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Abstract

The dynamics of thin-shell encapsulated microbubbles (EMBs) in viscoelas-
tic fluids forced by ultrasound are investigated in this paper. EMBs, which
are gas-filled microbubbles encased in a stiff albumin or flexible lipid shell,
have been shown to improve the performance of biomedical procedures such
as ultrasound contrast imaging and sonoporation. To gain computationally
efficient initial insights, the flow is assumed irrotational and axisymmetric,
and is solved via the boundary element method. The viscoelastic fluid is
modelled using the Oldroyd B model with both the fluid and the properties
of the shell accounted for through the dynamic boundary condition at the
bubble surface. A large bubble shell thickness is found to have a signifi-
cant stabilising effect on the bubble, markedly reducing bubble deformation
and response to the ultrasound pulse. For realistic ultrasound and biologi-
cal fluid parameters, shell properties appear to dominate over fluid rheology.
Although at lower shell thicknesses the dynamics are governed by a com-
petition between viscous, elastic and inertial forces. A larger response is
observed for lower frequency ultrasound and for pressure amplitudes typical
to sonoporation, large translational movement in the direction of the pulse is
predicted as well as deformation and the potential for bubble fragmentation.
The model and quantitative insights herein have the potential to form the
basis of a low-cost computational tool useful for EMB design, fabrication and
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characterisation in the near future.




1. Introduction

Ultrasound is one of the predominant methods for medical diagnosis since
it is safe, fast and inexpensive compared to other techniques. While the im-
age quality using conventional procedures is often unsatisfactory, it can be
significantly improved through the introduction of encapsulated microbub-
bles (EMBs). The interaction of an ultrasound beam with a microbubble
causes the bubble to expand and contract since the internal gas is much
more compressible than the surrounding tissue. For a typical EMB of the
order 1 um, this occurs most readily for the resonance frequency lying in the
range (2 - 10 MHz), which is the range typically used for ultrasound imag-
ing [1I]. Due to this, EMBs return significantly stronger echoes than tissue
reflectors of a similar size and it is this property that is responsible for their
efficacy as contrast agents.

An EMB; also known as an ultrasound contrast agent (UCA), is typically
filled with air or a high-molecular-weight low-solubility gas encased by an
albumin or lipid shell. The bubbles are typically 1 — 10 ym in diameter [2]
which is small enough to pass through capillaries when suspended in blood.
The encapsulating shell stabilises the bubble against hydrodynamical forces
and consequently an EMB is able to reach almost any desired area of the body
without collapsing or dissolving. In recent years, targeted contrast agents
have also been developed to selectively adhere to a specific site [3]. EMBs
have also been investigated for use in sonoporation [4] and gene therapy [5].
Sonoporation is the use of ultrasound to increase the permeability of cell
membranes; ideally creating transient pores which allow the uptake of large
molecules such as DNA (a few nm in size) into a cell without destroying it
(known as transfection). The molecules can be transferred to the desired site
using EMBs, which are then excited using an ultrasound field. The physics
behind the increased cell permeability and the transfection of the material are
complex, although Miller et al. [5] have shown that cavitation bubbles play a
role. Bouakaz and Escoffre [6] provide a recent review on the use of EMBs as a
theraputic tool, noting that despite three decades of research, key challenges
remain, including standardisation of operating parameters (e.g. ultrasound
and microbubble properties) to help deliver effective treatments whilst also
maintaining patient safety/minimising tissue damage. It is in this search for
optimal parameter guidelines that modelling and numerical simulations can
be particularly beneficial.

The majority of previous numerical studies on EMBs have investigated



spherical oscillations, usually involving a modified Rayleigh-Plesset equation
with extra terms accounting for the properties of the shell (see, for exam-
ple, de Jong et al. [7], Church [8], and Hoff [9]). These extra terms can
also be constructed to model more advanced physics including buckling and
rupture [I0], shell viscoelasticity [I1], or strain-softening [12] (but all still
within the spherical model setting). Whilst some models (such as Church
[8] and Hoff [9]) employ a finite shell thickness, the disparate length scales
between the microbubble radius and the shell thickness (i.e. micrometres
compared to nanometres) have the potential to pose a significant modelling
challenge for more general dynamics. This has led to the development of
more sophisticated “zero-thickness” interfacial rheological models that may
be based on either Newtonian or viscoelastic rheology and characterised by
an interfacial viscosity, elasticity and surface tension [I3], 14]. Indeed, it can
be shown that many previous shell modelling approaches (including those of
Church [§], Hoff [9], de Jong et al. [7], and Marmottant et al. [I0]) can be
reduced to an equivalent interfacial rheological model described by effective
interfacial parameters (an effective dilatational viscosity and surface tension,
with coefficients potentially dependent on bubble radius) [15].

Generally, the shell has a stabilising effect on the bubble dynamics, but
non-spherical behaviour of EMBs can still occur due to the presence of nearby
structures or interaction with a strong ultrasound field. For example, Wang et
al. [16] used the boundary element method (BEM) to model a non-spherical
EMB near a rigid surface that is forced by ultrasound. A modification of
Hoff’s spherical model [9] was used and applied through the dynamic bound-
ary condition at the bubble surface. The majority of the results presented
were for an inviscid fluid although some viscous Newtonian examples were
also considered. However, neither biological fluids nor soft tissue behave
as Newtonian fluids. Therefore, the challenge in studying the behaviour of
EMBs in a biomedical context lies in modelling viscoelastic and compressible
behaviour.

In terms of compressibility, numerical simulations for non-spherical bub-
bles have been largely restricted to inviscid and Newtonian fluids [T7, 18], [19].
The simulations for non-spherical bubbles that have been performed for vis-
coelastic fluids have been largely based on Maxwell-type models in which
compressibility is neglected [20], 21]. However, Lind and Phillips [22] consid-
ered the non-spherical collapse of a 2-D bubble near a rigid wall in a weakly
compressible upper-convected Maxwell fluid and showed that viscoelasticity
can prevent the formation of a liquid jet and is therefore likely to mitigate
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cavitation damage. More recently, Lang et al. [23] have considered bubble
collapse in a compressible viscoelastic fluid, with the 3-D governing equations
solved using a finite volume method. However, despite the 3-D capability,
the focus remained on spherical dynamics but with the finite volume method
able to capture compressible flow dynamics (e.g. shockwaves) in the ambient
fluid.

Regarding viscoelasticity, a common feature of viscoelastic bubble dy-
namics is the oscillation of the bubble surface in time. In the absence of any
internal gas content, this effect results from competing inertial and elastic
forces and typically occurs in fluids with large elasticities and at low-to-
moderate Reynolds numbers. In the spherical case, this effect can be ob-
served by solving the Rayleigh-Plesset equation generalised to accommodate
a general extra stress and so a variety of different constitutive relations. For
example, Fogler and Goddard [24] conducted one of the first such studies of
viscoelastic bubble collapse by using a Rayleigh-Plesset equation, solved via
finite differences, to model collapse in a linear Maxwell fluid for a range of
Reynolds and Deborah numbers. They noted existence of a criterion at very
large Deborah numbers, around which the bubble may oscillate indefinitely
about an equilibrium radius or otherwise collapse completely without oscil-
lation. A key finding of the study was that fluid elasticity can inhibit bubble
collapse and produce large oscillations in radius if the fluid relaxation time
is of the order of the Rayleigh collapse time.

Allen and Roy [25], 26] considered the forced oscillation of a bubble in an
infinite expanse of fluid using incompressible linear and nonlinear Maxwell
models. They found significant differences between Newtonian and viscoelas-
tic cases. In particular, Allen and Roy [25] showed that there were significant
differences between the viscoelastic and Newtonian cases with the addition
of elasticity when studying sub-harmonic oscillations. Viscoelasticity modu-
lates the amplitude in a manner corresponding to the relaxation time of the
fluid. Allen and Roy [26] extended the analysis to study the oscillation of
bubbles in nonlinear viscoelastic media. Agreement with the predictions of
linear viscoelasticity was found for small deformations. However, it was also
found that beyond the limit of small deformations, elasticity can increase
the generation of secondary harmonics and serve to increase the maximum
bubble radius. Since cavitation damage has been linked to large bubble ex-
pansions, this is an important discovery in the context of bubble dynamics
in biological fluids and tissue.

Khismatullin and Nadim [27] performed a theoretical investigation of the
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small-amplitude oscillations of a microbubble encapsulated by a viscoelas-
tic shell and immersed in a slightly compressible viscoelastic fluid. The
viscoelastic properties of the shell and the liquid were modelled using the
Kelvin-Voigt and 4-constant Oldroyd models, respectively. The method of
matched asymptotic expansions is used to derive an equation for the radial
oscillation of the bubble. They showed that the resonance frequency for the
EMB is highly dependent on viscous damping and therefore, significantly
differs from the undamped natural frequency. The effects of the shell and
liquid parameters on the resonance frequency and scattering cross sections
are analyzed.

Yang and Church [28] investigated the large-amplitude oscillations of cav-
itation bubbles driven by an ultrasonic field using the Keller-Miksis equation
in conjunction with a Kelvin-Voigt model to describe viscoelasticity. They
found that elasticity increases the inertial cavitation threshold, and subhar-
monic signals may only be detectable in certain ranges of radius and pressure
amplitude.

Brujan [29] [30] investigated spherical bubble dynamics in a compressible
viscoelastic liquid using a linear Oldroyd model and a simplified singular-
perturbation method to first-order in the bubble-wall Mach number. He
showed that, under conditions comparable to those existing during cavitation,
the effect of fluid rheology on bubble dynamics is negligible for values of the
Reynolds number beyond a critical value while the only significant influence
is that of liquid compressibility. For larger values of the Reynolds number
sound emission was found to be the main damping mechanism. In both cases,
the 1/r law of pressure attenuation through the liquid was not affected by
the viscoelastic properties of the liquid.

Brujan [30] noted that in order to gain a full understanding of the be-
haviour of cavitation bubbles in non-Newtonian liquids, it is necessary to
extend theoretical studies to the case of asymmetric collapse of bubbles since
some experiments have indicated that the effect of fluid viscoelasticity is
more evident in bubbles collapsing in the neighbourhood of a solid bound-
ary, altering the intensity of the liquid jet directed toward to boundary.

The present study follows a similar approach to the one employed by
Wang et al. [I6] and seeks to extend previous studies on modelling EMBs
forced by ultrasound by determining the effects of viscoelasticity and shell
properties on (potentially non-spherical) bubble dynamics. In a recent study,
Wu et al. [31] also consider bubble shell properties but modelled through
a finite element method coupled with a boundary element method at the
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bubble-shell interface. Non-spherical bubble interaction with a solid bound-
ary is considered but the ambient flow remains invisicid (and irrotational).
Similarly, Heidary et al. [32] consider EMB dynamics adjacent to deformable
(blood vessel) walls including the effects of ultrasound, but, again, the ambi-
ent fluid is considered Newtonian. The present study is therefore distinct by
modelling the viscoelastic rheology of the ambient fluid in combination with
a shell model and acoustic forcing.

Viscoelasticity is modelled using the Oldroyd B model which is able to
account for both solvent and polymeric behaviour. This model is able to de-
scribe a range of viscoelastic behaviour and can be implemented within the
boundary element methodology, noting certain approximations (discussed in
Section [2| below). The numerical approach is used to predict the dynamics
of an EMB located near a rigid wall following its excitation by an ultra-
sound field. The mathematical models for spherical EMBs, based on a mod-
ified Rayleigh-Plesset equation, and non-spherical EMBs, using a modified
Bernouilli equation, are described in Section 2. This is followed in Section
3 by a description of a non-singular boundary element method that removes
the singularity in the kernel. Numerical results are presented in Section 4 in
which the effects of shell width, viscoelasticity and ultrasound properties on
bubble dynamics are described. Finally, some concluding remarks are made
in Section 5.

2. Mathematical Model

The aim of the present study is to understand how viscoelasticity of the
fluid and the shell affects the non-spherical dynamics of encapsulated mi-
crobubbles in a viscoelastic fluid forced by ultrasound. Heat and mass trans-
fer are not modelled explicitly in this paper; conditions are assumed adiabatic
and hence the polytropic law is used to model the gas in the bubble. Szeri et
al. [33] investigated the effects of heat and mass transfer on bubble dynam-
ics during the violent collapse of non-spherical bubbles and compared them
with the predictions of a simplified model which excluded these effects. They
found that although the qualitative evolution of the bubble was similar in
both cases, it grows larger and collapses later for the model which includes
the heat and mass transfer.



2.1. Bubble Dynamics for Spherical EMBs

It is well known that the oscillations of a clean/shell-free, spherical bub-
ble in an infinite expanse of incompressible fluid can be described by the
Rayleigh-Plesset equation. The Rayleigh-Plesset equation originates from
the work of Rayleigh [34] on the (inviscid) collapse of an empty cavity or
void. Several extensions to the Rayleigh-Plesset equation have been pro-
posed to describe spherical encapsulated bubbles. Although the focus of
the present paper is on the numerical prediction of nonspherical bubble dy-
namics, a model for spherical dynamics is considered solely for validation
purposes.

We assume that the shell is a linear, incompressible viscoelastic solid of
thickness e. Let R(t) denote the outer radius of the shell at time ¢. We assume
e < R [35]. A Rayleigh-Plesset equation can be derived by integrating the
radial component of the momentum equation

au au 8p aTTT‘ TTT‘
P(a*“a)*&* o T 1)

over [R — ¢,00) where the radial velocity component is given by

_ RR
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u (2)
In Eq. , p is pressure, p is density and 7,.. is the radial stress component.
We generalize the contributions of Church [8] and Hoff [9], for example, to
model a bubble in an infinite expanse of viscoelastic fluid. The radial stress
component in the shell (R — e < r < R) and fluid (R < r) is modelled as
follows (see Allen and Roy [25] 26] and Church [§]).

a Tr Tr a
()\s+2Xsh)L+2)\se_+2,ush_u R_EST S R7
T, = arau r or (3)
22— + Tpp R<r,
or

where \; and x,, are the Lamé constants, u, is the viscosity of the shell, i
is the dynamic viscosity of the fluid, €., is the radial component of the strain
tensor and 7. is the radial component of the polymeric contribution to the
stress tensor in the fluid. The second Lamé constant is also known as the
modulus of rigidity.



The model assumes that the shell thickness remains constant in time [30]
and does not change with variations in volume. Wang et al. [16] argued
that the simplified model can be used to approximate the essential effects of
the coating since the EMB is usually approximately spherical during most
of its lifetime except for a short period during the end of collapse. Thus the
model is able to provide a good estimate of the influence of the shell on the
bubble, the asymmetric flow and pressure fields prior to jet development.
When liquid jetting starts, the large asymmetric momentum of the liquid
flow and high pressure of the bubble gas are the dominant effects; the elastic
and viscous effects of the thin coating should be secondary effects.

Church [§] provides an expression for €, in the limit of small displace-
ments from which the pressure difference, AP, across the shell, which is the
contribution of the integral of the last term in Eq. over the shell, can be
determined )

AP = _1R_2(2)€ (%) [Xsh(R — Ro) + ,ushR].
The force balance at the gas/shell interface gives

ps|R76 = Pg + Ts,rr‘Rfe - o'gCRfﬁ (4>

while the corresponding force balance at the shell/liquid interface yields

Do :ps|R_Ts,rr|R_gsCR+ﬂ,rr|R~ (5)

where py is the pressure on the liquid side of the interface, p, is the pressure
within the shell, p, is the internal gas pressure, o, and o are the surface
tension coefficients at the two interfaces, and C' denotes curvature. Note
that the expression for capillary pressure derived in the paper of Glazman [37]
and implemented in subsequent studies, e.g. Morgan et al. [35], contained an
error which was reported by Marmottant et al. [10]. The correct expression
is employed here.
Using the polytropic law

4 K
Dy (§7TR3) = constant, (6)

where £ is the ratio of specific heats for the gas in association with Eq.
with initial conditions R = Ry, R = 0 and T,,, = 0 at t = 0 we can derive
the following expression for the internal gas pressure

()4
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where pg is hydrostatic pressure. Finally, integrating Eq. over [R —
€,00) and using the above results we arrive at the modified Rayleigh-Plesset
equation

| 20\ [ Ro\* 4uR 20
RR+2R_,0KPO+RO)(R) R R
12 (Ry
Rj

+ 3/: (%) —poo(t)]. (8)

where 0 = 0, + 0, since C|z_. = C|p for a spherical EMB.

2.2. Bubble Dynamics for Nonspherical EMBs

2.2.1. Assumptions and Justifications

Consider an initially spherical bubble whose centroid is a distance h from
a horizontal rigid boundary of infinite extent. The bubble is assumed to
remain axisymmetric in time since this is generally found to be the case for
small cavitation bubbles [38]. Additionally, it is the axisymmetric configura-
tion that generates maximum jet speeds and pressures and thus provides an
indication of the maximum potential damage to nearby surfaces.

The fluid flow is assumed to be irrotational. In order to formulate a veloc-
ity potential, ¢, which satisfies Laplace’s equation, it is necessary to assume
incompressibility. The primary condition needed for this approximation to
be valid is

M? < 1, (9)

where M = U/c is the Mach number, ¢ is the speed of sound in the liquid
and U is the magnitude of variations of the fluid velocity with respect to
both position and time [39]. Note that in the late stages of collapse when a
jet forms the bubble wall velocities can approach the speed of sound which
means that condition @D is violated and liquid compressibility can no longer
be ignored. These high velocities also give rise to very large pressures in the
fluid. Theoretical studies by [40] confirmed that the effects of compressibility
can be important, particularly in the late stages of collapse. However, in
order to gain some appreciation of the bubble motion we follow the majority
of other works in the literature (see Pearson et al. [41], for example), and
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assume only a small fraction of bubble kinetic energy is radiated away as
sound, and so impose incompressibility.

Regarding the irrotational assumption, there is a long-held and widespread
misconception that irrotational motion implies inviscid flow. In a compre-
hensive series of works, Joseph and co-workers (see for example, Joseph [42])
have campaigned and repeatedly demonstrated the utility of both viscous
and viscoelastic irrotational flows. While internal viscous effects may van-
ish, viscosity and viscoelasticity are inherent fluid properties and reappear
in the governing equations when applying stress boundary conditions. Such
boundary conditions are typically applied at free-surfaces, where vorticity
generation is weaker relative to no-slip conditions, and hence for free-surface
flows (even with viscous/viscoelastic effects) irrotational flows can provide
good approximations to full Navier-Stokes solutions. Indeed, Batchelor [39]
(Chap. 5, p. 366) notes that at free-surfaces the variation in velocity from
irrotational across the boundary layer can be relatively small. It has further
been shown, depending on the test case, that the irrotational approximation
can hold for surprisingly viscous flows with good agreement to experiment
even for Reynolds number Re = 0.1 [43]. Clearly, retaining viscous and/or
viscoelastic effects in irrotational flows can provide useful quantitative in-
sight, and is a modelling approach that has been adopted previously for a
range of bubble/drop problems. For example, Georgescu et al. [44] model a
bursting bubble assuming irrotationality and including viscous effects, not-
ing the reduction in jet speed and height with increasing viscosity. Related
irrotational flow studies that consider the effect of viscosity include stud-
ies on drop oscillation [45], spherical cap bubbles [43], the viscous Kelvin-
Helmholtz instability [46], and buoyant bubbles near walls [47]. Rayleigh-
Taylor instabilities in viscoelastic (Oldroyd B) drops have also been studied
using viscoelastic potential flow [48] with good agreement obtained with com-
plete/rotational theoretical flow analysis. The above works are in addition to
the seminal papers of Blake and co-workers [49] 50, 511, 52, 53], 54], amongst
others, which, although setting a zero viscosity, provide additional examples
of the capabilities of the irrotational approximation in modelling real flows.

Following the above justification, we assume that viscous/viscoelastic ef-
fects in the fluid bulk are negligible and that the effects of fluid rheology
appear only at the bubble surface, and thus can be modelled approximately
through the bubble interface boundary condition [39]. We reiterate that this
approximation has been used to good effect in studies mentioned above and
previously in Lind and Phillips [20] 55, [56} [57] and Walters [58].
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2.2.2. The Mathematical Model

Let us state mathematically the key assumptions of incompressibility (V -
u = 0) and irrotationality (V x u = 0), for a fluid velocity u. By standard
theorems in vector calculus there then exists a velocity potential, ¢, that
satisfies Laplace’s equation:

V2 = 0. (10)

We assume the fluid is at rest far from the bubble and hence require ¢ — 0
(and subsequently u — 0) as  — oo. Well-known general solutions exist for
¢, and in the axisymmetric configuration considered here, the potential then
has the form ¢ ~ 1/r to leading order, for some radial distance r from the
bubble. Note, the potential, velocity, and stresses decay with distance from
the bubble with increasing rapidity, respectively (due to increasing powers of
1/r). Consider the general equation of motion,

Du

where 7 is the extra stress. This equation may admit a fully irrotational
counterpart if the divergence of the extra stress can be expressed as the
gradient of a scalar, i.e. if V-7 = Vi, for some scalar ¢ [59]. This is
trivially the case if V -7 = 0 and this occurs exactly for a viscous fluid
and a linear viscoelastic fluid for a general potential. We persist with this
assumption here and set V -7 = 0 (i.e. viscous/rheological contributions in
the fluid bulk are negligible, as previously argued in Section . Whilst
exactly zero for linear viscoelastic models, in Section [2.2.3| we make the case
for the approximate use of setting V - 7 = 0 for nonlinear models, given the
necessarily rapid decay in nonlinear terms in the stress with distance from
the bubble. Using V¢ = u with , applying ‘at rest’ conditions in the
far-field (where pressure is p..), for a cavitation bubble with a ‘clean’ (shell-
free) surface, the pressure on the fluid side of the bubble interface, py is then

given by
D¢

P 2
— —pP= ~ 0 12
Db th+2|V¢| +p (12)

where D /Dt is the material derivative. If we assume there is no mass transfer
through the bubble wall then balancing normal forces across the surface
results in

Db = Dg + Tan — 0C, (13)
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where C' is the local curvature of the bubble surface, ¢ is the surface tension
coefficient, and p, is the internal pressure of the bubble, given by

py(t) = po(%)gﬁ, (14)

where py is the (initial) internal gas pressure. Note it is through that
any fluid viscoelastic effects influence the bubble by means of the normal
stress component, 7,,. To account for the shell, Eq. is modified in the
following way

Db = Dg + Ton — 0C + AP. (15)

Combining and to eliminate p, gives the Bernoulli equation,
which is used to update ¢ on the bubble surface
p% = B|V¢|2—Tnn+aC—AP+pw—pg, (16)
Dt 2
where ¢ is time. To model an EMB using the boundary element method,
a generalisation of the spherical model described in the previous section is
developed. In the case of a spherical bubble, the pressure over the bubble sur-
face is spatially constant at each instant in time whereas for a non-spherical
bubble the pressure varies locally over the bubble surface. In the boundary
element method, the bubble surface is decomposed into a number (N) of seg-
ments separated by N+ 1 nodes. To modify the equations for a non-spherical
bubble the radius R is replaced by the local radius R.(s) at each node where
s denotes arclength. This can be calculated using R.(s) = 1/C(s) where
C'(s) is the local radius of curvature defined by

C(s) = — (r'(s)2"(s) — z’(s)r”(s))7

T+
where r(s) and z(s) are the coordinates of nodes on the bubble surface.
The derivatives in Eqn. (|17) can be determined by constructing quintic

spline representations for r(s) and z(s). The pressure at each node is then
calculated using

20 (B 2 N
pr— —_— —_— _— Tnn
Po=\PoT % J\ R, R,

12¢ [ Ro\? :
) <§D> [Xsh(Re — Ro) + psnRe|. (18)
0 c

(17)
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R with the local quantity R.(s) at each node. In the same manner as the
interfacial term, the radius R is replaced by R.(s) and the velocity, R, be-
comes J¢/0n in the viscous shell damping term. Accordingly, the Bernoulli
equation used to update ¢ for a non-spherical EMB is

D 20\ [ Ro\ ™"
2 s - (po + —) (—0) + §|ng5|2

Dt Ry R
0% 20
— .= _ =
778 877,2 Tnn + RC
12¢ (Ry\’ 0¢
— | = sh(fte — R sh=| » 19

where Vj is the initial bubble volume, V' is the bubble volume and 7, is the
solvent viscosity. The bubble surface must also be updated in time. Since
the bubble surface is a material surface, fluid particles which begin on the
surface will remain there and thus the surface can be updated in a Lagrangian
manner using

i~ Vo, (20)
where x is a point on the bubble surface. To integrate Eqns. and in
time, a constitutive equation must be chosen for the stress while the normal
velocities d¢/0n are determined by solving a boundary integral equation.

2.2.83. Modelling Viscoelasticity

Finally, a constitutive equation is required to provide a relationship be-
tween stress and strain. One of the aims of this paper is to understand the
effects of viscoelasticity on bubble dynamics. Therefore, fluid rheology is
modelled using the Oldroyd-B model, which is chosen because it is sophisti-
cated enough to model a range of rheological behaviour. The model predicts
stress relaxation, constant shear viscosity and quadratic first normal stress
difference. Brujan et al. [60] have shown that shear-thinning is not important
when studying bubble dynamics and collapse. In experiments investigating
the bubble dynamics of shear-thinning polymeric solutions, they showed that
dynamics can be described by simply taking the infinity-shear viscosity as
the viscosity of the polymer solution.

For the Oldroyd-B model the extra stress 7 can be decomposed in terms
of its solvent and polymeric contributions

T=7°"+7P, (21)
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where o
7 =2n;Vu, 17+ AP =2n,Vu. (22)

In these equations 7s, 7, and A are the solvent viscosity, polymeric viscos-
ity and relaxation time of the fluid, respectively. The superscripts s and p
denote solvent quantities and polymer quantities. In terms of the normal
stress component 7,, the relevant equations for the solvent and polymeric
contributions to the stress become

D*¢
=2 s ) 2
Tan = 255 (23)
DrP 0% 0%
A—" = —7F —2\1P — — 2n,—. 24
Dt Ton Ton ang 77p ang ( )

As mentioned in Section [2.2.2] there are compatibility requirements for
viscoelastic models to support a general irrotational flow [59] - namely V-1 =
V), for some scalar v. Linear viscoelastic models are always compatible with
any irrotational flow (as V -7 = 0), but the more popular and widespread
non-linear models (such as Oldroyd B where non-linearity appears in the
upper-convected derivative) do not support all potential flows exactly (the
radially symmetric Rayleigh-Plesset flow, however, is a potential flow com-
patible with any viscoelastic model). Nevertheless, the importance / preva-
lence of the non-linear Oldroyd B model is such that it may be applied here in
an approximate sense noting that the non-linear terms tend to zero extremely
quickly with increasing distance from the bubble surface. For example, since
it is required that ¢ — 0 with increasing radial distance from the bubble
(i.e. as r — o0), via the analytical general solution for Laplace’s equation
under axisymmetry, velocity gradient and stress terms must decrease like
1/r3 to leading order. The non-linear terms in the Oldroyd B model must
then decrease at least as fast as 1/r% The model, therefore, tends to ex-
act compatibility with a general irrotational flow extremely quickly. This
supports the modelling approximation used here that viscoelastic effects are
most significant at bubble surface and negligible in the fluid bulk.

2.2.4. Summary of Modelling Assumptions

For clarity, we summarise the modelling assumptions used to describe
non-spherical bubble dynamics in this work, following the detailed discussion
and justification above. In particular:

e The flow domain is assumed to be axisymmetric.
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e The flow is assumed to be irrotational, incompressible and isothermal.

e Viscoelastic effects in the fluid bulk are neglected (V -7 = 0, every-
where), as this term tends to zero extremely quickly due to rapid decay
in the potential. It is also exactly zero for linear viscoelastic models in
any irrotational case.

e Remaining viscoelastic effects appear directly in the stress balance at
the bubble surface, as in viscous irrotational models.

e The viscoelastic extra stress is governed by the Oldroyd B model.

3. Non-Singular BEM Formulation

In the standard BEM formulation, the potential satisfies the boundary
integral equation (see, for example, Taib [61])

c(p)o(p) = /fm (%(q)G(p,q) - cb(q)%(p,q))d& (25)

where ¢(p) is a piecewise constant, 2 and 9 are the fluid domain and its
boundary, respectively, and p, q are points in the fluid and on the boundary,
respectively. To solve (25)) numerically, the bubble surface is discretised into
N segments and is collocated at points p=p;, i1 =1,..., N + 1,

cp)o(p) + 3 [ ¢(q)g—G(pi, a)ds

= Z / ad) G(pi, q)dS, (26)

where s; is the arclength of the bubble surface at node j and the known
quantities are on the left-hand side. Given the potential ¢ at each node, Eqn.
can be used to solve for the normal velocities d¢(p;)/0n. However, when
an integral over a segment in contains the collocation point p;, both G
and 0G /On will possess a singularity. Following Sun et al. [62], singularities
are removed from the boundary integral equation by defining new variables

5) = ol + (52) £) 7
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fort=1,..., N + 1, where the functions f; are constructed to satisfy

V) =0, ) =0, Dpy -1 (28)

Writing an integral equation for the new variables and subtracting it from
a non-singular formulation of the integral equation can be derived (see
[63])

[ [ = otp0] S twaas = [ Leipna)
+ (gi) /(fz( ) G( Pi;q) — gﬁ(q)G(pi,q)>d5’. (29)

The careful construction of the functions f;, satisfying the properties de-
scribed by ensures that singularities present in G and 0G/0n are re-
moved.

For a bubble near a rigid wall, the no-penetration condition at the wall
results in the following form for the functions f;, given by

33
PiPi L1 L1
filp) = —— {(———)-F(:—t ) 30
(p) piBi+piBiL\p  pi pp (30)
where
p=+r2+ (2 —2p)2, p=+/r2+ (2+2p)?
/6 =rn, + (Z - ZD)nz7 6_ =7rn, + (Z + ZD)nZ7 (31>

and the suffix 7 indicates evaluation at the point (74,0, z;). In this represen-
tation pp = (0,0, zp) is chosen to be any point located outside the domain,
provided that n; - (p; — pp) # 0. The point pp is chosen to be located on
the z-axis to ensure that v; defined by are axisymmetric functions. This
ensures that the functions f; are constant in # and therefore do not appear
in the azimuthal integrals contained in (29). Full details of this derivation
can be found in Walters [63] where the effects of viscoelasticity on a clean,
unforced cavitation bubble are studied using this approach.

To discretise the bubble surface, quintic splines are chosen. The surface
variables, potential and extra stress are represented in each segment (s;, $;11)
by a fifth-order polynomial. Quintic splines have been shown to be more
accurate and stable than cubic splines [63]. To attain a prescribed level of
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accuracy far fewer nodes are required when quintic splines are used. The
BEM formulation above has also been extended to accommodate changes in
bubble topology (i.e. the creation of toroidal bubbles). In the present study
no toroidal bubbles are formed over the parameter ranges considered, but
further information on the procedure used to model toroidal bubbles (using
the vortex ring method) can be found in Walters [58] and Wang et al. [64].

3.1. Modelling the Ultrasound Pressure Field

To simulate the interaction between ultrasound and an encapsulated bub-
ble, a Gaussian acoustic pulse is used. The pulse is assumed to be much larger
than the bubble and is thus approximated as being infinitely large in the di-
rection perpendicular to the wave propagation. This pulse is incorporated
into the model by modifying the pressure term p.,(x,t). The explicit form
for the static Gaussian pulse acting uniformly in space is

Doo(t) = po + pasin2m f(t — t,)] exp[—m1* f2(t — t,)?], (32)
where p, is the maximum amplitude of the pulse, f is the frequency, ¢, is
the centre of the pulse and [ is the width of the pulse. Fig. [1| shows the
pressure pulse as a function of time at a fixed point in space for f =2 MHz
and pa = 200 kPa.

The above static pulse is used for the validation cases in Sec. [} For the
main results in Sec. [5| the case of a dynamic (travelling) pulse is considered,
where it is assumed that the centre of the pulse, z,(f), moves downwards
with a constant speed Z,,(t) = fA,. The pulse wavelength, \,, is selected to
be larger but within an order of magnitude of Ry so that bubble and pulse
interact on similar spatial scales, eliciting a highly dynamic bubble response.
The pressure due to the pulse at a node x; = (74, z;) on the bubble surface
at time ¢ is given by

2
Poo(Xi, 1) = po + pasinfz; — 2z, (t)] exp {—lz(zi — zm(t))Q} : (33)

The initial position of the centre of the pulse is chosen to be far from the
bubble and is given by z,,(0) = 27Ry. The low pressure component of the
pulse interacts with the bubble initially causing the bubble to expand and
rise. Subsequently, the bubble moves towards the rigid wall in response to
the high pressure component of the pulse. It is assumed that the pulse is
reflected entirely from the wall (z = 0) and subsequently interacts with the
bubble a second time. The bubble is therefore affected by the superposition
of both incident and reflected pulses.
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Figure 1: Evolution of a typical Gaussian pressure pulse at a fixed point in space with
po = 0 kPa, pq =200 kPa, f =2 MHz, t, =3.0 psand | = 1/3

3.2. Reynolds and Deborah numbers

Although the governing equations and solutions are presented in dimen-
sional form, a Reynolds and Deborah number can be defined to aid interpre-
tation of the results. The pulse frequency can be used to provide a pertinent
characteristic time scale and the initial bubble radius provides the charac-
teristic length. Accordingly, the Reynolds (Re) and Deborah (De) numbers
can be defined, respectively, by

re R2
Re — M) De = Mt (34)
(775 + np)

where wyof is a characteristic frequency and Ry is the initial bubble radius.
Here we choose wyof = 2 MHz and Ry = 1 pum (typical real-life ultrasound
frequency and microbubble radius values, respectively [Il 2]). Considering
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blood plasma as the ambient fluid in a practical biomedical context, mea-
surements of viscosity and (maximum) relaxation time typically yield values
of O(1 mPas) and O(107 s), respectively [65]. Accordingly, this paper ex-
plores Reynolds numbers around O(1) and Deborah numbers up to De = 10
(but below the experimental maximum) to be representative of the physical
problem. The viscosity ratio is defined to be

s
p=—T
Ns + Mp

All simulations in this paper were performed with 5 = 0.8.

4. Comparison of BEM with the Spherical Model

The numerical results presented in this section use the following values
for the initial internal gas pressure, the ratio of specific heats for the gas,
shell thickness, surface tension, shell viscosity and elasticity modulus of shell,
respectively, for the encapsulated microbubble, unless otherwise stated,

po = 101 kPa, xk = 1.07, e = 1 nm,

(35)
o =0.051 N/m, pg, =1 Pas, xs, = 0.5 Pa.

These values are taken from Wu et al. [66] and were obtained using a mean
square errors best fit for experimentally obtained values for the phospholipid
contrast agent MP1950 filled with a decafluorobutane gas. This is a thin
lipid-shelled contrast agent that prevents the gas from leaking out of the
bubbles. It also introduces an additional elasticity for the bubbles’ radial
oscillations. The shell has a thickness of the order of a few nanometres.

The system of equations is integrated using a fourth-order Runge-Kutta
time stepping scheme. The time step is chosen to be

Atmax

at= max(D¢/Dt)’ (36)
where Atpax 18 the maximum time step. The time step has been chosen
to deal with the rapidly changing velocity that can occur during bubble
collapse; for large velocities the time step is reduced in order to capture the
high speed dynamics of the bubble. All calculations reported in this paper
were conducted on a desktop computer with a Core i7-10700 CPU and 32GB
RAM.
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The predictions of the BEM model are compared with the solution of the
spherical model for an encapsulated microbubble forced by a Gaussian
pulse with parameters: py = 200 kPa, f = 1 MHz, Re = 6.3, De = 0 and
Ry =1 um in the absence of a rigid wall. Figs. [2] and [3] provide comparisons
of the pressure and the equivalent bubble radius, respectively. The pressure
of the pulse for the BEM code is measured at the north pole of the bubble
(the axial node at = 0 with the maximal z position value at ¢ = 0) and the
‘equivalent bubble radius’ is defined by

Ry (ﬂ))/ (31)

47

where V(t) is the volume of the bubble at time ¢. Convergence of the ap-
proximation generated using the BEM model with respect to the number of
nodes on the bubble surface, n,, and Aty is also demonstrated in these
figures.

There is excellent agreement between the predictions obtained using the
spherical model and the implementation of BEM with the pressure pulse
acting on the bubble surface simultaneously. For the combination of dis-
cretization parameters (n,, Altmax) = (40,1.59 x 107%), (80,1.59 x 107°),
(40,1.59 x 107%), the equivalent bubble radius is only slightly different from
the spherical model shown in Fig. [3] The pressure and the equivalent bubble
radius for the other combinations of n, and At,,.x are in complete agreement
with the spherical model. Therefore, for the remainder of the paper we have
chosen to use n, = 40 and Atyax = 1.59 x 10 °us as a good compromise
between computational expense in terms of CPU time shown in Table [1| and
accuracy of the numerical approximation as evidenced by the data shown in
Figs. [ and

Next we consider the situation in which the bubble is allowed to translate
dynamically in response to the imparted energy from the pressure pulse and
make comparisons with the static situation in which the pressure pulse acts
on all points on the bubble surface simultaneously. The comparisons for the
pressure at the north pole of the bubble, p, and equivalent bubble radius,
R.,, are shown in Figs. [fland [5] respectively. Similar responses are predicted
initially. Subsequently, after around ¢ = 1 us there is a significant difference
in behaviour, with the dynamic case eventually displaying sustained higher
frequency oscillations in both pressure and equivalent bubble radius. As
the bubble moves downwards in response to the pressure pulse it eventually
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Figure 2: Comparison of BEM with spherical model with respect to the pressure at the
north pole for an EMB forced by a Gaussian pressure pulse with Re = 6.3, De =0, Ry = 1
pm, e =1 nm, o = 0.051 N/m, h =0 pm, py = 200 kPa and f =1 MHz.

expands and oscillates about a steady state equivalent bubble radius almost
50% larger than its initial value (Fig. |5)). This can be seen in the snapshots
of the bubble profiles in Fig. [6] where it can also be seen that the bubble
retains an almost spherical shape throughout the duration of the simulation.

In the next set of results the maximum amplitude of the pressure pulse is
decreased and the frequency is increased. Figs. [7]and [§ show the evolution of
the equivalent bubble radius, R.,, and centroid, 2., respectively, for p4 = 100
kPa, f =2 MHz, Re = 6.3 and Ry = 1 um. The BEM prediction with the
pressure pulse acting at all points on the bubble surface simultaneously is in
excellent agreement with the spherical model which is to be expected. This
further validates the BEM model. In the more realistic case in which the
pressure pulse translates, differences in the predictions emerge. There is now
a delay in the peak amplitude of the bubble response. The maximum equiv-
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Figure 3: Comparison of BEM with spherical model with respect to the equivalent bubble
radius for an EMB forced by a Gaussian pulse with Re = 6.3, De=0, Ry =1 pym, e =1
nm, 0 = 0.051 N/m, h =0 pm, py = 200 kPa and f =1 MHz.

Table 1: Dependence of the CPU time on spatial and temporal discretization parameters
for the evaluation of EMB dynamics forced by a Gaussian pulse with p4 = 200kPa, f =1
MHz, Re = 6.3 and Ry = 1 pm.

Method n, Atpax(ps) CPU time (min)

BEM 40 1.59 x 10~* 15
BEM 40 1.59 x 107° 134
BEM 60 1.59 x 107° 298
BEM 80 1.59 x 107° 528
BEM 40 1.59 x 107 1067
Spherical 40 1.59 x 10~* 0.04
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Figure 4: Comparison of the evolution of the pressure at the north pole for an EMB forced
by static and dynamic Gaussian pulses with Re = 6.3, De = 0, Ry = 1 um, € = 1 nm,
o =0.051 N/m, h =0 pm, ps = 200 kPa and f =1 MHz.

alent bubble radius is also reduced with the slight phase shift in oscillations
before the radius converges to approximately its initial value (see Fig. .
This is in contrast to the situation in Fig. [5. The bubble centroid undergoes
several oscillations as the pressure pulse moves downwards eventually attain-
ing a steady state approximately 0.6 pum lower than its original position (see

Fig. .

5. Model Predictions

The results presented in this section are concerned with the prediction

of the dynamics of a bubble located near a rigid wall of infinite width along
z = 0. The initial radius of the bubble is Ry = 1 pum. The bubble is at
rest at t = 0 and the radial component of the polymeric radial stress tensor
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Figure 5: Comparison of the evolution of the equivalent bubble radius of an EMB forced
by static and dynamic Gaussian pulses with Re = 6.3, De = 0, Ry = 1 um, € = 1 nm,
o =0.051 N/m, h =0 pm, ps = 200 kPa and f =1 MHz.

is zero initially. Snapshots of a bubble surface in time are shown as a two-
dimensional cut through the bubble, due to the assumed axisymmetry. The
jet velocities, Ve, shown in the figures are the velocities of the node on the
bubble surface that is initially located furthest away from the wall (the north
pole). The wall pressures, Py, are calculated at the point (r, z) = (0,0).

5.1. Effect of Shell Thickness

The effect of shell thickness on the dynamics of an EMB is investigated in
the case when the stand-off distance is h = 5 pm. The pulse is characterised
by the parameters p4 = 2 MPa and f = 2 MHz. The evolution of the bubble
centroid, equivalent bubble radius and velocity of the bubble at the north
pole are shown in Figs. [Oa - respectively. The bubble begins to feel the
influence of the pressure pulse after about 0.6 us. For a thin shell with e =1
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Figure 6: Evolution of bubble surfaces for an EMB forced by a Gaussian pulse with
Re =6.3, De =0, Rp = luym, ¢ = 1 nm, 0 = 0.051 N/m, h = 0 pm, ps = 200 kPa and
f =1 MHz.

nm, the bubble centroid experiences a single oscillatory cycle before moving
monotonically towards the wall until it almost touches the wall, at which
point the computation stops.

Increasing the shell thickness to ¢ = 10 nm, less translational movement
is seen initially due to the increased resistance of the shell to deformation. At
t ~ 1.5 us, however, large growth is seen (Fig. due to the bubble entering
a low pressure region of the applied pressure field with the bubble attaining
a maximum equivalent bubble radius approximately three times its initial
radius. The bubble is ‘pushed’ by this forcing pressure towards the rigid
wall. As the bubble nears the wall, the jet velocity increases drastically and
the bubble also begins to reduce in size, resulting in very large wall pressures
shown in Figs. -O0dl The pressure pulse has a minimal impact on the
bubble dynamics when the shell thickness is increased further to e = 100 nm,
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Figure 7: Comparison of the evolution of the equivalent bubble radius of an EMB forced
by static and dynamic Gaussian pulses with the prediction of spherical dynamics with
Re =6.3, De =0, Ry = lpym, e = 1 nm, ¢ = 0.051 N/m, h = 0 pm, py = 100 kPa and
f =2 MHz.

with only modest oscillation in bubble quantities and wall pressure observed
at later times.

For both € = 1 nm and £ = 10 nm, the simulations are terminated when
the bubble surface moves to be in close proximity to the rigid wall. At
this point a very thin layer of fluid is trapped between the bubble and the
wall, potentially resulting in numerical instabilities. These instabilities are
primarily responsible for the very large pressures that are generated at the
wall as can be seen in Fig. 0d] at ¢ ~ 1.75 us for ¢ = 10 nm. One technique
that has been used to overcome these numerical difficulties is to numerically
attach the bubble to the wall as described in Ni et al. [67]. The adoption
of this technique into the present model, however, together with modelling
contact line dynamics is left for future work.
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Figure 8: Comparison of the evolution of the centroid, z., of an EMB forced by static and
dynamic Gaussian pulses with Re = 6.3, De =0, Rg =1 pm, ¢ =1 nm, ¢ = 0.051 N/m,
h =0 pum, ps = 100 kPa and f =2 MHz.

Snapshots in time of the bubble surface are shown in Fig. for e =
1,10,100 nm. The bubble with ¢ = 10 nm undergoes severe deformation
and rapidly moves toward the boundary, expanding as it does. It grows to
an equivalent bubble radius approximately three times its initial radius over
a very short period of time (Fig. . (Clearly, this intermediate value of
¢ = 10 nm elicits the most significant dynamical response, unlike that of
¢ = 100 nm, for example, which seems to impose an overly restrictive bubble
coating, likely at the limit for which the thin-shell assumption made in Eqn.
(19) is valid. Snapshots of the velocity field are shown in Fig. fore =1
nm at 1.38 x 107%s and € = 10 nm at 1.74 x 107 %s. The velocity vector is
normalized to highlight the direction of the fluid motion. Similarly to the
observation of a jet in Fig. [0d at e = 1,10 nm, the beginnings of a jet
are observed to form above the bubble, generating a flow that collapses the
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Figure 9: Influence on shell thickness on the evolution of bubble dynamics for Re = 6.3,
De =0, Rp = 1 pm, 0 = 0.051 N/m, h = 5 um, ps = 2 MPa, f = 2 MHz and
€ =1nm, 10 nm, 100 nm.

bubble.

5.2. Effect of Fluid Viscoelasticity

The viscoelasticity of the fluid is modelled using the Oldroyd B model.
The constitutive equation (24)) is an evolution equation for the polymer con-
tribution to the stress. This is solved simultaneously with Eqns. -
to update the system in time. In Figs. [I2]-[16)and Figs. [I7]-[I8] the effects of
changing fluid viscosity are shown for small (De = 0.5) and large (De = 10)
Deborah numbers, respectively. Two different shell thicknesses (¢ = 1 nm
and ¢ = 10 nm) are also considered for De = 0.5.

For De = 0.5 with ¢ = 1 nm, as the Reynolds number is increased
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Figure 10: Snapshots of the bubble surface for Re = 6.3, De =0, Ry = 1 um, ¢ = 0.051
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Figure 11: Snapshots of the normalized velocity field for Re = 6.3, De = 0, Ry = 1 pm,
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(corresponding to a lower viscosity) an earlier response to the acoustic forcing
is observed. This is evidenced by the earlier translational movement of the
bubble towards the boundary (which occurs at near uniform speed, regardless
of Re, see Fig. [12h), earlier (initial) bubble growth (Fig. [13p) and earlier
increase in jet velocities (Fig. ) For Re = 1 the bubble grows rapidly
after around ¢t = 1us with a violent collapse phase occurring at ¢ ~ 1.8
ps (see Fig. [I3h). Complete bubble collapse does not occur within the
duration of the computations in these cases due to the onset of numerical
instabilities. These can occur when the bubble moves so close to the rigid
wall that there is only a very thin layer of fluid between. When this occurs the
computations are terminated before a possible liquid jet (and transition to
toroidal form) forms. The corresponding rigid wall pressures attained seem to
be largely independent of Re at least initially (see Fig. [L5h), with differences
in wall pressure only evident in the final stages of near-wall bubble motion.
Snapshots of the bubble surface over time for Re = 1 are shown in Fig.
for both shell thickness (¢ = 1 nm and € = 10 nm). Interestingly, increasing
the shell thickness appears to reduce dependence on Reynolds number for
all flow quantities considered. In each case (Figs. — , with ¢ = 10

nm), very similar results are obtained regardless of Reynolds number value
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up to t &= 1 ps. At this shell thickness, shell response clearly dominates over
hydrodynamical viscous forces.

For the same range of Reynolds numbers, the bubble dynamics are shown
in Fig. for the (higher-elasticity) case De = 10. Note only one shell
thickness (¢ = 1 nm) is considered. On increasing De, there remains a
similarity in the behaviour across Reynolds numbers to the previous case
(De = 0.5). Evidently, despite elevated levels of fluid elasticity, dynamics
are still dominated by viscous and shell effects. For example, as seen for De =
0.5, the equivalent bubble radius for Re = 1 becomes four times as large as
its initial value during the simulation (see Fig. at t &~ 1.5 ps). Similarly,
rigid wall pressures are also notably larger for the Re = 1 case, compared to
Re = 4,10 (Fig. [17d)) where, eventually, a near-wall numerical instability is
initiated, indicated by the prediction of negative pressures. Bubble centroid
movement is also broadly similar to the De = 0.5 case from Fig. [12h: for
De = 10 when Re = 1 (Fig. , the bubble remains in a low pressure
region of the pulse for longer since there is less translational movement, until
t =~ 1.1 pus. Subsequently, the bubble translates relatively quickly toward
the wall (whilst growing and flattening) before reaching the wall, decreasing
slightly in size, and creating the large pressures shown in Fig. [I7d Upon
making contact with the wall the simulation is terminated. Figure |18 shows
this evolution of the bubble surface at various times (Re = 1, De = 10).

tis] x107¢ t[s] X107
(a) e = 1Inm (b) e =10 nm

Figure 12: Comparison of the evolution of the bubble centroid position on shell thickness
for De = 0.5, Ry =1 ym, ¢ = 1 nm, 10 nm, ¢ = 0.051 N/m, h = 10 pm, ps = 2 MPa ,
f =2 MHz and Re = 1,4, 10.
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Figure 13: Comparison of the evolution of the equivalent bubble radius on shell thickness
for De = 0.5, Ry = lpm, ¢ = 1 nm, 10 nm, o = 0.051 N/m, h = 10 um, py = 2 MPa,
f =2 MHz and Re = 1,4, 10.
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Figure 14: Evolution of the jet velocity for parameters De = 0.5, Ry = 1 ym, € = 1 nm,

10

nm, 0 = 0.051 N/m, h = 10 um, pa =2 MPa , f =2 MHz and Re = 1,4, 10.

5.3. Effect of Pulse Frequency

For a spherical EMB, the effects of pulse frequency were investigated

theoretically and experimentally by Wu et al. [66]. The authors observed
that lower-frequency ultrasound induced more vigorous oscillations under
similar acoustic pressures. The effects of changing the pulse frequency on a
non-spherical EMB are shown in Figs. [19]- 22] for a bubble in an Oldroyd-B
fluid with Re = 1, De = 0.5, for two different shell thicknesses (¢ = 1,10
nm). For ¢ = 1 nm, the response to the pulse is larger for a pulse frequency
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Figure 15: Evolution of the pressure at the rigid wall for parameters De = 0.5, Ry = 1um,
e =1nm, 10 nm, 0 = 0.051 N/m, h = 10 um, py = 2 MPa, f =2 MHz and Re = 1,4, 10.

s -5
18 710 , 1gX10 ‘
— t=0.00s — t=0.00s
164 — t=127x10"s 16 — t=127x10"°s
t=1.35x10"¢s t=135x10"s
1.4 — t=143x10"%s 14 —— t=1.43x10"°s
—— t=151x10"%s —— t=151x10"%s
124 — t=1.59x10"°s 12 — t=1.59x10"°s
— t=167x10"%s — t=167x10"s
_ 104 t=175x10"%s _ 10 t=175%x10"°s
E t=1.80x10"s E t=177x10"°s
N 0.8 Nos
0.6 0.6
0.4+ 0.4
02 % & 02
0.0 | 0.0 {
-6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6 8
rim] x10-¢ rim] x107¢
(a) e =1nm (b) e = 10nm

Figure 16: Dependence of shell thickness on snapshots of the bubble surface in the first
singly-connected phase for parameters Re = 1, De = 0.5, Ry = 1 pm, £ = 1 nm, 10nm,
o =0.051 N/m, h =10 pum, py = 2 MPa and f = 2 MHz.

of f = 2 MHz than for most other frequencies, but responses to f = 4
MHz and f = 5 MHz are quite significant at early times (before around
1 ps). This can be seen by noting the rapid increase in bubble equivalent
radius (and subsequently larger bubble volume attained, Fig. [19a). When
f = 2 MHz the oscillating pressure pulse causes the bubble to shrink slightly
after its initial growth at ¢ &~ 1.75 ps. At the lower frequencies (f = 1,2,4
MHz) there is also larger translational movement (Fig. [20). For ¢ = 10
nm, the greatest jet velocities (Fig. and wall pressures (Fig. are
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Figure 17: Influence of Reynolds number on the evolution of bubble dynamics for De = 10,
Ry =1 pm, e =1nm, h =10 gm, 0 = 0.051 Nm, py =2 MPa and f =2 MHz.

also observed when f = 2 MHz (although for these flow measures there is
no clearly dominant frequency when ¢ = 1 nm). Note that for the shell
model used here the resonant frequency of the bubble, fjy, can be determined
analytically (see, for example, [15]) to be

1 1 € 2
fo - <3/@p0 + 12xsn— + —U(SH — 1)), (38)

- 2Ry \ p Ry Ro

which for the chosen parameters yields a resonant frequency value of ap-
proximately 2.8 MHz - close to 2MHz and within the range of frequencies
(1-4 MHz) that tend to elicit the largest responses here. When f =1 MHz,
the bubble is pushed by the pulse towards the rigid wall while remaining at

35



x107>

1.2 1
— t=0.00s
— t=1.27x10"°%s
1.0 t=1.35x10"%s
t=1.43x10"°s
t=151x10""°s
0.8 1 t=159%x10"°s
t=167x10"°s
t=175%x10"%s
E 0.6 1 t=1.77%x10"%s
N
0.4 A
0.2 A
O-O T T T T T
-6 -4 -2 0 2 4 6

r(m] x1076

Figure 18: Snapshots of the bubble surface for Re = 1, De = 10, Ry = 1 pm, £ = 1 nm,
o =0.051 Nm, h =10 pgm, py = 2 MPa and f =2 MHz.

roughly the same size (see Figs. and . The simulation is terminated
when the bubble becomes too close to the wall. Increasing the shell thickness
to ¢ = 10 nm (Figs. - 22p) does not markedly change the qualitative
behaviour in this instance: lower frequencies still tend to produce the most
significant response.

Snapshots of the bubble surface for f =4 MHz are shown in Fig. 23| for
the two different shell thicknesses. When € = 1 nm the bubble oscillates until
t ~ 1 us before attaching to the wall in a pear-like shape. The computations
are terminated at this point. For ¢ = 10 nm, bubble dynamics is much
more subdued and constrained by the increased shell thickness, with low
amplitude, near spherical oscillation and minimal translational movement
observed over approximately the same time duration.
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Figure 19: Dependence of the evolution of the equivalent bubble radius on pulse frequency
for Re=1, De=0.5, Rgp =1 um, e = 1 nm, 10nm, 0 = 0.051 N/m, h =5 pm and p4 = 2
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Figure 20: Dependence of the evolution of bubble centroid position on pulse frequency for
Re=1,De=05Ry=1pum, c =0.05] N/m, h =5 pm and p4 = 2 MPa: (a) ¢ = 1 nm,
(b) € =10 nm.

5.4. Effect of Pulse Strength

So far in this paper, numerical predictions of bubble dynamics have been
presented for a pressure amplitude of p4 = 2 MPa since this is a typical value
for pulse strength used in sonoporation. In ultrasound contrast imaging,
however, the pressure amplitudes are typically of the order of 100 kPa. In
Figs. results are presented for a fixed pulse frequency f = 2MHz and a
range of pressure amplitudes: ps, = 200 kPa, 400 kPa, 2 MPa.
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Figure 21: Dependence of jet velocity on pulse frequency for Re = 1, De = 0.5, Ry = 1
pm, 0 =0.051 N/m, h =5 pm and py = 2 MPa: (a) e =1 nm, (b) € = 10 nm.
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Figure 22: Dependence of pressure at the rigid wall on pulse frequency for Re = 1,
De =0.5, Ry =1 pym, 0 = 0.051 N/m, h =5 ym and py = 2 MPa: (a) € = 1 nm, (b)
€ = 10 nm.

The majority of EMBs have been shown [68] to undergo stable, harmonic
oscillations for pressure amplitudes in the range 50 kPa - 200 kPa, with
higher amplitudes potentially leading to spontaneous acoustic emissions and
bubble fragmentation. The numerical predictions presented here agree well
qualitatively with these experimental findings since in the lowest amplitude
cases considered for which py = 200 kPa and ps = 400 kPa, the bubble
undergoes stable oscillations about its initial volume and position. In the
case for which p4 = 2 MPa, the bubble grows rapidly as it is pushed towards
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Figure 23: Dependence of shell thickness on snapshots of the bubble surface for Re = 1,
De=0.5,Ry=1pum, o0 =0.001 N/m, h =5 um, py =2 MPaand f =4 MHz: (a)e =1
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the boundary, with significant jet velocities and wall pressures predicted.
This case has been discussed earlier (see Figs. [12]- [L5).

5.5. Effect of Surface Tension

The influence of surface tension on the evolution of bubble dynamics is
shown in Fig. for Re =1, De = 0.5, h = 10 um, ¢ = 1 nm, py = 2
MPa, f = 2 MHz. In particular we have increased and decreased the default
value of ¢ used in this paper by a factor of two. Changing the value of ¢ in
this way has negligible impact on bubble dynamics. Clearly, Young-Laplace
surface tension is not as important as the properties of the shell in terms of
the dynamics.

5.0. Effect of Stand-off Distance

The influence of initial stand-off distance, h, on the evolution of bubble
dynamics is shown in Fig. for Re =1, De =0.5, ¢ =1 nm, py = 2 MPa,
f =2MHz, 0=0.051 N/m. In particular, we present results for h = 5, 10, 15
pm. The evolution of bubble centroid, equivalent bubble radius and jet
velocity shown in Figs. [26a]-[26d exhibit almost linear translational behaviour
with respect to h. The larger the value of h the earlier the bubble begins to
respond to the pressure pulse in terms of the motion of the bubble centroid
towards the rigid wall and the onset of bubble expansion. The jet velocity
experiences similar behaviour before increasing substantially at about t = 1.8
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Figure 24: Influence of pulse strength on the evolution of bubble dynamics for Re = 1,
De =05, Ry =1 pm, e =1nm, h =10 pm, f =2 MHz and o = 0.051 N/m.

us (approximately the point at which the bubble reaches the rigid wall). This
increase is accompanied by a sharp collapse in bubble volume and a sharp
increase in the pressure at the rigid wall. Fig. shows that although
the value of h influences the transient behaviour of bubble dynamics, the
terminal behaviour of the bubble including the time at which this occurs is
independent of h.

6. Conclusions

In this paper an encapsulated microbubble in a viscoelastic fluid forced
by a pressure field is modelled using a modified boundary element method.
Viscous and interfacial terms are included to account for the influence of the
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Figure 25: Influence of surface tension coefficient on the evolution of bubble dynamics for
Re=1,De=05 Ry=1pum,e=1nm, h =10 pym, py = 2 MPa and f = 2 MHz.

shell using an extension of the spherical model developed by Church [8].

For a bubble in an infinite fluid, the non-spherical BEM simulations pro-
duce significantly different results to the spherical model. This is due to
the translational movement of the bubble in the direction of the pressure
field and non-spherical deviations. These mechanisms (which are not able
to be predicted by the spherical model) are significant even at relatively low
pressure amplitudes.

We have shown that a large shell thickness reduces the translational move-
ment and jet velocities of the EMB. This is expected since a thicker shell
provides more stability making the bubble more resistant to deformation.

The effect of changing fluid viscoelasticity is also investigated by altering
the Reynolds and Deborah numbers. Typically, a decrease in fluid viscosity
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Figure 26: Influence of stand-off distance on the evolution of bubble dynamics for Re = 1,
De=0.5, Ro=1 pm, e =1 nm, 0 = 0.051 N/m, ps =2 MPa and f =2 MHz.

results in an earlier response to the acoustic forcing. At lower Reynolds
numbers, the stabilising effect of viscosity, in combination with elastic effects,
is such that significant growth can be observed over a longer time duration
and interaction with the pressure pulse. Importantly, for increased shell
thicknesses, results appear largely independent of viscosity (at least for early
times) as shell surface forces dominate over viscous/hydrodynamical. Similar
bubble behaviour is observed at larger flow elasticities, with any potential
dominance of elasticity mitigated by the bubble shell for the parameters
considered.

The effects of the properties of the acoustic pulse, viz. pulse frequency ( f)
and strength (p4), on bubble dynamics have also been considered. Generally,
a larger response is seen for lower frequencies (especially around 2MHz).
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A higher pulse strength naturally leads to higher jet velocities and more
distortion of the bubble, and it is found that the EMB, on approaching the
wall, can become quite distorted with the potential to disintegrate. Indeed,
further studies are required particularly when the bubble moves to be in
close proximity to the wall. In this case the numerical method will need to
be modified to model the attachment of the bubble to the wall so that the
simulations can be continued to obtain an improved understanding of EMB
dynamics, including continuation of any bubble jets and potential formation
of toroidal bubbles (which have not been observed in any cases in this work).

Finally, the influence of surface tension (via the Young-Laplace law) and
bubble-wall stand-off distance are investigated. The role of surface tension is
negligible in the presence of viscoelasticity and the bubble shell, suggesting
this term may be neglected for future studies. Similarly, the stand-off dis-
tance has little effect on the overall dynamics and terminal behaviour of the
bubble, and acts primarily to shift the start time for bubble-pulse interaction.

In this paper the effects of heat and mass transfer have been neglected,
and, as mentioned, extending the model to allow for bubble-wall attachment
dynamics remains key. Nevertheless, useful quantitative insights have been
obtained for realistic ultrasound and biological fluid parameters, with the
stabilising effect of the bubble shell clear and apparently dominant over fluid
rheology. Future work will include a bubble-wall attachment capability, as
well as the modelling ideas of Szeri et al. [33] to model heat and mass transfer
for EMBs forced by ultrasound in a viscoelastic fluid.

In this paper we have also assumed that the viscoelastic shell properties
remain constant with frequency. However, attenuation experiments [69] have
suggested that the shell stiffness and viscosity of phospholipid EMBs can be
frequency dependent at ultrasound frequencies of 10 MHz and above. These
shell properties play a crucial role in determining the linear and nonlinear
response to ultrasound and so it will be important to model this behaviour
in the future when studying applications of ultrsound that utilize frequencies
in this range.
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