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Thesis Summary

This thesis examines the complicated relationship between learning and brain
plasticity, as well as the human brain's unique ability to learn and adapt. Building on
previous research, the thesis aimed to examine online, offline wake, and offline
sleep learning. The objective is to advance our knowledge of this complex
relationship. The effects of sleep on learning consolidation, its role in modifying
cognitive abilities, and the inter-individual variability in these processes are still not
completely understood in the literature today. Our research aims to fill these gaps,
with the hope that it will have a positive impact on training and therapy approaches,

thereby enhancing cognitive and learning capacities.

The first empirical chapter provides an in-depth exploration of a backward masking
task, a learning task that integrates online learning with sleep. Our findings shed new
perspectives into the process of learning and the possible brain mechanism involved
in the backward masking learning by indicating a sleep-dependent component. This
work contributes by outlining the brain mechanisms underpinning sleep-dependant

learning, a topic that has previously received little attention in the literature.

Using a method comparable to backward masking learning, our next chapter
explores the effect of sleep on selective attention. The aim is to clarify the state-
dependent components essential for optimal task performance by contrasting the
sleep response to both learning tasks. This section builds on the knowledge gap by

expanding our understanding of how sleep impacts learning and cognition.

In Chapter 4, the thesis delves into the analysis of inter-individual differences, aiming
to uncover the links between learning variability and discrepancies in brain structure,

particularly in the domains of perceptual and motor learning.
II



This thesis examines the potential benefits of incorporating sleep-in learning
consolidation in detail. The aim is to advance knowledge of the adaptive learning
capacity of the human brain and to open up opportunities for new treatments and

educational approaches that improve cognitive and learning skills.
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Glossary

The following abbreviations are used throughout the thesis:

AC Attentional Capture

CSF Cerebrospinal Fluid

CS Conditioned Stimulus

DV Dependent Variable

DWI Diffusion-Weighted Imaging
EEG Electroencephalogram

ERP Visual Evoke Potential

FEFT Finding Embedded Figures Test
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fMRI

GM

LL

MPRAGE

MRI

NMR

NREM

REM

Functional Magnetic Resonance Imaging

Grey Matter

Independent Variable

Lower Left

Magnetization-Prepared Rapid Acquisition Gradient-Echo

Magnetic Resonance Imaging

Nuclear Magnetic Resonance

Non-rapid Eye Movement

Rapid Eye Movement
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RF

ROI

RT

SD

SHY

SNR

SPM

SWS

DT

us

Radio Frequency

Region of Interest

Reaction Time

Sleep Deprivation

Synaptic Homeostasis Hypothesis

Signal-to-Noise Ratio

Statistical Parametric Mapping

Slow Wave Sleep

Texture Discrimination Task

Unconditioned Stimulus



UR

VBM

VPL

VS

WM

Upper Right

Voxel-Based Morphometry

Visual Perceptual Learning

Visual Search

White Matter
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CHAPTER 1:

Introduction



1.1. General Introduction

In the field of psychology, the definition of "learning" has been a broad
subject of controversy and is currently being debated due to the potential
ambiguity of the term. From a behaviourist perspective, however, "learning" is
generally understood as changes in behaviour or knowledge brought about by
experience that have lasting effects (De Houwer et al., 2013). From a
cognitivist perspective, however, "learning" is not just a behavioural influence;
instead, it refers to skills acquired through mental processes. Thus, cognitive
psychologists define "learning" as understanding memory and the
mechanisms of problem solving and memory (Sweller, 1988). Furthermore, in
the field of neuroscience literature, learning is highly related to the discussion
of plasticity, which is the brain’s ability to change the structure and function in

response to learning (Kolb & Gibb, 2011).

A related concept lies within this broad field is perceptual learning, which is
the long-term improvement in perceptual skills through practice or experience.
Perceptual learning in contrast to general learning, represents an increased
sensitivity to visual, auditory or other sensory stimuli, typically achieved through the
repetition of complex tasks (Ahissar & Hochstein, 1997; Kahalani-Hodedany et al.,
2024; Su et al., 2014). These definitions provide the theoretical foundation for
understanding the interplay between learning and perceptual processes. This is a
crucial concept central to this thesis, which examines how sleep facilitates the

consolidation of perceptual and attentional learning.

Building on from this theoretical understanding, advances in neuroscience

provided critical insights into the complex and dynamic neural structures that



comprise the human brain. It is widely accepted in the literature that the human
brain is not a static organ; instead, it is constantly changing in response to both
external and internal factors throughout a person’s lifespan (Draganski & May, 2008;
Kolb & Gibb, 2011; Pascual-Leone et al., 2005). Studies relating to brain
development, learning, memory, and sleep have shed light on the ways in which the
brain's multiple structures adjust to and anticipate changes in their external

surroundings (Klinzing et al., 2019; Tamaki et al., 2020a).

Plasticity itself is a central construct for this thesis. Within the literature, it is
well established that as people age, the connection and development of the brain
become ‘fixed’ or less flexible, which means that learning new things or adapting to
change becomes more difficult. Children, for instance, were expected to learn a new
language more easily because their brains were still growing, while for adults, their
brain paths were already ‘set in place’ (Hartshorne et al., 2018). However, the ability
for the adult brain to change and adapt does not disappear. Recent research has
demonstrated that learning may alter the brain and that many social and cognitive
skills persist throughout adulthood (Hertzog et al., 2008; Kempermann et al., 2018;
Kwok et al., 2011). Higher-level cognitive skills, including working memory, logical
thinking, and attentional control, remain flexible well into adulthood, with plasticity
possibly intensifying during adolescence (Bang et al., 2023; Sampaio-Baptista et al.,
2018; Selemon, 2013; Watanabe & Sasaki, 2015). The main evidence supporting this
theory comes from studies on visual perceptual learning (Bang et al., 2023; Hofer et
al., 2006) and visual deprivation trials (Q. S. Fischer et al., 2007; Sato & Stryker,
2008), which include both temporary and permanent blindness. These studies
demonstrated that life events and environmental pressures, such as performing
visual tasks or insufficient visual information, can lead to alterations in the visual
system. Synaptic alterations, such as changes in synaptic density and the features of
receptor fields, along with wider brain network changes that extend beyond distinct
sensory pathways, are examples of the types of changes that can occur at many
different levels (Karmarkar & Dan, 2006). This evidence from previous research has

demonstrated that learning is not limited to one area; instead, it has long been



proposed with a multifaceted idea. Many review papers generally propose that
learning is viewed as a dynamic process that spreads across many domains, including
perceptual, cognitive and motor, emphasising its capacity for change and

implementation (Craik & Bialystok, 2006; Green & Bavelier, 2008).

The term "brain plasticity" is commonly used in the fields of both psychology
and neuroscience to describe the outstanding ability of the brain to reorganise itself
in response to new challenges and experiences. The concept goes beyond changes in
the structure of the brain (structural plasticity), but also functional plasticity, which is
referring to modifications in the way the brain process, as highlighted in the review
by Pascual-Leone et al. (2005). Empirical evidence supporting the idea of plasticity
was provided by Draganski et al. (2004) in their longitudinal study, which found that
individuals who learned a juggling task showed changes in grey matter (GM) within
the motion-sensitive visual areas. More recent research has extended these findings
to white matter (WM) adaptations. For instance, research using diffusion tensor
imaging (DTI) and functional magnetic resonance imaging (fMRI) to assess WM
neuroplasticity in healthy adults before and after exercise training. It focuses
specifically on non-dominant hands, as it can observe neuroplasticity changes in the
corpus callosum and internal capsule. The results showed that changes in DTI
fraction anisotropy and low-frequency oscillation (LFO) in both WM regions were
associated with improved behaviour of the non-dominant hand (Frizzell et al., 2022).
The findings from this study provide additional information on the structural and

functional aspects of WM changes following learning.

According to the previous research, the brain has the ability to adapt and
modify itself in response to demands and challenges, which can lead to the
development of new skills, behaviours, and memories (Draganski et al., 2004; Kolb &
Gibb, 2011). One of the factors believed to influence brain plasticity and learning is
sleep (Dang-Vu et al., 2006; Nissen et al., 2021; Ruch et al., 2021). The intricate

connection between sleep and these processes plays a role in facilitating sleep



functions. Previous reviews have synthesised evidence into the systems
consolidation framework, showing correlation between sleep and the development
of changes in the human brain (Krueger et al., 1995; Walker, 2005). This frameworks
proposed that during sleep, acquired information is first being processed, then
integrated, followed by consolidation under some circumstances., thereby
enhancing its potential for long-term retention in memory (Diekelmann & Born,

2010; Ngo et al., 2020).

Although sleep is indeed influential, it does not work in isolation and there
are other factors that also contribute to learning and brain plasticity, such as
individual’s feelings, cognitive difficulties, and stimuli from the environment (Tyng et
al., 2017; Wiest et al., 2022). Although there is a lot of research that links sleep,
learning, and plasticity, there are still gaps in our understanding of when sleep
results in gains that are only useful in one place compared to those that can be used
in many places. Some studies indicate greater specificity. For instance,
enhancements in the TDT are often restricted to the training visual position and
orientation (Karni & Sagi, 1991; Schwartz et al., 2002). However, under different task
conditions or extensive training, partial transfer across visual field locations has been
observed (Xiao et al., 2008). Similarly, motor learning tasks exhibit both local
consolidations, associated with the training sequence, and, in specific contexts,
generalisation to untrained sequences or effectors (Korman et al., 2003). It is,
therefore, an open and important subject to figure out what conditions
sleep contributes to that help with this generalisation. Further investigation is
still needed in order to build a complete picture of the complex connections that are
present between sleep and other factors that could possibly influence brain
development. The development of better methods to enhance memory and learning
in individuals will be dependent on the development of comprehensive approaches
that include all these interconnected factors. The insight and findings provided in
this thesis have an opportunity to help with the development of more efficient
learning styles that take advantage of the brain's natural ability for adaptation in

several domains, including sleep.



Gaining insight into the relationship between learning, brain plasticity, and
sleep plays an important role in the field of psychology. The main goal of this thesis
is to further develop our comprehension of the relationship among these three
components and aims to address the gap mentioned in the previous section.
Understanding these links is crucial, as they serve as the basis for investigating
fundamental concepts, research findings, and the consequences of this linked
interaction. The interplay among these elements is complex, and encompasses
characteristics that continuously evolve over time. A good example of this would be
the fact that the process of learning may be directly influenced by both how much
sleep and the quality of sleep, and this in turn has an effect on the ability of the brain
to change and adapt. The degree of plasticity in our brains may also have an
influence on how individuals learn as well as how sleep operates in the body. This is
in addition to the fact that the opposite is also true. When it comes to learning
initiatives, methods of treatment for brain injuries, and therapies for sleep-related
cognitive difficulties, it is crucial to have a deeper understanding of this recurrent
link since it has substantial implications. It is important to note that all of these

consequences are interdependent and interrelated.

Although the empirical chapters in this thesis do not involve direct brain
measurements, the thesis supports a psychobiological perspective. In other words,
behavioural outcomes are understood through psychological models, such
as attentional and cognitive explanations of perceptual learning (Mitchell & Hall,
2014), as well as neurobiological frameworks, such as restructuring models and
systems consolidation. Improvements seen offline after sleep are seen as
behavioural proof that consolidation processes are effective, while gains that

happen immediately after learning are seen as support for local reorganisation.

The rationale for the thesis, therefore, leads to three interconnected

objectives. First, to investigate the degree to which perceptual and attentional



learning is specific to the trained stimuli and locations instead of applying to
untrained stimuli. Second, to determine if sleep enhances offline enhancements in
contrast with comparable periods of wakefulness. Third, to determine whether
these behavioural consequences are more effectively explained by behavioural focus
models or neurologically based consolidation theories, thus explaining the
mechanisms that underlie consolidation and generalisation. In trying to accomplish
these objectives, the current chapter offers a theoretically grounded and empirically
validated explanation of the role of sleep in regulating the appearance of plasticity in
learning. Starting with a comprehensive evaluation of each characteristic that is
being addressed on its own in order to first build a concrete understanding of the
basic concepts. Next, will look into previous research studies, reviews, and
conceptual frameworks that indicate how neuroplastic changes within the brain
contribute to the process of learning, as well as how these processes are influenced

by the potential influence of sleep.



1.2. Learning and Brain Plasticity

1.2.1. Brain Plasticity

Reviews often associate the term "plasticity" with the nervous system.
However, it is not often defined and usually refers to changes in neural structure
and function that are commonly classified as "brain remodelling" (Merzenich et al.,
2014). According to the review article published by Innocenti (2022), neuroplasticity
is fundamental to the existence of the nervous system because it transforms
environmental inputs into behavioural outputs, at the same time it goes beyond
simple reflexes to allow the nervous system to be actively shaped and modified by
these environmental inputs. In the late 19th century, scientists proposed that the
individual brain adapts in a specific way, which sparked interest in these phenomena
(Denes, 2015). This concept was revolutionary because at the time the structure of
the brain was static. Moving forward, more and more researchers, such as Cai et al.
(2014) and Zatorre et al. (2012), have described that the nervous system has the
ability to change the structure and organisation of structures, as well as their
functions in response to experience, trauma, or learning, suggesting that the human
brain is not unchangeable or static. In the current decade, researchers have
developed new approaches and perspectives on the plasticity of the brain after
exploring the concept more and more. Merzenich et al. (2014) argued that
researchers once thought that plasticity could only happen during the pregnancy
stage and the first few years of development. Multiple studies from the 20th century
and more current research indicate that the brain is still plastic at any age (Erickson

et al., 2013; Lovdén et al., 2013; May, 2011; Schmidt et al., 2021).

In an animal study conducted by Yang et al. (2014), they found that the
performance of those who slept after completing a motor learning exercise

increased, and their brain activity patterns changed, demonstrating the plasticity of



their brains. The researchers employed a technique known as two-photon imaging
to observe the formation of dendritic cell spines in the motor region of mice after
they learnt new motor skills. According to their research, sleep after learning
significantly increased the number of new dendritic spines that were generated
compared to wake. They discovered that sleep plays a role in increasing the number
of these dendrite spines compared to wakefulness. The findings from this study
showcased the brain’s ability to also adapt in adulthood, highlighting the importance
of sleep for promoting changes following learning. In another experiment conducted
by Anguera et al. (2013), older individuals between the ages of 60 and 85 were
engaged in a designed video game to improve their control, particularly multitasking
abilities. Participants in the study practiced the video game at home over a one-
month period. The results showed that individuals not only improved gaming skills
but also progression in other cognitive functions like sustained attention and
working memory was also observed. Remarkably, these enhancements persisted for
six months without any further learning, indicating that the game had a lasting
impact on their cognitive abilities. Additionally, the prefrontal cortex (PFC), which is
a region of the brain linked to cognitive control, was more active when the
individuals were playing the game. This showed that learning influenced the patterns
of brain activity in addition to improving cognitive function. This study highlights that
the ageing brain remains capable of plastic changes, which was one of the first to
offer causal evidence that playing video games might help older individuals'
cognition. Again, suggesting the idea that the ability for the brain to change due to
learning is not only available during a young developmental age, but the brain

remains plastic even in a mature age.

At a cellular level, neuroplasticity is the result of the interaction of several
molecular and synaptic mechanisms that both remodel existing neural networks and
create new ones (Citri & Malenka, 2008; Hogan et al., 2020). Synaptic plasticity
refers to the ability of synapses, which are the connections between neurons, to

vary in size (Magee & Grienberger, 2020). The phenomenon of synaptic plasticity



was initially seen in the hippocampus demonstrated by Bliss and Lomo (1973), who
reported pre- and post-synaptic neurons were repeatedly and nearly simultaneously
activated, it led to an enhancement of synaptic inputs at the stimulated junctions.
This phenomenon being discussed is known as long-term potentiation (LTP). LTP
works by strengthening the connection between neurons when they are consistently
activated together, which enhances their communication (Bliss & Lomo, 1973).
According to Bliss and Collingridge (1993), LTP serves as a process for memory and
learning because it demonstrates the brain’s ability to adapt to experiences. For
instance, when an individual repeatedly practices specific sequences while learning
to play the piano, the synaptic connections between the neurons involved in that
motor activity become stronger. Over time, these connections become more robust,
allowing for more finger movements without conscious effort (Pascual-Leone et al.,
1995). This phenomenon were further expanded by Levy and Steward (1983), and
subsequent research found that established that LTP functions as a universal process
across several brain areas (Caporale & Dan, 2008; Malenka & Bear, 2004; Nicoll,
2017). In contrast, long-term depression (LTD), has been investigated in many
different regions of the brain which emphasis on the continuing decreases in
synaptic strengths, believed to be essential to forgetting, pruning, and
reorganisation (Lovinger & Abrahao, 2018). The functional importance of LTP and
LTD is evident in skill learning studies. For instance, Pascual-Leone et al. (1995)
demonstrated, using transcranial magnetic stimulation (TMS) mapping, that piano
practice in new learners altered motor cortical representations of finger movements,
corresponding with the LTP-induced enhancement of motor circuits. On the other
hand, LTD ensures that connections that are not working as well are weakened,
making room for new learning to occur. These processes together demonstrate how
alterations in synapses are responsible for forming memories, learning new skills,
and changing behaviour. Overall, LTP and LTD work together simultaneously to
control the strength of synaptic connections within the human, where LTP
strengthens the connections, allowing for the improvement of forming memories.
LTD weakens the less active connections, leading the brain to clear out information
that is not in use, which allows spaces for new learning, highlighting the idea that,

through this cycle of process, the brain can learn, adapt, and optimise learning.
10



Synaptic plasticity is also facilitated by the growth and contraction of
dendrites, the lengthening of neurons that receive communications from other
neurons, and the formation and destruction of synapses (Hotulainen & Hoogenraad,
2010; Kirchner et al., 2025). Therefore, the brain is capable of adapting to new
knowledge and experiences because of this structural remodelling of neuronal
circuits that may occur from learning (May, 2011). Cai et al. (2014) characterised
neuroplasticity as "an innate property or ability for active lifetime learning and
relearning." This point of view emphasises the concept that the brain can adapt and
evolve over the course of an individual's entire life, not just in early childhood but at
any age. The authors emphasise that the flexibility of the brain is not limited by age
but that it may peak during a particular stage of early development. This view
supports the growing body of evidence that suggests that the adult brain remains

plastic and capable of change in response to experience and learning.

1.2.2. Connection Between Plasticity and Learning

Learning involves changes in the brain's structure and function, going beyond
merely cognitive processes. These changes, known as structural plasticity, highlight
the brain's ability to alter its internal structure in response to learning experiences.
An important body of research that supports the idea is Draganski et al.'s (2004)
study, which was based on the hypothesis that repeated practice of a juggling motor
task, which requires coordination skills, could cause changes in the GM volume
within the human brain. This experiment utilised one learning group and one control
group, and MRI techniques were employed to capture images of the brain.
Participants were scanned at three different time points throughout the experiment:
before learning, after three months of learning to juggle, and three months after

completing the learning process. Results showed that juggling for three months,

11



participants showed a significant increase in GM in the mid-temporal region of the
brain that is believed to be responsible for processes of complex visual motion (Zeki
et al., 1991). Furthermore, after a three-month break from juggling, the participants
still showed some identifiable changes compared to pre-learning, but there was a
clear reduction in GM volume. This study suggests that learning motor skills such as
juggling may lead to an increase in the amount of GM in certain areas of the brain.
However, while the study reported structural changes, it did not explore the
relationship between these changes and long-term learning or behavioural gains.
Furthermore, the study did not have a direct measure of the functional outcome
(i.e., what changes were observed during the task while the participant learnt), so it

is unclear how structural changes lead to improved behavioural performance.

Complementary evidence comes from studies of real-world expertise.
Maguire et al. (2000) compared London taxi drivers with controls. The purpose of
the study was to investigate potential effects of a high-intensity spatial navigation
experience on brain structure, with a focus on the hippocampus, a region of the
brain known to be involved in spatial memory. The researchers compared images of
the brain anatomy of London taxi drivers who followed predetermined routes and
those who often drove complex routes daily. Significant differences in posterior
hippocampus size were found between taxi drivers and non-taxi drivers, suggesting
that the cognitive demands of navigation may lead to structural changes in the brain.
This study provides compelling evidence of the correlation between learning and
brain plasticity. This finding supports the idea that the human brain undergoes
structural changes in the aspect of performance experiences and environmental
stress during learning. Mechelli et al. (2004) observed greater GM density in the lift
inferior parietal cortex of bilinguals compared with monolinguals, suggesting
structural changes resulting from proficiency in particular language. Gaser and
Schlaug (2003) compared professionals (those who practice for at least an hour
every day), amateur and non-musician groups. Findings shows that GM volume was

greatest in professional musicians, moderate in amateur musicians, and lowest in
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non-musicians across a variety of brain areas related to creating music, including
motor, auditory, and visual-spatial regions. These studies provide strong support for
the idea of plastic alterations in connection to long-term motor learning, which fills
the gaps in Draganski’s study where no direct evidence of long-term outcome was

provided.

Recent study has built on these findings by examining the effect of time.
Leipold et al. (2021), investigated the long-term musical ability and its impact on
extensive brain networks, both anatomical and functional. The evidence provided by
this study indicated that those who started studying music later in life had much
fewer connection patterns than those who started earlier. It also suggests that the
brain can change its anatomical and functional components dramatically within a key
window of time when it is highly receptive to musical input. All things considered,
the study contributes to the growing corpus of evidence supporting neuroplasticity,
the hypothesis that the brain may restructure itself in response to experiences and
learning. It highlights how remarkable it is that, even in adulthood, the brain can
change both physically and functionally to learning music. The idea of neuroplasticity
as a whole is supported by the body of research that points to the possibility that
learning alters the brain's structure and function, which leads to the enhancement of
our behavioural ability. As well as empathising the fact that the brain may still
reorganise itself in reaction to unfamiliar situations and extensive practice, even in

the time of maturity.

However, while all the studies described above provide strong evidence that
learning is associated with significant structural changes in the brain, they mostly
concentrate on the online learning stages, which are those in which individuals are
actively working on tasks. However, there is a knowledge gap in the literature when

it comes to offline changes—those that take place during rest periods, such as sleep,
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that serve a major role in memory consolidation and ongoing skill development. For
instance, although changes in brain structure during active learning and practice are
shown by Maguire et al. and Gaser and Schlaug's study, they do not examine how
brain structures change during offline periods during which learning is reinforced. A
growing body of research indicates that consolidation processes that take place
offline, especially during sleep, are crucial for stabilising and improving learnt
material (Diekelmann & Born, 2010; Stickgold & Walker, 2013). As a result, this lack
of focus represents a critical gap, and try to bridge this knowledge gap by merging
neurological explanations for learning processes with behavioural models, thereby

offering a more comprehensive comprehension of learning processes.

1.3. Learning

1.3.1. Factors Contributing to Learning

There is a large amount of evidence that demonstrates how various factors,
such as environmental stimuli, cognitive commitment, and neurological changes,
interact and influence the complex process of learning (Cheng et al., 2025; Song &
Cai, 2024). Researchers in this field have emphasised the importance of the
temporal component in relation to learning. It is not just determined by the time
spent on an activity or task (online). The brain's capacity to reorganise neural
networks and enable the consolidation and integration of recently acquired
information into long-term memory systems depends on these offline times,

especially sleep.

14



One of the conventional psychological models commonly used to explain
online learning is the Rescorla-Wagner model (Recorla & Wagner, 1972). This model,
originally developed to describe associative learning, posits that learning occurs
when there is a discrepancy, or prediction error, between the expected outcome
and the actual result. This model proposes that a person tends to learn more
strongly when the prediction error is greater. One example of such an assumption
comes from the idea of classical conditioning. Learn to associate a conditioned
stimulus (CS), like a bell, with an unconditioned stimulus (US), like food. To start
with, CS will not trigger any responses; however, when the CS is repeatedly paired
with the US, it will begin to respond to the US based on the CS. Later, when the CS is
presented without the accompaniment of the US, the prediction error becomes
significant, and the expectation starts to change accordingly, thereby decreasing the
prediction error over time. This means that when someone is frequently exposed to
a stimulus, it will begin to lower their prediction error, which in turn will strengthen
associative links and enhance perceptual skills within the context of perceptual
learning. This model provides a strong foundation for comprehending online
learning, which happens during active engagement with the learning stimuli. This
model takes into account how real-time repetition, reinforcement and expectation
violation influence learning. What this means in the PL context is that repeated
exposure to specific inputs (e.g. visual features) can lead to a decrease in errors,
which results in a refined sensitivity in perception. However, although the model can
capture the online learning dynamics that occur during the learning session, it
ignores offline activities that take place while an individual is asleep or is at rest,
which are essential for integrating and consolidating what was learnt (Tucker et al.,
2020; Wamsley, 2022). As a result, although the Rescorla-Wagner model sheds light
on how learning occurs instantly during active learning, it is unable to adequately

explain how learning and memory increase during times of inactivity.

Another intriguing model is the Mackintosh model (Mackintosh, 1975), which

moves the emphasis from prediction error to selective attention, which is a
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complement to the Rescorla-Wagner model. The Mackintosh model posits that
animals will give greater attention to stimuli that reliably predict significant events
and disregard those that do not. This model focuses on how learning efficiency
might be impacted by how one allocates attentional resources. The Mackintosh
model states that the predictive ability of stimuli affects how much attention is
dedicated to learning about them, in contrast to the Rescorla-Wagner model, which
hypothesises that learning happens as long as prediction mistakes remain. For
instance, when a stimulus reliably indicates a significant occurrence, it attracts a
person's attention more, thereby promoting more efficient learning. Conversely,
individuals disregard stimuli with poor predictive value, leading to a decrease in the
amount of information they retain. One example of this event is drivers' behaviour at
traffic lights; while driving, the driver often pays more attention to traffic lights
because they have important indications on whether can go or need to stop.
However, in contrast, an individual may not pay too much attention to a billboard on

the side of the road, as this is often less relevant to us.

The theories mentioned above give a valuable framework for comprehending
the concept of learning, but their underlying processes still differ. The Mackintosh
model highlights how learners manage their attention by paying more attention to
important stimuli, while the Rescorla-Wagner model is based on the idea of
prediction error. Remarkably, neither model thoroughly considers the crucial role
that offline consolidation processes—such as sleep—play in promoting long-term
memory and adaptable application of newly learnt content. The previously
mentioned difference emphasises the need for combining perspectives from
psychological models of online learning with discoveries from neuroscience on

offline consolidation.

The finding that significant improvements in the execution of tasks often

follow periods of rest or sleep, even in the absence of further practice, provided an
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incentive for looking into offline learning mechanisms. The resulting theory asserts
that the brain keeps processing and organising knowledge acquired during active
involvement even during these offline times. It has been shown that learning offline,
especially when sleeping, involves the reactivation of neuronal circuits used during
learning, which aids in the reorganisation and reinforcement of synaptic connections
(Stickgold & Walker, 2013). Based on various research approaches, including
behavioural evaluations and polysomnography, these processes are thought to
improve the integration and long-term retention of learnt content (Diekelmann &

Born, 2010)

A fundamental study that investigates the importance of sleep in learning
was carried out by Karni et al. (1994), which explored how perceptual learning skills
are acquired during sleep. In this experiment, six young adults were trained on a
texture discrimination task before and after a normal sleep period or disrupted sleep
at either REM or SWS. The findings revealed that perceptual skills were better
absorbed after a normal sleep period, with a decrease of 23 ms in reaction time (RT)
to stimuli; however, this significant improvement was not found in the REM or SWS-
deprived group, which instead led to a 19 ms gain in RT. This study demonstrated
that different sleep stages, such as REM, are important for the consolidation of the
learning task, as indicated by the improvement found in the non-sleep-deprived
group. This study has notably provided information on isolating the effects of
specific stages of sleep, giving strong support for the importance of REM in learning.
This study also points to an important gap in the literature regarding the
generalisability of the results to other types of learning tasks and long-term memory

consolidation.

Diekelmann and Born (2010) expanded this area of research by conducting
an extensive review to look at the ways in which different sleep stages affect

memory consolidation for motor and cognitive skills. Their analysis summarises the
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results of several studies in the field, suggesting that different sleep stages, such as
rapid eye movement sleep and slow-wave sleep (SWS), can have multiple functions
during consolidation. Studies have shown that REM sleep is more important for the
consolidation of procedural memories (such as motor abilities) and emotional
memories, while SWS sleep is critical for the consolidation of declarative memories
(such as factual information). However, this review highlights another important
process of declarative memory consolidation which is system consolidation, which
occurs when neural patterns generated during learning are again active during SWS.
On the other hand, REM sleep primarily contributes to synaptic consolidation, a
process that fortifies synaptic connections, particularly in the context of procedural
learning. This difference shows the difficult process of memory consolidation and
shows how sleep supports the different components of learning, depending on the
nature of the task that was learnt, and the specific sleep stage involved. Overall, the
review paper emphasises that sleep is an important component of learning that not
only maintains but also improves and reconfigures memory, which promotes the

integration of recently learnt material into the larger cognitive network.

Stickgold and Walker (Stickgold & Walker, 2005, 2013), have further
advanced our understanding of sleep-dependent memory consolidation, which
supports the above-mentioned viewpoints. Their findings suggest that sleep both
stabilises memory and modifies it, enabling newly learnt content to be generalised
and integrated into the framework of existing knowledge. In one study, participants
were taught procedural (visual discrimination) and declarative (word learning) tasks.
Following the training, participants were divided into two groups, with one group
remaining awake and the other allowed to sleep. The results showed that sleep had
a significant positive effect on participants' ability to complete the task, especially
the procedural skills critical to REM sleep. According to Walker and Stickgold, sleep
reorganises and consolidates memory traces, increasing the flexibility and
adaptability of what is learnt for future use. This process greatly improves the

effectiveness of learning in daily life. This finding highlights that sleep is not so much
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a passive state but is more of an active state that directly supports learning,

memory, and cognitive performance.

Beyond sleep, another factor that contributes to learning is the different
types of learning tasks, such as motor, perceptual, and attentional learning. It is
believed that these types of learning tasks engage distinct neural networks and
strongly depend on the task and the content (Yotsumoto et al., 2008). This suggests
that task-dependency portraits the plasticity and adaptability of the learning
process, where the nature of the task itself can affect specific brain regions and
processes that are involved. Furthermore, individual differences also contribute to
an important role in the outcome of learning. Cognitive abilities, biological makeup,
and structural and functional differences in the human brain all contribute to one’s
learning ability and the speed at which the learning occurs. For example, Kanai and
Rees (2011) carried out a study with the purpose of examining the connection that
exists between the anatomy of the brain and one's cognitive capabilities. The
researchers concluded that individual variations in brain anatomy, particularly in the
PFC, appeared linked to differences in cognitive abilities such as learning. Similarly, in
a study conducted by May (2011) reviewed evidence relating to the impact of the
brain's ability to adapt on learning. The review provided insights into how
differences in brain plasticity could affect the speed and effectiveness of the learning
process, with factors such as age, genetics, and prior experience shaping these

outcomes.

Furthermore, Takeuchi et al. (2011) expand this idea by exploring the
relationship between differences in working memory (WM) function and more
extensive cognitive abilities. They employed an fMRI n-back WM task and an
alternative cognitive test to see if brain activity during WM could predict creativity.
The research indicated that higher creativity scores were correlated with diminished

task-induced deactivation in the precuneus, a component of the default mode
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network (DMN) that is generally inhibited during challenging cognitive tasks (Mayer
et al., 2009; Utevsky et al., 2014). This pattern suggests that individuals with

higher creativity might have a broader attentional distribution, rather than
completely suppressing DMN activity during a WM task. These results explain the
influence of neuronal dynamics on WM and more complex cognitive tasks,
emphasising the significance of inter-individual variability in shaping learning

outcomes.

Taken together, the findings from these studies provide credibility to the idea
that different aspects of one's environment might affect one's ability to learn. The
timing of learning, the individual variation of learning ability, and the ability to
change the brain are all key aspects that play a part in the development of the
learning process. Developing an understanding of these aspects can help optimise
educational tactics and interventions to promote learning that is both effective and

personalised.

1.3.2. Time of the Learning

Building on the understanding of the ways in which different contributors
may influence skill learning, it is necessary to address a very fundamental
component relating to learning, which is the time that learning occurs. This temporal
characteristic influences the ability of an individual to take in, maintain, and use
knowledge in different settings (Joiner & Smith, 2008). Broadly, learning can occur in
two forms: online learning and offline. In this thesis, online learning is identified as
the information participants pick up about the task while performing the activity. For
the quick acquisition and development of new skills and information, this type of
learning is essential (Doyon & Benali, 2005). Online learning is often related to real-

time brain activity, such as the cortex, which has an important role in the
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development of skills (Doyon et al., 2009). For instance, Bavelier and Green (2019)
carried out a study to look at how playing video games can influence cognitive
functions, especially in attention and working memory. The participants in the study
were split into two groups, where one group played action video games and the
other group played non-action games. Cognitive performances were assessed before
and after the sessions using some unrelated tasks, such as tests for attention and
memory. The findings from the study highlighted that those who are in the testing
group developed better cognitive flexibility, working memory, and attentional skills,
with these benefits extending beyond gaming to other cognitive domains. This study
supports the idea that engaging in action video games can enhance brain plasticity
and cognitive function, facilitating cross-domain transfer of learnt skills. However,
the long-term persistence of these effects remains uncertain, and further research is
needed to explore their underlying neural mechanisms and applicability to other age

groups.

On the other hand, offline learning is identified as activities that take place
after acquisition and during sleep or during wakefulness when participants are not
doing the learning task (Tucker et al., 2020). The periods when an individual are
awake but not actively working are known as offline wake periods. During these
periods, information acquired during learning may be involuntarily reactivated,
reorganised, and integrated into long-term memory networks (Tambini & Davachi,
2019). Dewar et al. (2012) investigated this idea by evaluating the acquisition of new
verbal memory in their study. Seven days following the learning session, they
discovered that memory performance had significantly improved. They concluded
that an offline wake period following learning allowed new memory traces to be
more thoroughly integrated and, as a result, to be retained for a significantly more
extended period. Similar findings from Craig and Dewar (2018) were observed,
where they found that participants were much better at differentiating newly
encoded target images from similar lure images when the learning took place

following a 10-minute offline wake period. This finding emphasises that our cognitive
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state during consolidation not only influences our memory retention but also affects
the level of detail in our new memories. Both studies suggest a strong connection
between the offline wake period and learning, as it helps prevent the loss of

memories.

Furthermore, Schlichting and Preston (2015) extended these findings by
examining the effect of offline periods on learning generalisation. They trained
individuals on a task that required them to associate specific stimuli with specific
responses, followed by an offline interval. They found that the length of the offline
period was positively correlated with individuals' ability to apply newly learnt skills to
novel stimuli, suggesting the idea that the longer the offline interval, the better the
learning and the more it can be consolidated and generalised. However, one of the
limitations of this study is that it only focuses on one type of task, and it is not
possible to conclude whether, if a different task were used, it would lead to a similar

finding.

When combined, these results provide compelling evidence that learning
occurs throughout both online and offline phases. However, gaps remain relating to
the specific brain processes that offline learning uses to combine different kinds of
information, especially when it comes to complex real-world tasks. Filling up these
gaps will help us develop a more sophisticated understanding of the roles that

wakefulness and sleep play in the development and maintenance of skills.
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1.3.3. Transfer of Learning

Transfer of learning refers to how information or specific skills acquired in
one context can be used in another context (Haskell, 2001). This concept has been
extensively studied in the fields of psychology and education because it helps us
understand how individual acquire and remember knowledge and skills (Schubert et
al., 2014; Vleugels et al., 2020). This idea has strong applications in several fields and
different aspects of our daily lives. For instance, the concept that driving a car can
facilitate learning to drive a truck relies on the transference of motor skills between
these two situations. Essentially, the ability to apply what have been learnt in
situations enhances our learning process and adaptability. The transfer of learning
encompasses aspects such as positive or negative transfer and near or far transfer.
Positive transfer occurs when knowledge gained in one area positively affects
performance in a related field (MUssgens & Ullén, 2015). Language learning is an
intriguing example of this positive transfer because research have shown that
learning one language may make learning a second language easier, especially if the
two languages have similar linguistic characteristics (Abrahamse et al., 2013; Ortega,
2008). In skill domains, action-video-game learning has also resulted in cross-task
attentional benefits compared to non-action controls (Bavelier et al., 2012; Green &
Bavelier, 2003), which supports the idea that learning can provide measurable
performance improvements beyond the specific task learnt. Language learning is a
interesting scenario, as it is natural to assume that learning one language may
facilitate the learning of a second, particularly if the two languages share similar
grammatical features. In fact, this form of transfer strengthens general learning and
can speed up learning new skills based on what one already knows. In the perceptual
domain, task design may limit or facilitate transfer: fundamental research indicates
an important specificity of enhancement to trained features/areas, although
“double-training” can promote transfer to untrained retinal locations (Xiao et al.,

2008).
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In contrast, negative transfer occurs when the information hinders the
performance of a future, related activity from the prior one. An example of such a
transfer is when two tasks superficially resemble each other but differ in critical
functioning aspects. In this case, the inappropriate transfer of rules or methods
impairs the performance of the novel task (Bandura & Locke, 2003; Ni et al., 2023).
According to Perkins & Salomon (2012), negative transfer comes into view during
instances when the previously gained skills interfere with the process of learning
something new. This interference often illustrates the critical problem that exists
within the process of learning, whereby prior knowledge needs to be inhibited or

changed as one learns something different.

This then led into the discussion of another crucial element relating to the
degree of transfer, which can be classified as either a near or far transfer of learning.
When the new learning activity is quite comparable to the old one, near transfer
occurs, facilitating an effortless transfer of skills (Wirth et al., 2025). Far transfer
involves the process of adapting information or skills in situations that are very
dissimilar from the initial learning environment (Barnett & Ceci, 2002). While near
transfer is prevalent, far transfer offers greater challenges but offers the capacity to
enhance innovation and problem-solving abilities in unfamiliar contexts. Empirical
evidence of far transfer is uncommon; however it has been documented following
intensive training or when tasks display shared latent processes (Green & Bavelier,

2003; Xiao et al., 2008).

As stated by the work of Torrey et al. (2010), the ability to transfer is crucial
to enhancing learning efficiency, as it allows one to apply prior knowledge, thus
reducing the requirement to relearn what has previously been learnt. The function
of learning transfer is important; without the ability to transfer, all learning would be
situation-specific, and significant repetition of previously learnt materials would be

required, which is not an efficient way to learn. As a result, learning transfer is a
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critical component of human learning, and its study is essential for designing
effective learning environments. From a psychobiological standpoint relevant to this
thesis, the process of transfer could depend on the consolidation of learning: offline
processes, particularly sleep, can stabilise or reorganise representations, potentially
facilitating generalisation under certain conditions (Borin et al., 2024; Conessa et al.,
2023; Drouin et al., 2023a; LaBonte-Clark et al., 2025). The study of learning transfer
extends beyond the straightforward application of acquired information or skills in
psychology. This highlights the value of understanding the transfer of learning and
the process that additionally speeds up the learning process, but also helps
individuals become more skilled at tackling complicated problems. The importance
of learning transfer should not be overstated, as it is essential to how effectively
individuals learn If the ability to transfer knowledge were absent, the acquisition of
knowledge would be limited to specific situations, also requiring the process of

repetitive relearning of previously acquired information in every new setting.

1.3.4. Individual Differences in Learning and Transfer

These studies, in general, demonstrate that differences in the brain's
structure and function result in measurable differences in learning behaviours. For
example, those who have stronger brain connections tend to be less likely to get
mentally tired (van der Linden et al., 2003), better at doing more than one thing
concurrently (Strobach et al., 2012), and learn motor skills faster (Ericsson et al.,
1993). Understanding such difference in individuals is important for learning,
professional training, and therapy. Individualised methods that use an individual's
cognitive abilities may be more successful than standardised approaches (Gkintoni et

al., 2025).
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Furthermore, these inter-individual differences also influence the behaviour
of perceptual and attentional learning. On insightful review by Kanai and Rees
(2011), provides meaningful evaluation into how structural differences in the PFC
may predict individual differences in cognitive skills, especially in relation to learning
and memory. The review suggests that differences in behaviour and cognition are
linked to differences in anatomical traits such GM volume, and WM integrity, and
cortical thickness. They also demonstrated that brain anatomy differences are not
only external noise. Instead, they are a systematic contributor to individual
differences in the effectiveness of learning, including recall and attentional control.
Although Karni and Rees's review provided a significant theoretical framework, it
mainly synthesises correlational findings, indicating that causal mechanisms require

examination through focused empirical studies.

Gur et al. (2020) carried out research to examine if differences in GM volume
could predict cognitive skills. Using structural MRI, they demonstrated that
differences in GM across frontal and parietal regions was significantly correlated
with cognitive ability and working memory capacity. This research offered
substantial evidence for the "parieto-frontal integration theory" of intelligence,
indicating that individuals who have enhanced anatomical resources in these areas
are more successful at acquiring and applying knowledge. However, given that it
uses a correlational design, it was unable to determine if GM differences were
intrinsic or it was a result of previous learning experiences. Takeuchi et al. (2011)
provided additional evidence by examining the potential of working memory
learning for producing functional and structural changes in the brain. Their
participants underwent intense mental calculation training during MRI scanning. The
findings shows that learning can improve mental calculation significantly which was
accompanied by increase in GM volume within the PFC and parietal region, as well
as leading to stronger connectivity between these areas. This study expanded

beyond correlational methods and demonstrated that learning can induce changes
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within the brain and providing a potential mechanism for the development of

individual difference over time.

Verghese et al. (2016) went beyond this work to examine the relationship
between PFC structure and multitasking skill. Conclusive results showed that
individuals who had larger volumes of the PFC were able to reach much higher
degrees of cognitive flexibility and multitasking at post-training. This study aimed to
identify how changes in the structure of the PFC affect not only base levels of
cognition but also the ability to continuously learn. The researcher quantified PFC
volume using MRI. The results showed that the larger the PFC, the greater the
improvement in multitasking skills after training. These findings are particularly
important at the behavioural level in that the enlarged PFCs would suggest that
individuals may respond well to certain cognitive training, such as multitasking or
shifting-attention kinds of tasks. This emphasises the importance for research to
take into consideration individual differences in the development of interventions
for cognitive training. It suggests here that cognitive training should be performed in
relation to the structural capacity of the learner's brain, rather than assuming a one-

size-fits-all approach for higher efficacy of the intervention.

In fact, Scholz et al. (2009) examined the WM change due to training as the
predictor of gains in cognitive performance. They investigated the possibility that
WM plasticity resulting from training can predict improvements in learning
performance. DTl scanning was done to create images for participants both prior to
and following their learning regarding the visuospatial and motor tasks. Scholz et al
found that there was a significant change in WM organisation, especially within the
posterior intraparietal sulcus, which was associated with task performance
improvement. Individuals showing more efficient WM connectivity after training
performed better in both visuospatial and motor tasks, indicating that WM

reorganisation might be an important sign in learning and memory. This finding
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reinforces the importance of understanding neural plasticity in relation to both
cognitive psychology and informing strategies in behavioural training, such as in skill
acquisition within sports or rehabilitation, for example. These WM changes
underline the fact that the timing and structure of the programs are important for
maximum cognitive improvements, suggesting that frequent and well-structured

practice sessions may improve learning outcomes.

Together, these studies show that individual differences in brain structure
and function are important to the field of psychology at the behavioural level
because these neurological differences translate into real-world differences in
learning behaviours. For instance, individuals with higher neural connectivity show
resistance to cognitive fatigue, multitasking ability, and an increase in the rate of
motor skill learning. With this realisation, educational psychologists and trainers can
construct personalised approaches that leverage the cognitive strengths and
weaknesses that an individual possesses. An approach like that gives way to
neurological research into actionable strategies that affect behaviour—through
academic settings, through professional training, and through therapeutic

intervention.

This research enables the field of behavioural psychology to recognise that
differences in learning are not just about the content being learned but are also
about how the brain processes and consolidates that information. Behavioural
interventions that take such neurological underpinnings into account will likely result
in successful learning. While all the above-mentioned studies in this section provide
insights into the neuroanatomical basis of individual differences in learning, the true
importance of these studies lies in their implications for behaviour. These findings
bridge neurological and behavioural levels, providing practical application to how to
understand, teach, and train individuals. In other words, it should be recognised that

learning cognitive tasks involves differences and complexity in individuals. This thesis
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adds to the existing literature by investigating the behavioural manifestations of
these differences, with a particular focus on online and offline learning processes.
Comprehending these differences may facilitate targeted interventions that enhance
learning outcomes, especially for individuals encountering difficulties in skill

acquisition.

1.4. Role of Sleep in Learning and Plasticity

The field of sleep research commonly uses the electroencephalogram (EEG), a
tool that analyses brain electrical activity. EEG works by capturing brain wave
frequencies and provides insights into how the brain functions (I. G. Campbell,
2009). Generally, researchers use EEG data to identify patterns of brain activity that
change as an individual transition from being awake to falling asleep. During
wakefulness, the EEG readings primarily consist of frequency brainwaves with
amplitudes indicating an alert and focused cognitive state. However, when
approaching sleep, these brainwave oscillations undergo shifts (Hori, 1985). Usually,
at the beginning of each sleep cycle, there is a decrease in head wave frequencies.
The sleep cycle consists of five phases that repeat four to five times throughout the
night and serve purposes in restoring and rejuvenating our bodies. These phases
involve coordination between systems and are crucial for overall health and well-
being. A typical sleep cycle goes back and forth between non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep four to five times a night (Patel et al.,
2025). Each cycle supports different physical and mental functions (Sazgar & Young,
2019).

NREM and REM are two states that occur during sleep (Le Bon, 2020). NREM
light sleep corresponds to the first stage of the sleep cycle. During this stage,

characterised by alpha waves with a frequency of 8-13 Hz and high amplitude, you
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transition between being awake and asleep. As you enter stage two, sleep spindles
emerge, which refer to bursts of repetitive brain wave activity at 10-12 Hz (Dotto,
1996). NREM stages three and four are sometimes referred to as "slow-wave sleep"
(SWS). During this time, low frequency (up to 4 Hz) and high amplitude delta waves
will characterise the reduced spindle production. REM sleep, in contrast, is the fifth
stage and is distinguished by atonia and rapid eye movement (Spencer, 2013). The
stage of sleep known as REM is when people dream, and the brain activity related to
this period is relatively similar to that of waking individuals. REM sleep also causes
the paralysis of all bodily muscles, except those necessary for breathing and
circulation. REM sleep can also be referred to as paradoxical sleep, due to its unique
combination of enhanced cerebral activity and decreased muscle tonicity (Luppi,
2018). Despite the idea that there are still many theoretical disagreements regarding
the significance of both REM and NREM sleep for learning and memory (Siegel,
2001), REM sleep has been proposed to be a unique state that may support learning,

memory-related functions and plasticity (Colten & Altevogt, 2006).

While there is ongoing discussion regarding the different roles of NREM and REM
sleep in memory processes, growing research indicates that they may offer
complementary contributions. Wagner et al. (2001) offered direct empirical data
demonstrating that REM-rich sleep explicitly improves the consolidation of
emotional memories. Participants studied both emotional and neutral text passages
and were then assessed following intervals of either early sleep (marked by SWS),
late sleep (marked by REM), or equivalent wake periods. Recall was considerably
better post-sleep compared to wakefulness; notably, late sleep enhanced in REM
preferentially improved memory for emotional texts relative to neutral ones. These
findings indicate that REM sleep facilitates the processing of emotionally significant
information, presumably through amygdala—hippocampal connections, although the
study was limited to spoken materials. More recently, Shuster et al. (2024),

discovered new REM electrophysiological signatures related to cognitive processing
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in humans, strengthening the idea of connection between REM activity and memory

integration.

Given the diverse roles that the various phases of sleep play, understanding how
sleep influences brain plasticity and learning can be challenging. Specifically, SWS
has been linked to the retrieval of memory, which involves recalling events and
information. Diekelmann and Born (2010), in a comprehensive review, suggest that
during SWS, there is a replay within the hippocampal-neocortical dialogue of the
learning-related events in the brain, leading to memory consolidation and
strengthened connections. On the other hand, REM sleep is believed to be crucial for
consolidating information, often accompanied by vivid dreaming (Stickgold, 2005).
Animal research supports this model: Wilson and McNaughton (1994) examined
hippocampal place cells in rats navigating a maze and observed that the same
activation patterns were reactivated during subsequent SWS period, indicating a

replay mechanism for memory consolidation.

Furthermore, the review conducted by Rasch and Born (2013) highlighted the
important function of stage N2 sleep spindles in NREM sleep. It has been suggested
that these brief bursts of brain activity, called spindles, may serve an informational
transfer function from the hippocampus—a brain structure described as the centre
for encoding information in short-term storage—through to the neocortex—the
brain structure responsible for storing information in long-term storage. Maybe one
important indication of the occurrence of spindles during sleep plays a critical role in
the effective consolidation of memories, further highlighting how stages of sleep

interact with cognitive functions.

These findings together show that sleep is not a passive state but an active

biological event that promotes memory consolidation, plasticity, and the transfer of
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learning. SWS seems to play a role in hippocampus replay and consolidating
declarative and emotionally important information, while REM plays a role in
synaptic consolidation and learning procedural skills. Sleep spindles, mainly when
observed in clusters, have been recognised as a biomarker for both consolidation
and transfer between different types of sleep. These results align with
psychobiological concepts, especially systems consolidation theory, and provide a
framework to evaluate the role of sleep for promoting task-specific consolidation
compared to broader generalisation. The significance of sleep in perceptual and
attentional learning is particularly relevant to this thesis. REM-dependent
consolidation may facilitate improvements in perceptual discriminating tasks, but
NREM spindle activity may play a role in attentional control and the transfer of skills
across contexts. The psychological and biological models of sleep-dependent
consolidation offer a justification and theoretical framework for the subsequent
empirical chapters that follow, which investigate the impact of sleep on the

specificity and transfer of perceptual and attentional learning.

1.4.1. The Need of Sleep

The usual sleeping pattern is typically characterised by a reduction in
responses and sensitivity to external stimuli, which may rapidly return to normal, as
sleep has a decreased capacity to respond to external stimuli, unlike hibernation or
coma (Cirelli & Tononi, 2008). The two major processes responsible for driving the
sleep regulatory process include a circadian rhythm and a homeostatic drive. The
circadian rhythm synchronises the sleep-wake cycle with the external day-night
pattern to ensure that rest is obtained at night and alertness during the day (Borbély
et al., 2016). In contrast, the homeostatic drive increases the need for sleep
depending on the duration of wakefulness and cognitive or physical demands
throughout the day (Deboer, 2018). Together, these two processes work together to

ensure a very delicate balance in the body between the rest period and the active
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period, highly critical for maintaining cognitive functions related to attention and

decision-making.

Research has extensively indicated that sleep serves a range of purposes,
such as promoting growth (Papatriantafyllou et al., 2022), conserving energy (Roth
et al., 2010), enhancing performance (Aeschbach et al., 2008; Alain et al., 2015;
Debarnot et al., 2013; McDevitt et al., 2018; Tucker & Fishbein, 2008), and
influencing psychological well-being (Lo Martire et al., 2020; Vadnie & McClung,
2017). These studies into different benefits of sleep suggest that it is unrealistic to
view sleep as having one purpose (Zielinski et al., 2016). Comprehensive reviews
have highlighted the idea of cross-species assessments offer additional evidence,
which demonstrated that empirical research has found variables such as age, body
size, and ecological niche significantly affect sleep duration and architecture in
mammals (Siegel, 2005). One particular theory known as Energy Conservation
Theory are commonly used to explain this, which suggests that sleep may have
evolved as a mechanism to conserve energy and regulate behaviour over a 24-hour
cycle. According to this theory, the primary role of sleep is to reduce energy
expenditure during periods throughout the day and night. This hypothesis is
supported by evidence indicating that our body temperature and calorie needs
decrease when asleep, but increase once an individual wakes up (Northeast et al.,
2020). However, sleep does more than just save energy. Sleep also plays a role in
maintaining brain function, which is widely recognised as one of its significant
benefits. It is commonly understood that getting sleep is essential for memory

retention and cognitive abilities (Graveline & Wamsley, 2017; Tucker et al., 2020).

Research on behaviour has linked sleep deprivation (SD) to difficulties in
tasks requiring attention, such as filtering out irrelevant visual stimuli from a set of
memories. For example, Blagrove et al. (1995) used the Finding Embedded Figures

Test (FEFT), which is a test of the ability to filter out irrelevant stimuli. The finding
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showed that SD adversely impacts the neurological filtering mechanism, thereby
decreasing performance. The decrease in task performance with SD is particularly
troubling for those individuals operating under high-stress conditions where great
attention to detail and speed of decision-making are critical (Killgore et al., 2006).
Sleep deprivation has also been associated with impaired cognitive performance in
tasks entailing higher-order performance, such as cognitive flexibility, creative
thinking, and language skills. The longer the period of SD, the more severe the
cognitive impairments become; hence, sleep continues to be not only integral for
learning but also for maintaining overall cognitive function. Similarly, research has
also shown that SD can impact performance in other domains involving memory
recall (Frenda et al., 2014; Martinez-Cancino et al., 2015), creative thinking (Harrison
& Horne, 1999), language skills (Harrison & Horne, 1997), and decision-making
(Killgore et al., 2006; Schnyer et al., 2009)(Killgore et al., 2006; Schnyer et al., 2009).

The general body of research underlines the indispensable role of sleep both
for physiological and cognitive aspects and expresses the need to understand and
exploit all of the potential of sleep in cognitive rehabilitation, education, and mental
health. From a psychobiological standpoint, these effects are effectively explained
through systems consolidation theory, which suggests that sleep facilitates the
reactivation and transfer of newly preserved memories from temporary storage in
the hippocampus to enduring networks in the neocortex (Diekelmann & Born, 2010),
which the thesis will go into more detail in the next section. However, for the current
thesis, which examines the stabilisation and transfer of perceptual and attentional
learning, understanding the role of sleep in maintaining cognitive performance is a
fundamental basis for support. Lack of sleep not only interferes with attentional
processing and decision-making but also interferes with the consolidation processes

essential for learning generalisation.
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1.5. Sleep and Cognition

1.5.1. Learning, Memory and Sleep

The correlation between memory consolidation and sleep is an important
research area in psychological research, especially in the field of learning
(Griessenberger et al., 2012; Schéafer et al., 2020; Talamini et al., 2008). The exact
mechanism by which sleep promotes memory consolidation remains unclear, but
there is solid evidence that sleep has cognitive advantages. A fundamental study
conducted by Wagner et al. (2006) examined the effects of sleep on emotional
memory. In this experiment, participants were asked to memories passages
containing strong emotions. Participants' memory ability significantly improved after
a brief three hours of sleep. The impact showed remarkable persistence for a
duration of up to four years, therefore highlighting the crucial significance of short-
term sleep in the process of long-term memory consolidation. The study
underscores the significance of sleep in effectively stabilising and retaining acquired
knowledge, hence facilitating its long-term retention and retrieval. Nevertheless,
despite these discoveries, the underlying mechanisms by which sleep increases
learning and memory remain inadequately comprehended. The research conducted
by Wagner et al. provides a fundamental understanding of the mechanisms by which
memory consolidation may function in wider domains, such as perceptual learning.
The methodology used in their study, which involved assessing memory retention
following a brief period of sleep, may be modified to examine if comparable
consolidation processes take place with non-emotional memories or perceptual
learning operations. This work establishes a strong foundation to suggest that the
processes controlling the consolidation of emotional memories may be similar to
those involved in other types of memory, such as perceptual or procedural memory.
Existing gaps in the literature, such as the impact of various sleep stages or durations

on these cognitive processes, provide important avenues for future research.
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Further support for the role of sleep in consolidation comes from research using
motor sequence learning tasks. Fischer and Born (2009), for example, trained
participants on finger-tapping sequences and compared groups tested after sleep
versus wakefulness. They found a significant improvement in motor function
following 12 hours of rest. This finding provides additional evidence to the notion
that there is a consistent improvement in performance for motor sequence tasks
associated with sleep. Similarly, Albouy et al. (2013) used motor sequence tasks
where participants were required to enter a specified number sequence as quickly
and precisely as they can (for example, 4-1-3-2-4 or 2-4-1-3-2), at the same time
using fMRI to examine the benefit of sleep on performance. They demonstrated that
post-sleep improvements were accompanied by increased activity in the
hippocampus and medial PFC in the sleep group compared to the SD group. After
learning SD group performance only stabilised and did not improve. These findings
suggest that explicit motor task learning consolidation occurs exclusively after
adequate sleep since only the sleep group displayed reorganisation of the
hippocampal-neocortical networks, underpinning the principle of system

consolidation (Diekelmann & Born, 2010).

There are two main categories of long-term memory: declarative and
procedural memory (Cohen & Squire, 1980; Squire, 2004). Declarative memory
encompasses the ability to store factual information, whereas procedural memory is
concerned with the recall of learnt responses based on prior experience in response
to relevant stimuli. Diekelmann and Born (2010) emphasise that the state of
encoding significantly impacts whether memories for learning have access to sleep-
dependent consolidation. While the encoding for procedural memories might entail
both implicit and explicit processes, the encoding for declarative tasks is often
explicit. This explicit declarative memory processes also appear to be sensitively
dependant to sleep (Fattinger et al., 2017; Korman et al., 2003; Walker et al., 2002;
Wilhelm et al., 2008). For example, the study conducted by Tucker et al. (2006),

showed that a short period of nap containing only NREM sleep would improve
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declarative memory performance on a paired association task, although the
procedural benefits in the study was less consistent. This study adds to the current
evidence which suggests that certain types of sleep stage might be more important
than other stages. Such that the finding suggests the role of SWS in supporting
declarative memories through the hippocampal-neocortical transfer, while REM is
more relevant with procedural and emotional memory (Rasch & Born, 2013; Walker

& Stickgold, 2004).

Furthermore, several studies have also pointed out other potential factors that
might be responsible for the sleep-dependent benefit in learning. One of these is
how much and when sleep occurs (Korman et al., 2007; Payne et al., 2012). A review
examining the patterns across studies has commonly demonstrated that, after a
night of sleep, performance generally improves significantly, and this impact is
frequently observed after 8 hours of sleep (Diekelmann & Born, 2010). However,
recent studies have emphasised that having a quick nap after sleep can help
individuals remember the content they have learnt (McDevitt et al., 2018). In the
learning of perceptual discrimination tasks, for example, Mednick et al. (2003a)
discovered that sleep-dependent learning might be completed with a brief (60-90
minute) napping time. In terms of amplitude, dependence on sleep stages, and
retinotopic specificity, this nap-dependent learning was highly similar to that
previously described for an 8-hour sleep period. Although it appears that even a
short amount of sleep is sufficient to help with consolidating learning, and longer
sleep durations result in an even greater benefit (Gais et al., 2000; Lo et al., 2014;

Tucker et al., 2020).

While the reviewed research in this chapter provides robust evidence for sleep-
dependent consolidation across memory systems, notable gaps remain. One
noticeable gap is that much of those studies concentrate on emotional memories

and motor learning, leaving the question of whether perceptual and attentional
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domains operate under similar mechanisms unclear. This directly fits with the aims
of the current thesis: to investigate whether sleep enhances consolidation in
perceptual and attentional learning tasks, and to evaluate if the observed offline
benefits indicate system-level processes aligned with consolidation theories. The
thesis aims to address these unanswered questions by synthesising behavioural
paradigms with psychobiological models, aiming to determine if the concepts
exhibited in declarative and procedural memory extend to other modalities of

learning.

1.5.2. The Synaptic Homeostasis Theory

Researchers have made contributions to several theoretical frameworks across
the sleep literature in an attempt to better explain the evidence on the effect of
sleep on memory consolidation. One widely acknowledged theory in the literature
claims that sleep fosters the circumstances necessary for brain plasticity. The
capacity of the brain to change and adapt as a result of experience is known as
plasticity (Ribeiro, 2012), as previously mentioned. The synaptic homeostasis
hypothesis (SHY) continues to be one of the most organised hypotheses that
explains most of the data reported in the literature and has been well documented
in reviews (Tononi & Cirelli, 2003, 2006, 2014). SHY hypothesised that while awake,
the brain actively picks up information from its surroundings by strengthening
synaptic connections between highly active brain areas. The sensory-motor
detachment from the environment causes the brain to substitute more minor, less
active synaptic contacts during sleep (Tononi & Cirelli, 2014). It is believed that the
brain processes and coordinates newly learnt responses more effectively when
routinely active synaptic connections are strengthened, and less frequently active
synaptic connections are weakened. In the cortex and hippocampus of rats, indices
of synaptic strength are shown to rise during the day and fall during the night,
according to research by Vyazovskiy et al. (2008). This study provides credence to
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the notion that synaptic downscaling occurs during sleep. Further evidence was
provided by Liu et al. (2010), who discovered that synaptic potentiation in the frontal
cortex of rats was enhanced after waking and reduced after sleep. Again, this work
offers factual data emphasising the idea that sleep is beneficial for maintaining
synaptic homeostasis. Therefore, maintaining synaptic homeostasis is the critical
objective of sleep. Sleep improves neural sensitivity and learning capacity by
lowering synaptic strength, enabling the consolidation and integration of new

information while boosting the signal-to-noise ratio (SNR) (Figure 1.1).
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Figure 1.1. The Synaptic Homeostasis Hypothesis: Signal to noise ratio. (Retrieved from Tononi & Cirelli,
2014). Figure demonstrating a net increase in synaptic strength during wake, enhancing learning but at the cost
of higher energy demand, cellular stress, reduce extracellular space. Whereas sleep restores the balances by

downscaling synaptic strength.
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It has been demonstrated that the synaptic homeostasis system affects several
components of learning and memory, including the capacity to gather newly learned
information, consolidate it (by up-scaling stronger synapses and decreasing SNR),
and eventually integrate it with previously taught schemas (Tononi & Cirelli, 2014).
The capacity to learn new memories is one benefit of sleep for memory processing,
and SHY claims that one of the most apparent advantages of sleep is the restoration
of learning ability. For instance, Chee and Chuah (2007) observed that the decline in
performance accuracy was positively correlated with the 24-hour SD that followed
the acquisition of a visual memory task. Similar to this, Yoo et al (2007) discovered
that only one night of SD is enough to cause a severe loss in the capacity to encode
episodic memory. These findings highlight the fact that insufficient sleep significantly
affects our capacity to form lasting memories of new experiences. It implies that
having enough sleep before learning is crucial for enabling the brain to build
memories. A further advantageous effect of sleep on memory is the activity-
dependent down-selection of synapses, which is frequently used to explain many
aspects of memory consolidation. As an illustration, in the paired-associate learning
paradigm Nere et al (2013), discovered through computer simulations that
increasing the activation of a particular memory during the down-selection process
result in a selective enhancement of that memory. This is consistent with the
findings by Antony et al (2012), who observed that being cued while sleeping

enhances memory stability following learning.

SHY does not, however, come without criticism. Although refined, others argue
that the idea may oversimplify the complex relationships underlying sleep, learning,
and plasticity. In the review by Rasch and Born (2013), they stated that the model
fails to effectively take into consideration REM sleep's contribution to memory
consolidation. The basic idea of the hypothesis, which suggests that sleep-
dependent synaptic downscaling occurs, is mainly supported by indirect data,

requiring more empirical validation.
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1.5.3. Active System Consolidation Theory

The active system consolidation theory during sleep draws attention to many
crucial ideas. Firstly, this idea assumes that memories are reactivated and
strengthened when asleep. Second, it implies that not all learning may be
strengthened while sleeping and that consolidation occurs only in some learning
domains. Finally, the idea emphasises that memories undergo qualitative
modifications as they are transferred to long-term memory storage (Born &
Wilhelm, 2012). With regard to sleep-dependent memory and learning,
consolidation, and integration, this appealing hypothesis has been able to correctly
anticipate and explain a number of behavioural, physiological, and neuroimaging

findings (Rasch & Born, 2013).

According to this concept (Figure 1.2), information is first processed
simultaneously in the hippocampus and neocortical networks when a person is
awake. During the sleep cycles, especially SWS, the newly developed memory traces
are consistently reactivated and gradually restructured. This process leads to
memory representations and improves synaptic connections within the neocortex,
as explained in the review by Born and Wilhelm (2012). Several studies have also
found a connection between sleep spindles, learning, and cognitive abilities and that
both procedural and declarative memory consolidation has been linked to activity
after post-learning sleep (Antony et al., 2019; Fogel & Smith, 2006; Laventure et al.,
2016; Schabus et al., 2004). For example, Cowan et al. (2020)identified that spindles
observed during sleep are associated with modifications in memory traces. These
modifications include increased connectivity in hippocampal cortical networks and
enhanced pattern resemblance in cortical memories. The findings provide evidence
suggesting that spindles may serve as a mechanism for reorganising neuronal
memory traces during nighttime sleep. Additionally, studies have shown that

spindles are also related to abilities such as attentional skills and perceptual learning,
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domains that are directly relevant to this thesis. Nishida and Walker (2007), showed
that more spindle activity was linked to better performance on a visual
discrimination task, which means that spindles have an association with learning
perceptual skills. In contrast, Bergmann et al. (2012), demonstrated that spindles
encourage hippocampal-neocortical communication essential for both declarative
and non-declarative memory consolidation. These studies emphasise the
significance of the ASC framework in comprehending the consolidation of
perceptual and attentional learning processes. However, the strength of this

hypothesis lies in its inability to address and clarify these facts related to spindles.

Experienced Episodes

Figure 1.2. Sleep is the consolidation of active processes. The hippocampus serves as a temporary storage
location for recently acquired memories, which are then reallocated to the neocortex, the long-term store, during
slow-wave sleep (SWS). B The link between the neocortex and the hippocampus, which is controlled from the top
to the bottom by the neocortical slow oscillation (red), forms the foundation for system consolidation during
SWS. Depolarising up phases of the slow oscillations cause sharp-wave ripples (green) in the thalamocortical
spindles and the hippocampal memory traces (blue) to reactivate repeatedly. Sharp-wave ripples coil into single
peaks of a spindle together with matching awakened memory information. (image adapted from Born & Wilhelm,
2011).

However, this theory is also not without debate. There is ongoing discussion
over the precise function of REM sleep in memory consolidation, some research

suggested that SWS—rather than REM sleep—is more important for memory
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consolidation (Marshall & Born, 2007). Furthermore, the hypothesis mostly
overlooks the significance of other sleep phases for learning and plasticity due to its
concentration on REM sleep. Notwithstanding these problems, the Active System
Consolidation Theory has greatly influenced how researchers perceive the dynamic
interactions among sleep, memory, and learning. To explain the specific processes at
play and resolve the roles of various sleep phases in memory consolidation, further

study is required.

1.5.4. Comparison Between SHY and Active System Consolidation

Theory

The theories of the SHY and the Active System Consolidation Theory have
been extensively studied to gain insights into how learning is consolidated during
sleep. These theories recognise the role that sleep plays in memory and learning.
They propose different mechanisms for this process. Both the active system
consolidation hypothesis and the SHY theory emphasise the importance of brain
oscillations occurring during SWS in memory consolidation. Both ideas, however,
offer different viewpoints on how sleep-dependent memories are encoded and

consolidated.

In contrast to the SHY hypothesis, which suggests that sleep improves
learning and memory by bringing synapses to their baseline level, the active systems
model proposes that memories are actively strengthened and reorganised during
sleep (Liu et al., 2024). The active systems model takes into account the mnemonic
effects of subcortical structures like the hippocampus (Duan et al., 2025). The active
systems model takes into account the mnemonic effects of subcortical structures

such as the hippocampus. Furthermore, according to the SHY theory, any disruption
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in the rhythm of slow-wave SWS could potentially reduce its impact on memory
functions during sleep (Tononi & Cirelli, 2003). However, recent research has
demonstrated that external stimulation of oscillations enhances memory rather than
diminishes it (Ngo et al., 2020). Nevertheless, there are still some aspects in
understanding how post-learning sleep specifically enhances networks associated

with acquired memory traces (Diekelmann & Born, 2010).

In summary, research has shown that incorporating information into long-
term memory and selectively preserving existing information are the key elements of
the memory consolidation process (Paller et al., 2021). A recent theory suggests that
this process influences how information is stored in networks through interactions
between the neocortex and hippocampal regions, which are essential for
consolidation (Moscovitch et al., 2016). Advanced technology has shed light on how
sleep impacts our learning abilities. While these two theories propose various
mechanisms, they complement each other. The Active System Consolidation Theory
explains how sleep aids in consolidating memories, while the SHY theory suggests
that sleep plays a role in preparing us for learning. Recent studies using
neuroimaging techniques have helped unravel the interaction between these
systems (Klinzing et al., 2019). However, further research is still needed to
comprehend the processes and integrate these hypotheses into a comprehensive

framework for sleep-dependent learning and memory consolidation.

Although the focus of this thesis is not to test these models directly, the
models can provide a conceptual framework that informs the research question in
this thesis. The thesis uses these models as indicators for investigating the
differential consolidation of perceptual and attentional learning across wakefulness
and sleep, as well as to determine if these processes are signs of domain-general or
domain-specific mechanisms. By contextualising the empirical research within these

psychobiological frameworks, the thesis enhances the understanding of the interplay
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between sleep and learning processes, especially in the absence of direct

examination of the brain substrates defined by SHY or ASC theory.

1.6. Summary and Thesis Outline

The main goal of this thesis is to conduct a thorough investigation to examine
how wakefulness and sleep together shape the balance between specificity and
generalisation in human learning, with a particular focus perceptual and attentional
learning, as well as looking at whether there are any shared or distinct mechanismes.
The aim proposed in this thesis is informed by both psychobiological models of
memory consolidation (e.g., the SHY, which emphasises the role of sleep in
downscaling and restoring the capacity to learn, and the ASC, which highlights
hippocampal—neocortical interactions during slow-wave sleep) and behavioural
models of learning (e.g., the Rescorla-Wagner model, which conceptualises learning
as reducing the amount of prediction error, and the Mackintosh model, which
highlights selective attention to predictive stimuli). These models collectively
establish a theoretical framework for interpreting the behavioural outputs of sleep-
dependent learning as indirect markers to examine whether sleep facilitates the

transfer of learning beyond task-specific improvement.

Chapter 2 focuses on the backward masking task, a classic paradigm used to
investigate the sleep-dependent components of online and offline perceptual
learning. The chapter is informed by research indicating that online perceptual
learning is significantly unique to the learnt visual features, spatial location, and task
(Ahissar & Hochstein, 1997; Crist et al., 1997; Karni & Sagi, 1991), potentially
constraining the ability to adapt. Psychobiological theories, on the other hand,

suggest that sleep helps learning by restructuring traces of memory (Gais et al.,
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2000). Chapter 2, therefore, explores how sleep contributes to the generalisation in
the backward masking task beyond the specificity typically observed during
wakefulness. The study aims to determine if sleep changes the way the brain stores
information to help transfer perceptual skills by comparing online learning while

awake with offline consolidation while sleeping.

Chapter 3 extends this rationale to examines the impact of sleep on selective
attention. Posner and Peterson (1990) in their review mentioned that attentional
control serves as an essential for identifying relevant from irrelevant information,
however, the role of sleep in the consolidation of attentional information remains
largely unexplored. Previous studies in the perceptual learning literature have
shown that sleep enhances performance on challenging visual tasks (Albouy et al.,
2013; Mednick et al., 2003a), which raises questions about whether attentional
improvements post-sleep signify a generalisation of fundamental control processes
or if they are limited to specific tasks. Chapter 3 investigates this by contrasting
attentional enhancements following sleep and wakefulness, and by evaluating
whether the mechanisms align with or differ from those identified in backward

masking.

In conclusion, this thesis delves into the capacity of how one continuously
learns and evolves, by connecting behavioural theories of perceptual and attentional
learning with psychobiological models of memory consolidation. This thesis seeks to
improve theoretical comprehension and practical applications for enhancing learning
and cognitive performance by examining the role of sleep in facilitating

generalisation across perceptual and attentional domains.
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CHAPTER 2:

Balancing Specificity and
Generalisation in Learning:
The Critical Role of Sleep

and Wakefulness
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2.1. Abstract

Learning a visual task can lead to significant improvements in visual
performance, a phenomenon known as visual perceptual learning (VPL). Notably,
these improvements emerge not only during the "online" phase—when individuals
are actively engaged in training—but also during the "offline" phase, particularly
during sleep, which is when the consolidation processes occur. Although increasing
evidence shows the importance of both phases, the processes by which wake, and

sleep interact to balance the generalisability against specificity in VPL remain unknown.

This chapter demonstrated how sleep and wakefulness operate in conjunction
to modify the characteristics of perceptual learning. Due to localised neuronal
plasticity and specificity, visual enhancements during wakefulness were limited to the
precise visual elements and spatial locations used during learning. Sleep, on the other
hand, supported the abstraction and redistribution of the effects of learning by

enabling learning to generalise to untrained visual features and visual field locations.

The findings lead to a dynamic framework where sleep encourages the
integration and adaptability of learnt skills across larger domains, while waking refines
task-specific representations to maximise accuracy. These procedures work together
to support visual learning's consolidation and flexibility. Understanding plasticity
based on experience and creating focused therapies to improve perceptual learning

in clinical and practical contexts are both significantly impacted by this chapter.
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2.2. Introduction

Visual signals are fundamental to our interaction with the external
environment, enabling us to perform a wide range of tasks essential for survival and
thriving, which include regulating circadian rhythm, navigating through complex
surroundings, identifying objects, and understanding social signs. Visual perceptual
learning (VPL), the process of improving visual skills through training, shows how
flexible and able the brain is to handle new information (Ahissar & Hochstein, 1997;
Seitz & Watanabe, 2005). VPL corresponds to the improvement of an individual's
capacity to recognise, analyse, and comprehend visual stimuli due to
repeated practice or experience (Dosher & Lu, 2017; Goldstone, 1998). Studies
indicate that these enhancements occur not just during the "online" period, during
which individuals actively interact with the visual stimuli, but also during the "offline"
phase, especially during sleep (Mednick et al., 2003b; Stickgold et al., 2000). The
precise processes via which online and offline learning stages influence the

specificity and generalisation of acquired visual tasks are not well understood.

This chapter aims to examine how wakefulness and sleep differentially affect
visual perceptual learning. The hypothesis is that the online and offline learning
stages in VPL fulfil complementary functions, including discrete but interrelated
neural mechanisms that improve task-specific performance and generalisation.
During the online phase, marked by active interaction with certain visual stimuli, it is
expected to enhance localised neuronal plasticity in the visual cortices, resulting in
focused performance enhancements (Chen et al., 2016; Fiorentini & Berardi, 1980).
On the other hand, in the offline phase which mainly occurs during sleep time, it is
believed to support widespread balancing of synaptic connections, which can
enhance the benefits of localised learning by extending it to a broader range of
perceptual skills across various visual fields (Buffalo et al., 2006; Tononi & Cirelli,
2006).
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During the online phase, neurons in the visual cortices show stimulus
selectivity during awake, in which individual neurons react to a restricted set of
visual properties and a limited range of locations in the visual field (Hubel & Wiesel,
1968; Kamitani & Tong, 2005). Neurons located in regions such as the primary visual
cortex (V1) and higher-order areas like V4 show selective responses to specific visual
inputs. For example, in previous studies, V1 are found to be precisely calibrated to
specific orientations and spatial positions, preferentially reacting to visual stimuli
that align with their favourite characteristics (Hubel & Wiesel, 1968; A. Schoups et
al., 2001). Hubel and Wiesel's pioneering study on the striate cortex of non-human
primates demonstrated that neurons in V1 region exhibit notable selectivity for
visual characteristics, including orientation, spatial frequency, and motion direction.
They show that V1 is structured into orientation and ocular dominance columns,
with distinct layers dedicated to processing from simple to complex visual stimuli.
This study provides valuable insights into how the brain processes visual information
and responds to specific frequencies. This helps us understand how neural circuits
change during VPL. In addition, their findings regarding hierarchical and columnar
organisations remain important in contemporary neuroscience, providing a
framework to investigate how experience-dependent plasticity enhances neural

pathways during VPL and facilitates learning specificity.

Building on this foundation, Jehee et al. (2012) examined how perceptual
learning influences specific neural responses, particularly in the representation of
orientation. Their study showed that PL improves the specificity of orientation
representations in early visual regions, including V1. Using functional magnetic
resonance imaging (fMRI), they found that learning to distinguish subtle orientation
variations especially improves neural tuning for the acquired orientation. This result
aligns with Hubel and Wiesel's findings, as it corroborates the notion that V1
neurons are both specialised and capable of refinement through learning. Their

results showed that training improves the brain's ability to detect small changes in
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orientation differences, which supports the idea that selectivity is what enables task-
specific improvements. This research indicates that VPL changes established cortical
mechanisms via localised synaptic modifications, thereby strengthening circuits

immediately associated with the learned feature.

While the brain is connected to and responsive to sensory inputs during
wakefulness, in contrast, sleep is characterised by a sensory disconnection between
the brain and the environment (Tirker et al., 2023), which promotes the
reorganisation and integration of newly learnt perceptual abilities into global neural
networks, equilibrating neuronal excitability and connection throughout the brain
(Tononi & Cirelli, 2006). This offline phrase is unique for facilitating larger
generalisation of learning via homeostatic plasticity, which serves as a stabiliser of
neural networks in the brain (G. Wang et al., 2011). For instance, sleep may decrease
differences in excitability between neurones that are activated frequently and those
that are not, thereby helping the transfer of skills to new locations or stimuli
(Salehinejad et al., 2022). This approach is crucial for reinforcing learning beyond the

attributes acquired during the online phase.

As indicated across a variety of domains of perceptual and motor tasks,
extensive research supports the vital function that sleep plays in enhancing brain
plasticity and consolidating learning processes (Karni & Sagi, 1991; Mednick et al.,
2003; Stickgold et al., 2000; Yotsumoto et al., 2008). Sleep enhances neuronal and
behavioural indicators of memory consolidation across different paradigms, notably
in visual (Censor et al., 2006; Pourtois et al., 2008) and motor learning (Makino et al.,
2017; Vyas et al., 2018). For instance, Censor et al. (2016) conducted particularly
noteworthy research, as it shed light on the connection between the degree of
learner adaptability and the efficiency of sleep-dependent consolidation. According
to their findings, the number of learning trials completed during the learning phase

had a substantial impact on both the execution of the task and the success of

51



subsequent learning. In particular, it was demonstrated that the optimal number of
repetitions enhanced learning and discrimination, whereas excessive trials had the
opposite effect, most likely due to adaptation-induced saturation. However, the
study did not explicitly report the correct number of trials. Further, Censor et al.
hypothesised that the optimal amount of sleep consolidation occurs when the brain
reaches an adaptable state during learning sessions. This condition reflects the
integration of newly acquired information. This study suggests that the extent to
which sleep helps consolidate memories is determined by the degree to which
neuronal circuits are plastic during the learning period. At the same time, these
results highlight the interaction between active engagement during training and the
restorative effect of sleep; they also give vital insights into a more comprehensive

understanding of brain adaptation during learning.

There is a continuous interest in the role of sleep in perceptual learning, in
particular, the relationship to memory consolidation and neural plasticity
(MacDonald & Cote, 2021; Stickgold et al., 2000). Sleep seems to dynamically
influence the neuronal mechanisms associated with perceptual learning by
promoting adaptability, reorganising brain connections, and enhancing perceptual
and discriminative capabilities over time (Capone et al., 2019; Reis et al., 2023).
Tasks such as the backward masking task provide a solid foundation for examining
these processes. The backward masking requires participants to recognise a fixing
letter and determine the orientation of the target array presented in a designated
visual field position (horizontal or vertical alignment). This task has emerged as a
well-recognised instrument for examining VPL and clarifying the brain processes

linked to learning (Karni & Sagi, 1991; Ofen et al., 2007).

Studies have shown that performance, in backward masking significantly gets
better after a night's sleep, especially right after learning (Gais et al., 2000; Karni,

1995; Matarazzo et al., 2008). These improvements persist over time, suggesting
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that sleep plays a role in solidifying learning and enabling long lasting changes in
brain structure. However, these enhancements mostly apply in situations and are
limited to the characteristics and location of the trained stimulus (Crist et al., 1997;
Karni & Sagi, 1991; Poggio et al., 1992; Yotsumoto et al., 2009). The specificity of
these impacts aligns with findings from studies conducted in areas like V1, known for
the precise tuning to orientation and spatial positioning (Bang et al., 2014; Hua et al.,
2010). However, there are still questions concerning the circumstances that lead to
generalisation. Certain studies indicate that transfer between retinal sites is
constrained (Yotsumoto et al., 2009) although others have identified partial
generalisation when stimuli possess shared characteristics (J.-Y. Zhang et al., 2008).
Whether learnt perceptual skills can be reliably transferred to new stimuli or
locations and the brain mechanisms involved in facilitating this transfer remains as

an open question.

Studying brain activity through Electroencephalogram (EEG) helps provide
further insight into the mechanisms behind perceptual learning by examining the
brains functions. For instance, research has demonstrated that training, with a
backward masking task such as the Texture Discrimination Task (TDT) can alter both
processing areas such as C1 and later stages, like P3 (Ahmadi et al., 2018; Dove et al.,
2000). The changes found highlight the fact that perceptual learning includes both
initial and further processing phases in the brain. However, difficulties persist in
understanding how these hierarchical processes interact during sleep, which
encourages this generalisation. In addition, research have reported that early
cortical regions like V1 and mid-level regions like V4 are important for perceptual
learning effects (Kosai et al., 2014; Raiguel et al., 2006), but less is known about how
higher-order regions, including the prefrontal cortex, facilitate learning, particularly

in enhancing generalisation (Kwon et al., 2015; Rahnev et al., 2011).
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Several studies have investigated the potential for perceptual learning to
generalise beyond the training stimulus. Dosher et al. (2013) and Mastropasqua et
al. (2015) showed that generalisation can occur in some situations, notably when
there is considerable similarity between learnt and unlearnt stimuli. This implies that
transfer effects may need the engagement of superior cortical areas accountable for
attentional regulation and the execution of intricate task requirements. More
research is needed to figure out how sleep-dependent mechanisms interact with
these top-down processes, and whether they use the same or different brain

processes as those that help with task-specific learning.

Studies using magnetic resonance imaging (MRI) have further improved our
knowledge of how sleep affects perceptual learning by allowing non-invasive
tracking and evaluation of structural and functional alterations in the brain. For
instance, Tamaki et al. (2013) used fMRI to investigate brain activity after sleep in
the backward masking TDT tasks. The finding shows that sleep following learning
resulted in increased activity within the cortex, which is intimately involved in visual
processing. According to these findings, sleep may help reinforce what was learned
about perception by increasing brain activity in areas related to the task at hand,
thereby improving the neural pathways that facilitate the task. In a similar vein,
Yotsumoto et al. (2008) distinguished two stages of PL: a first period marked by
increased brain activity in V1 (visual region), which corresponds to the taught region,
and a second phase where activation declines but performance gains continue. The
evidence suggests that training leads to an increase in synaptic connections or their
strength within the local network in V1, which enhances performance. However,
after this initial phase, the activation increases in V1 disappeared, while the
performance enhancement was still maintained. Ditye et al. (2013) research
investigated whether changes in brain structure could predict the extent of
improvement following perceptual learning. They found that following training, GM
volume in the posterior superior temporal sulcus increased and that the degree of

changes will predict task improvement. Based on the given findings, perceptual
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learning involves both neuronal circuits strengthening as well as improvement,
highlighting the idea that perceptual learning involves distinct neural processes that

occur over time.

Previous research has laid the groundwork for our understanding, but it also
has the potential to fail in capturing the complexities of the most recent
developments in neuroscience. Therefore, while sleep has been recognised as
essential for consolidating learning on specific tasks and facilitating transfer to
untrained tasks, its impact on generalised learning remains largely unknown.
Therefore, further research is needed to explore whether sleep promotes or limits
generalisation and to identify the specific features of generalisation that can be
attained. In fact, examining the question can help scientists gain a deeper
understanding of how neuroplasticity works and how memory systems function in

general, making an important contribution to the field of cognitive neuroscience.

This chapter primarily aims to investigate the role of wakefulness and sleep in
shaping the specificity and generalisability of VPL. While learning a visual task often
leads to significant improvement in overall performance, as mentioned above, the
mechanisms through which these enhancements become either narrowly task-
specific or generalisable across conditions remain unclear within the literature.
Whether benefits obtained through learning specific visual features, spatial
locations, or tasks can transfer to untrained situations, and whether such
generalisation is mostly supported during wakefulness or sleep, is a fundamental
discussion in this chapter. Generalisation is a fundamental aspect of perceptual
learning, as it is linked to the capacity to transfer learnt skills to novel tasks,
environments, or elements. This chapter assessed whether the enhancement in
visual performance gained from learning specific features, spatial locations, or tasks
may extend to untrained features, locations, or tasks. The study also further

examined whether this generalisation occurred mainly during wake or sleep.
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The main hypothesis of this Chapter is that generalisation in learning is
contingent upon certain qualities and situations, with sleep acting as a crucial
facilitator of this process. It also examined whether this generalisation usually took
place during awareness or sleep. By balancing this specificity and generalisation, the
sleep-wake cycle ensures both the accuracy in visual processing and adaptability in
the task that was learned. This study also aims to gain a deeper understanding of how
perceptual learning develops from task-specific improvements to more general

abilities by evaluating these characteristics.

This Chapter, therefore, explores the distinction between two stages of
learning: online learning takes place when one is actively engaged in a task, while
offline learning occurs during periods of rest or sleep when one is inactive. Shifting
from processing to consolidation and generalisation during sleep poses challenges, in
understanding these transitions can enhance our knowledge on how procedural
learning operates. How sleep impacts generalisation processes. This thorough
strategy provides perspectives on how alertness and sleep influence effective and

adaptable learning methods.

2.3. Methods

2.3.1. General Design

Two sub-studies (Experiment 1 and Experiment 2) was conducted to examine
whether improvements in visual performance could generalise across visual field
locations, visual features, or visual tasks, and whether this generalisation occurred

during wakefulness or sleep. Specifically, the experiments tested whether
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improvements from the trained visual field location (lower-left visual field), visual
feature (orientation in Experiment 1, luminance in Experiment 2), and visual task
(backward masking) would generalise to the untrained visual field location (upper-
right visual field), visual feature (luminance in Experiment 1, orientation in
Experiment 2), and visual tasks (orientation discrimination, luminance

discrimination, temporal discrimination).

To minimise overlap between the groups of visual cortical neurons activated
by the trained and untrained visual field locations, our experiment selected the
lower-left and upper-right visual fields as the trained and untrained locations,
respectively. Similarly, to minimise overlap between the groups of neurons activated
by the trained and untrained visual features, orientation (a spatial feature) and
luminance (a non-spatial feature) was chosen in this senario. To ensure that the
trained and untrained tasks activated similar groups of visual cortical neurons but
distinct groups of prefrontal cortical neurons, the tasks were designed to involve the

exact visual field locations and visual features, but different task rules.

A well-established backward masking perceptual learning task were used in
this current study (Berard et al., 2015; Harris & Sagi, 2018; Karni & Sagi, 1991;
Kondat et al., 2023). A target stimulus - a nineteen-by-nineteen array of lines-was
briefly presented for 10 ms, followed by a blank interval, and then a mask stimulus—
a nineteen-by-nineteen array of randomly rotated crosses—was presented for 100
ms (Figure 1.1a and Figure 1.1b). The stimuli were displayed on a black background.
Each cell in the nineteen-by-nineteen array measured 0.77 x 0.77 visual degrees; the
line (length: 0.42 visual degrees) or the cross (size: 0.42 x 0.42 visual degrees)
appeared at a random location within the cell but was constrained to be at least 0.09

visual degrees from the cell’s edge.
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Within the target stimulus, three adjacent lines differed from the rest lines in
either orientation (Experiment 1) or luminance (Experiment 2). Participants were
instructed to identify these distinct lines and report whether they were vertically or
horizontally aligned. The orientation or luminance difference between the three
distinct lines and the rest lines remained constant across trials and was set well
above the discrimination threshold to ensure participants could achieve 100%
accuracy when the target stimulus was not followed by the mask. By contrast, the
duration of the blank interval—that is, the interstimulus interval between the offset
of the target stimulus and the onset of the mask—varied across trials according to a
two-up-one-down staircase procedure to maintain task difficulty at each
participant’s threshold level (Cornsweet, 1962; Levitt, 1971; P. Zhang et al., 2019).
Two consecutive correct responds reduced the ISI by 7 ms, but one incorrect
response increased ISI by 7 ms. This method targets the ISI time at which
participants get 70.7% accuracy, facilitating effective threshold estimate without

exposing stimuli much above or below the participant's threshold.

The learning process thus focused on improving the ability to extract task-
relevant signals from the target stimulus before visual processing was disrupted by
the mask, rather than enhancing sensitivity to subtle differences in orientation or
luminance. In this sense, the trained task (backward masking) differed fundamentally
from the untrained tasks (orientation, luminance, or temporal discrimination), which
required participants to detect subtle differences in these features without
interference from the mask. This design ensured that the trained and untrained
tasks activated similar groups of visual cortical neurons but distinct groups of
prefrontal cortical neurons, allowing us to disentangle the contributions of stimulus-

related and task-related neural circuits to VPL.
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600 ms

Fixation Adapted

Blank 100 ms

Mask Response 1

TorlL

Response 2
Vor H

Figure 1.1a Trial structure for the Backward Masking Orientation Task. Each trial started with a fixation cross
shown for 600 ms, then by a blank gap of 300 ms. The textural stimulus, including diagonal lines with a target
characteristic (horizontal or vertical alignment), was shown for 10 ms. Following a modified blank period, a 100
ms mask was shown. Participants first reacted to the centre letter ("T" or "L") and then to the direction of the

target lines (vertical or horizontal). This approach regulated fixation and ensured task involvement with both

central and peripheral visual inputs.

600 ms 300 ms

Fixation Blank 10 ms Adapted

Stimuli Blank 100ms  pasponse 1

Mask Response 2
TorlL
VorH

Figure 1.1b Trial structure for Backward Masking with a luminance difference in the lower-left (LL) visual field
quadrant. This task element was not included in the core learning task but was included as an untrained task to
assess the generalisation of perceptual learning. Participants first indicated the centre letter ("T" or "L") and
then determined the direction of the target lines (vertical or horizontal). The trial sequence facilitated controlled

fixation and task involvement while examining generalisation effects.
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The learning session involved a backward masking task, focusing on either
orientation (Experiment 1) or luminance (Experiment 2) in the lower-left visual field.

Each test session included ten tasks:

. Task A: backward masking of orientation in the lower-left visual field
. Task B: backward masking of orientation in the upper-right visual field
. Task C: backward masking of luminance in the lower-left visual field

. Task D: backward masking of luminance in the upper-right visual field
. Task E: orientation discrimination in the lower-left visual field

. Task F: orientation discrimination in the upper-right visual field

. Task G: luminance discrimination in the lower-left visual field

. Task H: luminance discrimination in the upper-right visual field

. Task I: temporal discrimination in the lower-left visual field

. Task J: temporal discrimination in the upper-right visual field

Among these tasks, tasks A and C were identical to those used in the learning
sessions of sub-study one and sub-study two, respectively. The remaining tasks
differed from the learning session tasks in visual field location, visual feature, or task
rule. Including tasks, A and C in the test sessions allowed us to assess local
improvements in visual performance, while including the other tasks enabled us to
evaluate generalised improvements. Performance in 10 tasks were assessed during
five test sessions to determine whether learning improvements are specific to the

trained settings or generalisable to other scenarios as well. Additionally, the morning
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and evening groups was compared to distinguish between the effects of the sleep-
wake cycle and the passage of time and explored whether these advancements
occur during wakefulness or sleep. The main idea is that sleep helps learning to
transfer across features or tasks that were not previously practised, but when
awake, learning focuses solely on what was learned, like visual aspects and locations.
It is expected that although sleep encourages generalisation to untrained settings,
improvements during wakefulness will be limited to trained conditions, thereby
emphasising the complementary functions of wakefulness and sleep in balancing

learning specificity and adaptability.

The independent variable (V) was manipulated on two levels: the time of day
when participants learned the backward masking task (morning or evening) for both
experiments. Thus, the time that participants were retested was also manipulated.
The dependent variables (DV) measured in this study were the discrimination
threshold for individual participants to identify which aspects of learning can be

generalised.

A conventional sleep study approach (Figure 1.2) was used to examine the
roles of online learning, offline wakefulness, and sleep in VPL. The morning and
evening groups adhered to an identical testing protocol and completed four test
sessions: (I) a baseline test conducted immediately before the learning session, (I1) a
test conducted immediately after the learning session (0-hour), (lll) a test conducted
twelve hours after the learning session, (IV) test conducted twenty-four hours after
the learning session. This strategy enabled direct comparisons between morning and

evening cohorts to mitigate circadian influences and differentiate the impacts of
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awake and sleep on the specificity and generalisation of learning. Overall,

participants committed approximately 5 hours across three experimental sessions.

$
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Figure 1.2 Experimental timeline demonstrating the protocol for the morning and evening groups. The morning
group completed baseline testing, a learning session, and post-learning testing (0O-hour), followed by 12-hour
wake and 24-hour post-sleep testing. The evening group completed the same timeline in reverse, beginning with a
night of sleep before the 12-hour wake period. This design outlines the effects of sleep and wakefulness on

learning and generalisation.

2.4. Experiment 1: Materials and Methods

2.4.1. Participants

Thirty-two healthy volunteers with normal or corrected-to-normal vision,
consistent bed and rise times, 7~8 hours of sleep per night, no history of sleep,
medical, or psychiatric disorders, no daytime nap habit, and no excessive daytime
sleepiness, were recruited to participate in the study. All participants provided written
informed consent and were compensated for their time with either 24 course credits
or £30. The study received approval from the research ethics committee at Cardiff
University (EC.18.02.13.5226G). Participants were instructed to maintain their regular

sleep patterns and refrain from consuming alcohol or caffeinated beverages from two
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weeks prior to the study's commencement until its conclusion. They received
actigraphy wristwatches and sleep diaries to document their sleep-wake patterns.
Two participants withdrew from the study and were excluded from the data analysis.
Among the remaining participants, thirty (mean age = 21.17, SD = 2.55) took part in
the experiment, fifteen in the morning group and fifteen in the evening group. The

group assignments were randomised.

2.4.2. Experimental Procedures

The testing tasks included a backward masking orientation and luminance task,
orientation discrimination, luminance-contrast discrimination, and flicker-fusion
temporal discrimination. Each task was executed in both the trained (LL) and
untrained (UR) visual field locations, enabling a comprehensive investigation of
learning transfer across features, spatial locations, and tasks. All sessions took place
in a dark experimental room, where stimuli were displayed on a high-resolution
monitor (ASUS VG248QE, 1920 x 1080 pixels; refresh rate: 100 Hz for discrimination
tasks, 144 Hz for flicker-fusion tests) with a viewing distance of 61.5 cm and a screen
size of 54.3cm. Eye fixation was observed using an EyelLink 1000 Plus eye tracker, while
stimulus presentation and data acquisition were conducted using MATLAB

(MathWorks Inc., Natick, MA, USA) in conjunction with Psychtoolbox (Brainard, 1997).
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2.4.3. Backward Masking Task

Both forms of backward masking tasks require participants to detect three
diagonally aligned target lines arranged in either a horizontal or vertical arrangement
inside a textured stimulus. In the target stimulus, three adjacent lines, located in the
lower-left visual field (tasks A and C) or upper-right visual field (tasks B and D),
differed from the other lines in either orientation (tasks A and B) or luminance (tasks

C and D). Specifically,

o In tasks A and B, the three distinct lines were tilted at 45 degrees, while the
other lines were either all vertical or all horizontal. All lines were displayed at the

monitor’s maximum luminance.

. In tasks C and D, the three distinct lines were displayed at the monitor’s
maximum luminance, while the other lines were shown at 40% of the maximum

luminance. All lines were either vertical or horizontal.

. In tasks A and C, the three distinct lines were located at an eccentricity of

5.45 visual degrees and a polar angle of 225 degrees.

. In tasks B and D, the three distinct lines were located at an eccentricity of

5.45 visual degrees and a polar angle of 45 degrees.
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To ensure central fixation, a randomly rotating letter "T" or "L" was shown at
the centre of the display during each trial, rotated by 0, 90, 180, or 270 degrees
(Figure 1.3). Participants were first given the task of identifying the centre letter (T or
L), which can be presented in different rotations, and then reporting the direction of

the target lines (vertical or horizontal) via an assigned set of buttons on a response

box.
Answerl: whether the central fixation letter is T or L
Samplel | Sample2 | Sample3 | Sample4 | Sample5 | Sample6 | Sample7 | Sample8
_
T - - m - C i
left key (left hand keyboard) right key (left hand keyboard)

Figure 1.3. Example of the central fixation task used to ensure visual focus during the experiment. The central
letter (either "T" or "L") was displayed at the centre of the screen and rotated. Participants were instructed to
identify the letter at the centre and respond using the designated keys on the keyboard (left key for "T" and right
key for "L"). The task aimed to maintain fixation and attention while subsequently reporting the arrangement of

the target lines.

Participants were instructed to maintain fixation on the centre of the screen
and to identify the three distinct lines before the mask stimulus disrupted visual
processing of the target stimulus. After the offset of the mask stimulus, participants
made two unspeeded forced-choice responses: first, they reported the identity of the
fixation letter using the left-hand keypad (left key: T; right key: L), and second, they
reported the alignment of the three distinct lines using the right-hand keypad (left key:

vertical alignment; right key: horizontal alignment).

The blank interval (i.e., the interstimulus interval between the offset of the
target stimulus and the onset of the mask stimulus) was the variable of interest.
During both the training and test sessions, the timing was adjusted using a staircase
method, where after every two consecutive correct trials, the interval decreased by
one step. Conversely, one incorrect trial caused an increase by one step, starting at
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250 ms with a 10 ms increment. A trial was classified as correct only if both the first
response (fixation letter identity: T or L) and the second response (alignment of the
three distinct lines: vertical or horizontal) were correct. The training session consisted
of 576 trials, with breaks taken after every 96 trials. The test session included 96 trials
and measured the threshold interstimulus interval at which accuracy converged to
70.7%. To assess learning effects, thresholds was compared across five test sessions
(I™IV). A smaller threshold suggested a greater ability for extracting task-relevant
information from the target stimulus prior to visual processing being disturbed by the

mask.

2.4.4. Pure Discrimination Tasks

In addition to the backward masking task, each participant also completed a

series of basic discrimination tasks. Which comprise of the following tasks:

(i) Orientation discrimination
Eight cardinally sinusoidal gratings are arranged in a circle around a
central fixation cross within this discrimination task. The ISI remained 500
ms, and then another circular array of eight gratings was presented for
300 ms (Figure 2.1a). The gratings were displayed on a gray background
at 50% of the monitor’s maximum luminance. Each grating had a radius
of 2.28 degrees and a spatial frequency of 2.2 cycles per degree. The
eight gratings were positioned at an eccentricity of 5.45 visual degrees
and polar angles of 0, 45, 90, 135, 180, 225, 270, and 315 degrees,
respectively. The eight gratings were the same at one of the two
presentation periods. One of the eight gratings in the other presentation

was slightly different in orientation from the others. Participants were

66



asked to determine which presentation included the pop-out grating for
each trial (first or second presentation). There were two visual quadrants
where the pop-out grating was kept in place (LL or UR). Using the
standard 2-up-1-down staircase, the orientation difference between the
pop-out grating and the other gratings was changed in order to
determine the discriminating, the staircase began with an orientation
difference of 8.5 degrees and had a step size of 0.5 degrees. Each task
concluded after 31 staircase reversals (~100 trials), measuring the
discrimination threshold at which accuracy converged to 70.7%. The
purpose of this work is to evaluate the generalisability of learning lower-
level visual characteristics from the backward masking task to the same

low-level features in this task, as well as across other visual locations.

(i) Contrast discrimination
This was a similar visual discrimination as to the orientation
discrimination task. In this task, the pop-out grating differed from the
other grating in terms of its contrast (Figure 2.1b). The pop-out grating
was also maintained at two visual quadrants (LL or UR). The staircase for
this task started with a luminance contrast difference of 34% and had a
step size of 2%. This task was included in the study to assess the contrast
features within the backward masking luminance task to maintain
consistency. Each task concluded after 31 staircase reversals (~100 trials)

of measuring discrimination threshold.

(iii) Temporal discrimination
The temporal task that was used in this study was commonly referred to
as ‘flicker fusion.” This task consists of a white circle displayed at a
particular location (LL or UR) around a fixation cross. In each trial, a white
circle was present once (one flash) or twice (two flashes). Participant
would respond using a keypad whether they saw one or two white circles
(Figure 2.1c). The circle had a radius of 1.61 visual degrees and a

luminance set to 50% of the monitor’s maximum. It was displayed on a
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black background at an eccentricity of 5.45 visual degrees and a polar
angle of 225 degrees (LL visual field) or 45 degrees (UR visual field). The
blank interval was the variable of interest. When the interval was long,
participants could perceive it and thus recognised the two sequentially
presented circles as temporally separate. When the interval was short,
they could not perceive it and instead viewed the two circles as a single

presentation (Brainard, 1997).

The standard 2-up-1-down staircase method was used to vary the IS| of
the two-circle trial in order to determine the discriminating threshold
that was reached when the accuracy settled to 70.7% correct. The
staircase began with an interval of 70 ms and had a step size of 7 ms.
Each session concluded after 31 staircase reversals (~100 trials), This task
was used to assess whether the temporal need in the learned backward

masking task may be generalised to the temporal need of a novel task.
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Sample 1 Sample 2

First Presentation First Presentation

Second Presentation Second Presentation

Left Key (Right Hand Keyboard) Right Key (Right Hand Keyboard)

Figure 2.1a. An array of gratings will appear twice on the screen. In one presentation all gratings will be identical.
In the other presentation, one of the gratings will differ from the other gratings. [Left] Sample 1 shows pop-out
grating (orientation difference) is presented in the first presentation in the LL quadrant. [Right] Sample 2 shows

pop-out grating (orientation difference) is presented in the second presentation in the LL quadrant.
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Sample 1 Sample 2

First Presentation First Presentation

Second Presentation Second Presentation

Left Key (Right Hand Keyboard) Right Key (Right Hand Keyboard)

Figure 2.1b. An array of gratings will appear twice on the screen. In one presentation all gratings will be identical.
In the other presentation, one of the gratings will differ from the other gratings. [Left] Sample 1 shows pop-out
grating (contrast difference) is presented in the first presentation in the LL quadrant. [Right] Sample 2 shows pop-

out grating (contrast difference) is presented in the second presentation in the LL quadrant.
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Pure Temporal Discrimination Task

S00ms
. . 7ms
Fixation m Response

Stimali
(unspeeded)

One-Circle Trial

S00ms
f /ms
ixation . Adapted
stirmuls Blank 7ms
Hank ~5 22 o
Stimubi Response

Two Circle Trial unspecded)

Figure 2.1c. Temporal discrimination (flicker fusion) task showing the possible one-circle and two-circle flashes

that will appear on the screen. The stimuli will appear at different location on the screen (LL or UR).

The pure discrimination tasks used in this current study were modified from
established psychophysical paradigms used to evaluate low-level visual sensitivity,
including orientation discrimination (Edden et al., 2009; Mikhailova & Gerasimenko,
2023), contrast discrimination (Campbell & Green, 1965; Foley & Legge, 1981), and
temporal flicker fusion paradigms (Dzn, 1958). The specific design of the stimuli (e.g.,
the number of gratings, eccentricity) varied slightly from that of prior experiments.
However, the fundamental perceptual processes remained unchanged, which is
to identify minor differences in orientation, contrast, or temporal intervals. These
changes were made to make sure that the location in space and temporal parameters
were the same for all activities, especially the backward masking paradigm, while still

following the basic rules of psychophysics.
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2.4.5. Data Pre-processing and Statistical Analysis

Using the discriminating threshold as the main dependent variable in this
study, rather than other metrics such as reaction time, was a key methodological
decision. In contrast to other measures that may be influenced by unrelated
cognitive or motor processes, the discrimination threshold provides a clear and
measurable indicator of perceptual sensitivity (B. A. Dosher & Lu, 1999; Gold et al.,
1999). Discrimination thresholds are fundamentally linked to perception and
learning, which can avoid artificially high or low responses in response to task
difficulty, or reaction speed, which can be impacted by strategic changes in response

selection (Levi et al., 1994)

To ensure that task difficulty remained adaptive and performance-sensitive, a
staircase method was designed and employed to identify the perceptual limit of
stimulus discrimination. The ISI between the stimuli was interactively adjusted
employing a two-down, one-up staircase method, which targets the 70.7% accurate
response threshold (Levitt, 1971). The staircase ISI will decrease after two successive
correct responses and increase after an incorrect response. A reversal occurs when
the direction of ISl adjustment changes (e.g., from decreasing to increasing or vice
versa). The overall threshold was calculated as the average ISI of the final six
reversals, as a previous study shows that focusing on later reversals rather than the
full trial provides a more accurate and stable threshold estimate (Garcia-Pérez, 1998;

Levitt, 1971).

The difference between the mean discrimination thresholds at baseline and
at later test sessions was used to assess how much learning-related progress was
present. It is important to note that baseline values were calculated from the whole
baseline block. This method is in line with how perceptual learning research is

usually done, where performance gains are usually measured by differences in
12



thresholds between complete baseline and post-training sessions instead of partial
segments (Ahissar & Hochstein, 1997; Crist et al., 1997; Karni & Sagi, 1993;
Yotsumoto et al., 2008). This method decreases the impact of early-trial variation
and confounds such as unexpected changes in attention, warm-up, or fatigue during

a session (Fahle & Edelman, 1993).

Thresholds for the pure discrimination tasks were determined as the mean of
the stimulus differences at which participants met a specified accuracy. The
differences were determined by a comparable staircase method, whereby the
difficulty level (e.g., orientation or contrast) was adaptively changed based on
participant responses. In the flicker fusion test, perceptual thresholds were
established as the mean duration between two flickering stimuli at which
participants could no longer consistently differentiate distinct flashes, in line with

standard methods employed to assess temporal resolution in visual processing.

Statistical analyses were performed to evaluate changes in perceptual
thresholds at four time points: baseline (0 Hours), 12 Hours, and 24 hours. A
repeated-measures analysis of variance (ANOVA) was used to assess within-subject
changes, considering correlations among repeated measurements: effect sizes (n?)
were reported for ANOVA results, and intervals of confidence were included if
applicable. All statistical analyses were performed using SPSS (IBM, Version

29.0.1.0), with an alpha level set at 0.05.
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2.5. Experimental 1: Result

2.5.1. Demographic Data

Following the exclusion of two participants due to misunderstanding task
instructions and withdrawal, the final sample comprised 15 participants in the
morning group (mean age = 20.53, SD = 1.67) and 15 participants in the evening
group (mean age = 21.86, SD = 3.09). Actigraphy recordings indicated that the two
groups' sleep during the night lengths were similar. Participants in the morning
group reported sleeping for an average of 6 hours and 57 minutes, and those in the

evening group slept for an average of 7 hours and 15 minutes.

2.5.2. Assumption Checks

Shapiro—Wilk tests were applied, along with Q—Q graphs for each time point
and group, to check whether the data follow a normal distribution. While specific
parameters (e.g., backward masking thresholds at 24 hours) showed minor
deviations from normality, group sizes were consistent, violations were not severe,
and repeated-measures ANOVA is robust to moderate non-normality (Blanca et al.,

2017, Field, 2024). Consequently, parametric analyses were considered suitable.
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2.5.3. Overall Group x Time Effects

To analyse the differences in learning trajectories over time. A 2 (Group:
Morning, Evening) x 4 (Time: Baseline, O hr, 12 hr, 24 hr) mixed-design ANOVAs were
performed for the main outcome measures which was the backward masking tasks.
Time was considered a within-subjects variable, while Group was regarded as a
between-subjects variable. Partial n* has been established as the effect size, aligning
with conventional methodology in repeated-measures designs. Mauchly's test was
used to check the assumption of sphericity because the within-subjects component
Time includes four levels. When the assumption of sphericity was violated, which
was true in this case, Greenhouse—Geisser adjustments were used on the degrees of

freedom to reduce increased Type | error rates.

For the learned backward masking orientation at lower left (LL) condition,
there was a significant main effect of Time, F (1.71, 47.96) = 215.40, p < .001,
indicating a significant decrease in thresholds across sessions. The Group x Time
interaction was also significant, F (1.71, 47.96) = 6.52, p = .005, indicating different
learning pathways among the groups. For the unlearned tasks, backward masking
luminance LL showed a significant main effect of Time, F (2.50, 70.06) = 111.93, p
<.001, and a significant Group x Time interaction, F (2.50, 70.06) = 22.94, p < .001.
Similarly, for the backward masking orientation at upper right (UR), there was a
significant main effect of Time, F (2.37, 66.33) = 135.16, p <.001, and a significant
Group x Time interaction, F (2.37, 66.33) = 24.63, p < .001. Finally, for the backward
masking luminance UR, there was a significant main effect of Time, F (2.44, 68.26) =
146.82, p <.001, and a significant Group x Time interaction, F (2.44, 68.26) = 32.65,
p <.001.
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For all the pure discrimination tasks, mixed ANOVAs revealed no significant

Time effects or Group x Time interactions for any measure (Table 2.1).

Table 2.1

Results of Mixed ANOVAs Examining the Effects of Time and Time x Group Interactions

Across All Variables, with the Backward Orientation LL as the learned task

Dependent Variable Effect dfy df; F p n2
Backward Masking Orientation LL (ms) Time 1.71 4796 21540 <.001 .89
Time x Group 1.71  47.96 6.52 .005 19
Backward Masking Luminance at LL (ms)  Time 250 70.06 11193 <.001 .80
Time x Group  2.50 70.06 22.94 <.001 45
Backward Masking Orientation at UR (ms) Time 237 66.33 135.16 <.001 .83
Time x Group  2.37  66.33 24.63 <.001 47
Backward Masking Luminance at UR (ms)  Time 244 6826 146.82 <.001 .84
Time x Group 244  68.26 32.65 <.001 .54
Contrast Discrimination at LL (%) Time 2.56 71.60 .99 .39 .03
Time x Group  2.56  71.60 .50 .66 .02
Orientation Discrimination at LL (degree)  Time 232 6492 .68 .53 .02
Time x Group  2.32 64.92 .24 .82 .01
Flicker Fusion at LL (ms) Time 2.06 57.64 71 .50 .03
Time x Group  2.06 57.64 .06 .94 .002
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Contrast Discrimination at UR (%) Time 2,55 7133 1.70 18 .06

Time x Group 255  71.33 .036 75 .01
Orientation Discrimination at UR (degree) Time 2.35 65.79 .10 .93 .003
Time x Group  2.35 65.79 .30 .78 .01
Flicker Fusion at UR (ms) Time 2.54 7118 2.20 A1 .07
Timex Group 2.54 71.18 .80 A48 .03

Note. dfi = numerator degrees of freedom (effect), df: = denominator degrees of freedom (error). Greenhouse—

Geisser corrected values are reported where Mauchly’s test indicated violations of sphericity.

2.5.4. Between-Group Comparisons

Follow-up from the mixed-ANOVA results, independent-samples t-tests were
carried out to determine when the groups start to differ. This enabled us to identify
if the Morning and Evening groups displayed differences at baseline and identify the

specific time points at which group trajectories changed.

For the learned backward masking orientation LL task, there were no
significant differences between groups at Baseline, t (28) =0.83, p =.413, d = 0.30,
orat0Qhr, t(27.56) =-1.17, p =.254, d = -0.41. A significant between-group
difference was identified at 12 hr, t (19.29) = 3.54, p =.002, d = 1.26, with the
evening group showing lower thresholds when compared to the morning group,
which is in-line with the idea of sleep-dependent performance gain. No significant

difference was observed at 24 hr, t (23.87) =-0.57, p =.572, d = -0.20.
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For the that that was not learned, the backward masking luminance LL
condition, groups did not show significant difference at Baseline, t (28) = 0.04, p
=.969,d=0.01,0rat0hr, t(27.20) =-0.18, p =.859, d = -0.06. A large group
difference was observed at 12 hr, t (18.13) = 4.66, p <.001, d = 1.65, again with the
evening group demonstrating significantly lower thresholds. No significant difference
was observed at 24 hr, t (27.90) = -0.22, p = .829, d = -0.08. Similar finding was
found for the backward masking orientation UR condition, were there were no
significant between-group differences at Baseline, t (28) =0.83, p =.413,d =0.30, or
at 0 hr, t(27.35) =0.06, p =.950, d = 0.02. At 12 hr, the evening group again
outperformed the morning group, t (15.56) = 5.73, p <.001, d = 2.04, indicating a
strong sleep-related advantage. No difference was found at 24 hr, t (27.45) = -0.03,
p =.976, d = -0.01. Finally for the backward masking luminance UR condition, no
significant differences were found at Baseline, t (28) =0.04, p =.969, d =0.01, or at 0
hr,t(27.95) =-0.21, p = .834, d = -0.08. Again at 12 hr, the evening group showed
significantly lower thresholds, t (19.32) =4.71, p <.001, d = 1.67. No differences
were observed at 24 hr, t (26.99) = 0.03, p = .975, d = 0.01.

Independent-samples t-tests comparing Morning and Evening at each time

point showed no significant difference for all conditions.

2.5.5. Improvement from Baseline to 24 Hours Post-Learning

The backward masking task was used to assessed participants' ability to
distinguish between orientation and luminance changes at the LL and UR visual
fields, where participants were trained on the backward masking orientation LL. The
morning group showed a significant improvement over time based on the decrease
in mean scores from baseline to 24 hours post-learning (Table 2.2a). For the morning

group, the repeated measures of ANOVA highlighted a significant main effect of
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time, F (1, 14) = 170.42, p < .001, indicating that time explained 92.4% of the
variance in performance. Similarly in the evening group, there was also a decrease in
mean scores (Table 2.2b) with a significant main effect of time, F (1, 14) = 121.03, p
< .001. These results indicate a robust improvement in the backward masking

orientation (LL) learning over time for both groups.

Learning in the backward masking (orientation LL) task also transferred
significantly to related tasks. Both the morning F (1, 14) = 171.96, p < .001 and
evening group F (1, 14) =98.91, p < .001 showed a significant transfer at the 24-
hours re-test to the similar task with luminance difference at LL visual field. Similarly,
for backward masking of luminance UR task also showed a significant improvement
for both morning, F (1, 14) = 144.05, p < .001 and evening F (1, 14) =121.91, p < .001
group. The other untrained task of the backward masking orientation task at the UR
visual quadrant also showed significant improvement, with a statistically decreasing
mean duration for both the morning (Table 2.2a) and evening (Table 2.2b) group, F
(1,14) =145.57, p<.001 and F (1, 14) = 114.76, p < .001, respectively.

However, no significant difference was found on any of the pure
discrimination tasks. Repeated measures ANOVA revealed no significant main effects
of time for contrast discrimination at LL, F (1, 14) =0.28, p < .606, and UR, F (1, 14) =
1.86, p < .194, for the morning group, and similarly for the evening group, F (1, 14) =
2.49,p<.137,and F (1, 14) = 1.46, p < .247, for the respective tasks. The orientation
discrimination task revealed a similar pattern where at the 24 hours post learning it
remained unchanged in both the LLF (1, 14) =.69, p < .422, orthe UR, F (1, 14) =
0.10, p < .757, for the morning g, and evening F (1, 14) =0.16, p <.700, F (1, 14) =
0.64, p < .437, group respectively. The flicker fusion threshold also showed no
significance in performances, with the morning group showing F (1, 14) = 0.16, p
< .698 for LL, and UR, F (1, 14) = 1.44, p < .25 for UR, while the evening group
showed F (1, 14) = .016, p < .901 for LLand F (1, 14) =0.317, p < .582, for UR.
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Table 2.2a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group from Baseline to 24 hours Post-learning

Measures Baseline 24hrs Post F (1, 14) n
M SD M SD
Contrast Discrimination at LL (%) 11.07 4.89 1193 7.36 278 .019
Orientation Discrimination at LL (degree) 3.54 1.50 3.14 1.66 .686 .047
Flicker Fusion at LL (ms) 3410 2242 36.57 15.67 156 011
Backward Masking Luminance at LL (ms) 12853 31.87 43.20 24.77 171.96 .925
Backward Masking Orientation LL (ms) 138.36 39.15 30.36 15.69 170.42 .924
Contrast Discrimination at UR (%) 12.95 6.69 11.16  4.94 1.86 118
Orientation Discrimination at UR (degree) 3.23 1.28 3.40 2.36 .100 .007
Flicker Fusion at UR (ms) 38.22  21.27 43.49 19.04 1.442 .093
Backward Masking Luminance at UR (ms) 12853 31.87 46.22 29.99 144.05 911
Backward Masking Orientation at UR (ms)  138.36  39.15 33.87 12.66 145.57 912
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Table 2.2b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group from Baseline to 24 hours Post-learning

2

Measures Baseline 24hrs Post F(1,14) n
M SD M SD
Contrast Discrimination at LL (%) 9.08 2.42 8.12 2.65 2.49 151
Orientation Discrimination at LL (degree) 3.75 1.46 3.59 2.54 .155 .011
Flicker Fusion at LL (ms) 36.08 1395 36.45 143 .016 .001
Backward Masking Luminance at LL(ms)  127.96 46.28 45.11 23.34 9891 .876
Backward Masking Orientation LL (ms) 126.62 38.21 31.11 10.07 121.03 .896
Contrast Discrimination at UR (%) 8.04 2.90 7.19 2.02 1.46 .094
Orientation Discrimination at UR (degree) 3.34 1.75 3.12 1.76 .639 .044
Flicker Fusion at UR (ms) 38.52 875 3753 12.05 317 .022
Backward Masking Luminance at UR (ms) 127.96 46.28 4591 2465 12191 .897
Backward Masking Orientationat UR (ms) 126.62 38.21 34.00 1097 114.76 .891
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2.5.6. Improvement from Baseline to O Hour Post-Learning

To determine if any online or instantaneous generalisation of learning took
place, the threshold mean from Baseline to 0-hour post-learning was compared for
both morning (Table 2.3a) and evening (Table 2.3b) groups. Repeated-measures
ANOVA revealed that there is a statistically significant main effect of time of the
learned task, F (1, 14) = 200.12, p < .001, indicating that time explained 93.5% of the
overall variance in performance. Similarly, the evening group also showed a
significant improvement in the backward masking orientation LL learning task, F (1,
14) = 65.38, p < .001. Indicating that both groups exhibited considerable learning

effects in the learning task.

However, no improvement was observed in the untrained backward masking
tasks, highlighting a lack of evidence of immediate generalisation and transfer of
learning. Both the morning and evening showed no improvement in the backward
making task with luminance LL, F (1, 14) =0.77, p = .394, luminance UR, F (1,14) =
2.25, p =.155, or orientation UR, F (1, 14) = 2.23, p = .157. The evening group also
showed no significant transfer to backward masking tasks such as luminance LL, F (1,
14)=0.042, p = .841, luminance UR, F (1, 14) = 0.96, p = .343, or orientation UR, F (1,

14) = 0.025, p = .875, showing that online learning was specific to the trained task.

For the pure discrimination task, no significant improvement was found from
Baseline to immediate re-test (0 hours post-learning). Repeated-measures ANOVA
showed no significant main effects of time for contrast discrimination at LL, F (1, 14)
=.718,p=.411,and UR, F (1, 14) = 0.001, p = .977, for the morning group, as well as
for the evening group, F (1, 14) =.006, p = .941, and F (1, 14) = 0.325, p = .578,

respectively.
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Table 2.3a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group from Baseline to immediate retest (0-hr)

Measures Baseline Ohr Post F (1, 14) n
M SD M SD
Contrast Discrimination at LL (%) 11.07 4.89 12.18 7.17 718 .049
Orientation Discrimination at LL (degree) 3.54 1.50 3.47 1.16 .075 .005
Flicker Fusion at LL (ms) 3410 2242 3892 18.06 413 .048
Backward Masking Luminance at LL (ms) ~ 128.53 31.87 123.38 47.63 774 .052
Backward Masking Orientation LL (ms) 138.36 39.15 59.91 25.40  200.12 935
Contrast Discrimination at UR (%) 12.95 6.69 13.00 6.54 .001 .000
Orientation Discrimination at UR (degree) 3.23 1.28 3.56 1.40 2.40 146
Flicker Fusion at UR (ms) 3833  21.27 47,50 23.97 2.67 .160
Backward Masking Luminance at UR (ms) 128.53 31.97 120.53 42.27 2.254 139
Backward Masking Orientationat UR (ms) 138.36  39.15 127.11 45.37 2.232 .138
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Table 2.3b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group from Baseline to immediate retest (0-hr).

24hrs
Measures Baseline Post F(1,14) n?
M SD M SD
Contrast Discrimination at LL (%) 9.07 2.42 9.01 2.55 .006  .000
Orientation Discrimination at LL (degree) 3.75 1.46 3.52 1.78 .66 .045
Flicker Fusion at LL (ms) 36.08 13.95 39.01 16.04 945 .063
Backward Masking Luminance at LL (ms) 127.96 46.28 126.80 56.66 .042  .003
Backward Masking Orientation LL (ms) 126.62 38.21 71.47 28.82 6538 .824
Contrast Discrimination at UR (%) 8.04 2.90 8.53 2.54 325 .023
Orientation Discrimination at UR (degree) 3.34 1.75 3.23 1.40 0.076 .005
Flicker Fusion at UR (ms) 38.52 8.75 4139 10.35 1.08 .072
Backward Masking Luminance at UR (ms) 127.96 46.28 123.87 44.04 962  .064
Backward Masking Orientation at UR (ms) 126.62 38.21 126.13 38.86 .025  .002
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2.5.7. Improvement from O-hour to 12 Hours Post-Learning

At 12 hours after the initial learning phase, the evening group showed a
significant improvement in the backward masking orientation LL learning task, F (1,
14) = 33.36, p <.001, and luminance LL, F (1, 14) = 69.66, p < .001, showing the
effect of improvement in learning after an offline sleep period. Similarly, the evening
group also showed significant improvements in the luminance UR backward masking
task, F (1, 14) = 164.52, p < .001, and orientation UR, F (1, 14) = 131.93, p <.001. The
overall mean threshold has decreased from 0 hours to 12 hours post-learning retest

for both the morning (Table 2.4a) and evening groups (Table 2.4b).

In contrast, the morning group, which did not sleep between O hours and 12
hours post-learning, no significant difference were found in learning of the backward
masking orientation LL task, F (1,14) = 0.174, p = .683, or in the relevant task, such as
orientation UR, F (1,14) = 3.52, p = .082. Additionally, the morning group showed no
improvement in backward masking luminance LL, F (1, 14) = 3.19, p = .096, or
luminance UR, F(1, 14) = 0.677, p = .424, suggesting a lack of offline wake learning

effect in the absence of sleep.

Again, for all the pure discrimination tasks, no significant improvement was
found during the 12-hour retest after initial learning for both the morning (Table

2.4a) and evening (Table 2.4b) groups.
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Table 2.4a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group from O-hr to 12-hrs post learning retest

Measures Ohr Post 12hrs Post F (1, 14) n
M SD M SD
Contrast Discrimination at LL (%) 12.18 7.17 10.84 7.36 2.15 133
Orientation Discrimination at LL (degree) 3.47 1.16 3.17 1.57 779 .053
Flicker Fusion at LL (ms) 3892 18.06 36.36 17.79 1.58 101
Backward Masking Luminance at LL (ms) ~ 123.38 47.63 116.13 54.86 3.19 .185
Backward Masking Orientation LL (ms) 59.91 25.40 59.11 23.31 174 .012
Contrast Discrimination at UR (%) 13.00 6.54 11.25 6.34 2.03 127
Orientation Discrimination at UR (degree) 2.56 1.40 3.31 1.56 488 .034
Flicker Fusion at UR (ms) 4750 2397 40.09 1591 2.37 145
Backward Masking Luminance at UR (ms) 120.53 42.27 11760 53.71 677 .046
Backward Masking Orientation at UR (ms) 127.11 45.37 120.31 54.03 3.52 .021
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Table 2.4b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group from O-hr to 12-hrs post learning retest

Measure Ohr Post 12hrs Post F(1,14) n
M SD M SD
Contrast Discrimination at LL (%) 9.01 2.55 7.78 1.64 2.59 .156
Orientation Discrimination at LL (degree) 3.52 1.78 3.48 1.85 .034 .002
Flicker Fusion at LL (ms) 39.01 16.04 37.10 12.47 .765 .052
Backward Masking Luminance at LL (ms) 126.8 56.66 4538 21.30 69.66 .833
Backward Masking Orientation LL (ms) 71.47 28.82 3582 10.32 33.36 .704
Contrast Discrimination at UR (%) 8.53 2.54 7.94 2.66 493 .034
Orientation Discrimination at UR (degree) 3.23 1.40 3.30 1.62 .037 .003
Flicker Fusion at UR (ms) 4139 1035 38.64 10.65 1.69 .108
Backward Masking Luminance at UR (ms) 123.87 44.04 46.18 23.87 164.52 .922
Backward Masking Orientationat UR (ms) 126.13 38.86 38.18 12.76  131.93 904
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2.5.8. Improvement from 12 Hours to 24 Hours post-Learning

To examine whether learning of the backward masking task continued beyond
12 hours post-learning, a repeated-measures ANOVA was conducted to compare
performance between the 12-hour and 24-hour retests for both groups. The morning
group showed significant improvements in the backward masking orientation LL task,
with a significant main effect of time, F (1, 14) =61.69, p <.001, highlighting that time
accounts for 81.5% of the variance in performance. Similarly, orientation UR,
luminance LL and luminance UR showed significant improvement over time, F (1, 14)
=52.13,p<.001,F(1,14)=51.35,p<.001,and F (1, 14) =63.47, p<.001, respectively,

suggesting continued consolidation of learning in the morning group.

However, in the evening group, no significant changes were observed in
performance from 12 to 24 hours post-learning, indicating that learning had stabilised
in the learning task, F (1, 14) = 1.59, p = .228. Similar non-significant results were
observed for backward masking orientation UR, F (1, 14) = 1.69, p = .215, luminance

LL, F (1, 14) =0.01, p=.922 and luminance UR, F (1, 14) = 0.009, p = .924.

For all the pure discrimination tasks, no significant improvement was found
during the 12-hour to 24-hour post-learning period. The descriptives provided in Table
2.5a demonstrated the significant decrease in the mean threshold values, further
supporting these improvements for the morning group. However, Table 2.5b showed
that the mean threshold values remained stable across time points for the evening

group, showing the absence of additional improvements.
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Table 2.5a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group

Measures 12hr Post 24hrs Post F(1,14) n
M SD M SD
Contrast Discrimination at LL (%) 10.84 7.36 11.93 7.36 1.06 .070
Orientation Discrimination at LL (degree) 3.17 1.57 3.14 1.66 .01 .001
Flicker Fusion at LL (ms) 36.36  17.80 36.57 15.67  .004 .000
Backward Masking Luminance at LL (ms)  116.13  54.86 43.20 24.77 5135 786
Backward Masking Orientation LL (ms) 59.11 23.31 30.36 15.69 61.69 .815
Contrast Discrimination at UR (%) 11.25 6.34 11.16 494 .006 .000
Orientation Discrimination at UR (degree) 3.31 1.56 3.40 2.36 .035 .002
Flicker Fusion at UR (ms) 40.09 1592 43.49 19.04  .603 .041
Backward Masking Luminance at UR (ms) 117.60 53.71 46.22 29.98 63.47 .819
Backward Masking Orientationat UR (ms) 120.31  54.03 33.87 12.66 52.13 .788
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Table 2.5b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group

2

Measure 12hrs Post 24hrs Post F (1, 14) n
M SD M SD
Contrast Discrimination at LL (%) 7.78 1.64 8.12 2.65 .290 .020
Orientation Discrimination at LL (degree) 3.48 1.85 3.59 2.54 .084 .006
Flicker Fusion at LL (ms) 37.10 12.47 36.45  10.43 .081 .006
Backward Masking Luminance at LL (ms)  45.38 21.30 45.11 23.34 .01 .001
Backward Masking Orientation LL (ms) 35.82 10.32 33.11 10.07 1.59 .102
Contrast Discrimination at UR (%) 7.94 2.66 7.19 2.12 1.01 .067
Orientation Discrimination at UR (degree)  3.30 1.62 3.12 1.76 .534 .037
Flicker Fusion at UR (ms) 38.64 10.65 3753 12.04 417 .029
Backward Masking Luminance at UR (ms) 46.18 23.87 4591 24.65 .009 .001
Backward Masking Orientationat UR (ms) 38.18 12.76  34.00 10.97 1.69 .108
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2.6. Experiment 1: Discussion

The findings from Experiment 1 show a distinct contrast between the effects
of learning on the backward masking tasks and pure discrimination tasks. While
orientation, contrast discrimination, and flicker fusion tasks were more consistent
over time, performance on the backward masking tasks demonstrated notable and
long-lasting gains. Mixed-design ANOVASs revealed that Time had a significant impact
and that the Group x Time interaction effect was important for all backward masking
conditions. However, there were no significant Time or interaction effects for any pure
discrimination measure. The backward masking tasks' strong effect sizes highlight the
power of timed learning and its consolidation, whereas the other tasks' small effects
imply that they might not be as sensitive to time-dependent learning processes. One
notable characteristic of the findings from this experiment is the relatively large effect
sizes seen across all backward masking tasks, especially in the backward masking with
luminance LL and orientation LL, where n? values were more than 0.80. These
important findings suggest that offline consolidation and sleep had a significant role
in perceptual learning. These effects are strong enough to suggest that the learning
task induces neuroplasticity, most likely in higher-order processing areas and visual
cortical areas, such as V1 (Karni & Sagi, 1993; Stickgold, 2005). On the other hand, the
pure discrimination tasks (flicker fusion, orientation discrimination, and contrast
discrimination) had much smaller effect sizes. This suggests that they depend on more
stable sensory thresholds that are less affected by processes that occur during sleep.
This finding is consistent with other studies, which show that sleep-related benefits
are higher for tasks involving more complex perceptual integration and attention-

dependent mechanisms than for simple discriminating tests (Fenn et al., 2003).

It is important to note that the baseline mean score across tasks showed
similarity. This demonstrates experimental design rather than behavioural

equivalence: the adaptive staircase methods started from an identical initial threshold
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for all individuals, which means a baseline value was fixed to a uniform starting point.
Consequently, the comparable baseline means donot indicate similar basic
perceptual skills; instead, they indicate controlled initial conditions prior to

the process of learning.

The analyses between groups show convincing support for how sleep affects
performance trajectories. Independent-samples t-tests revealed no significant
differences between groups at Baseline or O hours, suggesting that both groups
commenced from similar performance levels. However, at the 12-hour re-test, there
were considerable differences, with the Evening group (sleep period before re-
test) consistently performing better than the Morning group (wake period before re-
test) in all backward masking conditions. These differences were absent during the
24-hour re-test, after the Morning group encountered their sleep period, suggesting
that the two groups eventually aligned. This temporal pattern strongly supports the
hypothesis that sleep, rather than simply the passing of time, is what makes offline
performance improvements possible. Sleep happening promptly after training
(Evening group) resulted in earlier enhancements but sleep postponed until after 12
awake hours (Morning group) yielded similar enhancements solely at the subsequent
re-test. This aligns with substantial studies demonstrating that sleep promotes both
performance improvement and the transfer of learning to untrained under
comparable stimulus situations (Stickgold & Walker, 2013). Furthermore, Group x
Time interactions were observed across all backward masking tasks, which were again
absent in the pure discrimination tasks. This interaction effect assesses whether the
pattern of change over time differs between the groups. Statistically, these
interactions show that the learning and performance trajectories were significantly
different between the Morning and Evening groups, rather than showing

parallel improvement at the same time, mirroring the t-test results.
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The within-group analysis also provided support for the distinct effect of the
time of day on learning and consolidation. Both groups showed significant
improvements on the learned backward masking orientation LL task, however, the
trajectory of learning varied between groups. The evening group demonstrated
notable improvements in the 12-hour post-learning re-test, indicating that sleep was
crucial in enhancing performance. On the other hand, the morning group, which
stayed awake from 0 to the 12 hours period, showed no notable gains throughout this
period. Yet, following a night of rest, the morning group demonstrated significant
enhancements during the 24-hour testing. The results further support the significance
of sleep dependency in learning generalisation through observed transfer effects.
After a night of sleep, the morning group demonstrated a notable transfer of learning
to other untrained backward masking tasks (including orientation UR, luminance LL,
and luminance UR). This suggests that sleep has benefits for associated perceptual
abilities beyond the training task, possibly due to synaptic reorganisation and the
incorporation of learnt patterns into a larger brain network (Stickgold & Walker, 2013).
The evening group, on the other hand, had significant transfer effects at the 12-hour
test after sleep, but these benefits did not hold up at the 24-hour retest. This indicates
that although there was an initial transfer of learning, it was not sustained as long as
in the morning group, suggesting that consolidation processes may vary depending on

when learning takes place in relation to when the sleep period occurred.

Circadian effects on learning and memory consolidation might be one of the
causes of the observed variances between groups. Performance may be impacted by
learning sessions that correspond with an individual's peak cognitive times, and the
evening groups showed faster improvements, possibly due to circadian
synchronisation with their sleep cycle (Blatter & Cajochen, 2007). Learning earlier in
the day may allow for higher consolidation effects, especially when followed by
nighttime sleep, as indicated by the morning group's improved long-term retention.

These findings are in line with other studies on sleep-dependent memory
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consolidation and provide weight to the idea that planning learning sessions that align

with sleep-wake cycles may optimise learning outcomes (Gais et al., 2000).

Careful interpretation of the findings is needed in this experiment, as it relies
on self-reported sleep habits and a relatively small sample size. The findings'
generalisability is always limited by these characteristics, which also raise questions
about the possible impact of unmeasured confounding variables, including differences
in circadian type across individuals and sleep quality. In order to provide stronger
support for the sleep-dependent hypothesis, future research should build a stronger
methodological framework, objective sleep metrics, and a larger sample size. Overall,
this experiment provides strong evidence that sleep is essential for PL and its transfer
to related tasks. The substantial effect sizes observed in backward masking tasks
demonstrate the significance of offline neuronal reorganisation and sleep-related
consolidation in complex perceptual learning, which will be further discussed in the
main discussion. On the other hand, the lack of noticeable improvements across
all pure discrimination tests indicates that specific perceptual abilities do not change

over time and are not significantly affected by sleep.

2.7. Experiment 2: Introduction

An investigation into the methods by which learning influences the backward
masking (orientation) task is presented in the first experiment discussed in this
chapter. Not only did performance in the task increase for the characteristics and
locations that were learnt, but it also improved for other areas of the task. The
significance of this discovery lies in the fact that it provides evidence that our
perception systems are adaptable and able to apply information that was previously
learned to other circumstances. Additionally, it raises questions about the way in

which the brain localises activities, demonstrating that the consolidation of learning is
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not restricted to certain tasks. One example is that having a strong command of the
backward masking orientation task led to an improvement in performance on the
luminance backward masking test, despite the fact that there was no prior experience
with the latter. For example, being skilled in the backward masking orientation task
also improved performance in the backward masking luminance task, even though
there was no practice with it. The presence of this crossover provides evidence that
higher-level brain areas may play a role in the process of generalising learning and
transferring information between different types of activities. If this were confirmed,
it would be a revolutionary step that would completely transform our understanding
of how information is processed and disseminated in the brain throughout the

learning process.

Experiment 2 takes a deeper look at examining individuals who were trained
primarily on the backward masking luminance task, concentrating particularly on their
left visual field. This is carried out in light of the insights that were already gained from
the first experiment within this chapter. This focus on luminance is based on what is
known about how V1 neurones work and how they respond to changes in both
direction and illumination stimuli (Wang et al., 2015). The purpose of this investigation
is to determine if the benefits that have been reported are based on processing or
involve more complicated cognitive functions. Taking into account the fact that visual
perception includes different parts of the brain, the improvement in task performance
that was seen demonstrates that different regions of the brain operate together
rather than acting separately. Although these findings are convincing, further research
is needed to understand how the brain's activity is mapped during learning and its
generalisation. The value of carrying out such an experiment comes from the fact that
it has the ability to shed light on the mechanisms that are responsible for learning and
generalisation within the system. Researchers can assess whether increases in
performance are due to changes in processing or if they result from enhanced
cognitive skills, such as attention, memory, or decision-making, by training

participants on the backward masking luminance task and analysing the effects of the
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task. To establish focused learning methods that can improve abilities, it is essential
to make this distinction. Furthermore, having a better understanding of how learning
in one area can affect performance in another may have implications for rehabilitation
efforts, particularly for visual impairments, and even for the creation of artificial

intelligence systems capable of simulating human perceptual learning processes.

2.8. Experiment 2: Materials and Methods

2.8.1. Participants

For the study, a fresh new cohort of 25 naive volunteers who had never been
exposed to the task before the learning period were recruited. Five participants
were excluded from final data analysis due to withdrawal from the study. The
remaining 20 participants were evenly allocated to two groups, the morning group
(n =10, mean age = 19.5, SD = 1.51) and the evening group (n = 10, mean age = 20.6,
SD =1.84). Both groups of participants have completed a self-reported sleep log
which confirms that they adhered to the study’s requirements identical to

Experiment 1.

2.8.2. Set-up, Stimuli/Tasks, Assessment/Timeline

Experimental set-up, task used, and the timeline were identical to
Experiment 1, except that this time participants were trained on the lower left visual
field of the backward masking luminance task and committed approximately 5 hours
across three experimental sessions. Matlab was used to present the visual stimuli on

a computer screen, with a screen size of 54.3cm. Participants were placed in a
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completely dark testing lab that consist of a chinrest, which serves the purpose of
keeping their head location at the same location throughout the testing sessions. An
eye tracker was also used to ensure that participant is always fixating at the centre

location as requested.

There is also a change in the order of the learning and retest for backward
masking tasks. In the learning phase (Session 1) participants underwent training on
the backward masking Luminance task at the lower-left (LL) visual field. The
backward masking learning task consisted of five blocks of 96 trials each (as detailed

in the ‘Experiment Design’ section)

In O-hour post-learning phase (Session 2), participants completed immediate
post-learning re-tests. The 12-hour and 24-hour retests followed the same structure,
including both backward masking of Luminance and orientation (LL & UR), For all
pure discrimination tasks, it also follows the same paradigm as stated in Experiment

1.

2.9. Experiment 2: Results

Shapiro—Wilk tests was used to check for normality in each group. Most of
the variables exhibited no statistically significant deviation from normality (p > .05),
with a few instances of significance occurring at certain time intervals. Given that the
groups were small but equal in size (n = 10 per group) and mixed ANOVA and
independent samples t-tests are strong enough to handle modest normality

violations (Field, 2024), parametric analyses were maintained.
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2.9.1. Overall Group x Time Effects

A 2 (Group: Morning, Evening) x 4 (Time: Baseline, 0 h, 12 h, 24 h) mixed-
design ANOVA was carried out on all the backward masking tasks. There was a
significant main effect of Time, F (1.40, 25.22) = 105.44, p < .001, indicating a
significant decrease in thresholds across sessions. There was also a significant Group
x Time interaction, F (1.40, 25.22) = 5.53, p =.018, indicating different learning

trajectories between the Morning and Evening groups.

For the unlearned backward masking orientation LL condition, there was a
significant main effect of Time, F (1.60, 28.85) = 63.24, p < .001, indicating a
decrease in thresholds across sessions. The Group x Time interaction was also
significant, F (1.60, 28.85) = 15.24, p < .001, again suggesting differential patterns
between the groups over time. Similar patterns were observed for the backward
masking luminance UR condition, where there was a significant main effect of Time,
F(1.70, 30.55) = 81.86, p <.001, and a significant Group x Time interaction, F (1.70,
30.55) =21.27, p < .001. Again, the same pattern was found for the backward
masking orientation UR condition. A significant main effect of Time was observed, F
(1.95, 35.15) = 54.48, p < .001, and a significant Group x Time interaction, F (1.95,
35.15)=11.47, p < .001.

For all the pure discrimination tasks, mixed ANOVAs revealed no significant
Time effects or Group x Time interactions for any measure (Table 2.6), which is in

line with what was observed in Experiment 1.
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Taken together, these findings indicate that both learned and unlearned

backward masking tasks, involving luminance and orientation, showed strong

performance improvements over time, as reflected in significant main effects of

Time. In addition, all unlearned tasks exhibited significant Group x Time interactions,

highlighting that both groups followed different performance trajectories across

sessions, similar to the learned condition.

Table 2.6

Results of Mixed ANOVAs Examining the Effects of Time and Time x Group Interactions

Across All Variables, with the Backward Masking Luminance LL as the learned task

Dependent Variable Effect dfy df; F p n
Backward Masking Luminance at LL (ms) Time 140 25.22 105.442 <.001 .854
Time x Group 140 25.22 5,532 0.018 .235
Backward Masking Orientation LL (ms) Time 1.60 2885 63.239 <.001 778
Time x Group 1.60 28.85 15.243 <.001  .459
Backward Masking Luminance at UR (ms)  Time 1.70 3055 81.856 <.001 .820
Time x Group 1.70 30.55 21.271 <.001  .542
Backward Masking Orientation at UR (ms)  Time 195 3515 54476 <.001 752
Time x Group 1.95 35.15 11474 <001 .389
Contrast Discrimination at LL (%) Time 262 47.15 1.167 329 .061
Time x Group 2.62  47.15 455 .689 .025
Orientation Discrimination at LL (degree) Time 2.67 48.09 1.468 237 .075
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Time x Group

Flicker Fusion at LL (ms) Time

Time x Group

Contrast Discrimination at UR (%) Time

Time x Group

Orientation Discrimination at UR (degree) Time

Time x Group

Flicker Fusion at UR (ms) Time

Time x Group

2.67

2.44

2.44

2.39

2.39

2.17

2.17

2.63

2.63

48.09

43.96

43..96

43.01

43.01

39.04

39.04

47.27

47.27

484

374

435

.087

202

167

275

.067

.610

.673

731

.689

.942

.854

.863

778

977

591

.026

.020

.024

.005

011

.009

.015

.004

.033

Note. dfi = numerator degrees of freedom (effect), df: = denominator degrees of freedom (error). Greenhouse—

Geisser corrected values are reported where Mauchly’s test indicated violations of sphericity.

2.9.2. Between-Group Comparisons

To look at between-group differences, independent-samples t-tests were
conducted to compare the Morning and Evening groups on all backward masking

and pure discrimination tasks at Baseline, O hr, 12 hr, and 24 hr.

For the trained task (backward masking luminance LL), there were no

significant differences between groups at Baseline, t (18) =0.14, p =.892, d = 0.06,
oratOhr, t(14.58) =-1.33, p=.205, d = -0.57. A significant difference emerged at
12 hr, t (16.31) = 2.46, p =.026, d = 1.05, with the Evening group showing lower
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thresholds than the Morning group. By 24 hr, this difference was no longer
significant, t (17.67) =-0.82, p = .425, d = -0.35.

For the untrained backward masking orientation LL task, no significant
differences were found at Baseline, t (17.49) =0.01, p=.991,d=0.01, orat O hr, t
(16.01) =-0.15, p =.883, d = -0.06. At 12 hr, the Evening group outperformed the
Morning group, t (11.01) = 5.26, p <.001, d = 2.25. No significant difference
remained at 24 hr, t (14.81) = -1.39, p =.185, d = -0.60. Similarly, for TDT Luminance
UR, there were no between-group differences at Baseline, t (17.80) = 0.14, p = .892,
d=0.06,orat0hr, t(18)=0.18, p =.860, d = 0.08. A significant difference emerged
at 12 hr, t (13.13) = 5.38, p <.001, d = 2.31, favouring the Evening group. No
significant difference was observed at 24 hr, t (17.44) = -0.86, p = .400, d = -0.37.
Following the same pattern, the backward masking orientation UR also showed no
significant group differences at Baseline, t (17.49) =0.01, p =.991, d =0.01, or at O
hr,t(17.29) =-0.25, p =.804, d = -0.11. At 12 hr, there was a large and significant
difference, t (12.18) = 3.97, p =.002, d = 1.70, with the Evening group again
outperforming the Morning group. By 24 hr, this difference had disappeared, t
(16.23)=-1.22, p=.239,d =-0.52.

There were no significant differences between groups at any time point for
any of the pure discrimination conditions. This is in line with the mixed-ANOVA
results, which showed that these measures did not have any Time or Group x Time
effects. This suggests that sleep is more beneficial for the backward masking tasks

that need a lot of time to process than for simple sensory thresholds.

2.9.3. Improvement from Baseline to 24 Hours Post-Learning
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In Experiment 2, the performance of individuals on various tasks at baseline
to 24 hours after initial learning was examined. Repeated-measures ANOVA showed
a significant main effect of time for the learning task, showing a substantial
improvement in the backward masking luminance LL task for both the morning and
evening groups. The morning group showed a significant improvement, F (1, 9) =
75.56, p < .001, with the n? indicating that time explained 89.4% of the variance in
performance and not by random chance (Table 2.7a). Similarly, the evening group
also demonstrated a strong learning effect, F (1, 9) = 58.75, p < .001, with the n?

indicating that time explained 86.7% of the variance.

In addition to the improvement in the learning task, both groups
demonstrated significant improvement in related untrained backward masking tasks.
Firstly, the morning group showed a significant transfer of learning to the backward
masking tasks, including, luminance UR, F (1, 9) = 58.50, p < .001, orientation LL, F (1,
9) =41.66, p < .001, and orientation UR, F (1, 9) =41.16, p < .001. Additionally, the
evening group experienced comparable transferred skills, F (1, 9) = 52.60, p < .001, F
(1,9)=39.73, p<.001, and F (1, 9) = 35.77, p < .001, respectively. The mean score
across the tasks for the morning (Table 2.7a) and evening (Table 2.7b) groups
suggests an overall decrease in threshold scores, highlighting that learning of the
backward masking luminance LL task generalised to other backward masking-based

perceptual tasks.

However, no significant difference was found for any of the pure
discrimination tasks. Repeated-measures ANOVA showed no significant main effects
of time for contrast discrimination at LL, F (1,9) = 0.266, p =.618, and UR, F (1, 9) =
0.317, p =.585, in the morning group. Similarly, the evening group showed no
significant improvement in these tasks, as indicated by F (1, 9) = 0.004, p = .953, and
F(1,9) =0.001, p = .975, respectively. Likewise, no significant changes were found
for orientation discrimination at LL, F (1, 9) =0.943, p =.357,and UR, F (1, 9) =
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0.368, p =.559, for the morning group, or for the evening group, F (1, 9) = 1.56, p
=.243,and F (1,9) =0.011, p =.917. The flicker fusion task also showed no
significant differences in both morning and evening group, F (1,9) =1.31, p =.315
(LL), F(1,9)=0.317, p=.587 (UR)and F (1,9) = 0.045, p = .837 (LL), F (1, 9) = 0.166,
p =.693 (UR), respectively.

Based on these findings, participants' performance on pure discrimination
tasks was constant over time. However, they demonstrated strong gains on the
learnt backward masking luminance LL task and a notable transfer to related
backward masking tasks. This indicates that gains did not transfer to more general
visual discriminating skills, but instead were task-specific to temporal learning

processes.

Table 2.7a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group from Baseline to 24 hours post-learning

Measures Baseline 24hrs Post F(1,9) n
M SD M SD
Contrast Discrimination at LL (%) 12.73 5.02 12.16 434 .266 .029
Orientation Discrimination at LL (degree) 2.66 1.38 2.37 .85 943 .357
Flicker Fusion at LL (ms) 38.15 6.57 36.53 6.80 1.31 112
Backward Masking Luminance at LL (ms) 129.87 43.86 35.20 14.08 75.56 .894
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Backward Masking Orientation LL (ms) 126.67 47.75 34.60 10.59 41.66 .822
Contrast Discrimination at UR (%) 11.83 6.69 12.88 6.57 321 .034
Orientation Discrimination at UR (degree) 2.43 485 2.58 .796 .368 .039
Flicker Fusion at UR (ms) 37.64 7.42 39.63 11.24 317 .034
Backward Masking Luminance at UR (ms) 129.87 43.86 38.00 15.04 58.5 .867
Backward Masking Orientation at UR (ms) 126.67 47.75 40.13 1438 41.16 .821

Table 2.7b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group

Measures Baseline 24hrs Post F(1,9) n?
M SD M SD

Contrast Discrimination at LL (%) 12.87 441 12.76 7.42 .004 .000
Orientation Discrimination at LL (degree) 2.31 .69 2.07 .80 1.56 148
Flicker Fusion at LL (ms) 35.74 7.88 3514 10.13 .045 .005
Backward Masking Luminance at LL (ms) 127.0 48.80 40.73 16.17 58.75 .867
Backward Masking Orientation LL (ms) 126.40 56.72 43,60 17.50 39.73  .815
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Contrast Discrimination at UR (%) 13.13 5.14 13.16 6.58 .001

Orientation Discrimination at UR (degree) 2.12 467 2.14 .938 .011

Flicker Fusion at UR (ms) 36.11 9.00 34.95 6.91 .166

Backward Masking Luminance at UR (ms)  127.0 48.80 4440 1802 52.60

Backward Masking Orientation at UR (ms) 126.40 56.72 49.73  20.27 35.77

.000

.001

.018

.854

.799

2.9.4. Improvement from Baseline to O Hour Post-Learning

To examine whether any immediate learning effects occurred after the initial
learning session, performance at baseline was compared to the O-hour re-test for
both groups. A significant main effect of time was observed for the training of the
backward masking luminance LL task, showing a substantial effect of immediate
learning. The morning group showed a significant improvement in the learning task,
F(1,9)=51.94, p <.001. Similarly, the evening group also exhibited a strong learning
effect, F (1, 9) = 80.69, p <.001. The larger effect size found in the evening group
(Table 2.8b) compared to the morning group (Table 2.8a) suggests a potentially

greater immediate consolidation of learning.

Apart from the improvement found for the learning task, no evidence of
immediate learning transfer was found. Firstly, the performance of both the morning
and evening groups remained stable for the backward masking luminance UR task, F
(1,9)=0.02, p=.892,and F (1, 9) =0.002, p = .964, respectively. For the backward

masking orientation task, similar results were found at LL, F (1, 9) =2.33, p=.161
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(morning) and F (1, 9) = 1.68, p = .228 (evening). Similarly, for the backward masking
orientation UR, F (1,9) =0.927, p =.361 (morning) and F (1, 9) = 0.108, p =.750
(evening). The finding suggests that learning was highly task-specific, with no

immediate generalisation to different visual quadrants or to other task features.

Additionally, performance in the pure discrimination tasks also remained
unchanged, suggesting that the perceptual learning effect was specific to the
backward masking rather than to more general tasks. Repeated-measures ANOVA
showed no significant main effects of time for Contrast Discrimination at LL, F (1, 9) =
1.11, p=.319,and UR, F (1, 9) = 0.428, p = .530, in the morning group. Similarly, the
evening group showed no significant improvement in these tasks, F (1, 9) = 0.087, p
=.775,and F (1, 9) =0.043, p = .841, respectively. For the pure Orientation
Discrimination task, no improvement was found at the LL, F (1, 9) = 0.002, p = .968
and UR, F (1, 9) = 0.851, p = .380 for the morning group, or for the evening group, F
(1,9)=0.976, p=.349 and F (1, 9) =0.622, p = .451, for the respective tasks. Finally,
the Flicker Fusion task was also consistent with the previous two tasks where non-
significance in performance were found at the LL, F (1, 9) =0.878, p=.373 and UR, F
(1,9) =0.962, p =.352 for the morning group, and the same for evening group, F (1,
9)=0.081, p=.782and F (1, 9) = 0.845, p = .382. Overall, reinforces the idea that

immediate post-learning benefits do not extend to general discrimination abilities.

Overall, both morning and evening groups demonstrated immediate learning
for the trained backward masking luminance task at the LL visual quadrant, where
the transfer effects were not found to be related to backward masking tasks, as
evidenced by the decrease in mean performance for both groups (Table 2.8a and
Table 2.8b). However, the evening group showed a larger immediate effect,
potentially reflecting differences in time-of-day influences on the consolidation of

learning.
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Table 2.8a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group from Baseline to O-hour post-learning

Measures Baseline Ohr Post F(1,9) n
M SD M SD
Contrast Discrimination at LL (%) 12.73 5.02 13.81 5.79 1.11 .110
Orientation Discrimination at LL (degree) 2.66 1.38 2.65 1.07 .002 .000
Flicker Fusion at LL (ms) 38.15 6.57 36.99 5.92 .878 .089
Backward Masking Luminance at LL (ms) 129.87 43.86 68.13 2397 5194 852
Backward Masking Orientation LL (ms) 126.67 47.75 11993 38.37 2.33 .206
Contrast Discrimination at UR (%) 11.83 6.69 12.79 5.46 428 .045
Orientation Discrimination at UR (degree) 2.43 485 2.56 .635 851 .086
Flicker Fusion at UR (ms) 37.64 7.42 40.09 8.56 962 .097
Backward Masking Luminance at UR (ms) 129.87 43.86 130.53 46.00 .020 .002
Backward Masking Orientation at UR (ms) 126.67 47.75 119.33  44.88 .927 .093
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Table 2.8b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group from Baseline to O-hour post-learning

Measures Baseline 24hrs Post F(1,9) n?
M SD M SD
Contrast Discrimination at LL (%) 12.87 4.41 12.48 4.62 .087 .010
Orientation Discrimination at LL (degree) 2.31 .686 2.13 .632 976  .098
Flicker Fusion at LL (ms) 35.74 7.88 35.14 7.39 .081  .009
Backward Masking Luminance at LL (ms) 127.0 48.80 87.93 40.64  80.69 .900
Backward Masking Orientation LL (ms) 126.40 56.72 123.13 55.46 1.68 .157
Contrast Discrimination at UR (%) 13.13 5.14 12.73 5.34 .043 .005
Orientation Discrimination at UR (degree) 2.12 A67 2.01 .654 .622 .065
Flicker Fusion at UR (ms) 36.11 9.00 33.61 10.36 .845  .086

Backward Masking Luminance at UR (ms) 127.0 48.80 126.87 45.89 .002  .000

Backward Masking Orientation at UR (ms) 126.40 56.73 125.0 55.13 .108  .093
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2.9.5. Improvement from 0 Hour to 12 Hours Post-Learning

To examine the potential impact of learning within the first 12 hours post-
learning, and compared performance between immediate and 12-hour post-learning
tests for both the morning and evening groups. For the learned backward masking
luminance task at LL, the morning group did not show any improvement, F (1, 9) =
2.62, p = .140, indicating no substantial change in learning during this offline wake
period. On the other hand, the evening group showed a significant decrease in mean
threshold, F (1, 9) = 30.67, p <.001, suggesting a strong offline sleep consolidation
effect (Table 2.7a and Table 2.7b).

Similar patterns were found for the untrained backward masking tasks. The
morning group did not show improvement in the backward masking luminance UR, F
(1,9) = 1.04, p = .334, backward masking orientation LL F (1,9) = 0.47, p = .510, or
backward masking orientation UR, F (1,9) = 1.08, p = .327, suggesting that with the
absence of sleep offline learning effect were minimal. In contrast, the evening group,
which had a sleep period between the sessions, showed a significant improvement
in backward masking luminance UR, F (1,9) = 72.09, p < .001, backward masking
orientation LL, F (1,9) = 32.00, p < .001, and backward masking orientation UR F (1,9)
=44.66, p < .001, supporting the idea of sleep in improving the generalisation of

learning.

For all pure discrimination tasks, no improvement was found for the Contrast
Discrimination LL, F (1, 9) = 3.62, p =.090, and UR, F (1,9) =0.27, p = .614, for the
morning group. The evening group also showed the same pattern, F (1, 9) =0.993, p
=.345and F (1,9) =0.179, p = .682 for the respective tasks. For the Orientation
Discrimination task, no improvement was found at LL, F (1, 9) =0.517, p = .490 and

UR, F(1,9)=0.017, p = .899, for the morning group, and for the evening group, F (1,
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9)=0.158, p=.709 and F (1, 9) = 0.369, p = .559, respectively. In addition, for the

Flicker Fusion task performance also remained stable for the morning group at LL, F

(1,9)=0.189, p=.674and UR, F (1, 9) =0.423, p = .532 and evening group at LL, F

(1,9)=0.897, p=.368 and UR, F (1, 9) =0.202, p = .664. The results reinforce the

idea that sleep-related benefits are specific to visual perceptual tasks rather than

general discrimination abilities.

Table 2.7a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group from O hour to 12 hours post-learning

F(1,
Measures Ohr Post 12hrs Post 9) n?
M SD M SD
Contrast Discrimination at LL (%) 13.81 5.79 11.57 432 3.62 287
Orientation Discrimination at LL (degree) 2.65 1.07 2.83 1.12 517 .054
Flicker Fusion at LL (ms) 36.99 5.92 37.69 7.58 189  .021
Backward Masking Luminance at LL (ms) 68.13 23.97 66.40 2442 2.62  .225
Backward Masking Orientation LL (ms) 11993 3837 12220 42.82 470 .050
Contrast Discrimination at UR (%) 12.79 5.46 12.16 5.34 273 .029
Orientation Discrimination at UR (degree) 2.56 .635 2.53 .526 .017 .002
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Flicker Fusion at UR (ms) 40.09 8.56 38.47 8.32 423 045
Backward Masking Luminance at UR (ms)  130.53 46.0 12713 4471 1.04 104
Backward Masking Orientationat UR (ms)  119.33  44.88 113.20 47.73 1.08 .107

Table 2.7b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group from O hour to 12 hours post-learning

Measure Ohr Post 12hrs Post F(1,9) n?
M SD M SD

Contrast Discrimination at LL (%) 12.48 4.62 11.61 5.09 .993 .099
Orientation Discrimination at LL (degree) 2.13 .632 2.20 912 148 .016
Flicker Fusion at LL (ms) 35.14 739 3315 7.08 897  ,091
Backward Masking Luminance at LL (ms) 8793 40.64 43.07 17.50 30.67 .773
Backward Masking Orientation LL (ms) 123.13 55.46 47.07 14.39 32.0 .781
Contrast Discrimination at UR (%) 12.73 5.34 13.36 441 179 .020
Orientation Discrimination at UR (degree) 2.01 .654 2.14 .620 .369 .039
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Flicker Fusion at UR (ms) 33.61 10.36 34.44 7.52 202 .022

Backward Masking Luminance at UR (ms) 126.87 45.89 42.27 22.04 72.09 .899

Backward Masking Orientationat UR (ms)  125.0  55.13  48.07 20.38 4466  .832

2.9.6. Improvement from 12 Hour to 24 Hours Post-Learning

At the 24-hour interval, significant transfer of learning to untrained backward
masking tasks was found in the morning group but not in the evening group. ANOVA
analysis has shown that there was improvement to the task of other backward
masking, including, luminance UR task, F (1, 9) = 48.66, p < .001, orientation LL, F (1,
9) =50.90, p <.001, and orientation UR, F (1, 9) = 33.49, p <.001, and when
compared to the 12-hour test. However, the evening group did not show the same
effects, with a non-significant change to untrained tasks, F (1, 9) =0.347, p = .570, F
(1,9)=3.31, p=.102,and F (1, 9) =0.226, p = .646, respectively. Furthermore, there
was a significant consolidation of learning observed only in the morning group for
the backward masking luminance LL task, with a substantial improvement from 12
hours to 24 hours, F (1, 9) = 59.53, p < .001. However, the evening group did not
exhibit the same learning effect, F (1, 9) = 3.72, p = .086, indicating that there is a

lack of continued learning beyond the 12-hour post-learning mark.

As expected and consistent with previous findings from Experiment 1, the
pure discrimination tasks did not show any significant changes in either group,
suggesting that the observed improvement was highly specific to the backward
masking-based PL tasks. Repeated-measures ANOVA found no significant changes in

contrast discrimination at LL, F (1, 9) =0.298, p =.598, and UR, F (1,9) =0.477, p
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=.507, in the morning group, nor for the evening group, F (1, 9) = 1.08, p = .326 (LL),
F(1,9)=0.039, p =.847 (UR). Similarly, no significant differences were found in
orientation discrimination at LL, F (1, 9) =3.37, p =.100, and UR, F (1, 9) =0.051, p
=.826, for the morning group, or for the evening group, F (1, 9) = 0.449, p = .520,
and F (1, 9) =0.001, p = .979. Likewise, flicker fusion task performance remained
unchanged, with no significant differences observed for the morning, with LL, F (1,9)
=0.588, p=.463 and UR, F (1,9) =0.12, p = .73, and the evening group, with LL, F (1,
9) =0.326, p =.582, and UR, F (1, 9) =0.076, p = .789.

These findings indicate that while the morning group continued to
consolidate learning and exhibited further transfer to untrained tasks, the evening
group’s improvements plateaued beyond 12 hours. The descriptive statistics (Table
2.8a) highlight the reduction in threshold scores for the morning group compared to
the evening group (Table 2.8b), further supporting the presence of sleep-dependent

consolidation effects.

Table 2.8a

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Morning Group

Measures 12hr Post 24hrs Post F(1,9) n
M SD M SD
Contrast Discrimination at LL (%) 11.57 432 12.16 434 .298 .032
Orientation Discrimination at LL (degree) 2.83 1.12 2.37 .849 3.37 272
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Flicker Fusion at LL (ms)

Backward Masking Luminance at LL (ms)

Backward Masking Orientation LL (ms)

Contrast Discrimination at UR (%)

Orientation Discrimination at UR (degree)

Flicker Fusion at UR (ms)

Backward Masking Luminance at UR (ms)

Backward Masking Orientation at UR (ms)

37.69

66.40

122.20

12.16

2.53

38.47

127.13

113.20

7.58

24.42

42.82

4.32

.53

8.32

44.71

47.73

36.53

35.20

34.60

12.88

2.58

39.63

38.0

40.13

6.80

14.08

10.59

6.57

.796

11.24

15.04

14.38

.588

59.53

50.90

AT77

.051

120

48.66

33.49

.061

.869

.850

.050

.006

.013

844

.788




Table 2.8b

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and

Pure Discrimination Task for the Evening Group

Measure 12hrs Post 24hrs Post F(1,9) n
M SD M SD
Contrast Discrimination at LL (%) 11.61 5.09 12.76 7.42 1.08 .107
Orientation Discrimination at LL (degree) 2.20 914 2.07 .801 449 .047
Flicker Fusion at LL (ms) 33.15 7.08 3514 10.13 .326 .035
Backward Masking Luminance at LL (ms) 43.07 1750 40.73 16.17 3.72 292
Backward Masking Orientation LL (ms) 47.07 1439 4360 17.50 331 .269
Contrast Discrimination at UR (%) 13.36 441 13.16 6.58 .039 .004
Orientation Discrimination at UR (degree) 2.13 .620 2.14 .094 .001 .000
Flicker Fusion at UR (ms) 3444 752 3495 691 .076 .008
Backward Masking Luminance at UR (ms) 4227 2205 4440 18.01 347 .037
Backward Masking Orientation at UR (ms)  48.07 20.38 49.73  20.27 226 .025
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2.10. Experiment 2: Discussion

Experiment 2 examined how sleep affects perceptual learning as well as
learning generalisation across task elements and visual field locations. In particular,
the experiment examined whether training on the backward masking luminance LL
task enhanced performance on untrained backward masking tasks, pure
discrimination tasks, and the trained task. Strong learning effects was observed for
the learnt task in both groups, which is in line with the findings in Experiment 1.
However, no significant generalisation was shown in the evening group after 12
hours post-learning, and generalisation effects were observed solely in the morning
group at the 24-hour period. Further supporting the specificity of learning-related
enhancements to temporal learning processes rather than general perceptual
abilities is the fact that performance on pure discrimination tests was constant

across all time points.

The learnt luminance LL task demonstrated considerable improvement for
both the morning and evening groups, indicating robust PL effects. The
improvement paths, however, varied among groups. By the 12-hour point, the
evening group had shown significant improvement, indicating offline consolidation
effects related to sleep. In contrast, the morning group, which stayed awake for the
first 12 hours, showed no immediate improvement, but a significant gain was found
at 24 hours, following a sleep period. These results are consistent with the findings
in Experiment 1 and other research in the literature, providing the idea that sleep
improves performance on PL tasks and helps in memory consolidation (Fenn &

Hambrick, 2012; Stickgold & Walker, 2005).

Furthermore, throughout the 24-hour test, only the morning group
demonstrated the transfer of learning to untrained backward masking tasks.

Backward masking tasks, including luminance UR, orientation LL, and orientation UR,
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exhibited notable transfer effects. This finding indicates that there is a delayed
consolidation process, potentially requiring an extended sleep period for this effect
to occur. The 12-hour retest revealed transfer effects after the evening group's
participants had their offline sleep period. However, the 24-hour retest did not
sustain the effect. The observed pattern suggests that while sleep can facilitate the
transfer of learning, the effects were less long-lasting due to time-of-day limits

(Kuriyama et al., 2004).

The between-group comparison results further support this point of view.
Both groups began with the same baseline, but differences became clear after the
first 12-hour period, when the evening group, who had received the first sleep
period, performed better on both the learned and unlearned backward masking
tasks compared to the morning group. After the morning group had their own sleep
period, the differences had disappeared in 24 hours, and both groups performed at
around the same level. This trend strongly shows that sleep is contributing
and making a difference in both performance and the transfer of learning, not time
or repeated testing. The evening group had shown this performance gain earlier, as
they had a sleep period between their first and second learning periods. However,
the morning group did not catch up until after they had the sleep period at a later
time point. The lack of differences between groups on the pure discrimination
conditions further emphasises that these effects are particular to the consolidation
of masking-related learning, rather than to overall enhancements in visual

sensitivity.

Perceptual learning is not primarily controlled by low-level visual processing,
as shown by the reported generalisation of learning to untrained backward masking
tasks but not to pure discriminating tasks. Improvements would have been
anticipated in tasks with comparable sensory characteristics (e.g., contrast

discrimination) if generalisation had been limited to early visual regions. The
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involvement of higher-order cortical processes in PL was supported by our discovery
that generalisation extended to other backward masking tasks with distinct spatial
locations and feature attributes. This notion aligns with neurophysiological studies
that demonstrate a connection between the prefrontal cortex and parietal areas, as
well as the relationship between extractive learning and cross-task generalisation
(Jing et al,, 2021). Furthermore, learning benefits may be due to task-specific
changes in temporal processing rather than a general gain in visual perception, as
shown by the fact that perception did not improve on any purely perceptual tasks
(Watanabe & Sasaki, 2015). These findings highlight the fact that higher-level
cognitive processes, rather than just cognitive process flexibility, are responsible for

the generalisation of perceptual learning.

The results of this experiment showed that circadian rhythms play a role in
determining the effectiveness of learning processes and memory consolidation. The
morning group demonstrates long-term recall and generalisation improvements
after sleep through delayed yet sustained memory gains at the 24-hour mark. The
evening group displayed significant early improvements at the 12 hours post-
learning period with consistent benefits throughout the rest of the retest session.
Research confirms that circadian variables influence the encoding and consolidation

of procedural learning (Della-Maggiore et al., 2017), supporting the observed trend.

Everything considered, the results from this experiment demonstrate strong
perceptual learning as well as its generalisation to novel tasks, which is strong
evidence for the importance of sleep. Only the morning group had additional
delayed generalisation effects that were still noticeable after 24 hours, but neither
group performed poorly after the specific training; both morning and evening
learners did well on the trained backward masking luminance LL task. Furthermore,
the findings suggest that the transfer of learning across task changes stems from the

action of higher-order cortical processes rather than from low-level visual
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processing. Moreover, the amount and persistence of learning increments appear to
be circadianly controlled, so that long-term consolidation is achieved more
effectively by morning learners. With implications for improving training paradigms
in skill acquisition and rehabilitation, these results together advance our knowledge
of the interaction among sleep, circadian rhythms, and higher-level cognitive

processes in perceptual learning.

2.11. General Discussion

The brain's ability to adjust to experience is reflected in PL, which improves
sensory discrimination via repeated practice. Although studies have shown that
sleep promotes learning consolidation (Stickgold & Walker, 2005; Yotsumoto et al.,
2009), little is known about how sleep affects learning generalisation across
unfamiliar tasks, characteristics, or locations. The present research examined
whether perceptual learning is task-specific and restricted to learnt stimuli or
whether sleep acts as a mechanism for generalisation. The two experiments showed
that sleep is essential for learning transfer, allowing the acquired perceptual abilities
to transcend their initial context. Experiment 1, which used backward masking tasks
to test orientation-based learning, showed small transfer during wakefulness but
significant transfer effects after sleep. These results were supported by Experiment
2, which used a backward masking task with luminance-based learning. While offline
wakefulness alone resulted in insignificant generalisation, gains were still seen in
both trained and untrained tasks after a night of sleep. Generalisation was task
dependent. However, sleep improved learning transfer in backward masking-based
tasks, but it had no apparent impact on pure discrimination tasks (flicker fusion,
orientation discrimination, and contrast discrimination). These results highlight the
need to investigate task-specific processes of generalisation, as they imply that
sleep-dependent consolidation does not enhance all types of perceptual learning

equally.
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2.11.1. The Effect of Sleep

One of the main conclusions of this research is that sleep improved with
generalisation in PL, especially when it came to tasks that required the detection of
structured patterns as opposed to low-level sensory discrimination (Cousins et al.,
2021; Drouin et al., 2023b; Qin & Zhang, 2019; Walker & Stickgold, 2004). This is
consistent with other studies that found sleep reinforces cortical representations,
enabling learnt gains to transcend their training environment (Wamsley, 2022). The
results of Experiment 1, which concentrated on orientation-based learning, showed
strong transfer effects after sleep but little transfer during wakefulness. This trend
was repeated in Experiment 2, which employed training based on luminance. These
results support the notion that sleep is essential for reorganising neuronal
representations, which increases learning flexibility and cross-context transferability

(Durrant et al., 2011; Nieuwenhuis et al., 2013).

Between group comparison showed when the learning trajectory start to
differ. In both experiments, the Morning and Evening group showed no differences
at baseline or immediately after learning (0 hr), suggesting a similar baseline
performance. However, after 12 hours, the Evening group shown an improvement
on all the backward masking task compared to the Morning group. This
improvement is likely to be the benefits of sleep as at the 12-hour timepoint only the
those who were | the evening group encountered episode of sleep. However, at the
24-hour timepoint, when the Morning group had also slept, the difference between
the groups were gone. In relation to the pure discrimination tasks, no differences
between groups were found on any of the task at any time point. This time-locked
difference strongly suggests that sleep, not just simply the passage of time, caused

the offline improvements and transfer.
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However, while improvement was observed, they did not consistently
develop across all retest periods or tasks. In contrast to the weak or insignificant
effects in pure discrimination tasks, the findings showed considerably large effect
sizes in sleep-dependent learning for backward masking-based tasks (n? > 0.80).
Even though the effect sizes observed were big in both experiments, this trend is
likely to occur in studies of perceptual learning and is also partly due to how the
trials were set up. One factor can be related to the within-subject adaptable
behavioural paradigms, which generate highly correlated repeated measures
characterised by low error variance, resulting in inflated partial n? values (Bakeman,
2005; Olejnik & Algina, 2003). Staircase methods that employ fixed baselines often
cause post-training variances to be compressed and floor effects, which make
contrasts more apparent (Garcia-Pérez, 1998). Additionally, small samples decrease
the stability of n?, leading to increase of probability of overestimation (Levine &
Hullett, 2002). When looking at the size of the effects that were seen, these
problems should be taken into account. Future analyses should incorporate
confidence intervals and possibly other measures of effect size (such as generalised

n?) to assess the stability of the effects.

Mixed-design ANOVA was used to look at the Time x Group interaction, and
independent t-tests were used to look at the group effect. These analyses were
chosen because the mixed-design ANOVA can examine whether learning trajectory
changes over time for the Morning and Evening groups. However, the independent
t-test was used to examine at each time point where the differences emerged,
isolating the specific effects of sleep (at 12 hours) and their resolution after both
groups had slept (at 24 hours). This two-step method keeps group differences
separate from overall main effects and correlates well with repeated measures

designs that have more than one retest.
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Furthermore, the study in this Chapter revealed that morning learners
exhibited improved performance in online learning tasks, which aligns with the
hypothesis that the brain must undergo changes and form new connections to learn
online effectively. Tononi and Cirelli (2003) proposed that sleep eliminates non-
essential synaptic connections, which provides a compelling foundation for
understanding why sleep could be essential to learning. According to the theory of
homeostasis, reducing the strength of synapses during sleep is an important step in
maintaining the brain’s ability to change and adapt. This downsizing process may
create extra room for learning, which could explain why one tend to have an overall
understanding after a good night’s sleep. However, further research is necessary to
validate this theory and explore how performance improvements carry over to
testing sessions on the day of learning. It would also be valuable to investigate how
variables like age, gender and sleep quality affect learning and memory
consolidation. By conducting these types of studies, more profound insights can be
gained into how sleep facilitates learning and optimises our cognitive abilities both

when awake and asleep.

The concept that learning generalisation happens during sleep has support
from research on sessions conducted 12 hours and 24 hours after learning.
Specifically for individuals who learned in the evening and then slept, there was an
improvement in performance on tasks during the 12-hour retest. This suggests that
sleep plays a role in promoting generalisation. Interestingly, those who learned in
the morning and then retested after some sleep did not show the improvement.
Furthermore, individuals who learned in the evening showed transfer of learning
during the 12-hour retest compared to those who learned in the morning. This
indicates that when sleep occurs might have an impact on the extent of
generalisation achieved. However, during the 24-hour retest, this pattern was

reversed; morning learners who had slept exhibited an increase in task performance.
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In general, the findings of this study align with previous research (Fenn et al.,
2003; Tandoc et al., 2021; Yotsumoto et al., 2009) that suggests sleep plays a role in
promoting the generalisation of learning. However, it is important to note that the
study design did not allow for a comparison between learning on sleep and learning
independent of sleep since all participants experienced both periods of wakefulness
and sleep. To confirm the importance of sleep for generalisation and explore the
underlying mechanisms, future studies with a more robust experimental design will

be needed.

2.11.2. The Effect of Transfer

Sleep facilitates generalisation in perceptual learning, but this is not a universal
phenomenon. According to the findings from Experiments 1 and 2, although some
visual tasks showed transfer effects, the absence of improvement in pure
discrimination tasks (flicker fusion, contrast, and orientation), indicates that
generalisation depends on how learnt representations are reorganised during sleep
rather than just memory retention. This distinction offers crucial information about
the processes underlying perceptual learning, especially with relation to the kinds of

learning that may be transferred and consolidated.

The lack of transfer to tasks involving just pure visual discrimination is in line
with other studies showing that intensive, repetitive training is usually necessary to
improve performance on these tasks. Basic discrimination tasks seem to rely on low-
level sensory processes that do not easily benefit from sleep-dependent consolidation
in the same manner as the backward masking tasks, which involve higher-level

perceptual and cognitive processing (Fahle & Edelman, 1993; Karni & Sagi, 1993).
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There is potential that pure discrimination learning will develop slowly and
incrementally, requiring many trials and sessions before any changes and
improvement to be seen, which is a gap the experiment in this Chapter, a this were
not directly examined. However, as shown by Karni and Sagi's (1993) study,
which demonstrated that significant gains in a visual discrimination test needed
numerous sessions spaced out over a long period (i.e., several days). Similarly, Fahle
and Edelman (1993) found that sustained gains in the vernier acuity tests only
occurred after a long and intensive training sessions. According to these results,
improvements in visual discrimination are usually dependent on extended and regular
exposure to stimuli, whereas the backward masking tasks enable comparatively quick
learning and transfer because they activate higher-order visual and attentional

processes.

The difference between supressed learning effect in the pure discrimination
tasks and quick learning in the backward masking tasks suggests the possibility of
underlying brain differences in the processing and consolidation of these tasks. One
possible explanation of PL in the backward masking tasks includes the idea of top-
down regulation from higher cortical areas such as the prefrontal cortex (PFC) and
parietal regions, as well as local plasticity in early visual areas (V1) (Seitz & Watanabe,
2005; Watanabe & Sasaki, 2015). Pure discrimination tasks, on the other hand, could
rely more on low-level retinotopic plasticity in V1 (Karni & Sagi, 1991; A. Schoups et
al., 2001), which depends on a very narrow population of orientation and contrast
sensitive neurons. Therefore, to have any measurable changes, the same neurons
need to get-togethers ad repeatedly co-activate while neighbourhood neurons
remain inactive (Gilbert et al., 2001; Li et al., 2004). Synaptic performance can only be
changed by this highly selective and recurrent recruitment process. As a result, low=-
level visual tasks are very sensitive to the parameters of the stimulus and to the
location in space. Even small changes can affect the precise neuronal co-firing that is

needed for plastic change (Seitz & Watanabe, 2005). These limitations are one
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possible explanation to the limited learning and generalisation found in the pure

discrimination tasks and shows the need for extensive, location-specific learning.

The amount of practical learning capacity in pure discrimination tasks may be
fundamentally lower than in the backward masking learning if the lack of transfer to
these tasks is to be argued to be a result of chance. Since fundamental sensory
discrimination processes are already well optimised by past visual experience, pure
discrimination tasks may have less space for improvement than tasks involving
complicated feature integration, contextual modulation, or sequential processing
(Fine & Jacobs, 2002). Prior studies have attempted to enhance pure discrimination
tasks even further, but these efforts sometimes require alengthy training
period (Astle et al., 2010). Therefore, the findings from this chapter are consistent
with previous research, indicating that the restricted transferability of pure
discrimination tasks reflects basic differences in learning processes. While low-level
sensory changes in V1 need extended and highly task-specific training to show any
apparent gains, perceptual learning that relies on higher-order integration, feature

binding, and attentional control is more transferable and generalisable.

2.12. Strength and Limitations

These tasks are widely utilised in visual learning research and allow for the
accurate monitoring of changes in perceptual capacity over time by evaluating
learning specificity and generalisation using well-established perceptual learning
paradigms, such as the backward masking test. Additionally, the calculation of
threshold estimations exposes a significant methodological flaw. Instead of using the
complete trial data, overall thresholds are commonly derived from the average inter-

stimulus interval (ISI) of the final six reversals. This approach minimises early changes
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in performance arising from task familiarisation or fatigue effects, therefore providing

a more reliable and correct threshold estimate (Garcia-Pérez, 1998; Levitt, 1971).

However, some limitations should be acknowledged. Firstly, the interpretation
and analysis of the data assumes that participants are not too tired, and performance
remained stable both within and between sessions. If tiredness develops randomly, it
might provide a confound as performance reductions could not follow a regular trend
across individuals or sessions. The inherent unpredictability complicates the
determination of whether the changes in threshold represent actual learning effects
or merely temporary reductions in attentional capacity. Integrating objective or
subjective markers of consciousness, such as self-reported tiredness or changes in
reaction time, could help identify the difference between improvements in learning
and short-term changes in performance. Secondly, the possible small sample size and
strongly related repeated-measures methodology are effective for identifying within-
subject changes. This problem fits with established statistical artefacts in perceptual-
learning research and must be considered when assessing the significance of observed

effects.

2.13. Conclusion

The field of perceptual learning has both important theoretical applications
and considerable practical applications. It offers crucial theoretical insights into the
flexibility and plasticity of adult perceptual systems, as well as an in-depth
understanding of the constraints that are placed on how information is processed by
an individual subject. It also explains how systematic training affects the

development of the subject's perceptual state. On a practical level, PL implies a
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potentially beneficial non-invasive technique for developing perceptual proficiency
in healthy individuals. Additionally, it provides a successful training-based
intervention approach for treating perceptual deficiencies among individuals with a

range of cognitive difficulties.

Our empirical results add to the body of behavioural research that is
currently being conducted, particularly regarding the transferability of learned skills
and the important role that sleep plays in the process of learning. In the past two
decades, a growing number of studies have shown that learning continues in the
brain even after initial training is complete. Instead, it continues to learn even when
there is no additional practice - a phenomenon known as "offline" learning.
Interestingly, this kind of learning seems to be most prominent while asleep.
However, the underlying brain processes that support this offline learning during

sleep are still unclear and completely undefined despite much investigation.
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CHAPTER 3:

The Role of Sleep and
Wakefulness in Attentional
Learning: Investigating
Online and Offline

Consolidation
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3.1. Abstract

In the field of selective attention, the focus is on the complex interaction of
brain functions that enable individuals to filter and evaluate sensory input. This
research is crucial for understanding learning mechanisms and the performance of
daily tasks. The objective of this study is first to evaluate whether attentional
learning can be learned, and secondly, whether the time of learning (online and
offline sleep) would have an impact on the effect of learning. Specifically, the study
differentiates between top-down, goal-oriented attention and bottom-up, stimulus-
driven attention. Two tasks (Attentional Capture and Visual Search) were used to
test the different process streams. The purpose of the tasks was to evaluate the
effectiveness of attention distribution before and after periods of sleep or
wakefulness. Participants were separated into groups that were either morning or
evening in order to investigate the temporal structure of learning as well as the

potential function that sleep plays in consolidating learned tasks.

Two separate groups of participants were recruited, one for the attentional
capture task and one for the visual search task. Both online and offline were tested
by allocating the participant to either the morning or evening group. Interestingly,
online learning sessions demonstrated improvements in reaction times, indicating
significant performance enhancements. However, there was no enhancement
observed after sleep, which contradicts prior research that sleep aids the
consolidation of perceptual learning tasks. This research indicates that the
relationship between sleep and attentional learning is more intricate than previously
thought. While perceptual learning seems to depend on sleep, attentional learning
does not necessarily follow the same pattern. This disparity could be due to its
integration of the learning processes. The study highlights the need for exploration

using methodologies to unravel the complexities of sleep's role in learning,
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particularly regarding individual differences, task specificity and involvement of

different sleep stages.

3.2. Introduction

In many reviews and research in the literature, selective attention represents
the cognitive ability necessary for individual to focus on important details while
ignoring distractions (Desimone & Duncan, 1995; Treisman, 1960). This allows
people to learn and digest information in a way that makes sense to them and to
make choices when issues get difficult. From navigating a complex visual world to
sustaining concentration in the face of conflicting stimuli, the capacity to flexibly
allocate attentional resources is essential for completing goal-directed activities.
Imagine being in a café trying to have a conversation with someone next to you.
Despite the surrounding environmental factors, our minds possess the ability to
focus on the words spoken by our friends or family members effortlessly by filtering
out the background noise of other conversations, clattering dishes, and the whining
of a coffee machine. This skill of paying attention is not just convenient; it is a
cognitive technique that allows us to engage in meaningful interactions even in
distracting surroundings. Therefore, selective attention is believed to be critical for

understanding many occurrences in learning.

A long-standing topic in the field of psychology is whether learning and
experience can improve attentional processes and if offline consolidation
mechanisms, such as sleep, can affect such learning (Ahissar & Hochstein, 1997;
Jiang & Chun, 2001). This is because attention plays a crucial role in directing
cognition. Only a small amount of research has been conducted to investigate how

much attentional learning follows similar consolidation trajectories to perceptual
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learning, which is the improvement of sensory discrimination via repeated exposure
(Fahle, 2005; Karni & Sagi, 1991). The process of learning is influenced by selective
attention, which has implications for generalisation. When learners focus on the
characteristics of a task, they become better at recognising and adapting to similar
situations. This ability to selectively attend to components is crucial for developing
thinking and applying learned knowledge in various academic and real-world

scenarios.

Furthermore, the development of selective attention can be understood by
considering it from previous literature contributing to this field. From an
evolutionary perspective, having the ability to give preference to salient stimuli—
such as threats or food sources—over meaningless background activity would have
provided significant survival benefits through the selective allocation of cognitive
resources. From an evolutionary viewpoint, the ability to prioritise salient or survival-
relevant stimuli explains the power and universality of selective attention as a
mechanism (Cosmides & Tooby, 1994; Ohman & Mineka, 2001). However, while this
viewpoint offers a compelling framework, it is primarily theoretical and may
oversimplify the many processes behind attention in contemporary cognitive

environments.

In contrast to early deterministic models of attention, which characterised it
as an involuntary bottleneck (Broadbent, 1958), modern ideas stress its dynamic,
adaptive character. For example, reviews looking into the biased competition model
(Desimone & Duncan, 1995) highlights that selective attention is not a filter but
rather an active and dynamic system that shapes our experiences, learning, and
relationships. This suggests that stimuli will compete for neural representation, and
attention assists in selecting goal-relevant information by biasing this conflict. Still,
this model is not without its limitations; criticism has arisen for failing to properly

account for how top-down motivation affects attention distribution (Pessoa, 2009).
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Converging psychological frameworks demonstrate this interaction. Corbetta and
Shulman’s (2002) dual-network model distinguishes between goal-directed (dorsal)
and stimulus-driven (ventral) systems, while Treisman and Gelade’s (1980) Feature-
Integration Theory and Wolfe’s Guided Search (1994) model elucidate the joint
influence of features and goals on cognitive selection. These viewpoints collectively
underscore selective attention as an evolutionarily established yet cognitively

adaptable system, perpetually influenced by external needs and internal objectives.

Additionally, selective attention is not unchanging; differences in cognitive
ability, previous knowledge, and neurodevelopmental characteristics cause
significant variances between individuals. Studies have shown, for example, that
selective attention performance is substantially predicted by working memory
capacity (Engle, 2002) implying that executive functioning is tightly correlated with
attentional control. Still up for debate, however, is the causality of this association.
Therefore, even if it is helpful to understand selective attention as an adaptable and
enhanced cognitive process, this must be balanced by a knowledge of its limitations

and variability.

Although, as previously mentioned, selective attention is often characterised
as a basic cognitive mechanism allowing individuals to focus relevant inputs while
preventing distractions, it is now increasingly viewed as a flexible process moulded
by learning and experience. The conventional view once held that sensory salience
or inbuilt biological limitations governed attentional selection. More recently,
however, studies have shown that with repeated exposure and reinforcement,
attention may be taught to develop into more efficient and goal-directed (Chun &
Jiang, 1998; Leong et al., 2017; Rehder & Hoffman, 2005). This process is often
referred to as 'learnt selective attention', which reflects the ability of individuals to
fine-tune attentional resources based on the demand of a task, influence of the

environment and the acquired expectation (Kruschke, 2001; Turk-Browne et al.,
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2005). In order to allocate cognitive resources efficiently, attention entails either
enhancing or suppressing input processing (Reynolds & Chelazzi, 2004). The
selectivity ensures that attention is regulated differently to give priority to
information that is important to the goal over distractions, rather than being evenly
distributed across all stimulus elements (Broadbent, 1958; Desimone & Duncan,
1995; Treisman, 1960). The term "learning" here refers to the experience-dependent
alteration of attentional allocation, which implies that attentional biases may be
formed by past exposure and used in future circumstances. However, the
distribution of attention is very context-sensitive and changes constantly based on
the demands of the task and the cognitive control skills of an individual.

Learning could change selective attention, according to empirical studies, and task
relevance and stimulus salience have been identified as key determinants of
attentional regulation (Chun & Jiang, 1998; Leber et al., 2008). Task salience ensures
that attention is automatically drawn to high-contrast or novel stimuli, regardless of
their relevance to a task (Forschack et al., 2023), whereas task relevance focuses
attention on goal-driven stimuli, thereby improving processing efficiency (Boehler et

al., 2011; Fecteau & Munoz, 2006).

One of the most important questions in this area is whether these
attentional improvements are merely wake-dependent or whether they are
consolidated during offline processes, such as sleep. According to research on
perceptual learning, discrimination and efficiency are improved by repeated
exposure to sensory stimuli, while retention and generalisation are improved by
post-training sleep (Stickgold et al., 2000; Walker & Stickgold, 2004). It is unclear,
however, whether attentional learning has a similar consolidation trajectory. It was
shown by Sigman et al. (2005) that training in a visual conjunction search task made
people respond faster and more accurately. This suggests that practice may help
attentional selection. Although performance was only evaluated during training
sessions, their results were regarded as evidence of improved neural efficiency in

attentional networks. However, it remains unclear whether offline consolidation
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maintains or strengthens these gains. However, in a visual discrimination test,
Schoups et al. (2001) found that attention-related brain plasticity depended on post-
training sleep, suggesting that specific components of attentional learning may be
sleep-dependent. The degree to which this holds true for top-down compared

to bottom-up stimulus-driven attentional regulation has not been well investigated.

Selective attention is a complex concept that encompasses two main
processes: processes that operate from the top down and processes that operate
from the bottom up. Top-down attention is focused on a goal-oriented decision
(Theeuwes, 2010). An individual's cognitive targets, expectations, and intentions
serve as their compass (Desimone & Duncan, 1995). Basically, it is a proactive way of
choosing what to pay attention to when faced with a particular circumstance.
Individuals can intentionally direct their cognitive resources towards certain
information using this type of attention, frequently in line with their present goals.
Top-down attention is helpful for many kinds of everyday tasks. For example,
individuals use top-down attention to focus on the content and understand the
meaning of words when reading a book (Egeth & Yantis, 1997). Theoretical
frameworks have shed light on the mechanisms of top-down regulation of attention.
The Feature-Integration Theory (Treisman & Gelade, 1980) claims that attention
integrates different perceptual features, such as colour, shape, and orientation, into

cohesive object representations, highlighting its constructive function in perception.

This model shows that when addressing problems, top-down attention ensures that
cognitive assets are focused on the task at hand by keeping the individual focused
and ignoring irrelevant distractions. Effective use of top-down attention is essential

for higher-order cognitive processes, including critical thinking and decision-making.

In contrast, bottom-up attention is uncontrollable and activated by external

stimuli regardless of the environment. One possible explanation for this is that it is
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an unexpected occurrence, such as a loud noise that abruptly grabs our attention.
On the other hand, review on works showed that stimuli naturally drive the process
of bottom-up attention (Itti & Koch, 2001). Some environmental or sensory factors
attract attention regardless of cognitive goals, which is why it happens. This type of
attention, which is characterised by its reactive nature, functions as a warning
system for information that is perceived in the environment that is uncommon or
may be noteworthy (Belopolsky et al., 2010). The research that is conducted on
bottom-up attention makes it feasible to get a good understanding of how humans
prioritise and interpret sensory input in real-time, which is often necessary when
rapid responses are required. To have a complete understanding of how people
make decisions, how they deal with challenges, and how they effectively traverse
their environment, it is vital to have a dynamic interaction between top-down and

bottom-up attention processes.

Overall, attention can be consciously directed toward an item in a goal-
directed way (e.g., when you are looking for your bike among other bikes); attention
can also be acquired subconsciously by a physically salient stimulus (e.g., a flashing
light) that distinguishes itself from the surrounding items in some fundamental
feature (e.g., colour and orientation). This is a crucial aspect relating to learning. It
was hypothesised that the effective learning occurs when both types of attention
work well together. Top-down attention assists us in maintaining focus on our
learning objectives, managing distractions, and establishing connections between
new information and our existing knowledge. At the same time, bottom-up attention

signals us to pay attention to new information that might be important.

Studies on perceptual learning have shown that exposure to certain visual
characteristics on a regular basis improves discriminating skills, which in turn
improves task performance (Censor et al., 2006; Chen et al., 2016; Fiorentini &

Berardi, 1980). These enhancements suggest that PL plays a crucial role in focusing
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attention on complicated stimuli, potentially enhancing both top-down and bottom-
up processing. Su et al. (2014), for example, investigated the effects of training in
colour-orientation conjunction tasks on perceptual discrimination. Participants
learnt to distinguish a goal stimulus from distractions using elements that changed in
colour and orientation. According to the research findings, learning significantly
improved accuracy and decreased response time, indicating that perceptual learning
improved attentional selection efficiency. Importantly, post-training enhancements
were restricted to combinations of learnt features, suggesting that learning effects
strengthened attentional selection for the learnt characteristics rather than being
generalised across all visual stimuli. The findings highlights that perceptual learning
could be a technique for gradually improving selective attention to intricate, task-

relevant inputs.

In the same vein, Sigman et al. (2005) investigated the effects of extended
learning on brain plasticity and attentional efficiency in a visual conjunction search
task. To test top-down attentional control, participants had to locate a specific shape
among a field of distractors. Participants' response times gradually decreased across
many training sessions, indicating improved cognitive efficiency and attentional
selection. Significantly, these enhancements were linked to decreased activity in
frontoparietal attentional networks, according to functional imaging data, indicating
that repeated practice of the task resulted in a more effective brain processing
approach. These results demonstrate that attentional learning reduces the cognitive
load necessary to perform visual search tasks by enhancing perceptual sensitivity
and optimising brain resource allocation. As a result, it is hypothesised that
perceptual learning facilitates the allocation of attention to learnt complex stimuli,
due to the idea proposed by Dowd and Mitroff (2013), which suggests that attention
is sorted through a selection process driven by bottom-up cues (e.g., when attention
is captivated by an item's physical uniqueness) and top-down cues (e.g., when
attention is guided toward a task-relevant location). These results are consistent

with theoretical models that propose PL improves both top-down and bottom-up
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processes to enhance attention allocation. Dowd and Mitroff (2013) state that
attentional selection processes via a dual-process framework in which top-down
signals (such as task-relevant objectives that direct attention) and bottom-up cues
(such as salient objects that naturally catch attention) interact to maximise visual
processing. Their study demonstrated that working memory signals are crucial for
directing both top-down and bottom-up attention, thereby supporting the notion
that attentional selection involves a dynamic interplay between goal-directed

processes and stimulus salience.

Perceptual learning research has found that practice can increase
performance in discriminating (Karni & Sagi, 1991; Li et al., 2004) and detection
(Meyer & Petrov, 2011; A. A. Schoups & Orban, 1996). These experiments have
shown a significant improvement in a spatially or featurally specific way, implicating
the early sensory cortex as the location of plasticity, which has also been shown in
electrophysiological experiments. For instance, in the study by Schoups et al (2001),
they found that the neuronal correlates are significantly related to behavioural
improvement and that training in monkeys induces a specific and efficient neuronal
sensitivity in the V1 region. This indicates that the characteristics of stimuli are tuned
to individual neurons. Although most research focuses on training on specific
regional locations or stimulus feature categories, there has been considerable
discussion regarding the causes of more general task improvement. Some research,
for instance, has linked learning to higher cortical regions (Law & Gold, 2008).
Plasticity effects in later visual cortical regions, including areas such as V4, have been
observed because of perceptual learning (T. Yang & Maunsell, 2004). It has also been
demonstrated that learning in activities, including visual search, is less specific
(Fahle, 2005). In the study carried out by Sireteanu and Rettenbach (1995), they
highlighted the non-specificity of perceptual learning effects in visual search tasks
and therefore set a new insight that plasticity for acquiring a visual search task is
higher than in sensory cortices. One open question is whether learning can improve

the effectiveness of the dynamic top-down attention-biasing process itself through
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practice learning, as opposed to expressing stronger visual discrimination abilities for
a specific type of goal or location or improving speed and/or performance on a task
in general. This form of non-specific learning is still unclear, and more precisely, the
coupling of learning inside a visual search task to investigate the impacts of training
top-down attention is open to research. Another intriguing question is to evaluate
how the learning effect differs between top-down and bottom-up attentional

learning, which remains unclear within the literature.

The field of science has devoted attention to exploring the relationship
between sleep and learning. Many studies have shown that sleep has effects on
learning activities. Early research by Smith (2001) and subsequent studies by
Marshall and Born (2007) and Fattinger et al. (2017) have collectively provided
evidence that sleep can significantly enhance memory consolidation and learning
across different domains. While the focus has often been on the immediate results,
this improvement can be extended over time. For instance, Wagner et al. (2006)
found that sleep following the acquisition of learnt information can enhance
memory retention for up to four years. While it is commonly assumed that sleep aids
are involved in memory consolidation within the visual perceptual learning domain,
recent investigations have unveiled a more intricate understanding (Gais et al., 2000;
Mednick et al., 2003). Some previous research indicates that sleep may not
universally benefit all forms of learning in the way it has not been consistently
demonstrated to improve tasks. For example, when it comes to memory tasks that
involve remembering information, sleep has shown improvements. However, when
it comes to learning tasks related to adapting our perception, the role of sleep might
not be as crucial. This suggests that the process of consolidating memories during

sleep is influenced by the type of learning and the neural circuits involved.

Furthermore, within the realm of learning itself, there can be variations in

how sleep affects task performance. Some complex tasks show an improvement
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after a night of sleep, while others do not demonstrate any substantial changes. This
variation not only sheds light on the relationship between sleep and learning but
also raises an important question: Does attention-based visual learning rely on sleep
for consolidation, or does it follow a different trajectory? As researchers delve
deeper into understanding how sleep impacts various forms of learning, the
controversy surrounding this topic persists. However, it requires more experimental
studies to ascertain the specific impact of sleep on attention-based learning. By
focusing on this chapter of research, it can uncover whether attention-based
learning is as dependent on sleep as it is and if it exhibits different characteristics in
terms of consolidation. The impact of this research goes beyond the sphere. It has
real-world implications for methods, cognitive recovery, and our understanding of

development and functioning.

Attention is a network of specialised brain systems that assist in selecting
relevant inputs while suppressing irrelevant information, rather than a single
cognitive function. To ensure maximum cognitive function, these networks
undertake intricate calculations to filter competing distractions, resolve target
selection conflicts, and control attentiveness (Lega et al., 2019; Oberauer, 2019).
Salient environmental cues may attract attention involuntarily (bottom-up
processing) or actively (top-down processing), which is motivated by task objectives
and expectations (Itti & Koch, 2001; Theeuwes, 2010). Learning, decision-making,
and behavioural results are all impacted by how individuals assign cognitive
resources to their environment, and this dual process is crucial in deciding these

outcomes.

Empirical evidence supports the significance of attentional control in
cognitive information processing, demonstrating that problems with attention are
linked to inefficient encoding, increased impulsivity, and accuracy-speed trade-offs

(Heitz, 2014; Metin et al., 2013). In settings like air traffic control, clinical diagnostics,
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or complex visual search tasks, where quick decisions must be made under a lot of
cognitive strain, sustained attention is especially crucial. According to research,
attentional engagement problems happen when cognitive demands are higher than
available attentional resources. This leads to poor task performance, lower accuracy,
and slower reaction times (Oberauer, 2019). These results emphasise how important
it is to comprehend how training might improve attentional processes and whether

these gains are long-lasting.

The effect of sleep on attentional maintenance is one topic of growing
scientific interest. It is well acknowledged in a meta-analysis that sleep is crucial for
cognitive function, especially executive control and memory consolidation (Lim &
Dinges, 2010). Fewer studies have looked at whether post-training sleep-dependent
consolidation enhances attentional learning itself, even though a large body of
research has studied how sleep deprivation (SD) affects attentional ability. It remains
unclear whether attention-based learning follows a similar trajectory or whether
gains are only wake-dependent, given that sleep has been shown to enhance

perceptual learning (Walker & Stickgold, 2006)

To investigate whether visual attention tasks can be learnt and whether sleep
would help with the learning for both top-down and bottom-up processes, two
different tasks will be used. Attentional capture tasks provide a classic illustration of
bottom-up attention. These tasks include presenting participants with items that,
because of their importance, novelty, or sudden presence, naturally and
involuntarily grab their attention. Individuals respond to these stimuli—which are
well-known attention-getters—without realising it (such as colours, brightness, and
shape). Individuals in these activities must react when certain, noticeable stimuli
emerge, making them reactive in nature. The idea of a stimulus-driven, external
process is reinforced by their limited cognitive control over what attracts their

attention (Belopolsky et al., 2010; Yantis & Jonides, 1984). Therefore, the attentional

140



capture task is a good example of a bottom-up process task because the features of
the stimuli, like the colour of the presented stimuli, in this instance, usually play a
role in capturing our attention. Our motives or internal states do not influence these

inherent features of the world around us.

On the other hand, visual search tasks represent top-down attention. Under
the direction of predetermined objectives, participants actively search among
distractions for a specified target item in these activities. Goal-oriented, voluntary,
and regulated procedures are required for these activities. To find the target,
individuals concentrate on specific characteristics or qualities using their cognitive
resources. Participants have a considerable cognitive responsibility from this active
and purposeful search since they must stay focused on their objectives and ignore
distractions in order to achieve their objectives (Wolfe et al., 1989). Notably,
bottom-up and top-down attention function independently of one another and
interact to affect how individual interpret and comprehend the outside
environment. However, bottom-up and top-down attention may operate
simultaneously, according to previous studies (McMains & Kastner, 2011; Pinto et
al., 2013). Both top-down (such as task-related goals) and bottom-up (such as
prominent aspects of stimuli) elements affected the attention of participants in a
visual display used in the study (Leber et al., 2008; Theeuwes, 1994). According to
the results, top-down variables influenced how much attention was assigned, even

when bottom-up elements did indeed catch attention.

Examining the relationship between attention mechanisms and sleep is
essential for getting an insight into the temporal dynamics of learning. This becomes
especially significant when assessing whether sleep contributes to the strengthening
of attentional learning or if enhancements arise solely from processes occurring
while awake. The research presented in this chapter seeks to ascertain if attentional

learning takes distinct routes during offline and online learning scenarios. In this
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context, offline learning refers to periods when an individual is not actively
participating in the task at hand. This can include both offline sleep (e.g., sleep-
dependent consolidation) and offline wakefulness (e.g., inactive consolidation in the
absence of further exposure to the learning task). Whether sleep enhances
attentional learning, as suggested by perceptual learning research, or whether
attentional gains occur only as a result of repeated task exposure and reinforcement

while awake, is a key topic.

Whether sleep consolidates attentional learning has been the subject of
contradictory studies in the past. According to some research, active reinforcement
rather than passive consolidation is the primary mechanism behind attentional
control, which means that performance gains only happen during training sessions
and are not enhanced by post-training sleep (Law & Gold, 2008; Lim & Dinges,
2010). However, other research suggests that sleep has little to no impact on
bottom-up, stimulus-driven attention but selectively improves specific attentional
processes, especially those related to top-down control mechanisms (Gevers et al.,
2015; A. Schoups et al., 2001). These differences bring up a crucial empirical
question: Is attentional learning exclusively wake-dependent, or does it also follow

the same sleep-dependent consolidation trajectory as perceptual learning?

The current work investigates attentional learning in two different paradigms
to answer this question: visual search tasks, which evaluate top-down, goal-directed
attention, and attentional capture tasks, which evaluate bottom-up, stimulus-driven
attention. This research attempts to ascertain if offline consolidation processes alter
attentional performance improvements by varying the training period (morning vs.
evening) and post-training interval (sleep vs. awake). Performance gains during post-
learning sleep should be higher than during a comparable period of awake if

attentional learning is sleep-dependent. On the other hand, enhancements should
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only occur during training sessions and not after sleep if attentional learning is only

wake-dependent.

The present study intends to add to the larger body of literature on
attentional learning, executive control, and memory consolidation by methodically
examining these processes and advancing theoretical debates on the function of
sleep in cognitive plasticity. Gaining further insight into whether offline brain
reorganisation affects attentional learning might have important ramifications for
educational tactics, cognitive training therapies, and performance optimisation in

high-demand settings.

3.3. Materials and Methods

3.3.1. Participants

Thirty healthy volunteers with normal or corrected-to-normal vision were
recruited for the attentional capture task. A separate group of thirty participant
were recruited for the visual search. All participants were recruited via the
university's internal system and were compensated for their time with either 16
course credits or £13. The study received approval from the research ethics
committee at Cardiff University (EC.18.02.13.5226G). Participants were instructed to
maintain their regular sleep patterns and refrain from consuming alcohol or
caffeinated beverages for two weeks prior to the study's commencement and

throughout all testing sessions.
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3.3.2. Experimental Set-up

Matlab was used in combination with the Psychotoolbox program to create
the visual stimuli, which were used in both of the tests (Attentional Capture and
Visual Search). Following this, the stimuli were presented on a computer monitor
(ASUS VG248QE, viewing distance: 61.5 cm, screen size: 54 x 30 cm). To ensure that
there was no interference from daylight or any other brightness, the participants
were situated in a completely dark room. During the course of the experiment, a
chin rest had been used in order to keep the head in a constant posture and to
minimise any movement that would have the potential to influence the results. No
eye-tracker was used in this experiment, due to the limited resources available due

to the COVID-19 impact.

3.3.3. Visual Stimuli

In the AC task (without the top-down component), the stimuli display included
one diamond and 4, 6, or 10 blue circles. In this task, one of the circles could be the
distractor, in which case it would be red, rather than blue. Within each shape was
the letter "L" or the letter "R". All the presented shapes that were given were
different in terms of the distance between them on an imagined circle that had a
diameter of three, five, or ten around the fixation dot that was placed on a black the

background of the screen (see Figure 1.1 for example).

On the other hand, in the VS task, the display consisted of a rotating set of
letters arranged in a circle around a central fixation dot. Among the letters in this

circular array, one was a 'T', rotated either the tail of the 'T' pointing left or right, and
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the other letters were rotated 'Ls' (see Figure 1.2 for example). The stimuli were

presented in white letters on a black background.

3.3.4. Experimental Design

The experiment comprises two distinct perceptual tasks designed to assess
attentional capture and visual search abilities. The tasks were conducted over four
days, with each day containing a specific number of trials based on the parameter

setups of each task.

In the AC task, participants were instructed to search for the only diamond in
the display and indicate whether there was a letter "L" or letter "R" displayed inside
the diamond (by pressing the left or right key on the keyboard). Participants were
instructed to react as quickly and accurately as possible. The number of circles varied
across trials, and each set size included trials with different distractor conditions. In
some trials, one of the circles was the only red item on display, acting as a distractor.
In other trials, the distractor will be absent, and all shapes will be displayed in blue
colour. The identity of the letter within each shape was randomly determined, with
the constraint that there was an equal number of "L" and "R" letters across trials.
The trials were randomly intermixed to prevent predictability. The AC task consisted
of 144 trials per day, conducted over four days, resulting in a total of 576 trials. The
144 trials per day were structured based on 18 parameter setups, combining 3
eccentricities (3, 5, 10), 3 set sizes (4, 6, 10), and 2 distractor conditions (absent or

present). Each parameter setup included 8 trials.
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Figure 1.1. Example of the attentional capture task (no top-down component). Participants were instructed to
indicate the letter located inside the diamond. The left panel illustrates the distractor is different from the target

with a set size 6; the right panel illustrates no distractor is present with a set size of 10.

During the VS task, participants were instructed to keep their eyes fixated on
a dot without any movement, which was located at the centre of the screen at the
exact location throughout the whole testing session. This strict requirement ensured
that each participant was relying on their peripheral vision to locate the target
stimulus. On the screen, a circle of letters was displayed, with one letter "T" being
rotated. The crucial aspect was that participants had to identify which direction the
tail of the 'T' was pointing (either left or right). To respond, participants were given a
choice; if they observed the tail of the "T" pointing towards the left, they pressed the
'left' key; conversely, if it pointed towards the right, they pressed the 'right' key. This
task aimed not only to measure participants' peripheral vision acuity but also to
assess their ability to process and respond to information while maintaining a fixed
gaze. Similar to situations in real life, where a individual must remain aware of our

surroundings despite focusing on something specific.
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Based on the conditions within the VS task, each session consisted of 132
trials per day, conducted over four days, resulting in a total of 528 trials. In each
session, it includes 9 parameter setups, combining 3 eccentricities (3, 5, 10) and 3
set sizes (2, 6, 10). The number of trials per parameter setup varied, with 20 trials

per setup for set size 10 and 12 trials per setup for set size 2 or 6.

= - L
=3 |I=
left key right key

Figure 1.2. An example of the visual search task. Participant were instructed to answer whether the target stimuli

(‘T’) was pointing to the left (left diagram) or pointing to the right (right diagram). Participant were instructed to

make the response on the keyboard.

Both tasks were assessed based on how fast participants reacted and how
accurate they were in their responses. The AC task looked at how much the
distracting element affected participants’ ability to focus on the task at hand,
whereas the VS task focused on how participants could keep their gaze fixed and
accurately respond using their side vision. The study aimed to understand how
bottom-up and top-down attention processes interact by analysing reaction times
and accuracy levels under different conditions. The goal was to determine if sleep
could improve learning in an attentional-based perceptual learning task, similar to

the effect found in Chapter 2 with the backward masking task.
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3.3.5. Assessment and Experimental Timeline

For both the AC and VS task, participants were randomly allocated to either
the morning or evening group. To reduce the potential for confounding effects
related to task familiarity, practice effects, and cognitive fatigue, a between-groups
design was used. This can also avoid prior experience with one task, which could
influence performance on the other, which will make it difficult to differentiate the
effects of sleep on learning. Furthermore, learning in one task may unintentionally
improve or impair performance in another due to transfer effects, which may result
from overlapping cognitive pathways across different attentional tasks. To ensure
that the effects were more directly related to sleep and time of day rather than to

the inter-task interference, separate participants were allocated to the two tasks.

In the morning group participants completed the first session in the morning
and were retested after 12 hours of wake period (no nap in between), followed by a
24-hour retest after a night of sleep, then another retest after 36 hours. In contrast,
the evening group participants completed the first session (learning) in the evening
and completed their retest after an overnight sleep and their 24-hour retest after
another 12 hours of wakefulness, then tested again after another 12 hours (Figure
1.3). By manipulating the time-of-day which the tasks were learned, the experiment
design could allow for the examination of whether there is any improvement in the
task that was learned and by testing participants after sleep can help identify

whether sleep is beneficial to the learned task.

During the first session participants complete four blocks of the AC task
which allows us to record a baseline pre-learning measure which can be used to
compare to participants’ post-learning session. Session 2 was held 12-hours after the

first session with the same task and for the same time-length, this will allow for the
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assessment of the need for sleep for the consolidation of the learning to occur.
Session 3 was then carried out another 12 hours after the second session (i.e., 24
hours post-learning). Finally, session 4 was carried out after a further 12 hours of
either wake or sleep period. Following this pattern, we can assess at which stage of
time spent offline is needed (sleep or wake) for the consolidation of learning to

occur.

a) Morning Group

Session 1 Session 2 Session 3 Session 4
Learnin 12 hours 24 hours 36 hours
8 retest retest retest

Wake (no nap) [Wake (no nap)]

b) Evening Group

Session 1 Session 2 Session 3 Session 4
Learnin 12 hours 24 hours 36 hours
g retest retest retest

I | I
[ & )

Figurel.3. Participants were randomly assigned to either the morning or the evening group, for both tasks.

Diagram a) showing the experimental timeline for morning learning group. Diagram b) showing the

experimental timeline for evening group learners.

Participant data were recorded and pre-processed using MATLAB R2021b
(MathWorks, Inc., Natick, MA, USA). During pre-processing, trials in which
participants failed to respond or provided incorrect responses were excluded from
the RT analysis to ensure accurate estimation of perceptual processing speed. The
RTs were calculated based on correct trials only, and accuracy was calculated as the
proportion of correct responses. Based on the distribution of the data, it was found
that the data did not follow a normal distribution. Therefore, a non-parametric t-test

(Wilcoxon rank-sum) was used for the analysis. Since the Wilcoxon rank-sum test
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add together all the individual observations to get the Sum of Ranks, therefore the
numbers can look very big. In this study, every participant's trial was considered as a
separate observation instead of averaging by individual. This was done to get a more
comprehensive look at the subtle changes occurring within a session and to make it
easier to identify small effects. Furthermore, multiple t-tests were conducted, and
the Benjamini-Hochberg correction was applied to control for the false discovery
rate and maintain statistical rigour. This method effectively minimises the risk of

Type | errors while preserving sensitivity to detect significant learning effects.

Online learning (within-session improvement) was examined by comparing
RTs between the start and end of each testing session for the morning and evening
groups. To investigate offline learning, experiment was conducted with comparison
between sessions separated by sleep or rest. To analyse between-group differences,
time comparisons (between-group) was conducted to assess whether learning

trajectories differed between the morning and evening groups.

In addition to analysing parameter-specific data, statistical analyses was also
performed on the overall performance regardless of parameter variations, providing
a holistic evaluation of learning effects. The study aimed to determine if attentional
capture and visual search skills showed enhancement over sessions and whether
these improvements varied between the morning and evening groups. RT and
accuracy analyses collectively yielded convincing evidence of any learning effects,
confirming that both speed and precision were assessed as measures of attentional

enhancement.

Following common research practice, the experimental data and analytic

scripts are kept safe and private on a cloud server (OneDrive). Access is available
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only through a private link (Appendix xxxx). Once current study is accepted for
publication, the data and code will be made publicly accessible via Open Science
Framework. This approach ensures both transparency and data protection prior to

formal publication.

3.4. Results

3.4.1. Demographic Data

For the attention capture task, 30 participants were recruited for the study.
Following the exclusion of one participant who felt unwell during the session, the
morning group included a group of 14 participants, with a mean age of 20.43 and an
SD of 0.76. The evening group contained a group of 15 participants with a mean age

of 21.33 and an SD of 2.41.

For the visual search task, a separate group of 30 participants was recruited
for the study. Three participants were excluded from the final analysis, one from the
morning group and two from the evening group, due to no-show for experimental
sessions. The morning group consists of 14 participants with a mean age of 19.23
and an SD of 2.13, and the evening group consists of 13 participants with a mean age

of 18.38 and an SD of 0.51.
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3.4.2. Learning of Attentional Capture Task

3.4.2.1. Online Within-Session Performance

The reaction time (RT) performance was assessed for online learning for the
morning and evening groups separately for each parameter, as well as a combined
analysis of all parameters. When examining individual parameters, the morning
group showed significant reduction in RT for the 10-degree eccentricity, set size 10,
distractor absent condition from session 1 start to session 1 end (Z=4.153, p
=.012). This shows that attentional efficiency significantly improved in the morning
group, especially for this specific condition, particularly under conditions with larger
eccentricity and set size (detailed in statistical table, Appendix A). On the other hand,
the evening did not show any significant improvement in RT across the parameters,
as detailed in Appendix B. This implies that the impact of attentional learning may be
affected by circadian components, indicating that the morning groups seem to have
more significant benefits. Furthermore, as shown in Figure 2, the RT performance for
the set of parameters with error bars indicating the standard error mean and the
central dot represent the average RT for each parameter for the morning (red) and

evening group (blue).
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Figure 2. Each figure presents the reaction time (RT) data across different set of parameters plotted separately
by eccentricity (3°, 5° 10°), set size (4, 6, 10), with error bars representing the standard error of the mean and
dots indicating the average values for each session. The red dot represents the morning group performance and

blue dot represent the evening group.
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In addition, analysis was conducted by combining all parameters together
(Table 1), significant improvement was found in the morning group between session
1 start and session 1 end (Z = 6.989, p <.001). However, under this case, the evening
group also demonstrated a significant reduction in RT (Z =4.224, p <.001), with
additional improvement found between session 4 start and session 4 end (Z = -
1.430, p < .001). This suggested that both groups benefited from online training for
the AC in general rather than learning only for specific parameters. As shown in

Figure 2.1, both groups showed a clear decrease in RT over the sessions.

Reaction Time Performance with All Parameters Combined
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Figure 2.1. The figure represents the reaction time (RT) when all parameters are combined, with error bars
representing the standard error of the mean and dots indicating the average values from session 1 to 4 (each
session further breakdown into 4 sub-sessions). The red dot represents the morning group performance and blue

dot represent the evening group.
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Table 1.

All parameters combined: RT performance across online learning session for the morning

and evening group

Morning Evening

Online Session Sumof Z p Sum of V4 p

Comparison (RT) Rank (corrected) Rank (corrected)

S1_StartvsS1_End 246478 6.989 <.001*** 248358.5 4.224 <.001

S2_StartvsS2_End 226665 1.225 0.286 241995 -1.421 0.256
S3_Startvs S3_End 219556 -0.817 0.464 240338 -1.294 0.277
S4 StartvsS4_End 216951 -1.213 0.286 253605 -1.430 <.001

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that
the analysis was done on consolidated trial-level data. This means that all of the participants'
trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.

When looking at the accuracy scores during each session of online learning,
neither the morning (Appendix C) nor the evening group (Appendix D) showed
significant improvement across all parameters. Combined parameter analysis also
showed that there are no significant changes in accuracy scores between the start
and end of all the learning sessions (Table 1.1). However, from the plot displayed in
Figure 2.3 and Figure 2.4, and can see that individuals maintained a high accuracy

rate throughout the sessions for both the morning (red) and evening (blue) group.
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Table 1.1

All parameters combined: Accuracy score across online learning session for the morning and

evening group

Morning Evening
Online Session
: p 4 p
Comparison Sum of Sum of
(corrected) (corrected)

(Accuracy) Rank Rank
S1 Startvs S1_End 2525235 -0.724 0.664 289741 -0.674 0.667
S2 Startvs S2_End 256788  1.222 0.490 289440 -1.051 0.513
S3 Startvs S3_End 251244  -1.622 0.367 287550 -1.858 0.331
S4 Startvs S4_End 250758 -1.735 0.331 290790 -0.539 0.935

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that

the analysis was done on consolidated trial-level data. This means that all of the participants'

trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.
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Figure 2.2. Each figure presents the accuracy data across different set of parameters, with error bars representing

the standard error of the mean and dots indicating the average values for each session. The red dot represents

the morning group performance and blue dot represent the evening group.
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Accuracy Performance with All Parameters Combined

1,
® o 688 ©
600 Qo PR
g o8}
0
< i Morning Group
07 O Evening Group
0.6F
0.5 ——

1 2 3 45 6 7 8 9 10111213 14 15 16
Session

Figure 2.4. The figure represents the accuracy data when all parameters are combined, with error bars
representing the standard error of the mean and dots indicating the average values from session 1 to 4 (each
session further breakdown into 4 sub-sessions). The red dot represents the morning group performance and blue

dot represent the evening group.

These results show that during online sessions, RT changes were more

noticeable than accuracy changes.

3.4.2.2. Offline Learning (Offline-Wake and Offline-Sleep)

Offline learning was also examined, and RT comparisons between offline-
wake and offline-sleep intervals were assessed. For the morning group, RT
performance was not statistically significant for the offline wake condition (S1_End
vs S2_Start: Z=1.820, p =.131; S3_End vs S4_Start: Z=1.811, p =.131). However, a

significant improvement was observed after offline sleep when comparing S2_End vs
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S3 Start (Z=3.537, p =.001) (Table 2). This indicates that sleep may play an

important role in consolidating attentional learning, particularly for tasks involving

complex attentional processing.

Table 2.

All parameters combined: RT performance of offline session comparison for the morning

and evening group

Morning Sum of Z p Sumof Z p
Group Rank (corrected) Evening Group Rank (corrected)
S1 _Endvs S1 _Endvs
S2 Start S2 Start
(Offline Wake) 229453 1.820 0.131 (Offline Sleep) 256319 4.270  <.001***
S2_Endvs S2_Endvs
S3 Start S3 Start
(Offline Sleep) 230523 3.537 0.001*** (Offline Wake) 274093 4.861 <.001***
S3_Endvs S3_Endvs
S4 Start S4 Start
(Offline Wake) 236121 1.811 0.131 (Offline Sleep) 279587 4.487  <.001***

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that

the analysis was done on consolidated trial-level data. This means that all of the participants'

trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.
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In contrast, the evening group showed significant improvements in RT after
both offline wake and offline sleep conditions. Specifically, RT improved significantly
after offline sleep (S1_End vs S2_Start: Z=4.270, p <.001) and offline wake (S2_End
vs S3_Start: Z=4.861, p <.001). Further significant improvement was also observed
when comparing S3_End vs S4_Start after offline sleep (Z=4.487, p <.001) (Table 2).
The findings suggest that both offline wake and offline sleep in the evening group
contributed to the learning of the AC task, unlike the morning group, where offline
sleep seems to be more critical. However, the accuracy performance of offline
learning across both groups remains non-significant (Table 2.1) regardless of the

offline condition.

Furthermore, when looking at individual parameters, both RT and accuracy
scores showed no significant changes for both the morning (Appendix E) and evening

(Appendix F) group.

160



Table 2.1.

All parameters combined accuracy performance of offline session comparison for the

morning and evening group

Morning Sum of V4 p Sum of V4 p
Group Rank (corrected)  Evening Group  Rank (corrected)
S1 _Endvs S1 Endvs
S2 Start S2_ Start
(Offline Wake)  252992.5 -0.266 0.885 (Offline Sleep) 288068 -1.169 0.490
S2_Endvs S2 _Endvs
S3 Start S3 Start

(Offline Sleep) 252756 -0.715 0.664 (Offline Wake) 295380 1.484 0.429

S3_Endvs S3 _Endvs
S4 Start S4 Start
(Offline Wake) 257544  1.743 0.331 (Offline Sleep) 291600 -0.130 0.935

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that
the analysis was done on consolidated trial-level data. This means that all of the participants'
trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.

Time comparison (between-group) analysis was also conducted to examine
the change in performance between the morning and the evening groups. The
results showed that there is improvement in RT at specific timepoints, particularly in
mid-study sessions (Table 2.2) during Session 1-2 (Z = -3.26, p = .005), Session 1-4 (Z
=-3.45, p =.003), Session 2-2 (Z =-3.95, p =.001), Session 2-4 (Z =-3.68, p =.002),
Session 3-1 (Z=-2.77, p = .016), Session 3-2 (Z = -4.55, p < .001), Session 3-3 (Z = -
4.01, p =.001), and Session 3-4 (Z =-3.15, p =.007), indicating enhanced attentional
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processing speed over time. On the other hand, accuracy performance did not show

the same pattern, with a marginal increase found in Session 1-2 (Z = 3.04, p =.019).

These results indicate that although attentional learning enhances RT, accuracy

stayed consistent, which shows a trade-off between speed and accuracy.

Table 2.2.

Overall Time comparison between the morning and evening group

RT Accuracy
Session Sum of V4 p Sum of z p
Timepoint Rank (corrected) Rank (corrected)
Session 1-1 220332 0.204 0.895 268434 2.043 0.119
Session 1-2 209311  -3.262 0.005** 270810 3.037 0.019*
Session 1-3  224082.5 -1.293 0.314 268884 2.471 0.054
Session 1-4  209750.5 -3.449 0.003** 267253.5 2.112 0.111
Session 2-1 225110 -0.986 0451 266058 1.248 0.415
Session 2-2 212513  -3.945 0.001*** 263502 0.077 0.969
Session 2-3 233135 -0.826  0.545 263376 0.019 0.985
Session 2-4 208354 -3.675 0.002 261090 -1.027 0.451
Session 3-1 213660 -2.773  0.016 265986 1.160 0.415
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Session 3-2 213972  -4.545 <.001*** 264096 0.382 0.803

Session 3-3  219179.5 -4.008 0.001*** 265176 0.958 0.451

Session 3-4 2239485 -3.151 0.007** 265194 0.984 0.451

Session 4-1 227637 -0.276  0.864 261432 -0.923 0.456

Session 4-2 212167 -1.699  0.159 262278 -0.451 0.773

Session 4-3 229588 -0.103 0.948 261198 -1.059 0.451

Session 4-4 236019 -0.563 0.684 263146.5 0.322 0.824

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that
the analysis was done on consolidated trial-level data. This means that all of the participants'
trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.

The results demonstrate that RT performance improves significantly with offline
sleep in the morning group, whereas the evening group benefits from both offline wake and
sleep conditions. Which may indicate a role of the circadian rhythms in how learning is

consolidated in the AC task.

3.4.3. Learning of Visual Search Task

3.4.3.1. Online Within-Session Performance
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The visual search task aims to evaluate how well an individual can locate a
target among a set of distractors, reflecting the efficiency of selective attention.
When examined the data parameter by parameter (eccentricity and set size)
separately, no significant improvement in RT was observed for both the morning and
evening (Appendix G and Appendix H). This pattern was consistently observed across
different eccentricities (3°, 5°, and 10°) and set sizes (2, 6, and 10), as shown in
Figure 3.1. In the figure, the morning and evening group is represented in red and
blue dots, respectively, and it shows a similar trajectory across each of the sessions
across parameters without a significant difference, suggesting that VS learning is

limited or has no sleep-dependent improvement.

When combining all parameters, the overall comparison between the start
and end of session 1 for both morning and evening groups showed that RT
significantly improved (Morning: Z = 3.834, p < .001; Evening: Z = 6.553, p < .001).
This significant improvement was also observed in the morning group in session 2 (Z
=4.018, p <.001), suggesting a persistence or maintenance of improvement in
performance. This trend is represented in Figure 3.2. The figure demonstrated that
both the morning (red) and evening (blue) groups showed a similar decline
trajectory in RT across sessions and parameters, which reflects a general practice

effect rather than being restricted to certain eccentricities or set sizes.
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Table 3.

All parameters combined: RT performance across online learning session for the morning

and evening group

Morning Evening

Online Session Sumof Z p Sum of V4 p

Comparison (RT) Rank (corrected) Rank (corrected)

S1_StartvsS1 End 181795 3.834  <.001***  141041.5 6.553  <.001***

S2_StartvsS2_End 193195 2.573 0.026 151937 4.018 <.001***
S3_StartvsS3_End 195185 0.482 0.630 159200 0.988 0.377
S4 StartvsS4_End 185001 0.743 0.475 148948 -1.340 0.277

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that
the analysis was done on consolidated trial-level data. This means that all of the participants'
trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.
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Figure 2.1. Each figure presents the RT performance across different set of parameters, with error bars
representing the standard error of the mean and dots indicating the average values for each session. The red dot

represents the morning group performance and blue dot represent the evening group.
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Reaction Time Performance with All Parameters Combined

1.8

1.6

14+

O Morning Group

1.2 Q O Evening Group

1-©$@$

0.8

o
o

Reaction Time (sec)

o ¢
® o0

$888£8g@

0.6

1 1 1 1 1 1 1 1 J

1 2 3 4 5 6 7 8 9 101112 13 14 15 16
Session

0.4

Figure 3.2. The figure represents RT performance when all parameters are combined, with error bars
representing the standard error of the mean and dots indicating the average values for each session from session
1 to 4 (each session further breakdown into 4 sub-sessions). The red dot represents the morning group

performance and blue dot represent the evening group.

Analysis of accuracy performance on the other hand showed no statistically
significant differences between start and end sessions for both morning (Appendix I)
and evening (Appendix J) groups when parameters are examined separately (Figure
3.3). This finding was further supported by combining all parameters together to
examine accuracy scores between the start and end of each session, which also did
not reach statistical significance (Table 3.1; see also Figure 3.4). This consistent
pattern shows that accuracy performance remained stable throughout the learning
sessions for both groups, which indicates that to a certain degree, participants did

not trade speed for accuracy.
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Table 3.1.

All parameters combined: Accuracy score across online learning session for the morning and

evening group

Morning Evening
Online Session

Comparison Sum of V4 p Sum of z p

(Accuracy) Rank (corrected) Rank (corrected)
S1 Startvs S1_End 216678  1.325 0.490 185757 0.614 0.686
S2 Startvs S2_End 212289 -0.777 0.664 184255.5 0 1.000
S3 Startvs S3_End 215061 0.889 0.616 183612 -0.381 0.820
S4 Startvs S4_End 213906 0.123 0.935 180609 -2.161 0.215

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that

the analysis was done on consolidated trial-level data. This means that all of the participants

1

trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.
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Figure 3.3. Each figure presents the accuracy performance across different set of parameters, with error bars
representing the standard error of the mean and dots indicating the average values for each session. The red dot

represents the morning group performance and blue dot represent the evening group.
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Accuracy Performance with All Parameters Combined
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Figure 3.4. The figure represents the accuracy performance when all parameters are combined, with error bars
representing the standard error of the mean and dots indicating the average values for each session from session
1 to 4 (each session further breakdown into 4 sub-sessions). The red dot represents the morning group

performance and blue dot represent the evening group.

3.4.3.2. Offline Learning (Offline-Wake and Offline-Sleep)

Offline learning was examined for both offline-wake and offline-sleep. The
results revealed distinct patterns in RT changes between the two conditions,
indicating differences in how sleep and wakefulness impacted attentional
performance. The morning group showed no significant difference in RT
performance across offline sessions when examined the parameters individually
(Appendix K), suggesting neither offline-wake and offline-sleep had an impact on

learning. Evening group showed a similar pattern ((Appendix L). Combined
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parameter analysis also showed that there are no significant changes in accuracy

scores between the offline sessions (Table 4.1).

However, when the analysis was run by combining all parameters together
(regardless of eccentricity and set size), the evening group showed a notable
difference (Table 4). Significant improvement in RT was found between the end of
session 3 and the start of session 4 (Z =2.788, p =.015), which is a period where the
individual would have encountered sleep in the evening group. This suggests that
offline sleep significantly improved RT performance after the third session. This
result suggests that sleep between evening sessions played a crucial role in
enhancing reaction time, likely due to sleep consolidation processes that facilitate

quicker attentional responses.
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Table 4.

All parameters combined: RT performance of offline session comparison for the morning

and evening group

Morning Sum of V4 p Sum of V4 p
Group Rank (corrected) Evening Group  Rank (corrected)
S1 _Endvs S1 Endvs
S2 Start S2 Start
(Offline Wake) 170646 1.288 0.277 (Offline Sleep) 129881 1.846 0.131
S2_Endvs S2_Endvs
S3 Start S3 Start
(Offline Sleep)  196543.5 1.904 0.131 (Offline Wake) 141465.5 -0.761 0.475
S3_Endvs S3_Endvs
S4 Start S4 Start
(Offline Wake) 191650 1.080 0.341 (Offline Sleep) 164662 2.788 0.015*

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that

the analysis was done on consolidated trial-level data. This means that all of the participants'

trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.
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Table 4.1.

All parameters combined accuracy performance of offline session comparison for the

morning and evening group

Sum of z p Sum of Z p

Morning Group Rank (corrected) Evening Group  Rank (corrected)
S1 _Endvs S1 _Endvs

S2 Start S2 Start

(Offline Wake) 207669 -2.801 .130 (Offline Sleep) 178249.5 -2.600 .130
S2_Endvs S2_Endvs

S3 Start S3 Start

(Offline Sleep) 211827 -1.162 490 (Offline Wake) 179965.5 -2.227 215
S3_Endvs S3_Endvs

S4 Start S4 Start

(Offline Wake) 215523 1.051 513 (Offline Sleep) 186400.5 1.215 .490

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that
the analysis was done on consolidated trial-level data. This means that all of the participants'
trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.

Time comparison (between-group) was further carried out by breaking down
each session into 4 timepoint to examine the change in performance between the
morning and the evening groups in deeper depth. Several significant differences
across sessions were found. In particular, RT showed significant differences at
specific session time points, indicating variability in performance depending on the
time of day. For instance, the morning group demonstrated a significant

improvement in RT during Session 1-3 compared to the evening group (Z = 3.008, p
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=.008), and from Session 2-2 (Z = 3.669, p = .002). Also, there was a significant

difference in RT between the groups at Session 2-4 (Z = 3.104, p = .007) and Session

3-3(2=2.470, p =.033), as well as at Session 4-1 (Z=2.652, p =.021) (Table 4.2).

The results indicates that faster RT processing at these specific timepoint.

Furthermore, the accuracy performance also exhibited similar findings. Session 1-1

showed significantly higher accuracy in the morning compared to the evening group

(Z=3.155, p =.017). Furthermore, Session 2-2 (Z = 3.832, p =.004), Session 2-3 (Z =

2.902, p =.024), and Session 2-4 (Z = 3.338, p = .014) also showed significant

accuracy differences. These results highlight that while both RT and accuracy are

affected by the time of day, accuracy improvements appear more pronounced in the

morning, particularly during the second learning session.

Table 4.2.

Overall Time comparison between the morning and evening group for RT and accuracy

RT Accuracy
Session Sum of V4 p Sum of V4 p
Timepoint Rank (corrected) Rank (corrected)
Session 1-1 1525715 -2.094 .073 213312 3.155 .017*
Session 1-2 153649  -0.541 .684 210441 1.888 135
Session 1-3 163204.5 3.008 .008* 207520.5 0.638 .644
Session 1-4 152899 0.994 451 212140.5 2.488 .054
Session 2-1 177344 1.872 115 2112495  2.594 .051
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Session 2-2

Session 2-3

Session 2-4

Session 3-1

Session 3-2

Session 3-3

Session 3-4

Session 4-1

Session 4-2

Session 4-3

Session 4-4

185848

182355

185181

186170.5

183184.5

190794.5

184737.5

182889

180804.5

182010

179141

3.669

2.230

3.104

0.527

0.035

2.470

1.028

2.652

1.462

2.106

0.619

.002*

.059

.007*

0.684

0.972

.033*

A51

.021*

242

.073

.684

213691.5

211629

212536.5

209632.5

209203.5

208312.5

207652.5

208246.5

202768.5

206415

204105

3.832

2.902

3.338

2.219

1.921

1.378

0.968

1.175

-1.955

0.201

-1.159

.004*

.024*

.014*

.094

135

.359

451

415

135

.896

415

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that

the analysis was done on consolidated trial-level data. This means that all of the participants'

trials were combined within each condition, so the analysis treated all of the trials as one

aggregated sample per session to find within-session learning trends.
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3.5. Discussion

The current chapter focuses on first examining whether attentional-related
perceptual learning tasks can be learnt and if the role of sleep plays a role in this
process, with a focus on the differences between morning and evening groups
across attentional capture (AC) and visual search (VS) tasks. The findings showed
that the effect of sleep on learning is not uniform and is shaped by the type of task
and the time of day, hence questioning previously held assumptions about sleep's
universal function in improving cognitive performance (Stickgold & Walker, 2005).
The lack of performance enhancement due to sleep may result from the significant
cognitive demands placed on attention during the learning process. Tasks that
demand attention require a dynamic allocation of cognitive resources, which
includes working memory and executive control functions. This contrasts with
fundamental perceptual learning tasks, such as the backward masking task discussed
in Chapter 2, which mainly depend on sensory processing and have demonstrated
beneficial effects from sleep (Karni & Sagi, 1991; Li et al., 2004). The consolidation
mechanisms that support PL may not apply to attentional learning in the same way
due to the prefrontal cortex's role in top-down attentional regulation and its varying
activation across sleep phases (Desimone & Duncan, 1995; Miller & Cohen, 2001).
While sleep is linked to the improvement of neural connections and the decrease of
memory interference, it does not consistently promote learning that requires higher-
level executive functioning. Learning of this kind may depend more heavily on
regular practice and reinforcement instead of solely on the passive consolidation

that takes place while sleeping (Stickgold & Walker, 2005).

The lack of significant learning effects in this chapter, especially when
compared to the pronounced impacts identified in Chapter 2, requires further
review. One potential explanation is because attentional learning activates higher-
order control systems that are less vulnerable to short-term sleep-dependent
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consolidation (Barham et al., 2021; Quentin et al., 2021), whereas the perceptual
learning task in Chapter 2 depended on other sensory and retinotopic mechanisms
that are more effectively stabilised during sleep (Tamaki & Sasaki, 2022). Another
possibility is that differences in the design of the task (e.g., trial structure

and duration) and statistical power may have restricted the sensitivity to identify
minor increases; therefore, further experimentation should include power analysis
to examine the power it will require to see an even more reliable effect. However,
these differing results show that not all types of learning are equally susceptible to
sleep-related advantages, and that the lack of effects here does not mean that

strong effects are absent elsewhere (Borragan et al., 2015; Paller et al., 2021).

The sleep protocol used in this chapter allows the exploration of the
differences in morning and evening learners by conducting the first learning session
at various times of the day. In particular, the morning group completed the first
learning session in the morning and then had a time of offline wakefulness before
offline sleep. At the same time, the evening group started their learning in the
evening and encountered a sleep period directly afterwards. The design of the study
allowed for the investigation on how attentional consolidation was affected by the

time of sleep in relation to the learning session due to this approach.

The findings suggest that sleep and circadian cycles both affect attentional
learning, but the exact nature of this association differs depending on the task. Early
in the day, cognitive attention and task engagement may naturally occur, as seen by
the morning group's typically faster gains after first task exposure (Hasher & Zacks,
1988). The evening group, on the other hand, showed more steady gains after both
waking and sleep periods, indicating that repeated learning and sleep consolidation
may be beneficial for evening learners. This result is consistent with other studies,
which show that sleep's ability to consolidate learning may differ depending on an

individual's chronotype and the time of day (Rasch & Born, 2013).
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Nonetheless, it is important to note that these effects were minor in
magnitude and did not reach the significant effect sizes observed in Chapter 2. The
very large n? values reported in the previous chapter could be due to task-specific
sensitivity and within-subject dependence that raise variance estimates; by contrast,
the more variable and complicated attentional paradigms here naturally create
weaker and more diverse effects. This difference demonstrates how important it is
to be cautious when interpreting effect sizes across tasks and encourages the use of
more robust mixed-effects models in future research to better account for

differences between individuals.

A key observation is that the characteristics of the task influence the impact
of sleep on attentional learning. The VS task, characterised by selective attention
and strategic processing, showed greater enhancement from sleep consolidation.
However, the AC task, dependent on rapid attentional changes, did not demonstrate
a similar trend. This reinforces the concept that sleep primarily consolidates
complicated cognitive processes rather than straightforward or stimulus-driven tasks
(Fahle, 2005; Schoups et al., 2001). This assumption has been supported in the
literature, which suggests that the influence of sleep on learning is modulated by
task complexity. Sleep is more likely to help with emotionally charged activities and
complicated sequence learning (Wagner et al., 2006; Rasch & Born, 2013). Given
their fundamental stimulus-response nature, the AC tasks used in this chapter could
not have activated the brain systems necessary for sleep-dependent consolidation.
Attentional learning requires a balance between top-down cognitive control and
bottom-up sensory input, in contrast to PL, which benefits from sleep because it
helps to improve sensory discrimination (Gais & Born, 2004). Instead of quick
overnight consolidation, attentional learning could need longer-term reorganisation
of cognitive networks. The consolidation of attentional learning may rely on several
processes that are not primarily driven by sleep, as it is more dispersed throughout

various brain regions, such as the prefrontal and parietal networks. Maintaining a
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balance between top-down signals influenced by cognitive strategies, expectations,
and knowledge, and bottom-up signals driven by sensory input is crucial for this
process. For example, the prefrontal cortex, a region known for the involvement in
functions and regulating other brain areas, which plays a more prominent role in the
top-down aspect (Miller & Cohen, 2001). Given that these cognitive connections are
complicated, the nature of sleep may not exert the same influence on perceptual
learning as it does on attentional learning. The consolidation mechanisms that occur
during sleep may selectively enhance the types of fundamental sensory
discriminations involved in perceptual learning as opposed to the more intricate,

strategy-dependent processes involved in attentional learning (Gais & Born, 2004).

Another factor to consider would be the idea of emotional salience to sleep-
dependent memory consolidation. As stated by Wagner et al. (2006), sleep is the
preferred time for consolidating emotionally important knowledge. Nonetheless, the
lack of a benefit related to sleep could be attributed to the exclusion of emotionally
significant stimuli in the tasks employed in this study. Future research should also
consider whether distinct consolidation patterns are present in attentional learning
tasks with emotionally charged content. The results highlight the importance of
distinguishing between gains associated with practice and those related to learning

that occurs during sleep.

Furthermore, enhancements in RT relative to accuracy suggest that
attentional learning primarily enhances processing speed rather than accuracy. This
is in line with ideas that there is a trade-off between speed and accuracy in tasks
that require quick changes in attention (Desimone & Duncan, 1995). The speed-
accuracy trade-off suggests that when individuals develop skill in a task, they often
prioritise speed over accuracy (Liu & Watanabe, 2012). In the attentional tasks, this
phenomenon may arise because faster responses often include unconsciousness or

focused efficiency. However, accuracy tends to be more consistent due to the task's
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inherent perceptual or cognitive requirements. The similarity of accuracy across
sessions suggests that while individuals improve in processing speed, the
fundamental processes driving correct attentional allocation remain strong and less
prone to changing with learning. This result is important as it implies that attentional
learning optimises the efficiency of current processes, rather than implying
qualitative changes in how attention is distributed or maintained. As mentioned by
Metin et al. (2013), this trend may indicate the efficiency-oriented characteristic of
attentional learning, whereby repetition and training primarily reduce processing

delay rather than error rates.

The current study was primarily based on non-parametric statistics. This is
why the sum-of-ranks figures are so high, as they show the overall ranking of all the
observations, not just the raw data values. This should not be considered as inflated
effects, but rather as a result of the analytical methodology. Future analyses might
use mixed-effects or Bayesian models to evaluate participant-level variance with

greater precision.

The research underscores the need of controlling for individual differences
when assessing the impact of sleep on learning. The morning learners appeared to
benefit from early cognitive activation, resulting in quicker advancement during first
sessions, but evening learners demonstrated incremental advancements, indicating
that the evening training coupled with sleep may enhance the consolidation of
complex attentional processes. These distinctions emphasise the significance of
chronotype in determining the interaction between sleep and practice in relation to

attentional performance (Smith, 2001).
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3.6. Future Directions

To gain an understanding of how sleep impacts learning and attention, future
research should adopt a more dynamic approach. One way to investigate the
relationship between the effect of cognitive load and how sleep influences learning
is by designing a range of tasks with varying levels of complexity. This gradient of
task difficulty will enable researchers to pinpoint the threshold at which sleep begins
to affect learning consolidation. Additionally, it will help determine which types of
learning rely on sleep and which ones do not. Furthermore, conducting long-term
studies that span over weeks or months would be valuable in assessing the
effectiveness and development of sleep-related learning benefits. These studies
would examine the advantages and look into the integration and retention of

acquired knowledge and skills over time.

The intricate nature of sleep provides opportunities for exploration with the
advancements in polysomnographic devices. By establishing connections between
stages of sleep like rapid eye movement (REM) and slow wave sleep (SWS),
researchers can enhance their understanding of the underlying processes involved in
learning. Exploring intervals and their potential impact on memory consolidation and
effective learning could also contribute to this line of investigation. Researchers can
gain insights into the impact of experiences between periods of sleep by studying
sleep intervals. These wakeful periods provide an opportunity to investigate how
learning and exposure to information during these intervals may influence
reconsolidation processes during sleep. For instance, does engaging in new learning
or being exposed to relevant information during wakeful periods prompt
reconsolidation mechanisms during the subsequent sleep (such as during REM or

SWS sleep)?
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Finally, combining measurements from electroencephalograms (EEG) with
neuroimaging methods like structural and functional magnetic resonance imaging
(sMRI and fMRI) may improve the application of neurobiological evaluations prior to,
throughout, and following sleep. This progress may allow us to identify the circuits
involved in the consolidation process and to map alterations in the brain. By
combining these measurements with treatments like medication or adjustments to
sleep patterns, it could potentially help to establish a clear connection between
sleep, learning, and brain function. Additionally, these techniques might shed light
on why specific tasks are dependent on sleep (Texture Discrimination Task) while
others are not (e.g., visual search task) by identifying the changes in structure or the
connectivity change during learning. The scientific community could potentially
delve into the relationship between sleep and learning by employing these
comprehensive and detailed research methodologies. This exploration may lead to
targeted therapies that enhance learning abilities and cognitive performance across

populations.

3.7. Conclusion

Research into attention and sleep-dependent learning has revealed a
complex relationship, indicating that the interplay between attention mechanisms
and sleep is multifaceted. Research into attention and sleep-dependent learning has
revealed a complex relationship, indicating that the interplay between attention
mechanisms and sleep is multifaceted. While online learning has shown
improvements in both top-down and bottom-up attention processes, the anticipated
benefits of learning through sleep did not manifest significantly. This evidence
suggests that the impact of sleep on learning is multifaceted and dependent on
factors, including the type of learning and specific task characteristics. The study
found that, in contrast to other forms of perceptual learning, such as the backward

masking task discussed in Chapter 2, which can be directly impacted by sleep via
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mechanisms like the enhancement and decrease of neural noise, attentional
learning encompasses a broader array of cognitive processes that might not
uniformly derive advantages from sleep. This divergence emphasises the need for a
nuanced approach when studying how sleep affects different types of learning. The
complexity of attention processes, which integrate input from the environment with
control from within, necessitates further exploratory research to understand how

sleep interacts with these dual streams of information processing.

In summary, it is important to recognise that the relationship between sleep
and learning is intricate and cannot be universally applied to all types of learning (at
least in the perceptual learning field). The field is currently making discoveries that
could potentially enhance the understanding of processes and optimise learning
outcomes. Therefore, exploring this essential relationship between sleep's enigma
and the extraordinary capacity of the mind to learn and remember remains an

exciting journey for researchers.
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Chapter 4.

General Discussion
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4.1. Overview

This thesis delves into the concept of learning. It suggests that learning is a
complex process, influenced by changes in brain structure over an individual's
lifetime. According to this principle, learning is an evolving and dynamic process
affected by both internal and external factors. The previous belief that cognitive
performance inevitably declines with age has been replaced by research indicating
that learning can actually lead to changes in the brain, allowing for the preservation
or even improvement of cognitive abilities throughout adulthood (Li et al., 2008;
Salthouse, 2019). A fundamental concept that lies in this thesis is the notion of brain
plasticity, which highlights the capacity of the brain to modify its structure and

function in response to new experiences (Park & Bischof, 2013).

Sleep is an additional process that is closely related to plasticity, which plays
a role in the consolidation of newly learned information and skills (Stickgold &
Walker, 2013). Therefore, the research in this thesis focuses specifically on the
interconnected relationships that exist between learning, sleep, brain plasticity, and
cognitive functioning, addressing a critical gap in understanding how and when
learned skills become generalisable rather than remaining task specific. To address
this, there is a need to explore the different types of perceptual learning tasks to see
whether all different forms of perceptual tasks can be learned, and sleep plays a

crucial role in this process (Chapters 2 and 3).

These questions and gaps in the literature inspired the research conducted
throughout this thesis. It comprises two empirical chapters, each designed to assess

a unique but complementary component of the link between sleep and learning.
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The primary focus of Chapter 2 is on the generalisability of perceptual
learning by employing a well-established learning paradigm of the backward masking
task to examine the role of generalisability within perceptual domains, building on
existing paradigms emphasising the particularity of perceptual learning (Watanabe &
Sasaki, 2015; Zhang et al., 2008), this chapter presented sleep as a variable to
investigate whether learnt perceptual abilities can transfer to untrained
characteristics or other visual locations. The results showed that although perceptual
learning changes were first task-specific, but after sleep there was a modest
generalisation to untrained stimuli. This is consistent with the system consolidation
model (Diekelmann & Born 2010; Stickgold & Walker 2013) and the hypothesis that
sleep helps to integrate new abilities into more general cognitive networks (Maquet

et al., 2000).

In Chapter 3, the focus shifts to attentional learning (another form of
perceptual learning) to examine whether, firstly, attention-related perceptual tasks
can be learned and, secondly, whether sleep differently impacts the development of
the attentional task compared to the findings found in Chapter 2. The results
showed that although learning had significantly decreased in RT, accuracy was
constant across measures within sessions. However, the benefits associated with
sleep were limited and task-specific, suggesting that attentional learning may be less
dependent on the need for sleep and rely more on active engagement during

wakefulness.

These two empirical chapters together indicate that learning mechanisms are
not the same in all domains; instead, they rely on working conditions. Empirically,
this thesis advances the field by demonstrating that sleep facilitates the
generalisation of perceptual learning (Chapter 2), while attentional learning appears
to rely more on active engagement during wakefulness (Chapter 3), challenging the

assumption of uniform sleep-dependent consolidation. Theoretically, this
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dissociation leads models of cognitive plasticity by implying that different types of
learning activate separate neural systems: perceptual learning matching more
closely with early sensory consolidation processes, and attentional and motor

learning depending on more extensive executive and procedural systems.

The reminder of this chapter will begin by summarising the findings arising
from each of the experiments of this thesis and discuss their limitations. Then, will
integrate the results of these experiments with previous literature, looking at
learning in general. What can the current experiments in the thesis and previous
research tell us about the mechanisms underlying learning and the contribution of
sleep in relation to the generalisability of skills. Finally, the discussion will highlight

theoretical and practical implications and propose future directions for research.

4.2. Empirical Experiments

4.2.1. Summary of Findings

In Chapter 2, the complex relationship between sleep and the generalisation
of learning was explored. This topic is essential to understanding cognitive
neuroscience. The main idea behind this research is that sleep not only helps us to
recover but also plays a role in our brain's ability to apply what was learned to
different situations. The experiment used the backward masking task to assess
learning and examine how sleep affects performance improvement in visual tasks.
After conducting tests, the research provides evidence that the timing of learning
sessions —whether in the morning or evening — has a significant impact on how well
one can retain and utilise skills. Specifically compared to those who learned in the
evening, individuals who learned in the morning demonstrated improvements in

applying their skills after getting some sleep. This finding supports the research
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premise that sleep following a learning session strengthens the connections related
to that task, allowing us to apply what was learned beyond its initial context (Brawn

et al., 2008; Deliens et al., 2014; Tamaki et al., 2020).

The findings challenge the held belief that perceptual learning only applies to
specific locations or features (Fahle, 1994; Shiu & Pashler, 1992). Instead, the results
from Chapter 2 demonstrate that learning can be transferred to untrained tasks and
untrained sensory modalities. This suggests that higher level brain functions play a
role, in generalising learning beyond stimuli and characteristics, implying a top-down
contribution from higher-order cortical regio, such as the prefrontal cortex (PFC)
(Kok et al., 2012). The importance of the PFC is especially emphasised, pointing to a
top-down impact on the learning processes and bolstering the theory that higher
cortical areas enable cognitive control mechanisms that are essential to the
observed generalisation. This study not only supports the importance of sleep in
learning processes, but it also raises the possibility that the interaction between
alertness and sleep may be essential for maximising cognitive capacities. It requires
further study to be done in order to fully understand the neuroplasticity processes
that are at work during various states of consciousness and to clarify how these
mechanisms contribute to our apparently infinite potential for adaptation and
learning. All things considered, the chapter integrates a wide range of intricate data
into a convincing story that emphasises sleep as a potent facilitator of learning
generalisation, with broad ramifications for theoretical frameworks as well as real-

world uses in cognitive improvement and rehabilitation.

Chapter 3 aimed to investigate whether selective attention, especially those
involving top-down and bottom-up mechanisms, can be improved through repeated
learning and whether the role of sleep contributes to this type of learning. While the
tasks in Chapter 3 showed a reliable within-session improvement in RT, however, the

hypothesis that sleep will help enhance learning was not supported by the findings in
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this Chapter. These results showed an opposite trend to the sleep-dependant
consolidation effect found in Chapter 2 and contradicted previous studies in the
literature (Karni & Sagi, 1991; Stickgold & Walker, 2005). The lack of sleep-
dependent benefits in attentional tasks is conceptually important and implies an
essential distinction between the consolidation paths of perceptual and attentional

learning.

The lack of significant effects in Chapter 3, compared to the significant
learning and transfer observed in Chapter 2, can be explained by both task-specific
and theoretical differences. While both chapters used paradigms that share
commonality, the backward masking task in Chapter 2 primarily engaged low-level
perceptual learning, dependent on visual plasticity and error minimisation in early
sensory cortices (Bao et al., 2010; Op de Beeck et al., 2007). These representations
are particularly vulnerable to sleep-dependent consolidation, because reactivation
during sleep strengthens and integrates specific feature traces (Diekelmann & Born,
2010; Karni & Sagi, 1991). On the other hand, the AC and VS paradigms in Chapter 3
rely more on the higher-order executive functions, specifically goal-directed and
context-sensitive control facilitated by fronto-parietal networks (Miller & Cohen,
2001; Vossel et al., 2014). These types of learning depend on continuous adaptation
and selective attention, rather than fixed associative mappings. This means that
short-term replaying offline is less likely to be beneficial for these tasks. From a
psychological viewpoint, this dissociation corresponds to the differentiation between
the Rescorla—Wagner model (Recorla & Wagner, 1972), where prediction error
facilitates gradual improvement, in accordance with Chapter 2, and the Mackintosh
model (Mackintosh, 1975), which suggests that learning is dependent upon the
dynamic distribution of attention according to cue relevance, aligning more closely

with Chapter 3.
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Furthermore, methodological concerns may have contributed to the absence
of measurable effects, including the relatively short training duration, lack of direct
feedback, and the potential for ceiling effects in accuracy. Nonetheless, these
absences are theoretically informative, suggesting that sleep-related consolidation is
not a universal process but a domain-specific mechanism dependent on the

representational level and brain circuitry involved in the task.

Previous studies have suggested that sleep helps to strengthen the brain
connections involved in learning new abilities or knowledge. This is because
perceptual learning has been shown to be highly connected with slow wave sleep
(SWS) as it is responsible for consolidating very fine sensory representations in early
visual regions (Karni & Sagi, 1991; Walker & Stickgold, 2006; Tamaki et al., 2020).
These results in the literature provided a foundation for the widely accepted notion
that sleep improves learning by stabilising and integrating newly acquired knowledge
into long-term memory. However, the findings in Chapter 3 demonstrated that the
assumption on sleep may not extend to all types of learning. Selective attention
acquisition is more cognitive in character, particularly when it involves higher-order
processes such as goal-directed (top-down attention); therefore, it may not benefit
from sleep in the same manner as the backward masking task used in Chapter 2.
Nonetheless, attentional learning activates separated frontoparietal control
networks (Miller & Cohen, 2001; Vossel et al., 2014) and could consolidate through
continuous wakeful engagement rather than offline reactivation. This is in-line with
the developing framework that the contribution of sleep in learning is domain-
specific and depends on the nature of the task, the neural system involved and the
complexity of the learning content (Diekelmann & Born, 2010; Klinzing et al., 2019).
These tasks are naturally more dispersed and general, which means that they
may not depend on the same offline consolidation mechanisms as the backward
masking task, or they might need longer or more focused consolidation windows
than those seen in this current experimental setup. Certainly, the absence of sleep-

related enhancement could imply that attentional improvement relies more on
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repeated active engagement and reinforcement during wakefulness than on passive

reactivation during sleep.

Furthermore, the results showed that RT consistently improved over
sessions, but accuracy did not improve in the same manner. This is often referred to
as the speed-accuracy trade-off, which implies that attentional learning may
maximise processing efficiency instead of perceptual fidelity (Liu & Watanabe, 2012).
Previous research has recorded such a trade-off, which indicates a movement
towards automatised, efficient response techniques (Desimone & Duncan, 1995; Liu
& Watanabe, 2012). This can be beneficial in situations that demand quick reactions;
the result highlights the shortcomings of the present duties in addressing more
profound, structural changes in attention control. Future research might use more
flexible task designs or provide error-driven feedback to see if training could also

hone attentional accuracy.

The theoretical implication of this dissociation is that the term "perceptual
learning" could be overly broad to accurately characterise the range of cognitive
processes engaged in tasks like backward masking, AC, and VS. Although all of these
tasks to some degree involve shared characteristics, they are different in
qualitatively diverse ways which rely on different brain systems. AC and VS tasks rely
more on higher-order attentional processing, such as stimulus-driven or goal-
directed selection. Despite the fact that AC and VS tasks may seem comparable on
the surface with PL paradigms, they should not be grouped under the same
theoretical category. Treating all of these as instances of "PL" operates the danger of
missing important differences in the kinds of representations they interact with and
how their representations are combined. From this perspective, learning is more
functionally differentiated; therefore, the nature and needs of the task determine

the role sleep plays, and maybe the structure of learning itself.
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4.2.2. Limitations of the Experiments

Numerous methodological constraints that need to be carefully considered
have been brought to light by the research provided in the various chapters. One of
the first limitations identified was the use of self-reported data on sleeping habits in
Chapter 2. Although individuals may not always remember details well or may not
precisely record their sleep habits, such a method is susceptible to prejudice and
mistakes. A distorted perception of the connection between sleep and learning may
result from this. Secondly, the backward masking was the main learning task for
Chapter 2, which raises the question of how broadly applicable the results are. There
is also uncertainty about whether the same findings would apply to other learning
activities, especially ones that are more complicated or non-visual in nature. The fact
that all activities fall under the perceptual learning domain in Chapter 2 and Chapter
3, which restricts the range of inferences that can be made, even though the
learning tasks (backward masking, visual search and attentional capture) used in
these chapters are comparable tasks. Future research should aim to incorporate
multisensory or cross-domain paradigms to discover if sleep-related consolidation

serves as a universal or modality-specific phenomenon.

The staircase method was used, which rapidly changed task complexity to
keep performance at 70.7% accuracy, to account for variability and maintain
consistency. This adaptive quality allows individuals to perform at an ideal level
where learning-related increases in sensitivity could be significantly observed, hence
avoiding ceiling or floor effects. However, a possible concern with using this method
to calculate discrimination threshold is that distinct reversals based on the
calculation may introduce variability due to noise or individuals’ approach in

completing the task. Future research may consider combining the staircase method
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with other threshold estimation approaches, such as psychometric function fitting,
Bayesian adaptive techniques like QUEST (Watson & Pelli, 1983) or signal detection
analysis. These techniques may improve measurement accuracy and confirm that
the reported effects of learning are not confounded by response bias or random

variation.

Across both chapters, the sample sizes between groups may limit the
statistical power to identify modest group differences. While the effect outcomes
were aligned with theoretical assumptions, using bigger populations or hierarchical

mixed-effects models might enhance sensitivity and generalisability.

Additionally, in consideration of learning session arrangement, the study
makes an effort to distinguish between morning and evening sessions, but it is
unable to fully explore the range of potential learning periods during the day.
Furthermore, individual circadian preferences are not taken into consideration in
this study, despite the possibility that they may have a big impact on cognitive
function. All participants experience both alertness and sleep across the testing days,
consequently the study does not adequately examine the claim that sleep directly

affects learning because there is neither a crossover design nor a control group.

Finally, all learning tasks relied on behavioural metrics. Although these serve
as strong indicators of performance change, they provide limited understanding and
interpretation of the underlying brain mechanisms. Further studies integrating
behavioural data with neuroimaging techniques (such as EEG or fMRI) could clarify

the relationship between sleep-related consolidation and specific brain networks.
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Taken together, although the present methodology effectively identified a
sleep-related benefit in perceptual generalisation (Chapter 2) and its lack in
attentional learning (Chapter 3), various enhancements, such as objective sleep
metrics, increased statistical power, chronotype control, and multimodal imaging,
will be essential for comprehensively defining the parameters of sleep-dependent

learning.

4.3. The Impact of Sleep in Learning

In-depth understanding of the cognitive psychology of learning is provided by
the thesis's investigation into the connection between sleep-related learning
conducted to look at online (wake) and offline (sleep) learning in Chapters 2 and
Chapter 3. Chapter 2 continues the idea put out by Stickgold (2005) and Diekelmann
& Born (2010), which is that sleep can help learning become more consolidated and
generalised, especially if the learning task are scheduled in accordance with
circadian cycles. The between-group analyses in Chapter 2 showed that individuals
who trained in the evening and slept before the retest did significantly better and
were able to transfer what they learnt to new locations compared to those who
trained in the morning and stayed awake for the first 12 hours after learning. This
finding supports the notion that sleep contributes to the stabilisation of complex
perceptual traces and their integration into advanced cognitive networks (Maquet et
al., 2000; Tamaki et al., 2016). It also shows that the individual's physical condition at
the time of encoding affects consolidation. For example, training followed by sleep
at an appropriate time of day leads to better strengthening of neural
representations (Walker & Stickgold, 2004). In theory, these findings enhance
current models of sleep-dependent learning in the field. Instead of illustrating
consolidation merely as a neurobiological replay mechanism, the results support a
multi-level approach that connects neural reactivation with cognitive resource
theories (Craik & Tulving, 1975; Robertson, 2012). Consequently, effective
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consolidation requires the reactivation of task-specific sensory circuits and the
restoration of contextual or attentional connections that structure memory at a
psychological level. This combination of perceptual and cognitive points of view

makes the link between neuroplasticity and applied learning theory stronger.

The present chapter broadens the comprehension of sleep's function in
learning by demonstrating that sleep is crucial for reinforcing previously acquired
knowledge, and that the scheduling of the learning session may greatly impact the
efficiency of this process (Ahmadi et al., 2018; Al-Sharman & Siengsukon, 2013).
Sleep has the ability to improve cognitive flexibility and the transfer of acquired
abilities to new situations, as evidenced by the results showing morning learners
improved on untrained activities following a 24-hour interval. According to Walker
and Stickgold (2004), these benefits imply that sleep after morning sessions may be
especially beneficial for memory consolidation and processing. This result offers
behavioural evidence that offline consolidation facilitates the integration of localised
visual representations into more extensive perceptual networks. Theoretically, these
findings align with prediction-error-based learning models (Rescorla & Wagner,
1972), suggesting that sleep may function to reduce remaining error signals by
reactivating relevant neural networks. The findings from Chapter 2 also make one
think about the mechanisms underlying this consolidation. In the event that sleep is
strengthening the brain connections made during learning, the improvements seen
in the morning group may indicate that learning is best aligned with normal
biological cycles, which may result in more effective encoding and consolidation

during sleep.

On the other hand, Chapter 3 presents an alternative analysis to these data,
demonstrating that although participating in online learning sessions improves
attentional performance, there were no significant differences across the sleep-

wake groups. This means that attentional learning can be maintained by active
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practice when awake without needing further sleep to improve. When interpreted
via the Mackintosh model of selective attention, the result shows that practice leads
to better attention by changing the weight of predictive cues over time. This

happens through conscious awareness rather than unconscious consolidation.

However, at the neurobiological level, this division suggests that the role of
sleep plays in learning is task-specific and low-level perceptual tasks that require
accurate sensory encoding are enhanced by sleep, while higher-order attentional
processes are predominantly influenced by online engagement and feedback-driven
adaptation (Miller & Cohen, 2001; Vossel et al., 2014). Which support previous
studies that highlight non-sleep dependency on learning. For example, in the study
by Atienza (2002), the finding from this study provide support to the fact that both
rapid and slow brain alterations underlie the development of enhanced perception.
This alteration could occur hours, suggesting the fact that sleep is not necessary for
this enhancement. This raises doubt on sleep's more general benefits for learning
and raises the possibility that a mechanism of selective consolidation is in operation.
Sleep may preferentially consolidate some forms of learning over others, as shown
by the absence of discernible sleep-related increases in attentional tasks. These
findings challenge the held belief that sleep aids in learning consolidation. Instead,
they indicate that the optimal amount of sleep, for enhancing learning consolidation
may vary depending on the type of task such as in different perceptual tasks (Gais &

Born, 2004; Stickgold, 2005).

These findings indicate that the impact of sleep on learning is dependent on
the interaction of task type, visualisation level, and time in relation to the circadian
cycle. This thesis presents a task-specific and context-specific model of sleep-
dependent consolidation, addressing contradictions in the research by
contextualising sleep's effects within particular learning hierarchies. Furthermore,

this argument has implications for theories in the field of cognitive science and
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educational approaches. It suggests that aligning learning sessions with an
individual’s rhythm and tailoring them to match the learning task could impact the
effectiveness of learning outcomes. This study underscores the necessity for
exploration, into how sleep contributes to learning consolidation while also calling
for a re-assessment of teaching methods to incorporate these findings. Additionally,

it also advocates for individualised learning schedules.

4.4. Future Direction

During the discussion of findings, | have made note of some future directions
for research. Firstly, an important area to explore further is the development of
neuroimaging methods. These methods aim to investigate the functional changes
that occur in the brain as a result of learning. By utilizing techniques such as
functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI)
researchers can delve into the relationships between regions of the brain during the
learning process and gain insights into how sleep contributes to neuroplasticity. For
instance, fMRI allows us to detect changes in blood flow within the brain, which
serves as an indicator of certain activity. This approach provides us with a map of
brain activity highlighting which areas are active during tasks or in response to
particular stimuli. This information is highly valuable in studying learning and
memory activities as it allows us to understand how different tasks may involve
distinct neural pathways that evolve over time. In contrast DTl enables researchers
to track how water molecules diffuse throughout the brain along white matter
pathways. This understanding is crucial for unravelling the interconnectedness of

different regions within the human brain.

Overall, these advancements in neuroimaging methods hold promise, for

investigating how learning influences the structure and function of our brains. DTI
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has the capability to capture images of the fibre channels that help brain cells
communicate by tracking the movement of water molecules along axons. This
imaging method can reveal changes, in the brains matter, such as reorganization or
increased density, which are associated with learning. Combining fMRI and DTI
provides an understanding of how the brain transforms during the learning process.
FMRI shows which areas of the brain become active and how this activity changes
throughout learning and after sleep. DTl complements this by illustrating how
learning experiences reshape the brains connections and how these changes may
contribute to consolidating acquired knowledge and skills. By examining these
strategies after learning activities or before and after sleep, insights can be gained
regarding to how the brain adapts to information and how sleep can strengthen
these neural connections. This knowledge is important for developing therapies that
enhance learning capabilities and term cognitive health plans. Additionally, it is
important to investigate the basis for differences, in learning abilities. Further
exploration into the diversity of brain structure and function along with its
connection to learning styles can pave the way for tailored teaching strategies and
interventions to enhance cognition. This could potentially revolutionize learning

methods by considering the learners psychological needs.

To delve into the applicability of learning principles across inputs and
cognitive functions it is crucial to diversify the range of learning tasks in addition to
advancements in neuroimaging techniques. Comparative studies that encompass
tasks can evaluate how patterns of learning generalise from one domain or sensory
modality to another. These research findings might shed light on whether learning's
primarily integrative and cross domain or if it tends to be more modular or domain
specific. For example, do auditory abilities required for language acquisition
correlate with the visual and sensory skills necessary for mastering a musical
instrument? Furthermore, this line of inquiry should consider the underlying
mechanisms like executive function, working memory and attention that support

activities. By comparing activities utilizing different modalities but requiring similar
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cognitive processes researchers can start mapping out commonalities as well, as
distinct neural substrates associated with these processes. By providing the insights
on how to promote transferable learning in real life situations, this approach has the
potential to reform learning methods and cognitive therapy. It enables an

understanding of the underlying mechanisms of learning and cognition.

In addition, future studies should also consider controlling for variables that
may impact performance outcomes. Learning goes beyond processes; it is closely
connected to motivation and emotional states for example. These aspects
significantly influence engagement in learning tasks the effectiveness of learning
strategies and overall success in acquiring skills or knowledge. A holistic approach
that examines the interplay between emotional aspects of the mind can lead to a
more comprehensive understanding of the learning process. Furthermore,
considering the impact of moods on neuroplasticity—the brains ability to form
neural pathways and connections—provides strong support for investigating these
factors further (McEwen, 2000). Motivation and emotional well-being might play a
role, in either facilitating or hindering the learning processes. For example, stress is
known to inhibit neuroplasticity while positive emotional experiences and a
motivated mindset greatly enhance it (Ashby et al., 1999). By comprehending these
interconnections, can potentially unlock the gateway to treatments aimed at

enhancing the brain’s ability to adapt and learn.

4.5. Conclusion

The summary provides an overview of the nature of learning, which is closely
intertwined with neuroplasticity, sleep and cognitive performance. It portrays
learning as a multidimensional process. The findings emphasised the significance of

the role of sleep play in enhancing generalisation of learning, suggesting that the
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consolidation of information and abilities occurs actively during sleep than passively
for specific tasks. The idea of brain plasticity, which highlights the brain’s ability to
adapt its structure and function in response to experiences or external pressures is
fundamental to this theory. It becomes evident that sleep plays a role in brain
development and learning processes by not restoring but also strengthening

cognitive skills.

Chapter 2 of the thesis explores learning generalisation challenging the
notion that perceptual learning is limited to certain activities or stimuli. It
demonstrates how the acquired abilities can be transferred to different situations
such as different task features and location, suggesting the involvement of higher
order brain functions. Additionally, the thesis delves into the dynamics of learning by
providing insights into combining online and offline learning phases to facilitate
information acquisition and skill development. The complex relationship, between
learning and sleep is also addressed in this thesis. The impact of sleep on attention
focused tasks seems to differ from its effect on perceptual learning and skill
generalisation, as seen in Chapter 2. This suggests that the importance of sleep for
consolidating learning may depend on the demands of a task and the level of
complexity. Additionally, when considering differences in learning, it becomes
evident that learning abilities can be both a general characteristic and specific to
particular domains. Therefore, personalised approaches to learning and training are
necessary to accommodate variations in individual learning styles and rates of

progress.

Chapter 3 look more closely at the link between sleep and learning. It
showed that attentional learning takes a different path compared to perceptual
learning in Chapter 2. The two studies together show that sleep helps with learning
in a specific way and for specific tasks. It helps with certain sensory perceptual

plasticity more than higher-order attentional adaptability.
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Overall, this thesis provides conceptual and empirical methods to better
capture the richness and complexity of human cognitive plasticity, as well as
increases the field's knowledge of how learning functions within and across domains.
Learning methods, skill development, and rehabilitation programs all benefit greatly
from these insights as they help to customise treatments to individual learning
profiles and help to know when sleep or repeated practice is most advantageous,

hence greatly improving outcomes.

4.5.1. Data and Code Availability

Following common research practice, the experimental data and analytic
scripts are kept safe and private on a cloud server (SharePoint). Access is available
only through a private link (Appendix M). Once current study is accepted for
publication, the data and code will be made publicly accessible via Open Science
Framework. This approach ensures both transparency and data protection prior to

formal publication.
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Appendices

Appendix A

RT of Online learning session comparison in the morning group

4 p
Parameter Session Comparison Sum of Rank (corrected)
3 degree eccentricity, set size S1 Startvs S1_End 679 1.570 .396
4, distractor absent
S2_Startvs S2_End 596 -0.070 .983
S3_Startvs S3_End 804 0.328 .882
S4_Startvs S4_End 583 -0.058 .987
3 degree eccentricity, set size S1 Startvs S1_End 889 1.759 .337
4, distractor present
S2_Startvs S2_End 705 0.044 .993
S3_Startvs S3_End 829 1.221 .532
S4_Startvs S4_End 701 -0.009 1
3 degree eccentricity, set size S1 _Startvs S1_End 761 -0.379 .862
6, distractor absent
S2_Startvs S2_End 661 -1.401 484
S3_Startvs S3_End 585 -1.009 .620
S4_Startvs S4_End 719 -0.650 .767
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3 degree eccentricity, set size S1 Startvs S1_End 936 3.339 .050

6, distractor present

S2_Startvs S2_End 777 -0.109 973

S3_Startvs S3_End 736 -0.104 973

S4_Startvs S4_End 781 0.657 767

3 degree eccentricity, set size S1 Startvs S1_End 933 2.500 142
10, distractor absent

S2_Startvs S2_End 893 1.549 402

S3_Startvs S3_End 824 0.665 767

S4_Startvs S4_End 846 0.778 727

3 degree eccentricity, set size S1 _Startvs S1_End 818 1.868 .303
10, distractor present

S2_Startvs S2_End 822 1.646 .373

S3_Startvs S3_End 793 0.615 778

S4_Startvs S4_End 701 0.454 .841

5 degree eccentricity, set size S1 Startvs S1_End 832 0.800 725

4, distractor absent

S2_Startvs S2_End 816 0.287 .895

S3_Startvs S3_End 588 -2.190 .203

S4_Startvs S4_End 576 -1.755 .337

S1_Startvs S1_End 896 2.349 184
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5 degree eccentricity, set size S2 Startvs S2_End 605 0.591 .785

4, distractor present

S3_Startvs S3_End 717 -0.432 .841

S4_Startvs S4_End 806 0.615 778

5 degree eccentricity, set size S1 Startvs S1_End 803 0.783 727
6, distractor absent

S2_Startvs S2_End 815 0.513 .824

S3_Startvs S3_End 588 -2.190 .203

S4_Startvs S4_End 699 -1.614 .375

5 degree eccentricity, set size S1 Startvs S1_End 832 2.608 115
6, distractor present

S2_Startvs S2_End 723 0.128 .968

S3_Startvs S3_End 749 0.580 793

S4_Startvs S4_End 702 -0.953 .647

5 degree eccentricity, set size S1 _Startvs S1_End 615 -0.427 115
10, distractor absent

S2_Startvs S2_End 629 -2.254 .968

S3_Startvs S3_End 621 -2.736 .793

S4_Startvs S4_End 629 -2.130 .647

5 degree eccentricity, set size S1 Startvs S1_End 945 3.174 .054
10, distractor present

S2_Startvs S2_End 925 3.149 .054
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10 degree eccentricity, set

size 4, distractor absent

10 degree eccentricity, set

size 4, distractor present

10 degree eccentricity, set

size 6, distractor absent

10 degree eccentricity, set

size 6, distractor present

S3_Start vs S3_End

S4 Start vs S4_End

S1 _Startvs S1_End

S2 Startvs S2_End

S3_Start vs S3_End

S4 Start vs S4_End

S1 Startvs S1_End

S2 Startvs S2_End

S3_Start vs S3_End

S4 Start vs S4_End

S1 Startvs S1_End

S2 Startvs S2_End

S3_Start vs S3_End

S4 Start vs S4_End

S1 _Startvs S1_End

S2 Startvs S2_End

S3_Start vs S3_End

686

734

630

697

673

662

726

728

654

654

716

695

655

743

622

477

589

-0.276

-1.041

1.440

1.930

1.175

0.961

-0.044

-0.248

-0.405

-1.326

1.513

0.101

-1.099

0.240

1.993

-1.585

-1.630

.902

.606

464

.285

.547

.646

.993

912

.847

.507

421

973

.580

914

261

391

375
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S4 Start vs S4_End

10 degree eccentricity, set S1 Startvs S1_End

size 10, distractor absent

S2 Startvs S2_End

S3_Start vs S3_End

S4 Start vs S4_End

10 degree eccentricity, set S1 Startvs S1_End

size 10, distractor present

S2 Startvs S2_End

S3_Start vs S3_End

S4 Start vs S4_End

422

774

727

659

720

666

586

589

623

-1.566

4.153

1.727

3.306

2.895

2.415

-0.802

-0.651

-0.499

.396

.012*

352

.050

.078

.170

725

767

.824

Significant level: *<0.05, **<0.01,***<0.001
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Appendix B

RT of Online learning session comparison in the evening group

Sum of 4 p
Parameter Session Comparison Rank (corrected)

3 degree eccentricity, set size S1_Startvs S1_End 744 0.493 .825
4, distractor absent

S2_Startvs S2_End 684 -1.204 .540

S3_Startvs S3_End 872 0.487 .825

S4_Startvs S4_End 815 0.503 .824

3 degree eccentricity, set size S1_Startvs S1_End 877 1.286 511
4, distractor present

S2_Startvs S2_End 834 -0.104 973

S3_Startvs S3_End 856 0.000 1.000

S4_Startvs S4_End 874 -0.599 .782

3 degree eccentricity, set size S1_Startvs S1_End 854 -0.248 912
6, distractor absent

S2_Startvs S2_End 760 -1.660 .370

S3_Start vs S3_End 765 -0.311 .890

S4_Startvs S4_End 815 -0.826 714

S1_StartvsS1_End 894 1.301 .507
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3 degree eccentricity, set size S2 Startvs S2_End 842 0.008 1.000

6, distractor present

S3_Start vs S3_End 823 -0.039 .995

S4_Startvs S4_End 806 -0.762 734

3 degree eccentricity, set size S1_Startvs S1_End 989 1.611 .375
10, distractor absent

S2_Startvs S2_End 818 -1.236 .532

S3_Startvs S3_End 859 -0.159 .957

S4_Startvs S4_End 823 -0.957 .646

3 degree eccentricity, set size S1_Startvs S1_End 814 1.228 .532
10, distractor present

S2_Startvs S2_End 929 0.935 .655

S3_Startvs S3_End 802 1.239 .532

S4_Startvs S4_End 871 1.188 541

5 degree eccentricity, set size S1_Startvs S1_End 909 0.879 .685
4, distractor absent

S2_Startvs S2_End 676 -2.626 115

S3_Startvs S3_End 810 -1.545 402

S4_Startvs S4_End 734 -1.700 .355

5 degree eccentricity, set size S1_Startvs S1_End 874 2.266 193
4, distractor present

S2_Startvs S2_End 892 0.326 .882
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S3_Start vs S3_End 747 -0.361 .868

S4_Startvs S4_End 731 -1.285 511

5 degree eccentricity, set size S1_Startvs S1_End 877 1.557 .399
6, distractor absent

S2_Startvs S2_End 720 -1.642 .373

S3_Startvs S3_End 753 -1.397 484

S4_Startvs S4_End 785 -1.089 .580

5 degree eccentricity, set size S1_Startvs S1_End 781 1.397 484
6, distractor present

S2_Startvs S2_End 919 0.735 743

S3_Start vs S3_End 853 -0.031 .996

S4_Startvs S4_End 938 1.023 615

5 degree eccentricity, set size S1_Startvs S1_End 801 0.508 .824
10, distractor absent

S2_Startvs S2_End 819 -1.221 .532

S3_Startvs S3_End 832 -1.220 .532

S4_Startvs S4_End 784 -1.104 .580

5 degree eccentricity, set size S1_Startvs S1_End 910 2.584 119
10, distractor present

S2_Startvs S2_End 1000 2.239 194

S3_Startvs S3_End 862 1.305 .507
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S4_Startvs S4_End 937 0.318 .887

10 degree eccentricity, set size S1_Startvs S1_End 626 0.510 .824

4, distractor absent

S2_Startvs S2_End 512 -0.754 734

S3_Start vs S3_End 542 -0.651 767

S4_Startvs S4_End 778 -0.330 .882

10 degree eccentricity, set size S1_Startvs S1_End 568 -0.630 775
4, distractor present

S2_Startvs S2_End 691 -0.882 .685

S3_Startvs S3_End 595 -2.069 243

S4_Startvs S4_End 730 -1.944 282

10 degree eccentricity, set size S1_Startvs S1_End 704 1.008 .620
6, distractor absent

S2_Startvs S2_End 648 -1.340 .507

S3_Start vs S3_End 701 -0.009 1.000

S4_Startvs S4_End 782 -0.471 .831

10 degree eccentricity, set size S1_Startvs S1_End 567 -1.066 .586
6, distractor present

S2_Startvs S2_End 571 -1.281 512

S3_Start vs S3_End 600 -1.620 .375

S4_Startvs S4_End 634 -1.681 .362
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10 degree eccentricity, set size S1_Startvs S1_End

10, distractor absent

S2 Startvs S2_End

S3_Startvs S3_End

S4 Startvs S4_End

10 degree eccentricity, set size S1_Startvs S1_End

10, distractor present

S2 Startvs S2_End

S3_Startvs S3_End

S4 Startvs S4_End

755

786

853

793

624

581

616

660

3.270

2.744

2.678

2.307

1.011

0.096

0.331

0.690

.050

.098

112

.189

.620

973

.882

.765

Significant level: *<0.05, **<0.01,***<0.001
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Appendix C

Accuracy of Online learning session comparison in the morning group

Sum of 4 p
Parameter Session Comparison Rank (corrected)

3 degree eccentricity, set size S1_Startvs S1_End 784 -0.386 .892
4, distractor absent

S2_Start vs S2_End 784 -0.386 .892

S3_Start vs S3_End 812 0.964 .748

S4_Start vs S4_End 742 -1.697 .748

3 degree eccentricity, set size S1_Startvs S1_End 812 0.964 748
4, distractor present

S2_Start vs S2_End 784 -0.567 .851

S3_Start vs S3_End 784 -0.964 .748

S4_Start vs S4_End 784 -0.567 .851

3 degree eccentricity, set size S1_Startvs S1_End 812 0.964 748
6, distractor absent

S2_Start vs S2_End 798 0 1.000

S3_Start vs S3_End 798 0.000 1.000

S4_Start vs S4_End 840 1.743 .748

3 degree eccentricity, set size S1_Startvs S1_End 798 0 1.000
6, distractor present

S2_Start vs S2_End 812 0.964 748
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S3_Start vs S3_End 798 0 1.000

S4_Start vs S4_End 798 0 1.000
3 degree eccentricity, set size S1_Startvs S1_End 812 0.964 748
10, distractor absent
S2_Start vs S2_End 798 N/A N/A
S3_Start vs S3_End 812 0.964 .748
S4_Start vs S4_End 798 N/A N/A
3 degree eccentricity, set size S1_Startvs S1_End 826 1.010 748
10, distractor present
S2_Start vs S2_End 812 0.567 .851
S3_Start vs S3_End 784 -0.964 748
S4_Start vs S4_End 728 -1.428 .748
5 degree eccentricity, set size S1_Startvs S1_End 812 0.964 748
4, distractor absent
S2_Start vs S2_End 798 N/A N/A
S3_Start vs S3_End 770 -1.402 .748
S4_Start vs S4_End 756 -1.743 748
5 degree eccentricity, set size S1_Startvs S1_End 784 -0.964 748
4, distractor present
S2_Start vs S2_End 756 -1.187 748
S3_Start vs S3_End 798 0.000 1.000
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S4_Start vs S4_End 826 1.402 .748

5 degree eccentricity, set size S1_Startvs S1_End 784 -0.964 748

6, distractor absent

S2_Start vs S2_End 812 0.964 .748
S3_Start vs S3_End 770 -1.402 .748
S4_Start vs S4_End 798 N/A N/A
5 degree eccentricity, set size S1_Startvs S1_End 798 0.000 1.000
6, distractor present
S2_Start vs S2_End 826 1.010 .748
S3_Start vs S3_End 770 -1.402 .748
S4_Start vs S4_End 840 1.743 748
5 degree eccentricity, set size S1_Startvs S1_End 798 0.000 1.000
10, distractor absent
S2_Start vs S2_End 840 1.743 .748
S3_Start vs S3_End 812 0.964 .748
S4_Start vs S4_End 784 -0.964 .748
5 degree eccentricity, set size S1_Startvs S1_End 784 -0.964 748
10, distractor present
S2_Start vs S2_End 798 0.000 1.000
S3_Start vs S3_End 784 -0.567 .851
S4_Start vs S4_End 798 N/A N/A
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10 degree eccentricity, set size  S1_Start vs S1_End 826 0.679 .851

4, distractor absent

S2_Start vs S2_End 784 -0.386 .892

S3_Start vs S3_End 770 -0.841 .807

S4_Start vs S4_End 770 -0.841 .807

10 degree eccentricity, set size  S1_Start vs S1_End 812 0.567 .851
4, distractor present

S2_Start vs S2_End 854 2.039 .748

S3_Start vs S3_End 812 0.448 .892

S4_Start vs S4_End 812 0.567 .851

10 degree eccentricity, set size  S1_Start vs S1_End 798 0.000 1.000
6, distractor absent

S2_Start vs S2_End 798 0.000 1.000

S3_Start vs S3_End 826 1.010 .748

S4_Start vs S4_End 812 0.567 .851

10 degree eccentricity, set size  S1_Start vs S1_End 726.5 -0.799 .829
6, distractor present

S2_Start vs S2_End 784 -0.348 .909

S3_Start vs S3_End 782.5 0.973 .748

S4_Start vs S4_End 712.5 -1.130 748

S1_Startvs S1_End 686 -2.350 .748
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10 degree eccentricity, set size  S2_Start vs S2_End

10, distractor absent

S3_Startvs S3_End

S4_Startvs S4_End

10 degree eccentricity, set size  S1_Start vs S1_End

10, distractor present

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

768.5

699

727

758.5

868

756

757.5

0.406

-1.557

-0.888

-2.350

0.406

-1.557

-0.888

.892

.748

797

.851

.748

.748

.748

Note. "N/A" indicates that no statistical difference was calculated because the accuracy remained at

100% throughout the compared sessions.

Significant level: *<0.05, **<0.01,***<0.001
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Appendix D

Accuracy of Online learning session comparison in the evening group

Sum of 4 p
Parameter Session Comparison  Rank (corrected)

3 degree eccentricity, set S1_Startvs S1_End 885 -0.839 .807
size 4, distractor absent

S2_Start vs S2_End 900 -0.448 .892

S3_Start vs S3_End 930 0.568 .851

S4_Start vs S4_End 870 -1.743 748
3 degree eccentricity, set S1_Startvs S1_End 915 0 1.000
size 4, distractor present

S2_Start vs S2_End 930 0.568 .851

S3_Start vs S3_End 915 0 1.000

S4_Start vs S4_End 915 N/A N/A
3 degree eccentricity, set S1_Startvs S1_End 960 1.743 .748
size 6, distractor absent

S2_Start vs S2_End 900 -0.967 748

S3_Start vs S3_End 930 0.448 .892

S4_Start vs S4_End 900 -0.967 748

S1_StartvsS1_End 900 -0.568 .851
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3 degree eccentricity, set

size 6, distractor present

3 degree eccentricity, set

size 10, distractor absent

3 degree eccentricity, set

size 10, distractor present

5 degree eccentricity, set

size 4, distractor absent

5 degree eccentricity, set

size 4, distractor present

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

930

885

915

945

930

900

945

915

960

870

915

975

930

915

930

975

930

0.568

-1.403

1.403

0.967

-0.967

1.403

1.743

-1.374

2.036

0.568

N/A

0.568

0.409

-0.967

.851

.748

1.000

.748

.748

.748

.748

1.000

.748

.748

1.000

.748

.851

N/A

.851

.892

.748
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5 degree eccentricity, set

size 6, distractor absent

5 degree eccentricity, set

size 6, distractor present

5 degree eccentricity, set

size 10, distractor absent

5 degree eccentricity, set

size 10, distractor present

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

915

930

930

885

930

915

900

900

915

900

885

930

915

915

900

915

930

-1.009

-0.568

0.448

-1.403

0.568

0.000

-0.385

-0.967

-0.967

-1.009

0.967

N/A

-0.448

0.448

.748

.851

.892

.748

.851

1.000

.892

.748

1.000

.748

.748

.748

N/A

1.000

.892

1.000

.892
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10 degree eccentricity, set

size 4, distractor absent

10 degree eccentricity, set

size 4, distractor present

10 degree eccentricity, set

size 6, distractor absent

10 degree eccentricity, set

size 6, distractor present

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

S1_Startvs S1_End

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

915

900

840

870

945.5

900

915

885

915

900

870

900

900

838.5

915

915

930

N/A

-0.320

-1.643

-0.982

1.414

-0.320

-0.839

0.000

-0.347

-1.374

-0.385

-0.568

-0.793

0.385

N/A

916

.748

.748

.748

916

1.000

.807

1.000

.909

.748

.892

.851

.829

1.000

1.000

.892
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10 degree eccentricity, set ~ S1_Start vs S1_End

size 10, distractor absent

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

10 degree eccentricity, set ~ S1_Start vs S1_End

size 10, distractor present

S2_Startvs S2_End

S3_Startvs S3_End

S4_Startvs S4_End

823.5

855

900

795

903

930

840

930

-1.120 .748
-1.494 .748
-0.385 .892
-2.341 .748
0.054 1.000
0.300 921
-1.781 .748
0.320 916

Note. "N/A" indicates that no statistical difference was calculated because the accuracy remained at

100% throughout the compared sessions.

Significant level: *<0.05, **<0.01,***<0.001
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Appendix E

RT and Accuracy of offline learning session comparison in the morning group

RT Accuracy

Session Sumof Z p Sumof Z p

Parameter Comparison Rank (corrected) Rank (corrected)

3 degree S1 _Endvs
eccentricity, set size  S2_Start (Offline

4, distractor absent Wake) 608 -0.330 .882 812 0.386 .892

S2_Endvs
S3_Start (Offline
Sleep) 714 0.686 .765 756 -1.743 748

S3_Endvs
S4 Start (Offline
Wake) 694 0.097 .973 854  1.697 748

3 degree S1 _Endvs
eccentricity, set size  S2_Start (Offline

4, distractor present Wake) 784 0.970 .644 812 0.567 .851

S2_Endvs
S3_Start (Offline
Sleep) 712 -0.519 .824 798  0.000 1.000
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3 degree
eccentricity, set size

6, distractor absent

3 degree
eccentricity, set size

6, distractor present

3 degree
eccentricity, set size

10, distractor absent

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

797

882

822

699

792

809

729

782

0.459

2.405

1.941

0.419

0.598

1.142

-0.225

0.429

.840

.170

.282

.843

782

.570

918

.841

826

798

826

756

784

798

798

784

1.402

0.000

1.010

-1.743

-0.964

0.000

0.000

-0.964

748

1.000

748

748

748

1.000

1.000

748
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3 degree
eccentricity, set size
10, distractor

present

5 degree
eccentricity, set size

4, distractor absent

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

755

683

667

737

713

810

875

881

-0.696

-1.221

0.073

0.614

-0.757

0.901

1.809

2.218

.765

.532

.983

778

734

.684

320

201

798

784

770

784

812

784

826

840

N/A

-0.964

-1.010

-0.567

1.428

-0.964

1.402

1.743

N/A

748

748

.851

748

748

748

748
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5 degree
eccentricity, set size

4, distractor present

5 degree
eccentricity, set size

6, distractor absent

5 degree
eccentricity, set size

6, distractor present

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

728

757

738

826

850

887

725

648

0.000

0.970

-0.295

0.451

2.144

1.450

0.400

-0.028

1.000

644

.891

.841

.209

463

.848

.996

868

784

784

798

812

798

784

784

2.306

-0.567

-0.964

N/A

0.567

N/A

-0.567

-0.448

748

.851

748

N/A

.851

N/A

.851

.892
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5 degree
eccentricity, set size

10, distractor absent

5 degree
eccentricity, set size
10, distractor

present

10 degree
eccentricity, set size

4, distractor absent

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

825

869

848

874

667

749

834

507

0.434

3.448

3.074

2.266

-1.961

0.347

1.305

-0.209

.841

.050

.054

193

277

.877

.507

928

798

756

756

798

812

812

784

770

N/A

-1.743

-1.743

0.000

0.964

0.567

-0.964

-0.679

N/A

748

748

1.000

748

.851

748

.851
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10 degree
eccentricity, set size

4, distractor present

10 degree
eccentricity, set size

6, distractor absent

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

570

640

793

724

708

680

810

704

-1.090

-0.437

1.342

2.165

0.824

0.556

1.913

0.751

.580

.841

.507

.209

714

.804

.285

734

812

826

770

770

770

784

784

770

0.386

0.841

-1.402

-0.841

-1.010

-0.448

-0.567

-1.010

.892

.807

748

.807

748

.892

.851

748
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10 degree
eccentricity, set size

6, distractor present

10 degree
eccentricity, set size

10, distractor absent

10 degree
eccentricity, set size
10, distractor

present

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

S3_Endvs
S4 Start (Offline
Wake)

S1 _Endvs
S2_Start (Offline
Wake)

S2_Endvs
S3_Start (Offline

Sleep)

680

700

695

642

532

501

622

566

1.383

1.699

2.360

-2.022

-1.213

-2.975

0.184

1.877

489

355

184

251

.535

.065

.946

301

826

744

827.5

812

827.5

813

741

756

0.743

-1.335

1.130

1.428

1.130

0.888

-0.490

-0.988

.851

748

748

748

748

797

.892

748

283



S3_Endvs
S4 Start (Offline
Wake) 791 1.374 493 826 1.010 748

Note. "N/A" indicates that no statistical difference was calculated because the accuracy

remained at 100% throughout the compared sessions.

Significant level: *<0.05, **<0.01,***<0.001
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Appendix F

RT and Accuracy of offline learning session comparison in the evening group

RT Accuracy
Session Sum of V4 p Sumof Z p
Parameter Comparison Rank (corrected) Rank (corrected)

3 degree S1 _Endvs
eccentricity, set S2 Start

size 4, distractor (Offline Sleep) 884 1.675 .362 930 0.448 .892

absent

S2_Endvs
S3 Start

(Offline Wake) 867  0.870 .685 900 -0.568  .851
S3_Endvs
S4 Start

(Offline Sleep) 762 -0.362 .868 930 0.448 .892
3 degree S1 _Endvs
eccentricity, set S2 Start

size 4, distractor (Offline Sleep) 872  0.950 .647 900 -0.568 .851

present

S2_Endvs
S3 Start

(Offline Wake) 896  1.333 .507 900 -0.568  .851
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3 degree
eccentricity, set
size 6, distractor

absent

3 degree
eccentricity, set
size 6, distractor

present

3 degree

eccentricity, set

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

925

959

1017

818

949

817

982

943

0.826

3.099

2.046

0.787

1.446

0.303

1.236

1.813

714

.054

251

727

463

.891

.532

320

900

885

945

885

915

915

930

885

-0.967

-1.009

1.403

-1.009

0.000

0.000

0.967

-1.403

748

748

748

748

1.000

1.000

748

748
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size 10, distractor

absent

3 degree
eccentricity, set
size 10, distractor

present

5 degree
eccentricity, set
size 4, distractor

absent

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

1000

979

814

714

881

828

1056

1034

2.239

0.939

0.487

-0.258

0.631

1.677

3.571

2.024

194

.654

.825

912

775

.362

.045*

251

915

915

870

930

930

870

885

930

0.000

N/A

-1.743

0.385

0.568

-1.374

-1.403

0.967

1.000

N/A

748

.892

.851

748

748

748

287



5 degree
eccentricity, set
size 4, distractor

present

5 degree
eccentricity, set
size 6, distractor

absent

5 degree
eccentricity, set
size 6, distractor

present

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

760

953

918

830

1086

906

817

884

-0.148

1.319

1.221

1.237

2.813

1.492

0.771

-0.235

961

.507

.532

.532

.093

431

731

916

885

960

930

900

930

900

900

930

-1.009

1.743

0.568

-0.448

0.967

-0.568

-1.009

0.967

748

748

.851

.892

748

.851

748

748

288



5 degree
eccentricity, set
size 10, distractor

absent

5 degree
eccentricity, set
size 10, distractor

present

10 degree

eccentricity, set

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

962

944

1014

1075

840

817

806

568

1.648

1.114

2.176

2.646

0.439

-0.375

0.360

-0.672

373

.580

.207

115

.841

.863

.868

.765

900

900

900

930

900

930

870

960

0.000

-0.967

-0.967

0.967

-0.568

0.568

-1.743

0.922

1.000

748

748

748

.851

.851

748

782
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size 4, distractor

absent

10 degree
eccentricity, set
size 4, distractor

present

10 degree
eccentricity, set
size 6, distractor

absent

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

777

842

757

833

970

742

977

726

1.713

1.913

1.722

1.841

2.514

0.961

2.773

-0.497

352

.285

352

.308

141

.646

.095

.824

975

870

885

930

900

915

960

900

1.363

-1.374

-0.741

0.385

-0.568

0.000

1.374

-0.448

748

748

.851

.892

.851

1.000

748

.892
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10 degree
eccentricity, set
size 6, distractor

present

10 degree
eccentricity, set
size 10, distractor

absent

10 degree
eccentricity, set
size 10, distractor

present

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

S3_Endvs
S4 Start
(Offline Sleep)

S1 _Endvs
S2 Start
(Offline Sleep)

S2_Endvs
S3 Start
(Offline Wake)

802

745

840

616

634

632

579

572

1.575

1.781

2.446

-1.613

-2.346

-1.312

0.564

0.681

.396

330

.160

375

184

.507

.802

0.765

945 0.741

900 -0.347

900 -0.385

960 1.064

945 0.839

931.5 0.793

867 -0.054

915 0.000

.851

.909

.892

748

.807

.829

1.000

1.000
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S3_Endvs
S4 Start
(Offline Sleep) 806  0.882 .685 960 1.183 748

Note. "N/A" indicates that no statistical difference was calculated because the accuracy

remained at 100% throughout the compared sessions.

Significant level: *<0.05, **<0.01,***<0.001
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Appendix G

RT of Online learning session comparison in the morning group

Sum of z P
Parameter Session Comparison Rank (corrected)
3 degree eccentricity, S1 Startvs S1_End 1452 2.318 .189
set size 2
S2 StartvsS2_End 1607 1.189 541
S3 Startvs S3_End 1385 -0.444 .841
S4 Startvs S4_End 1574 0.674 .765
3 degree eccentricity, S1 Startvs S1 _End 1253 1.028 .615
set size 6
S2 StartvsS2_End 1143 2.209 201
S3 Startvs S3_End 1212 -0.150 .961
S4 Startvs S4_End 898 -0.407 .847
3 degree eccentricity, S1 Startvs S1_End 4721 1.418 A77
set size 10
S2 StartvsS2 _End 4550 -0.173 .948
S3 Startvs S3_End 5197 -0.674 .765
S4 Startvs S4_End 4584 -0.618 778
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5 degree eccentricity,

set size 2

5 degree eccentricity,

set size 6

5 degree eccentricity,

set size 10

10 degree eccentricity,

set size 2

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1 _End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

1830

1569

1713

1490

1008

996

1132

944

4075

4200

4203

3775

2342

2222

2644

2404

3.360

0.791

0.873

0.474

1.368

0.994

-0.295

-1.093

0.800

-0.079

0.246

-0.176

1.081

1.393

1.536

0.004

.050

727

.685

.831

495

.630

.891

.580

725

.981

912

.948

581

484

406

1.000

294



10 degree eccentricity, S1 Startvs S1_End

set size 6
S2_Startvs S2_End
S3 Startvs S3_End
S4 Startvs S4_End
10 degree eccentricity, S1 Startvs S1_End
set size 10

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

1545

2044

1739

2261

3689

4847

4287

4603

-0.506

-0.393

-0.756

0.894

1.632

1.417

0.897

2.779

.824

.852

734

.684

375

AT77

.684

.095

Significant level: *<0.05, **<0.01,***<0.001



Appendix H

RT of Online learning session comparison in the evening group

Sum of z P
Parameter Session Comparison Rank (corrected)
3 degree eccentricity, S1 Startvs S1_End 1427 3.985 .013
set size 2
S2 StartvsS2_End 1428 2.298 .189
S3 Startvs S3_End 1298 -0.835 713
S4 Startvs S4_End 1577 -0.295 .891
3 degree eccentricity, S1 Startvs S1_End 575 2.615 115
setsize 6
S2 StartvsS2_End 1119 0.178 .948
S3 Startvs S3_End 1038 0.703 .765
S4 Startvs S4_End 582 0.564 .802
3 degree eccentricity, S1 Startvs S1_End 3196 0.882 .685
set size 10
S2 StartvsS2_End 3008 -0.422 .843
S3 Startvs S3_End 2790 -1.914 .285
S4 Startvs S4_End 2902 -1.800 .320
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5 degree eccentricity,

set size 2

5 degree eccentricity,

set size 6

5 degree eccentricity,

set size 10

10 degree eccentricity,

set size 2

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

915

980

1105

881

695

960

968

887

2755

3507

3476

2789

2245

1542

1722

1941

3.238

1.839

0.708

-1.072

1.190

0.874

-0.113

-0.145

2.642

0.255

-0.979

-1.506

3.107

1.301

0.533

0.643

.050

.308

.764

.586

541

.685

973

961

115

912

.642

423

.054

.507

.820

J71
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10 degree eccentricity, S1 Startvs S1_End

set size 6

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

10 degree eccentricity, S1 Startvs S1_End

set size 10

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

1625

1806

1672

2043

4003

3420

4184

4170

0.787

1.714

-2.035

-1.332

3.049

1.863

1.136

0.000

727

352

251

.507

.054

.303

.573

1.000

Significant level: *<0.05, **<0.01, ***<0.001
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Appendix |

Accuracy of Online learning session comparison in the morning group

Sum of z p
Parameter Session Comparison Rank (corrected)

3 degree eccentricity, set S1 Startvs S1_End 1635.5 -0.662 .851
Size 2

S2 StartvsS2 _End 1755 -1.369 .748

S3 Startvs S3_End 1503 -0.315 916

S4 Startvs S4_End 1786 -0.592 .851

3 degree eccentricity, set S1 Startvs S1_End 1533.5 1.926 .748
Size 6

S2 StartvsS2 _End 1060.5  0.343 .909

S3 Startvs S3_End 1438.5 1.580 .748

S4 Startvs S4_End 1143 0.147 1.000

3 degree eccentricity, set S1 Startvs S1_End 5720 0.652 .851
size 10

S2 StartvsS2 _End 5229.5 0.448 .892

S3 Startvs S3_End 6301.5 0.183 .997

S4 Startvs S4_End 53725 -0.274 941
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5 degree eccentricity, set

size 2

5 degree eccentricity, set

size 6

5 degree eccentricity, set

size 10

10 degree eccentricity,

set size 2

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

1820

1550

1777

1786

1137

1094

1190

1159.5

4965

4712

4639

4548

2649

2449

2623

2685

0.000

-1.693

0.866

1.456

0.343

-0.304

0.971

-0.918

1.158

-0.828

-0.132

-0.015

-0.167

-1.284

-0.218

-0.822

1.000

748

.807

748

.909

921

748

782

748

.815

1.000

1.000

1.000

748

972

.818
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10 degree eccentricity, S1 Startvs S1_End

set size 6
S2_Startvs S2_End
S3 Startvs S3_End
S4 Startvs S4_End
10 degree eccentricity, S1 Startvs S1_End
set size 10

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

2112.5

2529.5

2043

2552.5

4503.5

5421

4606

4611

-0.648

1.135

0.372

2.355

0.871

0.159

-0.141

-1.580

.851

748

.900

748

.807

1.000

1.000

748

Significant level: *<0.05, **<0.01,***<0.001



Appendix J

Accuracy of Online learning session comparison in the evening group

Sum of z p
Parameter Session Comparison Rank (corrected)
3 degree eccentricity, S1 Startvs S1_End 1791.5 0.661 .851
set size 2
S2 StartvsS2_End 1625 -0.027 1.000
S3 Startvs S3_End 1594.5 -0.611 .851
S4 Startvs S4_End 1829.5 -0.668 .851
3 degree eccentricity, S1 Startvs S1_End 777.5 0.562 .853
set size 6
S2 StartvsS2_End 1336 0.919 .782
S3 Startvs S3_End 1169 -2.774 .748
S4 Startvs S4_End 593 -1.748 .748
3 degree eccentricity, S1 Startvs S1_End 4521 0.896 .797
set size 10
S2 StartvsS2_End 4087 0.186 .997
S3 Startvs S3_End 3897 -1.512 748
S4 Startvs S4_End 3824 -1.861 .748
S1 StartvsS1 End 1083.5 -1.268 .748
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5 degree eccentricity,

set size 2

5 degree eccentricity,

set size 6

5 degree eccentricity,

set size 10

10 degree eccentricity,

set size 2

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

S1 Startvs S1_End

1066.5

1073

1169

896

1190

1242.5

1105.5

3800

4541

4595

3573

2572.5

1834

1810

2200

2285.5

0.158

0.793

0.480

-0.063

-1.053

0.000

-1.173

-1.227

0.581

1.109

-1.240

-0.363

-0.406

-1.410

1.808

0.992

1.000

.829

.892

1.000

748

1.000

748

748

.851

748

748

.906

.892

748

748

748
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10 degree eccentricity, S2_Startvs S2_End

set size 6

S3 Startvs S3_End

S4 Startvs S4_End

10 degree eccentricity, S1 Startvs S1_End
set size 10

S2_Startvs S2_End

S3 Startvs S3_End

S4 Startvs S4_End

2096.5

2172.5

2516.5

4946

4394

4620.5

5062.5

-0.914

0.312

-1.338

0.569

0.272

2.642

-0.463

782

916

748

.851

941

748

.892

Significant level: *<0.05, **<0.01,***<0.001
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Appendix K

RT and Accuracy of offline learning session comparison in the morning group

Parameter

Session

Comparison

RT

Accuracy

Sum of

Rank

Z

p

(corrected)

Sumof Z
Rank

p

(corrected)

3 degree
eccentricity,

set size 2

3 degree
eccentricity,

set size 6

S1 Endvs
S2 Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2_ Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

1975

2528

2425

976

1447

0.694

0.690

0.805

0.444

1.082

.765

.765

725

.841

581

2456.5 0.257

2675 -0.492

2600 1.787

1264.5 -2.075

1465.5 -0.500

.946

.892

748

748

.892
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3 degree
eccentricity,

set size 10

5 degree
eccentricity,

set size 2

5 degree
eccentricity,

set size 6

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2 Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2_ Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2_ Start
(Offline Wake)

1168

4232

4856

5014

1738

2561

1738

951

1.096

1.101

2.039

1.846

-0.609

1.351

-0.029

0.296

.580

.580

251

.308

.780

.506

.996

.891

1382.5 -0.443

49245 -1.733

5101.5 0.008

5362.5 -0.332

2135 -0.730

2444 1118

1965.5 -0.260

1156 -0.384

.892

748

1.000

916

.851

748

.946

.892

306



5 degree
eccentricity,

set size 10

10 degree
eccentricity,

set size 2

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2 Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2_ Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

966

1173

3481

3639

3518

1593

1488

1565

1.181

1.096

1.771

1.317

0.681

0.781

0.853

-0.597

544

.580

332

.507

.765

727

.698

782

941 -1.495

1223.5 0.978

3941.5 -1.480

3719.5 0.557

3907

0.766

1835

0.446

1490

0.122

1821 0.878

748

748

748

.855

.850

.892

1.000

.804

307



10 degree
eccentricity,

set size 6

10 degree
eccentricity,

set size 10

S1 Endvs
S2_ Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

S1 Endvs
S2_ Start
(Offline Wake)

S2 _Endvs
S3 Start
(Offline Sleep)

S3 _Endvs
S4 Start
(Offline Wake)

2152

1929

2153

3725

4494

4220

2.149

1.881

0.650

0.498

-0.732

-1.099

.209

301

767

.824

744

.580

1835 -0.818

1490 -1.368

1821 -1.069

4710 -1.378

5467 -0.671

5233.5 1.110

.818

748

748

748

.851

748

Significant level: *<0.05, **<0.01,***<0.001



Appendix L

RT and Accuracy of offline learning session comparison in the evening group

RT

Accuracy

Session Sumof Z p Sum of

Parameter Comparison  Rank (corrected) Rank

p

(corrected)

3 degree S1 _Endvs
eccentricity, set S2 Start

size 2 (Offline Wake) 1642 -0.083 .981 2687.5

S2_Endvs
S3 Start
(Offline Sleep) 2052 0.411 .847 2596

S3_Endvs
S4 Start
(Offline Wake) 2540 1.170 .548 2737.5

3 degree S1 _Endvs
eccentricity, set S2 Start

size 6 (Offline Wake) 772  0.748 734 1054

S2_Endvs
S3 Start
(Offline Sleep) 1180 0.129 .968 1596

-1.263

-0.773

0.539

-2.279

0.651

748

.847

.869

748

.851
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3 degree
eccentricity, set

size 10

5 degree
eccentricity, set

size 2

5 degree
eccentricity, set

size 6

S3_Endvs
S4 Start
(Offline Wake)

S1 _Endvs
S2 Start
(Offline Wake)

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

S1 _Endvs
S2 Start
(Offline Wake)

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

S1 _Endvs
S2 Start
(Offline Wake)

1256

3178

3443

4161

1230

1251

1656

632

-0.223

2.303

2.000

3.064

0.635

-0.513

2.281

1.132

918

.189

.261

.054

75

.824

193

573

1353 1.923 748
4113 -1.277 748
4201.5 0.067 1.000
4357 1.231 748
1547 -0.441 .892
1497 -1.877 748
1598 0.929 782
814 0.171 1.000

310



5 degree
eccentricity, set

size 10

10 degree
eccentricity, set

size 2

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

S1 _Endvs
S2 Start
(Offline Wake)

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

S1 _Endvs
S2 Start
(Offline Wake)

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

1029 0.062

1079

1.189

2624

1.066

2792

1.290

2745

2.157

855 0.225

1064 0.479

1313 0.249

.987

541

.586

511

.209

918

.829

912

1260

1291

3240.5

3280

3169

1077.5

1200.5

1348.5

0.384

0.256

-0.622

-1.109

-0.655

0.253

-0.520

1.071

.892

.946

.851

748

.851

.946

.885

748
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10 degree
eccentricity, set

size 6

10 degree
eccentricity, set

size 10

S1 _Endvs
S2 Start
(Offline Wake)

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

S1 _Endvs
S2 Start
(Offline Wake)

S2_Endvs
S3 Start
(Offline Sleep)

S3_Endvs
S4 Start
(Offline Wake)

1309

1422

1806

3940

3139

3377

1.802

-0.119

2.885

-0.127

-0.536

0.555

320

972

.078

.968

.819

.804

1719.5

1655.5

1781

5785

3959.5

4248.5

-0.992

-0.312

0.219

-0.569

-3.040

-0.592

748

916

972

.851

748

.851

Significant level: *<0.05, **<0.01,***<0.001
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Appendix M: Link to Experimental Scripts and Data

https://cf.sharepoint.com/:f:/r/teams/ProjectHCP/Shared%20Documents/ZhishanLiu

?csf=1&web=1&e=ayEBFF
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