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This important and creative study finds that the uplift of the Qinghai-Tibet Plateau - via its resul-
tant monsoon system rather than solely its high elevation — has shifted avian migratory directions
from a latitudinal to a longitudinal orientation. The authors have expanded and clarified their lines
of evidence (including an enlarged tracking set and explicit caveats on species-level eBird infer-
ence), such that the central claims are now solid. The conclusions — that monsoon dynamics, rather
than elevation per se, are most consistent with observed longitudinal reorientation — illustrate how
large, community-sourced and climate-model datasets can inform continent-scale shifts in migratory
behaviour over time that complement traditional approaches.

Abstract The uplift of the Qinghai-Tibet Plateau is one of the greatest geological events on
Earth, pivotally shaping biogeographic patterns across continents, especially for migratory species
that need to overcome topographical barriers to fulfil their annual circle. However, how the uplift
influences animal migration strategies remains largely unclear. We compare the current flyways of

50 avian species migrating across the plateau with those reconstructed before the uplift as a coun-
terfactual. We find that the major effect of the plateau uplift is changing avian migratory directions
from the latitudinal to the longitudinal. The monsoon system generated by the uplift rather than the
high elevation per se shapes those changes. These findings unveil how an important global geolog-
ical event has influenced biogeographic patterns of migratory birds, yielding testable hypotheses for
how observed avian distributions emerge.

Introduction
The Qinghai-Tibet Plateau (QTP) is the most extensively elevated surface on Earth, with an average
elevation of ~5 km over an area of 2.5 million km? (Ding et al., 2022). The uplift of the plateau
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exerts profound influences on the environment and determines the biogeographic boundaries both
within and across continents (Ficetola et al., 2017). The unique geological developments of the QTP,
especially its high elevation, are believed to have influenced various taxonomic groups continuously
(Favre et al., 2015; Miao et al., 2022, Mi et al., 2021). However, the plateau's uplift also brings up
Asian monsoons, one of the most vigorous phenomena in the global climate system (Wu et al., 2022,
Zhang et al., 2019). The Asian monsoons dominate large areas extending from the Indian subcon-
tinent eastwards to Southeast and East Asia (Yang et al., 2021). Their evolution and variability have
caused significant variations in the redistribution of water and heat via a series of natural processes,
such as drought, flood, and heat waves (Wu et al., 2022). Given the large impacts of Asian monsoons
on climate and environments, they can reconfigure the spatial patterns of biodiversity and ecosystem
processes. This entails movement patterns that shape the effects of the environment on organisms
(Rubenstein and Hobson, 2004; Cox et al., 2022, Kearney et al., 2021). However, owing to the
difficulties in studying the complex effects caused by monsoons, most studies that explored the influ-
ence of the QTP just conceived the plateau as an orographic barrier (Zhan et al., 2011, Zhao et al.,
2023; Lei et al., 2014). The role of monsoons in shaping species movement patterns remains poorly
understood.

Animal movement underpins species’ spatial distributions and ecosystem processes. One important
animal movement behaviour is migration between breeding and wintering grounds (Wilcove and
Wikelski, 2008; Somveille et al., 2021; Zhang et al., 2023). Those migratory journeys have moti-
vated a body of different approaches and indicators to describe and model migration, including
migratory direction, speed, timing, distance, and staging periods (Chen et al., 2024; Gu et al., 2024).
Amongst them, the migratory direction is one of the most prominent indicators for migration patterns,
evidenced by a majority of animals migrating latitudinally between wintering and breeding areas (Gu
et al., 2024). This can be explained by not only the fact that wintering sites are usually located in the
warmer south (e.g. Tropic) and breeding sites located in the cooler north (e.g. Arctic), but also the
earth’s magnetic fields that are arguably believed to affect the latitudinal migration of animals (Guerra
et al., 2014; Gulson-Castillo et al., 2023; Wynn et al., 2022, Takahashi et al., 2022). However, the
migratory direction can be changed from latitudinal to longitudinal when the animal faces environ-
mental changes (Gu et al., 2021; Dufour et al., 2021, Lehikoinen and Virkkala, 2016; McCaslin and
Heath, 2020; Briedis et al., 2020).

Environmental fluctuations in the QTP are relatively small over the longue durée after the final-
stage uplift (Li and Fang, 1999), but few studies have evaluated how environmental heterogeneity
across the QTP might influence the migratory behaviour of birds (but see migratory pattern descrip-
tions, e.g. Zhao et al., 2024, Pu and Guo, 2023). Yet it remains unclear whether and how these shifts
systematically alter species’ migration patterns rather than a simple assumption that the QTP birds
exploit resources according to their availability. Therefore, testing whether migration patterns vary
consistently for birds that migrate across the QTP is key to our understanding of the processes that
determine movement patterns and provides insights into how they may affect community organisa-
tion and functioning under the context of global environmental change.

In this work, we leverage community-contributed and satellite-tracking data to explore the impacts
of the QTP uplift in terms of both the development of its high elevation and Asian monsoons on the
migratory strategies for the birds that migrated across the plateau. We do this by reconstructing the
environments before the uplift and contrasting migratory directions of 50 bird species (see Supple-
mentary file 1 for a full list of species) between breeding and wintering areas in environments before
the uplift with those at present. Thus, the simulated environments before the uplift of the plateau
serve as a counterfactual state. The use of counterfactual is important to support causation claims by
comparing what happened to what would have happened in a hypothetical situation: ‘If event X had
not occurred, event Y would not have occurred’ (Lewis, 1973). Recent years have seen an increasing
application of the counterfactual approach to detect biodiversity change, that is, comparing diversity
between the counterfactual state and real estimates to attribute the factors causing such changes,
for example, Gonzalez et al., 2023. For example, a counterfactual is typically needed to evaluate the
effectiveness of conservation interventions (Bull et al., 2021) and has been used to identify the role
of biogeographic barriers in shaping the diversity of global vertebrates (Williams et al., 2024). Whilst
we do not aim to provide causal inferences for avian distributional change, using the counterfactual
approach, we are able to estimate the influence of the plateau uplift by detecting the changes of avian
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distributions, that is, by comparing where the birds would have been distributed without the plateau
to where they are currently distributed. A default assumption in the counterfactual analysis that should
be carefully considered is that the species’ responses to environmental change (i.e. pre- and post- the
uplift of the QTP in our analysis) are conservative, and only in this way could we test the influence
of changed environments on species. Here, we regard the counterfactual environments as an ideal
tool to generate testable hypotheses on the role of the QTP uplift, because it allows for isolating the
potential influence of the plateau’s geological history on current migration routes to eliminate, to the
extent possible, vagueness, as opposed to simply description of current distributions of birds.

We also calculate the migratory directions (azimuths) between adjacent stopover sites, breeding
and wintering areas en route, and assess the relationship between migratory directions and environ-
mental stress. Our findings yield the most comprehensive picture to date of how the QTP uplift likely
shapes migratory patterns of birds, revealing insights into the challenges and opportunities for migra-
tory birds in a changing world.

Results and discussion

We have two major findings regarding distribution patterns and migratory directions of QTP birds.
First, we developed a dynamic species distribution model (Chen et al., 2024) to track the weekly
distribution of target species, capturing the interconnections of stopover, wintering, and breeding
areas (see '‘Materials and methods’ for details). By contrasting their distributions before and after the
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Figure 1. Influence of the Qinghai-Tibet uplift on avian migration strategies. (A-C) Schematic example of the role of Qinghai-Tibet Plateau (QTP) uplift
in distribution patterns of migratory birds. (A) Birds migrate with a large longitudinal range in modern environments. Before the QTP uplift, birds may

maintain similar migratory patterns with large longitudinal changes (B) or migrate with few longitudinal changes between wintering and breeding areas
(C). The occurrence probability of 50 migratory bird species under modern environments in breeding areas (D) and wintering areas (E). The occurrence
probability of birds in breeding areas (F) and wintering areas (G) before the QTP uplift. Migratory directions are identified at present (H) and before the
uplift (I). The direction and length of the arrow represent migratory direction (measured by the azimuth angle) and distance from centres of breeding to
wintering areas for each species. The circular barplot of the inset panel denotes the summary of migratory directions from breeding to wintering areas
for each bird species, where the height and colour of the bars represent the number of species.
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The online version of this article includes the following figure supplement(s) for figure 1:
Figure supplement 1. Birds migrate along with the vegetation gradient.
Figure supplement 2. Birds migrate along with the precipitation gradient.

Figure supplement 3. Birds migrate along with the gradient of annual temperature in the study area.
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uplift, we find the distribution of migratory birds extended in longitude and narrowed in latitude with
the uplift of QTP (Figure 1E, G, and I). Birds are more likely to migrate along a longitudinal gradient
in present environments as a result of the QTP uplift (see Supplementary file 1 for area under the
curve [AUC] values for model performance of each species). Specifically, before the uplift, migratory
birds had a higher probability of breeding across a vast area at low and middle latitudes on the
Eurasia continent, including West Asia, Siberia, QTP regions, and even Africa, whilst their most likely
breeding areas move northeastwards to the extreme north of Russia after the uplift. Different from
the breeding area, the wintering area of migratory birds has a larger change in distribution probability.
Birds that migrate across the QTP in the modern scenario have a higher probability of wintering in
Southwest Asia and North Africa, whereas they had a higher probability of moving southeast to winter
in Southern China and more areas of Africa before the uplift (Figure 1D, F and H).

Second, our results show that wind cost, temperature, and precipitation are three major factors
that influence the overall migratory directions (both autumn and spring) of birds, despite the differ-
ences in autumn and spring migration across different geographic areas (Figure 2). Wind cost plays
a larger role during spring migration than that during autumn migration (Figure 2). A higher wind
cost is associated with spring migration, which suggests a greater opportunity for birds to use the
wind to facilitate their flight during spring migration (Figure 2—figure supplements 2 and 3). They
choose to follow a flyway of relatively higher annual precipitation and temperature during both spring
and autumn migration (Figure 2—figure supplements 3 and 4). Apart from those three factors,
no evidence is found for strong impacts of elevation and vegetation on the direction of migration
(Figure 2, Figure 2—figure supplements 1 and 6).

Aside from the broad influences of QTP uplift, when migrating across different geographic areas,
that is, areas west of (longitude < 73°E, West QTP), areas in the central (73°E < longitude < 105°E,
middle QTP), and areas east of the QTP (longitude > 105°E, East QTP), birds diversify their prefer-
ences in environmental conditions. Despite the fact that wind cost is the most important factor for the
overall spring migration, temperature is the most prominent factor in the areas east of the QTP and in
the central QTP (Figure 2, Figure 2—figure supplement 1). Once they start to migrate in the regions
west of the plateau (West QTP), low wind cost in the longitudinal direction and higher precipitation
are priority choices for their migration (Figure 2, Figure 2—figure supplement 1). When they reach
the central and east QTP, birds migrate across those areas with increasing temperatures (Figure 1—
figure supplement 3, Figure 2—figure supplements 1 and 3).

Compared with spring migration, higher temperatures act as a major clue in the areas east and
west of the plateau during autumn migration, whereas the vegetation outweighs other factors when
birds migrate in the central plateau (Figure 1, Figure 1—figure supplement 1, Figure 2—figure
supplements 2-4). Besides temperature, precipitation also plays a role in all stages of autumn migra-
tion. When birds migrate, they tend to follow a flyway of decreasing annual precipitation in central
QTP and West QTP and an increasing one in the East QTP (Figure 1—figure supplement 2).

It is commonly claimed that the initiation of migration is inherently inflexible in migratory birds
(Schmaljohann and Both, 2017), owing to the weak or insufficient responses by migratory birds to
adjusting migration behaviour (e.g. migration timing and route) (Knudsen et al., 2011). This claim is
particularly invoked for long-distance migrants, who may face greater temporal (e.g. migration timing)
or physiological constraints given the varied phenologies en route (Knudsen et al., 2011). Our results
show that a major change in avian migratory patterns in response to environmental change for long-
distance migrants can be adjusting migration direction from the latitudinal to the longitudinal at the
scale of their whole annual migration cycle. This highlights substantial changes in migratory bird distri-
bution and their biogeographic patterns as a result of the uplift of the QTP (Figure 1).

One of the biggest climatic consequences of the uplift of the QTP is the development of a unique
monsoon system that has shaped environments across continents (Zhang et al., 2015). One typical
feature of Asian monsoons is seasonal climate change, comprising a dry cold winter phase and a
wet warm summer phase (Zhang et al., 2015). Asian monsoons also consist of several sub-systems,
including the northeast monsoon and the East Asian winter monsoons that dominate the weather and
climate in different parts of the plateau across different geographical periods. Our results show that
wind cost, temperature, and precipitation have more important impacts on avian migration than eleva-
tions in different geographic areas (Figure 2). This suggests that the monsoon system, rather than the
high elevations of the plateau per se, is an important factor during avian migration on the plateau
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Figure 2. The influence of environmental factors on the direction of avian migration. Migratory directions are calculated based on the azimuths
between each adjacent stopover, breeding and wintering areas for each species. We employ multivariate linear regression models under the Bayesian
framework to measure the correlation between environmental factors and avian migratory directions. Wind represents the wind cost calculated by wind
connectivity. Vegetation is measured by the proportion of average vegetation cover in each pixel (~1.9° in latitude by 2.5° in longitude). Temperature

is the average annual temperature. Precipitation is the average yearly precipitation. All environmental layers are obtained using the Community Earth
System Model. West QTP, Central QTP, and East QTP denote areas in the areas west (longitude <73°E), central (73°E < longitude < 105°E), and east of
(longitude = 105°E) the QTP, respectively. QTP, Qinghai-Tibet Plateau.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Environmental factors that influence avian migratory strategies in the west, central, and east of the Qinghai-Tibet Plateau (QTP).
Figure supplement 2. Migration azimuth changes with wind cost in the area west, central, and east of the Qinghai-Tibet Plateau (QTP) during studied
avian migration periods.

Figure supplement 3. Migration azimuth changes with average annual temperature in the area west, central, and east of the Qinghai-Tibet Plateau
(QTP) during studied avian migration periods.

Figure supplement 4. Migration azimuth changes with average annual precipitation in the area west, central, and east of the Qinghai-Tibet Plateau
(QTP) during studied avian migration periods.

Figure supplement 5. Migration azimuth changes with altitude in the west, central, and east of the Qinghai-Tibet Plateau (QTP) during studied avian
migration periods.

Figure supplement 6. Migration azimuth changes with measured vegetation in the west, central, and east of the Qinghai-Tibet Plateau (QTP) during
studied avian migration periods.

(Figure 2, Figure 2—figure supplement 5). Specifically, when birds begin their autumn migration in
early September, the influence of the Siberian High on migration emerges as the East Asian winter
monsoons start to reach the area east of the QTP, and their impacts at this stage are mainly reflected
by varied temperatures and relatively less precipitation (Gong and Ho, 2002, Gong et al., 2001).
This can explain why higher temperatures and increased precipitation play a more important role
than wind cost in the east and central QTP (Figure 2) since higher annual temperatures and increased
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precipitations mean more food resources for migrants (Hoover and Schelsky, 2020; Jonzén et al.,
2007), whereas wind during this period is less strong than that in winter (Gong et al., 2001). Whilst
birds migrate in the west QTP, less wind cost is becoming more important to determine their migra-
tion direction. This is, on the one hand, likely because the northeast monsoon begins to dominate
the climate in the southwest of the QTP from around the end of September (Dimri et al., 2016). The
northeast monsoon brings cold wind to sweep the QTP down towards the vast spans of the Indian
Ocean (Dimri et al., 2016), which could facilitate the westward migration of birds. On the other hand,
in the northwest of the QTP, the extended Siberia High and associated atmospheric systems that
deliver cold and dry air masses to the Mediterranean surface can also provide positive wind conditions
for migrants (Labban et al., 2021).

When migrating towards breeding grounds in spring, birds adopt strategies different from their
autumn migration, accompanied by different effects of environment on their migratory directions.
Temperature is more important than wind cost in spring migration (Figure 2, Figure 2—figure
supplement 3). Given high temperatures usually mean relatively rich food resources for birds (Ferger
et al., 2014; McCain, 2009), this suggests that birds that migrate across the QTP may focus on energy
accumulation during their spring migration rather than reducing flight costs in an effort to meet the
energetic demands. This pattern could be explained by a ‘capital breeding’ strategy — where birds
rely on endogenous reserved energy gained prior to reproduction (Stephens et al., 2009) — rather
than an ‘income’ strategy where birds ingest nutrients mainly collected during the period of reproduc-
tive activity (Jénsson and Jonsson, 1997). This aligns with studies on breeding strategies of migratory
birds in Asian flyways (Lisovski et al., 2024). However, we note that this interpretation would require
further study.

Caveats and conclusions
Whilst we adopted both community-contributed and tracking data where potential biases existed,
there are caveats to be aware of when interpreting our results. First, we adopted eBird data to infer
plausible broad-scale region-to-region distributions of birds at the species level but confirming popu-
lation connectivity would require targeted tracking or genetic studies. Second, we used adaptive
spatiotemporal modelling to address the imbalanced distribution of sampling in eBird data, but more
sampling efforts and observations are still needed in areas of sparse records to better model and
predict changes of species distributions. Third, tracking data can provide detailed information of the
movement patterns of species but are limited to small numbers of species due to the considerable
costs and time needed. We aimed to adopt the tracking data to examine the influence of focal factors
on avian migration patterns, but only 19 species, to the best of our ability, were acquired. Similar results
were found in studies that used tracking data to estimate the distribution of breeding and wintering
areas of birds in the plateau (e.g. Zhao et al., 2024, Pu and Guo, 2023; Zhan et al., 2011; Prosser
et al., 2011; Wang et al., 2020, Zhang, 2014; Yu et al., 2024; Liu et al., 2018; Kumar et al., 2020).
The results based on 19 species present a strong signal, but their implications could be restricted by
the number of tracked species we obtained. A limited number of tracked individuals might also lead
to underestimation of some migration routes. Nonetheless, an increased number of tracking tech-
niques have been developed in recent years (including satellite tracking, computer vision, radar, and
geolocator technologies), enabling us to acquire accurate information on the movements of multiple
individual animals in the wild (Nathan et al., 2022). Future studies should build on our findings by
using dedicated tracking of more individual birds and radar monitoring of animal migration over the
QTP to test and investigate the influence of QTP on multiple aspects of avian migratory patterns.
Despite these caveats, our study provides a novel understanding of how QTP shapes migration
patterns of birds. Albeit with the extensive influence of the plateau uplift on geology and geography,
the resultant monsoon system, rather than its high elevation, is found to be a key factor shaping
present avian migration patterns. Our study unveils shifts in avian migratory directions and their
underlying mechanisms in the contexts of the QTP uplift, enhancing comprehension of the complex
biogeographic effects on animal migration.

Zhang, Gu et al. eLife 2025;14:RP103971. DOI: https://doi.org/10.7554/eLife.103971 6 of 15


https://doi.org/10.7554/eLife.103971

ELife Short report

Ecology

Materials and methods

Summary

We used two approaches to determine the migratory flyways of birds across the QTP. First, we quan-
tified the distributional change of each avian species by comparing the distribution range before
and after the uplift of the plateau. For the present distribution, we used a dynamic spatiotemporal
abundance model — Adaptive Spatiotemporal Model (AdaSTEM) that we have developed - to obtain
the seasonal distribution of birds (Chen et al., 2024). We then used a species distribution model (i.e.
MaxEnt) to measure the correlation between present distribution and environments (Phillips et al.,
2004). We calculated the distribution of migratory birds before the uplift of the plateau by projecting
the correlation between their current distribution and environments onto environments before the
uplift. Second, we obtained the specific migratory routes for each species by measuring the migratory
directions (i.e. the azimuth angle between adjacent stopover sites and breeding and wintering areas)
en route. Similarly, we used the relationships between present migratory directions and environments
to predict the migratory directions pre-uplift of the plateau. Since our aim here was a prediction, we
used random forest models, but we also used Bayesian multivariate regression modelling to measure
the influence of environments on migratory directions of birds.

eBird checklist

We used a community-contributed database for the dynamic spatiotemporal abundance model to
measure the seasonal distribution. Specifically, we first obtained the list of bird species that might
migrate across the QTP based on Prins and Namgail, 2017. We then requested and downloaded the
eBird Basic Dataset in February 2022 (eBird, 2022) for 64 species. We excluded species that were not
listed as ‘full migrant’ in BirdLife International (https://datazone.birdlife.org), which resulted in a total
of 50 avian species analysed in our study and covered breeding populations in geographical Asia. We
used data from the year 2019 to avoid the potential influence of the pandemic on bird observation
(Basile et al., 2021; Hochachka et al., 2021) and bird behaviour (Gordo et al., 2021). It is worth
noting that eBird provides occurrence records for species, but it generally cannot distinguish which
breeding population an individual bird came from or exactly where it goes for winter. In this study, we
used eBird data to infer broad-scale movement patterns (e.g. general directions and stopover regions)
at the species level rather than precise one-to-one population linkages.

The eBird data may be biased by the imbalanced sampling and variation of observers’ skills in
identifying species. To address spatiotemporal imbalances in data distribution and the potential over-
representation of birding hotspots, we conducted spatiotemporal subsampling following the method
proposed (Johnston et al., 2021; Fink et al., 2020). We first assigned each checklist with a global
hexagonal hierarchical geospatial indexing system (H3 system; Brodsky, 2023; Jahn, 2023), with a
resolution of level 7 (~5.16 km per cell). Then, to avoid biased sampling in rare species with unusual
active temporal periods, we split the 24 hours of the day into 12 equal bins and assigned a checklist
to each of the bins. We then randomly subsampled only one checklist for each year—day of the year—
hour bin of day—cell combination. The subsampling resulted in 5,037,088 checklists for the year 2019.

To account for the difference in observers’ expertise in recognising species, we calculated the
historical cumulative species count for each bird observer throughout their historical eBird checklists
prior to 2019 as a proxy to measure the expertise of bird observers (Kelling et al., 2015). We then
filtered the checklists as suggested by recent studies (Johnston et al., 2021; Fink et al., 2020):

1. Only checklists labelled as complete were included.

2. Only checklists with Traveling or Stationary protocol types were included. For checklists with the
protocol type Traveling, only those with a travelling distance of less than 3 km were included.

3. The observation duration should be longer than 5 min and shorter than 300 min.

4. Observers with expertise lower than the 2.5% percentile were removed since they are less
representative and may induce large bias.

Predictor variables for spatiotemporal abundance modelling
For each remaining checklist, we extracted six types of environmental variables based on their
geographical coordinates:
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1. Sampling effort variables, which include protocol type, travelling distance, observation duration

minutes, number of observers, and observers’ expertise (measured in historical species count).

. Temporal variables, which include day of year and observation started time of day.

3. Topographic variables, which include the mean and standard deviation of elevation, slope,
north, and east aggregated within the 3 km x3 km buffered area for each checklist. The topo-
graphic data was downloaded from EarthEnv (Amatulli et al., 2018) in a 1 km resolution.

4. Land cover data. We used the Copernicus Climate Change Service (C3S) Global Land Cover
data with a 300 m resolution (Climate Data Store, 2019). We calculated the landscape variables
for each of the land cover types presented in the 3 km x3 km buffered area for each checklist,
including percentage cover, patch density, largest patch index, edge density, mean patch size,
standard deviation of patch size for each land cover type, and entropy across heterogeneous
land cover patches.

5. Bioclimate variables. We downloaded the ERA-5 hourly data at a 0.25° resolution (Sabater,
2019). Hourly data of a 2 m temperature and total precipitation layer were firstly aggregated to
daily level by taking the average. The day-level data were calculated using 19 bioclimate vari-
ables, which were then assigned to each checklist according to the geographical coordinates.

6. Normalised Difference Vegetation Index (NDVI). NDVI data were extracted from Terra
Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 16 Day
(MOD13A2) Version 6.1 product with a resolution of 16 days and 1 km (Didan, 2021). We
further aggregated the data to hexagon level 5 based on the H3 indexing system (with edge
length ~9.85 km). For each hexagon, we leveraged the pyGAM package (Servén and Brum-
mitt, 2018) to apply a GAM model with 30 splines to interpolate the data to temporal ranges
that were not provided by the original data. This resulted in a daily resolution dataset. We
calculated six features based on NDVI and included them in subsequent modelling, that is,
the median, maximum, and minimum of NDVI, and the median, maximum, and minimum of
the first derivative of NDVI against day of year (sometimes referred to ‘green wave’) for each
hexagon throughout the year.

N

The feature engineering resulted in 106 predictor variables, including 6 sampling effort variables, 2
temporal variables, 8 topographic variables, 19 annual climatic variables, 65 land cover variables, and
6 vegetation index-related variables. All calculations are conducted in Python version 3.9.0.

Spatiotemporal abundance modelling

To adjust for sampling error and obtain the general migration pattern incorporating interconnections
of stopover, wintering and breeding areas across species, we applied an AdaSTEM for each species to
model weekly distributions of birds using stemflow package version 1.0.9.1, which we have recently
reported (Chen et al., 2024).

AdaSTEM is a machine learning modelling framework that takes space, time, and sample size into
consideration at different scales. It has been frequently used in modelling eBird data (Fink et al.,
2020; Fink et al., 2013; Johnston et al., 2015) and has been proven to be efficient and advanced
in multi-scale spatiotemporal data modelling. To briefly summarise the methodology, in the training
procedure, the model recursively splits the input training data into smaller spatiotemporal grids
(stixels) using the QuadTree algorithm (Samet, 1984). For each of the stixels, we trained a base model
only using data contained by itself. Stixels were then aggregated and constituted an ensemble. In the
prediction phase, stemflow queries stixels for the input data according to their spatial and temporal
indexes, followed by the prediction of corresponding base models. Finally, we aggregated prediction
results across ensembles to generate robust estimations (see Fink et al., 2013 and stemflow docu-
mentation Chen et al., 2024 for details).

We used XGBoost (Chen and Guestrin, 2016) as our classifier and regressor base model for its
capability and balance between performance and computational efficiency. We set 10 ensemble folds,
a maximum grid length threshold of 25°, a minimum grid length threshold of 5°, a temporal sliding
window size of 50 DQY, and a step of 20 DOY, and required at least 50 checklists for each stixel in
model training. Trained models were then used to predict on the prediction dataset with 0.1° spatial
resolution and weekly temporal resolution, where the variables were annotated with the same meth-
odology as that of the training dataset. Only spatiotemporal points with more than seven ensembles
covered are predicted. In downstream analyses, we removed data points with abundance lower than
0.1 quantiles to obtain reliable predictions for each week.
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Environmental variables for species distribution modelling

Given the challenges in simulating environmental and climatic conditions before the uplift of the QTP,
we modelled the environments before and after the uplift with five variables, that is, monthly wind
(speed and direction), annual temperature, annual precipitation, elevation, and annual vegetation.

In detail, following Zhang et al., 2019, we used version 1.0.4 of the Community Earth System
Model (CESM) coupled model with a dynamic atmosphere (CAM4), land (CLM4), ocean (POP2), and
sea-ice (CICE4) components to simulate pre-uplift environments. CESM and its previous versions have
been widely used in climate modelling, for example, Meehl et al., 2012, and are claimed to be
capable of broadly reproducing the features of present-day climate (Gent et al., 2011). For CAM4,
there is a horizontal resolution of ~1.9° in latitude by 2.5° in longitude and 26 layers in the vertical
direction. POP2 adopts a finer grid and has a nominal 1° horizontal resolution (320 x 384 grid points,
latitude by longitude) and 60 layers in the vertical direction. The land and sea-ice components share
the same horizontal grids as the atmosphere and ocean components, respectively. In CLM4, multiple
land surface types and plant functional types (PFTs) are contained within one grid, and CLM4 can be
run in a dynamic vegetation mode to simulate natural vegetation, including trees, grass, and shrub
PFTs, for example, (Yu et al., 2014; Qiu and Liu, 2016).

We initiated the modelling with two different scenarios, that is, the actual elevation and a maximum
elevation of 300 m. We then used the same default preindustrial simulation for the two scenarios with
a modern ice sheet, an atmospheric CO, concentration of 280 ppmyv, modern orbital parameters (the
year 1950), modern solar constant (1365 W/m?), other atmospheric greenhouse gas concentrations
set to preindustrial values (CH, and N,O set to 760 and 270 ppbyv, respectively), and preindustrial
aerosol conditions. We ran for 750 model years to ensure the combined atmospheric, ocean, and
vegetation effects in response to the uplift of the plateau can be investigated.

Species distribution modelling

We used maximum entropy (MaxEnt) models to compare the avian distributional change between
pre- and post-uplift environments under the assumption that species tend to keep their ancestral
ecological traits over time (i.e. niche conservatism). This indicates a high probability for species to
distribute in similar environments wherever suitable. Particularly, considering birds are more likely to
be influenced by food resources and vegetation distributions (Martins et al., 2024; Qu et al., 2010;
Li et al., 2021), and the available food and vegetation before the uplift can provide suitable habitats
for birds (Jia et al., 2020), we believe the findings can provide valuable insights into the influence
of the plateau rise on avian migratory patterns. Having said that, we acknowledge other factors,
for example, carbon dioxide concentrations (Zhang et al., 2022), can influence the simulations of
environments and our prediction of avian distribution. MaxEnt compares the environmental features
at presence points to those of pseudo absences to discriminate the suitable area (Phillips et al.,
2006). MaxEnt builds models using a generative approach and thus has an inherent advantage over
a discriminative approach, especially when the amount of training data is small (Phillips et al., 2006).
Due to its good performance compared to other species distribution modelling techniques, MaxEnt
is widely used in the study of biogeography and conservation biology.

We ran the MaxEnt model using default settings but with 1000 iterations. For each model, we
ran 20 bootstrap replications, and each time 75% of locations were selected at random as training
samples, while the remaining 25% were used as validation samples. We applied AUC of the receiver
operator characteristic (ROC) to assess the performances of the models (Supplementary file 1). AUC
is a threshold-independent measurement for discrimination ability between presence and random
points (Phillips et al., 2006). When the AUC value is higher than 0.75, the model was considered to
be good (Elith et al., 2006; Zhang et al., 2018).

Migratory direction

To obtain the species list of birds that migrate across the QTP with available tracking data, we
checked Movebank (movebank.org) together with literature reporting avian migratory routes across
the plateau. For those who did not upload their data to Movebank, we digitalised the routes. Specif-
ically, we built a new geographic layer with the same coordinate systems of each reported route
and matched the layer with the images of routes. We then delineate migratory routes on the new
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geographic layer where the geographic information of the routes was achieved. This resulted in seven
representative species that migrated across the plateau.

We used the same environmental variables, except for wind, for the species distribution model
to investigate the potential influence of environments on migratory directions. We calculated wind
connectivity to account for the influence of wind, considering wind connectivity has been identi-
fied as a key factor driving avian flying patterns (Kemp et al., 2010). Since we aimed to investi-
gate the migration patterns at large spatiotemporal scales, we measured the wind connectivity at a
monthly resolution to enable analysis of seasonal differences. We adjusted the R package rWind for
the computation. In detail, we replaced the default wind data from the Global Forecasting System
atmospheric model with our monthly wind data from CESM as input. For both wind costs before and
after the uplift of the plateau, we then calculate the movement cost from any starting cell to one of
its eight neighbouring cells (Moore neighbourhood). This includes three parameters, that is, wind
speed at the starting cell, wind direction at the starting cell (azimuth), and the position of the target
cell. A movement connectivity map was then determined after performing the default algorithms
(Fernandez-Lépez and Schliep, 2019). We reversed the values of cells on the connectivity map, as
we aimed to investigate the influence of wind cost, whereas the map showed the importance of the
cell to maintain connectivity.

We used a random forest model and a multivariate linear regression model under the Bayesian
framework to analyse the influence of environments on avian migratory directions. We first used the
random forest model to measure the correlation between migratory directions and modern envi-
ronments and predict the migratory direction before the uplift of the plateau. We then compared
the influence between modern environments and environments before the uplift using a multivariate
linear regression model under the Bayesian framework. We adopted two strategies for those two
modelling approaches. First, we applied regression to different combinations of season-stage sepa-
rately (seasons: spring, autumn; stages: overall, east QTP, central QTP, west QTP), resulting in eight
regression models. Second, we additionally included species as random variables by applying hierar-
chical modelling, which also resulted in eight regression models.

All variables were standardised for comparison. All Bayesian models were conducted with PyMC
version 5.5 (Salvatier et al., 2016) in Python version 3.9.0 environment. We used a NUTS sampler
with a numpyro backend (jax.sample_numpyro_nuts) to run four chains, each with 3000 tuning and
3000 posterior chain sampling. We assessed the model convergence using potential scale reduction
factor (Rhat) and effective sample size (ESS), where all parameters in all models met the criteria of Rhat
<1.03 and ESS >400.
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