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 A B S T R A C T

The dynamics of thin-shell encapsulated microbubbles (EMBs) in viscoelastic fluids forced by ultrasound are 
investigated in this paper. EMBs, which are gas-filled microbubbles encased in a stiff albumin or flexible lipid 
shell, have been shown to improve the performance of biomedical procedures such as ultrasound contrast 
imaging and sonoporation. To gain computationally efficient initial insights, the flow is assumed irrotational 
and axisymmetric, and is solved via the boundary element method. The viscoelastic fluid is modelled using 
the Oldroyd B model with both the fluid and the properties of the shell accounted for through the dynamic 
boundary condition at the bubble surface. A large bubble shell thickness is found to have a significant 
stabilising effect on the bubble, markedly reducing bubble deformation and response to the ultrasound pulse. 
For realistic ultrasound and biological fluid parameters, shell properties appear to dominate over fluid rheology. 
Although at lower shell thicknesses the dynamics are governed by a competition between viscous, elastic and 
inertial forces. A larger response is observed for lower frequency ultrasound and for pressure amplitudes typical 
to sonoporation, large translational movement in the direction of the pulse is predicted as well as deformation 
and the potential for bubble fragmentation. The model and quantitative insights herein have the potential to 
form the basis of a low-cost computational tool useful for EMB design, fabrication and characterisation in the 
near future.
. Introduction

Ultrasound is one of the predominant methods for medical diagnosis 
ince it is safe, fast and inexpensive compared to other techniques. 
hile the image quality using conventional procedures is often unsat-
sfactory, it can be significantly improved through the introduction of 
ncapsulated microbubbles (EMBs). The interaction of an ultrasound 
eam with a microbubble causes the bubble to expand and contract 
ince the internal gas is much more compressible than the surrounding 
issue. For a typical EMB of the order 1 μm, this occurs most readily 
or the resonance frequency lying in the range (2–10 MHz), which 
s the range typically used for ultrasound imaging [1]. Due to this, 
MBs return significantly stronger echoes than tissue reflectors of a 
imilar size and it is this property that is responsible for their efficacy 
s contrast agents.
An EMB, also known as an ultrasound contrast agent (UCA), is 

ypically filled with air or a high-molecular-weight low-solubility gas 
ncased by an albumin or lipid shell. The bubbles are typically 1−10 μm
n diameter [2] which is small enough to pass through capillaries 
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E-mail address: PhillipsTN@cardiff.ac.uk (T.N. Phillips).

when suspended in blood. The encapsulating shell stabilises the bub-
ble against hydrodynamical forces and consequently an EMB is able 
to reach almost any desired area of the body without collapsing or 
dissolving. In recent years, targeted contrast agents have also been 
developed to selectively adhere to a specific site [3]. EMBs have also 
been investigated for use in sonoporation [4] and gene therapy [5]. 
Sonoporation is the use of ultrasound to increase the permeability of 
cell membranes; ideally creating transient pores which allow the uptake 
of large molecules such as DNA (a few nm in size) into a cell without 
destroying it (known as transfection). The molecules can be transferred 
to the desired site using EMBs, which are then excited using an ultra-
sound field. The physics behind the increased cell permeability and the 
transfection of the material are complex, although Miller et al. [5] have 
shown that cavitation bubbles play a role. Bouakaz and Escoffre [6] 
provide a recent review on the use of EMBs as a theraputic tool, 
noting that despite three decades of research, key challenges remain, 
including standardisation of operating parameters (e.g. ultrasound and 
microbubble properties) to help deliver effective treatments whilst 
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also maintaining patient safety/minimising tissue damage. It is in this 
search for optimal parameter guidelines that modelling and numerical 
simulations can be particularly beneficial.

The majority of previous numerical studies on EMBs have inves-
tigated spherical oscillations, usually involving a modified Rayleigh–
Plesset equation with extra terms accounting for the properties of the 
shell (see, for example, de Jong et al. [7], Church [8], and Hoff [9]). 
These extra terms can also be constructed to model more advanced 
physics including buckling and rupture [10], shell viscoelasticity [11], 
or strain-softening [12] (but all still within the spherical model setting). 
Whilst some models (such as Church [8] and Hoff [9]) employ a finite 
shell thickness, the disparate length scales between the microbubble 
radius and the shell thickness (i.e. micrometres compared to nanome-
tres) have the potential to pose a significant modelling challenge for 
more general dynamics. This has led to the development of more 
sophisticated ‘‘zero-thickness’’ interfacial rheological models that may 
be based on either Newtonian or viscoelastic rheology and charac-
terised by an interfacial viscosity, elasticity and surface tension [13,14]. 
Indeed, it can be shown that many previous shell modelling approaches 
(including those of Church [8], Hoff [9], de Jong et al. [7], and 
Marmottant et al. [10]) can be reduced to an equivalent interfacial 
rheological model described by effective interfacial parameters (an 
effective dilatational viscosity and surface tension, with coefficients 
potentially dependent on bubble radius) [15].

Generally, the shell has a stabilising effect on the bubble dynamics, 
but non-spherical behaviour of EMBs can still occur due to the presence 
of nearby structures or interaction with a strong ultrasound field. For 
example, Wang et al. [16] used the boundary element method (BEM) 
to model a non-spherical EMB near a rigid surface that is forced by 
ultrasound. A modification of Hoff’s spherical model [9] was used 
and applied through the dynamic boundary condition at the bubble 
surface. The majority of the results presented were for an inviscid 
fluid although some viscous Newtonian examples were also considered. 
However, neither biological fluids nor soft tissue behave as Newtonian 
fluids. Therefore, the challenge in studying the behaviour of EMBs in 
a biomedical context lies in modelling viscoelastic and compressible 
behaviour.

In terms of compressibility, numerical simulations for non-spherical 
bubbles have been largely restricted to inviscid and Newtonian flu-
ids [17–19]. The simulations for non-spherical bubbles that have been 
performed for viscoelastic fluids have been largely based on Maxwell-
type models in which compressibility is neglected [20,21]. However, 
Lind and Phillips [22] considered the non-spherical collapse of a 2-
D bubble near a rigid wall in a weakly compressible upper-convected 
Maxwell fluid and showed that viscoelasticity can prevent the for-
mation of a liquid jet and is therefore likely to mitigate cavitation 
damage. More recently, Lang et al. [23] have considered bubble col-
lapse in a compressible viscoelastic fluid, with the 3-D governing 
equations solved using a finite volume method. However, despite the 
3-D capability, the focus remained on spherical dynamics but with 
the finite volume method able to capture compressible flow dynamics 
(e.g. shockwaves) in the ambient fluid.

Regarding viscoelasticity, a common feature of viscoelastic bubble 
dynamics is the oscillation of the bubble surface in time. In the absence 
of any internal gas content, this effect results from competing inertial 
and elastic forces and typically occurs in fluids with large elasticities 
and at low-to-moderate Reynolds numbers. In the spherical case, this 
effect can be observed by solving the Rayleigh–Plesset equation gen-
eralised to accommodate a general extra stress and therefore a variety 
of different constitutive relations can be studied. For example, Fogler 
and Goddard [24] conducted one of the first such studies of viscoelastic 
bubble collapse by using a Rayleigh–Plesset equation, solved via finite 
differences, to model collapse in a linear Maxwell fluid for a range of 
Reynolds and Deborah numbers. They noted existence of a criterion at 
very large Deborah numbers, around which the bubble may oscillate in-
definitely about an equilibrium radius or otherwise collapse completely 
2 
without oscillation. A key finding of the study was that fluid elasticity 
can inhibit bubble collapse and produce large oscillations in radius if 
the fluid relaxation time is of the order of the Rayleigh collapse time.

Allen and Roy [25,26] considered the forced oscillation of a bub-
ble in an infinite expanse of fluid using incompressible linear and 
nonlinear Maxwell models. They found significant differences between 
Newtonian and viscoelastic cases. In particular, Allen and Roy [25] 
showed that there were significant differences between the viscoelastic 
and Newtonian cases with the addition of elasticity when studying 
sub-harmonic oscillations. Viscoelasticity modulates the amplitude in 
a manner corresponding to the relaxation time of the fluid. Allen and 
Roy [26] extended the analysis to study the oscillation of bubbles 
in nonlinear viscoelastic media. Agreement with the predictions of 
linear viscoelasticity was found for small deformations. However, it was 
also found that beyond the limit of small deformations, elasticity can 
increase the generation of secondary harmonics and serve to increase 
the maximum bubble radius. Since cavitation damage has been linked 
to large bubble expansions, this is an important discovery in the context 
of bubble dynamics in biological fluids and tissue.

Khismatullin and Nadim [27] performed a theoretical investigation 
of the small-amplitude oscillations of a microbubble encapsulated by a 
viscoelastic shell and immersed in a slightly compressible viscoelastic 
fluid. The viscoelastic properties of the shell and the liquid were 
modelled using the Kelvin–Voigt and 4-constant Oldroyd models, re-
spectively. The method of matched asymptotic expansions is used to 
derive an equation for the radial oscillation of the bubble. They showed 
that the resonance frequency for the EMB is highly dependent on 
viscous damping and therefore, significantly differs from the undamped 
natural frequency. The effects of the shell and liquid parameters on the 
resonance frequency and scattering cross sections are analysed.

Yang and Church [28] investigated the large-amplitude oscillations 
of cavitation bubbles driven by an ultrasonic field using the Keller–
Miksis equation in conjunction with a Kelvin–Voigt model to describe 
viscoelasticity. They found that elasticity increases the inertial cavi-
tation threshold, and subharmonic signals may only be detectable in 
certain ranges of radius and pressure amplitude.

Brujan [29,30] investigated spherical bubble dynamics in a com-
pressible viscoelastic liquid using a linear Oldroyd model and a sim-
plified singular-perturbation method to first-order in the bubble-wall 
Mach number. He showed that, under conditions comparable to those 
existing during cavitation, the effect of fluid rheology on bubble dy-
namics is negligible for values of the Reynolds number beyond a critical 
value while the only significant influence is that of liquid compress-
ibility. For larger values of the Reynolds number sound emission was 
found to be the main damping mechanism. In both cases, the 1∕𝑟 law 
of pressure attenuation through the liquid was not affected by the 
viscoelastic properties of the liquid.

Brujan [30] noted that in order to gain a full understanding of 
the behaviour of cavitation bubbles in non-Newtonian liquids, it is 
necessary to extend theoretical studies to the case of asymmetric col-
lapse of bubbles since some experiments have indicated that the effect 
of fluid viscoelasticity is more evident in bubbles collapsing in the 
neighbourhood of a solid boundary, altering the intensity of the liquid 
jet directed towards to boundary.

The present study follows a similar approach to the one employed 
by Wang et al. [16] and seeks to extend previous studies on modelling 
EMBs forced by ultrasound by determining the effects of viscoelasticity 
and shell properties on (potentially non-spherical) bubble dynamics. 
In a recent study, Wu et al. [31] also consider bubble shell proper-
ties but modelled through a finite element method coupled with a 
boundary element method at the bubble-shell interface. Non-spherical 
bubble interaction with a solid boundary is considered but the ambient 
flow remains invisicid (and irrotational). Similarly, Heidary et al. [32] 
consider EMB dynamics adjacent to deformable (blood vessel) walls 
including the effects of ultrasound, but, again, the ambient fluid is con-
sidered Newtonian. The present study is therefore distinct by modelling 
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the viscoelastic rheology of the ambient fluid in combination with a 
shell model and acoustic forcing.

Viscoelasticity is modelled using the Oldroyd B model which is able 
to account for both solvent and polymeric behaviour. This model is able 
to describe a range of viscoelastic behaviour and can be implemented 
within the boundary element methodology, noting certain approxima-
tions (discussed in Section 2 below). The numerical approach is used 
to predict the dynamics of an EMB located near a rigid wall follow-
ing its excitation by an ultrasound field. The mathematical models 
for spherical EMBs, based on a modified Rayleigh–Plesset equation, 
and non-spherical EMBs, using a modified Bernouilli equation, are 
described in Section 2. This is followed in Section 3 by a description of 
a non-singular boundary element method that removes the singularity 
in the kernel. In Section 4 a comparison between the predictions of 
the boundary element method and the spherical model are discussed. 
Numerical results are presented in Section 5 in which the effects of shell 
thickness, viscoelasticity and ultrasound properties on bubble dynamics 
near a rigid wall are described. Finally, some concluding remarks are 
made in Section 6.

2. Mathematical model

The aim of the present study is to understand how viscoelasticity 
of the fluid and the shell affects the non-spherical dynamics of encap-
sulated microbubbles in a viscoelastic fluid forced by ultrasound. Heat 
and mass transfer are not modelled explicitly in this paper; conditions 
are assumed adiabatic and hence the polytropic law is used to model 
the gas in the bubble. Szeri et al. [33] investigated the effects of 
heat and mass transfer on bubble dynamics during the violent collapse 
of non-spherical bubbles and compared them with the predictions 
of a simplified model which excluded these effects. They found that 
although the qualitative evolution of the bubble was similar in both 
cases, it grows larger and collapses later for the model which includes 
the heat and mass transfer.

2.1. Bubble dynamics for spherical EMBs

It is well known that the oscillations of a clean/shell-free, spherical 
bubble in an infinite expanse of incompressible fluid can be described 
by the Rayleigh–Plesset equation. The Rayleigh–Plesset equation orig-
inates from the work of Rayleigh [34] on the (inviscid) collapse of an 
empty cavity or void. Several extensions to the Rayleigh–Plesset equa-
tion have been proposed to describe spherical encapsulated bubbles. 
Although the focus of the present paper is on the numerical prediction 
of nonspherical bubble dynamics, a model for spherical dynamics is 
considered solely for validation purposes.

We assume that the shell is a linear, incompressible viscoelastic solid 
of thickness 𝜖. Let 𝑅(𝑡) denote the outer radius of the shell at time 𝑡. 
We assume 𝜖 ≪ 𝑅 [35]. A Rayleigh–Plesset equation can be derived by 
integrating the radial component of the momentum equation 

𝜌
( 𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑟

)

= −
𝜕𝑝
𝜕𝑟

+
𝜕𝑇𝑟𝑟
𝜕𝑟

+ 3
𝑇𝑟𝑟
𝑟
, (1)

over [𝑅 − 𝜖,∞) where the radial velocity component is given by 

𝑢 = 𝑅2𝑅̇
𝑟2

. (2)

In Eq. (1), 𝑝 is pressure, 𝜌 is density and 𝑇𝑟𝑟 is the radial stress 
component. We generalise the contributions of Church [8] and Hoff [9], 
for example, to model a bubble in an infinite expanse of viscoelastic 
fluid. The radial stress component in the shell (𝑅 − 𝜖 ≤ 𝑟 ≤ 𝑅) and 
fluid (𝑅 ≤ 𝑟) is modelled as follows (see Allen and Roy [25,26] and 
Church [8]). 

𝑇𝑟𝑟 =

⎧

⎪

⎨

⎪

(𝜆𝑠 + 2𝜒𝑠ℎ)
𝜕𝜖𝑟𝑟
𝜕𝑟

+ 2𝜆𝑠
𝜖𝑟𝑟
𝑟

+ 2𝜇𝑠ℎ
𝜕𝑢
𝜕𝑟

𝑅 − 𝜖 ≤ 𝑟 ≤ 𝑅,

2𝜇 𝜕𝑢 + 𝜏𝑟𝑟 𝑅 ≤ 𝑟,
(3)
⎩ 𝜕𝑟

3 
where 𝜆𝑠 and 𝜒𝑠ℎ are the Lamé constants, 𝜇𝑠ℎ is the viscosity of the 
shell, 𝜇 is the dynamic viscosity of the fluid, 𝜖𝑟𝑟 is the radial component 
of the strain tensor and 𝜏𝑟𝑟 is the radial component of the polymeric 
contribution to the stress tensor in the fluid. The second Lamé constant 
is also known as the modulus of rigidity.

The model assumes that the shell thickness remains constant in 
time [36] and does not change with variations in volume. Wang 
et al. [16] argued that the simplified model can be used to approximate 
the essential effects of the coating since the EMB is usually approxi-
mately spherical during most of its lifetime except for a short period 
during the end of collapse. Thus the model is able to provide a good 
estimate of the influence of the shell on the bubble, the asymmetric flow 
and pressure fields prior to jet development. When liquid jetting starts, 
the large asymmetric momentum of the liquid flow and high pressure of 
the bubble gas are the dominant effects; the elastic and viscous effects 
of the thin coating should be secondary effects.

Church [8] provides an expression for 𝜖𝑟𝑟 in the limit of small 
displacements from which the pressure difference, 𝛥𝑃 , across the shell, 
which is the contribution of the integral of the last term in Eq. (1) over 
the shell, can be determined

𝛥𝑃 = −12𝜖
𝑅2
0

(

𝑅0
𝑅

)2
[𝜒𝑠ℎ(𝑅 − 𝑅0) + 𝜇𝑠ℎ𝑅̇],

where 𝑅0 is the bubble radius at 𝑡 = 0. The force balance at the gas/shell 
interface gives 
𝑝𝑠|𝑅−𝜖 = 𝑝𝑔 + 𝑇𝑠,𝑟𝑟|𝑅−𝜖 − 𝜎𝑔𝐶𝑅−𝜖 , (4)

while the corresponding force balance at the shell/liquid interface 
yields 
𝑝𝑏 = 𝑝𝑠|𝑅 − 𝑇𝑠,𝑟𝑟|𝑅 − 𝜎𝑠𝐶𝑅 + 𝑇𝑙,𝑟𝑟|𝑅. (5)

where 𝑝𝑏 is the pressure on the liquid side of the interface, 𝑝𝑠 is the 
pressure within the shell, 𝑝𝑔 is the internal gas pressure, 𝜎𝑔 and 𝜎𝑠 are 
the surface tension coefficients at the two interfaces, and 𝐶 denotes 
curvature. Note that the expression for capillary pressure derived in 
the paper of Glazman [37] and implemented in subsequent studies, 
e.g. Morgan et al. [35], contained an error which was reported by 
Marmottant et al. [10]. The correct expression is employed here.

Using the polytropic law 

𝑝𝑔

(

4
3
𝜋𝑅3

)𝜅
= constant, (6)

where 𝜅 is the ratio of specific heats for the gas in association with 
Eq. (4) with initial conditions 𝑅 = 𝑅0, 𝑅̇ = 0 and 𝑇𝑟𝑟 = 0 at 𝑡 = 0 we 
can derive the following expression for the internal gas pressure 

𝑝𝑔 =
(

𝑝0 +
2𝜎
𝑅0

)(

𝑅0
𝑅

)3𝜅
, (7)

where 𝑝0 is hydrostatic pressure. Finally, integrating Eq. (1) over 
[𝑅 − 𝜖,∞) and using the above results we arrive at the modified 
Rayleigh–Plesset equation

𝑅𝑅̈ + 3
2
𝑅̇2 = 1

𝜌

[(

𝑝0 +
2𝜎
𝑅0

)(

𝑅0
𝑅

)3𝜅
−

4𝜇𝑅̇
𝑅

− 2𝜎
𝑅

− 12𝜖
𝑅2
0

(

𝑅0
𝑅

)2
[𝜒𝑠ℎ(𝑅 − 𝑅0) + 𝜇𝑠ℎ𝑅̇]

+ 3∫

∞

𝑅

(

𝜏𝑟𝑟
𝑟

)

− 𝑝∞(𝑡)
]

. (8)

where 𝜎 = 𝜎𝑔 + 𝜎𝑠 since 𝐶𝑅−𝜖 = 𝐶𝑅 for a spherical EMB.

2.2. Bubble dynamics for nonspherical EMBs

2.2.1. Assumptions and justifications
Consider an initially spherical bubble whose centroid is a distance 

ℎ from a horizontal rigid boundary of infinite extent. The bubble is 
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assumed to remain axisymmetric in time since this is generally found 
to be the case for small cavitation bubbles [38]. Additionally, it is the 
axisymmetric configuration that generates maximum jet speeds and 
pressures and thus provides an indication of the maximum potential 
damage to nearby surfaces.

The fluid flow is assumed to be irrotational. In order to formulate a 
velocity potential, 𝜙, which satisfies Laplace’s equation, it is necessary 
to assume incompressibility. The primary condition needed for this 
approximation to be valid is 

𝑀2 ≪ 1, (9)

where 𝑀 = 𝑈∕𝑐 is the Mach number, 𝑐 is the speed of sound in the 
liquid and 𝑈 is the magnitude of variations of the fluid velocity with 
respect to both position and time [39]. Note that in the late stages 
of collapse when a jet forms the bubble wall velocities can approach 
the speed of sound which means that condition (9) is violated and 
liquid compressibility can no longer be ignored. These high velocities 
also give rise to very large pressures in the fluid. Theoretical studies 
by Brujan [40] confirmed that the effects of compressibility can be 
important, particularly in the late stages of collapse. However, in order 
to gain some appreciation of the bubble motion we follow the majority 
of other works in the literature (see Pearson et al. [41], for example), 
and assume only a small fraction of bubble kinetic energy is radiated 
away as sound, and so impose incompressibility.

Regarding the irrotational assumption, there is a long-held and 
widespread misconception that irrotational motion implies inviscid 
flow. In a comprehensive series of works, Joseph and co-workers (see 
for example, Joseph [42]) have campaigned and repeatedly demon-
strated the utility of both viscous and viscoelastic irrotational flows. 
While internal viscous effects may vanish, viscosity and viscoelasticity 
are inherent fluid properties and reappear in the governing equations 
when applying stress boundary conditions. Such boundary conditions 
are typically applied at free-surfaces, where vorticity generation is 
weaker relative to no-slip conditions, and hence for free-surface flows 
(even with viscous/viscoelastic effects) irrotational flows can provide 
good approximations to full Navier–Stokes solutions. Indeed, Batch-
elor [39] (Chap. 5, p. 366) notes that at free-surfaces the variation 
in velocity from irrotational across the boundary layer can be rela-
tively small. It has further been shown, depending on the test case, 
that the irrotational approximation can hold for surprisingly viscous 
flows with good agreement to experiment even for Reynolds number 
𝑅𝑒 = 0.1 [43]. Clearly, retaining viscous and/or viscoelastic effects 
in irrotational flows can provide useful quantitative insight, and is a 
modelling approach that has been adopted previously for a range of 
bubble/drop problems. For example, Georgescu et al. [44] model a 
bursting bubble assuming irrotationality and including viscous effects, 
noting the reduction in jet speed and height with increasing viscosity. 
Related irrotational flow studies that consider the effect of viscosity 
include studies on drop oscillation [45], spherical cap bubbles [43], 
the viscous Kelvin–Helmholtz instability [46], and buoyant bubbles 
near walls [47]. Rayleigh–Taylor instabilities in viscoelastic (Oldroyd 
B) drops have also been studied using viscoelastic potential flow [48] 
with good agreement obtained with complete/rotational theoretical 
flow analysis. The above works are in addition to the seminal papers of 
Blake and co-workers [49–54], amongst others, which, although setting 
a zero viscosity, provide additional examples of the capabilities of the 
irrotational approximation in modelling real flows.

Following the above justification, we assume that viscous/viscoelas-
tic effects in the fluid bulk are negligible and that the effects of fluid 
rheology appear only at the bubble surface, and thus can be modelled 
approximately through the bubble interface boundary condition [39]. 
We reiterate that this approximation has been used to good effect in 
studies mentioned above and previously in Lind and Phillips [20,55–
57] and Walters [58].
4 
2.2.2. The mathematical model
Let us state mathematically the key assumptions of incompressibility 

(∇ ⋅ 𝐮 = 0) and irrotationality (∇ × 𝐮 = 0), for a fluid velocity 𝐮. 
By standard theorems in vector calculus there then exists a velocity 
potential, 𝜙, that satisfies Laplace’s equation: 

∇2𝜙 = 0. (10)

We assume the fluid is at rest far from the bubble and hence require 
𝜙 → 0 (and subsequently 𝐮 → 0) as 𝑟 → ∞. Well-known general 
solutions exist for 𝜙, and in the axisymmetric configuration considered 
here, the potential then has the form 𝜙 ∼ 1∕𝑟 to leading order, for some 
radial distance 𝑟 from the bubble. Note, the potential, velocity, and 
stresses decay with distance from the bubble with increasing rapidity, 
respectively (due to increasing powers of 1∕𝑟). Consider the general 
equation of motion, 

𝜌𝐷𝐮
𝐷𝑡

= −∇𝑝 + ∇ ⋅ 𝜏𝜏𝜏, (11)

where 𝜏𝜏𝜏 is the extra stress. This equation may admit a fully irrotational 
counterpart if the divergence of the extra stress can be expressed as 
the gradient of a scalar, i.e. if ∇ ⋅ 𝜏𝜏𝜏 = ∇𝜓 , for some scalar 𝜓 [59]. This 
is trivially the case if ∇ ⋅ 𝜏𝜏𝜏 = 0 and this occurs exactly for a viscous 
fluid and a linear viscoelastic fluid for a general potential. We persist 
with this assumption here and set ∇ ⋅ 𝜏𝜏𝜏 = 0 (i.e. viscous/rheological 
contributions in the fluid bulk are negligible, as previously argued in 
Section 2.2.1). Whilst exactly zero for linear viscoelastic models, in 
Section 2.2.3 we make the case for the approximate use of setting ∇⋅𝜏𝜏𝜏 =
0 for nonlinear models, given the necessarily rapid decay in nonlinear 
terms in the stress with distance from the bubble. Using ∇𝜙 = 𝐮 with 
(11), applying ‘at rest’ conditions in the far-field (where pressure is 𝑝∞), 
for a cavitation bubble with a ‘clean’ (shell-free) surface, the pressure 
on the fluid side of the bubble interface, 𝑝𝑏 is then given by 

𝑝𝑏 = −𝜌
D𝜙
D𝑡 +

𝜌
2
|∇𝜙|2 + 𝑝∞, (12)

where D/D𝑡 is the material derivative. If we assume there is no mass 
transfer through the bubble wall then balancing normal forces across 
the surface results in 
𝑝𝑏 = 𝑝𝑔 + 𝜏𝑛𝑛 − 𝜎𝐶, (13)

where 𝐶 is the local curvature of the bubble surface, 𝜎 is the surface 
tension coefficient, and 𝑝𝑔 is the internal pressure of the bubble, given 
by 

𝑝𝑔(𝑡) = 𝑝0

(

𝑅0
𝑅

)3𝜅
, (14)

where 𝑝0 is the (initial) internal gas pressure. Note it is through (13) 
that any fluid viscoelastic effects influence the bubble by means of 
the normal stress component, 𝜏𝑛𝑛. To account for the shell, Eq. (13) 
is modified in the following way 

𝑝𝑏 = 𝑝𝑔 + 𝜏𝑛𝑛 − 𝜎𝐶 + 𝛥𝑃 . (15)

Combining (12) and (15) to eliminate 𝑝𝑏 gives the Bernoulli equa-
tion, which is used to update 𝜙 on the bubble surface 

𝜌
D𝜙
D𝑡 =

𝜌
2
|∇𝜙|2 − 𝜏𝑛𝑛 + 𝜎𝐶 − 𝛥𝑃 + 𝑝∞ − 𝑝𝑔 , (16)

where 𝑡 is time. To model an EMB using the boundary element method, 
a generalisation of the spherical model described in the previous section 
is developed. In the case of a spherical bubble, the pressure over the 
bubble surface is spatially constant at each instant in time whereas 
for a non-spherical bubble the pressure varies locally over the bubble 
surface. In the boundary element method, the bubble surface is decom-
posed into a number (𝑁) of segments separated by 𝑁 + 1 nodes. To 
modify the equations for a non-spherical bubble the radius 𝑅 is replaced 
by the local radius 𝑅 (𝑠) at each node where 𝑠 denotes arclength. This 
𝑐
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can be calculated using 𝑅𝑐 (𝑠) = 1∕𝐶(𝑠) where 𝐶(𝑠) is the local radius of 
curvature defined by 

𝐶(𝑠) = −
(𝑟′(𝑠)𝑧′′(𝑠) − 𝑧′(𝑠)𝑟′′(𝑠))

(𝑟′(𝑠)2 + 𝑧′(𝑠)2)3∕2
, (17)

where 𝑟(𝑠) and 𝑧(𝑠) are the coordinates of points on the bubble surface. 
The derivatives in Eq. (17) can be determined by constructing quintic 
spline representations for 𝑟(𝑠) and 𝑧(𝑠). The pressure at each node is 
then calculated using

𝑝𝑏 =
(

𝑝0 +
2𝜎
𝑅0

)(

𝑅0
𝑅𝑐

)3𝜅
− 2𝜎
𝑅𝑐

+ 𝜏𝑛𝑛

− 12𝜖
𝑅2
0

(

𝑅0
𝑅𝑐

)2
[𝜒𝑠ℎ(𝑅𝑐 − 𝑅0) + 𝜇𝑠ℎ𝑅̇𝑐 ]. (18)

Note that the expression for pressure for spherical dynamics is modified 
for non-spherical dynamics by replacing 𝑅 with the local quantity 𝑅𝑐 (𝑠)
at each node. In the same manner as the interfacial term, the radius 𝑅
is replaced by 𝑅𝑐 (𝑠) and the velocity, 𝑅̇, becomes 𝜕𝜙∕𝜕𝑛 in the viscous 
shell damping term. Accordingly, the Bernoulli equation used to update 
𝜙 for a non-spherical EMB is

𝜌
D𝜙
D𝑡 =𝑝∞ −

(

𝑝0 +
2𝜎
𝑅0

)(

𝑅0
𝑅

)3𝜅
+
𝜌
2
|∇𝜙|2

− 2𝜂𝑠
𝜕2𝜙
𝜕𝑛2

− 𝜏𝑛𝑛 +
2𝜎
𝑅𝑐

+ 12𝜖
𝑅2
0

(

𝑅0
𝑅𝑐

)2 [

𝜒𝑠ℎ(𝑅𝑐 − 𝑅0) + 𝜇𝑠ℎ
𝜕𝜙
𝜕𝑛

]

, (19)

where 𝜂𝑠 is the solvent viscosity. The bubble surface must also be 
updated in time. Since the bubble surface is a material surface, fluid 
particles which begin on the surface will remain there and thus the 
surface can be updated in a Lagrangian manner using 
D𝐱
D𝑡 = ∇𝜙, (20)

where 𝐱 is a point on the bubble surface. To integrate Eqs. (19) and (20) 
in time, a constitutive equation must be chosen for the stress while the 
normal velocities 𝜕𝜙∕𝜕𝑛 are determined by solving a boundary integral 
equation.

2.2.3. Modelling viscoelasticity
Finally, a constitutive equation is required to provide a relationship 

between stress and strain. One of the aims of this paper is to understand 
the effects of viscoelasticity on bubble dynamics. Therefore, fluid rheol-
ogy is modelled using the Oldroyd-B model, which is chosen because it 
is sophisticated enough to model a range of rheological behaviour. The 
model predicts stress relaxation, constant shear viscosity and quadratic 
first normal stress difference. Brujan et al. [60] have shown that shear-
thinning is not important when studying bubble dynamics and collapse. 
In experiments investigating the bubble dynamics of shear-thinning 
polymeric solutions, they showed that dynamics can be described by 
simply taking the infinity-shear viscosity as the viscosity of the polymer 
solution.

For the Oldroyd-B model the extra stress 𝜏𝜏𝜏 can be decomposed in 
terms of its solvent and polymeric contributions 
𝜏 = 𝜏𝜏𝜏𝑠 + 𝜏𝜏𝜏𝑝, (21)

where 

𝜏𝑠 = 2𝜂𝑠∇𝐮, 𝜏𝜏𝜏𝑝 + 𝜆
∇
𝜏𝜏𝜏𝑝 = 2𝜂𝑝∇𝐮. (22)

In these equations 𝜂𝑠, 𝜂𝑝 and 𝜆 are the solvent viscosity, polymeric 
viscosity and relaxation time of the fluid, respectively. The superscripts 
𝑠 and 𝑝 denote solvent quantities and polymer quantities. In terms of 
the normal stress component 𝜏𝑛𝑛 the relevant equations for the solvent 
and polymeric contributions to the stress become

𝜏𝑠 = 2𝜂
𝜕2𝜙

, (23)
𝑛𝑛 𝑠 𝜕𝑛2

5 
𝜆
D𝜏𝑝𝑛𝑛
D𝑡 = −𝜏𝑝𝑛𝑛 − 2𝜆𝜏𝑝𝑛𝑛

𝜕2𝜙
𝜕𝑛2

− 2𝜂𝑝
𝜕2𝜙
𝜕𝑛2

. (24)

As mentioned in Section 2.2.2, there are compatibility requirements 
for viscoelastic models to support a general irrotational flow [59] - 
namely ∇ ⋅ 𝜏𝜏𝜏 = ∇𝜓 , for some scalar 𝜓 . Linear viscoelastic models are 
always compatible with any irrotational flow (as ∇⋅𝜏𝜏𝜏 = 0), but the more 
popular and widespread non-linear models (such as Oldroyd B where 
non-linearity appears in the upper-convected derivative) do not support 
all potential flows exactly (the radially symmetric Rayleigh–Plesset 
flow, however, is a potential flow compatible with any viscoelastic 
model). Nevertheless, the importance/prevalence of the non-linear Ol-
droyd B model is such that it may be applied here in an approximate 
sense noting that the non-linear terms tend to zero extremely quickly 
with increasing distance from the bubble surface. For example, since it 
is required that 𝜙 → 0 with increasing radial distance from the bubble 
(i.e. as 𝑟 → ∞), via the analytical general solution for Laplace’s equation 
under axisymmetry, velocity gradient and stress terms must decrease 
like 1∕𝑟3 to leading order. The non-linear terms in the Oldroyd B 
model must then decrease at least as fast as 1∕𝑟6. The model, therefore, 
tends to exact compatibility with a general irrotational flow extremely 
quickly. This supports the modelling approximation used here that 
viscoelastic effects are most significant at bubble surface and negligible 
in the fluid bulk.

2.2.4. Summary of modelling assumptions
For clarity, we summarise the modelling assumptions used to de-

scribe non-spherical bubble dynamics in this work, following the de-
tailed discussion and justification above. In particular:

• The flow domain is assumed to be axisymmetric.
• The flow is assumed to be irrotational, incompressible and isother-
mal.

• Viscoelastic effects in the fluid bulk are neglected (∇ ⋅ 𝜏𝜏𝜏 = 0, 
everywhere), as this term tends to zero extremely quickly due 
to rapid decay in the potential. It is also exactly zero for linear 
viscoelastic models in any irrotational case.

• Remaining viscoelastic effects appear directly in the stress balance 
at the bubble surface, as in viscous irrotational models.

• The viscoelastic extra stress is governed by the Oldroyd B model.

3. Non-singular BEM formulation

In the standard BEM formulation, the potential satisfies the bound-
ary integral equation (see, for example, Taib [61]) 

𝑐(𝐩)𝜙(𝐩) = ∫𝜕𝛺

(

𝜕𝜙
𝜕𝑛

(𝐪)𝐺(𝐩,𝐪) − 𝜙(𝐪) 𝜕𝐺
𝜕𝑛

(𝐩,𝐪)
)

𝑑𝑆, (25)

where 𝑐(𝐩) is a piecewise constant, 𝛺 and 𝜕𝛺 are the fluid domain and 
its boundary, respectively, and 𝐩, 𝐪 are points in the fluid and on the 
boundary, respectively. To solve (25) numerically, the bubble surface 
is discretised into 𝑁 segments and (25) is collocated at points 𝐩 = 𝐩𝑖, 
𝑖 = 1,… , 𝑁 + 1,

𝑐(𝐩𝑖)𝜙(𝐩𝑖) +
𝑁
∑

𝑗=1
∫

𝑠𝑗+1

𝑠𝑗
𝜙(𝐪) 𝜕𝐺

𝜕𝑛
(𝐩𝑖,𝐪)𝑑𝑆

=
𝑁
∑

𝑗=1
∫

𝑠𝑗+1

𝑠𝑗

𝜕𝜙
𝜕𝑛

(𝐪)𝐺(𝐩𝑖,𝐪)𝑑𝑆, (26)

where 𝑠𝑗 is the arclength of the bubble surface at node 𝑗 and the 
known quantities are on the left-hand side. Given the potential 𝜙 at 
each node, Eq. (26) can be used to solve for the normal velocities 
𝜕𝜙(𝐩𝑖)∕𝜕𝑛. However, when an integral over a segment in (26) contains 
the collocation point 𝐩𝑖, both 𝐺 and 𝜕𝐺∕𝜕𝑛 will possess a singularity. 
Following Sun et al. [62], singularities are removed from the boundary 
integral equation by defining new variables 

𝜓𝑖(𝐩) = 𝜙(𝐩𝑖) +
(

𝜕𝜙
)

𝑓𝑖(𝐩), (27)

𝜕𝑛 𝑖
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for 𝑖 = 1,… , 𝑁 + 1, where the functions 𝑓𝑖 are constructed to satisfy 

∇2𝑓𝑖(𝐩) = 0, 𝑓𝑖(𝐩𝑖) = 0,
𝜕𝑓𝑖
𝜕𝑛

(𝐩𝑖) = 1. (28)

Writing an integral equation for the new variables and subtracting it 
from (25) a non-singular formulation of the integral equation can be 
derived (see [63])

∫𝑆

[

𝜙(𝐪) − 𝜙(𝐩𝑖)
]

𝜕𝐺
𝜕𝑛

(𝐩𝑖,𝐪)𝑑𝑆 = ∫𝑆
𝜕𝜙
𝜕𝑛
𝐺(𝐩𝑖,𝐪)

+
(

𝜕𝜙
𝜕𝑛

)

𝑖 ∫𝑆

(

𝑓𝑖(𝐪)
𝜕𝐺
𝜕𝑛

(𝐩𝑖,𝐪) −
𝜕𝑓𝑖
𝜕𝑛

(𝐪)𝐺(𝐩𝑖,𝐪)
)

𝑑𝑆. (29)

The careful construction of the functions 𝑓𝑖, satisfying the properties 
described by (28) ensures that singularities present in 𝐺 and 𝜕𝐺∕𝜕𝑛 are 
removed.

For a bubble near a rigid wall, the no-penetration condition at the 
wall results in the following form for the functions 𝑓𝑖, given by 

𝑓𝑖(𝐩) = −
𝜌3𝑖 𝜌̄

3
𝑖

𝜌̄3𝑖 𝛽𝑖 + 𝜌
3
𝑖 𝛽𝑖

[(

1
𝜌
− 1
𝜌𝑖

)

+
(

1
𝜌̄
− 1
𝜌̄

)]

, (30)

where

𝜌 =
√

𝑟2 + (𝑧 − 𝑧𝐷)2, 𝜌̄ =
√

𝑟2 + (𝑧 + 𝑧𝐷)2,

𝛽 = 𝑟𝑛𝑟 + (𝑧 − 𝑧𝐷)𝑛𝑧, 𝛽 = 𝑟𝑛𝑟 + (𝑧 + 𝑧𝐷)𝑛𝑧, (31)

and the suffix 𝑖 indicates evaluation at the point (𝑟𝑖, 0, 𝑧𝑖). In this 
representation 𝐩𝐷 = (0, 0, 𝑧𝐷) is chosen to be any point located outside 
the domain, provided that 𝐧𝑖 ⋅(𝐩𝑖−𝐩𝐷) ≠ 0. The point 𝐩𝐷 is chosen to be 
located on the 𝑧-axis to ensure that 𝜓𝑖 defined by (27) are axisymmetric 
functions. This ensures that the functions 𝑓𝑖 are constant in 𝜃 and 
therefore do not appear in the azimuthal integrals contained in (29). 
Full details of this derivation can be found in Walters [63] where the 
effects of viscoelasticity on a clean, unforced cavitation bubble are 
studied using this approach.

To discretise the bubble surface, quintic splines are chosen. The 
surface variables, potential and extra stress are represented in each 
segment (𝑠𝑖, 𝑠𝑖+1) by a fifth-order polynomial. Quintic splines have been 
shown to be more accurate and stable than cubic splines [63]. To attain 
a prescribed level of accuracy far fewer nodes are required when quintic 
splines are used. The BEM formulation above has also been extended to 
accommodate changes in bubble topology (i.e. the creation of toroidal 
bubbles). In the present study no toroidal bubbles are formed over the 
parameter ranges considered, but further information on the procedure 
used to model toroidal bubbles (using the vortex ring method) can be 
found in Walters [58] and Wang et al. [64].

3.1. Modelling the ultrasound pressure field

To simulate the interaction between ultrasound and an encapsulated 
bubble, a Gaussian acoustic pulse is used. The pulse is assumed to 
be much larger than the bubble and is thus approximated as being 
infinitely large in the direction perpendicular to the wave propagation. 
This pulse is incorporated into the model by modifying the pressure 
term 𝑝∞(𝐱, 𝑡). The explicit form for the static Gaussian pulse acting 
uniformly in space is 
𝑝∞(𝑡) = 𝑝0 + 𝑝𝐴 sin[2𝜋𝑓 (𝑡 − 𝑡𝑝)] exp[−𝜋2𝑙2𝑓 2(𝑡 − 𝑡𝑝)2], (32)

where 𝑝𝐴 is the maximum amplitude of the pulse, 𝑓 is the frequency, 
𝑡𝑝 is the centre of the pulse and 𝑙 is the width of the pulse. Fig.  1 shows 
the pressure pulse as a function of time at a fixed point in space for 
𝑓 = 2 MHz and 𝑝𝐴 = 200 kPa.

The above static pulse is used for the validation cases in Section 4. 
For the main results in Section 5 the case of a dynamic (travelling) 
pulse is considered, where it is assumed that the centre of the pulse, 
𝑧𝑚(𝑡), moves downwards with a constant speed 𝑧̇𝑚(𝑡) = 𝑓𝜆𝑝. The 
pulse wavelength, 𝜆𝑝, is selected to be larger but within an order of 
magnitude of 𝑅  so that bubble and pulse interact on similar spatial 
0

6 
Fig. 1. Evolution of a typical Gaussian pressure pulse at a fixed point in space 
with 𝑝0 = 0 kPa, 𝑝𝐴 = 200 kPa, 𝑓 = 2 MHz, 𝑡𝑝 = 3.0 μs and 𝑙 = 1∕3.

scales, eliciting a highly dynamic bubble response. The pressure due to 
the pulse at a node 𝐱𝑖 = (𝑟𝑖, 𝑧𝑖) on the bubble surface at time 𝑡 is given 
by 

𝑝∞(𝐱𝑖, 𝑡) = 𝑝0 + 𝑝𝐴 sin[𝑧𝑖 − 𝑧𝑚(𝑡)] exp
[

− 𝑙
2

4
(𝑧𝑖 − 𝑧𝑚(𝑡))2

]

. (33)

The initial position of the centre of the pulse is chosen to be far from 
the bubble and is given by 𝑧𝑚(0) = 27𝑅0. The low pressure component 
of the pulse interacts with the bubble initially causing the bubble to 
expand and rise. Subsequently, the bubble moves towards the rigid 
wall in response to the high pressure component of the pulse. It is 
assumed that the pulse is reflected entirely from the wall (𝑧 = 0) and 
subsequently interacts with the bubble a second time. The bubble is 
therefore affected by the superposition of both incident and reflected 
pulses.

3.2. Reynolds and Deborah numbers

Although the governing equations and solutions are presented in 
dimensional form, a Reynolds and Deborah number can be defined 
to aid interpretation of the results. The pulse frequency can be used 
to provide a pertinent characteristic time scale and the initial bubble 
radius provides the characteristic length. Accordingly, the Reynolds 
(𝑅𝑒) and Deborah (𝐷𝑒) numbers can be defined, respectively, by 

𝑅𝑒 =
𝜌𝜔ref𝑅2

0
(𝜂s + 𝜂p)

, 𝐷𝑒 = 𝜆𝜔ref , (34)

where 𝜔ref  is a characteristic frequency and 𝑅0 is the initial bubble 
radius. Here we choose 𝜔ref = 2 MHz and 𝑅0 = 1 μm (typical real-life ul-
trasound frequency and microbubble radius values, respectively [1,2]). 
Considering blood plasma as the ambient fluid in a practical biomedical 
context, measurements of viscosity and (maximum) relaxation time 
typically yield values of 𝑂(1 mPa s) and 𝑂(10−4 s), respectively [65]. 
Accordingly, this paper explores Reynolds numbers around 𝑂(1) and 
Deborah numbers up to 𝐷𝑒 = 10 (but below the experimental maxi-
mum) to be representative of the physical problem. The viscosity ratio 
is defined to be
𝛽 =

𝜂s
𝜂s + 𝜂p

.

All simulations in this paper were performed with 𝛽 = 0.8.

4. Comparison of BEM with the spherical model

The numerical results presented in this section use the following 
values for the initial internal gas pressure, the ratio of specific heats 
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for the gas, shell thickness, surface tension, shell viscosity and elasticity 
modulus of shell, respectively, for the encapsulated microbubble, unless 
otherwise stated, 
𝑝0 = 101 kPa, 𝜅 = 1.07, 𝜀 = 1 nm,
𝜎 = 0.051 N/m, 𝜇𝑠ℎ = 1 Pa s, 𝜒𝑠ℎ = 0.5 Pa.

(35)

These values are taken from Wu et al. [66] and were obtained using 
a mean square errors best fit for experimentally obtained values for 
the phospholipid contrast agent MP1950 filled with a decafluorobutane 
gas. This is a thin lipid-shelled contrast agent that prevents the gas from 
leaking out of the bubbles. It also introduces an additional elasticity for 
the bubbles’ radial oscillations. The shell has a thickness of the order 
of a few nanometres.

The system of equations is integrated using a fourth-order Runge–
Kutta time stepping scheme. The time step is chosen to be 

▵ 𝑡 =
▵ 𝑡max

max(D𝜙∕D𝑡) , (36)

where ▵ 𝑡max is the maximum time step. The time step has been chosen 
to deal with the rapidly changing velocity that can occur during bubble 
collapse; for large velocities the time step is reduced in order to capture 
the high speed dynamics of the bubble. All calculations reported in this 
paper were conducted on a desktop computer with a Core i7-10700 
CPU and 32 GB RAM.

The predictions of the BEM model are compared with the solution 
of the spherical model (8) for an encapsulated microbubble forced by 
a Gaussian pulse with parameters: 𝑝𝐴 = 200 kPa, 𝑓 = 1 MHz, 𝑅𝑒 = 6.3, 
𝐷𝑒 = 0 and 𝑅0 = 1 μm in the absence of a rigid wall. Figs.  2 and 3 
provide comparisons of the pressure and the equivalent bubble radius, 
respectively. The pressure of the pulse for the BEM code is measured at 
the north pole of the bubble (the axial node at 𝑟 = 0 with the maximal 
𝑧 position value at 𝑡 = 0) and the ‘equivalent bubble radius’ is defined 
by 

𝑅𝑒𝑞 =
(

3𝑉 (𝑡)
4𝜋

)1∕3
(37)

where 𝑉 (𝑡) is the volume of the bubble at time 𝑡. Convergence of 
the approximation generated using the BEM model with respect to 
the number of nodes on the bubble surface, 𝑛𝑝, and 𝛥𝑡max, is also 
demonstrated in these figures.

There is excellent agreement between the predictions obtained using 
the spherical model and the implementation of BEM with the pressure 
pulse acting on the bubble surface simultaneously. For the combination 
of discretisation parameters (𝑛𝑝,▵ 𝑡max) = (40, 1.59 × 10−4), (80, 1.59 ×
10−5), (40, 1.59 × 10−6), the equivalent bubble radius is only slightly 
different from the spherical model shown in Fig.  3. The pressure and 
the equivalent bubble radius for the other combinations of 𝑛𝑝 and 
▵ 𝑡max are in complete agreement with the spherical model. Therefore, 
for the remainder of the paper we have chosen to use 𝑛𝑝 = 40 and 
▵ 𝑡max = 1.59 × 10−5μs as a good compromise between computational 
expense in terms of CPU time shown in Table  1 and accuracy of the 
numerical approximation as evidenced by the data shown in Figs.  2
and 3.

Next we consider the situation in which the bubble is allowed to 
translate dynamically in response to the imparted energy from the pres-
sure pulse and make comparisons with the static situation in which the 
pressure pulse acts on all points on the bubble surface simultaneously. 
The comparisons for the pressure at the north pole of the bubble, 𝑝, and 
equivalent bubble radius, 𝑅𝑒𝑞 , are shown in Figs.  4 and 5, respectively. 
Similar responses are predicted initially. Subsequently, after around 
𝑡 = 1 μs there is a significant difference in behaviour, with the dynamic 
case eventually displaying sustained higher frequency oscillations in 
both pressure and equivalent bubble radius. As the bubble moves 
downwards in response to the pressure pulse it eventually expands and 
oscillates about a steady state equivalent bubble radius almost 50% 
larger than its initial value (Fig.  5). This can be seen in the snapshots 
7 
Fig. 2. Comparison of BEM with spherical model with respect to the pressure 
at the north pole for an EMB forced by a Gaussian pressure pulse with 𝑅𝑒 = 6.3, 
𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, ℎ = 0 μm, 𝑝𝐴 = 200 kPa and 
𝑓 = 1 MHz.

Fig. 3. Comparison of BEM with spherical model with respect to the equiv-
alent bubble radius for an EMB forced by a Gaussian pulse with 𝑅𝑒 = 6.3, 
𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, ℎ = 0 μm, 𝑝𝐴 = 200 kPa and 
𝑓 = 1 MHz.

Fig. 4. Comparison of the evolution of the pressure at the north pole for an 
EMB forced by static and dynamic Gaussian pulses with 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 
𝑅0 = 1 μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, ℎ = 0 μm, 𝑝𝐴 = 200 kPa and 𝑓 = 1 MHz.
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Table 1
Dependence of the CPU time on spatial and temporal discretisation parameters 
for the evaluation of EMB dynamics forced by a Gaussian pulse with 𝑝𝐴 =
200 kPa, 𝑓 = 1 MHz, 𝑅𝑒 = 6.3 and 𝑅0 = 1 μm.
 Method 𝑛p 𝛥𝑡max(μs) CPU time (min) 
 BEM 40 1.59 × 10−4 15  
 BEM 40 1.59 × 10−5 134  
 BEM 60 1.59 × 10−5 298  
 BEM 80 1.59 × 10−5 528  
 BEM 40 1.59 × 10−6 1067  
 Spherical 40 1.59 × 10−4 0.04  

Fig. 5. Comparison of the evolution of the equivalent bubble radius of an EMB 
forced by static and dynamic Gaussian pulses with 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1
μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, ℎ = 0 μm, 𝑝𝐴 = 200 kPa and 𝑓 = 1 MHz.

Fig. 6. Evolution of bubble surfaces for an EMB forced by a Gaussian pulse 
with 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, ℎ = 0 μm, 
𝑝𝐴 = 200 kPa and 𝑓 = 1 MHz.

of the bubble profiles in Fig.  6 where it can also be seen that the 
bubble retains an almost spherical shape throughout the duration of 
the simulation.

In the next set of results the maximum amplitude of the pressure 
pulse is decreased and the frequency is increased. Figs.  7 and 8 show 
the evolution of the equivalent bubble radius, 𝑅𝑒𝑞 , and centroid, 𝑧𝑐 , 
respectively, for 𝑝𝐴 = 100 kPa, 𝑓 = 2 MHz, 𝑅𝑒 = 6.3 and 𝑅0 = 1
μm. The BEM prediction with the pressure pulse acting at all points 
on the bubble surface simultaneously is in excellent agreement with the 
spherical model which is to be expected. This further validates the BEM 
8 
Fig. 7. Comparison of the evolution of the equivalent bubble radius of an EMB 
forced by static and dynamic Gaussian pulses with the prediction of spherical 
dynamics with 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, ℎ = 0
μm, 𝑝𝐴 = 100 kPa and 𝑓 = 2 MHz.

Fig. 8. Comparison of the evolution of the centroid, 𝑧𝑐 , of an EMB forced by 
static and dynamic Gaussian pulses with 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜀 = 1
nm, 𝜎 = 0.051 N/m, ℎ = 0 μm, 𝑝𝐴 = 100 kPa and 𝑓 = 2 MHz.

model. In the more realistic case in which the pressure pulse translates, 
differences in the predictions emerge. There is now a delay in the peak 
amplitude of the bubble response. The maximum equivalent bubble 
radius is also reduced with the slight phase shift in oscillations before 
the radius converges to approximately its initial value (see Fig.  7). This 
is in contrast to the situation in Fig.  5. The bubble centroid undergoes 
several oscillations as the pressure pulse moves downwards eventually 
attaining a steady state approximately 0.6 μm lower than its original 
position (see Fig.  8).

5. Model predictions

The results presented in this section are concerned with the predic-
tion of the dynamics of a bubble located near a rigid wall of infinite 
width along 𝑧 = 0. The initial radius of the bubble is 𝑅0 = 1 μm. The 
bubble is at rest at 𝑡 = 0 and the radial component of the polymeric 
radial stress tensor is zero initially. Snapshots of a bubble surface in 
time are shown as a two-dimensional cut through the bubble, due to the 
assumed axisymmetry. The jet velocities, 𝑉jet, shown in the figures are 
the velocities of the node on the bubble surface that is initially located 
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Fig. 9. Influence on shell thickness on the evolution of bubble dynamics for 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜎 = 0.051 N/m, ℎ = 5 μm, 𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz and 
𝜀 = 1 nm, 10 nm, 100 nm.
furthest away from the wall (the north pole). The wall pressures, 𝑃wall, 
are calculated at the point (𝑟, 𝑧) = (0, 0).

5.1. Effect of shell thickness

The effect of shell thickness on the dynamics of an EMB is investi-
gated in the case when the stand-off distance is ℎ = 5 μm. The pulse 
is characterised by the parameters 𝑝𝐴 = 2 MPa and 𝑓 = 2 MHz. The 
evolution of the bubble centroid, equivalent bubble radius and velocity 
of the bubble at the north pole are shown in Fig.  9(a)–9(c), respectively. 
The bubble begins to feel the influence of the pressure pulse after about 
0.6 μs. For a thin shell with 𝜀 = 1 nm, the bubble centroid experiences a 
single oscillatory cycle before moving monotonically towards the wall 
until it almost touches the wall, at which point the computation stops.

Increasing the shell thickness to 𝜀 = 10 nm, less translational 
movement is seen initially due to the increased resistance of the shell 
to deformation. At 𝑡 ≈ 1.5 μs, however, large growth is seen (Fig.  9(b)) 
due to the bubble entering a low pressure region of the applied pressure 
field with the bubble attaining a maximum equivalent bubble radius 
approximately three times its initial radius. The bubble is ‘pushed’ by 
this forcing pressure towards the rigid wall. As the bubble nears the 
wall, the jet velocity increases drastically and the bubble also begins 
to reduce in size, resulting in very large wall pressures shown in Fig. 
9(c)–9(d). The pressure pulse has a minimal impact on the bubble 
dynamics when the shell thickness is increased further to 𝜀 = 100 nm, 
with only modest oscillation in bubble quantities and wall pressure 
observed at later times.

For both 𝜀 = 1 nm and 𝜀 = 10 nm, the simulations are terminated 
when the bubble surface moves to be in close proximity to the rigid 
wall. At this point a very thin layer of fluid is trapped between the 
bubble and the wall, potentially resulting in numerical instabilities. 
9 
These instabilities are primarily responsible for the very large pressures 
that are generated at the wall as can be seen in Fig.  9(d) at 𝑡 ≈ 1.75 μs
for 𝜀 = 10 nm. One technique that has been used to overcome these 
numerical difficulties is to numerically attach the bubble to the wall 
as described in Ni et al. [67]. The adoption of this technique into the 
present model, however, together with modelling contact line dynamics 
is left for future work.

Snapshots in time of the bubble surface are shown in Fig.  10 for 
𝜀 = 1, 10, 100 nm. The bubble with 𝜀 = 10 nm undergoes severe 
deformation and rapidly moves towards the boundary, expanding as 
it does. It grows to an equivalent bubble radius approximately three 
times its initial radius over a very short period of time (Fig.  10(b)). 
Clearly, this intermediate value of 𝜀 = 10 nm elicits the most significant 
dynamical response, unlike that of 𝜀 = 100 nm, for example, which 
seems to impose an overly restrictive bubble coating, likely at the limit 
for which the thin-shell assumption made in Eq. (19) is valid. Snapshots 
of the velocity field are shown in Fig.  11 for 𝜀 = 1 nm at 1.38 × 10−6 s
and 𝜀 = 10 nm at 1.74 × 10−6 s. The velocity vector is normalised to 
highlight the direction of the fluid motion. Similarly to the observation 
of a jet in Fig.  9(c), at 𝜀 = 1, 10 nm, the beginnings of a jet are observed 
to form above the bubble, generating a flow that collapses the bubble.

5.2. Effect of fluid viscoelasticity

The viscoelasticity of the fluid is modelled using the Oldroyd B 
model. The constitutive Eq. (24) is an evolution equation for the 
polymer contribution to the stress. This is solved simultaneously with 
Eqs. (19)–(20) to update the system in time. In Figs.  12–16 and Figs. 
17–18, the effects of changing fluid viscosity are shown for small (𝐷𝑒 =
0.5) and large (𝐷𝑒 = 10) Deborah numbers, respectively. Two different 
shell thicknesses (𝜀 = 1 nm and 𝜀 = 10 nm) are also considered for 
𝐷𝑒 = 0.5.
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Fig. 10. Snapshots of the bubble surface for 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1 μm, 
𝜎 = 0.051 N/m, ℎ = 5 μm, 𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz and 𝜀 = 1 nm, 10 nm, 100 
nm.

For 𝐷𝑒 = 0.5 with 𝜀 = 1 nm, as the Reynolds number is increased 
(corresponding to a lower viscosity) an earlier response to the acous-
tic forcing is observed. This is evidenced by the earlier translational 
movement of the bubble towards the boundary (which occurs at near 
uniform speed, regardless of 𝑅𝑒, see Fig.  12a), earlier (initial) bubble 
growth (Fig.  13a) and earlier increase in jet velocities (Fig.  14a). For 
𝑅𝑒 = 1 the bubble grows rapidly after around 𝑡 = 1μs with a violent 
collapse phase occurring at 𝑡 ≈ 1.8 𝜇s (see Fig.  13a). Complete bubble 
collapse does not occur within the duration of the computations in 
these cases due to the onset of numerical instabilities. These can occur 
when the bubble moves so close to the rigid wall that there is only a 
very thin layer of fluid between. When this occurs the computations 
are terminated before a possible liquid jet (and transition to toroidal 
form) forms. The corresponding rigid wall pressures attained seem to 
10 
be largely independent of 𝑅𝑒 at least initially (see Fig.  15a), with 
differences in wall pressure only evident in the final stages of near-wall 
bubble motion. Snapshots of the bubble surface over time for 𝑅𝑒 = 1
are shown in Fig.  16 for both shell thickness (𝜀 = 1 nm and 𝜀 =
10 nm). Interestingly, increasing the shell thickness appears to reduce 
dependence on Reynolds number for all flow quantities considered. In 
each case (Figs.  12b- 14b, with 𝜀 = 10 nm), very similar results are 
obtained regardless of Reynolds number value up to 𝑡 ≈ 1 𝜇s. At this 
shell thickness, shell response clearly dominates over hydrodynamical 
viscous forces.

For the same range of Reynolds numbers, the bubble dynamics 
are shown in Fig.  17 for the (higher-elasticity) case 𝐷𝑒 = 10. Note 
only one shell thickness (𝜀 = 1 nm) is considered. On increasing 𝐷𝑒, 
there remains a similarity in the behaviour across Reynolds numbers 
to the previous case (𝐷𝑒 = 0.5). Evidently, despite elevated levels 
of fluid elasticity, dynamics are still dominated by viscous and shell 
effects. For example, as seen for 𝐷𝑒 = 0.5, the equivalent bubble 
radius for 𝑅𝑒 = 1 becomes four times as large as its initial value 
during the simulation (see Fig.  17(b) at 𝑡 ≈ 1.5 𝜇s). Similarly, rigid 
wall pressures are also notably larger for the 𝑅𝑒 = 1 case, compared 
to 𝑅𝑒 = 4, 10 (Fig.  17(d)) where, eventually, a near-wall numerical 
instability is initiated, indicated by the prediction of negative pressures. 
Bubble centroid movement is also broadly similar to the 𝐷𝑒 = 0.5 case 
from Fig.  12a: for 𝐷𝑒 = 10 when 𝑅𝑒 = 1 (Fig.  17(a)), the bubble 
remains in a low pressure region of the pulse for longer since there 
is less translational movement, until 𝑡 ≈ 1.1 𝜇s. Subsequently, the 
bubble translates relatively quickly towards the wall (whilst growing 
and flattening) before reaching the wall, decreasing slightly in size, and 
creating the large pressures shown in Fig.  17(d). Upon making contact 
with the wall the simulation is terminated. Fig.  18 shows this evolution 
of the bubble surface at various times (𝑅𝑒 = 1, 𝐷𝑒 = 10).

5.3. Effect of pulse frequency

For a spherical EMB, the effects of pulse frequency were investi-
gated theoretically and experimentally by Wu et al. [66]. The authors 
observed that lower-frequency ultrasound induced more vigorous os-
cillations under similar acoustic pressures. The effects of changing the 
pulse frequency on a non-spherical EMB are shown in Figs.  19–22 for 
a bubble in an Oldroyd-B fluid with 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, for two different 
shell thicknesses (𝜀 = 1, 10 nm). For 𝜀 = 1 nm, the response to the 
pulse is larger for a pulse frequency of 𝑓 = 2 MHz than for most other 
frequencies, but responses to 𝑓 = 4 MHz and 𝑓 = 5 MHz are quite 
significant at early times (before around 1 𝜇s). This can be seen by 
noting the rapid increase in bubble equivalent radius (and subsequently 
larger bubble volume attained, Fig.  19(a)). When 𝑓 = 2 MHz the 
oscillating pressure pulse causes the bubble to shrink slightly after its 
initial growth at 𝑡 ≈ 1.75 𝜇s. At the lower frequencies (𝑓 = 1, 2, 4 MHz) 
there is also larger translational movement (Fig.  20). For 𝜀 = 10 nm, 
the greatest jet velocities (Fig.  21) and wall pressures (Fig.  22) are also 
observed when 𝑓 = 2 MHz (although for these flow measures there 
is no clearly dominant frequency when 𝜀 = 1 nm). Note that for the 
shell model used here the resonant frequency of the bubble, 𝑓0, can be 
determined analytically (see, for example, [15]) to be 

𝑓0 =
1

2𝜋𝑅0

√

1
𝜌

(

3𝜅𝑝0 + 12𝜒𝑠ℎ
𝜀
𝑅0

+ 2𝜎
𝑅0

(3𝜅 − 1)
)

, (38)

which for the chosen parameters yields a resonant frequency value 
of approximately 2.8 MHz — close to 2MHz and within the range of 
frequencies (1–4 MHz) that tend to elicit the largest responses here. 
When 𝑓 = 1 MHz, the bubble is pushed by the pulse towards the rigid 
wall while remaining at roughly the same size (see Figs.  19 and 20). 
The simulation is terminated when the bubble becomes too close to the 
wall. Increasing the shell thickness to 𝜀 = 10 nm (Figs.  19(b)–22b) does 
not markedly change the qualitative behaviour in this instance: lower 
frequencies still tend to produce the most significant response.



H. Furukawa et al. Journal of Non-Newtonian Fluid Mechanics 347 (2026) 105518 
Fig. 11. Snapshots of the normalised velocity field for 𝑅𝑒 = 6.3, 𝐷𝑒 = 0, 𝑅0 = 1 μm, 𝜎 = 0.051 N/m, ℎ = 5 μm, 𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz: (a) 𝜀 = 1 nm, (b) 𝜀 = 10
nm.
Fig. 12. Comparison of the evolution of the bubble centroid position on shell thickness for 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 10 nm, 𝜎 = 0.051 N/m, ℎ = 10 μm, 
𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz and 𝑅𝑒 = 1, 4, 10.
Fig. 13. Comparison of the evolution of the equivalent bubble radius on shell thickness for 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 10 nm, 𝜎 = 0.051 N/m, ℎ = 10 μm, 
𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz and 𝑅𝑒 = 1, 4, 10.
Snapshots of the bubble surface for 𝑓 = 4 MHz are shown in Fig. 
23 for the two different shell thicknesses. When 𝜀 = 1 nm the bubble 
oscillates until 𝑡 ≈ 1 𝜇s before attaching to the wall in a pear-like shape. 
11 
The computations are terminated at this point. For 𝜀 = 10 nm, bubble 
dynamics is much more subdued and constrained by the increased shell 
thickness, with low amplitude, near spherical oscillation and minimal 
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Fig. 14. Evolution of the jet velocity for parameters 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 10 nm, 𝜎 = 0.051 N/m, ℎ = 10 μm, 𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz and 𝑅𝑒 = 1, 4, 10.
Fig. 15. Evolution of the pressure at the rigid wall for parameters 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 10 nm, 𝜎 = 0.051 N/m, ℎ = 10 μm, 𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz and 
𝑅𝑒 = 1, 4, 10.
Fig. 16. Dependence of shell thickness on snapshots of the bubble surface for parameters 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 10nm, 𝜎 = 0.051 N/m, ℎ = 10
μm, 𝑝𝐴 = 2 MPa and 𝑓 = 2 MHz.
translational movement observed over approximately the same time 
duration.

5.4. Effect of pulse strength

So far in this paper, numerical predictions of bubble dynamics have 
been presented for a pressure amplitude of 𝑝𝐴 = 2 MPa since this is 
a typical value for pulse strength used in sonoporation. In ultrasound 
contrast imaging, however, the pressure amplitudes are typically of 
12 
the order of 100 kPa. In Fig.  24, results are presented for a fixed 
pulse frequency 𝑓 = 2MHz and a range of pressure amplitudes: 𝑝𝐴 =
200 kPa, 400 kPa, 2 MPa.

The majority of EMBs have been shown [68] to undergo stable, 
harmonic oscillations for pressure amplitudes in the range 50 kPa–
200 kPa, with higher amplitudes potentially leading to spontaneous 
acoustic emissions and bubble fragmentation. The numerical predic-
tions presented here agree well qualitatively with these experimental 
findings since in the lowest amplitude cases considered for which 𝑝 =
𝐴
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Fig. 17. Influence of Reynolds number on the evolution of bubble dynamics for 𝐷𝑒 = 10, 𝑅0 = 1 μm, 𝜀 = 1nm, ℎ = 10 μm, 𝜎 = 0.051 Nm, 𝑝𝐴 = 2 MPa and 𝑓 = 2
MHz.
Fig. 18. Snapshots of the bubble surface for 𝑅𝑒 = 1, 𝐷𝑒 = 10, 𝑅0 = 1 μm, 𝜀 = 1
nm, 𝜎 = 0.051 Nm, ℎ = 10 μm, 𝑝𝐴 = 2 MPa and 𝑓 = 2 MHz.

200 kPa and 𝑝𝐴 = 400 kPa, the bubble undergoes stable oscillations 
about its initial volume and position. In the case for which 𝑝𝐴 = 2 MPa, 
the bubble grows rapidly as it is pushed towards the boundary, with 
significant jet velocities and wall pressures predicted. This case has 
been discussed earlier (see Figs.  12–15).

5.5. Effect of surface tension

The influence of surface tension on the evolution of bubble dy-
namics is shown in Fig.  25 for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, ℎ = 10 μm, 
13 
𝜀 = 1 nm, 𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz. In particular we have increased and 
decreased the default value of 𝜎 used in this paper by a factor of two. 
Changing the value of 𝜎 in this way has negligible impact on bubble 
dynamics. Clearly, Young–Laplace surface tension is not as important 
as the properties of the shell in terms of the dynamics.

5.6. Effect of stand-off distance

The influence of initial stand-off distance, ℎ, on the evolution of 
bubble dynamics is shown in Fig.  26 for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝜀 = 1 nm, 
𝑝𝐴 = 2 MPa, 𝑓 = 2 MHz, 𝜎=0.051 N/m. In particular, we present 
results for ℎ = 5, 10, 15 μm. The evolution of bubble centroid, 
equivalent bubble radius and jet velocity shown in Fig.  26(a)–26(c) 
exhibit almost linear translational behaviour with respect to ℎ. The 
larger the value of ℎ the earlier the bubble begins to respond to the 
pressure pulse in terms of the motion of the bubble centroid towards 
the rigid wall and the onset of bubble expansion. The jet velocity 
experiences similar behaviour before increasing substantially at about 
𝑡 = 1.8 μs (approximately the point at which the bubble reaches the 
rigid wall). This increase is accompanied by a sharp collapse in bubble 
volume and a sharp increase in the pressure at the rigid wall. Fig.  26 
shows that although the value of ℎ influences the transient behaviour 
of bubble dynamics, the terminal behaviour of the bubble including the 
time at which this occurs is independent of ℎ.

6. Conclusions

In this paper an encapsulated microbubble in a viscoelastic fluid 
forced by a pressure field is modelled using a modified boundary 
element method. Viscous and interfacial terms are included to account 
for the influence of the shell using an extension of the spherical model 
developed by Church [8].
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Fig. 19. Dependence of the evolution of the equivalent bubble radius on pulse frequency for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 10nm, 𝜎 = 0.051 N/m, ℎ = 5
μm and 𝑝𝐴 = 2 MPa : (a) 𝜀 = 1 nm, (b) 𝜀 = 10 nm.
Fig. 20. Dependence of the evolution of bubble centroid position on pulse frequency for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜎 = 0.051 N/m, ℎ = 5 μm and 𝑝𝐴 = 2 MPa: 
(a) 𝜀 = 1 nm, (b) 𝜀 = 10 nm.
Fig. 21. Dependence of jet velocity on pulse frequency for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜎 = 0.051 N/m, ℎ = 5 μm and 𝑝𝐴 = 2 MPa: (a) 𝜀 = 1 nm, (b) 𝜀 = 10 nm.
For a bubble in an infinite fluid, the non-spherical BEM simulations 
produce significantly different results to the spherical model. This is 
due to the translational movement of the bubble in the direction of the 
pressure field and non-spherical deviations. These mechanisms (which 
are not able to be predicted by the spherical model) are significant even 
at relatively low pressure amplitudes.
14 
We have shown that a large shell thickness reduces the translational 
movement and jet velocities of the EMB. This is expected since a 
thicker shell provides more stability making the bubble more resistant 
to deformation.

The effect of changing fluid viscoelasticity is also investigated by 
altering the Reynolds and Deborah numbers. Typically, a decrease in 
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Fig. 22. Dependence of pressure at the rigid wall on pulse frequency for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜎 = 0.051 N/m, ℎ = 5 μm and 𝑝𝐴 = 2 MPa: (a) 𝜀 = 1 nm, 
(b) 𝜀 = 10 nm.
Fig. 23. Dependence of shell thickness on snapshots of the bubble surface for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜎 = 0.051 N/m, ℎ = 5 μm, 𝑝𝐴 = 2 MPa and 𝑓 = 4
MHz: (a) 𝜀 = 1 nm, (b) 𝜀 = 10 nm.
fluid viscosity results in an earlier response to the acoustic forcing. At 
lower Reynolds numbers, the stabilising effect of viscosity, in combina-
tion with elastic effects, is such that significant growth can be observed 
over a longer time duration and interaction with the pressure pulse. 
Importantly, for increased shell thicknesses, results appear largely in-
dependent of viscosity (at least for early times) as shell surface forces 
dominate over viscous/hydrodynamical. Similar bubble behaviour is 
observed at larger flow elasticities, with any potential dominance of 
elasticity mitigated by the bubble shell for the parameters considered.

The effects of the properties of the acoustic pulse, viz. pulse fre-
quency (𝑓 ) and strength (𝑝𝐴), on bubble dynamics have also been 
considered. Generally, a larger response is seen for lower frequencies 
(especially around 2MHz). A higher pulse strength naturally leads to 
higher jet velocities and more distortion of the bubble, and it is found 
that the EMB, on approaching the wall, can become quite distorted 
with the potential to disintegrate. Indeed, further studies are required 
particularly when the bubble moves to be in close proximity to the wall. 
In this case the numerical method will need to be modified to model 
the attachment of the bubble to the wall so that the simulations can 
be continued to obtain an improved understanding of EMB dynamics, 
including continuation of any bubble jets and potential formation of 
toroidal bubbles (which have not been observed in any cases in this 
work).
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Finally, the influence of surface tension (via the Young–Laplace 
law) and bubble-wall stand-off distance are investigated. The role of 
surface tension is negligible in the presence of viscoelasticity and the 
bubble shell, suggesting this term may be neglected for future studies. 
Similarly, the stand-off distance has little effect on the overall dynamics 
and terminal behaviour of the bubble, and acts primarily to shift the 
start time for bubble-pulse interaction.

In this paper the effects of heat and mass transfer have been 
neglected, and, as mentioned, extending the model to allow for bubble-
wall attachment dynamics remains key. Nevertheless, useful quantita-
tive insights have been obtained for realistic ultrasound and biological 
fluid parameters, with the stabilising effect of the bubble shell clear 
and apparently dominant over fluid rheology. Future work will include 
a bubble-wall attachment capability, as well as the modelling ideas of 
Szeri et al. [33] to model heat and mass transfer for EMBs forced by 
ultrasound in a viscoelastic fluid.

In this paper we have also assumed that the viscoelastic shell 
properties remain constant with frequency. However, attenuation ex-
periments [69] have suggested that the shell stiffness and viscosity of 
phospholipid EMBs can be frequency dependent at ultrasound frequen-
cies of 10 MHz and above. These shell properties play a crucial role in 
determining the linear and nonlinear response to ultrasound and so it 
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Fig. 24. Influence of pulse strength on the evolution of bubble dynamics for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, ℎ = 10 μm, 𝑓 = 2 MHz and 𝜎 = 0.051 N/m.

Fig. 25. Influence of surface tension coefficient on the evolution of bubble dynamics for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, ℎ = 10 μm, 𝑝𝐴 = 2 MPa and 
𝑓 = 2 MHz.
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Fig. 26. Influence of stand-off distance on the evolution of bubble dynamics for 𝑅𝑒 = 1, 𝐷𝑒 = 0.5, 𝑅0 = 1 μm, 𝜀 = 1 nm, 𝜎 = 0.051 N/m, 𝑝𝐴 = 2 MPa and 𝑓 = 2
MHz.
 

will be important to model this behaviour in the future when studying 
applications of ultrasound that utilise frequencies in this range.
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