WN) [139], which is

discussed in detail below, as it is the primary resource used in this thesis. WN is an

electronic lexical dictionary for English that organizes words into groups of synonyms

[139]. While WN is the focus of this thesis and, therefore, will receive most attention

in this chapter, it is important to put it in the context of other analogous resources. For

instance, ConceptNet [98] is a key resource for commonsense reasoning, represented

as a directed graph where nodes are concepts and edges are assertions that express

relationships between them [24, 180]. BabelNet [149], on the other hand, is a large

multilingual semantic network that links Wikipedia, the largest multilingual web en-

cyclopedia, with WN [150].

2.2.1 WordNet

WN is one of the most well-known lexical resources in NLP and has been described

by Hovy et al. [94] as having a “seemingly endless list of papers using it.” Unlike tra-

ditional dictionaries, which typically cover a broad range of word classes, WN focuses

on content words — nouns, verbs, adjectives, and adverbs — comprising over 155,000

words organized into approximately 117,000 synsets (synonym sets). These include

around 82,000 noun synsets, 13,800 verb synsets, 18,200 adjective synsets, and 3,600

adverb synsets 1

1All statistics are based on WordNet version 3.1: https://wordnet.princeton.edu/.

Synsets in WN organize words into groups of synonyms and are described by their definition, lemmas2,

examples, and the relations they have with other synsets, such as hypernymy (is-a), meronymy (is-part),

troponymy (manner-of), etc. While WN has seen some use in lexicography and language learning [142],

https://wordnet.princeton.edu/
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For example, WN is the primary sense inventory used in WSD tasks, as discussed in

Chapter 1, due to its synset structure and semantic relationships, which provide the

context and hierarchy needed to resolve word ambiguity. Disambiguating polysemous

words involves collecting related terms from synsets, glosses, and various hypernym

levels, which are then compared using different WSD algorithms [54]. Additionally,

KnowBert [163] integrates WN into BERT to enhance its word embeddings by link-

ing words to their corresponding senses. The results show that BERT enriched with

WordNet outperforms the original BERT-large model.

Recent studies show that WN remains essential in various NLP applications. In 2025

alone (as of May 8, 2025), more than 1,800 published papers have mentioned WN,

according to Google Scholar. For instance, Melacci et al. (2024) [133] improved su-

pervised WSD models by integrating semantic features from the WN and WordNet

domains, resulting in better performance in standard benchmarks. Similarly, Wenjun

et al. (2024) [212] proposed a WSD method based on multiple sense graphs, com-

bining BERT embeddings and PageRank algorithms to determine the most appropriate

word senses. Additionally, WN has been applied in semantic similarity tasks, such

as identifying relevant examination questions, as demonstrated by Goh et al. (2023)

[82]. In multilingual NLP, efforts to enrich Arabic WN using machine translation and

transformer models, improving its use in different linguistic contexts [73, 191].

However, WN has several limitations, including its focus on only English, its static

nature, and the absence of important linguistic relations like word combinations. Ad-

ditionally, its synsets often have very specific and narrow categories, which can make

it difficult to use in some tasks [67]. To overcome these issues, different methods have

been proposed, such as including more synsets and senses from other resources since

the English language is not static and there is always a need to update WN [131]. Col-

locational information has also been added to WN relations in previous work, which

is essential in some tasks like Machine Translation [57], where word-by-word transla-

its primary application has been in computational linguistics and NLP, as will be shown throughout this

thesis.
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tions often fail to capture the meaning of collocations and can lead to errors [186, 122].

Additionally, several research works have been conducted to generate translations for

WN in several languages [25].

WN and other LRs differ in their components based on specific needs. However, some

key elements remain essential across most LRs, including definitions and examples.

Definitions provide the meaning of lexical items, while examples illustrate their us-

age in context. The following sections will provide a detailed explanation of these

components.

2.2.2 Dictionary Definitions

Definitions are the main content of dictionaries to help understand the meaning of un-

known terms [158]. Definitions should be accurate and clear, and complete enough

to meet the reader’s needs and to differentiate between different related meanings or

senses [144]. However, several problems associated with dictionary definitions in gen-

eral need to be considered. For example, circularity where the defined term is shown

in the definitions [32] such as this definition “Happy: feeling happiness.” Obscurity is

another serious issue where definitions are complex or use obscure language, making

them difficult for users to understand such as this definition of sand where some parts

of it (like comminuted and silicious) are harder to understand “Sand: a material made

of crushed rock fragments and smooth particles, mostly containing silica, finer than

those in gravel . 3” [3]. We will observe these issues practically in Chapter 3.

Definitions typically consist of at least three components which are the definiendum

(the term being defined), the definiens (what defines the term), and a connector (like a

verb or punctuation) that links them together [206]. Based on the connectors, Wester-

hout 214 found that there are four common definition types: the first uses ’to be’ as the

connector; the second uses other verbs or verbal phrases (e.g., to mean, to comprise);

3Oxford English dictionary online. [www.oed.com]
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the third uses punctuation marks like colons; the fourth uses pronouns to refer back to

a term mentioned earlier, followed by the definition. Within a definiens, usually there

is a term that is closely related to the definiendum and is often a synonym or hypernym

and it is called genus term. For example, in "Automobile: a motorcar" motorcar acts as

a synonym. Similary, in “Summer: the second and warmest season of the year” season

is the hypernym (genus term) of summer [208]. Identifying genus terms helps to pro-

cess definitions, which often follow consistent patterns in syntax, style, and vocabulary

[10].

The above considerations about definition typification and quality assessment are rel-

evant to this thesis because, as we will show, definitions in widely used resources

such as WN are not always optimal. This limits their usefulness for various types of

end users. While WN was initially developed for natural language processing (NLP)

systems, it has also been applied in language learning, where it helps learners dis-

tinguish between near-synonyms and similar-looking words that are often confused

[194], and supports the teaching of lexical semantics and semantic relations between

English nouns [164]. Moreover, its integration into structured knowledge bases such

as YAGO [173] and DBpedia [13], both of which incorporate lexical information from

WN, has further expanded its reach. These resources are used by terminologists and

digital lexicographers to organize lexical content and support tasks such as termino-

logy management and sense alignment, where limitations in definitions can reduce the

accuracy of terminology and make it harder to match terms correctly across languages

[196, 132]. Similarly, knowledge engineers rely on these resources to develop onto-

logies and reasoning systems, which require clear and consistent definitions to make

correct inferences and classifications [155, 83].

2.2.3 Dictionary Examples

Using examples systematically to explain the English words that are defined in the

dictionaries was used first by Samuel Johnson in his dictionary A Dictionary of the
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English Language [101], and the examples were taken from professional authors’ writ-

ings like Shakespeare and Addison [49]. Besides showing words in context, examples

clarify meanings of words with difficult definitions—multiple corpus examples can

sometimes be more useful than the definition itself [12]. They also aid in navigating

long lists to find specific senses by matching the example to the correct sense [90]. As

stated by Frankenberg-Garcia [70], “an entry can be almost incomprehensible without

its examples”.This underscores the importance of examples in dictionary definitions.

According to Atkins and Rundell [12], a good dictionary example must be:

• Typical, i.e., showing the, as Kilgarriff et al. [108] put it, “frequent and well-

dispersed patterns of usage” of the target word that represent various contexts

and usages of the word across different situations.

• Natural: the example should appear like a sentence one would expect to see in

usual language use.

• Informative: so that it helps with understanding the definition of the word.

• Authentic: because they are examples from actual corpora.

• Self-contained: the content of the example is understandable without requiring

additional context.

• Intelligible to the reader by avoiding difficult lexis and structures which cannot

be understood without access to a wider context (a.k.a. readability).

2.2.3.1 GDEX

One of the most prominent contributions in dictionary examples is GDEX, which

stands for Good Dictionary EXamples. It is a system that added around 8,000 new

example sentences to the Macmillan English Dictionary by automatically finding good

examples in corpora using a set of rules of thumb [108]. GDEX is motivated by the fact
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that creating example sentences manually is time-consuming and increases the cost of

developing lexicographic resources [89]. Other researchers have also explored auto-

mating the selection of example sentences, such as Frankenberg-Garcia [71], who used

large English corpora (e.g., BNC, COCA, and UKWaC) to provide helpful context for

understanding and using specific words.

GDEX has translated the good dictionary features into practical metrics such as sen-

tence length, word frequencies. For instance, sentence length affects informativeness

and readability: very short sentences may lack context, while very long sentences can

be harder to read and understand. These metrics are later used as a method to evaluate

and measure the quality of examples against GDEX criteria [134].

GDEX Applications GDEX was initially developed as a feature in the Sketch En-

gine4 [107], a tool designed to assist lexicographers in identifying high-quality dic-

tionary examples by analyzing various lexical and syntactic characteristics, such as

example length and complexity. It has since been used in various projects, including

ColloCaid [72], a writing assistant tool focused on providing academic English colloc-

ation suggestions. GDEX aids in the example selection process in ColloCaid by ap-

plying automated penalties to concordances with long sentences, rare words, excessive

capital letters, non-alphanumeric characters, or anaphoric references. Another notable

work utilizing GDEX is the DANTE (Database of Analysed Texts of English) project

[106, 100] 5. In DANTE, GDEX was employed to streamline the selection of example

sentences for dictionary entries. By applying various filters such as sentence length,

the presence of rare words or proper names, and the number of pronouns, GDEX ef-

fectively ranked sentences, allowing lexicographers to identify suitable examples more

efficiently. Figure 2.1 shows a screenshot of DANTE interface.

4http://the.sketchengine.co.uk
5https://github.com/lexicalcomputing/dante

https://github.com/lexicalcomputing/dante


16 2.3 Lexical Resources and Modern NLP

Figure 2.1: Screenshot of the Dante interface showing examples of the word gradi-

ent.

2.3 Lexical Resources and Modern NLP

Lexical resources (LRs) in general, and dictionaries in particular, have played a critical

role in recent years in enhancing both knowledge-rich and organically derived NLP

systems. For example, DictBERT integrates structured entries from the Cambridge

Dictionary, including definitions, synonyms, and antonyms, to enrich language models

with lexical knowledge [43]. Similarly, Unified Reversible Definition Modeling lever-

ages tuples from the Oxford English Dictionary containing a word, its usage, and its

definition to build a neural dictionary that supports both retrieving words from defin-

itions and generating definitions for given words [42]. Faruqui et al. [65] retrofitted

word embeddings, using semantic relations in PPDB [78], WN, and FrameNet [17],

by presenting a method to improve vector space representations by using relational in-

formation from semantic lexicons. It encourages words that are linked in the lexicons

to have similar vector representations. Joshi et al. [102] used definitional information

to augment pre-trained Language Models (LMs) by proposing a technique for rep-

resenting input texts by embedding them in context with dynamic textual knowledge

retrieved from various documents. This method is applied to reading comprehension
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tasks, where questions and passages are encoded with background sentences related

to the mentioned entities. Delli Bovi et al. [52] and Xu et al. [217] used definitions

for generating knowledge bases. Delli Bovi et al. [52] introduce DEFIE, a method for

extracting information from a large number of text definitions by analyzing the struc-

ture and meaning of these definitions. Espinosa-Anke et al. [58] propose EXTASEM!

which is a method for automatically creating lexical taxonomies by collecting defin-

itions, extracting (hyponym, hypernym) pairs, and finally building a taxonomy with

weighted connections based on domain relevance. Xu et al. [217] introduce Taxo-

Prompt, a framework that uses prompts to learn global structure with taxonomic con-

text. It improves semantic understanding by using a modified random walk algorithm

to enhance prompts. In the following two sections, we discuss how dictionary com-

ponents, specifically definitions and examples, are used in NLP tasks.

2.3.1 Dictionary Definitions and Language Models

Definitions are a fundamental building block in lexicography, linguistics and compu-

tational semantics. In NLP, they have been used for retrofitting word embeddings or

augmenting contextual representations in language models. However, LRs containing

definitions vary in structure, style, and coverage, which can impact the performance of

models trained on them. For example, WN is widely used in definition modeling, but

its definitions are designed to be short and consistent, which can limit the quality of

the model [21]. To better understand how definitions are applied in NLP and why their

quality matters, we now show several tasks where definitions play a key role.

Definition Modeling (DM): DM, as introduced by Noraset et al. [156], is the task

of generating a dictionary definition for a given word. This task was made possible

by the adoption in NLP of sequence-to-sequence architectures based on RNNs [79].

Recently, DM systems have shown impressive performance in several intrinsic and

downstream tasks, mostly thanks to being able to go from context-less (Noraset et al.
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only used the definiendum6 as a conditioning token at all timesteps) to a contextually

richer setting, e.g., by conditioning the generated definition to an example of usage

of the target word. Ni and Wang [154] present a method for automatically explaining

new, non-standard English expressions using data using a neural model with dual en-

coders: one for context and one for the expression itself. This allows us to generate

accurate definitions based on context. Gadetsky et al. [74] developed a technique to

evaluate word vectors by modeling dictionary definitions and addressing word ambi-

guities using latent variable modeling and soft attention mechanisms. Given a context

and a target word, Chang et al. [38] algorithm transforms the word into a sparse vector,

selects dimensions to capture its meaning, and uses an RNN to generate a human-

readable definition. Zhu et al. [227] studied Multi-sense Definition Modeling, using

sequence-to-sequence neural networks to generate definitions for each sense of pre-

trained word embeddings. Ishiwatari et al. [99] used a variant of the encoder-decoder

model that captures the local context (explicit contextual information in a sentence)

with the encoder and the global context (implicit information from large text corpora)

with the decoder, initialized by the target phrase’s embedding.

A notable leap in DM was achieved in Bevilacqua et al. [21], who fine-tuned BART

[116] on example-definition pairs, and reported high results in intrinsic benchmarks

and, more importantly, used their DM system for downstream NLP, specifically WSD

and word-in-context classification. DM has also been explored from other perspect-

ives, e.g., generating definitions with appropriate specificity using re-ranking mech-

anisms to solve over/under-specificity problems[96], defining scientific terminologies

and controlling the complexity of generated definitions based on reader’s background

knowledge [14], combining extraction and generation, incorporating a web-based ex-

traction method into the generation process for jargon 7 definition modeling [97], or

extending the generation cross-entropy loss with a reconstruction objective [110] (re-

6The genus-et-differentia Aristotelian definitions follows an A is a B which Z structure, with A being

the definiendum, B the genus and Z the definiens or differentia specifica.
7A specialized term used by experts within a specific field.
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miniscent of works that used dictionary definitions for improving word embeddings

via autoencoders [27] or LSTMs [93]).

Definitions in LMs pre-training: While Pre-trained Language Models (PLMs) have

achieved the state-of-the-art performance across different NLP tasks, they struggle

with knowledge-driven tasks. DictBERT [43] introduces a novel approach to enriching

PLMs with dictionary knowledge. This method involves two pre-training tasks: pre-

dicting dictionary entries, using a description to predict its masked entry and learn entry

representations from descriptive texts; and entry description discrimination, which im-

proves the robustness of entry representations through contrastive learning, which con-

structs positive and negative samples using dictionary synonyms and antonyms. In

Dict-BERT [222], PLMs are enhanced by incorporating definitions of rare words from

dictionaries during pre-training. This is important since word representation quality

depends on its frequency and rare words often have poor embeddings. In natural lan-

guage understanding (NLU), CoDA21 (Context Definition Alignment) is a challenging

benchmark that evaluate the natural language understanding abilities of PLMs [184].

The task involves providing a definition and a context for k words, without knowing

the words themselves, and the challenge is to align the k definitions with the k con-

texts. The results show a large gap between human and PLM performance, highlight-

ing CoDA21’s importance as a benchmark for improving NLU capabilities in model

design.

Definitions for improving word embeddings: Word embedding models are ap-

proaches for learning dense vector representations of words within a continuous vector

space. They effectively capture semantic and syntactic relations and the vector repres-

entations learned through these models have shown high performance across various

tasks such as information retrieval [77, 152] and sentiment analysis [221]. Traditional

word embedding techniques such as word2vec [138] and GloVe [160] use neural net-

works to represent each word in a way that words with similar contexts are clustered
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closer together in the vector space. These techniques generate static word embeddings

or fixed word embeddings, meaning they represent words as a single vector. However,

this method of representing lexical semantics ignores the diversity of word meanings

in different contexts, such as polysemy where a single word has multiple meanings

or senses. This issue was addressed by introducing contextualized word embeddings,

which represent words as vectors that vary between contexts when sentences or docu-

ments are fed through a pre-trained LM [62] like ELMo [162], BERT [53], and XLNet

[220].

Recently, definitions have been used to enhance word vectors, including improving rep-

resentations of out-of-vocabulary (OOV) terms. Bahdanau et al. [15] train a network

to predict words representations based on auxiliary data that describes certain semantic

aspects of the word, such as dictionary definitions or linguistic descriptions of named

entities sourced from Wikipedia articles. Ruzzetti et al. [179] propose two models to

use these definitions to understand the meanings of OOV words: (1) Definition Neural

Network (DefiNNet), which uses definition structure to highlight key words, and (2)

DefBERT, which uses BERT to convert definitions into a single vector representation.

Gajbhiye et al. [76] suggested developing a shared embedding space that combines rep-

resentations from three strategies: training a concept name (word) embedding model,

a mention embedding model since a mention embedding should be similar to the em-

bedding of the corresponding term, and a definition embedding model. Their findings

show that the combined embeddings outperform existing strategies in tasks such as

ontology completion.

2.3.2 Dictionary Examples and Language Models

Using dictionary examples in NLP applications has not been vastly exploited except

for a few exceptions [21, 19]. One reason for this is that some standard LRs actu-

ally lack many examples; for instance, 85% of lemmas in WN lack examples. While

this presents a challenge for creating connections between LRs and NLP applications,
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it also represents an exciting research area. Producing examples from LMs, retriev-

ing them from corpora, or merging them from different resources are all areas with

potential for direct and significant impact in NLP. Barba et al. [19] explore a BART-

based model for performing the reverse task to DM, i.e., exemplification modeling, or

generating a dictionary example given a term and its definition. A sequence to se-

quence architecture is used and trained directly on sense-annotated resources. Also, a

transformer-based sequence-to-sequence model by [136] was developed for definition

modeling that maps the word’s context of usage into its appropriate definition. Con-

sidering the background of target readers when generating examples is facilitated by a

controllable target-word-aware model [89] that allows users to specify the readability

and lexical complexity of generated examples by training the model on discrete control

tokens related to these metrics.

Examples Evaluation Evaluating the quality of generated examples is a subjective

matter to measure the efficiency of the system and how well these sentences are struc-

tured and can deliver the meaning of their words to be used in improving dictionaries

for language learners and NLP applications. The evaluation can be done in different

ways:

• Intrinsic evaluation (human-made): the sentences can be evaluated by employ-

ing human annotators to compare generated sentences with others produced by

human lexicographers as in the Generationary model [21]. Also, in the case of

Exemplification Modeling [19], human evaluation task was done by asking an-

notators to measure the fluency of the generated examples which is defined as

the rhythm and flow of the language and the sound of word patterns [56], and

semantic relationships between words in the generated examples.

• Intrinsic evaluation (automatic): automatic string matching measures are used

in automatic intrinsic evaluation like BLEU that is used for machine translation

evaluation and compares n-grams matches of the candidate sentence with the ref-
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erence sentence[157] and ROUGE which compares an automatically produced

summary against a set of reference summaries [121]. However, these metrics are

based on simple string matches, and in many cases these are not good indicators

of output quality because they score based on a reference sentence and there is

no one single good example [21].

• Extrinsic evaluation: extrinsic evaluation is aimed at evaluating the generated

sentences based on their impact on the performance of other NLP tasks like

WSD. In the Exemplification Modeling, the generated examples are evaluated

by using them to train a WSD model [19]. In the Generationary model, the

performance of the generated definitions are evaluated by using them in some

downstream NLP tasks which are WSD and Word in Context (WiC) to see how

they did comparing to the state of the art results [21].

Examples or word usages can serve as a source to obtain contextualized representa-

tions of words. The most common approach for distilling word vectors from BERT

involves sampling sentences that contain the words of interest. The quality of these

sentences influences the effectiveness of the word embeddings. [210] demonstrated

various strategies for selecting instances of a given word and found that embeddings

trained on clear and informative sentences tend to be of higher quality, capturing more

semantic meanings than those chosen randomly.

2.3.3 NLP Tasks

This section introduces Word Similarity and Reverse Dictionary tasks. We focus on

these tasks specifically because they form the basis of the analyses in our thesis.
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2.3.3.1 Word Similarity

The concept of word similarity involves assigning a metric to a set of items within

lists based on the similarity of their meanings [40]. It is important to highlight that

similarity is different from relatedness: semantic similarity involves items that can

replace each other in a given context without changing the meaning (e.g., cute and

pretty), while relatedness covers a wider range of semantic relations, such as antonymy

(e.g., beautiful and ugly), where items are connected but cannot be substituted for one

another [177, 31].

Different methods have been proposed to measure similarity and can be classified as

word-to-word-based, vector-based, and structural-based [64]. The word-to-word ap-

proach measures sentence similarity by comparing individual words. Li et al. [119]

applied word-to-word similarity, taking into account semantic information and word

order within sentences, with similarity determined using data from a structured lexical

database. The vector-based approach represents sentences as vectors that capture the

semantic features of words and compares these vectors for similarity. Assessing the

semantic similarity between two items reflects the quality of the linguistic representa-

tions used, and word embeddings are commonly employed to encode the meaning of

words in most NLP applications [174]. The structure-based approach considers sen-

tence structure when calculating similarity, such as the method proposed by Lee et al.

[114], which calculates sentence similarity by extracting grammar links, constructing

a grammar matrix, and using WN to measure word similarity. Word similarity meas-

ures play an important role in different NLP applications such as text mining, question

answering, and information retrieval systems. For instance, semantic similarity in in-

formation retrieval helps find related documents by understanding word meanings, not

just exact matches and this improves the accuracy and relevance of search results [201].
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2.3.3.2 Reverse Dictionary

Reverse Dictionary (RD) or concept finder is a helpful application for copywriters,

novelists, translators seeking to find words or ideas that might be “on the tip of their

tongue” [93]. It is also reflection of the interactions between a speaker and the mental

lexicon [228, 229]. This task takes user descriptions or definitions as input and returns

words or expressions corresponding to the provided input. RD is a task with a long tra-

dition in lexical semantics, with early methods exploiting hand-crafted rules [22, 187]

for extracting textual features. It was Hill et al. [93] who introduced RNNs as suitable

architectures that complemented bag of words representations, as well as a dataset spe-

cific to RD sourced from different resources. From here, the usage of neural networks

first, and more specific, pre-trained transformer encoders like BERT later, have dom-

inated the RD landscape. Among the former, let us highlight, e.g., Pilehvar [166], who

integrates WN senses and supersenses as an additional signal, improving over text-

based embeddings alone. Further, [224] propose a multi-channel model comprising

a sentence encoder based on BiLSTMs and multiple linguistically motivated predict-

ors such as word category (using WN’s taxonomy), morpheme or sememe prediction,

whereas [39] directly replaces word embeddings with synset embeddings, optionally

leveraging examples of usage. An immediate limitation of the above works is their

reliance on a sense inventory such as WN, which has proven to work very well for

modeling in-domain terminologies, less so for enabling generalization.

Other works have exploited multiple but related tasks in the broad “embedding a dic-

tionary” paradigm, e.g., by combining definition generation and RD with reconstruc-

tion tasks via autoencoders [42], or have fine-tuned T5 [168] with excellent results

[128]. More recently, LLMs have unsurprisingly been introduced into RD. For ex-

ample, in a two-stage approach where a fine-tuned LLM first generates a set of can-

didates which are then passed in a subsequent prompt to a generator for outputting the

final set of predictions [197]. Finally, from a more “probing” perspective, RD has been

used to gain insights into LLMs representations via conceptual inference, showing that
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they encode information about object categories as well as fine-grained features [218].

Despite its usefulness, research in RD is currently limited in two fronts. First, RD

benchmarks are mostly sourced from WN and the Oxford Dictionary, and little is

known about the effectiveness of RD methods on other resources or languages - with a

few notable exceptions such as the multilingual experiments in Yan et al. [219]. This is

problematic because the generalization ability of models optimized for these two stand-

ard and over-utilized resources might not reflect modern, acquired, rare, evolving or

technical terminologies. And second, because there is a surprising lack of work exploit-

ing the generative capabilities of LLMs to improve over embedding-only baselines.

While Tian et al. [197] as we mentioned earlier propose to leverage LLMs for RD,

their approach requires fine-tuning a text generation model in the first stage, and the

final set of predicted terms may not correspond to the vocabulary of the dictionary in

question, making this approach hard to apply on large-scale real-world resources8.

2.4 Summary

This chapter discussed background knowledge related to LRs and briefly described

their main components, including definitions, examples, and semantic relations. It also

explored how these components are utilized in various NLP tasks. With the informa-

tion gained from this chapter, we can move forward in the next chapter to discuss the

first experiment applied in this thesis that used DM to evaluate WN, the most popular

resource in NLP field.

8At the time of writing this manuscript, the English Wiktionary has over 7.5M entries (with over

30M entries across all languages), making embedding search a prerequisite on any realistic RD method.

https://en.wikipedia.org/wiki/Wiktionary

https://en.wikipedia.org/wiki/Wiktionary
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Chapter 3

WordNet under Scrutiny

3.1 Introduction

As discussed in Chapter 1, there is substantial research on evaluating LRs, both intrins-

ically and extrinsically, with many examples relevant to NLP. We have also highlighted

the prominence of WN as a key resource in the NLP and computational lexicography

literature. In this chapter, we aim to assess the suitability of WN as an LR, both gen-

erally and for specific NLP tasks. Specifically, we present an empirical evaluation of

its dictionary examples. We argue that despite its widespread use, little to no prior

research has examined WN from the perspective of the quality of its examples and

their suitability for various NLP tasks. As we will demonstrate, while WN performs

well across several metrics and is suitable for many tasks, it also has significant limit-

ations in other applications. This chapter is organized as follows: Section 3.2 provides

a closer look at the resources used in this evaluation to compare WN’s examples with

those of other lexical resources. We then evaluate the examples intrinsically in Section

3.3, by matching them against criteria for good dictionary writing and extrinsically in

Section 3.4, through definition modeling and word similarity tasks. Finally, the limita-

tions and summary of this work are discussed in Section 3.5.1.

1The code and datasets for the work shown in this chapter are available at https://github.

com/F-Almeman/WordNet_Evaluation

https://github.com/F-Almeman/WordNet_Evaluation
https://github.com/F-Almeman/WordNet_Evaluation
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3.2 Data Resources

We will now discuss the datasets and resources used in the experiments reported in

this chapter. WN is the primary resource used in this evaluation, and we include two

additional resources for comparison:

CHA [38] This is a widely adopted open dataset used in DM, based on data obtained

via the OxfordDictionaries.com (2018) API. Each entry consists of a triplet contain-

ing the word, its definition, and example(s) showing the word’s use in the given sense

(31,798 words; average number of examples per definition: 27). The dataset is publicly

available online 2. It is a large and high-quality context-definition dataset, and has been

used in different DM works [21, 37]. It was released with two splits, each containing its

own train/validation/test sets: seen, which tests the pair with (seen word, unseen con-

text, seen definition), and unseen, which features a zero-shot test with (unseen word,

unseen context) [38]. This is similar to the lexical splits (as opposed to random splits)

present in other analogous tasks such as graded lexical entailment [189, 205]. It is

worth noting, however, that WN and CHA were built with different objectives. WN

was designed to explain how lexical meaning is stored in the mind [29] and is primarily

used as a sense inventory [4], while CHA has a different structure. Table 3.1 shows

examples from WN and CHA, where it becomes apparent that WN examples have a

different pattern, e.g., they are much shorter, and are crucially limited in the contextual

information they provide, as opposed to the examples in CHA, which features, first,

full-fledged grammatical examples, and second, associated vocabularies that help po-

sition the target word in the mental lexicon, which is crucial for word access [229].

Table 3.2 presents detailed statistics comparing the two datasets, offering insight into

the resources used in this study. In particular, CHA is substantially larger and contains

a higher average number of examples per word. While 12,096 words appear in both

2https://miulab.myds.me:5001/sharing/lWPBRc8hG

https://languages.oup.com/
https://miulab.myds.me:5001/sharing/lWPBRc8hG
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datasets, the overlap in definitions and examples is limited, with only 114 overlapping

(word, definition) pairs and a single overlapping (word, definition, example) triplet.

LLM-generated examples For some experiments3, we expanded the evaluation with

dictionary examples generated using ChatGPT (gpt-3.5-turbo). We used two dif-

ferent prompts to obtain the examples: the simple format (“Write a sentence showing

the word {word}, defined by {definition} in context”); and the GDEX format, which

extended the simple prompt with instructions about how the example should be written

following GDEX criteria and shown in Appendix A. We leave for future work prompt

optimization, which could be done either via careful testing of multiple prompt types

(basic, in-context learning, chain of thought, etc.), as well as parametric gradient-based

approaches such as DSPY4.

3.3 Intrinsic Evaluation

There has only been limited work on evaluating the intrinsic quality of LR, specific-

ally WN, by fleshing out their specific features (e.g., type and style of definitions, or

readability and informativeness of examples) and studying the extent to which such

features dictate the performance of NLP systems. As a proxy for determining the qual-

ity of dictionary examples, and given that there is no manually annotated dataset for

this purpose, in this evaluation we used the GDEX (Good Dictionary Examples) cri-

teria [108, 20] (see Section 2.2.3.1). The evaluation is conducted in two ways: first

through an evaluation that is based on automatic metrics (Section 3.3.1), then comple-

mented by a questionnaire that involves human assessments of examples from several

standpoints, namely, naturalness, informativeness, and the extent to which examples

are self-contained (Section 3.3.2).

3We did not include ChatGPT examples in the automatic evaluation and definition modeling exper-

iment, as they were conducted before December 2022.
4https://github.com/stanfordnlp/dspy

https://github.com/stanfordnlp/dspy


30 3.3 Intrinsic Evaluation

Source Lemma Definition Example

WordNet tall Great in vertical dimension;

high in stature.

Tall people.

CHA tall Of great or more than av-

erage height especially with

reference to an object relat-

ive to width.

The elevator came to a stop and

the doors slid open revealing the

sixth floor of the tall building.

WordNet sheet Any broad thin expanse or

surface.

A sheet of ice.

CHA sheet A large rectangular piece of

cotton or other fabric used

on a bed to cover the mat-

tress and as a layer be-

neath blankets when these

are used.

Mary quietly got off the bed and

covered him with the sheet and

blanket.

Table 3.1: WordNet vs CHA definitions and examples for a given lemma (in bold).

Dataset # entries # words Avg. # ex. / word

WordNet 44,348 20,456 2.17

CHA 785,551 31,798 24.63

Table 3.2: Statistics comparing the WordNet and CHA datasets.

3.3.1 Automatic Evaluation

We based our analysis on the features introduced in GDEX [108] (see Section 2.2.3.1),

aiming to implement a systematic approach that closely aligns with the criteria dis-

cussed in the original work. Specifically, we chose the following features:

• Sentence fluency: This GDEX feature refers to how naturally a sentence reads

according to the norms of a language. In computational linguistics, language
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models are widely used to estimate the probability of word sequences, support-

ing tasks such as speech recognition and machine translation by identifying sen-

tences that are more likely to be fluent [108]. Traditional methods assess fluency

using frequency statistics or n-gram models, while more recent unsupervised ap-

proaches use large language models to evaluate fluency based on perplexity, a

measure of a model’s uncertainty in predicting words within context [103, 104].

Sentences with lower perplexity scores are considered more fluent, as they align

more closely with typical patterns of natural language.

Following these studies, we use the GPT-25 language model to evaluate how

fluent or natural a sentence sounds. This is done by tokenizing the sentence and

using GPT-2 to calculate the log-probability of each token given the preceding

tokens (next-token prediction). The average log-probability (used to calculate

perplexity by exponentiating its negative) is then computed across all tokens in

the sentence to estimate how likely the sentence is under the language model.

The final fluency score is calculated as follows:

Fluency = min

(
1,max

(
0, 1 +

AvgLogProb
10

))
(3.1)

Where AvgLogProb is the average log-probability of the tokens in the sentence

computed by GPT-2. The division by 10 scales typical GPT-2 log-probabilities

(which are around -1 to -10) to a manageable range, and adding 1 shifts the

values so that more fluent sentences (with higher average log-probabilities) re-

ceive higher scores. The min and max operations ensure that the fluency score

is bounded within [0, 1], where higher values indicate greater fluency.

For example, the sentence “She went to the store to buy some milk.” receives a

fluency score of 0.72, an average log-probability of -2.75, and a perplexity of

5We chose the GPT-2 model because it was state of the art among autoregressive models during

our experiments in 2022, while being small enough to run efficiently. Additionally, GPT-2 ensures

reproducibility because its weights are fixed, unlike APIs that may be updated in the background.
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15.68, indicating high fluency. In comparison, the simpler sentence “The cat sat

on the mat.” yields a fluency score of 0.55, an average log-probability of -4.50,

and a perplexity of 90.24, reflecting moderate fluency. In contrast, the mean-

ingless sentence “The cat telephone banana on mat.” results in a much lower

fluency score of 0.06, with an average log-probability of -9.40 and a perplexity

of 12,039.

• Sentence length (len-pen): a good example should be between 10 and 25 words

long based on Kilgarriff et al. [108]. Accordingly, the length penalty was calcu-

lated as zero within the desired length range, and increases as the length moves

further away from the target range.

Let L denote the sentence length (in words), and let the desired length range be

[a, b] = [10, 25]. We define:

d(L) =



0 if a ≤ L ≤ b,

a− L if L < a,

L− b if L > b.

LengthPenalty(L) = 1− 1

d(L) + 1
.

• Word frequency (freq-pen): a sentence was penalized for each non-frequent

word, defined as a word which is not among the top 20,000 most common words

on the English language, as derived from the Google Web Trillion Word Corpus

[28]. This penalty score is derived by dividing the number of non-frequent words

by the total number of words in the sentence.

• Anaphoric references (ana-pen): this penalty score was calculated by dividing

the number of pronouns in the dictionary example by its total number of words.

Results and Analysis Since Kilgarriff et al. 108 did not specify an optimal weighting

for the different factors they took into account in the GDEX metric, we look individu-
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Figure 3.1: Empirical cumulative distribution functions comparing WordNet

(blue) and CHA (orange) for length (a) and frequency (b) penalties.

ally at each of these four factors discussed. We leave for future work investigating

optimal weighting for these and other metrics, for example, by tuning them on down-

stream applications. When comparing these scores for both WN and CHA examples,

Figure 3.1 (lower is better in both metrics) shows that WN has generally higher pen-

alties both for example length and for usage of infrequent words. Specifically, for

instance, we found that 80% of CHA’s examples have a length penalty of .6 or less,

whereas for the same proportion, the length penalty reaches more than .8 in WN. In a

subsequent analysis, we found that these differences, if studied between WN’s nouns

and verbs, clearly favour nouns, that is, WN’s nouns are in general accompanied by

better examples. Specifically, we found that, on average, the length penalty is .49 for

nouns, and .62 for verbs, and that the frequency penalty is .10 for nouns and .15 for

verbs. To illustrate, this WN dataset contains 10,572 noun and 9,823 verb entries, cov-

ering 5,593 and 4,359 unique lemmas, respectively. On average, verb lemmas have

only slightly more examples (2.25) than noun lemmas (1.89).

While sentence fluency is a valid metric, we observe that CHA’s examples tend to
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Fluency Score

WordNet 0.3940

CHA 0.4690

WordNet Nouns 0.4810

WordNet Verbs 0.4294

Table 3.3: Average fluency scores across different datasets.

Figure 3.2: Violin plot showing the difference in log-likelihood assigned by GPT-2

to WordNet vs CHA examples (higher is better).

be rated as more fluent on average, as shown in Table 3.3. Notably, although WN

nouns and verbs have relatively high scores, the overall WN average is lower due to

lower scores for other parts of speech, such as adjectives (0.325) and adverbs (0.425).

To explore this further, we split WN’s and CHA’s examples into four bins as shown in

Figure 3.2: short, mid-short, mid-long, and long. Instead of fixed length thresholds, we

defined these bins using source-specific quartiles based on sentence length measured

in words. For CHA, sentence lengths range from 1 to 141 words, with quartiles at 13,

17, and 22 words, resulting in 199,202 short, 192,293 mid-short, 189,754 mid-long,

and 171,675 long examples. For WN, sentence lengths range from 1 to 46 words, with
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Source Example fluency len-pen freq-pen ana-pen

WordNet

How are we going to deal with this prob-

lem?

0.79 0.50 0.11 0.22

He treated his parents thoughtlessly. 0.30 0.83 0.20 0.40

A full complement 0.46 0.88 0.00 0.00

CHA

This year he has certainly proved his worth

and talent ten times over.

0.49 0.00 0.00 0.23

There are as many recipes for bolognese

sauce as there are people who eat bo-

lognese sauce.

0.73 0.00 0.125 0.125

If your doctor thinks you have a bladder in-

fection he or she will test a sample of your

urine to find out if there are bacteria in it.

0.70 0.8 0.00 0.12

Table 3.4: Sample of examples with fluency and penalty scores.

quartiles at 3, 5, and 7 words, resulting in 13,217 short, 10,332 mid-short, 9,722 mid-

long, and 11,080 long examples. Examining the fluency scores in these bins, we find

that CHA examples tend to be more fluent than WN’s in the short and mid-short bins,

while the fluency scores are similar for both sources in the mid-long bin. For long ex-

amples, WN’s fluency scores are slightly higher than CHA’s, possibly because CHA’s

sentences in this bin are much longer and thus more challenging to process fluently. Fi-

nally, in terms of usage of anaphoric references, we did not find significantly different

results between WN and CHA. Table 3.4 shows examples with their evaluation scores.

3.3.2 Human Evaluation

In order to complement the insights derived from the automatic evaluation, we also

conducted a comprehensive evaluation of WN examples through a questionnaire. In

addition to comparing WN’s examples against those from other lexical resources, such
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as CHA, we also include examples generated by ChatGPT6 in our analysis. Our core

motivations are to assess the extent to which WN (1) adheres to GDEX criteria; (2)

compares with another well-known resource; and (3) compares with examples auto-

matically generated using LLMs. To address these three questions, we recruited three

participants who were native English speakers and held higher education qualifications

in English or linguistics. This ensured that their responses were informed and reliable

for the English dictionary evaluation tasks [182].

Questionnaire Data The questionnaire data was built by including all exact matches

words between WN and CHA first, then adding entries with similar definitions for the

same term, ranked by cosine similarity, until reaching 400 words 7. This approach

better captures vocabulary overlap and improves sample size and representativeness

[55]. Random sampling could include terms with unrelated or inconsistently defined

entries, making it difficult to draw reliable conclusions. In contrast, our sampling

method improves reliability by ensuring that annotators compare entries referring to the

same or closely related concepts, leading to clearer and more meaningful results. The

questionnaire focused on these 400 words. Each of these words has a corresponding

definition and usage example in both WN and CHA. For each word, we included two

generated examples (ChatGPT-simple and ChatGPT-gdex), as described in Section 3.2,

resulting in a total of 400 × 4 = 1,600 examples. Each example was evaluated based

on three criteria by three annotators, leading to 14,400 unique annotations. Table 3.5

illustrates the kind of examples that participants were asked to annotate. Note that

the sources were hidden from the participants to prevent bias and ensure objective

evaluations 8.

6https://chat.openai.com
7We limited the dataset to 400 words to ensure a representative sample while keeping the human

annotation workload manageable and within the available budget.
8The full questionnaire data is available at the GitHub repository https://github.

com/F-Almeman/WordNet_Evaluation/blob/main/datasets/definitions_

examples_evaluation_data.pdf

https://chat.openai.com
https://github.com/F-Almeman/WordNet_Evaluation/blob/main/datasets/definitions_examples_evaluation_data.pdf
https://github.com/F-Almeman/WordNet_Evaluation/blob/main/datasets/definitions_examples_evaluation_data.pdf
https://github.com/F-Almeman/WordNet_Evaluation/blob/main/datasets/definitions_examples_evaluation_data.pdf
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Term Definition Example Source

Cage Confine in a cage

The animal was caged. WN

In future should I leave the house I will cage the

dogs no matter who else is in the house with them.

CHA

The zookeeper had to cage the wild animals to en-

sure the safety of the visitors.

ChatGPT-

simple

The zookeeper had to cage the wild animal to ensure

the safety of visitors.

ChatGPT-

GDEX

Ever At any time

Did you ever smoke? WN

They were the cutest couple at our school and no

one could ever compare to either of them.

CHA

Have you ever been to paris? ChatGPT-

simple

Have you ever been to paris? ChatGPT-

GDEX

Table 3.5: Sample of questionnaire data.

Questions Design The questions presented in the questionnaire were designed to

capture participants’ perception of the good dictionary examples criteria [12] in a gran-

ular way. To this end, the questionnaire was split into two sections: definitions eval-

uation and examples evaluation. While our main focus was on the examples evalu-

ation, we included an evaluation of the definitions as well, to assess to what extent the

definitions alone were successful in clarifying the meaning of the considered terms.

The primary objective of this exercise is to determine whether (and how much) ex-

amples can help readers understand the meaning of difficult or unfamiliar terms that

have unclear or difficult definitions. More importantly, we aim to identify if there are

important differences in how annotators assess the quality of examples depending on

whether they appear with clear or unclear definitions. Specifically, for definitions eval-

uation, participants were presented with a word and its corresponding definition only,



38 3.3 Intrinsic Evaluation

and were asked to assess the extent to which the definition alone clarifies the meaning

of the word by assigning one of the following labels:

Unclear: upon reviewing the provided definition, the meaning of the term re-

mains unclear or difficult to comprehend.

Borderline: the definition gave me some insight into the term’s meaning, but it

is still unclear.

Clear: the definition clearly and fully explains the meaning of the term.

The examples evaluation section of the questionnaire aimed at evaluating the WN and

CHA dictionary examples based on GDEX, as well as those generated by GPT-3 and

ChatGPT. In this case, annotators were asked to score each example according to the

following criteria:

• Self-containment: Was the dictionary example fully understandable to you without

the need for wider context or consulting external sources? (1–3 scale)

– 1: No (I had to consult external sources to fully understand it)

– 2: Partially (I needed some external sources to fully grasp it)

– 3: Yes

• Informativeness: Regardless of your prior knowledge of the term, how well did

the example clarify or elaborate on its meaning? (1–5 scale)

– 1: The example was not informative. Regardless of how much the sentence

made sense to me, it did not help clarify the meaning of the term.

– 5: The example was highly informative; it provided useful and valuable

information that helped me gain a better understanding of the term’s mean-

ing.
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Figure 3.3: Score distributions per annotator for naturalness, informativeness,

and self-containment.

• Naturalness: How well does this example reflect the style and wording you’d

expect to find in everyday language use? (1–5 scale)

– 1: The example sounds unnatural, synthetic, or awkward.

– 5: The example uses words and a style that sound natural and that I have

encountered or even used myself before.

Results and Analysis Here we present the results of the human evaluation, cover-

ing annotator agreement, the assessment of examples using GDEX standards, and the

informativeness of examples for difficult definitions. Figure 3.3 summarizes the distri-

bution of annotator ratings across all sources, showing that annotators generally rated

examples highly, indicating that they found them to be of good quality.

• Annotator Agreement We first measured agreement across the three criteria:

naturalness, informativeness, and self-containment. Table 3.6 presents the agree-

ment results using Fleiss’ Kappa [69] alongside average pairwise agreement for

the three criteria. Fleiss’ Kappa measures the degree of agreement among annot-

ators while adjusting for chance, where a value of 1 indicates perfect agreement

and 0 corresponds to chance-level agreement [112]. In contrast, average pairwise
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Original After Binning

Metric Fleiss’ Kappa Avg. Agreement Fleiss’ Kappa Avg. Agreement

Naturalness 0.011 0.516 -0.02 0.78

Informativeness -0.047 0.454 -0.03 0.71

Self-containment -0.017 0.733 -0.02 0.74

Table 3.6: Annotator agreement scores before and after converting to 3-category

ratings.

agreement directly reports the proportion of cases in which annotators provided

the same label, without adjusting for chance.

We observe moderate to high average pairwise agreement across all criteria

(0.45–0.73). As shown in Figure 3.3, annotators often distinguished between

scores of 4 and 5, so we converted the original 5-point scale into three categories

by mapping scores of 4–5 to 3, 3 to 2, and 1–2 to 1, which led to higher agree-

ment scores (0.71–0.78). This suggests that annotators mostly provided the same

labels, reflecting strong consistency in their ratings. However, Fleiss’ Kappa val-

ues remain close to zero, indicating low agreement when adjusting for chance.

This difference is due to the imbalance in our data, where most ratings fall into

the highest categories. In such cases, even small disagreements can greatly lower

the Kappa score despite high raw agreement.[66].

• GDEX Criteria Let us now take a closer look at the assessment of the different

GDEX criteria for the four considered resources. Figure 3.4 shows the response

means and standard errors, which we can interpret as follows. WN examples

appear highly natural but are somewhat lacking in informativeness, suggesting

they may be easy to understand but not particularly useful. In comparison, the

CHA examples are more informative but less natural. Interestingly, GPT-GDEX

and GPT-simple lead in informativeness (4.45), indicating that GPT-based ex-

amples tend to provide richer, more relevant content. While differences in self-

containment are small, GPT-simple slightly outperforms the others (2.80), sug-
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gesting it better maintains context within individual examples. Moreover, when

comparing ChatGPT-simple with ChatGPT-GDEX, we cannot see any be-

nefits from the GDEX based prompting strategy. This confirms that, while the

GDEX prompt leads to longer and more complex examples, in practice, they

prove to be just as effective as the zero-shot approach without explicit instruc-

tions.

In order to find out whether the differences in example ratings across sources

are statistically significant, we used the Kruskal-Wallis H test [111], a non-

parametric alternative to ANOVA that assesses whether ordinal ratings differ

across groups without assuming normality. When a significant result was found,

we followed up with pairwise Mann-Whitney U tests [129] to identify which

specific pairs of sources differed. We applied the Bonferroni correction, which

adjusts the significance threshold by dividing it by the number of comparisons

to reduce the chance of false positives when running multiple tests. Using these

tests, we found significant differences in naturalness (H=14.236, p=0.0026), with

pairwise tests revealing that CHA rated significantly lower than those of both

WN and ChatGPT-GDEX in naturalness ratings. No significant differences

were found for informativeness (p=0.26) or self-containment (p=0.64).

In addition, we computed Spearman’s rank correlation to examine the relation-

ships between the three example quality metrics. Spearman’s correlation meas-

ures the strength and direction of a monotonic relationship between two variables

based on their ranked values, making it suitable for ordinal data or non-linear as-

sociations [192]. The results show significant positive correlations between all

pairs of metrics: naturalness and informativeness (0.657), naturalness and self-

containment (0.492), and informativeness and self-containment (0.507).

• Informativeness for Challenging Definitions We first examine which resource

(or pseudo-resource) provided the highest number of informative examples. For

this analysis, we specifically focus on words whose definitions received ratings
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Figure 3.4: Questionnaire results per source

of being unclear or borderline by at least one annotator. This was the case for

148 definitions. We focus on these 148 words, as the primary purpose of diction-

ary examples is to help clarify potentially incomplete definitions. This analysis

allows us to identify which sources tend to provide more informative examples

and which produce less helpful examples when definitions are unclear, highlight-

ing the potential of example augmentation to improve clarity in these cases.

We then examine the informativeness scores of their examples, considering an

example informative if it received a score of 4 or 5 from at least one annot-

ator, and uninformative if it received a score of 2 or 1. Finally, we compute the

average informativeness scores for each source across examples linked to un-

clear definitions, separately for the informative and uninformative subsets. As

shown in Table 3.7, ChatGPT-simple achieves the highest informativeness

(4.5) and the lowest uninformative score (2.41), indicating that its examples are

generally more informative for definitions needing clarification. In contrast, WN

shows the lowest informativeness (4.34) and the highest uninformative score
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Source Informative Uninformative

WordNet 4.34 2.58

CHA 4.45 2.54

ChatGPT-simple 4.5 2.41

ChatGPT-GDEX 4.41 2.42

Table 3.7: Average informativeness

scores of examples linked to unclear

definitions. (bold: best, underlined:

worst).

(2.58), suggesting it is less effective in providing clarifying examples for un-

clear definitions. Additionally, a Kruskal-Wallis H test over this subset revealed

that GPT-simple performed significantly better than WN in informativeness

(U=8921.500, p=0.0048) after Bonferroni correction.

3.4 Extrinsic Evaluation

While intrinsic evaluation explores the intrinsic value of components of WN, namely

definitions and examples, we complement it with an extrinsic analysis. In these ex-

trinsic experiments, we aim to determine the impact of WN examples on NLP per-

formance through two tasks: DM and word similarity.

3.4.1 WordNet in Definition Modeling

DM is the task to generate a valid definition for a given input term. This relatively novel

task has been approached either with no context (i.e., given a word embedding alone)

and, more recently, as word-in-context modeling. Despite their success, most works

make little to no distinction between resources and their specific features (e.g., type
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and style of definitions, or quality of examples) when used for training. Given the high

diversity lexicographic resources exhibit in terms of topic coverage, style and formal

structure, it is desirable for downstream definition modeling to better understand which

of them are better suited for the task. This section presents an extrinsic evaluation of

WN, focusing specifically on its dictionary examples through the task of DM.

3.4.1.1 Experiments

The general formulation of DM is as follows. To generate a definition d that defines a

target lemma t in a context c, the standard sequence-to-sequence conditional generation

probability is computed by factorising it auto-regressively [21]:

P (d|c, t) =
|t|∏
k=1

P (gk|d0:k−1, c, t) (3.2)

where dk is the kth token of d and d0 is a special start token [21]. BART, a pre-trained

encoder-decoder system, was fine-tuned to perform the definition generation task by

taking the pair (context, target lemma) as an input to produce the corresponding defini-

tion. The dataset includes (c, t, d) triples where t is the target word (lemma) in a context

c (example) and d is the gold definition which defines t in c. The input is encoded as

(t, c) pairs and special tokens are used to identify the target lemma in each context

such as The cherry tree <target> bloomed </target>., with the lemma “bloom” as the

target word in this context.

Exp. 1 (WN vs CHA) Since we are concerned with using WN in definition model-

ing, we trained and tested the DM model (BART) on WN lemmas that have examples,

totaling 44,351 (lemma, definition, example) triples. This number includes repeated

lemmas, as a single lemma can be associated with multiple examples. An 80/20 split

was used for training and testing. Additionally, we trained the same model using a

CHA-derived training set of the same size as our WN training set, and tested it on the
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same WN test set. We ensured that no duplicates/leakage occured between sets in both

experiments. We train both models with a maximum of 50 epochs with early stopping9.

Exp. 2 (WN Nouns vs WN Verbs) We trained and tested the same BART model

with same hyper-parameters as in the WN vs CHA experiment on random 10k noun

lemmas and 10k verb lemmas from WN separately (using again an 80/20 ratio for

training and testing) to evaluate whether there are noticeable differences between these

two grammatical categories.

3.4.1.2 Results and Analysis

Evaluating the quality of the generated definitions is a subjective matter, as delivering

the meaning of words can take many forms. Table 3.8 shows examples of the predicted

definitions generated by a WN-trained model and a CHA-trained model. When analyz-

ing these definitions and annotating the error types (following the typification proposed

in Noraset et al. [156]), it seems that the predicted definitions generated by the WN-

trained model show evidence of under-specificity (first and second rows), since in each

case the definition represents the general idea, but where part of the meaning of the

target lemma in context is lost. In the third row, the generated definition falls into the

self-reference type of error, since it refers to the same lemma in a circular way.

We also noticed that, generally speaking, the CHA-trained model learned to explicitly

mention the prototypical concept or the idea to which a definition applies, and this is

interesting from a commonsense learning point of view, which has recently received

considerable attention [75, 153]. Therefore, given that CHA has many definitions that

start with the prototypical concept/entity that embodies that property (e.g., “acceler-

ate” having a definition starting with “of a vehicle”), for the future, this resource could

9We implemented our experiments using the simpletransformers (http:

//simpletransformers.ai/) library, a wrapper on top of transformers [215].

http://simpletransformers.ai/
http://simpletransformers.ai/
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No. Lemma Example Gold definition PD_WordNet PD_CHA

(1) accelerate The car acceler-

ated.

move faster become more

powerful or

efficient

of a vehicle or

aircraft move

forward at a

high rate of

speed

(2) appear Did your latest

book appear yet?

be issued or

published

have a phys-

ical form or

appearance

of a book or

other product

reach the

shelves of a

bookstore or

other store

(3) immigrate Many people im-

migrated at the be-

ginning of the 20th

century.

come into a

new country

and change

residency

become im-

migratory

of a person

move to a for-

eign country to

settle perman-

ently

Table 3.8: Sample of predicted definitions generated by WordNet-trained model

and CHA-trained model. PD_WordNet: predicted definition by WordNet-trained

model, PD_CHA: predicted definition by CHA-trained model.

be helpful to map prototypical features to concepts, using dictionary examples as ad-

ditional contexts.

We evaluated the definitions intrinsically using automatic string matching measures,

specifically BLEU, ROUGE-L and METEOR. BLEU is a metric used for machine

translation evaluation and compares n-grams matches of the candidate sentence with

the reference sentence [157] (we used the default BLEU-4). Rouge-L measures the

longest common sub-sequence between the candidate sentence with the reference sen-

tence [121]. METEOR is another improved machine translation evaluation metric that

matches uni-grams based on their surface forms, stemmed forms, and meanings [113].
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WordNet CHA

BLEU 0.18 0.16

METEOR 12.28 14.89

ROUGE-L 16.49 17.37

Gold Def. Len 6.26 6.26

Pred Def. Len 5.49 8.82

Table 3.9: DM evaluation results and

definition lengths for WordNet and

CHA.

WN-N WN-V

BLEU 3.67 0.47

METEOR 20.66 14.13

ROUGE-L 26.85 18.72

Gold Def. Len 9.22 6.48

Pred Def. Len 6.78 4.89

Table 3.10: DM evaluation results

and definition lengths for WordNet

Nouns vs Verbs.

Exp. 1 (WN vs CHA) Table 3.9 shows the average BLEU, METEOR and ROUGE-

L scores for the definitions generated by WN-trained model and CHA-trained model.

Overall, the scores for the WN-trained model are generally low, even compared to the

CHA-trained model. Additionally, the CHA model produces longer definitions (8.82

words) than the WN model (5.49 words), which may contribute to its higher recall-

based scores such as METEOR and ROUGE-L by covering more content from the

reference definitions. In contrast, the WN model’s shorter outputs may explain its

higher BLEU score, which favors precision and penalizes unnecessary or irrelevant

words.

Exp. 2 (WN Nouns vs WN Verbs) Finally, with regards to the WN nouns vs WN

verbs experiment, Table 3.10 shows the results of the three metrics used for evaluating

the generated definitions. When comparing these results and the average of the scores,

we can see that the quality of generated definitions of nouns is generally better than

that of verbs. Although definition lengths differ, the relative gap is similar, suggesting

length is not the main factor. We leave for future work to further explore the differences

between WN’s noun vs verb examples, and why nouns seem to be easier to learn.

To summarize, the evaluation of WN examples in the DM task indicates that the WN-
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trained model often lacks specificity, resulting in circular reference errors and missing

key meanings. In contrast, the CHA-trained model successfully includes prototypical

concepts, which makes its definitions clearer and more relevant.

3.4.2 WordNet in Word Similarity

For this experiment, we use the examples to generate word embeddings, using Mirror-

WiC [124], a state-of-the-art model for learning high-quality representations of words

or phrases in context. The idea behind this experiment is that informative examples,

which were often more contextual, should lead to higher-quality embeddings. To eval-

uate the quality of the word embeddings, we rely on a number of standard word similar-

ity benchmarks, namely SimLex-999 [92], SimVerb-3500 [80], Stanford’s Contextual

Word Similarities (SCWS) [95], and MEN Test Collection [30]. We first extracted the

common words between WN and CHA along with their examples, and for each word

we generated 5 different examples from ChatGPT using the two different prompts (see

Section 3.2). Then for each similarity dataset we retrieved the word pairs that can be

found in the common words set. For each pair, we computed the cosine similarity

between the MirrorWiC embeddings of their associated examples. If a word has mul-

tiple examples in WN or CHA, we select the one that leads to the highest similarity

score.

SimLex SimVerb SCWS Men

PCC SCC PCC SCC PCC SCC PCC SCC

WordNet 0.18 0.16 0.21 0.21 0.59 0.54 0.51 0.52

CHA 0.25 0.25 0.28 0.26 0.62 0.58 0.60 0.60

ChatGPT-simple 0.44 0.43 0.37 0.36 0.68 0.66 0.71 0.72

ChatGPT-GDEX 0.46 0.43 0.42 0.40 0.68 0.66 0.69 0.70

Table 3.11: Correlation between the gold similarity scores and the cosine similar-

ity between examples’ encodings (bold: best, underlined: worst).
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Results and Analysis By comparing the similarity scores with the gold scores provided

by the similarity datasets, we found that ChatGPT examples have the best encoding for

all datasets while WN-derived embeddings seem less suitable for the task. This res-

ult is consistent with recent findings by Cai et al. [33], who introduced OxfordEval,

a metric based on the win rate between generated sentences and Oxford Dictionary,

and reported that LLM-generated examples achieved over an 80% win rate. Table

3.11 shows the Pearson’s Correlation Coefficient (PCC) and the Spearman’s Correl-

ation Coefficient (SCC) between the gold similarity scores and the cosine similarity

between examples’ encodings.

In addition to the word similarity results, we also list a few illustrative examples 10

(Table 3.12) where, for different word pairs, we show the dictionary examples pair

with the highest cosine similarity for each resource. The disparity in the quality of the

resources (and GPT generations) becomes apparent. For instance, for easy and tough,

we find that the most similar WN examples are less informative, and most critically,

the antonymic relationship between both words is not actually reflected by the given

sentence pair. The CHA and GPT generations do not suffer from this issue. A similar

situation happens with dull and funny, where the antonymic relationship is not captured

by the WN example pair, and instead we find that both examples elicit health-related

senses. CHA, in this case, also falls short (dull edge and funny stomach), but both of

the GPT generated pairs are expressing the sense related to entertainment. Finally, for

rock and jazz, the WN examples pair again shows a conflating of meanings (music,

but also exaggerated talk in “don’t give me any of that jazz”), with CHA and GPTs

both providing accurate music-themed senses. Interestingly, however, GPTg provides

an example pair where a visual arts sense of jazz (“decorated with a jazz theme”) was

found to be most similar to the music sense of rock.

10The full list of examples are available online https://docs.google.com/

spreadsheets/d/1oWCS2mkw4Fe59XYv1lR1_SIu_LKbEWx6Z1X6B-fRCUA/edit?

usp=sharing

https://docs.google.com/spreadsheets/d/1oWCS2mkw4Fe59XYv1lR1_SIu_LKbEWx6Z1X6B-fRCUA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1oWCS2mkw4Fe59XYv1lR1_SIu_LKbEWx6Z1X6B-fRCUA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1oWCS2mkw4Fe59XYv1lR1_SIu_LKbEWx6Z1X6B-fRCUA/edit?usp=sharing
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W1 W2 Encoded Example 1 Encoded Example 2 Dict.

easy tough

An easy victim. A tough character. WordNet

With so many people to choose from,

booking several dates in a short amount

of time is easy.

Getting published and earning a bit of

critical acclaim to spur on further cre-

ative efforts is tough for those starting

out.

CHA

She has a natural talent for learning lan-

guages, so picking up Spanish was easy

for her.

He had a tough time adjusting to his

new school. ChatGPTs

The hike up the mountain was challen-

ging, but the descent was easy and en-

joyable.

The hiking trail was tough, with steep

inclines and rocky terrain. ChatGPTg

dull funny

Dull pain. Told the doctor about the funny sensa-

tions in her chest.
WordNet

Most cooks use the point because the

edge is dull.

Suddenly my stomach felt funny.
CHA

His sense of humor was quite dull, and

his jokes rarely elicited laughter.

My friend has a funny way of telling

stories; he always adds humorous de-

tails.

ChatGPTs

The lecture was so dull that I struggled

to stay awake.

The comedian’s jokes were so funny

that the entire audience couldn’t stop

laughing.

ChatGPTg

rock jazz

That mountain is solid rock. Don’t give me any of that jazz. WordNet

The movie is a disappointment and

could have been a lot better if only he

had gone out on a few more limbs than

just the inclusion of a few rock tunes.

They’re playing a kind of light jazz,

something lively to listen to without

having to know the words.
CHA

My favorite genre of music is classic

rock.

I love listening to jazz music on a lazy

Sunday afternoon.
ChatGPTs

The concert was held in an open-air

amphitheater, and the crowd swayed

and danced to the rhythm of the rock

music.

The interior of the restaurant was dec-

orated with a jazz theme. ChatGPTg

Table 3.12: Examples from the word similarity experiment, showing the pair

of examples with the maximum cosine similarity between their embeddings

(ChatGPTs: ChatGPT-simple and ChatGPTg: ChatGPT-GDEX).
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3.5 Summary and Limitations

This chapter discussed the first experiment in this thesis that evaluates WN examples

both intrinsically and extrinsically, comparing them with examples from other lexico-

graphic resources as well as content automatically generated by GPT. Our findings

highlight that although WN is a valuable resource, particularly suited to a certain type

of dictionary example, it is not necessarily the optimal choice when an informative con-

text is required. In downstream evaluation, we trained a sequence-to-sequence defin-

ition modeling (DM) architecture based on BART using these examples. The results

suggest that WN examples, especially for verbs, may be difficult to learn from, partly

due to their short length and stylistic features. Furthermore, in a word similarity task,

we found that ChatGPT-generated examples consistently yielded better embeddings

across all datasets, indicating a strong preference for generated examples in applica-

tions that rely on word or phrase representations.

While these results are promising, several limitations should be acknowledged. First,

this chapter focuses primarily on informativeness as the main evaluation metric. While

informativeness is important for many NLP tasks, other aspects such as clarity or read-

ability may be more relevant in different contexts and were not explored in detail. For

example, in dictionaries aimed at second language learners, clarity and simplicity often

take precedence over informativeness. Second, a limitation of the human evaluation is

the potential conflation of scores across examples, highlighting the need for future re-

search to develop more refined evaluation frameworks that incorporate a wider range of

dictionaries, criteria, definition types, languages, and other relevant factors. Third, the

definition modeling experiment introduced in Section 3.4.1 was conducted without ex-

haustive hyperparameter tuning. We used a BART-based sequence-to-sequence model

with moderate fine-tuning, which successfully captured many features of WN ex-

amples. However, further improvements could potentially be achieved through more

extensive hyperparameter optimization, for instance using LLMs or learned optimizers
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to automate selection processes [225, 125]. Finally, although ChatGPT-generated ex-

amples outperformed others in embedding-based evaluations across all datasets, these

findings are based on a specific experimental setup—particularly the prompts used and

the configuration of the ChatGPT model. Additional testing with different models,

prompt strategies, or evaluation methods would be necessary to confirm the generality

of these results.
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Chapter 4

3D-EX : A Unified Dataset of

Definitions and Dictionary Examples

4.1 Introduction

Building on insights from previous experiments, which focused on evaluating LRs, and

addressing the limitations identified in WN, we explore the task of unifying the land-

scape of electronic dictionaries around terms, definitions, and dictionary examples.

Our hypothesis is that such a resource could greatly benefit lexical semantics and com-

putational lexicography by combining diverse resources. We name this dataset 3D-EX

(Dataset of Definitions and Dictionary Examples). This dataset integrates a variety of

English dictionaries and encyclopedias into a centralized knowledge repository in the

form of <term, definition, example, source> quadruplets. 3D-EX enables exploration

of out-of-domain generalization and serves as a unified test bed for tasks in lexical se-

mantics. Table 4.1 shows the motivation behind building 3D-EX: while WN typically

provides only one short and often uninformative example, our dataset offers a com-

prehensive list of examples from diverse resources and dictionaries. In section 4.2, we

describe the dictionaries and datasets used to build our dataset. The building process

is then explained in detail in Section 4.3, followed by an analysis of the datasets. Next,

two experiments have been applied to analyze these datasets in Section 4.4. Lastly,
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Section 4.5 outlines the limitations of this work and provides a concluding summary.1.

Term Definition Example

Tiny Very small Tiny feet

(a) WordNet

Term Definition Example Source

Tiny Very small

Tiny feet. WN

We can live crowded together in vast cities

or as tiny groups in remote deserts.

CHA

(Oxford)

This was to be exchanged after six weeks

for the coveted customising tiny diamond.

CHA

(Oxford)

Not long ago, it was difficult to produce

photographs of tiny creatures with every

part in focus. that’s because the lenses that

are excellent at magnifying tiny subjects

produce a narrow depth of field.

Wiktionary

(b) 3D-EX

Table 4.1: WordNet vs 3D-EX definitions and examples for a given term (in bold).

4.2 Datasets

In this section we review the datasets we integrate into 3D-EX and how they have been

applied either in lexicography or downstream NLP tasks. Some resources have been

discussed earlier in Section 3.2. The datasets were selected for their unique charac-

1The 3D-EX dataset is publicly available online, and the datasets used for building it are also pub-

licly accessible. You can access them through https://github.com/F-Almeman/3D-EX

https://github.com/F-Almeman/3D-EX
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teristics, domain diversity, and relevance to NLP tasks, providing a strong and diverse

structure for 3D-EX.

Wikipedia: Wikipedia is an online encyclopedia that has been continuously updated

by various contributors since 2001 [48]. We used a dataset that is built by Ishiwatari

et al. [99] from Wikipedia and Wikidata and each entry consists of a phrase, descrip-

tion, and example. This dataset is used to evaluate DM approaches that combine dis-

tributional and lexical semantics using continuous latent variables [175].

Urban: Urban Dictionary is a crowd-sourced dictionary for terms not usually found

in traditional dictionaries. It was created in 1999 and has since become one of the

largest databases for non-standard English, with regular updates that reflect current

language trends [159]. We used URBAN dataset that was created from Urban diction-

ary by Reid et al. [175] as a corpus of uncommon and slang words.

Wiktionary: Wiktionary is a freely accessible, web-based dictionary launched in

2002, providing definitions, etymologies, and translations of words. Its content is con-

tinuously updated by contributors around the world [16]. It has been used as a resource

for WSD [41, 130], especially for retrieving WSD examples which augment labeled

data for rare senses [23] and for non-English tasks [91, 183].

Webster’s Unabridged : Webster’s Unabridged is a version of Webster’s diction-

ary published in 1900 [211], made available through the Project Gutenberg initiative

[202]. It focuses on American English and provides detailed word definitions, includ-

ing background information and usage notes.

Hei++: Hei++ is a dataset that associates human-made definitions with adjective-

noun phrases. Since there is no publicly available dataset to evaluate the quality of
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definition generation models on free phrases, Hei++ is built by Bevilacqua et al. using

the test split of the HeiPLAS dataset [87]. Although Hei++ is a small dataset, it ad-

dresses an important gap by focusing on adjective-noun phrases that are not commonly

found in traditional dictionaries.

MultiRD: The MultiRD dataset was created by [116] to evaluate a multi-channel RD

model that has multiple predictors to predict attributes of target words from given input

queries. This dataset uses the English dictionary definition dataset created by Hill et al.

[93] as the training set and three test sets: a seen definition set, an unseen definition

set, and a description set that includes pairs of words and human-written descriptions.

For each entry, it also includes morphemes, lexical names and sememes.

CODWOE: The CODWOE (Comparing Dictionaries and Word embeddings) Se-

mEval 2022 shared task [137] aimed to compare two types of semantic descriptions,

namely dictionary glosses and word embedding representations. This task was applied

to multiple languages, and one dataset per language was provided. Each dataset con-

tains a list of examples and, subsequently, each example contains the following key

fields: identifier (includes the word), gloss, and embedding-related information.

Sci-definition: Sci-definition is a dataset constructed for the task of generating defin-

itions of scientific terms with controllable complexity [14]. The definitions are drawn

from MedQuAD [1] and Wikipedia Science Glossaries2. For each term, 10 journal ab-

stracts are provided from S2ORC [127] to allow models to incorporate related scientific

knowledge [63, 46].

2https://en.wikipedia.org/wiki/Category:Glossaries_of_science.

https://en.wikipedia.org/wiki/Category:Glossaries_of_science
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4.3 Building 3D-EX

4.3.1 Data Cleaning

A prerequisite for unifying the above resources into 3D-EX is to perform a number

of pre-processing steps to standardize the datasets, remove irrelevant or noisy inform-

ation, and ensure consistency across all entries. This process includes: lower-casing

entries like ophthalmy and OPHTHALMY into a single lowercase form; removing

special tokens and any noisy characters such as the tab sign; removing entries where

their definitions have more than 10% of non alphanumeric characters such as < Word:

maya, Definition: m. i. a. album, Source: Wikipedia >; removing entries that have null

values either in words or definitions; removing entries where examples are the same

as defined terms such as < Word: supermaxillary, Definition: supermaxillary, Source:

Webster’s Unabridged >, and removing duplicate entries within each dataset or split.

While these general steps are applied to all datasets, additional pre-processing was cus-

tomized for each one based on its specific issues, identified through careful observation

and repeated analysis of the data. The main goal was to ensure data consistency and

quality, which is detailed in the following steps for each dataset:

Urban: since Urban dictionary contains a high volume of informal language, slang,

and non-standard expressions, leading to noisy and sometimes unclear definitions.

These definitions are typically very short, with one-word definitions making up 4.33%

of entries, some as short as a single character, and many containing a high proportion

of emoticons, exclamation marks, and similar features. To handle this, we built a bin-

ary classifier based on RoBERTa-base [126], trained on definitions for 2 epochs with

two labels to classify definitions as either high-quality or noisy. We used 4,000 posit-

ive examples randomly sampled from Wiktionary, CHA, and WN, and 2,000 negative

examples from Urban. This classifier, which obtains almost perfect accuracy, is then
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applied to the entirety of the Urban dataset, leaving 3D-EX only with Urban entries

that are similar to those in more traditional resources, both in content and, more im-

portantly, in style. Table 4.2 lists examples of this filtering process, where we can see

Urban-specific properties such as colloquialisms (phrasal verbs, personal pronouns,

lack of punctuation marks or high proportion of slang/unknown words).

Term Definition Example Filtered

after john

wayne

never name your son after

john wayne (or any other

famous person)

the gayce’s named their son

after john wayne

1

pang pangers pingerz pang pangs

pangs MDMA ecstasy

Hi Marissa, it’s Frank Re-

card calling. I’ll be in the

neighborhood later on, and I

was wondering if maybe you

wanted to get some pang

pangs

1

agyp pronnounced a-jip bro went agyp on us, we

never thought he would end

up with a family and a good

job

1

farblegarb a lot of random garbage The signal was disrupted,

producing a lot of farblegarb

0

citrixify the process of modifying or

altering a computer applica-

tion for the purpose of pub-

lishing the application using

Citrix Presentation Server

In order to properly pub-

lish that Java-based applica-

tion, I had to citrixify it so

it would run in a seamless

window

0

axcellent when something rocks and is

excellent

Dude, that new haircut is ax-

cellent

0

Table 4.2: Examples of Urban entries that were removed vs. retained.
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Wiktionary: since some definitions in Wiktionary include etymological information

such as when a word was first used (e.g., “first attested in the late 16th century” or

“from 16 c”), we removed these parts using regular expressions.

MultiRD: we removed (again, using regular expressions) uninformative definitions

such as "see synonyms at" and "often used in the plural".

Sci-definition: in order to construct the Sci-definition dataset as <term, definition,

example> triples, we took the following steps: from each abstract, we extracted sen-

tences that include the target term, which would act as examples. From these examples,

we excluded sentences only containing lists of keywords (typically found in abstracts),

and also any example with more than 10% non alphanumeric characters (similarly to

our approach to cleaning definitions in Section 4.3.1).

4.3.2 Unification and Splitting

Table 4.3 shows summary statistics for each dataset. Aggregated statistics are provided

between two sets, datasets with examples (top) and without (bottom). The last row is

related to 3D-EX. It is desirable to keep a reference to the original source for each

entry; however, we noticed that there are <term, definition, example> du-

plicates across datasets. For example, the following tuple appears in both WordNet and

CHA: (impenetrable, impossible to understand, impenetrable

jargon). This is why the final 3D-EX resource contains the SOURCE field as an ar-

ray containing the sources where that entry was found. Table 4.4 highlights the differ-

ences in term, definition, and example lengths across the datasets. Terms are generally

short, averaging around one word. Datasets like WordNet and MultiRD provide short

definitions, while Sci-definition and Wiktionary provide much longer ones. For ex-

ample lengths, Sci-definition and Wiktionary contain the longest examples, compared

to the shorter examples in WordNet and CHA.
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orig. #entries cl. #terms cl. # <T,D> cl. #<T,D,E>

WordNet 44,351 20,435 36,095 44,241

CHA 785,551 31,798 75,887 752,923

Wikipedia 988,690 162,809 167,569 960,097

Urban 507,638 119,016 145,574 145,896

Wiktionary 145,827 76,453 85,905 140,190

CODWOE 63,596 25,861 45,065 63,137

Sci-definition 8,263 5,281 6,251 166,660

Webster’s Unabridged 159,123 89,234 143,782 -

MultiRD 901,200 50,460 671,505 -

Hei++ 713 713 713 -

3D-EX 438,956 1,327,342 2,268,225

Table 4.3: Dataset statistics before (orig.) and after (cl.) cleaning, and in terms of

unique entries involving terms (T), definitions (D), examples (E).

Furthermore, in terms of splitting 3D-EX for experimentation, it is well known that an

issue in word/phrase classification datasets can occur due to a phenomenon known as

“lexical memorization” [115], where supervised models tend to associate prototypical

features to word types. This has been typically been addressed by releasing two splits,

one random, and one known as “the lexical split”, where all instances of a given term

do not appear across splits [205, 11, 60]. We follow this practice and release 3D-EX

with a Random and a Lexical split. Table 4.6 shows examples of entries in 3D-EX

and Table 4.5 presents dataset statistics after unification, showing unique instances

across both splits. Unique entries are defined as <term, definition, example, source> for

datasets with examples (top) and <term, definition, source> for those without examples

(bottom).
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Term length Definition length Example length

min. max. avg. min. max. avg. min. max. avg.

WordNet 1 1 1 1 52 7.50 1 46 5.77

CHA 1 1 1 1 71 10.31 2 141 17.86

Wikipedia 1 16 1.84 1 32 6.012 2 40 18.70

Urban 1 31 1.47 1 32 10.01 2 42 11.45

Wiktionary 1 10 1.22 1 100 9.24 2 288 26.52

CODWOE 1 1 1 1 114 10.86 1 214 22.26

Sci-definition 1 11 1.70 2 94 18.49 1 726 25.72

Webster’s Unabridged 1 3 1.00 1 90 9.19 - - -

MultiRD 1 1 1 1 144 11.72 - - -

Hei++ 2 2 2 3 23 8.12 - - -

Table 4.4: Length statistics per dataset after cleaning (measured in # of words)

Random split Lexical split

train validation test train validation test

WordNet 26,603 8,788 8,850 27,053 8,573 8,793

CHA 451,191 15,1338 50,394 452,321 157,847 143,949

Wiktionary 84,111 28,127 27,952 89,607 29,176 23,832

Wikipedia 575,554 197,697 186,846 505,964 240,781 213,379

Urban 87,429 29,142 29,325 91,239 29,783 24,881

CODWOE 37,774 12,755 12,608 39,737 12,609 13,166

Sci-definition 101,129 31,766 33,765 106,175 35,966 24,519

Webster’s Unabridged 84,802 28,213 28,221 93,423 30,198 19,696

MultiRD 384,295 127,580 128,178 404,114 125,072 112,948

Hei++ 426 152 135 428 143 142

Table 4.5: Breakdown of 3D-EX unique entries per split type (random and lex-

ical) and per split.



62 4.3 Building 3D-EX

Term Definition Example source

emergent coming into existence an emergent republic WordNet

word an (order; a request or in-

struction); an expression

of will

he sent word that we should

strike camp before winter

Wiktionary

central london innermost part of london ,

england

westminster is an area of central

london within the city of west-

minster , part of the west end

, on the north bank of the river

thames

Wikipedia

boatie getting high on a boat lets go on a boatie this afternoon Urban

notice a displayed sheet or plac-

ard giving news or in-

formation

look out for the notice of the

samaritans information evening

in the end of september

CHA

worship to participate in religious

ceremonies

we worship at the church down

the road

CODWOE

accessory navicular

bone

an accessory navicular

bone is a small bone

located in the middle of

the foot

the accessory navicular bone is

one of the most common access-

ory ossicles, which sometimes

become symptomatic

Sci-

definition

able having sufficient power,

strength, force, skill,

means, or resources of

any kind to accomplish

the object

- Webster’s

Unabridged

abbreviation an abbreviation is a

shorter way to write a

word or phrase

- MultiRD

skew picture an inaccurate or partial

representation of a situ-

ation

- Hei++

Table 4.6: Examples of entries available in 3D-EX.
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4.3.3 Datasets Analysis

4.3.3.1 Similarity of Dictionary Components in Datasets

To shed some light on how similarities are distributed across datasets, we investigate

cosine similarities of their SBERT embeddings [176] using the all-MiniLM-L6-v2

model, comparing both word-to-definition (WD) and definition-to-example (DE) sim-

ilaritie (see Figure 4.1). An immediate finding by inspecting these similarities is that

Hei++, a carefully curated dataset used to evaluate multi-word DM systems, is the

one showing the highest similarity between terms and their definitions (Figure 4.1a).

This is likely because, first, entries in Hei++ are specific and do not include generic

or frequently used terms. This, along with their rather detailed definitions, contrib-

utes to their high similarity scores. On the opposite end of the spectrum, we un-

surprisingly find Urban dictionary. However, it remains for future work to explore

whether its definitions are indeed dissimilar to their corresponding terms, or whether

the rarity of the terms leads to low-quality embeddings. Interestingly, we also find that

Sci-definition exhibits relatively high similarity between terms and definitions.

To better illustrate what these cosine similarity scores represent, we present examples

that are representative of the average similarity in each dataset. For instance, in

Sci-definition, the term heat transfer is defined as “the study of the flow of

heat energy; heat transfer concerns dictate major design features of most electrical and

electronic systems”, (WD similarity: 0.61). Similarly, Hei++ includes the entry nag-

ging parent, defined as “a parent who is constantly scolding his/her children”, (WD

similarity: 0.60). Meanwhile, Urban dictionary includes an entry like bermuda 84’,

defined as “a female’s pubic hair which is shaped in a triangle but long and hairy like

back in 1984”, (WD similarity: 0.27).

Concerning the cosine similarities between definitions and examples (Figure 4.1b),

Sci-definition again stands out with higher scores. For example, the term abyssal

plain is defined as “flat or very gently sloping areas of the deep ocean basin floor”, and
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used in “the abyssal plain is characterized by low-sedimentation rate thereby being

heavily disturbed by bioturbation”, (DE similarity: 0.45). Interestingly, Wiktionary

shows the lowest overall similarity in this category. For example, the term global is

defined as “spherical, ball-shaped”, and used in the example “in the center was a small,

global mass”, (DE similarity: 0.27). This may suggest that examples in Wiktionary

are sometimes written to cover broader or more varied contexts than their definitions.

As with the case of Urban dictionary, a careful semantic analysis of these dictionaries

remains for future work.
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(a) Word-definition comparison. Hei++ and Sci-definition show the highest average similarit-

ies, while Urban shows the lowest.

(b) Definition-example comparison. Sci-definition shows the highest average similarities, while

Wiktionary shows the lowest.

Figure 4.1: SBERT-based cosine similarity distributions between (a) word and definition embeddings, and (b) definition and

example embeddings across 3D-EX sources. Dashed vertical lines mark the mean similarity for each source.
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4.3.3.2 GDEX and Readability-based Examples Evaluation

We assessed the quality of the examples in 3D-EX using two groups of evaluation met-

rics. First, we examined the GDEX criteria (see Section 3.3.1), which include metrics

such as sentence fluency, length penalty (len-pen), frequency penalty (freq-pen), and

anaphoric reference penalty (ana-pen), all defined earlier. The main clause (m-clause)

GDEX metric is added, where examples with the target word in the main clause are

scored 1, and all others are scored 0. To identify the main clause, we used a transition-

based dependency parser3. In addition to the GDEX criteria, we introduce an additional

metric called Ambiguity, derived from good dictionary example features outlined by

Atkins and Rundell [12], which emphasize the need to avoid gratuitously difficult lexis

and potentially confusing lexical items [108]. This concern is relevant to polysemous

words, which can confuse learners when multiple senses are possible. Sereno et al.

[185] found that readers spent more time and made more regressions when reading

sentences with ambiguous words compared to unambiguous ones, showing that am-

biguous terms make sentences more difficult to process. Although there is no standard

measure for identifying ambiguity in words or sentences [35], we follow their sum-

based approach to estimate sentence-level ambiguity by summing the number of WN

senses for each word in the sentence, which reflects the overall semantic complexity.

For instance, the sentence “He caught the light bug near the stream” receives a high

ambiguity score of 104 due to polysemous words like “light” (not heavy or not dark),

“bug” (insect or glitch), and “stream” (flowing water or data). In contrast, the sen-

tence “The girl painted a red flower on the wall” scores much lower at 45, as it consists

of more specific and less ambiguous vocabulary. Then, we normalized the ambiguity

scores based on sentence length, followed by min-max scaling to obtain values between

0 and 1.

Second, we used readability metrics, which determine the U.S. grade level needed to

comprehend a sentence: Flesch–Kincaid Reading Grade Level (FKRGL) [109], which

3Implemented with SpaCy: https://spacy.io/.

https://spacy.io/
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uses word length and sentence length, Dale-Chall Readability (DCR) [51], which is

based on sentence length and the number of ‘hard’ words, and Coleman-Liau Index

(CLI) [47], which is calculated using the average number of letters per 100 words and

the average sentence length.

Table 4.7 shows the evaluation results, where we report the average for each metric

(further statistics such as standard deviation, minimum, and maximum for each met-

ric have been provided in the Appendix B). Our analysis reveals that WN examples

exhibit the lowest sentence fluency and often receive higher penalties for short length

and the use of ambiguous or multi-sense words. In contrast, WN does well at ensuring

that the target word is included in the main clause, likely due to the short length of its

examples, and it provides easy-to-read examples as shown by its scores on the readab-

ility metrics. In addition, its penalties for using rare words and anaphoric references

are low compared to the other resources.

Conversely, Sci-definition examples show the highest fluency scores, suggesting they

are more coherent and fluent. Nevertheless, Sci-definition examples demonstrate higher

grade levels in all readability metrics, implying a greater level of complexity, which is

unsurprising given that they were sourced from scientific journal abstracts. Moreover,

Wikipedia has the lowest penalty for sentence length and anaphoric references. This

suggests that Wikipedia’s examples are closer to the ideal length, use fewer pronouns

for clearer communication. Finally, our analysis shows that datasets with higher ambi-

guity, like Wiktionary and Sci-definition, tend to have higher readability grade levels,

indicating more complex text. However, this pattern does not hold for Urban diction-

ary. This counter-intuitive result might be explained by the large proportion of slang

and colloquial lingo. Further analysis could shed light into how to measure readability

in Urban Dictionary, considering its obvious idiosyncrasies.
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Dataset fluency ↑ len-pen freq-pen ana-pen ambiguity m-clause ↑ FKRGL DCR CLI

WordNet 0.39 0.71 0.18 0.07 0.59 0.98 7.23 8.81 8.23

CHA 0.47 0.16 0.09 0.09 0.57 0.84 9.12 9.63 9.16

Wiktionary 0.50 0.47 0.23 0.09 0.54 0.68 11.81 9.33 10.66

Wikipedia 0.48 0.16 0.23 0.02 0.55 0.96 11.30 11.30 11.15

Urban 0.41 0.34 0.24 0.12 0.54 0.84 4.42 8.62 4.92

CODWOE 0.49 0.51 0.20 0.09 0.55 0.79 9.44 8.77 8.98

Sci-definition 0.55 0.35 0.20 0.05 0.57 0.85 17.06 12.26 15.85

Table 4.7: Examples automatic evaluation results (bold: best, underlined: worst,

in all metrics, a lower value is better, with the exception of “fluency” and “m-

clause”).

4.4 Experiments and Results

In order to test the usefulness of 3D-EX, we perform an intrinsic set of experiments

where we “stress test” the dataset for artifacts, indirect data leakage (near-synonyms),

potential for memorization, etc. This, we argue, is an important step to guarantee 3D-

EX can be used for testing lexical semantics models based on it.

4.4.1 Source Classification

In the task of source classification, the goal is to, given a <term,definition> instance,

predict its original source. We posit that this is an important experiment because it

helps us understand how distinct or similar the different sources in our 3D-EX dataset

are. In other words, this experiment allows us to identify which sources from our

set in 3D-EX are more unique (i.e., easier to classify), and which seem to conflate

different lexicographic features (e.g., writing style, coverage or any other artifact). To

this end, we fine-tune RoBERTa-base model for three epochs on the training set of

3D-EX. Note that this is a 10-way multi-label classification problem, since for a given
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<term,definition> pair, there may be more than one associated source. We report the

results of this experiment in Table 4.8, and generally, the lexical split is indeed harder

for some datasets, such as WordNet, Urban, and Webster’s Unabridged, where we

see notable drops in F1 scores. However, for other datasets like Wikipedia and Sci-

definition, the performance is nearly identical between the random and lexical splits.

In cases like CHA, Wiktionary, and CODWOE, the difference is small, indicating that

the lexical split is not substantially harder for those datasets.

Random Split Lexical Split

prec. rec. f1 prec. rec. f1

WordNet 0.73 0.23 0.35 0.33 0.05 0.09

CHA 0.65 0.48 0.55 0.64 0.47 0.54

Wiktionary 0.80 0.53 0.64 0.65 0.33 0.44

Wikipedia 0.98 0.97 0.98 0.97 0.97 0.97

Urban 0.94 0.87 0.91 0.97 0.66 0.79

CODWOE 0.93 0.55 0.69 0.92 0.42 0.58

Sci-definition 0.99 0.99 0.99 0.99 0.99 0.99

Webster’s Unabridged 0.82 0.70 0.76 0.75 0.63 0.68

MultiRD 0.89 0.90 0.89 0.84 0.91 0.88

Hei++ 0 0 0 0 0 0

Average 0.77 0.62 0.68 0.71 0.54 0.60

Table 4.8: Source classification results, reported both for the Random and Lexical

splits of 3D-EX.

Additionally, Figure 4.2 shows the correlation between F1 and dataset size. When

analyzing the effect in the lexical split, it reveals that three datasets (Hei++, WordNet,

and MultiRD) exhibit a perfect correlation with performance, indicating that dataset

size influences performance for these datasets. Smaller datasets, such as Hei++, tend
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to produce poor performance if they are not sufficiently technical or specific, like Sci-

definition, which appears to be an interesting outlier. On the other hand, the largest

dataset, MultiRD, demonstrates high performance, indicating that with a sufficiently

large dataset, it becomes easier to differentiate between similar resources, such as Wiki-

pedia and Wiktionary. Overall, the correlation between dataset size and performance

is moderate, with a Pearson correlation coefficient of approximately 0.4. Overall, it

is fair to say that the lexical split is harder on average. Simple averaging across data-

sets shows lower performance for the lexical split, and this difference is even clearer

when using a weighted average based on the number of test examples. The weighted

averaged F1 score is approximately 0.79 for the lexical split compared to 0.86 for the

random split, indicating the lexical split generally presents a more challenging task.

4.4.2 Reverse Dictionary

Reverse Dictionary (RD) is a ranking problem in which, given a definition, the task is

to retrieve a ranked list of the most relevant words, and it has a long-standing tradition

in computational semantics (see more details in Section 2.3.3.2). To establish a set

of baseline results on this task, we report results from several embedding models on

the test sets of our dataset 3D-EX. Note that while these baselines are unsupervised,

we only report results on the test sets (random and lexical) to accommodate future

experiments by supervised systems. In terms of evaluation, we report Mean Reciprocal

Rank (MRR), which rewards the position of the first correct result in a ranked list of

outcomes, and its equation is as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4.1)

where Q is a sample of experiment runs and ranki refers to the rank position of the

first relevant outcome for the ith run.
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(a) Random Split

(b) Lexical Split

Figure 4.2: Correlation between F1 scores and dataset size in source classification

for random and lexical splits.

MRR is commonly used in Information Retrieval and Question Answering, but has

also shown to be well suited for lexical semantics tasks such as collocation discovery

[216, 178].
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We use the 3D-EX test set to evaluate the RD task with multiple models. Specifically,

we assess the performance of traditional sentence encoding SBERT models, namely

all-MiniLM-L6-v2 , all-distilroberta-v1 and all-mpnet-base-v2. We

also evaluate Instructor model [193], an instruction-based encoder that can generate

text embeddings tailored to any task given the appropriate prompt. Instructor works

by optionally providing the type of the target text (e.g., “a Wikipedia sentence”) and

the task (e.g., “document retrieval”), to ultimately build a prompt such as “Represent

this Wikipedia sentence for retrieving relevant documents”. For our use case, we test

three variants of Instructor for encoding both words and definitions in our dataset: (1)

no instruction provided; (2) providing a generic description of the target text (i.e., “the

sentence” for definitions, and “the word” for the terms); and (3) providing a domain-

specific description of the target texts (i.e., “the dictionary definition” for definitions

and “the dictionary entry” for terms).

We show the results of the SBERT models in Table 4.9, and the Instructor model results

in Table 4.10. We can see that even without any instruction prepended to the embed-

der, the Instructor model outperforms vanilla SBERT models, and that, interestingly,

the best results overall in both test splits (random and lexical) are obtained by provid-

ing a generic description of target words, and in the random split it is better to not

include any instructions for the definitions, while in the lexical split the best perform-

ing configuration involves providing detailed instructions for embedding the 3D-EX

definitions.

As a final piece of analysis in this section, we apply the same RD approach introduced

before to the data from each source in the 3D-EX test set (both random and lexical)

individually. We use the Instructor model as it achieves better results than SBERT mod-

els with the best-performing configuration: a generic description for target words, no

instructions for definitions in the random split, and detailed instructions for definitions

in the lexical split. This approach helps us identify which sources are more challenging

in this RD task.
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Model Random Lexical

all-distilroberta-v1 8.41 11.38

all-MiniLM-L6-v2 9.40 13.75

all-mpnet-base-v2 10.98 15.34

Table 4.9: MRR results of the SBERT models.

Random
word

no gen. dict.

definition

no 14.18 14.71 14.56

gen. 13.64 14.07 14.06

dict. 14.19 14.59 14.57

Lexical
word

no gen. dict.

definition

no 19.16 20.25 20.02

gen. 18.70 20.04 19.86

dict. 19.64 20.82 20.60

Table 4.10: MRR results of the Instructor models with different instructions.

From Table 4.11, it can be seen that Wikipedia and Urban dictionaries are the most

challenging resources for this task, which could be attributed to either or both dataset

size and large number of very similar definitions and terms, as opposed to, for instance,

Hei++ or Sci-definition, which are meant to capture unique terms. These are, by nature,

more unique when compared to the rest of the lexicon, an insight we revealed when

exploring dataset-specifc similarities in Figure 4.1.
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Dataset Random Lexical

WordNet 32.97 42.27

Wiktionary 50.65 53.05

Wikipedia 9.25 9.19

Urban 18.47 17.49

CODWOE 39.74 46.89

CHA 30.82 35.86

Sci-definition 82.38 82.53

Webster’s Unabridged 30.53 34.11

MultiRD 16.69 27.41

Hei++ 96.79 94.49

Table 4.11: Breakdown of the RD results in terms of MRR.

4.5 Summary and Limitations

In this chapter, we have introduced 3D-EX, a dataset that unifies different encyclope-

dias and dictionaries into one single resource. We have conducted an in-depth analysis

of the dataset across several splits (random vs. lexical), as well as dictionary source

classification and RD experiments. In addition, we included automatic evaluation to

assess the examples from different sources within the 3D-EX dataset. Our results

suggest that this dataset is both challenging for representation learning methods and

promising as a resource for augmenting lexical semantics systems. It has also helped

us unveil semantic properties in the different dictionaries and encyclopedias we have

integrated into 3D-EX.

While 3D-EX integrates a broad range of lexical resources into a unified dataset, sev-

eral limitations remain. First, the dataset is English-centric, meaning that its findings

may not generalize to other languages without careful adaptation. Second, although

diverse sources were included, achieving complete coverage of all available lexical
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datasets remains challenging, and additional resources may still offer valuable informa-

tion. Third, despite the application of cleaning and preprocessing, inconsistencies may

remain due to variations in writing style and formatting across sources. Another limit-

ation is the lack of human judgments about the quality or clarity of the entries, which

could support more targeted evaluation or learning tasks. Finally, although our current

analysis reports results for individual GDEX criteria separately to enable detailed ex-

amination, we recognize that GDEX was originally designed to provide a combined

score, which we plan to incorporate in future work.
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Chapter 5

GEAR: A Simple GENERATE,

EMBED, AVERAGE AND RANK

Approach for Unsupervised Reverse

Dictionary

5.1 Introduction

In the previous chapter, we introduced the RD task through an initial experiment on

the 3D-EX dataset, which helped us understand this concept and its challenges. Build-

ing on these observations, and as we discussed earlier in Section 2.3.3.2, there has

been limited work in expanding benchmarks beyond Hill’s dataset [93], the most well-

known dataset for RD tasks, especially in terms of different domains and registers.

Moreover, no works have explored the seemingly simple generate-then-embed ap-

proach, so that many of the practical drawbacks of LLMs (hallucinations and context

length limitations, to name a few) could be alleviated, but still using their ability to gen-

erate suitable candidate embeddings for KNN search. So, in this chapter, we propose a

novel and simple approach to RD that leverages LLMs in combination with embedding

models. Despite its simplicity, this approach outperforms supervised baselines in well

studied RD datasets, while also showing less over-fitting. In Section 5.2 we describe
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the GEAR (generate, embed, average and rank) method and all its steps in details.

Then Section 5.3 defines the datasets, and Section 5.4 provides information about our

experiments and how we evaluate this method. Our results and analysis are summar-

ized in Section 5.5. In Section 5.6, we examine how different generating models and

pooling methods affect the final embeddings. Then, Section 5.7 analyzes the generated

terms, specifically their similarities and the impact of similarity on performance. The

limitations and summary of the study are presented in Section 5.8. 1.

5.2 The GEAR Method

In this section, we give a brief description of GEAR, a novel, very simple, lightweight,

and, more importantly, unsupervised method for RD. We denote any dictionary as

D = {(di, Ti)|i = 1, . . . , N}, where di is a definition, Ti = {ti1, ti2, . . . , tiki} is the

set of corresponding terms2 (i.e., entries in the dictionary), and ki ≥ 1 the number

of terms associated with di. From here, GEAR consists on four simple steps. First,

generate, where, given an input definition di, an (LLM) generates a set of possible

terms G = {g1, g2, . . . , gm}. All throughout this experiment, we use gpt-4o-mini

[2]3, which we prompt in three different ways to evaluate the effect of varying levels

of guidance on the model’s performance in generating relevant terms. The intention

was to determine whether more detailed prompts, which provide additional context or

reasoning steps, would improve the quality of the generated terms.The details for the

prompts are in Appendix C, however, at a high level, they are as follows:

• Base prompt 1 (bp1): includes a short description of the resource: such as Given

1The code and datasets for the work shown in this chapter are available at https://github.

com/F-Almeman/GEAR_RD
2It is important to account for a one-to-many relationship at this point because we will be reporting

experiments on combinations of multiple resources.
3https://openai.com/index/gpt-4o-mini-

advancing-cost-efficient-intelligence/.

https://github.com/F-Almeman/GEAR_RD
https://github.com/F-Almeman/GEAR_RD
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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the definition {definition}, generate a ranked list of {k} terms, with the first term

being the most related to the definition, assuming they are from the {resource}

dictionary. {resource} is {resource description}.

• Base prompt 2 (bp2): the same as bp1 but it also includes a sample of terms

and definitions from the specified resource to help the model understand the type

of terms it should generate such as These are some examples of definitions and

terms in this dictionary: {examples}.

• Reasoning prompt (rp): this final prompt extends bp2 by requesting the genera-

tion of examples alongside the terms to explore whether having the LLM ’reason’

before answering leads to improved results. Specifically, this part is added: For

each term, provide an example usage in a sentence that matches the style and

scope of {dictionary}.

In the next embed step, a text encoder f : V → Rn maps each term in G to a vector

representation in an n-dimensional space. We use SBERT [176] and the Instructor

model [193] to obtain term embeddings and evaluate their performance for comparison

(see Section 5.5). SBERT is a traditional and widely accepted model for sentence

encoding. Although terms are usually single words, placing both terms and definitions

in the same semantic space is not straightforward. Previous work [76] has explored

methods that align separate embedding spaces for words and definitions. Instead of

using two different models and an extra mapping step, we chose SBERT, which is

optimized for sentences but also produces strong embeddings for single words. The

Instructor model performed well in the previous chapter, making it a strong baseline for

comparison. The resulting matrix EG = [e1, e2, . . . , em]
⊤ ∈ Rm×n, where ei = f(gi),

is then mean pooled (or averaged) as follows: ē = 1
m

∑m
i=1 ei. Finally, in the rank

step, given T =
⋃N

i=1 Ti, which denotes the set of all unique terms in D, we perform

KNN search via cosine similarity over T with ē. The performance of GEAR, just like

any other search-based approach, can be evaluated using Information Retrieval metrics

that account for different scenarios, e.g., the rank of the first correct term with Mean
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Definition Terms Sources

Alert and fully informed [knowing, knowledgeable] [WN, WN]

River in singapore [Geylang River, Singapore
River]

[WP, WP]

In the middle of the week [midweek] [Wik, CHA]

A type of shotgun [12 gauge, greener] [Urban, CHA]

An arsonist [arsonite, torchman, incendi-
ary]

[Wik, Urban,
Mul]

The thing which is boasted of [bragging, brah, brag] [Mul, Mul,
COD]

Perceive an idea or situation mentally [realized, see, understand] [Mul, Mul,
Mul]

Any supply that is running low [low supply, short supply] [Hei++, Hei++]

A term used to describe something so awesome
the only way it could be better is if it was
between two slices of bread

[ass kicking sandwitch] [Urban]

An abnormal accumulation of air in the pleural
space (the space between the lungs and the chest
cavity) that can result in the partial or complete
collapse of a lung

[Primary Spontaneous Pneu-
mothorax]

[Sci]

Table 5.1: Examples of 3D-EX for RD task. Note that one definition could map to

more than one term, which in turn can come from different dictionaries. Also note

the range of styles and domains. (WordNet (WN), Wikipedia (WP), Wiktionary

(Wik), CODWOE (COD), MultiRD (Mul), Sci-definition (Sci)).

Reciprocal Rank (MRR), or the proportion of correct terms at different cutoffs with

Precision at k (P@k).

5.3 Data

In this work, we are concerned not only with exploring the usefulness of GEAR when

compared to existing baselines, we are also interested in developing an understanding
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of what kind of lexical resource poses greater challenges to this method as well as

its components alone. For this reason, we perform experiments on two distinct but

complementary datasets.

As a first evaluation set, we use the three test sets from the Hill et al. 93 dataset (Section

5.4.1) to compare GEAR with published RD methods: the seen set, which includes 500

word-definition pairs from the training set to evaluate recall; the unseen set, containing

500 pairs where both the words and definitions are excluded from training; and the

description set, consisting of 200 words with with human-written descriptions. Both

the unseen and human description datasets are suitable for determining the generaliza-

tion ability of any tested method. Secondly, we report performance on the dictionaries

included in our 3D-EX dataset (Section 5.4.2), a comprehensive resource that integ-

rates multiple dictionaries and organizes them into <word,definition> pairs and

<word,definition,example> triplets4. We convert this dataset into a suitable

RD format, namely <definition, list of terms> and perform two types of

splits: a random split and a source split. In the random split, the data is split randomly

into 60% for training, 20% for validation, and 20% for testing. In the source split,

a stratified split is used, where definitions from each source in the dataset are extrac-

ted into separate datasets, and then each dataset is split while maintaining the same

60%, 20%, and 20% ratio for training, validation, and test sets. Despite the unsuper-

vised nature of our work, we still conduct all our experiments on the test splits alone

to enable comparison in further iterations with supervised methods. Table 5.1 shows

examples of entries in 3D-EX, and illustrates the diversity in register, domain and style

within the resource.
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Model/Method
Seen Definition Unseen Definition Description

mr acc@k rv mr acc@k rv mr acc@k rv

OneLook 0 66/.94/.95 200 - - - 5.5 .33/.54/.76 332

BOW 172 .03/.16/.43 414 248 .03/.13/.39 424 22 .13/.41/.69 308

RNN 134 .03/.16/.44 375 171 .03/.15/.42 404 17 .14/.40/.73 274

RDWECI 121 .06/.20/.44 420 170 .05/.19/.43 420 16 .14/.41/.74 306

SuperSense 378 .03/.15/.36 462 465 .02/.11/.31 454 115 .03/.15/.47 396

MS-LSTM 0 .92/.98/.99 65 276 .03/.14/.37 426 1000 .01/.04/.18 404

Multi-channel 16 .20/.44/.71 310 54 .09/.29/.58 358 2 .32/.64/.88 203

BERT 0 .57/.86/.92 240 18 .20/.46/.64 418 1 .36/.77/.94 94

RoBERTa 0 .57/.84/.92 228 37 .10/.36/.60 405 1 .43/.85/.96 46

GEAR_bp1 0 .66/.84/.96 200.122 0 .70/.88/.97 180.955 0 .89/.99/.99 70.5334

GEAR_bp2 0 .71/.88/.97 170.451 0 .65/.82/.95 225.324 0 .93/.99/1 1.57314

GEAR_rp 0 .70/.87/.96 185.97 0 .66/.86/.96 190.8 0 .91/.99/1 1.7837

Table 5.2: GEAR results on the Hill dataset compared to competitor models (us-

ing the Instructor model for embeddings, as it achieves the best performance),

according to median rank (mr), accuracy@k (acc @ 1/100/1000), and rank vari-

ance (rv). Baselines results are from Zhang et al. [224] and Yan et al. [219].

5.4 Experiments

5.4.1 GEAR on Hill’s Dataset

We introduce two sets of experiments on Hill’s dataset. The first uses an LLM alone to

perform RD by directly generating terms from input definitions. The second integrates

the LLM with embedding models to form GEAR, which enhances performance across

4While dictionary examples are a valuable resource for improving text representations, we leave

them out of our experiments in order to limit the number of components to test.
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the board. For evaluation, we compare GEAR results with the following baselines:

(1) OneLook, which is the most popular commercial RD system [224]; (2) BOW and

RNN with rank loss [93], which are neural models where BOW uses a bag-of-words

approach and RNN employs Long Short-Term Memory (LSTM); (3) RDWECI [143],

which improves BOW by adding category inference; (4) SuperSense [166], which ad-

vances BOW by using pre-trained sense embeddings; (5) MS-LSTM [105], which en-

hances RNN with WordNet synset embeddings and a multi-sense LSTM; (6) Multi-

channel [224]; and (7) BERT and RoBERTa [219], which are trained to generate the

target word for the RD task. We use three evaluation metrics based on previous work:

median rank of target words (lower is better), accuracy of target words in the top K res-

ults (higher is better), and rank variance (lower is better). Table 5.2 shows that GEAR

outperforms all baselines on both the unseen definition set and the description set. We

can also observe that MS-LSTM performs effectively on the seen definition set but not

on the description set, showing its limited ability to generalize [224].

5.4.2 GEAR on 3D-EX

Despite the new SoTa established on Hill’s dataset, we are also interested in exploring

key components, such as LLMs and embeddings, applied to other resources. To this

end, using 3D-EX as a test bed, we apply the same set of experiments described in

Section 5.4.1 and introduce a new experiment that uses only different text embeddings,

excluding the generate step. This additional experiment will serve as a baseline for

understanding the performance of these simpler approaches, and it will help assess the

extent to which GEAR can provide a significant improvement over these basic and

untuned approaches.

In terms of experimental setup, and unless otherwise specified, we consistently eval-

uate a fixed-length ranked list of 5 terms for each given definition, where each term

in the list is ranked according to its relevance to the definition. These terms are then

compared to the corresponding gold terms to assess the quality and relevance of the
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results. Regarding the evaluation metrics, we employ Mean Reciprocal Rank (MRR),

which rewards the position of the first correct result in a ranked list of outcomes (see

Equation 4.1). Additionally, we use Precision @ k (P@k), which calculates the pre-

cision of relevant items within the top k positions of a ranked list, and is defined as

follows:

Precision@k =
1

k

k∑
i=1

reli (5.1)

where reli is 1 if the item at position i is relevant and 0 otherwise.

Embeddings We evaluate the performance of different embedding models, which

we select considering different factors such as adoption among the community, per-

formance in open benchmarks such as MTEB [145], availability in the HuggingFace5

hub, as well as being of manageable size. These models are as follows.

• Sentence Transformers (SBERT) [176] models, specifically focusing on the fol-

lowing three variants:all-MiniLM-L6-v2, all-distilroberta-v1, and

all-mpnet-base-v2.

• Jina Embeddings [85], which is a language model trained on Jina AI’s Linnaeus-

Clean dataset, containing query-document pairs obtained from different domains.

We use these two versions: jina-embedding-b-en-v1 and

jina-embedding-l-en-v1.

• General Text Embeddings (GTE) model [120], which is trained on a large-scale

corpus of relevant text pairs from different domains, allowing the GTE models

to be used in a range of downstream text embedding tasks. In this work we use

gte-large.

5https://huggingface.co/

https://huggingface.co/
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• Instructor [193] model, which generates text embeddings for different tasks (such

as classification or retrieval) and domains (such as science or finance) based on

task instructions. We use in this work instructor-large. Furthermore, we

examine three different variants of instructions for encoding terms and defini-

tions as previously specified in Section 4.4.2.

• Universal AnglE Embedding [118], another instruction-based encoder, and which

we use with the same configurations as Instructor. We use UAE-Large-V1.

5.5 Results and Analysis

5.5.1 Hill’s Dataset

Table 5.3 shows how the performance improves with the GEAR method. In the first

part of the table, where candidates are evaluated without any embeddings, the like-

lihood of having the target term in the top 5 candidates is low. Among the models

tested with GEAR, the Instructor model, which encodes terms as dictionary entries

based on instructions, performs best, which gains of above 10% on the seen and un-

seen splits, but negligible differences on the human descriptions (presumably because

these already get a good sentence embedding from sentence bert, on one hand, and

also because they might not be accurately described as dictionary resources, which is

what we used as an instruction for Instructor). For prompt effectiveness, we found that

adding the requirement to generate a dictionary example, and despite its usefulness in

other settings, does not improve over base prompt 2, which simply provides as input a

few exemplars.
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Embed. Model Split Prompt ACC@1 ACC@5

No
embeddings

S.

bp1 26.8 44.0

bp2 30.4 50.2

rp 29.2 46.8

U.

bp1 30.0 47.2

bp2 33.4 53.8

rp 33.4 49.8

D.

bp1 70.0 77.0

bp2 72.5 83.0

rp 72.0 81.5

SBERT

S.

bp1 57.8 68.2

bp2 62.4 73.0

rp 60.6 72.2

U.

bp1 59.0 70.8

bp2 63.8 77.0

rp 61.6 75.2

D.

bp1 90.5 96.5

bp2 93.5 97.5

rp 94.0 98.0

Instructor

S.

bp1 66.0 80.6

bp2 71.4 84.6

rp 70.4 84.0

U.

bp1 64.6 79.0

bp2 70.0 83.4

rp 66.4 82.4

D.

bp1 89.5 98.0

bp2 92.5 98.5

rp 91.5 99.0

Table 5.3: Performance comparison of LLMs (no embeddings models) and

GEAR. S.: Seen split, U.: Unseen split, and D.: human description split. Prompts

are bp1 (Base Prompt 1), bp2 (Base Prompt 2), and rp (Reasoning Prompt).
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5.5.2 3D-EX Dataset

Table 5.4 presents the average MRR and P@1/3/5 for each prompt across various re-

sources in 3D-EX, comparing two methods: one without embedding models and the

other using the GEAR method. As previously demonstrated in Hill’s results (Section

5.5.1), the GEAR method, particularly with the Instructor model, achieves the best

performance, showing improvements in MRR and P@1 ranging from 3 to 6 points.

Concerning the type of prompt, interestingly, we found the sophistication of the prompt

to matter the most when combined with embedding models (where we see an improve-

ment of around 7% MRR from base to reasoning), but only 2% when prompting alone

is considered.

Model Prompt MRR P@1 P@3 P@5

No
embeddings

bp1 28.27 24.58 10.64 6.91

bp2 30.21 26.18 11.39 7.42

rp 30.99 26.98 11.70 7.58

SBERT

bp1 40.61 33.75 17.36 11.96

bp2 43.01 36.21 18.32 12.59

rp 44.21 37.09 18.92 12.99

Instructor

bp1 43.47 36.41 18.00 12.24

bp2 45.58 38.67 18.76 12.73

rp 46.37 39.31 19.09 12.98

Table 5.4: Performance comparison of LLMs (no embeddings models) and

GEAR methods across different models and prompts in 3D-EX, showing the av-

erage score across different dictionaries.

Table 5.5 shows the average MRR and P@1/3/5 for each embedding model mentioned

in Section 5.4.2. Results are much lower compared to those achieved with the GEAR

method, as well as below prompting alone. In Figure 5.1, we illustrate the performance



88 5.5 Results and Analysis

across these different datasets, and verify that Hei++ and Sci-definition have higher

values, while Urban and CHA show lower values. This variation is likely due to the

nature of the entries in Hei++ and Sci-definition, designed to capture more specialized

and unique terms. We see, interestingly, that while Instructor embeddings alone are

consistently outperforming the rest, they particularly shine in WordNet, which suggest

that WordNet embeddings may benefit from additional context to the encoder, since it

has been shown that WordNet’s definitions and examples are perhaps too short to be

informative [81].

(a) MRR (b) P@1

(c) P@3 (d) P@5

Figure 5.1: Performance comparison for various embedding models across differ-

ent metrics in 3D-EX.
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Model MRR P@1 P@3 P@5

Instructor (dict. - dict.) 24.88 19.80 9.82 6.73

Instructor (gen. - dict.) 24.81 19.40 9.96 6.78

Instructor (gen. - no) 24.73 19.72 9.78 6.68

Instructor (dict. - no) 24.51 19.55 9.68 6.60

Instructor (gen. - gen.) 24.32 19.17 9.68 6.65

Instructor (dict. - gen.) 24.15 19.05 9.55 6.61

Instructor (no - no) 24.03 19.23 9.45 6.47

Instructor (no - dict.) 23.92 18.91 9.51 6.50

Jina (large) 23.78 18.96 9.33 6.40

GTE (large) 23.47 18.18 9.38 6.56

Instructor (no - gen.) 23.24 18.31 9.20 6.37

UAE (gen. - gen.) 22.93 17.63 9.25 6.41

UAE (dict. - gen.) 21.99 16.96 8.77 6.16

UAE (gen. - dict.) 21.79 16.80 8.71 6.12

UAE (dict. - dict.) 20.90 15.87 8.45 5.94

Jina (base) 20.85 16.11 8.38 5.81

all-mpnet-base-v2 20.14 15.96 7.96 5.45

UAE (gen. - no) 18.91 14.48 7.66 5.36

UAE (dict. - no) 17.77 13.55 7.20 5.01

all-MiniLM-L6-v2 17.04 13.07 6.84 4.82

all-distilroberta-v1 16.55 13.05 6.54 4.50

UAE (no - gen.) 8.98 7.25 3.51 2.39

UAE (no - dict.) 8.10 6.50 3.16 2.15

UAE (no - no) 5.34 3.81 2.24 1.58

Table 5.5: Comparing different embedding models without any support from an

LLM-based generation step, showing the average score across 3D-EX dictionar-

ies.
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5.6 GEAR Components Analysis

Generation with Open Source LLM To ensure that our approach is both effective

across different models and accessible for future research, we repeated the GEAR

experiment on the Hill dataset using Llama [199], specifically Llama 3.1-70B 6,

an open source and freely available model. Table 5.6 presents the results compared to

using gpt-4o-mini. In comparison to the competing systems presented in Table

5.2, our method consistently outperforms them on 2 of the 3 datasets. This suggests

that the specific model used for generation is less critical than ensuring the generated

terms are semantically meaningful and lead to a reliable representation for retrieval.

Different Pooling Methods In order to understand the effect of the number of can-

didates produced in the generation step, we plot performance at different values for

all three splits and for accuracy@k. Figure 5.2 shows that using just one candidate is

not optimal, while averaging over 2 or 3 candidates provides better results, sometimes

outperforming all the 5. These results also suggest that while we could have tuned the

candidate number on a development set, with the tools we tested (gpt-4o-mini; and

Instructor and SBERT), it seems proven that performance plateaus at only a handful of

generated terms.

Additionally, We explored the effectiveness of max pooling instead of averaging the

generated term embeddings. These experiments did not provide any improvements

over the averaging method results. As we can see in Table 5.7, for the full GEAR

method using bp1, the results were around 1-2% worse for all 3 ks in accuracy@k.

Similarly, for the other two prompts, we found a consistent underperformance when

compared with averaging, again between 1% and 2% below, with the performance on

Hill’s test set going further below, up to 4%.

6https://huggingface.co/meta-llama/Llama-3.1-70B

https://huggingface.co/meta-llama/Llama-3.1-70B
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Split Prompt ACC@1 ACC@10 ACC@100

LLaMA-based Candidate Generation

S.

bp1 55.6 67.4 76.8

bp2 69.8 83.6 94.2

rp 76.2 89.0 97.0

U.

bp1 68.8 84.4 92.4

bp2 67.2 85.0 93.2

rp 69.8 87.8 95.2

D.

bp1 88.0 97.5 99.5

bp2 88.5 98.5 99.5

rp 91.5 100.0 100.0

gpt-4o-mini-based Candidate Generation

S.

bp1 66 84 96

bp2 71 88 97

rp 70 87 96

U.

bp1 70 88 97

bp2 65 82 95

rp 66 86 96

D.

bp1 89 99 99

bp2 93 99 100

rp 91 99 100

Table 5.6: GEAR results using LLaMA and gpt-4o-mini for candidate genera-

tion, with Instructor for embeddings. Evaluated on Hill’s dataset across different

prompts and data splits. S.: Seen, U.: Unseen, D.: Description. Prompts are bp1

(Base Prompt 1), bp2 (Base Prompt 2), and rp (Reasoning Prompt).
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(a) Accuracy@1

(b) Accuracy@10

(c) Accuracy@100

Figure 5.2: A comparison of the performance on Hill’s splits, evaluating the num-

ber of candidates in the generate step, which are then subsequently averaged to

produce the input vector for KNN search.
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Split Prompt ACC@1 ACC@10 ACC@100

Max Pooling

S.

bp1 63.6 81.2 94.0

bp2 69.0 84.6 95.8

rp 65.6 83.4 94.6

U.

bp1 61.6 80.4 93.8

bp2 68.2 86.2 95.0

rp 66.6 85.2 95.2

D.

bp1 90.0 97.5 100

bp2 90.5 97.0 100

rp 90.5 98.0 100

Average Pooling

S.

bp1 66 84 96

bp2 71 88 97

rp 70 87 96

U.

bp1 70 88 97

bp2 65 82 95

rp 66 86 96

D.

bp1 89 99 99

bp2 93 99 100

rp 91 99 100

Table 5.7: Comparison of max and average pooling results across different

prompts and splits in Hill’s dataset using the Instructor model for embeddings.

S.: Seen, U.: Unseen, D.: Description. Prompts are bp1 (Base Prompt 1), bp2

(Base Prompt 2), and rp (Reasoning Prompt).
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5.7 Generated Terms Analysis

In this section, we focus on analyzing the terms generated by LLMs in GEAR, with a

particular emphasis on examining their similarities to gain insight into their diversity

and how they influence GEAR performance. Appendix D shows samples of the gen-

erated terms.

To analyze the semantic similarity among the five predicted terms generated by the

LLMs for each definition, we calculated pairwise cosine similarities using SBERT.

For each set of candidates, we first encoded the five terms using the SBERT model,

specifically all-MiniLM-L6-v2, to obtain their embeddings. We then calculated

cosine similarities between all unique pairs, forming a 5×5 similarity matrix. From the

similarity matrix, we extracted the upper triangular values (excluding the diagonal),

corresponding to the 10 unique pairwise similarities among the 5 candidates. We then

averaged these values to obtain a single similarity score for each set of candidates. This

process was applied to 100 randomly sampled definitions from the Hill’s and 3D-EX

datasets, using the best-performing prompts — Base Prompt 2 for Hill’s and Reasoning

Prompt for 3D-EX. The results of this analysis are shown in Figure 5.3.

The first plot in the figure compares the similarity scores between candidates gen-

erated by the two models, gpt-4o-mini and Llama 3.1, for the Hill’s datasets

(seen, unseen, and description) using Base Prompt 2, which achieves the best results in

terms of performance. Overall, gpt-4o-mini outperforms Llama 3.1 across all

datasets. For the seen dataset, gpt-4o-mini shows higher and more consistent sim-

ilarity scores for the generated terms compared to Llama 3.1. In the unseen dataset,

gpt-4o-mini shows a similar pattern with consistent scores, while Llama 3.1

displays a wider range but lower scores. In the description dataset, gpt-4o-mini

achieves its highest similarities, whereas Llama 3.1 shows lower scores with some

outliers.

The second graph in the figure presents the similarity scores of the candidates gener-
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ated by gpt-4o-mini for each source in the 3D-EX dataset. Some sources show

clear patterns in candidate similarity. Wikipedia and Wiktionary have high variation,

suggesting that their definitions are not always consistent, where some are clear while

others are more ambiguous, leading the model to produce less focused predictions.

Webster’s Unabridged and Hei++ show more consistent and higher similarity, which

suggests that their definitions help the model generate more related terms. In con-

trast, Urban Dictionary has the lowest similarity scores, likely because its informal and

creative language makes it harder for the model to understand the intended meaning.

Sci-definition stands out with the highest similarity, showing that technical definitions

can guide the model to generate closely related, domain-specific terms.

For the final analysis, we examine the correlation between GEAR performance and

the diversity (or similarity) of the terms generated by the LLMs (gpt-4o-mini and

Llama 3.1), as shown in Figure 5.4. This is tested on Hill’s dataset by examining

the relationship between accuracy@1/10/100 and the average cosine similarity of can-

didates generated by both models. The cosine similarities were previously computed

for candidates of 100 random definitions, and their averages are used in this analysis.

Since higher similarity indicates lower diversity, the Pearson correlation coefficients

for gpt-4o-mini (0.59) and Llama 3.1 (0.57) reveal a moderate inverse relation-

ship between accuracy and diversity. Recall that the aim of this analysis was to explore

whether more diverse term generation could lead to a better input query embedding

for the average and rank steps; however, this does not seem to be the case and, in fact,

the more semantically compact (i.e., less variability in the generated terms) generated

candidates clearly lead to better performance. These findings align with the similar-

ity histogram (Figure 5.3a), which shows that the description prompt generates the

least diverse candidates, reinforcing the connection between higher similarity and bet-

ter performance. For future work, it would be interesting to explore if this holds also

when longer lists of candidates are generated, or if the LLM is specifically instructed

to generate diverse yet relevant terms given the definition.



96 5.8 Summary and Limitations

(a) Cosine similarity scores between candidates in Hill’s dataset (using Base Prompt 2)

(b) Cosine similarity scores between candidates generated by gpt-4o-mini in 3D-EX dataset

(using Reasoning Prompt)

Figure 5.3: Cosine similarity between candidates generated by the LLMs. Dashed

vertical lines indicate the mean similarity score for each case/dataset.

5.8 Summary and Limitations

In this chapter, we introduced a simple yet effective method for reverse dictionary (RD)

tasks. Our approach uses a large language model (LLM) to generate candidate terms
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(a) Accuracy@1

(b) Accuracy@10

(c) Accuracy@100

Figure 5.4: Correlation between GEAR performance and candidates diversity in

Hill’s dataset.
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given a definition, followed by embedding these candidates using pooling techniques,

with simple averaging yielding the best results. This unsupervised method outperforms

existing supervised methods on a well-known dataset, except for the seen split where

some supervised methods appear to overfit. We also explored different components of

this method and evaluated its performance across various dictionaries and evaluation

settings.

However, several limitations remain. First, assuming that a single embedding model

performs effectively across different registers and audiences may oversimplify the

complex nature of language use. Considering different pre-training strategies could

provide more nuanced insights into dictionary performance across contexts. Second,

while the performance of GEAR was evaluated on the 3D-EX dataset, a direct com-

parison with baseline RD models is necessary for a more complete evaluation. Third,

the current approach averages all generated terms equally, which may limit prediction

accuracy; task-specific weighted averaging could better capture the relative import-

ance of terms. Finally, this work focuses primarily on English and does not address

multilingual or cross-lingual generalization.
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Chapter 6

Conclusions and Future Work

6.1 Introduction

This final chapter summarizes the research conducted in this thesis. It begins by linking

the key contributions to the hypothesis and summarizing the major results in Section

6.2. Following this, we review the research questions addressed throughout the work

in Section 6.3, and it ends by suggesting some ideas for future work in Section 6.4.

6.2 Thesis Summary and Contributions

The primary aim of this thesis was to conduct an in-depth investigation into the inter-

play between LRs and NLP tasks, exploring how LRs influence the effectiveness and

outcomes of various NLP applications. Several previous studies have demonstrated

the importance of LRs in improving NLP task performance; however, they have not

thoroughly assessed the quality of these resources or compared their effectiveness with

LLMs in handling more complex language tasks. This motivates us to bridge these

gaps by providing a comprehensive evaluation and comparison.

The research hypothesis for this thesis was presented in Chapter 1. To remind the

reader, the hypothesis is: “Dictionary examples serve as essential tools for elucidating

the contextual and semantic meanings of terms. Within the scope of lexical resources,
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these examples play an important role in providing clarity and depth to language under-

standing. The main hypothesis underpinning this thesis is that the quality of dictionary

examples significantly influences the performance of NLP models that rely on word-

and sentence-level semantics. Specifically, it suggests that when dictionary examples

are detailed and informative, they empower NLP models to better understand term us-

age and meanings.” In Chapter 2, we presented a general overview of LRs and their

key components, with a particular focus on WN, the primary LR used in this thesis.

Additionally, we reviewed existing literature on the interplay between LRs and NLP

tasks.

In Chapter 3, we introduced the first experiment in this thesis that evaluates WN, es-

pecially its examples, through two main evaluation methods. The intrinsic evaluation

is based on GDEX (Good Dictionary EXamples) criteria, and involves both automatic

and human assessments, with CHA —a dataset based on the Oxford Dictionary— and

ChatGPT-generated examples used for comparison. The extrinsic evaluation focuses

on WN’s application in the DM and word similarity tasks. We concluded that WN does

not appear to be an optimal resource when informative dictionary examples are needed

for downstream tasks, such as DM or deriving contextualized representations. These

findings were later supported by Giulianelli et al. [81].

In Chapter 4, we introduced a new dataset, 3D-EX, which integrates various Eng-

lish dictionaries and encyclopedias into one centralized knowledge repository. This

dataset is derived from ten different sources, each with different styles, and went

through a cleaning and unification process to form a standardized format of <term,

definition> or <term, definition, example> triples. To assess the

usefulness of this dataset, we conducted intrinsic experiments focusing on source clas-

sification and RD tasks. In the source classification task, the objective is to predict the

original source of a given <term,definition> instance, helping to identify which sources

are more distinctive and easier to classify. In the RD task, the goal is to retrieve a ranked

list of the most relevant words based on a given definition.
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In Chapter 5, we proposed GEAR which is a new, lightweight, and unsupervised

method for RD. It begins with the Generate step, where LLMs generate a list of pos-

sible terms based on an input definition. In the Embed step, an embedding model

converts these terms into vector embeddings. Next, in the Average step, the average

of these embeddings is calculated to obtain a single vector for the generated terms.

Finally, in the Rank step, this average embedding is compared with the embeddings

of all terms in the dataset to get the top nearest neighbors. We evaluated GEAR on

the three test sets from Hill et al. [93], the most widely used dataset for assessing RD

models, to compare GEAR with existing RD methods. Our results show that GEAR

outperforms all baselines on both the unseen definition set and the description set, only

falling short on the seen split, likely due to overfitting in some methods. Addition-

ally, we analyzed different components of GEAR and assessed its performance across

various dictionaries and evaluation settings.

6.3 Research Questions

In this section the research questions will be revisited and discussed in terms of the

relation between each question and the research that was conducted in this thesis.

Research Question 1: How does the quality and length of dictionary examples within

LRs, such as WordNet, impact the performance of NLP models in tasks like definition

modeling?

To address this question, we fine-tuned a BART-based model on WN and CHA data-

sets for definition generation, as detailed in Chapter 3, Section 3.4.1. We then evaluated

the generated definitions using automatic string matching metrics: BLEU, METEOR,

and ROUGE. Our findings indicate that the overall scores for the definition generation

model based on WN examples are generally low, particularly when compared to the

model trained on CHA examples. Furthermore, an analysis of the definitions gener-
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ated by the WN-trained model shows notable problems such as under-specificity and

circularity.

Research Question 2: How can embeddings for words, phrases, and sentences be

improved by leveraging dictionary examples?

To answer this question, we conducted a similarity experiment described in Chapter 3,

Section 2.3.3.1, where we evaluated examples from WN against CHA and those gen-

erated by ChatGPT. This evaluation involved measuring the similarity between word

pairs using these three sets of examples, as informative examples are expected to pro-

duce higher-quality contextual embeddings. Our findings indicate that WN examples,

which tend to be less informative, too short, and often contain highly ambiguous words,

result in word embeddings that perform significantly worse on word similarity bench-

marks compared to those generated from CHA and ChatGPT examples.

Research Question 3: How does the integration of multiple lexical resources into a

centralized knowledge repository contribute to improving NLP models across different

downstream tasks?

As demonstrated in Chapter 4, creating a centralized repository enhances NLP models

by enabling them to interpret language across various contexts. By combining diverse

sources such as dictionaries and linguistic databases, the repository provides a richer

and more detailed understanding of language. This variety helps models better capture

linguistic patterns and meanings, resulting in improved performance.

Research Question 4: Can the task of reverse dictionary improve by combining “the

best of both worlds”, i.e., LLM generation capabilities as well as semantic similarities

derived from dictionary embeddings?

To address this, we employed a simple unsupervised RD method that leverages LLMs

(see Chapter 5) to generate candidate terms from given definitions and embed them
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using a pooling technique. This approach outperforms existing supervised methods,

highlighting the effectiveness of this combined method.

6.4 Future Work

In this section, we discuss some of the possible ways in which the research in this

thesis could be extended further in the future.

Evaluating WN extrinsically in different NLP tasks We would like to explore ex-

trinsic evaluations of WN across various NLP tasks to assess its effectiveness in differ-

ent applications. In addition, we could conduct experiments comparing WN’s perform-

ance with other datasets—beyond the Oxford Dictionary and ChatGPT—and language

models in different areas of NLP.

WN human evaluation We aim to extend the questionnaire to include other re-

sources and LLMs, leveraging the scores we obtained for training dictionary scoring

systems, which we believe would be valuable tools for both lexicographers and NLP

practitioners. Additionally, considering the intended users of the dictionary is import-

ant when comparing dictionaries, as this can influence the complexity of the examples.

Exploring 3D-EX We aim to further explore the potential of 3D-EX for downstream

NLP tasks by incorporating more resources and exploring multilingual variants. An ad-

ditional avenue would be to examine the interaction of unorthodox dictionaries, such as

Urban, with traditional lexicographic resources in the context of controlled technical or

jargon-driven domain modeling. Furthermore, future work could focus on developing

an automated workflow to identify and integrate new resources into 3D-EX using AI

agents, ensuring the dataset remains up to date and comprehensive.
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Enhancing GEAR with Different LLMs and Multilingual Capabilities We intend

to explore various LLMs for the generation step, potentially developing a task-specific

weighted average approach that could be learned using simple neural network archi-

tectures. This is similar to the method used by Wang et al. [209], who employed

word classification datasets to tune contextualized word embeddings. Additionally,

expanding GEAR’s functionality to support multiple languages would be beneficial,

leveraging multilingual encoders such as XLM-R or mBERT.

Evaluating LLMs generated examples through GEAR We plan to evaluate the

examples generated from different LLMs by applying the reasoning prompt in GEAR

method based on GDEX criteria, which include both automatic and human evaluation,

as was implemented in in Chapter 3 that evaluates WN’s examples. Additionally, we

will assess the similarity of the generated examples to the target definitions, focusing

on their relevance to the intended meaning.
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Appendix A: GDEX-based Prompt

Given the word {word}, defined as {definition}, write a sentence that shows this

word being used in context, in the style of a dictionary or an encyclopedia. The

returned sentence should follow the following criteria:

• it should be between 10 and 25 words.

• it should appear natural.

• it must show the typical usage of the word in terms of context, syntax,

phraseology and the like.

• it should be informative and helps the user with understanding the defini-

tion.

• its content should be understandable without the need for wider context.

• it should include the least number of pronouns.

• it should include the least number of non-frequent words.

• it should not have more than one capital letter or non-alpha-numeric char-

acters.

• it should not be another definition of the target word. Do not generate

more definitions or descriptions of the term.

• the target word should be presented in the main clause.

• it should contains the most typical collocates of the target word.

Here are some examples:

INPUT: asleep, in a state of sleep

OUTPUT: Sometimes we watched movies and fell asleep together.
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Dataset Avg Std Min Max

WN 0.39 0.17 0 0.85

CHA 0.47 0.09 0 0.76

Wiktionary 0.50 0.09 0 0.90

Wikipedia 0.48 0.07 0 0.81

Urban 0.41 0.12 0 0.93

CODWOE 0.49 0.12 0 0.90

Sci-definition 0.55 0.08 0 0.89

Table B.1: Fluency

Dataset Avg Std Min Max

WN 0.71 0.27 0 0.95

CHA 0.16 0.31 0 0.99

Wiktionary 0.47 0.42 0 0.99

Wikipedia 0.16 0.29 0 0.93

Urban 0.34 0.37 0 0.94

CODWOE 0.51 0.41 0 0.99

Sci-definition 0.35 0.41 0 0.99

Table B.2: Length penalty

Dataset Avg Std Min Max

WN 0.18 0.20 0 1

CHA 0.09 0.08 0 1

Wiktionary 0.23 0.12 0 1

Wikipedia 0.23 0.12 0 1

Urban 0.24 0.16 0 1

CODWOE 0.20 0.13 0 1

Sci-definition 0.20 0.12 0 1

Table B.3: Frequency penalty

Dataset Avg Std Min Max

WN 0.07 0.11 0 0.66

CHA 0.09 0.07 0 0.76

Wiktionary 0.09 0.07 0 0.75

Wikipedia 0.02 0.03 0 0.42

Urban 0.12 0.09 0 0.75

CODWOE 0.09 0.08 0 0.66

Sci-definition 0.05 0.051 0 0.50

Table B.4: Anaphoric penalty

Dataset Avg Std Min Max

WN 0.59 0.06 0.27 1

CHA 0.57 0.03 0.36 0.95

Wiktionary 0.54 0.04 0.20 0.94

Wikipedia 0.55 0.04 0.24 0.83

Urban 0.54 0.05 0.04 0.97

CODWOE 0.55 0.05 0.22 0.96

Sci-definition 0.57 0.03 0 0.82

Table B.5: Ambiguity

Dataset Avg Std Min Max

WN 0.98 0.15 0 1

CHA 0.84 0.36 0 1

Wiktionary 0.68 0.46 0 1

Wikipedia 0.96 0.19 0 1

Urban 0.84 0.36 0 1

CODWOE 0.79 0.40 0 1

Sci-definition 0.85 0.35 0 1

Table B.6: Main clause
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Dataset Avg Std Min Max

WN 7.23 6.47 -10.48 50.090

CHA 9.12 4.07 -6.55 36.19

Wiktionary 11.81 6.37 -6.56 96.27

Wikipedia 11.30 3.62 -6.55 33.95

Urban 4.42 3.58 -12.45 52.44

Cod 9.44 6.24 -8.23 67.79

Sci 17.06 7.40 -3.01 289.29

Table B.7: Flesch–Kincaid Reading Grade Level (FKRGL)

Dataset Avg Std Min Max

WN 8.81 4.91 0.09 19.72

CHA 9.63 2.16 0.89 19.92

Wiktionary 9.33 2.81 0.09 23.30

Wikipedia 11.30 3.62 -6.55 33.95

Urban 8.62 2.87 0 21.01

Cod 8.77 3.14 0.09 20.02

Sci 12.26 2.24 0.09 50.60

Table B.8: Dale-Chall Readability (DCR)

Dataset Avg Std Min Max

WN 8.23 7.41 -17.82 57.600

CHA 9.16 4.23 -15.90 35.53

Wiktionary 10.66 5.09 -18.84 313.44

Wikipedia 11.15 3.94 -15.90 43.47

Urban 4.92 4.70 -27.66 466.16

Cod 8.98 5.17 -18.84 81.12

Sci 15.85 4.82 -10.02 442.74

Table B.9: Coleman-Liau Index (CLI)
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Appendix C

Appendix C: GEAR Prompt Types

Base Prompt 1 (bp1):

Given the definition {definition}, generate a list of {k} terms defined by that definition assuming

they are in {dictionary} dictionary. Only give me a list back, do not generate any other text.

{dictionary} is {description}

The returned list should follow the following conditions:

• Terms should be ordered or ranked so the first term is the most related to the definition.

• In a JSON object of the form { "terms": ["term_1", "term_2", . . . ] }.

• All terms should be in lowercase.

Example:

INPUT: "A piece of furniture for sitting."

OUTPUT: { "terms": ["chair", "stool", "bench", "sofa", "couch"] }



144 Bibliography

Base Prompt 2 (bp2):

Given the definition {definition}, generate a list of {k} terms defined by that definition assuming

they are in {dictionary} dictionary. Only give me a list back, do not generate any other text.

{dictionary} is {description}

These are some examples of definitions and terms in this dictionary: {examples}

The returned list should follow the following conditions:

• Terms should be ordered or ranked so the first term is the most related to the definition.

• In a JSON object of the form { "terms": ["term_1", "term_2", . . . ] }.

• All terms should be in lowercase.

Example:

INPUT: "A piece of furniture for sitting."This compile didn’t produce a PDF. This can happen

if:

OUTPUT: { "terms": ["chair", "stool", "bench", "sofa", "couch"] }
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Reasoning Prompt (rp):

Given the definition {definition}, generate a list of {k} terms defined by that definition assuming

they are in {dictionary} dictionary. Only give me a list back, do not generate any other text.

{dictionary} is {description}

These are some examples of definitions and terms in this dictionary: {examples}

For each term, provide an example usage in a sentence that matches the style and scope of

{dictionary}.

The returned list should follow the following conditions:

• Terms should be ranked, with the first term being the most related to the definition.

• All terms and examples should be in lowercase.

• Return the terms and examples in a JSON object of the form:

{ "terms": [ { "term": "term_1", "example": "example_1" }, { "term": "term_2", "example":

"example_2" }, ... ] }

Example:

INPUT: "A piece of furniture for sitting."

OUTPUT: { "terms": [ { "term": "chair", "example": "he sat on the chair and opened his book."

}, { "term": "stool", "example": "she perched on the stool at the bar." }, { "term": "bench",

"example": "they rested on the bench after their walk." }, { "term": "sofa", "example": "the

family gathered on the sofa to watch TV." }, { "term": "couch", "example": "he stretched out on

the couch to take a nap." } ] }
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Appendix D

Appendix D: GEAR Generated Terms

The following tables present samples of candidates generated by gpt-4o-mini for

each prompt across sources in the 3D-EX dataset, and by both gpt-4o-mini and

Llama 3.1 for the description test set of Hill’s dataset. The seen and unseen sets are

excluded, as they are derived from WordNet.

Here, we examine sample outputs to explore how different factors affect the model’s

predictions. In the WN results as shown in Table D.1, the model’s output varies de-

pending on the prompt and sometimes misses the exact word type or tone intended by

the dictionary. For example, for the definition Having no limbs, the base prompt mostly

lists animals without limbs instead of the correct adjective limbless. Adding examples

to the prompt helps the model produce better adjective terms like limbless and arm-

less. For the definition The relative position or standing of things or especially persons

in a society, the model’s top prediction is social status, which is not in the gold list

but is closely related, showing a broader understanding. Finally, for Displaying luxury

and furnishing gratification to the senses, the gold terms are adjectives like luxurious

and voluptuous, but the model mostly predicts nouns such as luxury and opulence, ex-

cept in the reasoning prompt where adjectives like opulent and sumptuous appear. The

model’s terms also tend to have a stronger, more judgmental tone compared to the gold

terms, possibly reflecting an overcautious or exaggerated view of luxury. This might

suggest that the LLM is overcompensating by being too careful or safe in its word

choices.
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More generally, the style of each dictionary strongly influences the model’s generated

terms. For example, the Urban dataset (Table D.5) features casual, slangy language;

for the definition A social gathering when there is not enough people to call it a party,

the model suggests informal terms like get-together and chill sesh, matching the casual

tone of the gold term box social. In the Sci-definition dataset of medical and tech-

nical terms (Table D.7), the model produces accurate, domain-specific vocabulary and

related concepts. The Hei++ dataset (Table D.10) focuses on adjective-noun phrases,

and the model consistently preserves this structure with terms like prompt reply and

swift response. Across these datasets, prompts bp2 and rp tend to produce more formal,

specialized, or creative terms, while bp1 usually generates simpler, broader, or more

literal language.

Table D.11 presents a comparison of terms generated by gpt-4o-mini and Llama-3

for the description set in Hill’s dataset. Both models successfully identify the core

concept in each definition and produce related terms that reflect the intended mean-

ing; however, Llama-3 tends to produce more varied and dynamic language, while

gpt-4o-mini offers more precise and focused terms. For example, in the case

of Dirty wet brown earth found on the ground after it has rained, both models in-

clude the key term mud along with similar words such as sludge and silt. How-

ever, gpt-4o-mini tends to generate more general terms like soil and dirt, while

Llama-3 offers some less common words such as muck and ooze. For the definition

To keep doing something when stopping was a possibility, both models provide terms

related to the term continue, but gpt-4o-mini generates nouns such as perseverance

and determination, whereas Llama-3 produces more verbs and phrases like carry on

and press on. In the case of The process where the price of things increases across a

country or economy, both identify inflation and related concepts. However, Llama-3

generates a broader range of economic terms while gpt-4o-mini remains more fo-

cused on terms directly related to price increases.
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Definition Gold Terms Prompt Pred. Terms
The relative position or
standing of things or
especially persons in a
society

[position,
status]

bp1 [social status, socioeconomic status, rank,
class, position]

bp2 [social status, social class, rank, standing,
hierarchy]

rp [social status, standing, class, rank, hier-
archy]

Having no limbs [limbless]
bp1 [worm, snake, mollusk, jellyfish, slug]
bp2 [unarmored, limbless, defenseless, im-

paired, incapacitated]
rp [armless, legless, limbless, bodyless,

trunked]

Of or relating to or
characteristic of a
procession

[processional]
bp1 [processional, parade, procession, pageant,

cortege]
bp2 [processional, processionary, parade,

cortège, pageant]
rp [processional, parade, march, cortege, pa-

geant]

Displaying luxury and
furnishing gratification to
the senses

[luxurious,
voluptuous,
epicurean,
sybaritic]

bp1 [luxury, opulence, splendor, lavishness, in-
dulgence]

bp2 [opulence, luxury, delight, lavishness, ex-
travagance]

rp [opulent, lavish, sumptuous, extravagant,
luxurious]

(of flora or fauna) likely in
the near future to become
endangered

[threatened]
bp1 [threatened species, vulnerable species, en-

dangered species, imperiled species, at risk
species]

bp2 [vulnerable, threatened, endangered, crit-
ically endangered, near threatened]

rp [threatened, vulnerable, near threatened,
endangered, at risk]

Consider obligatory;
request and expect

[ask, expect,
require]

bp1 [demand, require, insist, urge, command]
bp2 [demand, require, insist, urge, call for]
rp [demand, require, obligate, necessitate, ex-

pect]

Table D.1: Sample of generated terms in WordNet.
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Definition Gold Terms Prompt Pred. Terms
An agreement or treaty especially one
between the Vatican and a secular
government relating to matters of
mutual interest

[concordat]
bp1 [concordat, treaty, agreement,

pact, accord]
bp2 [concordat, treaty, accord,

agreement, pact]
rp [concordat, pact, treaty, agree-

ment, accord]

A person who practises or is an expert
in judo

[judoka]
bp1 [judoka, judo practitioner, judo

expert, judo player, judo ath-
lete]

bp2 [judoka, judo practitioner, judo
expert, judoist, judo athlete]

rp [judoka, judo expert, judo prac-
titioner, judo champion, judo
athlete]

A cubic equation or a curve described
by one

[cubic]
bp1 [cubic equation, parabola, cu-

bic function, polynomial curve,
three-dimensional graph]

bp2 [cubic equation, cubic func-
tion, polynomial equation, cu-
bic curve, third-degree polyno-
mial]

rp [cubic function, cubic polyno-
mial, cubic curve, cubic equa-
tion, cubic root]

Denoting or relating to the part of a
political administration with
responsibility for putting into effect
laws drawn up by the legislature

[executive]
bp1 [executive, administration, ex-

ecutive branch, government,
executive authority]

bp2 [executive, administration, gov-
ernance, bureaucracy, execu-
tion]

rp [executive, administration, gov-
ernment, bureaucracy, cabinet]

An air-filled swelling in a plant
especially a seaweed

[vesicle]
bp1 [bladder, bloat, float, air sac,

pneumatophore]
bp2 [bladder, float, air sac, pneuma-

tocyst, aerenchyma]
rp [bladder, float, pneumatocyst,

air sac, buoyancy chamber]

Having lost the physical, mental, or
moral qualities considered normal and
desirable; showing evidence of decline

[degenerate]
bp1 [decrepit, dilapidated, decayed,

degenerate, worn]
bp2 [degeneration, decay, deteriora-

tion, neglect, decline]
rp [decadent, dilapidated, de-

crepit, degraded, degenerate]

Table D.2: Sample of generated terms in CHA dataset.
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Definition Gold Terms Prompt Pred. Terms

City in Namur, Belgium
[andenne, beauraing,
fosses-la-ville]

bp1 [namur, belgium, province of
namur, walloon region, city]

bp2 [namur, wallonia, meuse, namur
castle, st. aubin’s cathedral]

rp [namur, floreffe, ham-sur-heure-
nalinnes, beaumont, église]

Harmful effects of human activity
on the biophysical environment

[environmental
issue]

bp1 [environmental degradation, pol-
lution, deforestation, biodiversity
loss, climate change]

bp2 [environmental degradation, pol-
lution, deforestation, biodiversity
loss, climate change]

rp [environmental degradation,
pollution, deforestation, climate
change, habitat destruction]

Academic degree
[bachelor of business
administration,
bachelor of music,
doctor of divinity,
lector, master of
laws, professional
degree]

bp1 [bachelor’s degree, master’s de-
gree, doctorate, associate degree,
professional degree]

bp2 [bachelor’s degree, master’s de-
gree, doctorate, associate degree,
professional degree]

rp [bachelor’s degree, master’s de-
gree, phd, associate degree, doc-
torate]

Computer programming language [logo, sail]
bp1 [programming language, scripting

language, markup language, com-
piled language, interpreted lan-
guage]

bp2 [python, java, javascript, c++,
ruby]

rp [python, javascript, java, c++,
ruby]

Type of musical instrument
[electric instrument,
gemshorn]

bp1 [guitar, piano, violin, trumpet,
drums]

bp2 [piano, guitar, violin, flute, drum]
rp [piano, guitar, violin, trumpet,

flute]

Soft drink
[sparletta, tab,
vimto]

bp1 [soda, pop, cola, fizzy drink, car-
bonated beverage]

bp2 [soda, pop, cola, fizzy drink, car-
bonated beverage]

rp [cola, lemonade, ginger ale, root
beer, sparkling water]

Table D.3: Sample of generated terms in Wikipedia.
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Definition Gold Terms Prompt Pred. Terms

The act of writing
a computer program

[programming]
bp1 [programming, coding, software

development, scripting, applica-
tion development]

bp2 [programming, coding, software
development, scriptwriting, al-
gorithm design]

rp [programming, coding, software
development, application develop-
ment, scriptwriting]

Truly, honestly
[fair dinkum, straight
dinkum]

bp1 [genuinely, sincerely, authentic-
ally, veritably, frankly]

bp2 [genuinely, actually, seriously, sin-
cerely, veritably]

rp [genuinely, truthfully, honestly,
sincerely, forthrightly]

A very brief vacation;
a momentary respite from
the cares of everyday life

[microvacation,
nanobreak]

bp1 [getaway, retreat, break, escape,
holiday]

bp2 [getaway, break, escapade, retreat,
recess]

rp [getaway, break, escape, recess, hi-
atus]

Having multiple targets,
such that a call to the
delegate triggers a call to
each target

[multicast]
bp1 [multicast, broadcast, delegate,

event, callback]"
bp2 [multicast, broadcast, delegate,

listener, subscriber]"
rp [multicast, broadcast, event ag-

gregator, observer pattern, deleg-
ate]

A procedure used to find
a particular solution to
certain types of
inhomogeneous ordinary
differential equation

[variation of parameters,
undetermined coefficients,
integrating factor,
particular solution, method
of undetermined
coefficients]

bp1 [particular solution, method of un-
determined coefficients, variation
of parameters, laplace transform,
green’s function]

bp2 [variation of parameters, undeter-
mined coefficients, particular in-
tegral, method of undetermined
coefficients, variation method]

Based on hypothesis rather
than experiment

[a priori]
bp1 [theory, hypothesis, model, conjec-

ture, postulate]
bp2 [hypothetical, theoretical, conjec-

tural, speculative, supposititious]
rp [theoretical, hypothetical, pre-

sumed, conjectural, supposed]

Table D.4: Sample of generated terms in Wiktionary.
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Definition Gold Terms Prompt Pred. Terms
A social gathering when there’s
not enough people to entitle it a
party

[box social] bp1 [get-together, small hangout, mini
gathering, casual meetup, social
bump]

bp2 [mini-gathering, not-a-party, micro-
party, chill sesh, friend hang]

Being able to drive and refold a
road map at the same time

[accordianated,
accordionated]

bp1 [hangout, get-together, mini-
gathering, low-key meet-up, casual
congregation]

bp2 [multitasking navigator, map wran-
gler, dual-tasking driver, roadmaster,
cartographic multitasker]

rp [map multitasker, navitationalist,
road map wizard, fold-n-drive, com-
pass contortionist]

To understand [underdig, feel] bp1 [get it, vibe check, deep dive, red
pill, woke]

bp2 [get it, feel me, you dig, catch my
drift, know what I mean]

rp [get it, catch on, dig, vibe with,
grok]

The way you dress and how you
present yourself to other people

[swaga] bp1 [style, aesthetic, fit, vibe, swag]

bp2 [swagmaster, flex god, style king,
dancefloor deity, vibe guru]

rp [aesthetic, vibe check, fit, swag,
drip]

Generally being stressed out at
your computer whilst playing a
game or engaging in any other
online activity

[e-rage] bp1 [rage quitting, gamer stress, tilted,
pwned, noob mode]

bp2 [rage quit, gamer stress, tilt mode,
keyboard smash, online meltdown]

rp [gamer stress, online anxiety, click
rage, screen burnout, keyboard
freakout]

A class that is useless and
extremely difficult for those who
are not math geniuses

[algebra ii] bp1 [math pit, number hell, calc-
tastrophe, algebraic abyss, geometry
graveyard]

bp2 [math hell, calculator torture, num-
bers nightmare, algebra apocalypse,
geometry graveyard]

rp [math hell, calculussive, num-
brageous, geometry of despair,
algebra blaster]

Table D.5: Sample of generated terms in Urban.
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Definition Gold Terms Prompt Pred. Terms

Complimentary [complemental, free]
bp1 [complimentary, gratuitous, fa-

vorable, laudatory, commendat-
ory]

bp2 [praiseworthy, flattering, gratis,
favorable, encomiastic]

rp [complimentary, flattering, prais-
ing, admiring, laudatory]

A photograph [photo, picture]
bp1 [photo, image, snapshot, picture,

developed photograph]
bp2 [photo, picture, snapshot, image,

portrait]
rp [photo, snapshot, picture, image,

print]

To commit suicide [rope, top]
bp1 [suicide, self-harm, self-inflicted

death, voluntary death, intentional
death]

bp2 ,[suicide, self-termination, self-
inflicted death, voluntary death,
self-killing]

rp [suicide, self-termination, self-
inflicted death, voluntary death,
self-killing]

The philosophy of using
copyrights to enforce freedom
of information, especially
software source code

[copyleft]
bp1 [copyleft, open source, free soft-

ware, software freedom, informa-
tion liberation]

bp2 [copyleft, free software, open
source, software freedom, inform-
ation commons]

rp [copyleft, free software, open
source, intellectual property, in-
formation freedom]

A pair of one-way streets
which carry opposing
directions of traffic through
gridded urban areas

[couplet]
bp1 [one-way street, dual carriageway,

one-way system, two-way street,
traffic corridor]

bp2 [one-way street, traffic avenue,
divergent roadway, contraflow
street, grid street]

rp [one-way street, concurrent street,
directional lane, grid street, paired
thoroughfare]

Table D.6: Sample of generated terms in CODWOE dataset.
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Definition Gold Terms Prompt Pred. Terms
A method of seeding that
involves placing seed with
attention to precise spacing
and depth, either by hand or
mechanically, as opposed to
broadcast seeding

[precision seeding]
bp1 [precision seeding, direct seeding,

row planting, planting technique,
mechanical seeding]

bp2 [precision seeding, mechanical
seeding, direct seeding, row seed-
ing, transplanting]

rp [precision seeding, drill seeding,
row planting, transplanting, direct
seeding]

Bronchitis is an inflammation
of the bronchial tubes, the
airways that carry air to your
lungs

[acute bronchitis,
chronic bronchitis]

bp1 [bronchitis, bronchial tubes, air-
ways, lungs, respiratory system]

bp2 [bronchitis, asthma, chronic ob-
structive pulmonary disease, pneu-
monia, lung infection]

rp [bronchitis, bronchial tube inflam-
mation, respiratory infection, air-
way obstruction, lung disease]

A crime against environmental
legislation that is liable for
prosecution

[environmental crime]
bp1 [environmental crime, pollution

offense, illegal dumping, wildlife
trafficking, hazardous waste viola-
tion]

bp2 [environmental crime, ecological
violation, green law offense, pollu-
tion offense, conservation breach]

rp [environmental crime, eco-crime,
pollution offense, wildlife traffick-
ing, illegal logging]

Any area of land that is lower
in elevation relative to another
area

[lowland]
bp1 [valley, depression, basin, glen,

hollow]
bp2 [basin, valley, depression, lowland,

fjord]
rp [depression, valley, basin, lowland,

sinkhole]

An endogenous compound
that enables neurotransmission

[neurotransmitter]
bp1 [neurotransmitter, serotonin,

dopamine, glutamate, acet-
ylcholine]

bp2 [neurotransmitter, acetylcholine,
dopamine, serotonin, norepineph-
rine]

rp [neurotransmitter, serotonin,
acetylcholine, glutamate, gamma-
aminobutyric acid]

Table D.7: Sample of generated terms in Sci-definition dataset.
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Definition Gold Terms Prompt Pred. Terms

The state of being a landlord [landlordism]
bp1 [landlordship, property ownership, land-

lording, real estate management, rental
property management]

bp2 [landlordship, landholding, property
ownership, renting, leaseholding]

rp [landlordship, landlording, property
owner, lessor, rental proprietor]

Blindness [ablepsy, cecity]
bp1 [blindness, visual impairment, sightless-

ness, hypopsia, amaurosis]
bp2 [blindness, amaurosis, insensibility, un-

seeing, lack of vision]
rp [blindness, visual impairment, anopsia,

amaurosis, legal blindness]

An instrument consisting in
part of a differential
thermometer

[aethrioscope]
bp1 [thermometer, differential thermometer,

max-min thermometer, manometer, baro-
meter]

bp2 [thermometer, differential thermometer,
hygrometer, barometer, manometer]

rp [manometer, barometer, thermograph,
calorimeter, potentiometer]

A salt of sulphophosphorous
acid

[sulphophosphite]
bp1 [sulphophosphate, sulphophosphoric

acid, sulphophosphate of lime, sulpho-
phosphate of soda, sulphophosphite]

bp2 [sodium thiosulphate, potassium
thiosulphate, calcium thiosulphate,
ammonium thiosulphate, magnesium
thiosulphate]

rp [sulphophosphate, sulphophosphite, cal-
cium sulphophosphate, sodium sulpho-
phosphate, magnesium sulphophosphate]

Toward the southeast
[southeaster,
southeastward,
southeastwardly]

bp1 [southeast, southeastward, southeast-
wardly, southeasterly, southeaster]

bp2 [southeast, southeastward, southeasterly,
southeastern, southeastwardly]

rp [southeast, southeasterly, southeastward,
southeastwardly, southeast-bound]

A judicial opinion expressed
by judges on points that do
not necessarily arise in the
case, and are not involved
in it

[dictum]
bp1 [obiter dictum, dictum, pertinent state-

ment, extrajudicial remark, judicial com-
mentary]

bp2 [obiter dictum, dictum, advisory opinion,
extrajudicial opinion, res ipsa loquitur]

rp [dictum, obiter dictum, advisory opinion,
extra judicial, non sequitur]

Table D.8: Sample of generated terms in Webster’s Unbridged.
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Definition Gold Terms Prompt Pred. Terms

A community of people
smaller than a village

[crossroads, hamlet]
bp1 [hamlet, settlement, borough,

neighborhood, community]
bp2 [hamlet, settlement, borough,

community, locality]
rp [hamlet, settlement, borough,

neighborhood, colony]

A tentative insight into the
natural world; a concept that is
not yet verified but that if true
would explain certain facts or
phenomena

[hypothesis, possibility,
theory]

bp1 [hypothesis, theory, model, spec-
ulation, postulate]

bp2 [hypothesis, theory, postulate,
conjecture, speculation]

rp [hypothesis, theory, postulate,
conjecture, speculation]

The science which treats of
wealth, its production,
distribution, etc.; political
economy

[economics]
bp1 [economics, political economy,

finance, market theory, resource
allocation]

bp2 [economics, political economy,
wealth, distribution, production]

rp [economics, political economy,
economy, wealth, distribution]

Small dark geese that breed in
the north and migrate
southward

[brant, brent]
bp1 [brant, barnacle goose, canada

goose, white-fronted goose,
lesser snow goose]

bp2 [brent goose, barnacle goose,
cackling goose, canada goose,
little blue goose]

rp [brant, barnacle goose, white-
fronted goose, cackling goose,
greater white-fronted goose]

A swimming stroke in which a
person lies face down in the
water and extends the arms in
front of the head, then sweeps
them both back laterally under
the surface of the water while
performing a frog kick

[breaststroke]
bp1 [breaststroke, freestyle, butterfly,

backstroke, sidestroke]
bp2 [breaststroke, sweep stroke, frog

stroke, horizontal stroke, water
stroke]

rp [breaststroke, frog stroke, front
crawl, swimming technique, wa-
ter fitness]

The introduction of animals or
plants to places where they
flourish but are not indigenous

[naturalization]
bp1 [invasive species, non-native spe-

cies, introduced species, alien
species, exotic species]

bp2 [invasive species, introduced spe-
cies, non-native species, exotic
species, alien species]

rp [invasive species, exotic species,
non-native species, alien species,
introduced species]

Table D.9: Generated terms in MultiRD dataset.
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Definition Gold Terms Prompt Pred. Terms

A line that is drawn with no
interruptions between its ends

[continuous line]
bp1 [straight line, line segment, continu-

ous line, uninterrupted line, infinite
line]

bp2 [straight line, continuous line, uninter-
rupted line, closed line, open line]

rp [line segment, straight line, connect-
ing line, continuous line, uninterrup-
ted line]

A necktie that is very
noticeable

[conspicuous necktie]
bp1 [loud necktie, flashy necktie, colorful

necktie, patterned necktie, bold neck-
tie]

bp2 [loud tie, flashy necktie, bold tie,
striking cravat, eye-catching neck-
wear]

rp [loud tie, statement tie, bold necktie,
flashy tie, eye-catching tie]

A reply that is made quickly [prompt reply]
bp1 [quick response, instant reply, rapid

answer, swift feedback, prompt re-
mark]

bp2 [quick reply, instant response, prompt
answer, rapid feedback, swift reac-
tion]

rp [quick reply, swift response, rapid
comeback, prompt answer, immediate
feedback]

An unpleasant noise that
continues without interruption

[incessant noise]
bp1 [din, cacophony, clamor, racket, com-

motion]
bp2 [constant noise, persistent racket,

ceaseless clamor, unending din, re-
lentless discord]

rp [din, racket, clamor, cacophony, up-
roar]

A change which reforms the
essential qualities of something

[fundamental change]
bp1 [transformation, reformation, meta-

morphosis, revamping, overhaul]
bp2 [transformative change, revolutionary

alteration, qualitative reform, funda-
mental modification, essential revi-
sion]

rp [transformation, metamorphosis, re-
formation, conversion, revitalization]

The sun shining during the
hours of maximum light

[bright sun]
bp1 [daylight, sunlight, bright sunlight,

high noon, golden hour]
bp2 [daylight, sunlight, bright hours, solar

peak, golden hour]
rp [daylight, sunshine, midday light,

solar glow, bright hours]

Table D.10: Sample of generated terms in Hei++ dataset.
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Definition Gold Term Prompt Pred. Terms

Dirty wet brown earth found on
the ground after it has rained

mud
bp1 [mud, sludge, silt, soil, clay]
bp2 [mud, sludge, dirt, mire, silt]
rp [mud, sludge, dirt, clay, silt]

To keep doing something when
stopping was a possibility

continue
bp1 [perseverance, persistence,

tenacity, determination, continu-
ation]

bp2 [persist, persevere, continue, en-
dure, sustain]

rp [persist, continue, persevere,
carry on, hang on]

The process where the price of
things increases across a
country or economy

inflation
bp1 [inflation, price increase, eco-

nomic inflation, cost of living in-
crease, hyperinflation]

bp2 [inflation, price increase, cost
of living, economic inflation,
hyperinflation]

rp [inflation, price hike, cost of liv-
ing increase, economic expan-
sion, market volatility]

(a) Terms generated by gpt-4o-mini.

Definition Gold Term Prompt Pred. Terms

Dirty wet brown earth found on
the ground after it has rained

mud
bp1 [mud, clay, silt, sludge, mire]
bp2 [mud, muck, dirt, clay, silt]
rp [mud, clay, mire, ooze, silt]

To keep doing something when
stopping was a possibility

continue
bp1 [persevere, persist, continue,

prevail, endure]
bp2 [persevere, persist, continue,

carry on, proceed]
rp [persevere, persist, keep at, press

on, carry on]

The process where the price of
things increases across a
country or economy

inflation
bp1 [inflation, price hike, hyperinfla-

tion, stagflation, deflation]
bp2 [inflation, price rise, cost in-

crease, economy surge, expan-
sion inflation]

rp [inflation, price hike, cost of liv-
ing, price increase, economic
growth]

(b) Terms generated by Llama-3.

Table D.11: Sample of generated terms in Hill’s dataset (Description).
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