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Abstract

Sustainable production of fuels and olefins from syngas (carbon monoxide/hydrogen)
through the Fischer-Tropsch synthesis process requires catalysts that deliver high
selectivity, industrial productivity, and minimal CO2 emissions. Current industrial iron
catalysts form substantial CO:z by-product that limits carbon efficiency. We report that
introducing trace amounts (ppm-level) of halogen-containing compounds into the feed
gas can suppress CO2 formation using Fe-based catalysts and boost olefin selectivity over
paraffins and olefin productivity. Co-feeding 20 ppm CH3Br over an iron carbide catalyst
decreased CO: selectivity to <1% and increased olefin selectivity to ~85% among all
carbon-containing products. Surface-bound halogens modulated the catalyst surface
structure and selectively inhibited pathways responsible for CO: generation and olefin
hydrogenation. This strategy provides a simple, scalable, and broadly applicable route

for carbon-efficient syngas conversion.
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Developing efficient catalytic systems for direct a-olefin production from syngas (CO/H»)
via Fischer-Tropsch synthesis (FTS) is essential to address the growing global demand for
olefins and is of importance for regions with limited petroleum resources (/-3). A key challenge
is the design of low-cost, non-noble-metal catalysts that operate under moderate conditions that
also minimize CO> emissions to ensure sustainable carbon utilization (4-8). Among current
approaches, iron-based Fischer-Tropsch to olefins (FTO) catalysts (9-/7) and oxide-zeolite
(OX-ZEO) tandem systems (2, 12, 13) have emerged as leading candidates. However, iron-
based catalysts often yield only moderate olefin selectivity, whereas OX-ZEO systems suffer
from high CO; selectivity (32 to 45%) and limited olefin space-time yields (/2). These
limitations constrain overall carbon efficiency and hinder their large-scale industrial
implementation. Thus, there is an urgent need for new catalytic systems that combine ultra-low

CO; selectivity, high a-olefin space-time yields, and robust long-term stability.

Iron-based catalysts are particularly attractive for FTS because of their low cost, natural
abundance, tunable product distribution, and high space-time yields of the products. Currently,
more than two-thirds of the global FTS capacity (15.70 million tons/year) relies on iron
catalysts. However, one drawback is their intrinsic promotion of the water-gas shift (WGS) and
Boudouard reactions, resulting in excessive CO; formation that reduces carbon utilization
efficiency (/4, 15). The formation of CO2 not only contributes to greenhouse gas emissions,

but also depletes valuable carbon feedstocks.

Suppressing CO; formation in Fe-based FTS remains a major challenge. Previous
strategies to inhibit the WGS reaction have focused on limiting water re-adsorption by
shielding iron catalysts with hydrophobic silica coatings (//) or graphene layers (&), which
effectively reduces CO> selectivity to below 13%. More recently, modified pure-phase iron
carbide catalysts have achieved CO> selectivity as low as ~10% (70, 16), but only under
conditions of low CO conversion and limited olefin productivity (~0.6 g-gea'-h!) (10).
Therefore, the development of catalytic systems that concurrently minimize CO» formation and
maximize a-olefin productivity under practical conditions remains a critical and unmet
challenge.

We demonstrate that the introduction of parts-per-million (ppm) concentrations of
3
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halomethanes into the syngas feed fundamentally transforms the catalytic behavior of Fe-based
FTS systems. Specifically, co-feeding 20 ppm of CH3Br effectively suppressed CO» formation,
reducing CO; selectivity to < 1% and dramatically enhancing the olefin/paraffin (o/p) ratio
from 1.3 (on unpromoted y-FesC:) to as high as 13. Under optimized conditions, this strategy
achieved an olefins space-time yield of 1.08 g-gea ! -h™! with an unprecedented olefin selectivity
of 85.2%, calculated relative to all carbon-containing products. Importantly, this simple and
easily implementable halomethane-promotion strategy is compatible with a broad range of Fe-
based FTS catalysts, including commercial formulations. Mechanistic insights from transient
kinetic analyses and density functional theory (DFT) calculations reveal that surface-bound
halogens modulate the properties of the catalyst and selectively inhibit key side reactions—
specifically, the Boudouard reaction and WGS reaction—thereby suppressing CO; generation.
We introduce a simple, yet robust and broadly applicable strategy to achieve sustainable and

highly efficient olefin/liquid fuels production with exceptional carbon efficiency.

The impact of halogen over Fe-based FTS process

A series of iron carbide catalysts (e-Fe2C, 6-FesC, h-Fe;Cs, y-FesCy) were synthesized
following established protocols (/7, 18). The unpromoted y-FesC» catalyst, one of the most
active phases for FTS, exhibited a CO; selectivity of 31.4% at a CO conversion of 93.3% (Fig.
1A) (/9). The primary products were Ca+ olefins and paraffins with an o/p ratio of 1.3 under
typical FTS conditions (H2/CO = 2, 300 °C, 20 bar, 12,000 mL-ge!-h"). The native iron
carbide catalysts favored CO, formation and exhibited similar selectivity toward olefins and

paraffins.

We then introduced 20 ppm of halomethanes (CH3X, X =F, Cl, Br, and I) into the syngas
during FTS. CH3F reduced CO; selectivity to 27.8%, accompanied by a slight increase in olefin
content. A progressive trend was observed from CH;3F to CH3Cl, CH3Br, and CH3l, with CO»
selectivity continuously decreasing (Fig. 1 A and Table S1). Notably, cofeeding CH3;Br or CH3l
suppressed CO> formation, yielding near-zero CO: selectivity (~1%). Concurrently, olefin

selectivity was substantially enhanced, with the o/p ratio rising to ~7 in the case of CH3Cl.

4
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These results demonstrate that co-feeding trace amounts of halomethane effectively suppressed

CO; production while promoting olefin selectivity in Fe-based FTS catalysts.

We next investigated the effect of CH3Br concentration in the syngas on performance of
FTS. Even a low co-feed concentration of 3 ppm CH;3Br markedly suppressed CO> formation,
reducing its selectivity to 4.2%, decreasing CO conversion from 89.4% to 41.1%, and
increasing the o/p ratio from 1.0 to 6.1 (Fig. 1B, Figs. S1, S2 and Table S2). Chain propagation
remained unaffected, and the olefin selectivity was much higher than that obtained with the
unmodified y-FesC; catalyst (81% vs. 23%; Fig. 1B, Figs. S3, S4 and Table S2). The decrease
in CO conversion mainly came from the inhibition of the WGS reaction (Figs. S2), which
accounted for >70% of the reduction in CO conversion, in case of 3 ppm CH;3Br co-feeding
(Table S3). Although previous studies reported that co-feeding HCI or HBr can reduce CO>
selectivity (20), they also observed a pronounced decline in FTS activity and limited CO»
suppression (Fig. S5). In contrast, CH3Br co-feeding in this work enables near-zero CO-
formation with minimal loss in FTS activity (Fig. S5 and Table S3). As the concentration of
co-fed CH3Br increased, CO; selectivity progressively decreased—dropping to < 1% at 50

ppm—whereas olefin selectivity showed a slight increase (Fig. 1B).

This halogen modulation strategy was further extended to other iron carbide phases,
including e-Fe>xC, 6-Fe;C and h-Fe;Cs (Fig. S6) (17, 18). In all cases, ppm concentrations of
CH3Br co-feeding suppressed CO» selectivity to < 5% and enhanced o/p ratios by factors of 3
to 4 (Fig. 1C), underscoring the broad applicability and robustness of the approach. Importantly,
when we applied this strategy to a commercial iron catalyst (Commercial Fe-1), COz selectivity

could be suppressed to <1% (Fig. 1C).

To benchmark this halogen co-feeding method, we performed comparative analyses with
state-of-the-art olefin synthesis catalysts, that is, Fe-, Co- based FTO catalysts and OX-ZEO
systems (8-11, 13, 16, 21) (Fig. 1D, Figs. S7to S11 and Tables S4 to S8). Notably, the y-FesC>
catalyst with Br co-feeding (denoted y-FesC>-Br) exhibited superior olefin yield (~48% of total

carbon-containing products) while maintaining ultralow CO> selectivity (<3%). In contrast,
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previously reported Fe-, Co- based, and OX-ZEO catalysts typically exhibited CO; selectivity
exceeding 10% or had a relatively low olefin yield (Fig. S12 and S13).

Our strategy overcame the traditional trade-off between high olefin yield and low CO»
selectivity, demonstrating unprecedented performance in the syngas to olefins reaction. A plot
of ratio of olefin-to-COz selectivity (Solefins/Sco2) versus olefin space-time yield (STY olefins)
shows the overall catalytic performance (Fig. 1E). Although OX-ZEO catalysts offer good
olefin selectivity among hydrocarbons, their low STY oefins and high CO> emissions constrain
their practical utility (/3). Similarly, Ru- and Co-based systems suffer from low STY olefins
under conventional FTS conditions (27, 22). In contrast, y-FesC»-Br (Cl) catalysts delivered
both high STYoefins and favorable olefin-to-COz ratios. These results establish halogen co-
feeding as an effective solution that enables high olefin space-time yield and high olefin yield
with low COz emissions in FTS. Importantly, if Cs+ olefins are used as liquid fuels, this strategy
could also benefit conventional Fe-based FTS by blocking CO; emissions in standard FTS

Processes.

We also tracked the fate of CH3Br in the product stream. Of the 20 ppm CH;3Br introduced,
approximately 70% (14.2 ppm) was recovered as unreacted CH3Br in the outlet gas, with less
than 6 ppm detected in the aqueous phase. Only trace amounts of Br (<1 ppm) were found in
the oil-phase products, indicating negligible incorporation into the hydrocarbon products (Fig.
S14 and Tables S9 to S11). Notably, although only a small amount of Br remained on the
surface of the iron catalyst (Fig. S15 and Table S12), it exerted a pronounced effect on the

overall catalytic performance.

Structure of y-FesC: Catalyst with CH3Br co-feed

Co-feeding halomethanes induced a dramatic shift in the reaction behavior of Fe-based
FTS and largely suppressed CO> emissions (Fig. S16). We hypothesized that halogen species
played a critical role in modulating the structure of the working iron catalyst. To probe the
structural consequences of halogen exposure, we characterized the y-FesC, catalyst after

CH;3Br-co-feeding reaction (termed as y-FesCz-Br-spent). The catalysts with or without co-
6
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feeding halogen had similar morphologies and particle sizes (Fig. S17). X-ray diffraction (XRD)
analysis revealed that, in addition to the dominant y-FesC> phase, y-FesC>-Br-spent exhibited
new diffraction peaks associated with Fe3O4. In contrast, the control sample (y-FesCo-spent,

without CH3Br) retained dominantly the carbide phase (Fig. 2A).

These results were corroborated by Mdossbauer spectroscopy, electron microscopy, and
extended X-ray absorption fine structure (EXAFS) fitting (Figs. S18 to S24 and Tables S13 to
S16). X-ray photoelectron spectroscopy (XPS) further confirmed the presence of surface FeOy,
with detectable iron oxide species on both spent samples (Fig. 2B). The presence of FeOy is
commonly associated with the WGS reaction and therefore the CO» production in Fe-based
FTS (23, 24). Thus, the role of halogen was not to suppress the formation of iron oxides during

the reaction.

Notably, elemental analysis, Br K-edge X-ray absorption near-edge structure (XANES),
and Br 3d XPS revealed residual bromine species on y-FesCz-Br-spent (Fig. 2C and Fig. S25).
The Br K-edge XANES spectra exhibited fingerprinting features similar to those of iron
bromide, indicating strong Fe-Br interactions like that in iron bromide. High-angle annular
dark-field scanning transmission electron microscopy (HADDF-STEM) imaging coupled with
energy-dispersive X-ray spectroscopy (EDS) mapping showed homogeneous Br distribution
across both Fe3O4 and y-FesC, domains (Fig. 2D and Figs. S26 and S27), demonstrating

homogeneous co-localization of Br and Fe species.

It remained uncertain whether Br was incorporated into the bulk lattice or was distributed
on the surface. XRD showed no evidence of a new bromine-containing iron phase, suggesting
a surface-bound Br species was more likely (Fig. 2A and Fig. S6). To confirm this hypothesis,
we performed variable-energy XPS, which revealed substantial Br surface enrichment on the
x-FesCa-Br-spent catalyst (Fig. S28). High-sensitivity low-energy ion scattering spectroscopy
(HS-LEIS) is a surface-sensitive technique (25). From the HS-LEIS depth profile of the catalyst,
we observed that Br was primarily enriched on the surface of the catalyst (Fig. 2E). Collectively,

these findings strongly suggest that surface-bound Br modulates the chemical environment of
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active sites of Fe catalysts (both the iron carbide and oxide domains), suppressing CO>

formation and enhancing olefin selectivity.

Inhibition mechanism of Br on CO: and paraffin formation

The reaction networks of FTS process depicted in Fig. 3A were used to understand the
mechanistic origin of this inhibition effect. Aside from the main reactions leading to the
production of olefin/paraffin, there are two major side reactions that produce CO2: WGS
(highlighted in red) over iron oxide and Boudouard reaction (2CO — C + CO», highlighted in
blue) over iron carbide (14, 26). Although the primary products of Fe-based FTS were olefins,
undesirable hydrogenation of olefins could lead to the production of less valuable paraffins

(C,H2,+ Hz — C,Hau+2, highlighted in purple) and a low o/p ratio (27).

On y-FesC, catalysts, both the Boudouard reaction and WGS routes contributed
appreciably across typical reaction temperatures, with WGS reaction becoming more
pronounced at high conversions (Fig. S29) (15, 24, 26, 28). The dramatic suppression of CO>
formation observed in halogen-modified FTS suggested a fundamental alteration of reaction
pathways by the Br on the surface of iron catalysts (Fig. S30). To elucidate the underlying
mechanism, we investigated both experimental reactivity by using transient kinetic analyses,
surface-sensitive characterizations, as well as computational modeling of reaction energetics,

focusing on these two dominant CO;-producing reactions in Fe-based FTS.

Both iron oxides (e.g., Fe304 and FeOy clusters) and iron carbides may contribute to the
observed WGS activity (23, 26, 29-31). In this study, Fe3O4 was selected as the model WGS
catalyst under our conditions, while acknowledging that iron carbides can also play a role
depending on temperature and surface state. We found that CH3Br co-feeding could suppress
WGS activity by over two orders of magnitude (Fig. 3B and Fig. S31). Given the established
WGS mechanism wherein H>O dissociates to generate surface hydroxyl (OH*), which then
reacts with CO to form COz (Figs. S32 and S33), we first checked the adsorption and activation
behavior of H>O on catalysts. Water temperature-programmed desorption (H>O-TPD)

experiments revealed that both Fe3Os and Br-pretreated Fe3Os (termed FesO4-Br) showed

8
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similar H,O adsorption abilities (desorbed at ~120 °C). However, H> formation, an indicator
for H>O dissociation, was active on Fe3O4 but completely absent on Fe3O4-Br (Fig. 3C). In-situ
XPS further confirmed this suppression effect, showing minimal OH* production on Fe3;04-Br
compared to Fe3O4 (Fig. 3D; Figs. S34 and S35; Tables S17 and S18). Diffuse reflectance
infrared Fourier transform spectroscopy (DRIFTS) and transient kinetic analysis (TKA)
experiments corroborated this inhibition effect (Figs. S33 and S36). These results established
that Br disrupted the key step of H>O dissociation in WGS reaction, then effectively blocking

CO; generation through this pathway.

These experimental findings were supported by DFT calculations on Fe3O4 (111). In the
absence of Br, H>O can readily dissociate (H2O — OH* + H*) with the activation barrier (Ea2)
of 0.73 eV. However, increasing Br coverage from 6= 1/5 to 1/3 raised this barrier to Ea >
1.2 eV. At ahigher coverage of ;= 2/5, H>O dissociation was completely inhibited (Fig. S37).
These findings aligned with TPD and XPS results, suggesting that surface-bound Br passivates

reactive Fe sites and disrupts WGS reaction.

We then considered the Boudouard reaction. We performed CO pulse experiments on y-
FesC; and y-FesC»-Br catalysts. Both catalysts exhibited similar CO adsorption properties (Figs.
S38 and S39). However, CO> formation was observed on y-FesC,, which was nearly
completely suppressed on the y-FesC,-Br in CO-pulse, indicating that the Boudouard reaction
was largely inhibited (Fig. 3E). Moreover, Ar — C'830 TKA experiments also showed no
production of C'®0'¥0 and C'80, on y-FesC-Br but formation of C'°O after introduction of
C'®0, which may result from the recombination of dissociatively adsorbed CO (Fig. 3F).
Notably, introduction of *CO to ®0-precovered surface yielded *C'®O on y-FesC»-Br (Fig.
S40), confirming that CO dissociation remained active. Temperature-programed surface
reaction (TPSR) experiments using a mixture of C'®0O/He/Ar as feed further substantiated this
selective blocking effect (Fig. S41). These results suggest that Br selectively inhibits CO*-O*
recombination step while preserving CO dissociation activity, which were in good agreement

with DFT calculations (Fig. S42).

From the results presented above, we conclude that surface Br species suppressed both

WGS and Boudouard reactions. Another question is how Br modulated the o/p ratio in the

9
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reaction. Although promoters like alkali metals or Mn for Fe-based catalysts are typically
required to achieve a high olefin selectivity (/6, 27, 32, 33), we added no alkali metal or Mn
in the current high-olefin-selectivity y-FesC>-Br catalysts. To understand the origin of the
ability of y-FesC»-Br to achieve high o/p ratio, we used propene hydrogenation as a probe to
study the olefin hydrogenation process. Propene pulse experiments in H> showed a dramatic
reduction in propene hydrogenation activity on y-FesC-Br as compared to y-FesCz (Fig. 3G),

which indicated that surface Br species suppressed the olefin hydrogenation reaction.

Weakened H: activation ability on the Br-modified surface could be one reason for high
olefin selectivity, but this explanation appeared unlikely, because hydrocarbon formation was
still observed. Another possibility is that the olefin hydrogenation step is suppressed. To further
substantiate this point, we conducted temperature-programmed surface reaction (TPSR)
experiments using a C3Hes/H2/D2/Ar = 1/82/10/7 mixture feed. HD formation through H-D
exchange was used as a probe to monitor H> activation. On y-FesCa, both H-D exchange and
C3He hydrogenation increased with temperature, reaching near-complete C3Hs conversion at
around 180 °C. In contrast, on y-FesC»-Br, although activation of Hz was slightly suppressed
at low temperatures and became very active above 200 °C, and no detectable hydrogenation of
C3Hg was observed even at temperatures up to 300 °C (Fig. 3H). These results demonstrated

that the high olefin selectivity came from inhibition of olefin hydrogenation ability by Br.

DFT simulations confirmed that Br altered hydrogenation energetics. On clean y-FesCa
(100), the two-step hydrogenation of C3Hg proceeds with low barriers (0.22 and 0.26 eV),
facilitating paraffin formation (Fig. 4A). With g, = 1/3, the barrier of first step (C3He* + H*
— C3H7*) increased to 0.66 eV, surpassing C3Hg desorption energy, making desorption more
favorable than hydrogenation. Detailed electronic analyses (Figs. S43 to S45) and optimized
transition state geometries (Figs. S46 and S47) revealed that surface-bound Br species not only
electronically modified Fe active sites but also introduced substantial steric hindrance. This
steric effect obstructed the H* approach and altered the Fe-CsHg binding geometry. As a result,

secondary hydrogenation was selectively suppressed under Br-modified conditions.

Finally, we examined the catalytic stability of the y-FesC» catalyst with 20 ppm CH3Br

co-feeding, a critical measurement for practical applications. As shown in Fig. 4B, the catalyst
10
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exhibited excellent stability for > 450 hours. At a steady CO conversion of ~ 35%, the system
maintained a remarkably high C>+ olefin selectivity of > 80%. Notably, the formation of
undesired by-products such as methane and CO; remained minimal throughout the test, with
CO; selectivity consistently < 1.5%. Such sustained performance—combining high olefin
selectivity and near-zero CO> emissions has not been previously reported in the century-long
development of Fe-based FTS. These findings underscore the transformative potential of

halogen co-feeding for enabling low-emission, high-efficiency olefin production at scale.

Conclusion

We demonstrated a simple yet powerful strategy to enhance FTS to olefins performance
by co-feeding ppm-level of CH3Br into Fe-based catalytic systems. Surface-bound Br species
electronically interacted with Fe active sites, selectively inhibiting H,O dissociation, CO*-O*
recombination, and olefin hydrogenation, while largely preserving CO and Ho>
adsorption/activation. The strategy reported in this work enables a near-zero-CO, pathway for
highly selective olefin (or liquid fuels) production in Fe-based FTS processes that achieved
high a-olefin selectivity and maintained industrially competitive activity, surpassing other

reported low-CO> systems (Table S8).

Although halogen-containing co-feed could pose challenges in scaled-up industrial
reactors, similar strategies have been adopted in commercialized processes, such as chlorine
co-feed silver-catalyzed ethylene epoxidation process (34, 35). Coupled with CO»-free
gasification reaction (e.g., CH4 + 3CO2 = 4CO + 2H>0) and green hydrogen from water
electrolysis (36), the process developed in this work could offer a viable pathway toward

carbon-neutral coal-to-liquid/olefins or gas-to-liquid/olefins processes.

11
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Figure 1. Impact of halogen co-feeding on catalytic performance in FTS. (A) Effect of co-
feeding halomethanes (CH3F, CH3Cl, CH3Br, and CH3l, 20 ppm) on CO conversion and
product selectivity in FTS reaction over y-FesCs catalyst. Reaction conditions: 300 °C, 20 bar,
12000 mL-gea!-h!, H2/CO = 2. (B) Dependence of CO conversion, selectivity of CO2 and
olefin on the concentration of co-feeding CH3Br (0-50 ppm). Reaction conditions: 300 °C, 10
bar, 12000 mL-gea!-h™!, Ho/CO = 2. (C) Influence of olefin/paraffin ratio and CO; selectivity
for different iron carbide catalysts (e-Fe2C, h-FesCs, y-FesCz, and -Fe;C) and commercial Fe-
1 under 20 ppm CH3Br co-feeding. Reaction conditions: 300 °C, 10 bar, H»/CO = 2, CO
conversion controlled at ~30% for all data points. (D) Comparison of catalytic selectivity and
olefin yield of y-FesCs catalyst with CH3Br co-feed against representative literature-reported
catalysts. The y-FesC»-Br catalyst demonstrates simultaneous ultra-low CO; selectivity and
higher olefin yield compared to state-of-art catalytic systems. (E) Plot of olefin-to-CO-
selectivity ratio (Solefins/Sco2) against olefin space-time yield (STY olefins) on y-FesCo-Br (this
work) and various catalytic systems from literature: OX-ZEO (12-13, 37-41) (blue triangles),
Fe-based (8-11, 16, 20, 27, 32, 42-45) (yellow circles), Co-based (21, 46-47) (purple circles),
and Ru-based (22) (green squares), and this work (red circles). Note that the selectivity of
olefins is based on all carbon-containing products. The shaded region highlights the exceptional

catalytic performance of the y-FesC>-Br catalyst.

12
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Figure 2. Structure of y-FesC:z and y-FesCz-Br catalysts. Synchrotron XRD patterns (A) and
Fe 2p XPS spectra (B) of pristine and spent y-FesC, and y-FesC»-Br catalysts. (C) Br K-edge
XANES spectra of y-FesC>-Br-spent catalyst compared with reference bromide compounds.
(D) HAADF-STEM image and corresponding EDS mapping of Fe and Br distributions in y-
FesCa-Br-spent catalyst. (E) HS-LEIS depth profile of y-FesC,-Br-spent catalyst. Reaction
conditions: 100 mg catalyst, 300 °C, 10 bar, SV = 12000 mL-gcs'-h™!, Ho/CO = 2. y-FesCa,
syngas; y-FesC»-Br, syngas with co-feeding 20 ppm CH3Br. Catalysts were pretreated at 280 °C
and 1 bar for 6 h, SV = 12000 mL-gea ' -h™!, Hy/CO = 2 (y-FesCz, syngas; y-FesCz-Br, syngas
with co-feeding 20 ppm CH3Br).
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Figure 3. Mechanism of Br in regulating the catalytic behavior. (A) The reaction pathways
in FTS network. (B) Inhibition effect of CH3Br co-feeding on CO; formation in water-gas shift
reaction over Fe3;Og4 catalyst. Reaction conditions: 50 mg catalyst, 300 °C, 1 bar, 10 mL/min
CO/H20/Ar = 2/2/96 switched to CO/H2O/Ar = 2/2/96 with co-feeding 300 ppm CH;3Br. (C)
Temperature-programed desorption of H>O over Fe3Os and Fe3Os4-Br catalysts. Reaction
conditions: 100 mg catalyst, 1 bar, pretreated in 20 mL/min H>O/Ar = 2.5/97.5 at 50 °C; then
switched to 20 mL/min Ar, purging for 20 min, followed by temperature ramping from 50 °C
to 300 °C at 10 °C/min. (D) Near ambient pressure XPS results of Fe3O4 and Fe3Os-Br catalysts
at different temperatures in 1 mbar H>O. Conditions: catalysts were pretreated at 400 °C in Ar
for 1 h, cooled to room temperature, introduced to 1 mbar H>O and treated at different
temperatures. (E) CO pulse experiment over y-FesC» and y-FesC:-Br catalysts. Reaction
conditions: 100 mg catalyst, 300 °C, 1 bar, 5 mL/min Ar, 250 uL. sampling loop, pulse gas:
CO/He = 0.5/99.5. (F) Transient kinetic analysis of Ar — C'*0O/He/Ar = 5/15/80 over y-FesC»
and y-FesC»-Br catalysts. Reaction conditions: 50 mg catalyst, 300 °C, 1 bar, 10 mL/min Ar
switched to C'®0O/He/Ar = 5/15/80. (G) Pulse experiment of C3He in Hy for y-FesCz and y-
FesC,-Br catalysts. Reaction conditions: 50 mg catalyst, 300 °C, 1 bar, 20 mL/min H, 250 uL
sampling loop, pulse gas: C3He/Ar/He = 3/3/94. (H) Temperature-programed experiment of
CsHs hydrogenation for y-FesC, and y-FesCo-Br catalysts with co-feeding D». Reaction
conditions: 50 mg catalyst, 1 bar, 10 mL/min CsHe¢/H2/D2/Ar = 1/82/10/7, temperature ramping
from 50 °C to 300 °C at 10 °C/min.
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12

Figure 4. Theoretical investigation of olefin hydrogenation inhibition mechanism and
catalytic stability of y-FesC: catalyst with CH3Br co-feed in FTS process. (A) DFT
calculated reaction energy profiles for propene hydrogenation on clean and Br-covered (6: =
1/3) x-FesC, (100) surfaces. Reaction intermediates and transition states illustrate two
hydrogenation pathways, through CH3CH>CH: (solid line) and CH3CHCH3 (dashed line),
highlighting increased hydrogenation barriers upon Br modification. (B) Catalytic stability and
product selectivity of the y-FesC»-Br catalyst. Reaction conditions: 100 mg catalyst, 300 °C,
5 bar, H»/CO = 2, co-feeding 20 ppm CH3Br. The catalyst exhibited stable CO conversion and
sustained high selectivity toward Cz+ olefins with minimal CH4 and COz byproduct formation

over 450 hours at two different space velocities (12000 and 6000 mL-gea!-h).
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