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ARTICLE INFO ABSTRACT

Keywords: The dynamics of thin-shell encapsulated microbubbles (EMBs) in viscoelastic fluids forced by ultrasound are
Encapsulated microbubble investigated in this paper. EMBs, which are gas-filled microbubbles encased in a stiff albumin or flexible lipid
Viscoelasticity shell, have been shown to improve the performance of biomedical procedures such as ultrasound contrast
Ultrasound imaging and sonoporation. To gain computationally efficient initial insights, the flow is assumed irrotational
Boundary element method N . . . . . A .
Sonoporation and axisymmetric, and is solved via the boundary element method. The viscoelastic fluid is modelled using

the Oldroyd B model with both the fluid and the properties of the shell accounted for through the dynamic
boundary condition at the bubble surface. A large bubble shell thickness is found to have a significant
stabilising effect on the bubble, markedly reducing bubble deformation and response to the ultrasound pulse.
For realistic ultrasound and biological fluid parameters, shell properties appear to dominate over fluid rheology.
Although at lower shell thicknesses the dynamics are governed by a competition between viscous, elastic and
inertial forces. A larger response is observed for lower frequency ultrasound and for pressure amplitudes typical
to sonoporation, large translational movement in the direction of the pulse is predicted as well as deformation
and the potential for bubble fragmentation. The model and quantitative insights herein have the potential to
form the basis of a low-cost computational tool useful for EMB design, fabrication and characterisation in the
near future.

1. Introduction when suspended in blood. The encapsulating shell stabilises the bub-

ble against hydrodynamical forces and consequently an EMB is able

Ultrasound is one of the predominant methods for medical diagnosis
since it is safe, fast and inexpensive compared to other techniques.
While the image quality using conventional procedures is often unsat-
isfactory, it can be significantly improved through the introduction of
encapsulated microbubbles (EMBs). The interaction of an ultrasound
beam with a microbubble causes the bubble to expand and contract
since the internal gas is much more compressible than the surrounding
tissue. For a typical EMB of the order 1 pm, this occurs most readily
for the resonance frequency lying in the range (2-10 MHz), which
is the range typically used for ultrasound imaging [1]. Due to this,
EMBs return significantly stronger echoes than tissue reflectors of a
similar size and it is this property that is responsible for their efficacy
as contrast agents.

An EMB, also known as an ultrasound contrast agent (UCA), is
typically filled with air or a high-molecular-weight low-solubility gas
encased by an albumin or lipid shell. The bubbles are typically 1-10 pm
in diameter [2] which is small enough to pass through capillaries
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to reach almost any desired area of the body without collapsing or
dissolving. In recent years, targeted contrast agents have also been
developed to selectively adhere to a specific site [3]. EMBs have also
been investigated for use in sonoporation [4] and gene therapy [5].
Sonoporation is the use of ultrasound to increase the permeability of
cell membranes; ideally creating transient pores which allow the uptake
of large molecules such as DNA (a few nm in size) into a cell without
destroying it (known as transfection). The molecules can be transferred
to the desired site using EMBs, which are then excited using an ultra-
sound field. The physics behind the increased cell permeability and the
transfection of the material are complex, although Miller et al. [5] have
shown that cavitation bubbles play a role. Bouakaz and Escoffre [6]
provide a recent review on the use of EMBs as a theraputic tool,
noting that despite three decades of research, key challenges remain,
including standardisation of operating parameters (e.g. ultrasound and
microbubble properties) to help deliver effective treatments whilst
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also maintaining patient safety/minimising tissue damage. It is in this
search for optimal parameter guidelines that modelling and numerical
simulations can be particularly beneficial.

The majority of previous numerical studies on EMBs have inves-
tigated spherical oscillations, usually involving a modified Rayleigh—
Plesset equation with extra terms accounting for the properties of the
shell (see, for example, de Jong et al. [7], Church [8], and Hoff [9]).
These extra terms can also be constructed to model more advanced
physics including buckling and rupture [10], shell viscoelasticity [11],
or strain-softening [12] (but all still within the spherical model setting).
Whilst some models (such as Church [8] and Hoff [9]) employ a finite
shell thickness, the disparate length scales between the microbubble
radius and the shell thickness (i.e. micrometres compared to nanome-
tres) have the potential to pose a significant modelling challenge for
more general dynamics. This has led to the development of more
sophisticated “zero-thickness” interfacial rheological models that may
be based on either Newtonian or viscoelastic rheology and charac-
terised by an interfacial viscosity, elasticity and surface tension [13,14].
Indeed, it can be shown that many previous shell modelling approaches
(including those of Church [8], Hoff [9], de Jong et al. [7], and
Marmottant et al. [10]) can be reduced to an equivalent interfacial
rheological model described by effective interfacial parameters (an
effective dilatational viscosity and surface tension, with coefficients
potentially dependent on bubble radius) [15].

Generally, the shell has a stabilising effect on the bubble dynamics,
but non-spherical behaviour of EMBs can still occur due to the presence
of nearby structures or interaction with a strong ultrasound field. For
example, Wang et al. [16] used the boundary element method (BEM)
to model a non-spherical EMB near a rigid surface that is forced by
ultrasound. A modification of Hoff’s spherical model [9] was used
and applied through the dynamic boundary condition at the bubble
surface. The majority of the results presented were for an inviscid
fluid although some viscous Newtonian examples were also considered.
However, neither biological fluids nor soft tissue behave as Newtonian
fluids. Therefore, the challenge in studying the behaviour of EMBs in
a biomedical context lies in modelling viscoelastic and compressible
behaviour.

In terms of compressibility, numerical simulations for non-spherical
bubbles have been largely restricted to inviscid and Newtonian flu-
ids [17-19]. The simulations for non-spherical bubbles that have been
performed for viscoelastic fluids have been largely based on Maxwell-
type models in which compressibility is neglected [20,21]. However,
Lind and Phillips [22] considered the non-spherical collapse of a 2-
D bubble near a rigid wall in a weakly compressible upper-convected
Maxwell fluid and showed that viscoelasticity can prevent the for-
mation of a liquid jet and is therefore likely to mitigate cavitation
damage. More recently, Lang et al. [23] have considered bubble col-
lapse in a compressible viscoelastic fluid, with the 3-D governing
equations solved using a finite volume method. However, despite the
3-D capability, the focus remained on spherical dynamics but with
the finite volume method able to capture compressible flow dynamics
(e.g. shockwaves) in the ambient fluid.

Regarding viscoelasticity, a common feature of viscoelastic bubble
dynamics is the oscillation of the bubble surface in time. In the absence
of any internal gas content, this effect results from competing inertial
and elastic forces and typically occurs in fluids with large elasticities
and at low-to-moderate Reynolds numbers. In the spherical case, this
effect can be observed by solving the Rayleigh-Plesset equation gen-
eralised to accommodate a general extra stress and therefore a variety
of different constitutive relations can be studied. For example, Fogler
and Goddard [24] conducted one of the first such studies of viscoelastic
bubble collapse by using a Rayleigh-Plesset equation, solved via finite
differences, to model collapse in a linear Maxwell fluid for a range of
Reynolds and Deborah numbers. They noted existence of a criterion at
very large Deborah numbers, around which the bubble may oscillate in-
definitely about an equilibrium radius or otherwise collapse completely
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without oscillation. A key finding of the study was that fluid elasticity
can inhibit bubble collapse and produce large oscillations in radius if
the fluid relaxation time is of the order of the Rayleigh collapse time.

Allen and Roy [25,26] considered the forced oscillation of a bub-
ble in an infinite expanse of fluid using incompressible linear and
nonlinear Maxwell models. They found significant differences between
Newtonian and viscoelastic cases. In particular, Allen and Roy [25]
showed that there were significant differences between the viscoelastic
and Newtonian cases with the addition of elasticity when studying
sub-harmonic oscillations. Viscoelasticity modulates the amplitude in
a manner corresponding to the relaxation time of the fluid. Allen and
Roy [26] extended the analysis to study the oscillation of bubbles
in nonlinear viscoelastic media. Agreement with the predictions of
linear viscoelasticity was found for small deformations. However, it was
also found that beyond the limit of small deformations, elasticity can
increase the generation of secondary harmonics and serve to increase
the maximum bubble radius. Since cavitation damage has been linked
to large bubble expansions, this is an important discovery in the context
of bubble dynamics in biological fluids and tissue.

Khismatullin and Nadim [27] performed a theoretical investigation
of the small-amplitude oscillations of a microbubble encapsulated by a
viscoelastic shell and immersed in a slightly compressible viscoelastic
fluid. The viscoelastic properties of the shell and the liquid were
modelled using the Kelvin-Voigt and 4-constant Oldroyd models, re-
spectively. The method of matched asymptotic expansions is used to
derive an equation for the radial oscillation of the bubble. They showed
that the resonance frequency for the EMB is highly dependent on
viscous damping and therefore, significantly differs from the undamped
natural frequency. The effects of the shell and liquid parameters on the
resonance frequency and scattering cross sections are analysed.

Yang and Church [28] investigated the large-amplitude oscillations
of cavitation bubbles driven by an ultrasonic field using the Keller—
Miksis equation in conjunction with a Kelvin-Voigt model to describe
viscoelasticity. They found that elasticity increases the inertial cavi-
tation threshold, and subharmonic signals may only be detectable in
certain ranges of radius and pressure amplitude.

Brujan [29,30] investigated spherical bubble dynamics in a com-
pressible viscoelastic liquid using a linear Oldroyd model and a sim-
plified singular-perturbation method to first-order in the bubble-wall
Mach number. He showed that, under conditions comparable to those
existing during cavitation, the effect of fluid rheology on bubble dy-
namics is negligible for values of the Reynolds number beyond a critical
value while the only significant influence is that of liquid compress-
ibility. For larger values of the Reynolds number sound emission was
found to be the main damping mechanism. In both cases, the 1/r law
of pressure attenuation through the liquid was not affected by the
viscoelastic properties of the liquid.

Brujan [30] noted that in order to gain a full understanding of
the behaviour of cavitation bubbles in non-Newtonian liquids, it is
necessary to extend theoretical studies to the case of asymmetric col-
lapse of bubbles since some experiments have indicated that the effect
of fluid viscoelasticity is more evident in bubbles collapsing in the
neighbourhood of a solid boundary, altering the intensity of the liquid
jet directed towards to boundary.

The present study follows a similar approach to the one employed
by Wang et al. [16] and seeks to extend previous studies on modelling
EMBs forced by ultrasound by determining the effects of viscoelasticity
and shell properties on (potentially non-spherical) bubble dynamics.
In a recent study, Wu et al. [31] also consider bubble shell proper-
ties but modelled through a finite element method coupled with a
boundary element method at the bubble-shell interface. Non-spherical
bubble interaction with a solid boundary is considered but the ambient
flow remains invisicid (and irrotational). Similarly, Heidary et al. [32]
consider EMB dynamics adjacent to deformable (blood vessel) walls
including the effects of ultrasound, but, again, the ambient fluid is con-
sidered Newtonian. The present study is therefore distinct by modelling
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the viscoelastic rheology of the ambient fluid in combination with a
shell model and acoustic forcing.

Viscoelasticity is modelled using the Oldroyd B model which is able
to account for both solvent and polymeric behaviour. This model is able
to describe a range of viscoelastic behaviour and can be implemented
within the boundary element methodology, noting certain approxima-
tions (discussed in Section 2 below). The numerical approach is used
to predict the dynamics of an EMB located near a rigid wall follow-
ing its excitation by an ultrasound field. The mathematical models
for spherical EMBs, based on a modified Rayleigh—Plesset equation,
and non-spherical EMBs, using a modified Bernouilli equation, are
described in Section 2. This is followed in Section 3 by a description of
a non-singular boundary element method that removes the singularity
in the kernel. In Section 4 a comparison between the predictions of
the boundary element method and the spherical model are discussed.
Numerical results are presented in Section 5 in which the effects of shell
thickness, viscoelasticity and ultrasound properties on bubble dynamics
near a rigid wall are described. Finally, some concluding remarks are
made in Section 6.

2. Mathematical model

The aim of the present study is to understand how viscoelasticity
of the fluid and the shell affects the non-spherical dynamics of encap-
sulated microbubbles in a viscoelastic fluid forced by ultrasound. Heat
and mass transfer are not modelled explicitly in this paper; conditions
are assumed adiabatic and hence the polytropic law is used to model
the gas in the bubble. Szeri et al. [33] investigated the effects of
heat and mass transfer on bubble dynamics during the violent collapse
of non-spherical bubbles and compared them with the predictions
of a simplified model which excluded these effects. They found that
although the qualitative evolution of the bubble was similar in both
cases, it grows larger and collapses later for the model which includes
the heat and mass transfer.

2.1. Bubble dynamics for spherical EMBs

It is well known that the oscillations of a clean/shell-free, spherical
bubble in an infinite expanse of incompressible fluid can be described
by the Rayleigh—Plesset equation. The Rayleigh—Plesset equation orig-
inates from the work of Rayleigh [34] on the (inviscid) collapse of an
empty cavity or void. Several extensions to the Rayleigh-Plesset equa-
tion have been proposed to describe spherical encapsulated bubbles.
Although the focus of the present paper is on the numerical prediction
of nonspherical bubble dynamics, a model for spherical dynamics is
considered solely for validation purposes.

We assume that the shell is a linear, incompressible viscoelastic solid
of thickness e. Let R(f) denote the outer radius of the shell at time 7.
We assume ¢ < R [35]. A Rayleigh-Plesset equation can be derived by
integrating the radial component of the momentum equation

ou ou 017 aTr'r Trr
o(Guar) =5+ o T M
over [R — ¢, 0) where the radial velocity component is given by
u= RZR

2

(2)

,
In Eq. (1), p is pressure, p is density and 7,, is the radial stress
component. We generalise the contributions of Church [8] and Hoff [9],
for example, to model a bubble in an infinite expanse of viscoelastic
fluid. The radial stress component in the shell (R —¢ < r < R) and

fluid (R < r) is modelled as follows (see Allen and Roy [25,26] and
Church [8]).

ot 2702 23 G0y M R crcR
T = s Xsh or s r ”xhar SIr>s R, (3)

u
2”;+Trr R<r,
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where A, and y,;, are the Lamé constants, p,, is the viscosity of the
shell, y is the dynamic viscosity of the fluid, ¢,, is the radial component
of the strain tensor and 7, is the radial component of the polymeric
contribution to the stress tensor in the fluid. The second Lamé constant
is also known as the modulus of rigidity.

The model assumes that the shell thickness remains constant in
time [36] and does not change with variations in volume. Wang
et al. [16] argued that the simplified model can be used to approximate
the essential effects of the coating since the EMB is usually approxi-
mately spherical during most of its lifetime except for a short period
during the end of collapse. Thus the model is able to provide a good
estimate of the influence of the shell on the bubble, the asymmetric flow
and pressure fields prior to jet development. When liquid jetting starts,
the large asymmetric momentum of the liquid flow and high pressure of
the bubble gas are the dominant effects; the elastic and viscous effects
of the thin coating should be secondary effects.

Church [8] provides an expression for ¢,. in the limit of small
displacements from which the pressure difference, AP, across the shell,
which is the contribution of the integral of the last term in Eq. (1) over
the shell, can be determined
12¢ (Ro

2
= ?> [%;n(R = Ro) + g R],
0

AP = —

where R is the bubble radius at # = 0. The force balance at the gas/shell
interface gives

by |R75 = Pg + Ts,rrlRfe - ggCRfe’ 4

while the corresponding force balance at the shell/liquid interface
yields

Py =Pslr = T prlg — 0,Cr + Tyl - (5)

where p, is the pressure on the liquid side of the interface, p; is the
pressure within the shell, p, is the internal gas pressure, ¢, and o, are
the surface tension coefficients at the two interfaces, and C denotes
curvature. Note that the expression for capillary pressure derived in
the paper of Glazman [37] and implemented in subsequent studies,
e.g. Morgan et al. [35], contained an error which was reported by
Marmottant et al. [10]. The correct expression is employed here.
Using the polytropic law

4 K
Pe < 3 xR3 > = constant, 6)

where « is the ratio of specific heats for the gas in association with
Eq. (4) with initial conditions R = Ry, R=0and T,, = 0 at t = 0 we
can derive the following expression for the internal gas pressure

R 3k
()

where p, is hydrostatic pressure. Finally, integrating Eq. (1) over
[R — €,0) and using the above results we arrive at the modified
Rayleigh-Plesset equation

3k 5
L3, 1 26\ [ Ro 4uR 20
RE+ 2R =1 20 (Zo) IR _Zo
"2 ﬂ[<p0+Ro)<R> R R

2
12, R ,
- = <?0> [¥sn(R = Ro) + psp R]

® (1
+3/ <l>—pw(t)]. (8)
R r
where ¢ = 0, + o, since Cg_. = Cg for a spherical EMB.
2.2. Bubble dynamics for nonspherical EMBs
2.2.1. Assumptions and justifications

Consider an initially spherical bubble whose centroid is a distance
h from a horizontal rigid boundary of infinite extent. The bubble is
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assumed to remain axisymmetric in time since this is generally found
to be the case for small cavitation bubbles [38]. Additionally, it is the
axisymmetric configuration that generates maximum jet speeds and
pressures and thus provides an indication of the maximum potential
damage to nearby surfaces.

The fluid flow is assumed to be irrotational. In order to formulate a
velocity potential, ¢, which satisfies Laplace’s equation, it is necessary
to assume incompressibility. The primary condition needed for this
approximation to be valid is

M? <« 1, 9

where M = U/c is the Mach number, ¢ is the speed of sound in the
liquid and U is the magnitude of variations of the fluid velocity with
respect to both position and time [39]. Note that in the late stages
of collapse when a jet forms the bubble wall velocities can approach
the speed of sound which means that condition (9) is violated and
liquid compressibility can no longer be ignored. These high velocities
also give rise to very large pressures in the fluid. Theoretical studies
by Brujan [40] confirmed that the effects of compressibility can be
important, particularly in the late stages of collapse. However, in order
to gain some appreciation of the bubble motion we follow the majority
of other works in the literature (see Pearson et al. [41], for example),
and assume only a small fraction of bubble kinetic energy is radiated
away as sound, and so impose incompressibility.

Regarding the irrotational assumption, there is a long-held and
widespread misconception that irrotational motion implies inviscid
flow. In a comprehensive series of works, Joseph and co-workers (see
for example, Joseph [42]) have campaigned and repeatedly demon-
strated the utility of both viscous and viscoelastic irrotational flows.
While internal viscous effects may vanish, viscosity and viscoelasticity
are inherent fluid properties and reappear in the governing equations
when applying stress boundary conditions. Such boundary conditions
are typically applied at free-surfaces, where vorticity generation is
weaker relative to no-slip conditions, and hence for free-surface flows
(even with viscous/viscoelastic effects) irrotational flows can provide
good approximations to full Navier-Stokes solutions. Indeed, Batch-
elor [39] (Chap. 5, p. 366) notes that at free-surfaces the variation
in velocity from irrotational across the boundary layer can be rela-
tively small. It has further been shown, depending on the test case,
that the irrotational approximation can hold for surprisingly viscous
flows with good agreement to experiment even for Reynolds number
Re = 0.1 [43]. Clearly, retaining viscous and/or viscoelastic effects
in irrotational flows can provide useful quantitative insight, and is a
modelling approach that has been adopted previously for a range of
bubble/drop problems. For example, Georgescu et al. [44] model a
bursting bubble assuming irrotationality and including viscous effects,
noting the reduction in jet speed and height with increasing viscosity.
Related irrotational flow studies that consider the effect of viscosity
include studies on drop oscillation [45], spherical cap bubbles [43],
the viscous Kelvin-Helmholtz instability [46], and buoyant bubbles
near walls [47]. Rayleigh-Taylor instabilities in viscoelastic (Oldroyd
B) drops have also been studied using viscoelastic potential flow [48]
with good agreement obtained with complete/rotational theoretical
flow analysis. The above works are in addition to the seminal papers of
Blake and co-workers [49-54], amongst others, which, although setting
a zero viscosity, provide additional examples of the capabilities of the
irrotational approximation in modelling real flows.

Following the above justification, we assume that viscous/viscoelas-
tic effects in the fluid bulk are negligible and that the effects of fluid
rheology appear only at the bubble surface, and thus can be modelled
approximately through the bubble interface boundary condition [39].
We reiterate that this approximation has been used to good effect in
studies mentioned above and previously in Lind and Phillips [20,55—
57] and Walters [58].
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2.2.2. The mathematical model

Let us state mathematically the key assumptions of incompressibility
(V -u = 0) and irrotationality (V x u = 0), for a fluid velocity u.
By standard theorems in vector calculus there then exists a velocity
potential, ¢, that satisfies Laplace’s equation:

V2 =0. (10)

We assume the fluid is at rest far from the bubble and hence require
¢ — 0 (and subsequently u — 0) as r — oo. Well-known general
solutions exist for ¢, and in the axisymmetric configuration considered
here, the potential then has the form ¢ ~ 1/r to leading order, for some
radial distance r from the bubble. Note, the potential, velocity, and
stresses decay with distance from the bubble with increasing rapidity,
respectively (due to increasing powers of 1/r). Consider the general
equation of motion,

Du
pE=—Vp+V~r, 11
where 7 is the extra stress. This equation may admit a fully irrotational
counterpart if the divergence of the extra stress can be expressed as
the gradient of a scalar, i.e. if V-7 = Vy, for some scalar y [59]. This
is trivially the case if V -z = 0 and this occurs exactly for a viscous
fluid and a linear viscoelastic fluid for a general potential. We persist
with this assumption here and set V- ¢ = 0 (i.e. viscous/rheological
contributions in the fluid bulk are negligible, as previously argued in
Section 2.2.1). Whilst exactly zero for linear viscoelastic models, in
Section 2.2.3 we make the case for the approximate use of setting V-z =
0 for nonlinear models, given the necessarily rapid decay in nonlinear
terms in the stress with distance from the bubble. Using V¢ = u with
(11), applying ‘at rest’ conditions in the far-field (where pressure is p_,),
for a cavitation bubble with a ‘clean’ (shell-free) surface, the pressure
on the fluid side of the bubble interface, p, is then given by
D¢

P 2
=—p— + = |VP|* + p., 12
Py Dt 2| | 00 ( )

where D/Dt is the material derivative. If we assume there is no mass
transfer through the bubble wall then balancing normal forces across
the surface results in

Pp =Py + 7y, —0C, (13)

where C is the local curvature of the bubble surface, ¢ is the surface
tension coefficient, and p, is the internal pressure of the bubble, given
by

RO 3Kk
Pg(l)=Po<?> , as

where p, is the (initial) internal gas pressure. Note it is through (13)
that any fluid viscoelastic effects influence the bubble by means of
the normal stress component, 7,,. To account for the shell, Eq. (13)
is modified in the following way

Py =Py + Ty, —0C + AP. (15)

Combining (12) and (15) to eliminate p, gives the Bernoulli equa-
tion, which is used to update ¢ on the bubble surface
D¢

pE—§|V¢|2—fm+0'C—AP+poo—pg, (16)

where ¢ is time. To model an EMB using the boundary element method,
a generalisation of the spherical model described in the previous section
is developed. In the case of a spherical bubble, the pressure over the
bubble surface is spatially constant at each instant in time whereas
for a non-spherical bubble the pressure varies locally over the bubble
surface. In the boundary element method, the bubble surface is decom-
posed into a number (N) of segments separated by N + 1 nodes. To
modify the equations for a non-spherical bubble the radius R is replaced
by the local radius R.(s) at each node where s denotes arclength. This
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can be calculated using R.(s) = 1/C(s) where C(s) is the local radius of
curvature defined by

_ (92" (s) = 2/ ()" (5))

(1 ()% + 2/ (s)2)3/?

where r(s) and z(s) are the coordinates of points on the bubble surface.
The derivatives in Eq. (17) can be determined by constructing quintic
spline representations for r(s) and z(s). The pressure at each node is
then calculated using

= + 2 & " 2 + 71,
Py Po RO Rc Rc nn

2
_> [}(Sh(Rc - RO) + Msth]' (18)

Cls) = , a7

Note that the expression for pressure for spherical dynamics is modified
for non-spherical dynamics by replacing R with the local quantity R.(s)
at each node. In the same manner as the interfacial term, the radius R
is replaced by R, (s) and the velocity, R, becomes d¢/dn in the viscous
shell damping term. Accordingly, the Bernoulli equation used to update
¢ for a non-spherical EMB is

3Kk
D¢ 20\ /R \* »p )
— =P — + = | = + =|V
PDr =Peo <po R0>< R 2I 9]

¢ 20
Tt R,

12¢ (Ro\’ 0
+ R—ze <R_0> [)(sh(Rc = Ro) + Hgp a_f] ; (19)
0 C

— 2’13

where #, is the solvent viscosity. The bubble surface must also be
updated in time. Since the bubble surface is a material surface, fluid
particles which begin on the surface will remain there and thus the
surface can be updated in a Lagrangian manner using

Dx

oo Vo, (20)
where x is a point on the bubble surface. To integrate Egs. (19) and (20)
in time, a constitutive equation must be chosen for the stress while the
normal velocities d¢/on are determined by solving a boundary integral

equation.

2.2.3. Modelling viscoelasticity

Finally, a constitutive equation is required to provide a relationship
between stress and strain. One of the aims of this paper is to understand
the effects of viscoelasticity on bubble dynamics. Therefore, fluid rheol-
ogy is modelled using the Oldroyd-B model, which is chosen because it
is sophisticated enough to model a range of rheological behaviour. The
model predicts stress relaxation, constant shear viscosity and quadratic
first normal stress difference. Brujan et al. [60] have shown that shear-
thinning is not important when studying bubble dynamics and collapse.
In experiments investigating the bubble dynamics of shear-thinning
polymeric solutions, they showed that dynamics can be described by
simply taking the infinity-shear viscosity as the viscosity of the polymer
solution.

For the Oldroyd-B model the extra stress ¢ can be decomposed in
terms of its solvent and polymeric contributions

t=1"+1°, 21)
where

v
7% =2n,Vu, 77+ Azf = 2n,Vu. 22)

In these equations 7, 7, and 4 are the solvent viscosity, polymeric
viscosity and relaxation time of the fluid, respectively. The superscripts
s and p denote solvent quantities and polymer quantities. In terms of
the normal stress component 7, the relevant equations for the solvent
and polymeric contributions to the stress become

T, = 21 WL (23)
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D, ¢ ¢
}.F:—Tﬁn—zﬂ.’lﬁnw—Zﬂpﬁ. (24)

As mentioned in Section 2.2.2, there are compatibility requirements
for viscoelastic models to support a general irrotational flow [59] -
namely V - 7 = Vy, for some scalar y. Linear viscoelastic models are
always compatible with any irrotational flow (as V-z = 0), but the more
popular and widespread non-linear models (such as Oldroyd B where
non-linearity appears in the upper-convected derivative) do not support
all potential flows exactly (the radially symmetric Rayleigh-Plesset
flow, however, is a potential flow compatible with any viscoelastic
model). Nevertheless, the importance/prevalence of the non-linear Ol-
droyd B model is such that it may be applied here in an approximate
sense noting that the non-linear terms tend to zero extremely quickly
with increasing distance from the bubble surface. For example, since it
is required that ¢ — 0 with increasing radial distance from the bubble
(i.e. as r —» ), via the analytical general solution for Laplace’s equation
under axisymmetry, velocity gradient and stress terms must decrease
like 1/r% to leading order. The non-linear terms in the Oldroyd B
model must then decrease at least as fast as 1/r°. The model, therefore,
tends to exact compatibility with a general irrotational flow extremely
quickly. This supports the modelling approximation used here that
viscoelastic effects are most significant at bubble surface and negligible
in the fluid bulk.

2.2.4. Summary of modelling assumptions

For clarity, we summarise the modelling assumptions used to de-
scribe non-spherical bubble dynamics in this work, following the de-
tailed discussion and justification above. In particular:

The flow domain is assumed to be axisymmetric.

The flow is assumed to be irrotational, incompressible and isother-
mal.

Viscoelastic effects in the fluid bulk are neglected (V-7 = 0,
everywhere), as this term tends to zero extremely quickly due
to rapid decay in the potential. It is also exactly zero for linear
viscoelastic models in any irrotational case.

Remaining viscoelastic effects appear directly in the stress balance
at the bubble surface, as in viscous irrotational models.

The viscoelastic extra stress is governed by the Oldroyd B model.

3. Non-singular BEM formulation

In the standard BEM formulation, the potential satisfies the bound-
ary integral equation (see, for example, Taib [61])

0
c)p(p) = / <a—¢<q>G(p,q>—¢(q)E<p,q>>dS, 25)
kXe) n 0}’!

where c(p) is a piecewise constant, Q and 002 are the fluid domain and
its boundary, respectively, and p, q are points in the fluid and on the
boundary, respectively. To solve (25) numerically, the bubble surface
is discretised into N segments and (25) is collocated at points p = p;,
i=1,...,N+1,

N Sj+1
CPIPP)+ Y / @2 by, S
=17

N
-3 [ Racwm.aas. 26)
j=17sj n

where s; is the arclength of the bubble surface at node j and the
known quantities are on the left-hand side. Given the potential ¢ at
each node, Eq. (26) can be used to solve for the normal velocities
o¢p(p;)/on. However, when an integral over a segment in (26) contains
the collocation point p;, both G and 0G/dn will possess a singularity.
Following Sun et al. [62], singularities are removed from the boundary
integral equation by defining new variables
d¢

v;(p) = ¢(p;) + <6_> fi(p), 27)
nJi
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fori=1,...,N + 1, where the functions f; are constructed to satisfy
o,
on
Writing an integral equation for the new variables and subtracting it

from (25) a non-singular formulation of the integral equation can be
derived (see [63])

V@) =0, f(p)=0, (p) =1 (28)

0
/ [¢<q>—¢(p,->]‘;—G<p,»,q>dS= / 2 G0
s n s on

+ (?) /(f,-(Q)E(P,»Q) - %(Q)G(Pi,(ﬂ)ds- 29
n/)iJs on on
The careful construction of the functions f;, satisfying the properties
described by (28) ensures that singularities present in G and dG/on are
removed.
For a bubble near a rigid wall, the no-penetration condition at the
wall results in the following form for the functions f;, given by

0o 11 11
P =——l (L1 (1LY 30
Ji®) ﬁ?ﬂi+p?ﬂ_i[<ﬂ ﬂ,->+<ﬁ ﬁ) G0
where
p:\/r2+(z—zD)2, ﬁ:\/r2+(z+zD)2,
B=rn.+(z—zphn,, f=rn+(z+zphn,, 31

and the suffix i indicates evaluation at the point (r;,0,z;). In this
representation p, = (0,0, zp) is chosen to be any point located outside
the domain, provided that n; - (p, —pp) # 0. The point p, is chosen to be
located on the z-axis to ensure that y; defined by (27) are axisymmetric
functions. This ensures that the functions f; are constant in # and
therefore do not appear in the azimuthal integrals contained in (29).
Full details of this derivation can be found in Walters [63] where the
effects of viscoelasticity on a clean, unforced cavitation bubble are
studied using this approach.

To discretise the bubble surface, quintic splines are chosen. The
surface variables, potential and extra stress are represented in each
segment (s;, s;,1) by a fifth-order polynomial. Quintic splines have been
shown to be more accurate and stable than cubic splines [63]. To attain
a prescribed level of accuracy far fewer nodes are required when quintic
splines are used. The BEM formulation above has also been extended to
accommodate changes in bubble topology (i.e. the creation of toroidal
bubbles). In the present study no toroidal bubbles are formed over the
parameter ranges considered, but further information on the procedure
used to model toroidal bubbles (using the vortex ring method) can be
found in Walters [58] and Wang et al. [64].

3.1. Modelling the ultrasound pressure field

To simulate the interaction between ultrasound and an encapsulated
bubble, a Gaussian acoustic pulse is used. The pulse is assumed to
be much larger than the bubble and is thus approximated as being
infinitely large in the direction perpendicular to the wave propagation.
This pulse is incorporated into the model by modifying the pressure
term p. (x,7). The explicit form for the static Gaussian pulse acting
uniformly in space is

Poo(t) = Py + pa SN2 f (¢ — )] exp[—7*1* f2(t — 1,)7], (32)

where p, is the maximum amplitude of the pulse, f is the frequency,
1, is the centre of the pulse and / is the width of the pulse. Fig. 1 shows
the pressure pulse as a function of time at a fixed point in space for
f =2 MHz and p, = 200 kPa.

The above static pulse is used for the validation cases in Section 4.
For the main results in Section 5 the case of a dynamic (travelling)
pulse is considered, where it is assumed that the centre of the pulse,
z,,(1), moves downwards with a constant speed z,(t) = f Ape The
pulse wavelength, 4, is selected to be larger but within an order of
magnitude of R, so that bubble and pulse interact on similar spatial
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Fig. 1. Evolution of a typical Gaussian pressure pulse at a fixed point in space
with p, =0 kPa, p, =200 kPa, f =2 MHz, 1, = 3.0 ps and / = 1/3.

scales, eliciting a highly dynamic bubble response. The pressure due to
the pulse at a node x; = (r;, z;) on the bubble surface at time ¢ is given
by

2
Poo(X;, 1) = Py + Py sin(z; — z,,(1)] exp [—IZ(Z,- - zm(t))2] . (33)

The initial position of the centre of the pulse is chosen to be far from
the bubble and is given by z,,(0) = 27R,,. The low pressure component
of the pulse interacts with the bubble initially causing the bubble to
expand and rise. Subsequently, the bubble moves towards the rigid
wall in response to the high pressure component of the pulse. It is
assumed that the pulse is reflected entirely from the wall (z = 0) and
subsequently interacts with the bubble a second time. The bubble is
therefore affected by the superposition of both incident and reflected
pulses.

3.2. Reynolds and Deborah numbers

Although the governing equations and solutions are presented in
dimensional form, a Reynolds and Deborah number can be defined
to aid interpretation of the results. The pulse frequency can be used
to provide a pertinent characteristic time scale and the initial bubble
radius provides the characteristic length. Accordingly, the Reynolds
(Re) and Deborah (De) numbers can be defined, respectively, by

pwrefR(z)
e= ———
(ng + np)

where o, is a characteristic frequency and R, is the initial bubble
radius. Here we choose w,; =2 MHz and R, = 1 pm (typical real-life ul-
trasound frequency and microbubble radius values, respectively [1,2]).
Considering blood plasma as the ambient fluid in a practical biomedical
context, measurements of viscosity and (maximum) relaxation time
typically yield values of O(1 mPa s) and 0(1074 s), respectively [65].
Accordingly, this paper explores Reynolds numbers around O(1) and
Deborah numbers up to De = 10 (but below the experimental maxi-
mum) to be representative of the physical problem. The viscosity ratio
is defined to be
Ty
g+,

, De = Aw,, 34)

All simulations in this paper were performed with § = 0.8.
4. Comparison of BEM with the spherical model

The numerical results presented in this section use the following
values for the initial internal gas pressure, the ratio of specific heats
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for the gas, shell thickness, surface tension, shell viscosity and elasticity
modulus of shell, respectively, for the encapsulated microbubble, unless
otherwise stated,

po = 101 kPa, x = 1.07, e =1 nm,
0 =0.051 N/m, u,, =1Pas, y, =0.5Pa.

(35)

These values are taken from Wu et al. [66] and were obtained using
a mean square errors best fit for experimentally obtained values for
the phospholipid contrast agent MP1950 filled with a decafluorobutane
gas. This is a thin lipid-shelled contrast agent that prevents the gas from
leaking out of the bubbles. It also introduces an additional elasticity for
the bubbles’ radial oscillations. The shell has a thickness of the order
of a few nanometres.

The system of equations is integrated using a fourth-order Runge—
Kutta time stepping scheme. The time step is chosen to be

t = A lmax

max(D¢/Dt)’
where A 1, is the maximum time step. The time step has been chosen
to deal with the rapidly changing velocity that can occur during bubble
collapse; for large velocities the time step is reduced in order to capture
the high speed dynamics of the bubble. All calculations reported in this
paper were conducted on a desktop computer with a Core i7-10700
CPU and 32 GB RAM.

The predictions of the BEM model are compared with the solution
of the spherical model (8) for an encapsulated microbubble forced by
a Gaussian pulse with parameters: p, = 200 kPa, f = 1 MHz, Re = 6.3,
De = 0 and Ry, = 1 pm in the absence of a rigid wall. Figs. 2 and 3
provide comparisons of the pressure and the equivalent bubble radius,
respectively. The pressure of the pulse for the BEM code is measured at
the north pole of the bubble (the axial node at r = 0 with the maximal
z position value at t+ = 0) and the ‘equivalent bubble radius’ is defined
by

1/3
Ry, = <3V(t)>
4r

where V(¢) is the volume of the bubble at time ¢. Convergence of
the approximation generated using the BEM model with respect to
the number of nodes on the bubble surface, n,, and Ar is also
demonstrated in these figures.

There is excellent agreement between the predictions obtained using
the spherical model and the implementation of BEM with the pressure
pulse acting on the bubble surface simultaneously. For the combination
of discretisation parameters (1 A tray) = (40,1.59 x 107%), (80, 1.59 x
1073), (40,1.59 x 107%), the equivalent bubble radius is only slightly
different from the spherical model shown in Fig. 3. The pressure and
the equivalent bubble radius for the other combinations of n, and
A t.y are in complete agreement with the spherical model. Therefore,
for the remainder of the paper we have chosen to use n, = 40 and
A tpae = 1.59 X 107ps as a good compromise between computational
expense in terms of CPU time shown in Table 1 and accuracy of the
numerical approximation as evidenced by the data shown in Figs. 2
and 3.

Next we consider the situation in which the bubble is allowed to
translate dynamically in response to the imparted energy from the pres-
sure pulse and make comparisons with the static situation in which the
pressure pulse acts on all points on the bubble surface simultaneously.
The comparisons for the pressure at the north pole of the bubble, p, and
equivalent bubble radius, R,,, are shown in Figs. 4 and 5, respectively.
Similar responses are predicted initially. Subsequently, after around
t = 1 ps there is a significant difference in behaviour, with the dynamic
case eventually displaying sustained higher frequency oscillations in
both pressure and equivalent bubble radius. As the bubble moves
downwards in response to the pressure pulse it eventually expands and
oscillates about a steady state equivalent bubble radius almost 50%
larger than its initial value (Fig. 5). This can be seen in the snapshots

(36)

37)

P> max>
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Fig. 2. Comparison of BEM with spherical model with respect to the pressure
at the north pole for an EMB forced by a Gaussian pressure pulse with Re = 6.3,
De=0, Ry=1pm, e =1nm, ¢ = 0.051 N/m, h =0 pm, p, = 200 kPa and

f=1MHz.
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Fig. 3. Comparison of BEM with spherical model with respect to the equiv-
alent bubble radius for an EMB forced by a Gaussian pulse with Re = 6.3,
De=0, Ry =1pm, e =1nm, ¢ = 0051 N/m, h =0 pum, p, = 200 kPa and
f =1 MHz.
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Fig. 4. Comparison of the evolution of the pressure at the north pole for an
EMB forced by static and dynamic Gaussian pulses with Re = 6.3, De = 0,
Ry=1pm, e =1 nm, ¢ =0.051 N/m, A =0 pm, p, = 200 kPa and f = 1 MHz.
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Table 1

Dependence of the CPU time on spatial and temporal discretisation parameters
for the evaluation of EMB dynamics forced by a Gaussian pulse with p, =
200 kPa, f =1 MHz, Re=6.3 and Ry =1 pm.

Method n, At (HS) CPU time (min)
BEM 40 1.59 x 10~ 15
BEM 40 1.59 x 107> 134
BEM 60 1.59x 1073 298
BEM 80 1.59x 1073 528
BEM 40 1.59 x 107° 1067
Spherical 40 1.59 x 10~ 0.04
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Fig. 5. Comparison of the evolution of the equivalent bubble radius of an EMB
forced by static and dynamic Gaussian pulses with Re = 6.3, De =0, R, = 1
pm, £ = 1 nm, ¢ = 0.051 N/m, h =0 pm, p, = 200 kPa and f = 1 MHz.
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Fig. 6. Evolution of bubble surfaces for an EMB forced by a Gaussian pulse
with Re = 6.3, De = 0, Ry = 1 pm, ¢ = 1 nm, ¢ = 0.051 N/m, & = 0 pm,
p4 =200 kPa and f =1 MHz.

of the bubble profiles in Fig. 6 where it can also be seen that the
bubble retains an almost spherical shape throughout the duration of
the simulation.

In the next set of results the maximum amplitude of the pressure
pulse is decreased and the frequency is increased. Figs. 7 and 8 show
the evolution of the equivalent bubble radius, R,,, and centroid, z,
respectively, for p, = 100 kPa, f = 2 MHz, Re = 6.3 and R, = 1
pm. The BEM prediction with the pressure pulse acting at all points
on the bubble surface simultaneously is in excellent agreement with the
spherical model which is to be expected. This further validates the BEM
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Fig. 7. Comparison of the evolution of the equivalent bubble radius of an EMB
forced by static and dynamic Gaussian pulses with the prediction of spherical
dynamics with Re = 6.3, De =0, Ry =1 pm, e = 1 nm, ¢ = 0.051 N/m, h =0
pm, p, = 100 kPa and f =2 MHz.
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Fig. 8. Comparison of the evolution of the centroid, z., of an EMB forced by
static and dynamic Gaussian pulses with Re = 6.3, De =0, Ry =1 pm, £ = 1
nm, ¢ =0.051 N/m, h =0 um, p, = 100 kPa and f =2 MHz.

model. In the more realistic case in which the pressure pulse translates,
differences in the predictions emerge. There is now a delay in the peak
amplitude of the bubble response. The maximum equivalent bubble
radius is also reduced with the slight phase shift in oscillations before
the radius converges to approximately its initial value (see Fig. 7). This
is in contrast to the situation in Fig. 5. The bubble centroid undergoes
several oscillations as the pressure pulse moves downwards eventually
attaining a steady state approximately 0.6 pm lower than its original
position (see Fig. 8).

5. Model predictions

The results presented in this section are concerned with the predic-
tion of the dynamics of a bubble located near a rigid wall of infinite
width along z = 0. The initial radius of the bubble is R, = 1 pm. The
bubble is at rest at # = 0 and the radial component of the polymeric
radial stress tensor is zero initially. Snapshots of a bubble surface in
time are shown as a two-dimensional cut through the bubble, due to the
assumed axisymmetry. The jet velocities, Ve, shown in the figures are
the velocities of the node on the bubble surface that is initially located
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Fig. 9. Influence on shell thickness on the evolution of bubble dynamics for Re = 6.3, De =0, R, =1 pm, ¢ =0.051 N/m, A =5 pm, p, =2 MPa, f =2 MHz and

£ =1nm, 10 nm, 100 nm.

furthest away from the wall (the north pole). The wall pressures, Py,
are calculated at the point (r, z) = (0, 0).

5.1. Effect of shell thickness

The effect of shell thickness on the dynamics of an EMB is investi-
gated in the case when the stand-off distance is » = 5 pm. The pulse
is characterised by the parameters p, = 2 MPa and f = 2 MHz. The
evolution of the bubble centroid, equivalent bubble radius and velocity
of the bubble at the north pole are shown in Fig. 9(a)-9(c), respectively.
The bubble begins to feel the influence of the pressure pulse after about
0.6 ps. For a thin shell with £ = 1 nm, the bubble centroid experiences a
single oscillatory cycle before moving monotonically towards the wall
until it almost touches the wall, at which point the computation stops.

Increasing the shell thickness to ¢ = 10 nm, less translational
movement is seen initially due to the increased resistance of the shell
to deformation. At t =~ 1.5 ps, however, large growth is seen (Fig. 9(b))
due to the bubble entering a low pressure region of the applied pressure
field with the bubble attaining a maximum equivalent bubble radius
approximately three times its initial radius. The bubble is ‘pushed’ by
this forcing pressure towards the rigid wall. As the bubble nears the
wall, the jet velocity increases drastically and the bubble also begins
to reduce in size, resulting in very large wall pressures shown in Fig.
9(c)-9(d). The pressure pulse has a minimal impact on the bubble
dynamics when the shell thickness is increased further to e = 100 nm,
with only modest oscillation in bubble quantities and wall pressure
observed at later times.

For both e = 1 nm and € = 10 nm, the simulations are terminated
when the bubble surface moves to be in close proximity to the rigid
wall. At this point a very thin layer of fluid is trapped between the
bubble and the wall, potentially resulting in numerical instabilities.

These instabilities are primarily responsible for the very large pressures
that are generated at the wall as can be seen in Fig. 9(d) at ¢ ~ 1.75 ps
for e = 10 nm. One technique that has been used to overcome these
numerical difficulties is to numerically attach the bubble to the wall
as described in Ni et al. [67]. The adoption of this technique into the
present model, however, together with modelling contact line dynamics
is left for future work.

Snapshots in time of the bubble surface are shown in Fig. 10 for
1,10,100 nm. The bubble with ¢ = 10 nm undergoes severe
deformation and rapidly moves towards the boundary, expanding as
it does. It grows to an equivalent bubble radius approximately three
times its initial radius over a very short period of time (Fig. 10(b)).
Clearly, this intermediate value of € = 10 nm elicits the most significant
dynamical response, unlike that of ¢ = 100 nm, for example, which
seems to impose an overly restrictive bubble coating, likely at the limit
for which the thin-shell assumption made in Eq. (19) is valid. Snapshots
of the velocity field are shown in Fig. 11 for e = 1 nm at 1.38 x 107 s
and ¢ = 10 nm at 1.74 x 107 s. The velocity vector is normalised to
highlight the direction of the fluid motion. Similarly to the observation
of a jet in Fig. 9(c), at € = 1, 10 nm, the beginnings of a jet are observed
to form above the bubble, generating a flow that collapses the bubble.

£ =

5.2. Effect of fluid viscoelasticity

The viscoelasticity of the fluid is modelled using the Oldroyd B
model. The constitutive Eq. (24) is an evolution equation for the
polymer contribution to the stress. This is solved simultaneously with
Egs. (19)—(20) to update the system in time. In Figs. 12-16 and Figs.
17-18, the effects of changing fluid viscosity are shown for small (De =
0.5) and large (De = 10) Deborah numbers, respectively. Two different
shell thicknesses (¢ = 1 nm and € = 10 nm) are also considered for
De =0.5.
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Fig. 10. Snapshots of the bubble surface for Re = 6.3, De = 0, Ry = 1 pm,
o =0.051 N/m, h=5 pm, p, =2 MPa, f =2 MHz and £ = 1 nm, 10 nm, 100
nm.

For De = 0.5 with € = 1 nm, as the Reynolds number is increased
(corresponding to a lower viscosity) an earlier response to the acous-
tic forcing is observed. This is evidenced by the earlier translational
movement of the bubble towards the boundary (which occurs at near
uniform speed, regardless of Re, see Fig. 12a), earlier (initial) bubble
growth (Fig. 13a) and earlier increase in jet velocities (Fig. 14a). For
Re =1 the bubble grows rapidly after around ¢ = lps with a violent
collapse phase occurring at ¢t ~ 1.8 us (see Fig. 13a). Complete bubble
collapse does not occur within the duration of the computations in
these cases due to the onset of numerical instabilities. These can occur
when the bubble moves so close to the rigid wall that there is only a
very thin layer of fluid between. When this occurs the computations
are terminated before a possible liquid jet (and transition to toroidal
form) forms. The corresponding rigid wall pressures attained seem to

10
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be largely independent of Re at least initially (see Fig. 15a), with
differences in wall pressure only evident in the final stages of near-wall
bubble motion. Snapshots of the bubble surface over time for Re = 1
are shown in Fig. 16 for both shell thickness (¢ = 1 nm and ¢ =
10 nm). Interestingly, increasing the shell thickness appears to reduce
dependence on Reynolds number for all flow quantities considered. In
each case (Figs. 12b- 14b, with ¢ = 10 nm), very similar results are
obtained regardless of Reynolds number value up to ¢ = 1 us. At this
shell thickness, shell response clearly dominates over hydrodynamical
viscous forces.

For the same range of Reynolds numbers, the bubble dynamics
are shown in Fig. 17 for the (higher-elasticity) case De = 10. Note
only one shell thickness (¢ = 1 nm) is considered. On increasing De,
there remains a similarity in the behaviour across Reynolds numbers
to the previous case (De = 0.5). Evidently, despite elevated levels
of fluid elasticity, dynamics are still dominated by viscous and shell
effects. For example, as seen for De = 0.5, the equivalent bubble
radius for Re = 1 becomes four times as large as its initial value
during the simulation (see Fig. 17(b) at t ~ 1.5 us). Similarly, rigid
wall pressures are also notably larger for the Re = 1 case, compared
to Re = 4,10 (Fig. 17(d)) where, eventually, a near-wall numerical
instability is initiated, indicated by the prediction of negative pressures.
Bubble centroid movement is also broadly similar to the De = 0.5 case
from Fig. 12a: for De = 10 when Re = 1 (Fig. 17(a)), the bubble
remains in a low pressure region of the pulse for longer since there
is less translational movement, until + ~ 1.1 us. Subsequently, the
bubble translates relatively quickly towards the wall (whilst growing
and flattening) before reaching the wall, decreasing slightly in size, and
creating the large pressures shown in Fig. 17(d). Upon making contact
with the wall the simulation is terminated. Fig. 18 shows this evolution
of the bubble surface at various times (Re = 1, De = 10).

5.3. Effect of pulse frequency

For a spherical EMB, the effects of pulse frequency were investi-
gated theoretically and experimentally by Wu et al. [66]. The authors
observed that lower-frequency ultrasound induced more vigorous os-
cillations under similar acoustic pressures. The effects of changing the
pulse frequency on a non-spherical EMB are shown in Figs. 19-22 for
a bubble in an Oldroyd-B fluid with Re = 1, De = 0.5, for two different
shell thicknesses (¢ = 1,10 nm). For ¢ = 1 nm, the response to the
pulse is larger for a pulse frequency of f =2 MHz than for most other
frequencies, but responses to f = 4 MHz and f = 5 MHz are quite
significant at early times (before around 1 us). This can be seen by
noting the rapid increase in bubble equivalent radius (and subsequently
larger bubble volume attained, Fig. 19(a)). When f = 2 MHz the
oscillating pressure pulse causes the bubble to shrink slightly after its
initial growth at ¢ =~ 1.75 us. At the lower frequencies (f = 1,2,4 MHz)
there is also larger translational movement (Fig. 20). For ¢ = 10 nm,
the greatest jet velocities (Fig. 21) and wall pressures (Fig. 22) are also
observed when f = 2 MHz (although for these flow measures there
is no clearly dominant frequency when £ = 1 nm). Note that for the
shell model used here the resonant frequency of the bubble, f,, can be
determined analytically (see, for example, [15]) to be

1 1 I3
- 1(s 12,5
27rR0\/p< KPo+ Hodan

which for the chosen parameters yields a resonant frequency value
of approximately 2.8 MHz — close to 2MHz and within the range of
frequencies (1-4 MHz) that tend to elicit the largest responses here.
When f = 1 MHz, the bubble is pushed by the pulse towards the rigid
wall while remaining at roughly the same size (see Figs. 19 and 20).
The simulation is terminated when the bubble becomes too close to the
wall. Increasing the shell thickness to € = 10 nm (Figs. 19(b)-22b) does
not markedly change the qualitative behaviour in this instance: lower
frequencies still tend to produce the most significant response.

fo (38)

20
—@Bk-1),
+R0(K )>
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Snapshots of the bubble surface for f = 4 MHz are shown in Fig.
23 for the two different shell thicknesses. When ¢ = 1 nm the bubble
oscillates until t ~ 1 us before attaching to the wall in a pear-like shape.

The computations are terminated at this point. For € = 10 nm, bubble
dynamics is much more subdued and constrained by the increased shell
thickness, with low amplitude, near spherical oscillation and minimal
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translational movement observed over approximately the same time
duration.

5.4. Effect of pulse strength

So far in this paper, numerical predictions of bubble dynamics have
been presented for a pressure amplitude of p, = 2 MPa since this is
a typical value for pulse strength used in sonoporation. In ultrasound
contrast imaging, however, the pressure amplitudes are typically of

12

the order of 100 kPa. In Fig. 24, results are presented for a fixed
pulse frequency f = 2MHz and a range of pressure amplitudes: p,
200 kPa, 400 kPa, 2 MPa.

The majority of EMBs have been shown [68] to undergo stable,
harmonic oscillations for pressure amplitudes in the range 50 kPa—
200 kPa, with higher amplitudes potentially leading to spontaneous
acoustic emissions and bubble fragmentation. The numerical predic-
tions presented here agree well qualitatively with these experimental
findings since in the lowest amplitude cases considered for which p, =
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200 kPa and p, = 400 kPa, the bubble undergoes stable oscillations
about its initial volume and position. In the case for which p, =2 MPa,
the bubble grows rapidly as it is pushed towards the boundary, with
significant jet velocities and wall pressures predicted. This case has
been discussed earlier (see Figs. 12-15).

5.5. Effect of surface tension

The influence of surface tension on the evolution of bubble dy-
namics is shown in Fig. 25 for Re = 1, De 0.5, h 10 pm,

13

e=1nm, py =2 MPa, f =2 MHz. In particular we have increased and
decreased the default value of ¢ used in this paper by a factor of two.
Changing the value of ¢ in this way has negligible impact on bubble
dynamics. Clearly, Young-Laplace surface tension is not as important
as the properties of the shell in terms of the dynamics.

5.6. Effect of stand-off distance

The influence of initial stand-off distance, 4, on the evolution of
bubble dynamics is shown in Fig. 26 for Re = 1, De = 0.5, ¢ = 1 nm,
Pa 2 MPa, f = 2 MHz, ¢=0.051 N/m. In particular, we present
results for h 5, 10, 15 pm. The evolution of bubble centroid,
equivalent bubble radius and jet velocity shown in Fig. 26(a)-26(c)
exhibit almost linear translational behaviour with respect to h. The
larger the value of & the earlier the bubble begins to respond to the
pressure pulse in terms of the motion of the bubble centroid towards
the rigid wall and the onset of bubble expansion. The jet velocity
experiences similar behaviour before increasing substantially at about
t = 1.8 ps (approximately the point at which the bubble reaches the
rigid wall). This increase is accompanied by a sharp collapse in bubble
volume and a sharp increase in the pressure at the rigid wall. Fig. 26
shows that although the value of 4 influences the transient behaviour
of bubble dynamics, the terminal behaviour of the bubble including the
time at which this occurs is independent of 4.

6. Conclusions

In this paper an encapsulated microbubble in a viscoelastic fluid
forced by a pressure field is modelled using a modified boundary
element method. Viscous and interfacial terms are included to account
for the influence of the shell using an extension of the spherical model
developed by Church [8].
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For a bubble in an infinite fluid, the non-spherical BEM simulations
produce significantly different results to the spherical model. This is
due to the translational movement of the bubble in the direction of the
pressure field and non-spherical deviations. These mechanisms (which
are not able to be predicted by the spherical model) are significant even
at relatively low pressure amplitudes.
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1 pm, 6 =0.051 N/m, h =5 pm and p, =2 MPa: (a) e =1 nm, (b) £ = 10 nm.

We have shown that a large shell thickness reduces the translational
movement and jet velocities of the EMB. This is expected since a
thicker shell provides more stability making the bubble more resistant
to deformation.

The effect of changing fluid viscoelasticity is also investigated by
altering the Reynolds and Deborah numbers. Typically, a decrease in
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fluid viscosity results in an earlier response to the acoustic forcing. At
lower Reynolds numbers, the stabilising effect of viscosity, in combina-
tion with elastic effects, is such that significant growth can be observed
over a longer time duration and interaction with the pressure pulse.
Importantly, for increased shell thicknesses, results appear largely in-
dependent of viscosity (at least for early times) as shell surface forces
dominate over viscous/hydrodynamical. Similar bubble behaviour is
observed at larger flow elasticities, with any potential dominance of
elasticity mitigated by the bubble shell for the parameters considered.

The effects of the properties of the acoustic pulse, viz. pulse fre-
quency (f) and strength (p,), on bubble dynamics have also been
considered. Generally, a larger response is seen for lower frequencies
(especially around 2MHz). A higher pulse strength naturally leads to
higher jet velocities and more distortion of the bubble, and it is found
that the EMB, on approaching the wall, can become quite distorted
with the potential to disintegrate. Indeed, further studies are required
particularly when the bubble moves to be in close proximity to the wall.
In this case the numerical method will need to be modified to model
the attachment of the bubble to the wall so that the simulations can
be continued to obtain an improved understanding of EMB dynamics,
including continuation of any bubble jets and potential formation of
toroidal bubbles (which have not been observed in any cases in this
work).

15

Finally, the influence of surface tension (via the Young-Laplace
law) and bubble-wall stand-off distance are investigated. The role of
surface tension is negligible in the presence of viscoelasticity and the
bubble shell, suggesting this term may be neglected for future studies.
Similarly, the stand-off distance has little effect on the overall dynamics
and terminal behaviour of the bubble, and acts primarily to shift the
start time for bubble-pulse interaction.

In this paper the effects of heat and mass transfer have been
neglected, and, as mentioned, extending the model to allow for bubble-
wall attachment dynamics remains key. Nevertheless, useful quantita-
tive insights have been obtained for realistic ultrasound and biological
fluid parameters, with the stabilising effect of the bubble shell clear
and apparently dominant over fluid rheology. Future work will include
a bubble-wall attachment capability, as well as the modelling ideas of
Szeri et al. [33] to model heat and mass transfer for EMBs forced by
ultrasound in a viscoelastic fluid.

In this paper we have also assumed that the viscoelastic shell
properties remain constant with frequency. However, attenuation ex-
periments [69] have suggested that the shell stiffness and viscosity of
phospholipid EMBs can be frequency dependent at ultrasound frequen-
cies of 10 MHz and above. These shell properties play a crucial role in
determining the linear and nonlinear response to ultrasound and so it



H. Furukawa et al.

Fig. 24. Influence of pulse strength on the evolution of bubble dynamics for Re =1, De =0.5, Ry =1 pm, e =1 nm, .2 =10 pm, f =2 MHz and ¢ = 0.051 N/m.

Fig. 25. Influence of surface tension coefficient on the evolution of bubble dynamics for Re = 1, De = 0.5, Ry = 1 pm, ¢ = 1 nm, 2 = 10 pm, p, = 2 MPa and

f =2 MHz.
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will be important to model this behaviour in the future when studying
applications of ultrasound that utilise frequencies in this range.
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