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Thesis Summary 

This thesis examines the complicated relationship between learning and brain 

plasticity, as well as the human brain's unique ability to learn and adapt. Building on 

previous research, the thesis aimed to examine online, offline wake, and offline 

sleep learning. The objective is to advance our knowledge of this complex 

relationship. The effects of sleep on learning consolidation, its role in modifying 

cognitive abilities, and the inter-individual variability in these processes are still not 

completely understood in the literature today. Our research aims to fill these gaps, 

with the hope that it will have a positive impact on training and therapy approaches, 

thereby enhancing cognitive and learning capacities. 

 

The first empirical chapter provides an in-depth exploration of a backward masking 

task, a learning task that integrates online learning with sleep. Our findings shed new 

perspectives into the process of learning and the possible brain mechanism involved 

in the backward masking learning by indicating a sleep-dependent component. This 

work contributes by outlining the brain mechanisms underpinning sleep-dependant 

learning, a topic that has previously received little attention in the literature. 

 

Using a method comparable to backward masking learning, our next chapter 

explores the effect of sleep on selective attention. The aim is to clarify the state-

dependent components essential for optimal task performance by contrasting the 

sleep response to both learning tasks. This section builds on the knowledge gap by 

expanding our understanding of how sleep impacts learning and cognition. 

 

In Chapter 4, the thesis delves into the analysis of inter-individual differences, aiming 

to uncover the links between learning variability and discrepancies in brain structure, 

particularly in the domains of perceptual and motor learning.  



 III 

 

This thesis examines the potential benefits of incorporating sleep-in learning 

consolidation in detail. The aim is to advance knowledge of the adaptive learning 

capacity of the human brain and to open up opportunities for new treatments and 

educational approaches that improve cognitive and learning skills. 
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Glossary 

 

The following abbreviations are used throughout the thesis: 

 

AC  Attentional Capture 

 

CSF  Cerebrospinal Fluid  

 

CS  Conditioned Stimulus  

 

DV  Dependent Variable  

 

DWI  Diffusion-Weighted Imaging 

 

EEG  Electroencephalogram 

 

ERP   Visual Evoke Potential  

 

FEFT  Finding Embedded Figures Test 
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fMRI  Functional Magnetic Resonance Imaging  

 

GM  Grey Matter  

 

IV  Independent Variable  

 

LL  Lower Left 

 

MPRAGE  Magnetization-Prepared Rapid Acquisition Gradient-Echo  

 

MRI   Magnetic Resonance Imaging  

 

NMR   Nuclear Magnetic Resonance  

 

NREM  Non-rapid Eye Movement  

 

REM  Rapid Eye Movement  

 



 X 

RF  Radio Frequency  

 

ROI  Region of Interest  

 

RT   Reaction Time  

 

SD  Sleep Deprivation  

 

SHY  Synaptic Homeostasis Hypothesis  

 

SNR  Signal-to-Noise Ratio  

 

SPM  Statistical Parametric Mapping 

 

SWS  Slow Wave Sleep  

 

TDT   Texture Discrimination Task  

 

US  Unconditioned Stimulus  
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UR  Upper Right  

 

VBM  Voxel-Based Morphometry 

VPL  Visual Perceptual Learning  

 

VS  Visual Search  

 

WM  White Matter  
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1.1. General Introduction  

 

In the field of psychology, the definition of "learning" has been a broad 

subject of controversy and is currently being debated due to the potential 

ambiguity of the term. From a behaviourist perspective, however, "learning" is 

generally understood as changes in behaviour or knowledge brought about by 

experience that have lasting effects (De Houwer et al., 2013). From a 

cognitivist perspective, however, "learning" is not just a behavioural influence; 

instead, it refers to skills acquired through mental processes. Thus, cognitive 

psychologists define "learning" as understanding memory and the 

mechanisms of problem solving and memory (Sweller, 1988). Furthermore, in 

the field of neuroscience literature, learning is highly related to the discussion 

of plasticity, which is the brain’s ability to change the structure and function in 

response to learning (Kolb & Gibb, 2011). 

 

A related concept lies within this broad field is perceptual learning, which is 

the long-term improvement in perceptual skills through practice or experience. 

Perceptual learning in contrast to general learning, represents an increased 

sensitivity to visual, auditory or other sensory stimuli, typically achieved through the 

repetition of complex tasks (Ahissar & Hochstein, 1997; Kahalani-Hodedany et al., 

2024; Su et al., 2014). These definitions provide the theoretical foundation for 

understanding the interplay between learning and perceptual processes. This is a 

crucial concept central to this thesis, which examines how sleep facilitates the 

consolidation of perceptual and attentional learning. 

 

Building on from this theoretical understanding, advances in neuroscience 

provided critical insights into the complex and dynamic neural structures that 
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comprise the human brain. It is widely accepted in the literature that the human 

brain is not a static organ; instead, it is constantly changing in response to both 

external and internal factors throughout a person’s lifespan (Draganski & May, 2008; 

Kolb & Gibb, 2011; Pascual-Leone et al., 2005). Studies relating to brain 

development, learning, memory, and sleep have shed light on the ways in which the 

brain's multiple structures adjust to and anticipate changes in their external 

surroundings (Klinzing et al., 2019; Tamaki et al., 2020a). 

 

Plasticity itself is a central construct for this thesis. Within the literature, it is 

well established that as people age, the connection and development of the brain 

become ‘fixed’ or less flexible, which means that learning new things or adapting to 

change becomes more difficult. Children, for instance, were expected to learn a new 

language more easily because their brains were still growing, while for adults, their 

brain paths were already ‘set in place’ (Hartshorne et al., 2018). However, the ability 

for the adult brain to change and adapt does not disappear. Recent research has 

demonstrated that learning may alter the brain and that many social and cognitive 

skills persist throughout adulthood (Hertzog et al., 2008; Kempermann et al., 2018; 

Kwok et al., 2011). Higher-level cognitive skills, including working memory, logical 

thinking, and attentional control, remain flexible well into adulthood, with plasticity 

possibly intensifying during adolescence (Bang et al., 2023; Sampaio-Baptista et al., 

2018; Selemon, 2013; Watanabe & Sasaki, 2015). The main evidence supporting this 

theory comes from studies on visual perceptual learning (Bang et al., 2023; Hofer et 

al., 2006) and visual deprivation trials (Q. S. Fischer et al., 2007; Sato & Stryker, 

2008), which include both temporary and permanent blindness. These studies 

demonstrated that life events and environmental pressures, such as performing 

visual tasks or insufficient visual information, can lead to alterations in the visual 

system. Synaptic alterations, such as changes in synaptic density and the features of 

receptor fields, along with wider brain network changes that extend beyond distinct 

sensory pathways, are examples of the types of changes that can occur at many 

different levels (Karmarkar & Dan, 2006). This evidence from previous research has 

demonstrated that learning is not limited to one area; instead, it has long been 
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proposed with a multifaceted idea. Many review papers generally propose that 

learning is viewed as a dynamic process that spreads across many domains, including 

perceptual, cognitive and motor, emphasising its capacity for change and 

implementation (Craik & Bialystok, 2006; Green & Bavelier, 2008). 

 

The term "brain plasticity" is commonly used in the fields of both psychology 

and neuroscience to describe the outstanding ability of the brain to reorganise itself 

in response to new challenges and experiences. The concept goes beyond changes in 

the structure of the brain (structural plasticity), but also functional plasticity, which is 

referring to modifications in the way the brain process, as highlighted in the review 

by Pascual-Leone et al. (2005). Empirical evidence supporting the idea of plasticity 

was provided by Draganski et al. (2004) in their longitudinal study, which found that 

individuals who learned a juggling task showed changes in grey matter (GM) within 

the motion-sensitive visual areas. More recent research has extended these findings 

to white matter (WM) adaptations. For instance, research using diffusion tensor 

imaging (DTI) and functional magnetic resonance imaging (fMRI) to assess WM 

neuroplasticity in healthy adults before and after exercise training. It focuses 

specifically on non-dominant hands, as it can observe neuroplasticity changes in the 

corpus callosum and internal capsule. The results showed that changes in DTI 

fraction anisotropy and low-frequency oscillation (LFO) in both WM regions were 

associated with improved behaviour of the non-dominant hand (Frizzell et al., 2022). 

The findings from this study provide additional information on the structural and 

functional aspects of WM changes following learning. 

 

According to the previous research, the brain has the ability to adapt and 

modify itself in response to demands and challenges, which can lead to the 

development of new skills, behaviours, and memories (Draganski et al., 2004; Kolb & 

Gibb, 2011). One of the factors believed to influence brain plasticity and learning is 

sleep (Dang-Vu et al., 2006; Nissen et al., 2021; Ruch et al., 2021). The intricate 

connection between sleep and these processes plays a role in facilitating sleep 



 5 

functions. Previous reviews have synthesised evidence into the systems 

consolidation framework, showing correlation between sleep and the development 

of changes in the human brain (Krueger et al., 1995; Walker, 2005). This frameworks 

proposed that during sleep, acquired information is first being processed, then 

integrated, followed by consolidation under some circumstances., thereby 

enhancing its potential for long-term retention in memory (Diekelmann & Born, 

2010; Ngo et al., 2020).  

 

Although sleep is indeed influential, it does not work in isolation and there 

are other factors that also contribute to learning and brain plasticity, such as 

individual’s feelings, cognitive difficulties, and stimuli from the environment (Tyng et 

al., 2017; Wiest et al., 2022). Although there is a lot of research that links sleep, 

learning, and plasticity, there are still gaps in our understanding of when sleep 

results in gains that are only useful in one place compared to those that can be used 

in many places. Some studies indicate greater specificity. For instance, 

enhancements in the TDT are often restricted to the training visual position and 

orientation (Karni & Sagi, 1991; Schwartz et al., 2002). However, under different task 

conditions or extensive training, partial transfer across visual field locations has been 

observed (Xiao et al., 2008). Similarly, motor learning tasks exhibit both local 

consolidations, associated with the training sequence, and, in specific contexts, 

generalisation to untrained sequences or effectors (Korman et al., 2003). It is, 

therefore, an open and important subject to figure out what conditions 

sleep contributes to that help with this generalisation. Further investigation is 

still needed in order to build a complete picture of the complex connections that are 

present between sleep and other factors that could possibly influence brain 

development. The development of better methods to enhance memory and learning 

in individuals will be dependent on the development of comprehensive approaches 

that include all these interconnected factors. The insight and findings provided in 

this thesis have an opportunity to help with the development of more efficient 

learning styles that take advantage of the brain's natural ability for adaptation in 

several domains, including sleep. 
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Gaining insight into the relationship between learning, brain plasticity, and 

sleep plays an important role in the field of psychology. The main goal of this thesis 

is to further develop our comprehension of the relationship among these three 

components and aims to address the gap mentioned in the previous section. 

Understanding these links is crucial, as they serve as the basis for investigating 

fundamental concepts, research findings, and the consequences of this linked 

interaction. The interplay among these elements is complex, and encompasses 

characteristics that continuously evolve over time. A good example of this would be 

the fact that the process of learning may be directly influenced by both how much 

sleep and the quality of sleep, and this in turn has an effect on the ability of the brain 

to change and adapt. The degree of plasticity in our brains may also have an 

influence on how individuals learn as well as how sleep operates in the body. This is 

in addition to the fact that the opposite is also true. When it comes to learning 

initiatives, methods of treatment for brain injuries, and therapies for sleep-related 

cognitive difficulties, it is crucial to have a deeper understanding of this recurrent 

link since it has substantial implications. It is important to note that all of these 

consequences are interdependent and interrelated. 

 

Although the empirical chapters in this thesis do not involve direct brain 

measurements, the thesis supports a psychobiological perspective. In other words, 

behavioural outcomes are understood through psychological models, such 

as attentional and cognitive explanations of perceptual learning (Mitchell & Hall, 

2014), as well as neurobiological frameworks, such as restructuring models and 

systems consolidation. Improvements seen offline after sleep are seen as 

behavioural proof that consolidation processes are effective, while gains that 

happen immediately after learning are seen as support for local reorganisation. 

 

The rationale for the thesis, therefore, leads to three interconnected 

objectives. First, to investigate the degree to which perceptual and attentional 
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learning is specific to the trained stimuli and locations instead of applying to 

untrained stimuli. Second, to determine if sleep enhances offline enhancements in 

contrast with comparable periods of wakefulness. Third, to determine whether 

these behavioural consequences are more effectively explained by behavioural focus 

models or neurologically based consolidation theories, thus explaining the 

mechanisms that underlie consolidation and generalisation. In trying to accomplish 

these objectives, the current chapter offers a theoretically grounded and empirically 

validated explanation of the role of sleep in regulating the appearance of plasticity in 

learning. Starting with a comprehensive evaluation of each characteristic that is 

being addressed on its own in order to first build a concrete understanding of the 

basic concepts. Next, will look into previous research studies, reviews, and 

conceptual frameworks that indicate how neuroplastic changes within the brain 

contribute to the process of learning, as well as how these processes are influenced 

by the potential influence of sleep. 
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1.2. Learning and Brain Plasticity 

1.2.1. Brain Plasticity  

 

Reviews often associate the term "plasticity" with the nervous system. 

However,  it is not often defined and usually refers to changes in neural structure 

and function that are commonly classified as "brain remodelling" (Merzenich et al., 

2014). According to the review article published by Innocenti (2022), neuroplasticity 

is fundamental to the existence of the nervous system because it transforms 

environmental inputs into behavioural outputs, at the same time it goes beyond 

simple reflexes to allow the nervous system to be actively shaped and modified by 

these environmental inputs. In the late 19th century, scientists proposed that the 

individual brain adapts in a specific way, which sparked interest in these phenomena 

(Denes, 2015). This concept was revolutionary because at the time the structure of 

the brain was static. Moving forward, more and more researchers, such as Cai et al. 

(2014) and Zatorre et al. (2012), have described that the nervous system has the 

ability to change the structure and organisation of structures, as well as their 

functions in response to experience, trauma, or learning, suggesting that the human 

brain is not unchangeable or static. In the current decade, researchers have 

developed new approaches and perspectives on the plasticity of the brain after 

exploring the concept more and more. Merzenich et al. (2014) argued that 

researchers once thought that plasticity could only happen during the pregnancy 

stage and the first few years of development. Multiple studies from the 20th century 

and more current research indicate that the brain is still plastic at any age (Erickson 

et al., 2013; Lövdén et al., 2013; May, 2011; Schmidt et al., 2021). 

 

In an animal study conducted by Yang et al. (2014), they found that the 

performance of those who slept after completing a motor learning exercise 

increased, and their brain activity patterns changed, demonstrating the plasticity of 
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their brains. The researchers employed a technique known as two-photon imaging 

to observe the formation of dendritic cell spines in the motor region of mice after 

they learnt new motor skills. According to their research, sleep after learning 

significantly increased the number of new dendritic spines that were generated 

compared to wake. They discovered that sleep plays a role in increasing the number 

of these dendrite spines compared to wakefulness. The findings from this study 

showcased the brain’s ability to also adapt in adulthood, highlighting the importance 

of sleep for promoting changes following learning. In another experiment conducted 

by Anguera et al. (2013), older individuals between the ages of 60 and 85 were 

engaged in a designed video game to improve their control, particularly multitasking 

abilities. Participants in the study practiced the video game at home over a one-

month period. The results showed that individuals not only improved gaming skills 

but also progression in other cognitive functions like sustained attention and 

working memory was also observed. Remarkably, these enhancements persisted for 

six months without any further learning, indicating that the game had a lasting 

impact on their cognitive abilities. Additionally, the prefrontal cortex (PFC), which is 

a region of the brain linked to cognitive control, was more active when the 

individuals were playing the game. This showed that learning influenced the patterns 

of brain activity in addition to improving cognitive function. This study highlights that 

the ageing brain remains capable of plastic changes, which was one of the first to 

offer causal evidence that playing video games might help older individuals' 

cognition. Again, suggesting the idea that the ability for the brain to change due to 

learning is not only available during a young developmental age, but the brain 

remains plastic even in a mature age. 

 

At a cellular level, neuroplasticity is the result of the interaction of several 

molecular and synaptic mechanisms that both remodel existing neural networks and 

create new ones (Citri & Malenka, 2008; Hogan et al., 2020). Synaptic plasticity 

refers to the ability of synapses, which are the connections between neurons, to 

vary in size (Magee & Grienberger, 2020). The phenomenon of synaptic plasticity 
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was initially seen in the hippocampus demonstrated by Bliss and Lomo (1973), who 

reported pre- and post-synaptic neurons were repeatedly and nearly simultaneously 

activated, it led to an enhancement of synaptic inputs at the stimulated junctions. 

This phenomenon being discussed is known as long-term potentiation (LTP). LTP 

works by strengthening the connection between neurons when they are consistently 

activated together, which enhances their communication (Bliss & Lomo, 1973). 

According to Bliss and Collingridge (1993), LTP serves as a process for memory and 

learning because it demonstrates the brain’s ability to adapt to experiences. For 

instance, when an individual repeatedly practices specific sequences while learning 

to play the piano, the synaptic connections between the neurons involved in that 

motor activity become stronger. Over time, these connections become more robust, 

allowing for more finger movements without conscious effort (Pascual-Leone et al., 

1995). This phenomenon were further expanded by Levy and Steward (1983), and 

subsequent research found that established that LTP functions as a universal process 

across several brain areas (Caporale & Dan, 2008; Malenka & Bear, 2004; Nicoll, 

2017). In contrast, long-term depression (LTD), has been investigated in many 

different regions of the brain which emphasis on the continuing decreases in 

synaptic strengths, believed to be essential to forgetting, pruning, and 

reorganisation (Lovinger & Abrahao, 2018). The functional importance of LTP and 

LTD is evident in skill learning studies. For instance, Pascual-Leone et al. (1995) 

demonstrated, using transcranial magnetic stimulation (TMS) mapping, that piano 

practice in new learners altered motor cortical representations of finger movements, 

corresponding with the LTP-induced enhancement of motor circuits. On the other 

hand, LTD ensures that connections that are not working as well are weakened, 

making room for new learning to occur. These processes together demonstrate how 

alterations in synapses are responsible for forming memories, learning new skills, 

and changing behaviour. Overall, LTP and LTD work together simultaneously to 

control the strength of synaptic connections within the human, where LTP 

strengthens the connections, allowing for the improvement of forming memories. 

LTD weakens the less active connections, leading the brain to clear out information 

that is not in use, which allows spaces for new learning, highlighting the idea that, 

through this cycle of process, the brain can learn, adapt, and optimise learning.  



 11 

 

Synaptic plasticity is also facilitated by the growth and contraction of 

dendrites, the lengthening of neurons that receive communications from other 

neurons, and the formation and destruction of synapses (Hotulainen & Hoogenraad, 

2010; Kirchner et al., 2025). Therefore, the brain is capable of adapting to new 

knowledge and experiences because of this structural remodelling of neuronal 

circuits that may occur from learning (May, 2011). Cai et al. (2014) characterised 

neuroplasticity as "an innate property or ability for active lifetime learning and 

relearning." This point of view emphasises the concept that the brain can adapt and 

evolve over the course of an individual's entire life, not just in early childhood but at 

any age. The authors emphasise that the flexibility of the brain is not limited by age 

but that it may peak during a particular stage of early development. This view 

supports the growing body of evidence that suggests that the adult brain remains 

plastic and capable of change in response to experience and learning. 

 

1.2.2. Connection Between Plasticity and Learning  

 

Learning involves changes in the brain's structure and function, going beyond 

merely cognitive processes. These changes, known as structural plasticity, highlight 

the brain's ability to alter its internal structure in response to learning experiences. 

An important body of research that supports the idea is Draganski et al.'s (2004) 

study, which was based on the hypothesis that repeated practice of a juggling motor 

task, which requires coordination skills, could cause changes in the GM volume 

within the human brain. This experiment utilised one learning group and one control 

group, and MRI techniques were employed to capture images of the brain. 

Participants were scanned at three different time points throughout the experiment: 

before learning, after three months of learning to juggle, and three months after 

completing the learning process. Results showed that juggling for three months, 
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participants showed a significant increase in GM in the mid-temporal region of the 

brain that is believed to be responsible for processes of complex visual motion (Zeki 

et al., 1991). Furthermore, after a three-month break from juggling, the participants 

still showed some identifiable changes compared to pre-learning, but there was a 

clear reduction in GM volume. This study suggests that learning motor skills such as 

juggling may lead to an increase in the amount of GM in certain areas of the brain. 

However, while the study reported structural changes, it did not explore the 

relationship between these changes and long-term learning or behavioural gains. 

Furthermore, the study did not have a direct measure of the functional outcome 

(i.e., what changes were observed during the task while the participant learnt), so it 

is unclear how structural changes lead to improved behavioural performance.  

 

Complementary evidence comes from studies of real-world expertise. 

Maguire et al. (2000) compared London taxi drivers with controls. The purpose of 

the study was to investigate potential effects of a high-intensity spatial navigation 

experience on brain structure, with a focus on the hippocampus, a region of the 

brain known to be involved in spatial memory. The researchers compared images of 

the brain anatomy of London taxi drivers who followed predetermined routes and 

those who often drove complex routes daily. Significant differences in posterior 

hippocampus size were found between taxi drivers and non-taxi drivers, suggesting 

that the cognitive demands of navigation may lead to structural changes in the brain. 

This study provides compelling evidence of the correlation between learning and 

brain plasticity. This finding supports the idea that the human brain undergoes 

structural changes in the aspect of performance experiences and environmental 

stress during learning. Mechelli et al. (2004) observed greater GM density in the lift 

inferior parietal cortex of bilinguals compared with monolinguals, suggesting 

structural changes resulting from proficiency in particular language. Gaser and 

Schlaug (2003) compared professionals (those who practice for at least an hour 

every day), amateur and non-musician groups. Findings shows that GM volume was 

greatest in professional musicians, moderate in amateur musicians, and lowest in 
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non-musicians across a variety of brain areas related to creating music, including 

motor, auditory, and visual-spatial regions. These studies provide strong support for 

the idea of plastic alterations in connection to long-term motor learning, which fills 

the gaps in Draganski’s study where no direct evidence of long-term outcome was 

provided. 

 

Recent study has built on these findings by examining the effect of time. 

Leipold et al. (2021), investigated the long-term musical ability and its impact on 

extensive brain networks, both anatomical and functional. The evidence provided by 

this study indicated that those who started studying music later in life had much 

fewer connection patterns than those who started earlier. It also suggests that the 

brain can change its anatomical and functional components dramatically within a key 

window of time when it is highly receptive to musical input. All things considered, 

the study contributes to the growing corpus of evidence supporting neuroplasticity, 

the hypothesis that the brain may restructure itself in response to experiences and 

learning. It highlights how remarkable it is that, even in adulthood, the brain can 

change both physically and functionally to learning music. The idea of neuroplasticity 

as a whole is supported by the body of research that points to the possibility that 

learning alters the brain's structure and function, which leads to the enhancement of 

our behavioural ability. As well as empathising the fact that the brain may still 

reorganise itself in reaction to unfamiliar situations and extensive practice, even in 

the time of maturity. 

 

However, while all the studies described above provide strong evidence that 

learning is associated with significant structural changes in the brain, they mostly 

concentrate on the online learning stages, which are those in which individuals are 

actively working on tasks. However, there is a knowledge gap in the literature when 

it comes to offline changes—those that take place during rest periods, such as sleep, 
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that serve a major role in memory consolidation and ongoing skill development. For 

instance, although changes in brain structure during active learning and practice are 

shown by Maguire et al. and Gaser and Schlaug's study, they do not examine how 

brain structures change during offline periods during which learning is reinforced. A 

growing body of research indicates that consolidation processes that take place 

offline, especially during sleep, are crucial for stabilising and improving learnt 

material (Diekelmann & Born, 2010; Stickgold & Walker, 2013). As a result, this lack 

of focus represents a critical gap, and try to bridge this knowledge gap by merging 

neurological explanations for learning processes with behavioural models, thereby 

offering a more comprehensive comprehension of learning processes. 

 

1.3. Learning  

1.3.1. Factors Contributing to Learning  

 

There is a large amount of evidence that demonstrates how various factors, 

such as environmental stimuli, cognitive commitment, and neurological changes, 

interact and influence the complex process of learning (Cheng et al., 2025; Song & 

Cai, 2024). Researchers in this field have emphasised the importance of the 

temporal component in relation to learning. It is not just determined by the time 

spent on an activity or task (online). The brain's capacity to reorganise neural 

networks and enable the consolidation and integration of recently acquired 

information into long-term memory systems depends on these offline times, 

especially sleep. 
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One of the conventional psychological models commonly used to explain 

online learning is the Rescorla-Wagner model (Recorla & Wagner, 1972). This model, 

originally developed to describe associative learning, posits that learning occurs 

when there is a discrepancy, or prediction error, between the expected outcome 

and the actual result. This model proposes that a person tends to learn more 

strongly when the prediction error is greater. One example of such an assumption 

comes from the idea of classical conditioning. Learn to associate a conditioned 

stimulus (CS), like a bell, with an unconditioned stimulus (US), like food. To start 

with, CS will not trigger any responses; however, when the CS is repeatedly paired 

with the US, it will begin to respond to the US based on the CS. Later, when the CS is 

presented without the accompaniment of the US, the prediction error becomes 

significant, and the expectation starts to change accordingly, thereby decreasing the 

prediction error over time. This means that when someone is frequently exposed to 

a stimulus, it will begin to lower their prediction error, which in turn will strengthen 

associative links and enhance perceptual skills within the context of perceptual 

learning. This model provides a strong foundation for comprehending online 

learning, which happens during active engagement with the learning stimuli. This 

model takes into account how real-time repetition, reinforcement and expectation 

violation influence learning. What this means in the PL context is that repeated 

exposure to specific inputs (e.g. visual features) can lead to a decrease in errors, 

which results in a refined sensitivity in perception. However, although the model can 

capture the online learning dynamics that occur during the learning session, it 

ignores offline activities that take place while an individual is asleep or is at rest, 

which are essential for integrating and consolidating what was learnt (Tucker et al., 

2020; Wamsley, 2022). As a result, although the Rescorla-Wagner model sheds light 

on how learning occurs instantly during active learning, it is unable to adequately 

explain how learning and memory increase during times of inactivity. 

 

Another intriguing model is the Mackintosh model (Mackintosh, 1975), which 

moves the emphasis from prediction error to selective attention, which is a 
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complement to the Rescorla-Wagner model. The Mackintosh model posits that 

animals will give greater attention to stimuli that reliably predict significant events 

and disregard those that do not. This model focuses on how learning efficiency 

might be impacted by how one allocates attentional resources. The Mackintosh 

model states that the predictive ability of stimuli affects how much attention is 

dedicated to learning about them, in contrast to the Rescorla-Wagner model, which 

hypothesises that learning happens as long as prediction mistakes remain. For 

instance, when a stimulus reliably indicates a significant occurrence, it attracts a 

person's attention more, thereby promoting more efficient learning. Conversely, 

individuals disregard stimuli with poor predictive value, leading to a decrease in the 

amount of information they retain. One example of this event is drivers' behaviour at 

traffic lights; while driving, the driver often pays more attention to traffic lights 

because they have important indications on whether can go or need to stop. 

However, in contrast, an individual may not pay too much attention to a billboard on 

the side of the road, as this is often less relevant to us. 

 

The theories mentioned above give a valuable framework for comprehending 

the concept of learning, but their underlying processes still differ. The Mackintosh 

model highlights how learners manage their attention by paying more attention to 

important stimuli, while the Rescorla-Wagner model is based on the idea of 

prediction error. Remarkably, neither model thoroughly considers the crucial role 

that offline consolidation processes—such as sleep—play in promoting long-term 

memory and adaptable application of newly learnt content. The previously 

mentioned difference emphasises the need for combining perspectives from 

psychological models of online learning with discoveries from neuroscience on 

offline consolidation. 

 

The finding that significant improvements in the execution of tasks often 

follow periods of rest or sleep, even in the absence of further practice, provided an 
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incentive for looking into offline learning mechanisms. The resulting theory asserts 

that the brain keeps processing and organising knowledge acquired during active 

involvement even during these offline times. It has been shown that learning offline, 

especially when sleeping, involves the reactivation of neuronal circuits used during 

learning, which aids in the reorganisation and reinforcement of synaptic connections 

(Stickgold & Walker, 2013). Based on various research approaches, including 

behavioural evaluations and polysomnography, these processes are thought to 

improve the integration and long-term retention of learnt content (Diekelmann & 

Born, 2010) 

 

A fundamental study that investigates the importance of sleep in learning 

was carried out by Karni et al. (1994), which explored how perceptual learning skills 

are acquired during sleep. In this experiment, six young adults were trained on a 

texture discrimination task before and after a normal sleep period or disrupted sleep 

at either REM or SWS. The findings revealed that perceptual skills were better 

absorbed after a normal sleep period, with a decrease of 23 ms in reaction time (RT) 

to stimuli; however, this significant improvement was not found in the REM or SWS-

deprived group, which instead led to a 19 ms gain in RT. This study demonstrated 

that different sleep stages, such as REM, are important for the consolidation of the 

learning task, as indicated by the improvement found in the non-sleep-deprived 

group. This study has notably provided information on isolating the effects of 

specific stages of sleep, giving strong support for the importance of REM in learning. 

This study also points to an important gap in the literature regarding the 

generalisability of the results to other types of learning tasks and long-term memory 

consolidation. 

 

Diekelmann and Born (2010) expanded this area of research by conducting 

an extensive review to look at the ways in which different sleep stages affect 

memory consolidation for motor and cognitive skills. Their analysis summarises the 



 18 

results of several studies in the field, suggesting that different sleep stages, such as 

rapid eye movement sleep and slow-wave sleep (SWS), can have multiple functions 

during consolidation. Studies have shown that REM sleep is more important for the 

consolidation of procedural memories (such as motor abilities) and emotional 

memories, while SWS sleep is critical for the consolidation of declarative memories 

(such as factual information). However, this review highlights another important 

process of declarative memory consolidation which is system consolidation, which 

occurs when neural patterns generated during learning are again active during SWS. 

On the other hand, REM sleep primarily contributes to synaptic consolidation, a 

process that fortifies synaptic connections, particularly in the context of procedural 

learning. This difference shows the difficult process of memory consolidation and 

shows how sleep supports the different components of learning, depending on the 

nature of the task that was learnt, and the specific sleep stage involved. Overall, the 

review paper emphasises that sleep is an important component of learning that not 

only maintains but also improves and reconfigures memory, which promotes the 

integration of recently learnt material into the larger cognitive network. 

 

Stickgold and Walker (Stickgold & Walker, 2005, 2013), have further 

advanced our understanding of sleep-dependent memory consolidation, which 

supports the above-mentioned viewpoints. Their findings suggest that sleep both 

stabilises memory and modifies it, enabling newly learnt content to be generalised 

and integrated into the framework of existing knowledge. In one study, participants 

were taught procedural (visual discrimination) and declarative (word learning) tasks. 

Following the training, participants were divided into two groups, with one group 

remaining awake and the other allowed to sleep. The results showed that sleep had 

a significant positive effect on participants' ability to complete the task, especially 

the procedural skills critical to REM sleep. According to Walker and Stickgold, sleep 

reorganises and consolidates memory traces, increasing the flexibility and 

adaptability of what is learnt for future use. This process greatly improves the 

effectiveness of learning in daily life. This finding highlights that sleep is not so much 
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a passive state but is more of an active state that directly supports learning, 

memory, and cognitive performance. 

 

Beyond sleep, another factor that contributes to learning is the different 

types of learning tasks, such as motor, perceptual, and attentional learning. It is 

believed that these types of learning tasks engage distinct neural networks and 

strongly depend on the task and the content (Yotsumoto et al., 2008). This suggests 

that task-dependency portraits the plasticity and adaptability of the learning 

process, where the nature of the task itself can affect specific brain regions and 

processes that are involved. Furthermore, individual differences also contribute to 

an important role in the outcome of learning. Cognitive abilities, biological makeup, 

and structural and functional differences in the human brain all contribute to one’s 

learning ability and the speed at which the learning occurs. For example, Kanai and 

Rees (2011) carried out a study with the purpose of examining the connection that 

exists between the anatomy of the brain and one's cognitive capabilities. The 

researchers concluded that individual variations in brain anatomy, particularly in the 

PFC, appeared linked to differences in cognitive abilities such as learning. Similarly, in 

a study conducted by May (2011) reviewed evidence relating to the impact of the 

brain's ability to adapt on learning. The review provided insights into how 

differences in brain plasticity could affect the speed and effectiveness of the learning 

process, with factors such as age, genetics, and prior experience shaping these 

outcomes.  

 

Furthermore, Takeuchi et al. (2011) expand this idea by exploring the 

relationship between differences in working memory (WM) function and more 

extensive cognitive abilities. They employed an fMRI n-back WM task and an 

alternative cognitive test to see if brain activity during WM could predict creativity. 

The research indicated that higher creativity scores were correlated with diminished 

task-induced deactivation in the precuneus, a component of the default mode 
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network (DMN) that is generally inhibited during challenging cognitive tasks (Mayer 

et al., 2009; Utevsky et al., 2014). This pattern suggests that individuals with 

higher creativity might have a broader attentional distribution, rather than 

completely suppressing DMN activity during a WM task. These results explain the 

influence of neuronal dynamics on WM and more complex cognitive tasks, 

emphasising the significance of inter-individual variability in shaping learning 

outcomes. 

 

Taken together, the findings from these studies provide credibility to the idea 

that different aspects of one's environment might affect one's ability to learn. The 

timing of learning, the individual variation of learning ability, and the ability to 

change the brain are all key aspects that play a part in the development of the 

learning process. Developing an understanding of these aspects can help optimise 

educational tactics and interventions to promote learning that is both effective and 

personalised. 

 

1.3.2. Time of the Learning  

 

Building on the understanding of the ways in which different contributors 

may influence skill learning, it is necessary to address a very fundamental 

component relating to learning, which is the time that learning occurs. This temporal 

characteristic influences the ability of an individual to take in, maintain, and use 

knowledge in different settings (Joiner & Smith, 2008). Broadly, learning can occur in 

two forms: online learning and offline. In this thesis, online learning is identified as 

the information participants pick up about the task while performing the activity. For 

the quick acquisition and development of new skills and information, this type of 

learning is essential (Doyon & Benali, 2005). Online learning is often related to real-

time brain activity, such as the cortex, which has an important role in the 
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development of skills (Doyon et al., 2009). For instance, Bavelier and Green (2019) 

carried out a study to look at how playing video games can influence cognitive 

functions, especially in attention and working memory. The participants in the study 

were split into two groups, where one group played action video games and the 

other group played non-action games. Cognitive performances were assessed before 

and after the sessions using some unrelated tasks, such as tests for attention and 

memory. The findings from the study highlighted that those who are in the testing 

group developed better cognitive flexibility, working memory, and attentional skills, 

with these benefits extending beyond gaming to other cognitive domains. This study 

supports the idea that engaging in action video games can enhance brain plasticity 

and cognitive function, facilitating cross-domain transfer of learnt skills. However, 

the long-term persistence of these effects remains uncertain, and further research is 

needed to explore their underlying neural mechanisms and applicability to other age 

groups. 

 

On the other hand, offline learning is identified as activities that take place 

after acquisition and during sleep or during wakefulness when participants are not 

doing the learning task (Tucker et al., 2020). The periods when an individual are 

awake but not actively working are known as offline wake periods. During these 

periods, information acquired during learning may be involuntarily reactivated, 

reorganised, and integrated into long-term memory networks (Tambini & Davachi, 

2019). Dewar et al. (2012) investigated this idea by evaluating the acquisition of new 

verbal memory in their study. Seven days following the learning session, they 

discovered that memory performance had significantly improved. They concluded 

that an offline wake period following learning allowed new memory traces to be 

more thoroughly integrated and, as a result, to be retained for a significantly more 

extended period. Similar findings from Craig and Dewar (2018) were observed, 

where they found that participants were much better at differentiating newly 

encoded target images from similar lure images when the learning took place 

following a 10-minute offline wake period. This finding emphasises that our cognitive 
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state during consolidation not only influences our memory retention but also affects 

the level of detail in our new memories. Both studies suggest a strong connection 

between the offline wake period and learning, as it helps prevent the loss of 

memories. 

 

Furthermore, Schlichting and Preston (2015) extended these findings by 

examining the effect of offline periods on learning generalisation. They trained 

individuals on a task that required them to associate specific stimuli with specific 

responses, followed by an offline interval. They found that the length of the offline 

period was positively correlated with individuals' ability to apply newly learnt skills to 

novel stimuli, suggesting the idea that the longer the offline interval, the better the 

learning and the more it can be consolidated and generalised. However, one of the 

limitations of this study is that it only focuses on one type of task, and it is not 

possible to conclude whether, if a different task were used, it would lead to a similar 

finding. 

 

When combined, these results provide compelling evidence that learning 

occurs throughout both online and offline phases. However, gaps remain relating to 

the specific brain processes that offline learning uses to combine different kinds of 

information, especially when it comes to complex real-world tasks. Filling up these 

gaps will help us develop a more sophisticated understanding of the roles that 

wakefulness and sleep play in the development and maintenance of skills. 
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1.3.3. Transfer of Learning 

 

Transfer of learning refers to how information or specific skills acquired in 

one context can be used in another context (Haskell, 2001). This concept has been 

extensively studied in the fields of psychology and education because it helps us 

understand how individual acquire and remember knowledge and skills (Schubert et 

al., 2014; Vleugels et al., 2020). This idea has strong applications in several fields and 

different aspects of our daily lives. For instance, the concept that driving a car can 

facilitate learning to drive a truck relies on the transference of motor skills between 

these two situations. Essentially, the ability to apply what have been learnt in 

situations enhances our learning process and adaptability. The transfer of learning 

encompasses aspects such as positive or negative transfer and near or far transfer. 

Positive transfer occurs when knowledge gained in one area positively affects 

performance in a related field (Müssgens & Ullén, 2015). Language learning is an 

intriguing example of this positive transfer because research have shown that 

learning one language may make learning a second language easier, especially if the 

two languages have similar linguistic characteristics (Abrahamse et al., 2013; Ortega, 

2008). In skill domains, action-video-game learning has also resulted in cross-task 

attentional benefits compared to non-action controls (Bavelier et al., 2012; Green & 

Bavelier, 2003), which supports the idea that learning can provide measurable 

performance improvements beyond the specific task learnt. Language learning is a 

interesting scenario, as it is natural to assume that learning one language may 

facilitate the learning of a second, particularly if the two languages share similar 

grammatical features. In fact, this form of transfer strengthens general learning and 

can speed up learning new skills based on what one already knows. In the perceptual 

domain, task design may limit or facilitate transfer: fundamental research indicates 

an important specificity of enhancement to trained features/areas, although 

“double-training” can promote transfer to untrained retinal locations (Xiao et al., 

2008). 
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In contrast, negative transfer occurs when the information hinders the 

performance of a future, related activity from the prior one. An example of such a 

transfer is when two tasks superficially resemble each other but differ in critical 

functioning aspects. In this case, the inappropriate transfer of rules or methods 

impairs the performance of the novel task (Bandura & Locke, 2003; Ni et al., 2023). 

According to Perkins & Salomon (2012), negative transfer comes into view during 

instances when the previously gained skills interfere with the process of learning 

something new. This interference often illustrates the critical problem that exists 

within the process of learning, whereby prior knowledge needs to be inhibited or 

changed as one learns something different. 

 

This then led into the discussion of another crucial element relating to the 

degree of transfer, which can be classified as either a near or far transfer of learning. 

When the new learning activity is quite comparable to the old one, near transfer 

occurs, facilitating an effortless transfer of skills (Wirth et al., 2025). Far transfer 

involves the process of adapting information or skills in situations that are very 

dissimilar from the initial learning environment (Barnett & Ceci, 2002). While near 

transfer is prevalent, far transfer offers greater challenges but offers the capacity to 

enhance innovation and problem-solving abilities in unfamiliar contexts. Empirical 

evidence of far transfer is uncommon; however it has been documented following 

intensive training or when tasks display shared latent processes (Green & Bavelier, 

2003; Xiao et al., 2008). 

 

As stated by the work of Torrey et al. (2010), the ability to transfer is crucial 

to enhancing learning efficiency, as it allows one to apply prior knowledge, thus 

reducing the requirement to relearn what has previously been learnt. The function 

of learning transfer is important; without the ability to transfer, all learning would be 

situation-specific, and significant repetition of previously learnt materials would be 

required, which is not an efficient way to learn. As a result, learning transfer is a 
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critical component of human learning, and its study is essential for designing 

effective learning environments. From a psychobiological standpoint relevant to this 

thesis, the process of transfer could depend on the consolidation of learning: offline 

processes, particularly sleep, can stabilise or reorganise representations, potentially 

facilitating generalisation under certain conditions (Borin et al., 2024; Conessa et al., 

2023; Drouin et al., 2023a; LaBonte-Clark et al., 2025). The study of learning transfer 

extends beyond the straightforward application of acquired information or skills in 

psychology. This highlights the value of understanding the transfer of learning and 

the process that additionally speeds up the learning process, but also helps 

individuals become more skilled at tackling complicated problems. The importance 

of learning transfer should not be overstated, as it is essential to how effectively 

individuals learn If the ability to transfer knowledge were absent, the acquisition of 

knowledge would be limited to specific situations, also requiring the process of 

repetitive relearning of previously acquired information in every new setting. 

 

1.3.4. Individual Differences in Learning and Transfer 

 

These studies, in general, demonstrate that differences in the brain's 

structure and function result in measurable differences in learning behaviours. For 

example, those who have stronger brain connections tend to be less likely to get 

mentally tired (van der Linden et al., 2003), better at doing more than one thing 

concurrently (Strobach et al., 2012), and learn motor skills faster (Ericsson et al., 

1993). Understanding such difference in individuals is important for learning, 

professional training, and therapy. Individualised methods that use an individual's 

cognitive abilities may be more successful than standardised approaches (Gkintoni et 

al., 2025).  
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Furthermore, these inter-individual differences also influence the behaviour 

of perceptual and attentional learning. On insightful review by Kanai and Rees 

(2011), provides meaningful evaluation into how structural differences in the PFC 

may predict individual differences in cognitive skills, especially in relation to learning 

and memory. The review suggests that differences in behaviour and cognition are 

linked to differences in anatomical traits such GM volume, and WM integrity, and 

cortical thickness. They also demonstrated that brain anatomy differences are not 

only external noise. Instead, they are a systematic contributor to individual 

differences in the effectiveness of learning, including recall and attentional control. 

Although Karni and Rees's review provided a significant theoretical framework, it 

mainly synthesises correlational findings, indicating that causal mechanisms require 

examination through focused empirical studies. 

 

Gur et al. (2020) carried out research to examine if differences in GM volume 

could predict cognitive skills. Using structural MRI, they demonstrated that 

differences in GM across frontal and parietal regions was significantly correlated 

with cognitive ability and working memory capacity. This research offered 

substantial evidence for the "parieto-frontal integration theory" of intelligence, 

indicating that individuals who have enhanced anatomical resources in these areas 

are more successful at acquiring and applying knowledge. However, given that it 

uses a correlational design, it was unable to determine if GM differences were 

intrinsic or it was a result of previous learning experiences. Takeuchi et al. (2011) 

provided additional evidence by examining the potential of working memory 

learning for producing functional and structural changes in the brain. Their 

participants underwent intense mental calculation training during MRI scanning. The 

findings shows that learning can improve mental calculation significantly which was 

accompanied by increase in GM volume within the PFC and parietal region, as well 

as leading to stronger connectivity between these areas. This study expanded 

beyond correlational methods and demonstrated that learning can induce changes 
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within the brain and providing a potential mechanism for the development of 

individual difference over time. 

 

Verghese et al. (2016) went beyond this work to examine the relationship 

between PFC structure and multitasking skill. Conclusive results showed that 

individuals who had larger volumes of the PFC were able to reach much higher 

degrees of cognitive flexibility and multitasking at post-training. This study aimed to 

identify how changes in the structure of the PFC affect not only base levels of 

cognition but also the ability to continuously learn. The researcher quantified PFC 

volume using MRI. The results showed that the larger the PFC, the greater the 

improvement in multitasking skills after training. These findings are particularly 

important at the behavioural level in that the enlarged PFCs would suggest that 

individuals may respond well to certain cognitive training, such as multitasking or 

shifting-attention kinds of tasks. This emphasises the importance for research to 

take into consideration individual differences in the development of interventions 

for cognitive training. It suggests here that cognitive training should be performed in 

relation to the structural capacity of the learner's brain, rather than assuming a one-

size-fits-all approach for higher efficacy of the intervention. 

 

In fact, Scholz et al. (2009) examined the WM change due to training as the 

predictor of gains in cognitive performance. They investigated the possibility that 

WM plasticity resulting from training can predict improvements in learning 

performance. DTI scanning was done to create images for participants both prior to 

and following their learning regarding the visuospatial and motor tasks. Scholz et al 

found that there was a significant change in WM organisation, especially within the 

posterior intraparietal sulcus, which was associated with task performance 

improvement. Individuals showing more efficient WM connectivity after training 

performed better in both visuospatial and motor tasks, indicating that WM 

reorganisation might be an important sign in learning and memory. This finding 
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reinforces the importance of understanding neural plasticity in relation to both 

cognitive psychology and informing strategies in behavioural training, such as in skill 

acquisition within sports or rehabilitation, for example. These WM changes 

underline the fact that the timing and structure of the programs are important for 

maximum cognitive improvements, suggesting that frequent and well-structured 

practice sessions may improve learning outcomes.   

 

Together, these studies show that individual differences in brain structure 

and function are important to the field of psychology at the behavioural level 

because these neurological differences translate into real-world differences in 

learning behaviours. For instance, individuals with higher neural connectivity show 

resistance to cognitive fatigue, multitasking ability, and an increase in the rate of 

motor skill learning. With this realisation, educational psychologists and trainers can 

construct personalised approaches that leverage the cognitive strengths and 

weaknesses that an individual possesses. An approach like that gives way to 

neurological research into actionable strategies that affect behaviour—through 

academic settings, through professional training, and through therapeutic 

intervention.  

 

This research enables the field of behavioural psychology to recognise that 

differences in learning are not just about the content being learned but are also 

about how the brain processes and consolidates that information. Behavioural 

interventions that take such neurological underpinnings into account will likely result 

in successful learning. While all the above-mentioned studies in this section provide 

insights into the neuroanatomical basis of individual differences in learning, the true 

importance of these studies lies in their implications for behaviour. These findings 

bridge neurological and behavioural levels, providing practical application to how to 

understand, teach, and train individuals. In other words, it should be recognised that 

learning cognitive tasks involves differences and complexity in individuals. This thesis 
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adds to the existing literature by investigating the behavioural manifestations of 

these differences, with a particular focus on online and offline learning processes. 

Comprehending these differences may facilitate targeted interventions that enhance 

learning outcomes, especially for individuals encountering difficulties in skill 

acquisition. 

 

1.4. Role of Sleep in Learning and Plasticity 

 

The field of sleep research commonly uses the electroencephalogram (EEG), a 

tool that analyses brain electrical activity. EEG works by capturing brain wave 

frequencies and provides insights into how the brain functions (I. G. Campbell, 

2009). Generally, researchers use EEG data to identify patterns of brain activity that 

change as an individual transition from being awake to falling asleep. During 

wakefulness, the EEG readings primarily consist of frequency brainwaves with 

amplitudes indicating an alert and focused cognitive state. However, when 

approaching sleep, these brainwave oscillations undergo shifts (Hori, 1985). Usually, 

at the beginning of each sleep cycle, there is a decrease in head wave frequencies. 

The sleep cycle consists of five phases that repeat four to five times throughout the 

night and serve purposes in restoring and rejuvenating our bodies. These phases 

involve coordination between systems and are crucial for overall health and well-

being. A typical sleep cycle goes back and forth between non-rapid eye movement 

(NREM) and rapid eye movement (REM) sleep four to five times a night (Patel et al., 

2025). Each cycle supports different physical and mental functions (Sazgar & Young, 

2019). 

 

NREM and REM are two states that occur during sleep (Le Bon, 2020). NREM 

light sleep corresponds to the first stage of the sleep cycle. During this stage, 

characterised by alpha waves with a frequency of 8-13 Hz and high amplitude, you 
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transition between being awake and asleep. As you enter stage two, sleep spindles 

emerge, which refer to bursts of repetitive brain wave activity at 10-12 Hz (Dotto, 

1996). NREM stages three and four are sometimes referred to as "slow-wave sleep" 

(SWS). During this time, low frequency (up to 4 Hz) and high amplitude delta waves 

will characterise the reduced spindle production. REM sleep, in contrast, is the fifth 

stage and is distinguished by atonia and rapid eye movement (Spencer, 2013). The 

stage of sleep known as REM is when people dream, and the brain activity related to 

this period is relatively similar to that of waking individuals. REM sleep also causes 

the paralysis of all bodily muscles, except those necessary for breathing and 

circulation. REM sleep can also be referred to as paradoxical sleep, due to its unique 

combination of enhanced cerebral activity and decreased muscle tonicity (Luppi, 

2018). Despite the idea that there are still many theoretical disagreements regarding 

the significance of both REM and NREM sleep for learning and memory (Siegel, 

2001), REM sleep has been proposed to be a unique state that may support learning, 

memory-related functions and plasticity (Colten & Altevogt, 2006). 

 

While there is ongoing discussion regarding the different roles of NREM and REM 

sleep in memory processes, growing research indicates that they may offer 

complementary contributions. Wagner et al. (2001) offered direct empirical data 

demonstrating that REM-rich sleep explicitly improves the consolidation of 

emotional memories. Participants studied both emotional and neutral text passages 

and were then assessed following intervals of either early sleep (marked by SWS), 

late sleep (marked by REM), or equivalent wake periods. Recall was considerably 

better post-sleep compared to wakefulness; notably, late sleep enhanced in REM 

preferentially improved memory for emotional texts relative to neutral ones. These 

findings indicate that REM sleep facilitates the processing of emotionally significant 

information, presumably through amygdala–hippocampal connections, although the 

study was limited to spoken materials. More recently, Shuster et al. (2024), 

discovered new REM electrophysiological signatures related to cognitive processing 
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in humans, strengthening the idea of connection between REM activity and memory 

integration. 

 

Given the diverse roles that the various phases of sleep play, understanding how 

sleep influences brain plasticity and learning can be challenging. Specifically, SWS 

has been linked to the retrieval of memory, which involves recalling events and 

information. Diekelmann and Born (2010), in a comprehensive review, suggest that 

during SWS, there is a replay within the hippocampal-neocortical dialogue of the 

learning-related events in the brain, leading to memory consolidation and 

strengthened connections. On the other hand, REM sleep is believed to be crucial for 

consolidating information, often accompanied by vivid dreaming (Stickgold, 2005). 

Animal research supports this model: Wilson and McNaughton (1994) examined 

hippocampal place cells in rats navigating a maze and observed that the same 

activation patterns were reactivated during subsequent SWS period, indicating a 

replay mechanism for memory consolidation.  

 

Furthermore, the review conducted by Rasch and Born (2013) highlighted the 

important function of stage N2 sleep spindles in NREM sleep. It has been suggested 

that these brief bursts of brain activity, called spindles, may serve an informational 

transfer function from the hippocampus—a brain structure described as the centre 

for encoding information in short-term storage—through to the neocortex—the 

brain structure responsible for storing information in long-term storage. Maybe one 

important indication of the occurrence of spindles during sleep plays a critical role in 

the effective consolidation of memories, further highlighting how stages of sleep 

interact with cognitive functions.  

 

These findings together show that sleep is not a passive state but an active 

biological event that promotes memory consolidation, plasticity, and the transfer of 
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learning. SWS seems to play a role in hippocampus replay and consolidating 

declarative and emotionally important information, while REM plays a role in 

synaptic consolidation and learning procedural skills. Sleep spindles, mainly when 

observed in clusters, have been recognised as a biomarker for both consolidation 

and transfer between different types of sleep. These results align with 

psychobiological concepts, especially systems consolidation theory, and provide a 

framework to evaluate the role of sleep for promoting task-specific consolidation 

compared to broader generalisation. The significance of sleep in perceptual and 

attentional learning is particularly relevant to this thesis. REM-dependent 

consolidation may facilitate improvements in perceptual discriminating tasks, but 

NREM spindle activity may play a role in attentional control and the transfer of skills 

across contexts. The psychological and biological models of sleep-dependent 

consolidation offer a justification and theoretical framework for the subsequent 

empirical chapters that follow, which investigate the impact of sleep on the 

specificity and transfer of perceptual and attentional learning. 

 

1.4.1. The Need of Sleep  

 

The usual sleeping pattern is typically characterised by a reduction in 

responses and sensitivity to external stimuli, which may rapidly return to normal, as 

sleep has a decreased capacity to respond to external stimuli, unlike hibernation or 

coma (Cirelli & Tononi, 2008). The two major processes responsible for driving the 

sleep regulatory process include a circadian rhythm and a homeostatic drive. The 

circadian rhythm synchronises the sleep-wake cycle with the external day-night 

pattern to ensure that rest is obtained at night and alertness during the day (Borbély 

et al., 2016). In contrast, the homeostatic drive increases the need for sleep 

depending on the duration of wakefulness and cognitive or physical demands 

throughout the day (Deboer, 2018). Together, these two processes work together to 

ensure a very delicate balance in the body between the rest period and the active 
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period, highly critical for maintaining cognitive functions related to attention and 

decision-making. 

 

Research has extensively indicated that sleep serves a range of purposes, 

such as promoting growth (Papatriantafyllou et al., 2022), conserving energy (Roth 

et al., 2010), enhancing performance (Aeschbach et al., 2008; Alain et al., 2015; 

Debarnot et al., 2013; McDevitt et al., 2018; Tucker & Fishbein, 2008), and 

influencing psychological well-being (Lo Martire et al., 2020; Vadnie & McClung, 

2017). These studies into different benefits of sleep suggest that it is unrealistic to 

view sleep as having one purpose (Zielinski et al., 2016). Comprehensive reviews 

have highlighted the idea of cross-species assessments offer additional evidence, 

which demonstrated that empirical research has found variables such as age, body 

size, and ecological niche significantly affect sleep duration and architecture in 

mammals (Siegel, 2005). One particular theory known as Energy Conservation 

Theory are commonly used to explain this, which suggests that sleep may have 

evolved as a mechanism to conserve energy and regulate behaviour over a 24-hour 

cycle. According to this theory, the primary role of sleep is to reduce energy 

expenditure during periods throughout the day and night. This hypothesis is 

supported by evidence indicating that our body temperature and calorie needs 

decrease when asleep, but increase once an individual wakes up (Northeast et al., 

2020). However, sleep does more than just save energy. Sleep also plays a role in 

maintaining brain function, which is widely recognised as one of its significant 

benefits. It is commonly understood that getting sleep is essential for memory 

retention and cognitive abilities (Graveline & Wamsley, 2017; Tucker et al., 2020).  

 

Research on behaviour has linked sleep deprivation (SD) to difficulties in 

tasks requiring attention, such as filtering out irrelevant visual stimuli from a set of 

memories. For example, Blagrove et al. (1995) used the Finding Embedded Figures 

Test (FEFT), which is a test of the ability to filter out irrelevant stimuli. The finding 
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showed that SD adversely impacts the neurological filtering mechanism, thereby 

decreasing performance. The decrease in task performance with SD is particularly 

troubling for those individuals operating under high-stress conditions where great 

attention to detail and speed of decision-making are critical (Killgore et al., 2006). 

Sleep deprivation has also been associated with impaired cognitive performance in 

tasks entailing higher-order performance, such as cognitive flexibility, creative 

thinking, and language skills. The longer the period of SD, the more severe the 

cognitive impairments become; hence, sleep continues to be not only integral for 

learning but also for maintaining overall cognitive function. Similarly, research has 

also shown that SD can impact performance in other domains involving memory 

recall (Frenda et al., 2014; Martínez-Cancino et al., 2015), creative thinking (Harrison 

& Horne, 1999), language skills (Harrison & Horne, 1997), and decision-making 

(Killgore et al., 2006; Schnyer et al., 2009)(Killgore et al., 2006; Schnyer et al., 2009). 

 

The general body of research underlines the indispensable role of sleep both 

for physiological and cognitive aspects and expresses the need to understand and 

exploit all of the potential of sleep in cognitive rehabilitation, education, and mental 

health. From a psychobiological standpoint, these effects are effectively explained 

through systems consolidation theory, which suggests that sleep facilitates the 

reactivation and transfer of newly preserved memories from temporary storage in 

the hippocampus to enduring networks in the neocortex (Diekelmann & Born, 2010), 

which the thesis will go into more detail in the next section. However, for the current 

thesis, which examines the stabilisation and transfer of perceptual and attentional 

learning, understanding the role of sleep in maintaining cognitive performance is a 

fundamental basis for support. Lack of sleep not only interferes with attentional 

processing and decision-making but also interferes with the consolidation processes 

essential for learning generalisation. 
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1.5. Sleep and Cognition  

1.5.1. Learning, Memory and Sleep  

 

The correlation between memory consolidation and sleep is an important 

research area in psychological research, especially in the field of learning 

(Griessenberger et al., 2012; Schäfer et al., 2020; Talamini et al., 2008). The exact 

mechanism by which sleep promotes memory consolidation remains unclear, but 

there is solid evidence that sleep has cognitive advantages. A fundamental study 

conducted by Wagner et al. (2006) examined the effects of sleep on emotional 

memory. In this experiment, participants were asked to memories passages 

containing strong emotions. Participants' memory ability significantly improved after 

a brief three hours of sleep. The impact showed remarkable persistence for a 

duration of up to four years, therefore highlighting the crucial significance of short-

term sleep in the process of long-term memory consolidation. The study 

underscores the significance of sleep in effectively stabilising and retaining acquired 

knowledge, hence facilitating its long-term retention and retrieval. Nevertheless, 

despite these discoveries, the underlying mechanisms by which sleep increases 

learning and memory remain inadequately comprehended. The research conducted 

by Wagner et al. provides a fundamental understanding of the mechanisms by which 

memory consolidation may function in wider domains, such as perceptual learning. 

The methodology used in their study, which involved assessing memory retention 

following a brief period of sleep, may be modified to examine if comparable 

consolidation processes take place with non-emotional memories or perceptual 

learning operations. This work establishes a strong foundation to suggest that the 

processes controlling the consolidation of emotional memories may be similar to 

those involved in other types of memory, such as perceptual or procedural memory. 

Existing gaps in the literature, such as the impact of various sleep stages or durations 

on these cognitive processes, provide important avenues for future research. 
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Further support for the role of sleep in consolidation comes from research using 

motor sequence learning tasks. Fischer and Born (2009), for example, trained 

participants on finger-tapping sequences and compared groups tested after sleep 

versus wakefulness. They found a significant improvement in motor function 

following 12 hours of rest. This finding provides additional evidence to the notion 

that there is a consistent improvement in performance for motor sequence tasks 

associated with sleep. Similarly, Albouy et al. (2013) used motor sequence tasks 

where participants were required to enter a specified number sequence as quickly 

and precisely as they can (for example, 4-1-3-2-4 or 2-4-1-3-2), at the same time 

using fMRI to examine the benefit of sleep on performance. They demonstrated that 

post-sleep improvements were accompanied by increased activity in the 

hippocampus and medial PFC in the sleep group compared to the SD group. After 

learning SD group performance only stabilised and did not improve. These findings 

suggest that explicit motor task learning consolidation occurs exclusively after 

adequate sleep since only the sleep group displayed reorganisation of the 

hippocampal-neocortical networks, underpinning the principle of system 

consolidation (Diekelmann & Born, 2010).   

 

There are two main categories of long-term memory: declarative and 

procedural memory (Cohen & Squire, 1980; Squire, 2004). Declarative memory 

encompasses the ability to store factual information, whereas procedural memory is 

concerned with the recall of learnt responses based on prior experience in response 

to relevant stimuli. Diekelmann and Born (2010) emphasise that the state of 

encoding significantly impacts whether memories for learning have access to sleep-

dependent consolidation. While the encoding for procedural memories might entail 

both implicit and explicit processes, the encoding for declarative tasks is often 

explicit. This explicit declarative memory processes also appear to be sensitively 

dependant to sleep (Fattinger et al., 2017; Korman et al., 2003; Walker et al., 2002; 

Wilhelm et al., 2008). For example, the study conducted by Tucker et al. (2006), 

showed that a short period of nap containing only NREM sleep would improve 
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declarative memory performance on a paired association task, although the 

procedural benefits in the study was less consistent. This study adds to the current 

evidence which suggests that certain types of sleep stage might be more important 

than other stages. Such that the finding suggests the role of SWS in supporting 

declarative memories through the hippocampal–neocortical transfer, while REM is 

more relevant with procedural and emotional memory (Rasch & Born, 2013; Walker 

& Stickgold, 2004).  

 

Furthermore, several studies have also pointed out other potential factors that 

might be responsible for the sleep-dependent benefit in learning. One of these is 

how much and when sleep occurs (Korman et al., 2007; Payne et al., 2012). A review 

examining the patterns across studies has commonly demonstrated that, after a 

night of sleep, performance generally improves significantly, and this impact is 

frequently observed after 8 hours of sleep (Diekelmann & Born, 2010). However, 

recent studies have emphasised that having a quick nap after sleep can help 

individuals remember the content they have learnt (McDevitt et al., 2018). In the 

learning of perceptual discrimination tasks, for example, Mednick et al. (2003a) 

discovered that sleep-dependent learning might be completed with a brief (60-90 

minute) napping time. In terms of amplitude, dependence on sleep stages, and 

retinotopic specificity, this nap-dependent learning was highly similar to that 

previously described for an 8-hour sleep period. Although it appears that even a 

short amount of sleep is sufficient to help with consolidating learning, and longer 

sleep durations result in an even greater benefit (Gais et al., 2000; Lo et al., 2014; 

Tucker et al., 2020).  

 

While the reviewed research in this chapter provides robust evidence for sleep-

dependent consolidation across memory systems, notable gaps remain. One 

noticeable gap is that much of those studies concentrate on emotional memories 

and motor learning, leaving the question of whether perceptual and attentional 
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domains operate under similar mechanisms unclear. This directly fits with the aims 

of the current thesis: to investigate whether sleep enhances consolidation in 

perceptual and attentional learning tasks, and to evaluate if the observed offline 

benefits indicate system-level processes aligned with consolidation theories. The 

thesis aims to address these unanswered questions by synthesising behavioural 

paradigms with psychobiological models, aiming to determine if the concepts 

exhibited in declarative and procedural memory extend to other modalities of 

learning. 

 

1.5.2. The Synaptic Homeostasis Theory  

 

Researchers have made contributions to several theoretical frameworks across 

the sleep literature in an attempt to better explain the evidence on the effect of 

sleep on memory consolidation. One widely acknowledged theory in the literature 

claims that sleep fosters the circumstances necessary for brain plasticity. The 

capacity of the brain to change and adapt as a result of experience is known as 

plasticity (Ribeiro, 2012), as previously mentioned. The synaptic homeostasis 

hypothesis (SHY) continues to be one of the most organised hypotheses that 

explains most of the data reported in the literature and has been well documented 

in reviews (Tononi & Cirelli, 2003, 2006, 2014). SHY hypothesised that while awake, 

the brain actively picks up information from its surroundings by strengthening 

synaptic connections between highly active brain areas. The sensory-motor 

detachment from the environment causes the brain to substitute more minor, less 

active synaptic contacts during sleep (Tononi & Cirelli, 2014). It is believed that the 

brain processes and coordinates newly learnt responses more effectively when 

routinely active synaptic connections are strengthened, and less frequently active 

synaptic connections are weakened. In the cortex and hippocampus of rats, indices 

of synaptic strength are shown to rise during the day and fall during the night, 

according to research by Vyazovskiy et al. (2008). This study provides credence to 
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the notion that synaptic downscaling occurs during sleep. Further evidence was 

provided by Liu et al. (2010), who discovered that synaptic potentiation in the frontal 

cortex of rats was enhanced after waking and reduced after sleep. Again, this work 

offers factual data emphasising the idea that sleep is beneficial for maintaining 

synaptic homeostasis. Therefore, maintaining synaptic homeostasis is the critical 

objective of sleep. Sleep improves neural sensitivity and learning capacity by 

lowering synaptic strength, enabling the consolidation and integration of new 

information while boosting the signal-to-noise ratio (SNR) (Figure 1.1). 

 

Figure 1.1. The Synaptic Homeostasis Hypothesis: Signal to noise ratio. (Retrieved from Tononi & Cirelli, 

2014). Figure demonstrating a net increase in synaptic strength during wake, enhancing learning but at the cost 

of higher energy demand, cellular stress, reduce extracellular space. Whereas sleep restores the balances by 

downscaling synaptic strength. 
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It has been demonstrated that the synaptic homeostasis system affects several 

components of learning and memory, including the capacity to gather newly learned 

information, consolidate it (by up-scaling stronger synapses and decreasing SNR), 

and eventually integrate it with previously taught schemas (Tononi & Cirelli, 2014). 

The capacity to learn new memories is one benefit of sleep for memory processing, 

and SHY claims that one of the most apparent advantages of sleep is the restoration 

of learning ability. For instance, Chee and Chuah (2007) observed that the decline in 

performance accuracy was positively correlated with the 24-hour SD that followed 

the acquisition of a visual memory task. Similar to this, Yoo et al (2007) discovered 

that only one night of SD is enough to cause a severe loss in the capacity to encode 

episodic memory. These findings highlight the fact that insufficient sleep significantly 

affects our capacity to form lasting memories of new experiences. It implies that 

having enough sleep before learning is crucial for enabling the brain to build 

memories. A further advantageous effect of sleep on memory is the activity-

dependent down-selection of synapses, which is frequently used to explain many 

aspects of memory consolidation. As an illustration, in the paired-associate learning 

paradigm Nere et al (2013), discovered through computer simulations that 

increasing the activation of a particular memory during the down-selection process 

result in a selective enhancement of that memory. This is consistent with the 

findings by Antony et al (2012), who observed that being cued while sleeping 

enhances memory stability following learning.  

 

SHY does not, however, come without criticism. Although refined, others argue 

that the idea may oversimplify the complex relationships underlying sleep, learning, 

and plasticity. In the review by Rasch and Born (2013), they stated that the model 

fails to effectively take into consideration REM sleep's contribution to memory 

consolidation. The basic idea of the hypothesis, which suggests that sleep-

dependent synaptic downscaling occurs, is mainly supported by indirect data, 

requiring more empirical validation. 
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1.5.3. Active System Consolidation Theory  

 

The active system consolidation theory during sleep draws attention to many 

crucial ideas. Firstly, this idea assumes that memories are reactivated and 

strengthened when asleep. Second, it implies that not all learning may be 

strengthened while sleeping and that consolidation occurs only in some learning 

domains. Finally, the idea emphasises that memories undergo qualitative 

modifications as they are transferred to long-term memory storage (Born & 

Wilhelm, 2012). With regard to sleep-dependent memory and learning, 

consolidation, and integration, this appealing hypothesis has been able to correctly 

anticipate and explain a number of behavioural, physiological, and neuroimaging 

findings (Rasch & Born, 2013). 

 

According to this concept (Figure 1.2), information is first processed 

simultaneously in the hippocampus and neocortical networks when a person is 

awake. During the sleep cycles, especially SWS, the newly developed memory traces 

are consistently reactivated and gradually restructured. This process leads to 

memory representations and improves synaptic connections within the neocortex, 

as explained in the review by Born and Wilhelm (2012). Several studies have also 

found a connection between sleep spindles, learning, and cognitive abilities and that 

both procedural and declarative memory consolidation has been linked to activity 

after post-learning sleep (Antony et al., 2019; Fogel & Smith, 2006; Laventure et al., 

2016; Schabus et al., 2004). For example, Cowan et al. (2020)identified that spindles 

observed during sleep are associated with modifications in memory traces. These 

modifications include increased connectivity in hippocampal cortical networks and 

enhanced pattern resemblance in cortical memories. The findings provide evidence 

suggesting that spindles may serve as a mechanism for reorganising neuronal 

memory traces during nighttime sleep. Additionally, studies have shown that 

spindles are also related to abilities such as attentional skills and perceptual learning, 
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domains that are directly relevant to this thesis. Nishida and Walker (2007), showed 

that more spindle activity was linked to better performance on a visual 

discrimination task, which means that spindles have an association with learning 

perceptual skills. In contrast, Bergmann et al. (2012), demonstrated that spindles 

encourage hippocampal-neocortical communication essential for both declarative 

and non-declarative memory consolidation. These studies emphasise the 

significance of the ASC framework in comprehending the consolidation of 

perceptual and attentional learning processes. However, the strength of this 

hypothesis lies in its inability to address and clarify these facts related to spindles. 

 

 

However, this theory is also not without debate. There is ongoing discussion 

over the precise function of REM sleep in memory consolidation, some research 

suggested that SWS—rather than REM sleep—is more important for memory  

 Figure 1.2. Sleep is the consolidation of active processes. The hippocampus serves as a temporary storage 

location for recently acquired memories, which are then reallocated to the neocortex, the long-term store, during 

slow-wave sleep (SWS). B The link between the neocortex and the hippocampus, which is controlled from the top 

to the bottom by the neocortical slow oscillation (red), forms the foundation for system consolidation during 

SWS. Depolarising up phases of the slow oscillations cause sharp-wave ripples (green) in the thalamocortical 

spindles and the hippocampal memory traces (blue) to reactivate repeatedly. Sharp-wave ripples coil into single 

peaks of a spindle together with matching awakened memory information. (image adapted from Born & Wilhelm, 

2011). 
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consolidation (Marshall & Born, 2007). Furthermore, the hypothesis mostly 

overlooks the significance of other sleep phases for learning and plasticity due to its 

concentration on REM sleep. Notwithstanding these problems, the Active System 

Consolidation Theory has greatly influenced how researchers perceive the dynamic 

interactions among sleep, memory, and learning. To explain the specific processes at 

play and resolve the roles of various sleep phases in memory consolidation, further 

study is required. 

 

1.5.4. Comparison Between SHY and Active System Consolidation 

Theory  

 

The theories of the SHY and the Active System Consolidation Theory have 

been extensively studied to gain insights into how learning is consolidated during 

sleep. These theories recognise the role that sleep plays in memory and learning. 

They propose different mechanisms for this process. Both the active system 

consolidation hypothesis and the SHY theory emphasise the importance of brain 

oscillations occurring during SWS in memory consolidation. Both ideas, however, 

offer different viewpoints on how sleep-dependent memories are encoded and 

consolidated. 

 

In contrast to the SHY hypothesis, which suggests that sleep improves 

learning and memory by bringing synapses to their baseline level, the active systems 

model proposes that memories are actively strengthened and reorganised during 

sleep (Liu et al., 2024). The active systems model takes into account the mnemonic 

effects of subcortical structures like the hippocampus (Duan et al., 2025). The active 

systems model takes into account the mnemonic effects of subcortical structures 

such as the hippocampus. Furthermore, according to the SHY theory, any disruption 
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in the rhythm of slow-wave SWS could potentially reduce its impact on memory 

functions during sleep (Tononi & Cirelli, 2003). However, recent research has 

demonstrated that external stimulation of oscillations enhances memory rather than 

diminishes it (Ngo et al., 2020). Nevertheless, there are still some aspects in 

understanding how post-learning sleep specifically enhances networks associated 

with acquired memory traces (Diekelmann & Born, 2010). 

 

In summary, research has shown that incorporating information into long-

term memory and selectively preserving existing information are the key elements of 

the memory consolidation process (Paller et al., 2021). A recent theory suggests that 

this process influences how information is stored in networks through interactions 

between the neocortex and hippocampal regions, which are essential for 

consolidation (Moscovitch et al., 2016). Advanced technology has shed light on how 

sleep impacts our learning abilities. While these two theories propose various 

mechanisms, they complement each other. The Active System Consolidation Theory 

explains how sleep aids in consolidating memories, while the SHY theory suggests 

that sleep plays a role in preparing us for learning. Recent studies using 

neuroimaging techniques have helped unravel the interaction between these 

systems (Klinzing et al., 2019). However, further research is still needed to 

comprehend the processes and integrate these hypotheses into a comprehensive 

framework for sleep-dependent learning and memory consolidation. 

 

Although the focus of this thesis is not to test these models directly, the 

models can provide a conceptual framework that informs the research question in 

this thesis. The thesis uses these models as indicators for investigating the 

differential consolidation of perceptual and attentional learning across wakefulness 

and sleep, as well as to determine if these processes are signs of domain-general or 

domain-specific mechanisms. By contextualising the empirical research within these 

psychobiological frameworks, the thesis enhances the understanding of the interplay 
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between sleep and learning processes, especially in the absence of direct 

examination of the brain substrates defined by SHY or ASC theory. 

 

1.6. Summary and Thesis Outline 

 

The main goal of this thesis is to conduct a thorough investigation to examine 

how wakefulness and sleep together shape the balance between specificity and 

generalisation in human learning, with a particular focus perceptual and attentional 

learning, as well as looking at whether there are any shared or distinct mechanisms. 

The aim proposed in this thesis is informed by both psychobiological models of 

memory consolidation (e.g., the SHY, which emphasises the role of sleep in 

downscaling and restoring the capacity to learn, and the ASC, which highlights 

hippocampal–neocortical interactions during slow-wave sleep) and behavioural 

models of learning (e.g., the Rescorla-Wagner model, which conceptualises learning 

as reducing the amount of prediction error, and the Mackintosh model, which 

highlights selective attention to predictive stimuli). These models collectively 

establish a theoretical framework for interpreting the behavioural outputs of sleep-

dependent learning as indirect markers to examine whether sleep facilitates the 

transfer of learning beyond task-specific improvement. 

 

Chapter 2 focuses on the backward masking task, a classic paradigm used to 

investigate the sleep-dependent components of online and offline perceptual 

learning. The chapter is informed by research indicating that online perceptual 

learning is significantly unique to the learnt visual features, spatial location, and task 

(Ahissar & Hochstein, 1997; Crist et al., 1997; Karni & Sagi, 1991), potentially 

constraining the ability to adapt. Psychobiological theories, on the other hand, 

suggest that sleep helps learning by restructuring traces of memory (Gais et al., 
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2000). Chapter 2, therefore, explores how sleep contributes to the generalisation in 

the backward masking task beyond the specificity typically observed during 

wakefulness. The study aims to determine if sleep changes the way the brain stores 

information to help transfer perceptual skills by comparing online learning while 

awake with offline consolidation while sleeping. 

 

Chapter 3 extends this rationale to examines the impact of sleep on selective 

attention. Posner and Peterson (1990) in their review mentioned that attentional 

control serves as an essential for identifying relevant from irrelevant information, 

however, the role of sleep in the consolidation of attentional information remains 

largely unexplored. Previous  studies in the perceptual learning literature have 

shown that sleep enhances performance on challenging visual tasks (Albouy et al., 

2013; Mednick et al., 2003a), which raises questions about whether attentional 

improvements post-sleep signify a generalisation of fundamental control processes 

or if they are limited to specific tasks. Chapter 3 investigates this by contrasting 

attentional enhancements following sleep and wakefulness, and by evaluating 

whether the mechanisms align with or differ from those identified in backward 

masking. 

 

In conclusion, this thesis delves into the capacity of how one continuously 

learns and evolves, by connecting behavioural theories of perceptual and attentional 

learning with psychobiological models of memory consolidation. This thesis seeks to 

improve theoretical comprehension and practical applications for enhancing learning 

and cognitive performance by examining the role of sleep in facilitating 

generalisation across perceptual and attentional domains. 
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CHAPTER 2:  

Balancing Specificity and 

Generalisation in Learning: 

The Critical Role of Sleep 

and Wakefulness 
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2.1. Abstract 

 

Learning a visual task can lead to significant improvements in visual 

performance, a phenomenon known as visual perceptual learning (VPL). Notably, 

these improvements emerge not only during the "online" phase—when individuals 

are actively engaged in training—but also during the "offline" phase, particularly 

during sleep, which is when the consolidation processes occur. Although increasing 

evidence shows the importance of both phases, the processes by which wake, and 

sleep interact to balance the generalisability against specificity in VPL remain unknown. 

 

This chapter demonstrated how sleep and wakefulness operate in conjunction 

to modify the characteristics of perceptual learning. Due to localised neuronal 

plasticity and specificity, visual enhancements during wakefulness were limited to the 

precise visual elements and spatial locations used during learning. Sleep, on the other 

hand, supported the abstraction and redistribution of the effects of learning by 

enabling learning to generalise to untrained visual features and visual field locations. 

 

The findings lead to a dynamic framework where sleep encourages the 

integration and adaptability of learnt skills across larger domains, while waking refines 

task-specific representations to maximise accuracy. These procedures work together 

to support visual learning's consolidation and flexibility. Understanding plasticity 

based on experience and creating focused therapies to improve perceptual learning 

in clinical and practical contexts are both significantly impacted by this chapter. 
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2.2. Introduction 

 

Visual signals are fundamental to our interaction with the external 

environment, enabling us to perform a wide range of tasks essential for survival and 

thriving, which include regulating circadian rhythm, navigating through complex 

surroundings, identifying objects, and understanding social signs. Visual perceptual 

learning (VPL), the process of improving visual skills through training, shows how 

flexible and able the brain is to handle new information (Ahissar & Hochstein, 1997; 

Seitz & Watanabe, 2005). VPL corresponds to the improvement of an individual's 

capacity to recognise, analyse, and comprehend visual stimuli due to 

repeated practice or experience (Dosher & Lu, 2017; Goldstone, 1998). Studies 

indicate that these enhancements occur not just during the "online" period, during 

which individuals actively interact with the visual stimuli, but also during the "offline" 

phase, especially during sleep (Mednick et al., 2003b; Stickgold et al., 2000). The 

precise processes via which online and offline learning stages influence the 

specificity and generalisation of acquired visual tasks are not well understood.  

 

This chapter aims to examine how wakefulness and sleep differentially affect 

visual perceptual learning. The hypothesis is that the online and offline learning 

stages in VPL fulfil complementary functions, including discrete but interrelated 

neural mechanisms that improve task-specific performance and generalisation. 

During the online phase, marked by active interaction with certain visual stimuli, it is 

expected to enhance localised neuronal plasticity in the visual cortices, resulting in 

focused performance enhancements (Chen et al., 2016; Fiorentini & Berardi, 1980). 

On the other hand, in the offline phase which mainly occurs during sleep time, it is 

believed to support widespread balancing of synaptic connections, which can 

enhance the benefits of localised learning by extending it to a broader range of 

perceptual skills across various visual fields (Buffalo et al., 2006; Tononi & Cirelli, 

2006). 
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During the online phase, neurons in the visual cortices show stimulus 

selectivity during awake, in which individual neurons react to a restricted set of 

visual properties and a limited range of locations in the visual field (Hubel & Wiesel, 

1968; Kamitani & Tong, 2005). Neurons located in regions such as the primary visual 

cortex (V1) and higher-order areas like V4 show selective responses to specific visual 

inputs. For example, in previous studies, V1 are found to be precisely calibrated to 

specific orientations and spatial positions, preferentially reacting to visual stimuli 

that align with their favourite characteristics (Hubel & Wiesel, 1968; A. Schoups et 

al., 2001). Hubel and Wiesel's pioneering study on the striate cortex of non-human 

primates demonstrated that neurons in V1 region exhibit notable selectivity for 

visual characteristics, including orientation, spatial frequency, and motion direction. 

They show that V1 is structured into orientation and ocular dominance columns, 

with distinct layers dedicated to processing from simple to complex visual stimuli. 

This study provides valuable insights into how the brain processes visual information 

and responds to specific frequencies. This helps us understand how neural circuits 

change during VPL. In addition, their findings regarding hierarchical and columnar 

organisations remain important in contemporary neuroscience, providing a 

framework to investigate how experience-dependent plasticity enhances neural 

pathways during VPL and facilitates learning specificity. 

 

 Building on this foundation, Jehee et al. (2012) examined how perceptual 

learning influences specific neural responses, particularly in the representation of 

orientation. Their study showed that PL improves the specificity of orientation 

representations in early visual regions, including V1. Using functional magnetic 

resonance imaging (fMRI), they found that learning to distinguish subtle orientation 

variations especially improves neural tuning for the acquired orientation. This result 

aligns with Hubel and Wiesel's findings, as it corroborates the notion that V1 

neurons are both specialised and capable of refinement through learning. Their 

results showed that training improves the brain's ability to detect small changes in 
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orientation differences, which supports the idea that selectivity is what enables task-

specific improvements. This research indicates that VPL changes established cortical 

mechanisms via localised synaptic modifications, thereby strengthening circuits 

immediately associated with the learned feature. 

 

While the brain is connected to and responsive to sensory inputs during 

wakefulness, in contrast, sleep is characterised by a sensory disconnection between 

the brain and the environment (Türker et al., 2023), which promotes the 

reorganisation and integration of newly learnt perceptual abilities into global neural 

networks, equilibrating neuronal excitability and connection throughout the brain 

(Tononi & Cirelli, 2006). This offline phrase is unique for facilitating larger 

generalisation of learning via homeostatic plasticity, which serves as a stabiliser of 

neural networks in the brain (G. Wang et al., 2011). For instance, sleep may decrease 

differences in excitability between neurones that are activated frequently and those 

that are not, thereby helping the transfer of skills to new locations or stimuli 

(Salehinejad et al., 2022). This approach is crucial for reinforcing learning beyond the 

attributes acquired during the online phase.  

 

As indicated across a variety of domains of perceptual and motor tasks, 

extensive research supports the vital function that sleep plays in enhancing brain 

plasticity and consolidating learning processes (Karni & Sagi, 1991; Mednick et al., 

2003; Stickgold et al., 2000; Yotsumoto et al., 2008). Sleep enhances neuronal and 

behavioural indicators of memory consolidation across different paradigms, notably 

in visual (Censor et al., 2006; Pourtois et al., 2008) and motor learning (Makino et al., 

2017; Vyas et al., 2018). For instance, Censor et al. (2016) conducted particularly 

noteworthy research, as it shed light on the connection between the degree of 

learner adaptability and the efficiency of sleep-dependent consolidation. According 

to their findings, the number of learning trials completed during the learning phase 

had a substantial impact on both the execution of the task and the success of 



 52 

subsequent learning. In particular, it was demonstrated that the optimal number of 

repetitions enhanced learning and discrimination, whereas excessive trials had the 

opposite effect, most likely due to adaptation-induced saturation. However, the 

study did not explicitly report the correct number of trials. Further, Censor et al. 

hypothesised that the optimal amount of sleep consolidation occurs when the brain 

reaches an adaptable state during learning sessions. This condition reflects the 

integration of newly acquired information. This study suggests that the extent to 

which sleep helps consolidate memories is determined by the degree to which 

neuronal circuits are plastic during the learning period. At the same time, these 

results highlight the interaction between active engagement during training and the 

restorative effect of sleep; they also give vital insights into a more comprehensive 

understanding of brain adaptation during learning.  

 

There is a continuous interest in the role of sleep in perceptual learning, in 

particular, the relationship to memory consolidation and neural plasticity 

(MacDonald & Cote, 2021; Stickgold et al., 2000). Sleep seems to dynamically 

influence the neuronal mechanisms associated with perceptual learning by 

promoting adaptability, reorganising brain connections, and enhancing perceptual 

and discriminative capabilities over time (Capone et al., 2019; Reis et al., 2023). 

Tasks such as the backward masking task provide a solid foundation for examining 

these processes. The backward masking requires participants to recognise a fixing 

letter and determine the orientation of the target array presented in a designated 

visual field position (horizontal or vertical alignment). This task has emerged as a 

well-recognised instrument for examining VPL and clarifying the brain processes 

linked to learning (Karni & Sagi, 1991; Ofen et al., 2007). 

 

Studies have shown that performance, in backward masking significantly gets 

better after a night's sleep, especially right after learning (Gais et al., 2000; Karni, 

1995; Matarazzo et al., 2008). These improvements persist over time, suggesting 
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that sleep plays a role in solidifying learning and enabling long lasting changes in 

brain structure. However, these enhancements mostly apply in situations and are 

limited to the characteristics and location of the trained stimulus (Crist et al., 1997; 

Karni & Sagi, 1991; Poggio et al., 1992; Yotsumoto et al., 2009). The specificity of 

these impacts aligns with findings from studies conducted in areas like V1, known for 

the precise tuning to orientation and spatial positioning (Bang et al., 2014; Hua et al., 

2010). However, there are still questions concerning the circumstances that lead to 

generalisation. Certain studies indicate that transfer between retinal sites is 

constrained (Yotsumoto et al., 2009) although others have identified partial 

generalisation when stimuli possess shared characteristics (J.-Y. Zhang et al., 2008). 

Whether learnt perceptual skills can be reliably transferred to new stimuli or 

locations and the brain mechanisms involved in facilitating this transfer remains as 

an open question.  

 

Studying brain activity through Electroencephalogram (EEG) helps provide 

further insight into the mechanisms behind perceptual learning by examining the 

brains functions. For instance, research has demonstrated that training, with a 

backward masking task such as the Texture Discrimination Task (TDT) can alter both 

processing areas such as C1 and later stages, like P3 (Ahmadi et al., 2018; Dove et al., 

2000). The changes found highlight the fact that perceptual learning includes both 

initial and further processing phases in the brain. However, difficulties persist in 

understanding how these hierarchical processes interact during sleep, which 

encourages this generalisation. In addition, research have reported that early 

cortical regions like V1 and mid-level regions like V4 are important for perceptual 

learning effects (Kosai et al., 2014; Raiguel et al., 2006), but less is known about how 

higher-order regions, including the prefrontal cortex, facilitate learning, particularly 

in enhancing generalisation (Kwon et al., 2015; Rahnev et al., 2011). 
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Several studies have investigated the potential for perceptual learning to 

generalise beyond the training stimulus. Dosher et al. (2013) and Mastropasqua et 

al. (2015) showed that generalisation can occur in some situations, notably when 

there is considerable similarity between learnt and unlearnt stimuli. This implies that 

transfer effects may need the engagement of superior cortical areas accountable for 

attentional regulation and the execution of intricate task requirements. More 

research is needed to figure out how sleep-dependent mechanisms interact with 

these top-down processes, and whether they use the same or different brain 

processes as those that help with task-specific learning. 

 

Studies using magnetic resonance imaging (MRI) have further improved our 

knowledge of how sleep affects perceptual learning by allowing non-invasive 

tracking and evaluation of structural and functional alterations in the brain. For 

instance, Tamaki et al. (2013) used fMRI to investigate brain activity after sleep in 

the backward masking TDT tasks. The finding shows that sleep following learning 

resulted in increased activity within the cortex, which is intimately involved in visual 

processing. According to these findings, sleep may help reinforce what was learned 

about perception by increasing brain activity in areas related to the task at hand, 

thereby improving the neural pathways that facilitate the task. In a similar vein, 

Yotsumoto et al. (2008) distinguished two stages of PL: a first period marked by 

increased brain activity in V1 (visual region), which corresponds to the taught region, 

and a second phase where activation declines but performance gains continue. The 

evidence suggests that training leads to an increase in synaptic connections or their 

strength within the local network in V1, which enhances performance. However, 

after this initial phase, the activation increases in V1 disappeared, while the 

performance enhancement was still maintained. Ditye et al. (2013) research 

investigated whether changes in brain structure could predict the extent of 

improvement following perceptual learning. They found that following training, GM 

volume in the posterior superior temporal sulcus increased and that the degree of 

changes will predict task improvement. Based on the given findings, perceptual 
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learning involves both neuronal circuits strengthening as well as improvement, 

highlighting the idea that perceptual learning involves distinct neural processes that 

occur over time. 

 

Previous research has laid the groundwork for our understanding, but it also 

has the potential to fail in capturing the complexities of the most recent 

developments in neuroscience. Therefore, while sleep has been recognised as 

essential for consolidating learning on specific tasks and facilitating transfer to 

untrained tasks, its impact on generalised learning remains largely unknown. 

Therefore, further research is needed to explore whether sleep promotes or limits 

generalisation and to identify the specific features of generalisation that can be 

attained. In fact, examining the question can help scientists gain a deeper 

understanding of how neuroplasticity works and how memory systems function in 

general, making an important contribution to the field of cognitive neuroscience. 

 

This chapter primarily aims to investigate the role of wakefulness and sleep in 

shaping the specificity and generalisability of VPL. While learning a visual task often 

leads to significant improvement in overall performance, as mentioned above, the 

mechanisms through which these enhancements become either narrowly task-

specific or generalisable across conditions remain unclear within the literature. 

Whether benefits obtained through learning specific visual features, spatial 

locations, or tasks can transfer to untrained situations, and whether such 

generalisation is mostly supported during wakefulness or sleep, is a fundamental 

discussion in this chapter. Generalisation is a fundamental aspect of perceptual 

learning, as it is linked to the capacity to transfer learnt skills to novel tasks, 

environments, or elements. This chapter assessed whether the enhancement in 

visual performance gained from learning specific features, spatial locations, or tasks 

may extend to untrained features, locations, or tasks. The study also further 

examined whether this generalisation occurred mainly during wake or sleep. 
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The main hypothesis of this Chapter is that generalisation in learning is 

contingent upon certain qualities and situations, with sleep acting as a crucial 

facilitator of this process. It also examined whether this generalisation usually took 

place during awareness or sleep. By balancing this specificity and generalisation, the 

sleep-wake cycle ensures both the accuracy in visual processing and adaptability in 

the task that was learned. This study also aims to gain a deeper understanding of how 

perceptual learning develops from task-specific improvements to more general 

abilities by evaluating these characteristics.  

 

This Chapter, therefore, explores the distinction between two stages of 

learning: online learning takes place when one is actively engaged in a task, while 

offline learning occurs during periods of rest or sleep when one is inactive. Shifting 

from processing to consolidation and generalisation during sleep poses challenges, in 

understanding these transitions can enhance our knowledge on how procedural 

learning operates. How sleep impacts generalisation processes. This thorough 

strategy provides perspectives on how alertness and sleep influence effective and 

adaptable learning methods. 

 

2.3. Methods 

2.3.1. General Design  

 

Two sub-studies (Experiment 1 and Experiment 2) was conducted to examine 

whether improvements in visual performance could generalise across visual field 

locations, visual features, or visual tasks, and whether this generalisation occurred 

during wakefulness or sleep. Specifically, the experiments tested whether 
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improvements from the trained visual field location (lower-left visual field), visual 

feature (orientation in Experiment 1, luminance in Experiment 2), and visual task 

(backward masking) would generalise to the untrained visual field location (upper-

right visual field), visual feature (luminance in Experiment 1, orientation in 

Experiment 2), and visual tasks (orientation discrimination, luminance 

discrimination, temporal discrimination). 

 

To minimise overlap between the groups of visual cortical neurons activated 

by the trained and untrained visual field locations, our experiment selected the 

lower-left and upper-right visual fields as the trained and untrained locations, 

respectively. Similarly, to minimise overlap between the groups of neurons activated 

by the trained and untrained visual features, orientation (a spatial feature) and 

luminance (a non-spatial feature) was chosen in this senario. To ensure that the 

trained and untrained tasks activated similar groups of visual cortical neurons but 

distinct groups of prefrontal cortical neurons, the tasks were designed to involve the 

exact visual field locations and visual features, but different task rules. 

 

A well-established backward masking perceptual learning task were used in 

this current study (Berard et al., 2015; Harris & Sagi, 2018; Karni & Sagi, 1991; 

Kondat et al., 2023). A target stimulus - a nineteen-by-nineteen array of lines-was 

briefly presented for 10 ms, followed by a blank interval, and then a mask stimulus—

a nineteen-by-nineteen array of randomly rotated crosses—was presented for 100 

ms (Figure 1.1a and Figure 1.1b). The stimuli were displayed on a black background. 

Each cell in the nineteen-by-nineteen array measured 0.77 × 0.77 visual degrees; the 

line (length: 0.42 visual degrees) or the cross (size: 0.42 × 0.42 visual degrees) 

appeared at a random location within the cell but was constrained to be at least 0.09 

visual degrees from the cell’s edge. 
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Within the target stimulus, three adjacent lines differed from the rest lines in 

either orientation (Experiment 1) or luminance (Experiment 2). Participants were 

instructed to identify these distinct lines and report whether they were vertically or 

horizontally aligned. The orientation or luminance difference between the three 

distinct lines and the rest lines remained constant across trials and was set well 

above the discrimination threshold to ensure participants could achieve 100% 

accuracy when the target stimulus was not followed by the mask. By contrast, the 

duration of the blank interval—that is, the interstimulus interval between the offset 

of the target stimulus and the onset of the mask—varied across trials according to a 

two-up-one-down staircase procedure to maintain task difficulty at each 

participant’s threshold level (Cornsweet, 1962; Levitt, 1971; P. Zhang et al., 2019). 

Two consecutive correct responds reduced the ISI by 7 ms, but one incorrect 

response increased ISI by 7 ms. This method targets the ISI time at which 

participants get 70.7% accuracy, facilitating effective threshold estimate without 

exposing stimuli much above or below the participant's threshold.  

 

The learning process thus focused on improving the ability to extract task-

relevant signals from the target stimulus before visual processing was disrupted by 

the mask, rather than enhancing sensitivity to subtle differences in orientation or 

luminance. In this sense, the trained task (backward masking) differed fundamentally 

from the untrained tasks (orientation, luminance, or temporal discrimination), which 

required participants to detect subtle differences in these features without 

interference from the mask. This design ensured that the trained and untrained 

tasks activated similar groups of visual cortical neurons but distinct groups of 

prefrontal cortical neurons, allowing us to disentangle the contributions of stimulus-

related and task-related neural circuits to VPL. 
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Figure 1.1a Trial structure for the Backward Masking Orientation Task. Each trial started with a fixation cross 

shown for 600 ms, then by a blank gap of 300 ms. The textural stimulus, including diagonal lines with a target 

characteristic (horizontal or vertical alignment), was shown for 10 ms. Following a modified blank period, a 100 

ms mask was shown. Participants first reacted to the centre letter ("T" or "L") and then to the direction of the 

target lines (vertical or horizontal). This approach regulated fixation and ensured task involvement with both 

central and peripheral visual inputs. 

 

 

Figure 1.1b Trial structure for Backward Masking with a luminance difference in the lower-left (LL) visual field 

quadrant. This task element was not included in the core learning task but was included as an untrained task to 

assess the generalisation of perceptual learning. Participants first indicated the centre letter ("T" or "L") and 

then determined the direction of the target lines (vertical or horizontal). The trial sequence facilitated controlled 

fixation and task involvement while examining generalisation effects. 
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The learning session involved a backward masking task, focusing on either 

orientation (Experiment 1) or luminance (Experiment 2) in the lower-left visual field. 

Each test session included ten tasks: 

 

• Task A: backward masking of orientation in the lower-left visual field  

• Task B: backward masking of orientation in the upper-right visual field  

• Task C: backward masking of luminance in the lower-left visual field  

• Task D: backward masking of luminance in the upper-right visual field  

• Task E: orientation discrimination in the lower-left visual field  

• Task F: orientation discrimination in the upper-right visual field  

• Task G: luminance discrimination in the lower-left visual field  

• Task H: luminance discrimination in the upper-right visual field  

• Task I: temporal discrimination in the lower-left visual field  

• Task J: temporal discrimination in the upper-right visual field 

 

Among these tasks, tasks A and C were identical to those used in the learning 

sessions of sub-study one and sub-study two, respectively. The remaining tasks 

differed from the learning session tasks in visual field location, visual feature, or task 

rule. Including tasks, A and C in the test sessions allowed us to assess local 

improvements in visual performance, while including the other tasks enabled us to 

evaluate generalised improvements. Performance in 10 tasks were assessed during 

five test sessions to determine whether learning improvements are specific to the 

trained settings or generalisable to other scenarios as well. Additionally, the morning 
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and evening groups was compared to distinguish between the effects of the sleep-

wake cycle and the passage of time and explored whether these advancements 

occur during wakefulness or sleep. The main idea is that sleep helps learning to 

transfer across features or tasks that were not previously practised, but when 

awake, learning focuses solely on what was learned, like visual aspects and locations. 

It is expected that although sleep encourages generalisation to untrained settings, 

improvements during wakefulness will be limited to trained conditions, thereby 

emphasising the complementary functions of wakefulness and sleep in balancing 

learning specificity and adaptability. 

 

The independent variable (IV) was manipulated on two levels: the time of day 

when participants learned the backward masking task (morning or evening) for both 

experiments. Thus, the time that participants were retested was also manipulated. 

The dependent variables (DV) measured in this study were the discrimination 

threshold for individual participants to identify which aspects of learning can be 

generalised. 

 

A conventional sleep study approach (Figure 1.2) was used to examine the 

roles of online learning, offline wakefulness, and sleep in VPL. The morning and 

evening groups adhered to an identical testing protocol and completed four test 

sessions: (I) a baseline test conducted immediately before the learning session, (II) a 

test conducted immediately after the learning session (0-hour), (III) a test conducted 

twelve hours after the learning session, (IV) test conducted twenty-four hours after 

the learning session. This strategy enabled direct comparisons between morning and 

evening cohorts to mitigate circadian influences and differentiate the impacts of 
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awake and sleep on the specificity and generalisation of learning. Overall, 

participants committed approximately 5 hours across three experimental sessions. 

 

 

Figure 1.2 Experimental timeline demonstrating the protocol for the morning and evening groups. The morning 

group completed baseline testing, a learning session, and post-learning testing (0-hour), followed by 12-hour 

wake and 24-hour post-sleep testing. The evening group completed the same timeline in reverse, beginning with a 

night of sleep before the 12-hour wake period. This design outlines the effects of sleep and wakefulness on 

learning and generalisation. 

 

2.4. Experiment 1: Materials and Methods 

2.4.1. Participants  

 

Thirty-two healthy volunteers with normal or corrected-to-normal vision, 

consistent bed and rise times, 7~8 hours of sleep per night, no history of sleep, 

medical, or psychiatric disorders, no daytime nap habit, and no excessive daytime 

sleepiness, were recruited to participate in the study. All participants provided written 

informed consent and were compensated for their time with either 24 course credits 

or £30. The study received approval from the research ethics committee at Cardiff 

University (EC.18.02.13.5226G). Participants were instructed to maintain their regular 

sleep patterns and refrain from consuming alcohol or caffeinated beverages from two 
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weeks prior to the study's commencement until its conclusion. They received 

actigraphy wristwatches and sleep diaries to document their sleep-wake patterns. 

Two participants withdrew from the study and were excluded from the data analysis. 

Among the remaining participants, thirty (mean age = 21.17, SD = 2.55) took part in 

the experiment, fifteen in the morning group and fifteen in the evening group. The 

group assignments were randomised. 

 

2.4.2. Experimental Procedures 

 

The testing tasks included a backward masking orientation and luminance task, 

orientation discrimination, luminance-contrast discrimination, and flicker-fusion 

temporal discrimination. Each task was executed in both the trained (LL) and 

untrained (UR) visual field locations, enabling a comprehensive investigation of 

learning transfer across features, spatial locations, and tasks. All sessions took place 

in a dark experimental room, where stimuli were displayed on a high-resolution 

monitor (ASUS VG248QE, 1920 × 1080 pixels; refresh rate: 100 Hz for discrimination 

tasks, 144 Hz for flicker-fusion tests) with a viewing distance of 61.5 cm and a screen 

size of 54.3cm. Eye fixation was observed using an EyeLink 1000 Plus eye tracker, while 

stimulus presentation and data acquisition were conducted using MATLAB 

(MathWorks Inc., Natick, MA, USA) in conjunction with Psychtoolbox (Brainard, 1997). 
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2.4.3. Backward Masking Task  

 

Both forms of backward masking tasks require participants to detect three 

diagonally aligned target lines arranged in either a horizontal or vertical arrangement 

inside a textured stimulus. In the target stimulus, three adjacent lines, located in the 

lower-left visual field (tasks A and C) or upper-right visual field (tasks B and D), 

differed from the other lines in either orientation (tasks A and B) or luminance (tasks 

C and D). Specifically, 

 

• In tasks A and B, the three distinct lines were tilted at 45 degrees, while the 

other lines were either all vertical or all horizontal. All lines were displayed at the 

monitor’s maximum luminance.  

 

• In tasks C and D, the three distinct lines were displayed at the monitor’s 

maximum luminance, while the other lines were shown at 40% of the maximum 

luminance. All lines were either vertical or horizontal.  

 

• In tasks A and C, the three distinct lines were located at an eccentricity of 

5.45 visual degrees and a polar angle of 225 degrees. 

 

• In tasks B and D, the three distinct lines were located at an eccentricity of 

5.45 visual degrees and a polar angle of 45 degrees. 
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To ensure central fixation, a randomly rotating letter "T" or "L" was shown at 

the centre of the display during each trial, rotated by 0, 90, 180, or 270 degrees 

(Figure 1.3). Participants were first given the task of identifying the centre letter (T or 

L), which can be presented in different rotations, and then reporting the direction of 

the target lines (vertical or horizontal) via an assigned set of buttons on a response 

box. 

 

Figure 1.3. Example of the central fixation task used to ensure visual focus during the experiment. The central 

letter (either "T" or "L") was displayed at the centre of the screen and rotated. Participants were instructed to 

identify the letter at the centre and respond using the designated keys on the keyboard (left key for "T" and right 

key for "L"). The task aimed to maintain fixation and attention while subsequently reporting the arrangement of 

the target lines. 

 

Participants were instructed to maintain fixation on the centre of the screen 

and to identify the three distinct lines before the mask stimulus disrupted visual 

processing of the target stimulus. After the offset of the mask stimulus, participants 

made two unspeeded forced-choice responses: first, they reported the identity of the 

fixation letter using the left-hand keypad (left key: T; right key: L), and second, they 

reported the alignment of the three distinct lines using the right-hand keypad (left key: 

vertical alignment; right key: horizontal alignment).  

 

The blank interval (i.e., the interstimulus interval between the offset of the 

target stimulus and the onset of the mask stimulus) was the variable of interest. 

During both the training and test sessions, the timing was adjusted using a staircase 

method, where after every two consecutive correct trials, the interval decreased by 

one step. Conversely, one incorrect trial caused an increase by one step, starting at 
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250 ms with a 10 ms increment. A trial was classified as correct only if both the first 

response (fixation letter identity: T or L) and the second response (alignment of the 

three distinct lines: vertical or horizontal) were correct. The training session consisted 

of 576 trials, with breaks taken after every 96 trials. The test session included 96 trials 

and measured the threshold interstimulus interval at which accuracy converged to 

70.7%. To assess learning effects, thresholds was compared across five test sessions 

(I~IV). A smaller threshold suggested a greater ability for extracting task-relevant 

information from the target stimulus prior to visual processing being disturbed by the 

mask.  

 

2.4.4. Pure Discrimination Tasks 

 

In addition to the backward masking task, each participant also completed a 

series of basic discrimination tasks. Which comprise of the following tasks: 

 

(i) Orientation discrimination  

Eight cardinally sinusoidal gratings are arranged in a circle around a 

central fixation cross within this discrimination task. The ISI remained 500 

ms, and then another circular array of eight gratings was presented for 

300 ms (Figure 2.1a). The gratings were displayed on a gray background 

at 50% of the monitor’s maximum luminance. Each grating had a radius 

of 2.28 degrees and a spatial frequency of 2.2 cycles per degree. The 

eight gratings were positioned at an eccentricity of 5.45 visual degrees 

and polar angles of 0, 45, 90, 135, 180, 225, 270, and 315 degrees, 

respectively. The eight gratings were the same at one of the two 

presentation periods. One of the eight gratings in the other presentation 

was slightly different in orientation from the others. Participants were 
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asked to determine which presentation included the pop-out grating for 

each trial (first or second presentation). There were two visual quadrants 

where the pop-out grating was kept in place (LL or UR). Using the 

standard 2-up-1-down staircase, the orientation difference between the 

pop-out grating and the other gratings was changed in order to 

determine the discriminating, the staircase began with an orientation 

difference of 8.5 degrees and had a step size of 0.5 degrees. Each task 

concluded after 31 staircase reversals (~100 trials), measuring the 

discrimination threshold at which accuracy converged to 70.7%. The 

purpose of this work is to evaluate the generalisability of learning lower-

level visual characteristics from the backward masking task to the same 

low-level features in this task, as well as across other visual locations. 

 

(ii) Contrast discrimination 

This was a similar visual discrimination as to the orientation 

discrimination task. In this task, the pop-out grating differed from the 

other grating in terms of its contrast (Figure 2.1b). The pop-out grating 

was also maintained at two visual quadrants (LL or UR). The staircase for 

this task started with a luminance contrast difference of 34% and had a 

step size of 2%. This task was included in the study to assess the contrast 

features within the backward masking luminance task to maintain 

consistency. Each task concluded after 31 staircase reversals (~100 trials) 

of measuring discrimination threshold.  

 

(iii) Temporal discrimination  

The temporal task that was used in this study was commonly referred to 

as ‘flicker fusion.’ This task consists of a white circle displayed at a 

particular location (LL or UR) around a fixation cross. In each trial, a white 

circle was present once (one flash) or twice (two flashes). Participant 

would respond using a keypad whether they saw one or two white circles 

(Figure 2.1c). The circle had a radius of 1.61 visual degrees and a 

luminance set to 50% of the monitor’s maximum. It was displayed on a 
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black background at an eccentricity of 5.45 visual degrees and a polar 

angle of 225 degrees (LL visual field) or 45 degrees (UR visual field). The 

blank interval was the variable of interest. When the interval was long, 

participants could perceive it and thus recognised the two sequentially 

presented circles as temporally separate. When the interval was short, 

they could not perceive it and instead viewed the two circles as a single 

presentation (Brainard, 1997).  

 

The standard 2-up-1-down staircase method was used to vary the ISI of 

the two-circle trial in order to determine the discriminating threshold 

that was reached when the accuracy settled to 70.7% correct. The 

staircase began with an interval of 70 ms and had a step size of 7 ms. 

Each session concluded after 31 staircase reversals (~100 trials), This task 

was used to assess whether the temporal need in the learned backward 

masking task may be generalised to the temporal need of a novel task.  
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Figure 2.1a. An array of gratings will appear twice on the screen. In one presentation all gratings will be identical. 

In the other presentation, one of the gratings will differ from the other gratings. [Left] Sample 1 shows pop-out 

grating (orientation difference) is presented in the first presentation in the LL quadrant. [Right] Sample 2 shows 

pop-out grating (orientation difference) is presented in the second presentation in the LL quadrant. 

 

 

 

 

Sample 1 Sample 2 

First Presentation 

 

Second Presentation 

 

First Presentation 

 

Second Presentation 

 

Left Key (Right Hand Keyboard) Right Key (Right Hand Keyboard) 
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Sample 1 Sample 2 

First Presentation 

 

Second Presentation 

 

First Presentation 

 

Second Presentation 

 

Left Key (Right Hand Keyboard) Right Key (Right Hand Keyboard) 

Figure 2.1b. An array of gratings will appear twice on the screen. In one presentation all gratings will be identical. 

In the other presentation, one of the gratings will differ from the other gratings. [Left] Sample 1 shows pop-out 

grating (contrast difference) is presented in the first presentation in the LL quadrant. [Right] Sample 2 shows pop-

out grating (contrast difference) is presented in the second presentation in the LL quadrant. 
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Figure 2.1c. Temporal discrimination (flicker fusion) task showing the possible one-circle and two-circle flashes 

that will appear on the screen. The stimuli will appear at different location on the screen (LL or UR). 

 

The pure discrimination tasks used in this current study were modified from 

established psychophysical paradigms used to evaluate low-level visual sensitivity, 

including orientation discrimination (Edden et al., 2009; Mikhailova & Gerasimenko, 

2023), contrast discrimination (Campbell & Green, 1965; Foley & Legge, 1981), and 

temporal flicker fusion paradigms (Dzn, 1958). The specific design of the stimuli (e.g., 

the number of gratings, eccentricity) varied slightly from that of prior experiments. 

However, the fundamental perceptual processes remained unchanged, which is 

to identify minor differences in orientation, contrast, or temporal intervals. These 

changes were made to make sure that the location in space and temporal parameters 

were the same for all activities, especially the backward masking paradigm, while still 

following the basic rules of psychophysics. 
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2.4.5. Data Pre-processing and Statistical Analysis 

 

Using the discriminating threshold as the main dependent variable in this 

study, rather than other metrics such as reaction time, was a key methodological 

decision. In contrast to other measures that may be influenced by unrelated 

cognitive or motor processes, the discrimination threshold provides a clear and 

measurable indicator of perceptual sensitivity (B. A. Dosher & Lu, 1999; Gold et al., 

1999). Discrimination thresholds are fundamentally linked to perception and 

learning, which can avoid artificially high or low responses in response to task 

difficulty, or reaction speed, which can be impacted by strategic changes in response 

selection (Levi et al., 1994) 

 

To ensure that task difficulty remained adaptive and performance-sensitive, a 

staircase method was designed and employed to identify the perceptual limit of 

stimulus discrimination. The ISI between the stimuli was interactively adjusted 

employing a two-down, one-up staircase method, which targets the 70.7% accurate 

response threshold (Levitt, 1971). The staircase ISI will decrease after two successive 

correct responses and increase after an incorrect response. A reversal occurs when 

the direction of ISI adjustment changes (e.g., from decreasing to increasing or vice 

versa). The overall threshold was calculated as the average ISI of the final six 

reversals, as a previous study shows that focusing on later reversals rather than the 

full trial provides a more accurate and stable threshold estimate (Garcıá-Pérez, 1998; 

Levitt, 1971).  

 

The difference between the mean discrimination thresholds at baseline and 

at later test sessions was used to assess how much learning-related progress was 

present. It is important to note that baseline values were calculated from the whole 

baseline block. This method is in line with how perceptual learning research is 

usually done, where performance gains are usually measured by differences in 
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thresholds between complete baseline and post-training sessions instead of partial 

segments (Ahissar & Hochstein, 1997; Crist et al., 1997; Karni & Sagi, 1993; 

Yotsumoto et al., 2008). This method decreases the impact of early-trial variation 

and confounds such as unexpected changes in attention, warm-up, or fatigue during 

a session (Fahle & Edelman, 1993). 

 

Thresholds for the pure discrimination tasks were determined as the mean of 

the stimulus differences at which participants met a specified accuracy. The 

differences were determined by a comparable staircase method, whereby the 

difficulty level (e.g., orientation or contrast) was adaptively changed based on 

participant responses. In the flicker fusion test, perceptual thresholds were 

established as the mean duration between two flickering stimuli at which 

participants could no longer consistently differentiate distinct flashes, in line with 

standard methods employed to assess temporal resolution in visual processing. 

 

Statistical analyses were performed to evaluate changes in perceptual 

thresholds at four time points: baseline (0 Hours), 12 Hours, and 24 hours. A 

repeated-measures analysis of variance (ANOVA) was used to assess within-subject 

changes, considering correlations among repeated measurements: effect sizes (η²) 

were reported for ANOVA results, and intervals of confidence were included if 

applicable. All statistical analyses were performed using SPSS (IBM, Version 

29.0.1.0), with an alpha level set at 0.05. 
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2.5. Experimental 1: Result  

2.5.1. Demographic Data  

 

Following the exclusion of two participants due to misunderstanding task 

instructions and withdrawal, the final sample comprised 15 participants in the 

morning group (mean age = 20.53, SD = 1.67) and 15 participants in the evening 

group (mean age = 21.86, SD = 3.09). Actigraphy recordings indicated that the two 

groups' sleep during the night lengths were similar. Participants in the morning 

group reported sleeping for an average of 6 hours and 57 minutes, and those in the 

evening group slept for an average of 7 hours and 15 minutes. 

 

2.5.2. Assumption Checks 

 

Shapiro–Wilk tests were applied, along with Q–Q graphs for each time point 

and group, to check whether the data follow a normal distribution. While specific 

parameters (e.g., backward masking thresholds at 24 hours) showed minor 

deviations from normality, group sizes were consistent, violations were not severe, 

and repeated-measures ANOVA is robust to moderate non-normality (Blanca et al., 

2017; Field, 2024). Consequently, parametric analyses were considered suitable. 
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2.5.3. Overall Group × Time Effects 

 

To analyse the differences in learning trajectories over time. A 2 (Group: 

Morning, Evening) × 4 (Time: Baseline, 0 hr, 12 hr, 24 hr) mixed-design ANOVAs were 

performed for the main outcome measures which was the backward masking tasks. 

Time was considered a within-subjects variable, while Group was regarded as a 

between-subjects variable. Partial η² has been established as the effect size, aligning 

with conventional methodology in repeated-measures designs. Mauchly's test was 

used to check the assumption of sphericity because the within-subjects component 

Time includes four levels. When the assumption of sphericity was violated, which 

was true in this case, Greenhouse–Geisser adjustments were used on the degrees of 

freedom to reduce increased Type I error rates. 

 

For the learned backward masking orientation at lower left (LL) condition, 

there was a significant main effect of Time, F (1.71, 47.96) = 215.40, p < .001, 

indicating a significant decrease in thresholds across sessions. The Group × Time 

interaction was also significant, F (1.71, 47.96) = 6.52, p = .005, indicating different 

learning pathways among the groups. For the unlearned tasks, backward masking 

luminance LL showed a significant main effect of Time, F (2.50, 70.06) = 111.93, p 

< .001, and a significant Group × Time interaction, F (2.50, 70.06) = 22.94, p < .001. 

Similarly, for the backward masking orientation at upper right (UR), there was a 

significant main effect of Time, F (2.37, 66.33) = 135.16, p < .001, and a significant 

Group × Time interaction, F (2.37, 66.33) = 24.63, p < .001. Finally, for the backward 

masking luminance UR, there was a significant main effect of Time, F (2.44, 68.26) = 

146.82, p < .001, and a significant Group × Time interaction, F (2.44, 68.26) = 32.65, 

p < .001. 
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For all the pure discrimination tasks, mixed ANOVAs revealed no significant 

Time effects or Group × Time interactions for any measure (Table 2.1). 

 

Table 2.1 

Results of Mixed ANOVAs Examining the Effects of Time and Time × Group Interactions 

Across All Variables, with the Backward Orientation LL as the learned task 

Dependent Variable Effect df₁ df₂ F p η² 

Backward Masking OrientaOon LL (ms) Time 1.71 47.96 215.40 < .001 .89 

Time × Group 1.71 47.96 6.52 .005 .19 

Backward Masking Luminance at LL (ms) Time 2.50 70.06 111.93 < .001 .80 

Time × Group 2.50 70.06 22.94 < .001 .45 

Backward Masking OrientaOon at UR (ms) Time 2.37 66.33 135.16 < .001 .83 

Time × Group 2.37 66.33 24.63 < .001 .47 

Backward Masking Luminance at UR (ms) Time 2.44 68.26 146.82 < .001 .84 

Time × Group 2.44 68.26 32.65 < .001 .54 

Contrast DiscriminaOon at LL (%) Time 2.56 71.60 .99 .39 .03 

Time × Group 2.56 71.60 .50 .66 .02 

OrientaOon DiscriminaOon at LL (degree) Time 2.32 64.92 .68 .53 .02 

Time × Group 2.32 64.92 .24 .82 .01 

Flicker Fusion at LL (ms) Time 2.06 57.64 .71 .50 .03 

Time × Group 2.06 57.64 .06 .94 .002 
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Contrast DiscriminaOon at UR (%) Time 2.55 71.33 1.70 .18 .06 

Time × Group 2.55 71.33 .036 .75 .01 

OrientaOon DiscriminaOon at UR (degree) Time 2.35 65.79 .10 .93 .003 

 Time × Group 2.35 65.79 .30 .78 .01 

Flicker Fusion at UR (ms) Time 2.54 71.18 2.20 .11 .07 

Time × Group 2.54 71.18 .80 .48 .03 

Note. df₁ = numerator degrees of freedom (effect), df₂ = denominator degrees of freedom (error). Greenhouse–

Geisser corrected values are reported where Mauchly’s test indicated violations of sphericity. 

 

2.5.4.  Between-Group Comparisons  

 

Follow-up from the mixed-ANOVA results, independent-samples t-tests were 

carried out to determine when the groups start to differ. This enabled us to identify 

if the Morning and Evening groups displayed differences at baseline and identify the 

specific time points at which group trajectories changed. 

 

For the learned backward masking orientation LL task, there were no 

significant differences between groups at Baseline, t (28) = 0.83, p = .413, d = 0.30, 

or at 0 hr, t (27.56) = −1.17, p = .254, d = −0.41. A significant between-group 

difference was identified at 12 hr, t (19.29) = 3.54, p = .002, d = 1.26, with the 

evening group showing lower thresholds when compared to the morning group, 

which is in-line with the idea of sleep-dependent performance gain. No significant 

difference was observed at 24 hr, t (23.87) = −0.57, p = .572, d = −0.20. 
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For the that that was not learned, the backward masking luminance LL 

condition, groups did not show significant difference at Baseline, t (28) = 0.04, p 

= .969, d = 0.01, or at 0 hr, t (27.20) = −0.18, p = .859, d = −0.06. A large group 

difference was observed at 12 hr, t (18.13) = 4.66, p < .001, d = 1.65, again with the 

evening group demonstrating significantly lower thresholds. No significant difference 

was observed at 24 hr, t (27.90) = −0.22, p = .829, d = −0.08. Similar finding was 

found for the backward masking orientation UR condition, were there were no 

significant between-group differences at Baseline, t (28) = 0.83, p = .413, d = 0.30, or 

at 0 hr, t (27.35) = 0.06, p = .950, d = 0.02. At 12 hr, the evening group again 

outperformed the morning group, t (15.56) = 5.73, p < .001, d = 2.04, indicating a 

strong sleep-related advantage. No difference was found at 24 hr, t (27.45) = −0.03, 

p = .976, d = −0.01. Finally for the backward masking luminance UR condition, no 

significant differences were found at Baseline, t (28) = 0.04, p = .969, d = 0.01, or at 0 

hr, t (27.95) = −0.21, p = .834, d = −0.08. Again at 12 hr, the evening group showed 

significantly lower thresholds, t (19.32) = 4.71, p < .001, d = 1.67. No differences 

were observed at 24 hr, t (26.99) = 0.03, p = .975, d = 0.01. 

 

Independent-samples t-tests comparing Morning and Evening at each time 

point showed no significant difference for all conditions.  

 

2.5.5. Improvement from Baseline to 24 Hours Post-Learning 

 

The backward masking task was used to assessed participants' ability to 

distinguish between orientation and luminance changes at the LL and UR visual 

fields, where participants were trained on the backward masking orientation LL.  The 

morning group showed a significant improvement over time based on the decrease 

in mean scores from baseline to 24 hours post-learning (Table 2.2a). For the morning 

group, the repeated measures of ANOVA highlighted a significant main effect of 



 79 

time, F (1, 14) = 170.42, p < .001, indicating that time explained 92.4% of the 

variance in performance. Similarly in the evening group, there was also a decrease in 

mean scores (Table 2.2b) with a significant main effect of time, F (1, 14) = 121.03, p 

< .001. These results indicate a robust improvement in the backward masking 

orientation (LL) learning over time for both groups. 

 

Learning in the backward masking (orientation LL) task also transferred 

significantly to related tasks. Both the morning F (1, 14) = 171.96, p < .001 and 

evening group F (1, 14) = 98.91, p < .001 showed a significant transfer at the 24-

hours re-test to the similar task with luminance difference at LL visual field. Similarly, 

for backward masking of luminance UR task also showed a significant improvement 

for both morning, F (1, 14) = 144.05, p < .001 and evening F (1, 14) = 121.91, p < .001 

group. The other untrained task of the backward masking orientation task at the UR 

visual quadrant also showed significant improvement, with a statistically decreasing 

mean duration for both the morning (Table 2.2a) and evening (Table 2.2b) group, F 

(1, 14) = 145.57, p < .001 and F (1, 14) = 114.76, p < .001, respectively.  

 

However, no significant difference was found on any of the pure 

discrimination tasks. Repeated measures ANOVA revealed no significant main effects 

of time for contrast discrimination at LL, F (1, 14) = 0.28, p < .606, and UR, F (1, 14) = 

1.86, p < .194, for the morning group, and similarly for the evening group, F (1, 14) = 

2.49, p < .137, and F (1, 14) = 1.46, p < .247, for the respective tasks. The orientation 

discrimination task revealed a similar pattern where at the 24 hours post learning it 

remained unchanged in both the LL F (1, 14) =.69, p < .422, or the UR, F (1, 14) = 

0.10, p < .757, for the morning g, and evening F (1, 14) = 0.16, p < .700, F (1, 14) = 

0.64, p < .437, group respectively. The flicker fusion threshold also showed no 

significance in performances, with the morning group showing F (1, 14) = 0.16, p 

< .698 for LL, and UR, F (1, 14) = 1.44, p < .25 for UR, while the evening group 

showed F (1, 14) = .016, p < .901 for LL and F (1, 14) = 0.317, p < .582, for UR.  
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Table 2.2a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group from Baseline to 24 hours Post-learning  

Measures Baseline 24hrs Post F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 11.07 4.89 11.93 7.36 .278 .019 

Orientation Discrimination at LL (degree) 3.54 1.50 3.14 1.66 .686 .047 

Flicker Fusion at LL (ms) 34.10 22.42 36.57 15.67 .156 .011 

Backward Masking Luminance at LL (ms) 128.53 31.87 43.20 24.77 171.96 .925 

Backward Masking Orientation LL (ms) 138.36 39.15 30.36 15.69 170.42 .924 

Contrast Discrimination at UR (%) 12.95 6.69 11.16 4.94 1.86 .118 

Orientation Discrimination at UR (degree) 3.23 1.28 3.40 2.36 .100 .007 

Flicker Fusion at UR (ms) 38.22 21.27 43.49 19.04 1.442 .093 

Backward Masking Luminance at UR (ms) 128.53 31.87 46.22 29.99 144.05 .911 

Backward Masking Orientation at UR (ms) 138.36 39.15 33.87 12.66 145.57 .912 
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Table 2.2b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group from Baseline to 24 hours Post-learning 

Measures Baseline 24hrs Post F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 9.08 2.42 8.12 2.65 2.49 .151 

Orientation Discrimination at LL (degree) 3.75 1.46 3.59 2.54 .155 .011 

Flicker Fusion at LL (ms) 36.08 13.95 36.45 143 .016 .001 

Backward Masking Luminance at LL (ms) 127.96 46.28 45.11 23.34 98.91 .876 

Backward Masking Orientation LL (ms) 126.62 38.21 31.11 10.07 121.03 .896 

Contrast Discrimination at UR (%) 8.04 2.90 7.19 2.02 1.46 .094 

Orientation Discrimination at UR (degree) 3.34 1.75 3.12 1.76 .639 .044 

Flicker Fusion at UR (ms) 38.52 8.75 37.53 12.05 .317 .022 

Backward Masking Luminance at UR (ms) 127.96 46.28 45.91 24.65 121.91 .897 

Backward Masking Orientation at UR (ms) 126.62 38.21 34.00 10.97 114.76 .891 
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2.5.6. Improvement from Baseline to 0 Hour Post-Learning  

 

To determine if any online or instantaneous generalisation of learning took 

place, the threshold mean from Baseline to 0-hour post-learning was compared for 

both morning (Table 2.3a) and evening (Table 2.3b) groups. Repeated-measures 

ANOVA revealed that there is a statistically significant main effect of time of the 

learned task, F (1, 14) = 200.12, p < .001, indicating that time explained 93.5% of the 

overall variance in performance. Similarly, the evening group also showed a 

significant improvement in the backward masking orientation LL learning task, F (1, 

14) = 65.38, p < .001. Indicating that both groups exhibited considerable learning 

effects in the learning task. 

 

However, no improvement was observed in the untrained backward masking 

tasks, highlighting a lack of evidence of immediate generalisation and transfer of 

learning. Both the morning and evening showed no improvement in the backward 

making task with luminance LL, F (1, 14) = 0.77, p = .394, luminance UR, F (1,14) = 

2.25, p = .155, or orientation UR, F (1, 14) = 2.23, p = .157. The evening group also 

showed no significant transfer to backward masking tasks such as luminance LL, F (1, 

14) = 0.042, p = .841, luminance UR, F (1, 14) = 0.96, p = .343, or orientation UR, F (1, 

14) = 0.025, p = .875, showing that online learning was specific to the trained task.  

 

For the pure discrimination task, no significant improvement was found from 

Baseline to immediate re-test (0 hours post-learning). Repeated-measures ANOVA 

showed no significant main effects of time for contrast discrimination at LL, F (1, 14) 

= .718, p = .411, and UR, F (1, 14) = 0.001, p = .977, for the morning group, as well as 

for the evening group, F (1, 14) = .006, p = .941, and F (1, 14) = 0.325, p = .578, 

respectively. 
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Table 2.3a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group from Baseline to immediate retest (0-hr) 

Measures Baseline 0hr Post F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 11.07 4.89 12.18 7.17 .718 .049 

Orientation Discrimination at LL (degree) 3.54 1.50 3.47 1.16 .075 .005 

Flicker Fusion at LL (ms) 34.10 22.42 38.92 18.06 .413 .048 

Backward Masking Luminance at LL (ms) 128.53 31.87 123.38 47.63 .774 .052 

Backward Masking Orientation LL (ms) 138.36 39.15 59.91 25.40 200.12 .935 

Contrast Discrimination at UR (%) 12.95 6.69 13.00 6.54 .001 .000 

Orientation Discrimination at UR (degree) 3.23 1.28 3.56 1.40 2.40 .146 

Flicker Fusion at UR (ms) 38.33 21.27 47.50 23.97 2.67 .160 

Backward Masking Luminance at UR (ms) 128.53 31.97 120.53 42.27 2.254 .139 

Backward Masking Orientation at UR (ms) 138.36 39.15 127.11 45.37 2.232 .138 
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Table 2.3b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group from Baseline to immediate retest (0-hr). 

Measures Baseline 

24hrs 

Post          F (1, 14) η2 

  M SD M SD 

  

Contrast Discrimination at LL (%) 9.07 2.42 9.01 2.55 .006 .000 

Orientation Discrimination at LL (degree) 3.75 1.46 3.52 1.78 .66 .045 

Flicker Fusion at LL (ms) 36.08 13.95 39.01 16.04 .945 .063 

Backward Masking Luminance at LL (ms) 127.96 46.28 126.80 56.66 .042 .003 

Backward Masking Orientation LL (ms) 126.62 38.21 71.47 28.82 65.38 .824 

Contrast Discrimination at UR (%) 8.04 2.90 8.53 2.54 .325 .023 

Orientation Discrimination at UR (degree) 3.34 1.75 3.23 1.40 0.076 .005 

Flicker Fusion at UR (ms) 38.52 8.75 41.39 10.35 1.08 .072 

Backward Masking Luminance at UR (ms) 127.96 46.28 123.87 44.04 .962 .064 

Backward Masking Orientation at UR (ms) 126.62 38.21 126.13 38.86 .025 .002 
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2.5.7. Improvement from 0-hour to 12 Hours Post-Learning 

 

At 12 hours after the initial learning phase, the evening group showed a 

significant improvement in the backward masking orientation LL learning task, F (1, 

14) = 33.36, p < .001, and luminance LL, F (1, 14) = 69.66, p < .001, showing the 

effect of improvement in learning after an offline sleep period. Similarly, the evening 

group also showed significant improvements in the luminance UR backward masking 

task, F (1, 14) = 164.52, p < .001, and orientation UR, F (1, 14) = 131.93, p < .001. The 

overall mean threshold has decreased from 0 hours to 12 hours post-learning retest 

for both the morning (Table 2.4a) and evening groups (Table 2.4b).  

 

In contrast, the morning group, which did not sleep between 0 hours and 12 

hours post-learning, no significant difference were found in learning of the backward 

masking orientation LL task, F (1,14) = 0.174, p = .683, or in the relevant task, such as 

orientation UR, F (1,14) = 3.52, p = .082. Additionally, the morning group showed no 

improvement in backward masking luminance LL, F (1, 14) = 3.19, p = .096, or 

luminance UR, F(1, 14) = 0.677, p = .424, suggesting a lack of offline wake learning 

effect in the absence of sleep.  

 

Again, for all the pure discrimination tasks, no significant improvement was 

found during the 12-hour retest after initial learning for both the morning (Table 

2.4a) and evening (Table 2.4b) groups.  
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Table 2.4a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group from 0-hr to 12-hrs post learning retest 

Measures 0hr Post 12hrs Post F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 12.18 7.17 10.84 7.36 2.15 .133 

Orientation Discrimination at LL (degree) 3.47 1.16 3.17 1.57 .779 .053 

Flicker Fusion at LL (ms) 38.92 18.06 36.36 17.79 1.58 .101 

Backward Masking Luminance at LL (ms) 123.38 47.63 116.13 54.86 3.19 .185 

Backward Masking Orientation LL (ms) 59.91 25.40 59.11 23.31 .174 .012 

Contrast Discrimination at UR (%) 13.00 6.54 11.25 6.34 2.03 .127 

Orientation Discrimination at UR (degree) 2.56 1.40 3.31 1.56 .488 .034 

Flicker Fusion at UR (ms) 47.50 23.97 40.09 15.91 2.37 .145 

Backward Masking Luminance at UR (ms) 120.53 42.27 117.60 53.71 .677 .046 

Backward Masking Orientation at UR (ms) 127.11 45.37 120.31 54.03 3.52 .021 
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Table 2.4b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group from 0-hr to 12-hrs post learning retest 

Measure 0hr Post 12hrs Post F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 9.01 2.55 7.78 1.64 2.59 .156 

Orientation Discrimination at LL (degree) 3.52 1.78 3.48 1.85 .034 .002 

Flicker Fusion at LL (ms) 39.01 16.04 37.10 12.47 .765 .052 

Backward Masking Luminance at LL (ms) 126.8 56.66 45.38 21.30 69.66 .833 

Backward Masking Orientation LL (ms) 71.47 28.82 35.82 10.32 33.36 .704 

Contrast Discrimination at UR (%) 8.53 2.54 7.94 2.66 .493 .034 

Orientation Discrimination at UR (degree) 3.23 1.40 3.30 1.62 .037 .003 

Flicker Fusion at UR (ms) 41.39 10.35 38.64 10.65 1.69 .108 

Backward Masking Luminance at UR (ms) 123.87 44.04 46.18 23.87 164.52 .922 

Backward Masking Orientation at UR (ms) 126.13 38.86 38.18 12.76 131.93 .904 
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2.5.8. Improvement from 12 Hours to 24 Hours post-Learning 

 

To examine whether learning of the backward masking task continued beyond 

12 hours post-learning, a repeated-measures ANOVA was conducted to compare 

performance between the 12-hour and 24-hour retests for both groups. The morning 

group showed significant improvements in the backward masking orientation LL task, 

with a significant main effect of time, F (1, 14) = 61.69, p < .001, highlighting that time 

accounts for 81.5% of the variance in performance. Similarly, orientation UR, 

luminance LL and luminance UR showed significant improvement over time, F (1, 14) 

= 52.13, p < .001, F (1, 14) = 51.35, p < .001, and F (1, 14) = 63.47, p < .001, respectively, 

suggesting continued consolidation of learning in the morning group.  

 

However, in the evening group, no significant changes were observed in 

performance from 12 to 24 hours post-learning, indicating that learning had stabilised 

in the learning task, F (1, 14) = 1.59, p = .228. Similar non-significant results were 

observed for backward masking orientation UR, F (1, 14) = 1.69, p = .215, luminance 

LL, F (1, 14) = 0.01, p = .922 and luminance UR, F (1, 14) = 0.009, p = .924. 

 

For all the pure discrimination tasks, no significant improvement was found 

during the 12-hour to 24-hour post-learning period. The descriptives provided in Table 

2.5a demonstrated the significant decrease in the mean threshold values, further 

supporting these improvements for the morning group. However, Table 2.5b showed 

that the mean threshold values remained stable across time points for the evening 

group, showing the absence of additional improvements.    
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Table 2.5a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group  

Measures 12hr Post 24hrs Post          F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 10.84 7.36 11.93 7.36 1.06 .070 

Orientation Discrimination at LL (degree) 3.17 1.57 3.14 1.66 .01 .001 

Flicker Fusion at LL (ms) 36.36 17.80 36.57 15.67 .004 .000 

Backward Masking Luminance at LL (ms) 116.13 54.86 43.20 24.77 51.35 .786 

Backward Masking Orientation LL (ms) 59.11 23.31 30.36 15.69 61.69 .815 

Contrast Discrimination at UR (%) 11.25 6.34 11.16 4.94 .006 .000 

Orientation Discrimination at UR (degree) 3.31 1.56 3.40 2.36 .035 .002 

Flicker Fusion at UR (ms) 40.09 15.92 43.49 19.04 .603 .041 

Backward Masking Luminance at UR (ms) 117.60 53.71 46.22 29.98 63.47 .819 

Backward Masking Orientation at UR (ms) 120.31 54.03 33.87 12.66 52.13 .788 
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Table 2.5b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group  

Measure 12hrs Post 24hrs Post F (1, 14) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 7.78 1.64 8.12 2.65 .290 .020 

Orientation Discrimination at LL (degree) 3.48 1.85 3.59 2.54 .084 .006 

Flicker Fusion at LL (ms) 37.10 12.47 36.45 10.43 .081 .006 

Backward Masking Luminance at LL (ms) 45.38 21.30 45.11 23.34 .01 .001 

Backward Masking Orientation LL (ms) 35.82 10.32 33.11 10.07 1.59 .102 

Contrast Discrimination at UR (%) 7.94 2.66 7.19 2.12 1.01 .067 

Orientation Discrimination at UR (degree) 3.30 1.62 3.12 1.76 .534 .037 

Flicker Fusion at UR (ms) 38.64 10.65 37.53 12.04 .417 .029 

Backward Masking Luminance at UR (ms) 46.18 23.87 45.91 24.65 .009 .001 

Backward Masking Orientation at UR (ms) 38.18 12.76 34.00 10.97 1.69 .108 
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2.6. Experiment 1: Discussion  

 

The findings from Experiment 1 show a distinct contrast between the effects 

of learning on the backward masking tasks and pure discrimination tasks. While 

orientation, contrast discrimination, and flicker fusion tasks were more consistent 

over time, performance on the backward masking tasks demonstrated notable and 

long-lasting gains. Mixed-design ANOVAs revealed that Time had a significant impact 

and that the Group × Time interaction effect was important for all backward masking 

conditions. However, there were no significant Time or interaction effects for any pure 

discrimination measure. The backward masking tasks' strong effect sizes highlight the 

power of timed learning and its consolidation, whereas the other tasks' small effects 

imply that they might not be as sensitive to time-dependent learning processes. One 

notable characteristic of the findings from this experiment is the relatively large effect 

sizes seen across all backward masking tasks, especially in the backward masking with 

luminance LL and orientation LL, where η² values were more than 0.80. These 

important findings suggest that offline consolidation and sleep had a significant role 

in perceptual learning. These effects are strong enough to suggest that the learning 

task induces neuroplasticity, most likely in higher-order processing areas and visual 

cortical areas, such as V1 (Karni & Sagi, 1993; Stickgold, 2005). On the other hand, the 

pure discrimination tasks (flicker fusion, orientation discrimination, and contrast 

discrimination) had much smaller effect sizes. This suggests that they depend on more 

stable sensory thresholds that are less affected by processes that occur during sleep. 

This finding is consistent with other studies, which show that sleep-related benefits 

are higher for tasks involving more complex perceptual integration and attention-

dependent mechanisms than for simple discriminating tests (Fenn et al., 2003). 

 

It is important to note that the baseline mean score across tasks showed 

similarity. This demonstrates experimental design rather than behavioural 

equivalence: the adaptive staircase methods started from an identical initial threshold 
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for all individuals, which means a baseline value was fixed to a uniform starting point. 

Consequently, the comparable baseline means do not indicate similar basic 

perceptual skills; instead, they indicate controlled initial conditions prior to 

the process of learning. 

 

The analyses between groups show convincing support for how sleep affects 

performance trajectories. Independent-samples t-tests revealed no significant 

differences between groups at Baseline or 0 hours, suggesting that both groups 

commenced from similar performance levels. However, at the 12-hour re-test, there 

were considerable differences, with the Evening group (sleep period before re-

test) consistently performing better than the Morning group (wake period before re-

test) in all backward masking conditions. These differences were absent during the 

24-hour re-test, after the Morning group encountered their sleep period, suggesting 

that the two groups eventually aligned. This temporal pattern strongly supports the 

hypothesis that sleep, rather than simply the passing of time, is what makes offline 

performance improvements possible. Sleep happening promptly after training 

(Evening group) resulted in earlier enhancements but sleep postponed until after 12 

awake hours (Morning group) yielded similar enhancements solely at the subsequent 

re-test. This aligns with substantial studies demonstrating that sleep promotes both 

performance improvement and the transfer of learning to untrained under 

comparable stimulus situations (Stickgold & Walker, 2013). Furthermore, Group × 

Time interactions were observed across all backward masking tasks, which were again 

absent in the pure discrimination tasks. This interaction effect assesses whether the 

pattern of change over time differs between the groups. Statistically, these 

interactions show that the learning and performance trajectories were significantly 

different between the Morning and Evening groups, rather than showing 

parallel improvement at the same time, mirroring the t-test results.  
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The within-group analysis also provided support for the distinct effect of the 

time of day on learning and consolidation. Both groups showed significant 

improvements on the learned backward masking orientation LL task, however, the 

trajectory of learning varied between groups. The evening group demonstrated 

notable improvements in the 12-hour post-learning re-test, indicating that sleep was 

crucial in enhancing performance. On the other hand, the morning group, which 

stayed awake from 0 to the 12 hours period, showed no notable gains throughout this 

period. Yet, following a night of rest, the morning group demonstrated significant 

enhancements during the 24-hour testing. The results further support the significance 

of sleep dependency in learning generalisation through observed transfer effects. 

After a night of sleep, the morning group demonstrated a notable transfer of learning 

to other untrained backward masking tasks (including orientation UR, luminance LL, 

and luminance UR). This suggests that sleep has benefits for associated perceptual 

abilities beyond the training task, possibly due to synaptic reorganisation and the 

incorporation of learnt patterns into a larger brain network (Stickgold & Walker, 2013). 

The evening group, on the other hand, had significant transfer effects at the 12-hour 

test after sleep, but these benefits did not hold up at the 24-hour retest. This indicates 

that although there was an initial transfer of learning, it was not sustained as long as 

in the morning group, suggesting that consolidation processes may vary depending on 

when learning takes place in relation to when the sleep period occurred.   

 

Circadian effects on learning and memory consolidation might be one of the 

causes of the observed variances between groups. Performance may be impacted by 

learning sessions that correspond with an individual's peak cognitive times, and the 

evening groups showed faster improvements, possibly due to circadian 

synchronisation with their sleep cycle (Blatter & Cajochen, 2007). Learning earlier in 

the day may allow for higher consolidation effects, especially when followed by 

nighttime sleep, as indicated by the morning group's improved long-term retention. 

These findings are in line with other studies on sleep-dependent memory 
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consolidation and provide weight to the idea that planning learning sessions that align 

with sleep-wake cycles may optimise learning outcomes (Gais et al., 2000). 

 

Careful interpretation of the findings is needed in this experiment, as it relies 

on self-reported sleep habits and a relatively small sample size. The findings' 

generalisability is always limited by these characteristics, which also raise questions 

about the possible impact of unmeasured confounding variables, including differences 

in circadian type across individuals and sleep quality. In order to provide stronger 

support for the sleep-dependent hypothesis, future research should build a stronger 

methodological framework, objective sleep metrics, and a larger sample size. Overall, 

this experiment provides strong evidence that sleep is essential for PL and its transfer 

to related tasks. The substantial effect sizes observed in backward masking tasks 

demonstrate the significance of offline neuronal reorganisation and sleep-related 

consolidation in complex perceptual learning, which will be further discussed in the 

main discussion. On the other hand, the lack of noticeable improvements across 

all pure discrimination tests indicates that specific perceptual abilities do not change 

over time and are not significantly affected by sleep. 

 

2.7. Experiment 2: Introduction 

 

An investigation into the methods by which learning influences the backward 

masking (orientation) task is presented in the first experiment discussed in this 

chapter. Not only did performance in the task increase for the characteristics and 

locations that were learnt, but it also improved for other areas of the task. The 

significance of this discovery lies in the fact that it provides evidence that our 

perception systems are adaptable and able to apply information that was previously 

learned to other circumstances. Additionally, it raises questions about the way in 

which the brain localises activities, demonstrating that the consolidation of learning is 
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not restricted to certain tasks. One example is that having a strong command of the 

backward masking orientation task led to an improvement in performance on the 

luminance backward masking test, despite the fact that there was no prior experience 

with the latter. For example, being skilled in the backward masking orientation task 

also improved performance in the backward masking luminance task, even though 

there was no practice with it. The presence of this crossover provides evidence that 

higher-level brain areas may play a role in the process of generalising learning and 

transferring information between different types of activities. If this were confirmed, 

it would be a revolutionary step that would completely transform our understanding 

of how information is processed and disseminated in the brain throughout the 

learning process.  

 

Experiment 2 takes a deeper look at examining individuals who were trained 

primarily on the backward masking luminance task, concentrating particularly on their 

left visual field. This is carried out in light of the insights that were already gained from 

the first experiment within this chapter. This focus on luminance is based on what is 

known about how V1 neurones work and how they respond to changes in both 

direction and illumination stimuli (Wang et al., 2015). The purpose of this investigation 

is to determine if the benefits that have been reported are based on processing or 

involve more complicated cognitive functions. Taking into account the fact that visual 

perception includes different parts of the brain, the improvement in task performance 

that was seen demonstrates that different regions of the brain operate together 

rather than acting separately. Although these findings are convincing, further research 

is needed to understand how the brain's activity is mapped during learning and its 

generalisation. The value of carrying out such an experiment comes from the fact that 

it has the ability to shed light on the mechanisms that are responsible for learning and 

generalisation within the system. Researchers can assess whether increases in 

performance are due to changes in processing or if they result from enhanced 

cognitive skills, such as attention, memory, or decision-making, by training 

participants on the backward masking luminance task and analysing the effects of the 
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task. To establish focused learning methods that can improve abilities, it is essential 

to make this distinction. Furthermore, having a better understanding of how learning 

in one area can affect performance in another may have implications for rehabilitation 

efforts, particularly for visual impairments, and even for the creation of artificial 

intelligence systems capable of simulating human perceptual learning processes. 

 

2.8. Experiment 2: Materials and Methods 

2.8.1. Participants  

 

For the study, a fresh new cohort of 25 naive volunteers who had never been 

exposed to the task before the learning period were recruited. Five participants 

were excluded from final data analysis due to withdrawal from the study. The 

remaining 20 participants were evenly allocated to two groups, the morning group 

(n = 10, mean age = 19.5, SD = 1.51) and the evening group (n = 10, mean age = 20.6, 

SD = 1.84). Both groups of participants have completed a self-reported sleep log 

which confirms that they adhered to the study’s requirements identical to 

Experiment 1.  

 

2.8.2. Set-up, Stimuli/Tasks, Assessment/Timeline 

 

Experimental set-up, task used, and the timeline were identical to 

Experiment 1, except that this time participants were trained on the lower left visual 

field of the backward masking luminance task and committed approximately 5 hours 

across three experimental sessions. Matlab was used to present the visual stimuli on 

a computer screen, with a screen size of 54.3cm. Participants were placed in a 
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completely dark testing lab that consist of a chinrest, which serves the purpose of 

keeping their head location at the same location throughout the testing sessions. An 

eye tracker was also used to ensure that participant is always fixating at the centre 

location as requested. 

 

There is also a change in the order of the learning and retest for backward 

masking tasks. In the learning phase (Session 1) participants underwent training on 

the backward masking Luminance task at the lower-left (LL) visual field. The 

backward masking learning task consisted of five blocks of 96 trials each (as detailed 

in the ‘Experiment Design’ section) 

 

In 0-hour post-learning phase (Session 2), participants completed immediate 

post-learning re-tests. The 12-hour and 24-hour retests followed the same structure, 

including both backward masking of Luminance and orientation (LL & UR), For all 

pure discrimination tasks, it also follows the same paradigm as stated in Experiment 

1.  

 

2.9. Experiment 2: Results 

 

Shapiro–Wilk tests was used to check for normality in each group. Most of 

the variables exhibited no statistically significant deviation from normality (p > .05), 

with a few instances of significance occurring at certain time intervals. Given that the 

groups were small but equal in size (n = 10 per group) and mixed ANOVA and 

independent samples t-tests are strong enough to handle modest normality 

violations (Field, 2024), parametric analyses were maintained. 
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2.9.1. Overall Group × Time Effects 

 

A 2 (Group: Morning, Evening) × 4 (Time: Baseline, 0 h, 12 h, 24 h) mixed-

design ANOVA was carried out on all the backward masking tasks. There was a 

significant main effect of Time, F (1.40, 25.22) = 105.44, p < .001, indicating a 

significant decrease in thresholds across sessions. There was also a significant Group 

× Time interaction, F (1.40, 25.22) = 5.53, p = .018, indicating different learning 

trajectories between the Morning and Evening groups. 

 

For the unlearned backward masking orientation LL condition, there was a 

significant main effect of Time, F (1.60, 28.85) = 63.24, p < .001, indicating a 

decrease in thresholds across sessions. The Group × Time interaction was also 

significant, F (1.60, 28.85) = 15.24, p < .001, again suggesting differential patterns 

between the groups over time. Similar patterns were observed for the backward 

masking luminance UR condition, where there was a significant main effect of Time, 

F (1.70, 30.55) = 81.86, p < .001, and a significant Group × Time interaction, F (1.70, 

30.55) = 21.27, p < .001. Again, the same pattern was found for the backward 

masking orientation UR condition. A significant main effect of Time was observed, F 

(1.95, 35.15) = 54.48, p < .001, and a significant Group × Time interaction, F (1.95, 

35.15) = 11.47, p < .001.  

 

For all the pure discrimination tasks, mixed ANOVAs revealed no significant 

Time effects or Group × Time interactions for any measure (Table 2.6), which is in 

line with what was observed in Experiment 1.  
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Taken together, these findings indicate that both learned and unlearned 

backward masking tasks, involving luminance and orientation, showed strong 

performance improvements over time, as reflected in significant main effects of 

Time. In addition, all unlearned tasks exhibited significant Group × Time interactions, 

highlighting that both groups followed different performance trajectories across 

sessions, similar to the learned condition. 

 

Table 2.6 

Results of Mixed ANOVAs Examining the Effects of Time and Time × Group Interactions 

Across All Variables, with the Backward Masking Luminance LL as the learned task 

Dependent Variable Effect df₁ df₂ F p η² 

Backward Masking Luminance at LL (ms) Time 1.40 25.22 105.442 <.001 .854 

Time × Group 1.40 25.22 5.532 0.018 .235 

Backward Masking OrientaOon LL (ms) Time 1.60 28.85 63.239 <.001 .778 

Time × Group 1.60 28.85 15.243 <.001 .459 

Backward Masking Luminance at UR (ms) Time 1.70 30.55 81.856 <.001 .820 

Time × Group 1.70 30.55 21.271 <.001 .542 

Backward Masking OrientaOon at UR (ms) Time 1.95 35.15 54.476 <.001 .752 

Time × Group 1.95 35.15 11.474 <.001 .389 

Contrast DiscriminaOon at LL (%) Time 2.62 47.15 1.167 .329 .061 

Time × Group 2.62 47.15 .455 .689 .025 

OrientaOon DiscriminaOon at LL (degree) Time 2.67 48.09 1.468 .237 .075 
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Time × Group 2.67 48.09 .484 .673 .026 

Flicker Fusion at LL (ms) Time 2.44 43.96 .374 .731 .020 

Time × Group 2.44 43..96 .435 .689 .024 

Contrast DiscriminaOon at UR (%) Time 2.39 43.01 .087 .942 .005 

Time × Group 2.39 43.01 .202 .854 .011 

OrientaOon DiscriminaOon at UR (degree) Time 2.17 39.04 .167 .863 .009 

 Time × Group 2.17 39.04 .275 .778 .015 

Flicker Fusion at UR (ms) Time 2.63 47.27 .067 .977 .004 

Time × Group 2.63 47.27 .610 .591 .033 

Note. df₁ = numerator degrees of freedom (effect), df₂ = denominator degrees of freedom (error). Greenhouse–

Geisser corrected values are reported where Mauchly’s test indicated violations of sphericity. 

 

2.9.2. Between-Group Comparisons 

 

To look at between-group differences, independent-samples t-tests were 

conducted to compare the Morning and Evening groups on all backward masking 

and pure discrimination tasks at Baseline, 0 hr, 12 hr, and 24 hr. 

 

For the trained task (backward masking luminance LL), there were no 

significant differences between groups at Baseline, t (18) = 0.14, p = .892, d = 0.06, 

or at 0 hr, t (14.58) = −1.33, p = .205, d = −0.57. A significant difference emerged at 

12 hr, t (16.31) = 2.46, p = .026, d = 1.05, with the Evening group showing lower 
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thresholds than the Morning group. By 24 hr, this difference was no longer 

significant, t (17.67) = −0.82, p = .425, d = −0.35. 

 

For the untrained backward masking orientation LL task, no significant 

differences were found at Baseline, t (17.49) = 0.01, p = .991, d = 0.01, or at 0 hr, t 

(16.01) = −0.15, p = .883, d = −0.06. At 12 hr, the Evening group outperformed the 

Morning group, t (11.01) = 5.26, p < .001, d = 2.25. No significant difference 

remained at 24 hr, t (14.81) = −1.39, p = .185, d = −0.60. Similarly, for TDT Luminance 

UR, there were no between-group differences at Baseline, t (17.80) = 0.14, p = .892, 

d = 0.06, or at 0 hr, t (18) = 0.18, p = .860, d = 0.08. A significant difference emerged 

at 12 hr, t (13.13) = 5.38, p < .001, d = 2.31, favouring the Evening group. No 

significant difference was observed at 24 hr, t (17.44) = −0.86, p = .400, d = −0.37. 

Following the same pattern, the backward masking orientation UR also showed no 

significant group differences at Baseline, t (17.49) = 0.01, p = .991, d = 0.01, or at 0 

hr, t (17.29) = −0.25, p = .804, d = −0.11. At 12 hr, there was a large and significant 

difference, t (12.18) = 3.97, p = .002, d = 1.70, with the Evening group again 

outperforming the Morning group. By 24 hr, this difference had disappeared, t 

(16.23) = −1.22, p = .239, d = −0.52. 

 

There were no significant differences between groups at any time point for 

any of the pure discrimination conditions. This is in line with the mixed-ANOVA 

results, which showed that these measures did not have any Time or Group x Time 

effects. This suggests that sleep is more beneficial for the backward masking tasks 

that need a lot of time to process than for simple sensory thresholds. 

 

2.9.3. Improvement from Baseline to 24 Hours Post-Learning 
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In Experiment 2, the performance of individuals on various tasks at baseline 

to 24 hours after initial learning was examined. Repeated-measures ANOVA showed 

a significant main effect of time for the learning task, showing a substantial 

improvement in the backward masking luminance LL task for both the morning and 

evening groups. The morning group showed a significant improvement, F (1, 9) = 

75.56, p < .001, with the η² indicating that time explained 89.4% of the variance in 

performance and not by random chance (Table 2.7a). Similarly, the evening group 

also demonstrated a strong learning effect, F (1, 9) = 58.75, p < .001, with the η² 

indicating that time explained 86.7% of the variance. 

 

In addition to the improvement in the learning task, both groups 

demonstrated significant improvement in related untrained backward masking tasks. 

Firstly, the morning group showed a significant transfer of learning to the backward 

masking tasks, including, luminance UR, F (1, 9) = 58.50, p < .001, orientation LL, F (1, 

9) = 41.66, p < .001, and orientation UR, F (1, 9) = 41.16, p < .001. Additionally, the 

evening group experienced comparable transferred skills, F (1, 9) = 52.60, p < .001, F 

(1, 9) = 39.73, p < .001, and F (1, 9) = 35.77, p < .001, respectively. The mean score 

across the tasks for the morning (Table 2.7a) and evening (Table 2.7b) groups 

suggests an overall decrease in threshold scores, highlighting that learning of the 

backward masking luminance LL task generalised to other backward masking-based 

perceptual tasks. 

 

However, no significant difference was found for any of the pure 

discrimination tasks. Repeated-measures ANOVA showed no significant main effects 

of time for contrast discrimination at LL, F (1,9) = 0.266, p = .618, and UR, F (1, 9) = 

0.317, p = .585, in the morning group. Similarly, the evening group showed no 

significant improvement in these tasks, as indicated by F (1, 9) = 0.004, p = .953, and 

F(1, 9) = 0.001, p = .975, respectively. Likewise, no significant changes were found 

for orientation discrimination at LL, F (1, 9) = 0.943, p = .357, and UR, F (1, 9) = 



 103 

0.368, p = .559, for the morning group, or for the evening group, F (1, 9) = 1.56, p 

= .243, and F (1, 9) = 0.011, p = .917. The flicker fusion task also showed no 

significant differences in both morning and evening group, F (1, 9) = 1.31, p = .315 

(LL), F (1, 9) = 0.317, p = .587 (UR) and F (1,9) = 0.045, p = .837 (LL), F (1, 9) = 0.166, 

p = .693 (UR), respectively.  

 

Based on these findings, participants' performance on pure discrimination 

tasks was constant over time. However, they demonstrated strong gains on the 

learnt backward masking luminance LL task and a notable transfer to related 

backward masking tasks. This indicates that gains did not transfer to more general 

visual discriminating skills, but instead were task-specific to temporal learning 

processes. 

 

 Table 2.7a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group from Baseline to 24 hours post-learning  

Measures Baseline 24hrs Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 12.73 5.02 12.16 4.34 .266 .029 

Orientation Discrimination at LL (degree) 2.66 1.38 2.37 .85 .943 .357 

Flicker Fusion at LL (ms) 38.15 6.57 36.53 6.80 1.31 .112 

Backward Masking Luminance at LL (ms) 129.87 43.86 35.20 14.08 75.56 .894 



 104 

Backward Masking Orientation LL (ms) 126.67 47.75 34.60 10.59 41.66 .822 

Contrast Discrimination at UR (%) 11.83 6.69 12.88 6.57 .321 .034 

Orientation Discrimination at UR (degree) 2.43 .485 2.58 .796 .368 .039 

Flicker Fusion at UR (ms) 37.64 7.42 39.63 11.24 .317 .034 

Backward Masking Luminance at UR (ms) 129.87 43.86 38.00 15.04 58.5 .867 

Backward Masking Orientation at UR (ms) 126.67 47.75 40.13 14.38 41.16 .821 

 

Table 2.7b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group  

Measures Baseline 24hrs Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 12.87 4.41 12.76 7.42 .004 .000 

Orientation Discrimination at LL (degree) 2.31 .69 2.07 .80 1.56 .148 

Flicker Fusion at LL (ms) 35.74 7.88 35.14 10.13 .045 .005 

Backward Masking Luminance at LL (ms) 127.0 48.80 40.73 16.17 58.75 .867 

Backward Masking Orientation LL (ms) 126.40 56.72 43.60 17.50 39.73 .815 
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Contrast Discrimination at UR (%) 13.13 5.14 13.16 6.58 .001 .000 

Orientation Discrimination at UR (degree) 2.12 .467 2.14 .938 .011 .001 

Flicker Fusion at UR (ms) 36.11 9.00 34.95 6.91 .166 .018 

Backward Masking Luminance at UR (ms) 127.0 48.80 44.40 18.02 52.60 .854 

Backward Masking Orientation at UR (ms) 126.40 56.72 49.73 20.27 35.77 .799 

 

2.9.4. Improvement from Baseline to 0 Hour Post-Learning  

 

To examine whether any immediate learning effects occurred after the initial 

learning session, performance at baseline was compared to the 0-hour re-test for 

both groups. A significant main effect of time was observed for the training of the 

backward masking luminance LL task, showing a substantial effect of immediate 

learning. The morning group showed a significant improvement in the learning task, 

F (1, 9) = 51.94, p < .001. Similarly, the evening group also exhibited a strong learning 

effect, F (1, 9) = 80.69, p < .001. The larger effect size found in the evening group 

(Table 2.8b) compared to the morning group (Table 2.8a) suggests a potentially 

greater immediate consolidation of learning.  

 

Apart from the improvement found for the learning task, no evidence of 

immediate learning transfer was found. Firstly, the performance of both the morning 

and evening groups remained stable for the backward masking luminance UR task, F 

(1, 9) = 0.02, p = .892, and F (1, 9) = 0.002, p = .964, respectively. For the backward 

masking orientation task, similar results were found at LL, F (1, 9) = 2.33, p = .161 
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(morning) and F (1, 9) = 1.68, p = .228 (evening). Similarly, for the backward masking 

orientation UR, F (1, 9) = 0.927, p = .361 (morning) and F (1, 9) = 0.108, p = .750 

(evening). The finding suggests that learning was highly task-specific, with no 

immediate generalisation to different visual quadrants or to other task features.  

 

Additionally, performance in the pure discrimination tasks also remained 

unchanged, suggesting that the perceptual learning effect was specific to the 

backward masking rather than to more general tasks. Repeated-measures ANOVA 

showed no significant main effects of time for Contrast Discrimination at LL, F (1, 9) = 

1.11, p = .319, and UR, F (1, 9) = 0.428, p = .530, in the morning group. Similarly, the 

evening group showed no significant improvement in these tasks, F (1, 9) = 0.087, p 

= .775, and F (1, 9) = 0.043, p = .841, respectively. For the pure Orientation 

Discrimination task, no improvement was found at the LL, F (1, 9) = 0.002, p = .968 

and UR, F (1, 9) = 0.851, p = .380 for the morning group, or for the evening group, F 

(1, 9) = 0.976, p = .349 and F (1, 9) = 0.622, p = .451, for the respective tasks. Finally, 

the Flicker Fusion task was also consistent with the previous two tasks where non-

significance in performance were found at the LL, F (1, 9) = 0.878, p = .373 and UR, F 

(1,9 ) = 0.962, p = .352 for the morning group, and the same for evening group, F (1, 

9) = 0.081, p = .782 and F (1, 9) = 0.845, p = .382. Overall, reinforces the idea that 

immediate post-learning benefits do not extend to general discrimination abilities. 

 

Overall, both morning and evening groups demonstrated immediate learning 

for the trained backward masking luminance task at the LL visual quadrant, where 

the transfer effects were not found to be related to backward masking tasks, as 

evidenced by the decrease in mean performance for both groups (Table 2.8a and 

Table 2.8b). However, the evening group showed a larger immediate effect, 

potentially reflecting differences in time-of-day influences on the consolidation of 

learning. 
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Table 2.8a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group from Baseline to 0-hour post-learning  

Measures Baseline 0hr Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 12.73 5.02 13.81 5.79 1.11 .110 

Orientation Discrimination at LL (degree) 2.66 1.38 2.65 1.07 .002 .000 

Flicker Fusion at LL (ms) 38.15 6.57 36.99 5.92 .878 .089 

Backward Masking Luminance at LL (ms) 129.87 43.86 68.13 23.97 51.94 .852 

Backward Masking Orientation LL (ms) 126.67 47.75 119.93 38.37 2.33 .206 

Contrast Discrimination at UR (%) 11.83 6.69 12.79 5.46 .428 .045 

Orientation Discrimination at UR (degree) 2.43 .485 2.56 .635 .851 .086 

Flicker Fusion at UR (ms) 37.64 7.42 40.09 8.56 .962 .097 

Backward Masking Luminance at UR (ms) 129.87 43.86 130.53 46.00 .020 .002 

Backward Masking Orientation at UR (ms) 126.67 47.75 119.33 44.88 .927 .093 
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Table 2.8b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group from Baseline to 0-hour post-learning 

Measures Baseline 24hrs Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 12.87 4.41 12.48 4.62 .087 .010 

Orientation Discrimination at LL (degree) 2.31 .686 2.13 .632 .976 .098 

Flicker Fusion at LL (ms) 35.74 7.88 35.14 7.39 .081 .009 

Backward Masking Luminance at LL (ms) 127.0 48.80 87.93 40.64 80.69 .900 

Backward Masking Orientation LL (ms) 126.40 56.72 123.13 55.46 1.68 .157 

Contrast Discrimination at UR (%) 13.13 5.14 12.73 5.34 .043 .005 

Orientation Discrimination at UR (degree) 2.12 .467 2.01 .654 .622 .065 

Flicker Fusion at UR (ms) 36.11 9.00 33.61 10.36 .845 .086 

Backward Masking Luminance at UR (ms) 127.0 48.80 126.87 45.89 .002 .000 

Backward Masking Orientation at UR (ms) 126.40 56.73 125.0 55.13 .108 .093 
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2.9.5. Improvement from 0 Hour to 12 Hours Post-Learning 

 

To examine the potential impact of learning within the first 12 hours post-

learning, and compared performance between immediate and 12-hour post-learning 

tests for both the morning and evening groups. For the learned backward masking 

luminance task at LL, the morning group did not show any improvement, F (1, 9) = 

2.62, p = .140, indicating no substantial change in learning during this offline wake 

period. On the other hand, the evening group showed a significant decrease in mean 

threshold, F (1, 9) = 30.67, p < .001, suggesting a strong offline sleep consolidation 

effect (Table 2.7a and Table 2.7b). 

 

Similar patterns were found for the untrained backward masking tasks. The 

morning group did not show improvement in the backward masking luminance UR, F 

(1,9) = 1.04, p = .334, backward masking orientation LL F (1,9) = 0.47, p = .510, or 

backward masking orientation UR, F (1,9) = 1.08, p = .327, suggesting that with the 

absence of sleep offline learning effect were minimal. In contrast, the evening group, 

which had a sleep period between the sessions, showed a significant improvement 

in backward masking luminance UR, F (1,9) = 72.09, p < .001, backward masking 

orientation LL, F (1,9) = 32.00, p < .001, and backward masking orientation UR F (1,9) 

= 44.66, p < .001, supporting the idea of sleep in improving the generalisation of 

learning.  

 

For all pure discrimination tasks, no improvement was found for the Contrast 

Discrimination LL, F (1, 9) = 3.62, p = .090, and UR, F (1, 9) = 0.27, p = .614, for the 

morning group. The evening group also showed the same pattern, F (1, 9) = 0.993, p 

= .345 and F (1, 9) = 0.179, p = .682 for the respective tasks. For the Orientation 

Discrimination task, no improvement was found at LL, F (1, 9) = 0.517, p = .490 and 

UR, F (1, 9) = 0.017, p = .899, for the morning group, and for the evening group, F (1, 
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9) = 0.158, p = .709 and F (1, 9) = 0.369, p = .559, respectively. In addition, for the 

Flicker Fusion task performance also remained stable for the morning group at LL, F 

(1, 9) = 0.189, p = .674 and UR, F (1, 9) = 0.423, p = .532 and evening group at LL, F 

(1, 9) = 0.897, p = .368 and UR, F (1, 9) = 0.202, p = .664. The results reinforce the 

idea that sleep-related benefits are specific to visual perceptual tasks rather than 

general discrimination abilities.  

 

Table 2.7a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group from 0 hour to 12 hours post-learning  

Measures 0hr Post 12hrs Post 

F (1, 

9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 13.81 5.79 11.57 4.32 3.62 .287 

Orientation Discrimination at LL (degree) 2.65 1.07 2.83 1.12 .517 .054 

Flicker Fusion at LL (ms) 36.99 5.92 37.69 7.58 .189 .021 

Backward Masking Luminance at LL (ms) 68.13 23.97 66.40 24.42 2.62 .225 

Backward Masking Orientation LL (ms) 119.93 38.37 122.20 42.82 .470 .050 

Contrast Discrimination at UR (%) 12.79 5.46 12.16 5.34 .273 .029 

Orientation Discrimination at UR (degree) 2.56 .635 2.53 .526 .017 .002 
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Flicker Fusion at UR (ms) 40.09 8.56 38.47 8.32 .423 .045 

Backward Masking Luminance at UR (ms) 130.53 46.0 127.13 44.71 1.04 .104 

Backward Masking Orientation at UR (ms) 119.33 44.88 113.20 47.73 1.08 .107 

 

 

Table 2.7b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group from 0 hour to 12 hours post-learning 

Measure 0hr Post 12hrs Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 12.48 4.62 11.61 5.09 .993 .099 

Orientation Discrimination at LL (degree) 2.13 .632 2.20 .912 .148 .016 

Flicker Fusion at LL (ms) 35.14 7.39 33.15 7.08 .897 ,091 

Backward Masking Luminance at LL (ms) 87.93 40.64 43.07 17.50 30.67 .773 

Backward Masking Orientation LL (ms) 123.13 55.46 47.07 14.39 32.0 .781 

Contrast Discrimination at UR (%) 12.73 5.34 13.36 4.41 .179 .020 

Orientation Discrimination at UR (degree) 2.01 .654 2.14 .620 .369 .039 
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Flicker Fusion at UR (ms) 33.61 10.36 34.44 7.52 .202 .022 

Backward Masking Luminance at UR (ms) 126.87 45.89 42.27 22.04 72.09 .899 

Backward Masking Orientation at UR (ms) 125.0 55.13 48.07 20.38 44.66 .832 

 

2.9.6. Improvement from 12 Hour to 24 Hours Post-Learning 

 

At the 24-hour interval, significant transfer of learning to untrained backward 

masking tasks was found in the morning group but not in the evening group. ANOVA 

analysis has shown that there was improvement to the task of other backward 

masking, including, luminance UR task, F (1, 9) = 48.66, p < .001, orientation LL, F (1, 

9) = 50.90, p < .001, and orientation UR, F (1, 9) = 33.49, p < .001, and when 

compared to the 12-hour test. However, the evening group did not show the same 

effects, with a non-significant change to untrained tasks, F (1, 9) = 0.347, p = .570, F 

(1, 9) = 3.31, p = .102, and F (1, 9) = 0.226, p = .646, respectively. Furthermore, there 

was a significant consolidation of learning observed only in the morning group for 

the backward masking luminance LL task, with a substantial improvement from 12 

hours to 24 hours, F (1, 9) = 59.53, p < .001. However, the evening group did not 

exhibit the same learning effect, F (1, 9) = 3.72, p = .086, indicating that there is a 

lack of continued learning beyond the 12-hour post-learning mark. 

 

As expected and consistent with previous findings from Experiment 1, the 

pure discrimination tasks did not show any significant changes in either group, 

suggesting that the observed improvement was highly specific to the backward 

masking-based PL tasks. Repeated-measures ANOVA found no significant changes in 

contrast discrimination at LL, F (1, 9) = 0.298, p = .598, and UR, F (1, 9) = 0.477, p 
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= .507, in the morning group, nor for the evening group, F (1, 9) = 1.08, p = .326 (LL), 

F (1, 9) = 0.039, p = .847 (UR). Similarly, no significant differences were found in 

orientation discrimination at LL, F (1, 9) = 3.37, p = .100, and UR, F (1, 9) = 0.051, p 

= .826, for the morning group, or for the evening group, F (1, 9) = 0.449, p = .520, 

and F (1, 9) = 0.001, p = .979. Likewise, flicker fusion task performance remained 

unchanged, with no significant differences observed for the morning, with LL, F (1,9) 

= 0.588, p = .463 and UR, F (1, 9) = 0.12, p = .73, and the evening group, with LL, F (1, 

9) = 0.326, p = .582, and UR, F (1, 9) = 0.076, p = .789. 

 

These findings indicate that while the morning group continued to 

consolidate learning and exhibited further transfer to untrained tasks, the evening 

group’s improvements plateaued beyond 12 hours. The descriptive statistics (Table 

2.8a) highlight the reduction in threshold scores for the morning group compared to 

the evening group (Table 2.8b), further supporting the presence of sleep-dependent 

consolidation effects. 

 

Table 2.8a 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Morning Group  

Measures 12hr Post 24hrs Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 11.57 4.32 12.16 4.34 .298 .032 

Orientation Discrimination at LL (degree) 2.83 1.12 2.37 .849 3.37 .272 
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Flicker Fusion at LL (ms) 37.69 7.58 36.53 6.80 .588 .061 

Backward Masking Luminance at LL (ms) 66.40 24.42 35.20 14.08 59.53 .869 

Backward Masking Orientation LL (ms) 122.20 42.82 34.60 10.59 50.90 .850 

Contrast Discrimination at UR (%) 12.16 4.32 12.88 6.57 .477 .050 

Orientation Discrimination at UR (degree) 2.53 .53 2.58 .796 .051 .006 

Flicker Fusion at UR (ms) 38.47 8.32 39.63 11.24 .120 .013 

Backward Masking Luminance at UR (ms) 127.13 44.71 38.0 15.04 48.66 .844 

Backward Masking Orientation at UR (ms) 113.20 47.73 40.13 14.38 33.49 .788 
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Table 2.8b 

Means, Standard Deviations, and Repeated Analyses of Variance in Backward Masking and 

Pure Discrimination Task for the Evening Group  

Measure 12hrs Post 24hrs Post F (1, 9) η2 

  M SD M SD     

Contrast Discrimination at LL (%) 11.61 5.09 12.76 7.42 1.08 .107 

Orientation Discrimination at LL (degree) 2.20 .914 2.07 .801 .449 .047 

Flicker Fusion at LL (ms) 33.15 7.08 35.14 10.13 .326 .035 

Backward Masking Luminance at LL (ms) 43.07 17.50 40.73 16.17 3.72 .292 

Backward Masking Orientation LL (ms) 47.07 14.39 43.60 17.50 3.31 .269 

Contrast Discrimination at UR (%) 13.36 4.41 13.16 6.58 .039 .004 

Orientation Discrimination at UR (degree) 2.13 .620 2.14 .094 .001 .000 

Flicker Fusion at UR (ms) 34.44 7.52 34.95 6.91 .076 .008 

Backward Masking Luminance at UR (ms) 42.27 22.05 44.40 18.01 .347 .037 

Backward Masking Orientation at UR (ms) 48.07 20.38 49.73 20.27 .226 .025 
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2.10. Experiment 2: Discussion 

Experiment 2 examined how sleep affects perceptual learning as well as 

learning generalisation across task elements and visual field locations. In particular, 

the experiment examined whether training on the backward masking luminance LL 

task enhanced performance on untrained backward masking tasks, pure 

discrimination tasks, and the trained task. Strong learning effects was observed for 

the learnt task in both groups, which is in line with the findings in Experiment 1. 

However, no significant generalisation was shown in the evening group after 12 

hours post-learning, and generalisation effects were observed solely in the morning 

group at the 24-hour period. Further supporting the specificity of learning-related 

enhancements to temporal learning processes rather than general perceptual 

abilities is the fact that performance on pure discrimination tests was constant 

across all time points. 

 

The learnt luminance LL task demonstrated considerable improvement for 

both the morning and evening groups, indicating robust PL effects. The 

improvement paths, however, varied among groups. By the 12-hour point, the 

evening group had shown significant improvement, indicating offline consolidation 

effects related to sleep. In contrast, the morning group, which stayed awake for the 

first 12 hours, showed no immediate improvement, but a significant gain was found 

at 24 hours, following a sleep period. These results are consistent with the findings 

in Experiment 1 and other research in the literature, providing the idea that sleep 

improves performance on PL tasks and helps in memory consolidation (Fenn & 

Hambrick, 2012; Stickgold & Walker, 2005). 

 

Furthermore, throughout the 24-hour test, only the morning group 

demonstrated the transfer of learning to untrained backward masking tasks. 

Backward masking tasks, including luminance UR, orientation LL, and orientation UR, 
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exhibited notable transfer effects. This finding indicates that there is a delayed 

consolidation process, potentially requiring an extended sleep period for this effect 

to occur. The 12-hour retest revealed transfer effects after the evening group's 

participants had their offline sleep period. However, the 24-hour retest did not 

sustain the effect. The observed pattern suggests that while sleep can facilitate the 

transfer of learning, the effects were less long-lasting due to time-of-day limits 

(Kuriyama et al., 2004). 

 

The between-group comparison results further support this point of view. 

Both groups began with the same baseline, but differences became clear after the 

first 12-hour period, when the evening group, who had received the first sleep 

period, performed better on both the learned and unlearned backward masking 

tasks compared to the morning group. After the morning group had their own sleep 

period, the differences had disappeared in 24 hours, and both groups performed at 

around the same level. This trend strongly shows that sleep is contributing 

and making a difference in both performance and the transfer of learning, not time 

or repeated testing. The evening group had shown this performance gain earlier, as 

they had a sleep period between their first and second learning periods. However, 

the morning group did not catch up until after they had the sleep period at a later 

time point. The lack of differences between groups on the pure discrimination 

conditions further emphasises that these effects are particular to the consolidation 

of masking-related learning, rather than to overall enhancements in visual 

sensitivity. 

 

Perceptual learning is not primarily controlled by low-level visual processing, 

as shown by the reported generalisation of learning to untrained backward masking 

tasks but not to pure discriminating tasks. Improvements would have been 

anticipated in tasks with comparable sensory characteristics (e.g., contrast 

discrimination) if generalisation had been limited to early visual regions. The 
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involvement of higher-order cortical processes in PL was supported by our discovery 

that generalisation extended to other backward masking tasks with distinct spatial 

locations and feature attributes. This notion aligns with neurophysiological studies 

that demonstrate a connection between the prefrontal cortex and parietal areas, as 

well as the relationship between extractive learning and cross-task generalisation 

(Jing et al., 2021). Furthermore, learning benefits may be due to task-specific 

changes in temporal processing rather than a general gain in visual perception, as 

shown by the fact that perception did not improve on any purely perceptual tasks 

(Watanabe & Sasaki, 2015). These findings highlight the fact that higher-level 

cognitive processes, rather than just cognitive process flexibility, are responsible for 

the generalisation of perceptual learning. 

 

The results of this experiment showed that circadian rhythms play a role in 

determining the effectiveness of learning processes and memory consolidation. The 

morning group demonstrates long-term recall and generalisation improvements 

after sleep through delayed yet sustained memory gains at the 24-hour mark. The 

evening group displayed significant early improvements at the 12 hours post-

learning period with consistent benefits throughout the rest of the retest session. 

Research confirms that circadian variables influence the encoding and consolidation 

of procedural learning (Della-Maggiore et al., 2017), supporting the observed trend.  

 

Everything considered, the results from this experiment demonstrate strong 

perceptual learning as well as its generalisation to novel tasks, which is strong 

evidence for the importance of sleep. Only the morning group had additional 

delayed generalisation effects that were still noticeable after 24 hours, but neither 

group performed poorly after the specific training; both morning and evening 

learners did well on the trained backward masking luminance LL task. Furthermore, 

the findings suggest that the transfer of learning across task changes stems from the 

action of higher-order cortical processes rather than from low-level visual 
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processing. Moreover, the amount and persistence of learning increments appear to 

be circadianly controlled, so that long-term consolidation is achieved more 

effectively by morning learners. With implications for improving training paradigms 

in skill acquisition and rehabilitation, these results together advance our knowledge 

of the interaction among sleep, circadian rhythms, and higher-level cognitive 

processes in perceptual learning. 

 

2.11. General Discussion  

 

The brain's ability to adjust to experience is reflected in PL, which improves 

sensory discrimination via repeated practice. Although studies have shown that 

sleep promotes learning consolidation (Stickgold & Walker, 2005; Yotsumoto et al., 

2009), little is known about how sleep affects learning generalisation across 

unfamiliar tasks, characteristics, or locations. The present research examined 

whether perceptual learning is task-specific and restricted to learnt stimuli or 

whether sleep acts as a mechanism for generalisation. The two experiments showed 

that sleep is essential for learning transfer, allowing the acquired perceptual abilities 

to transcend their initial context. Experiment 1, which used backward masking tasks 

to test orientation-based learning, showed small transfer during wakefulness but 

significant transfer effects after sleep. These results were supported by Experiment 

2, which used a backward masking task with luminance-based learning. While offline 

wakefulness alone resulted in insignificant generalisation, gains were still seen in 

both trained and untrained tasks after a night of sleep. Generalisation was task 

dependent. However, sleep improved learning transfer in backward masking-based 

tasks, but it had no apparent impact on pure discrimination tasks (flicker fusion, 

orientation discrimination, and contrast discrimination). These results highlight the 

need to investigate task-specific processes of generalisation, as they imply that 

sleep-dependent consolidation does not enhance all types of perceptual learning 

equally. 
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2.11.1. The Effect of Sleep 

 

One of the main conclusions of this research is that sleep improved with 

generalisation in PL, especially when it came to tasks that required the detection of 

structured patterns as opposed to low-level sensory discrimination (Cousins et al., 

2021; Drouin et al., 2023b; Qin & Zhang, 2019; Walker & Stickgold, 2004). This is 

consistent with other studies that found sleep reinforces cortical representations, 

enabling learnt gains to transcend their training environment (Wamsley, 2022). The 

results of Experiment 1, which concentrated on orientation-based learning, showed 

strong transfer effects after sleep but little transfer during wakefulness. This trend 

was repeated in Experiment 2, which employed training based on luminance. These 

results support the notion that sleep is essential for reorganising neuronal 

representations, which increases learning flexibility and cross-context transferability 

(Durrant et al., 2011; Nieuwenhuis et al., 2013).  

 

Between group comparison showed when the learning trajectory start to 

differ. In both experiments, the Morning and Evening group showed no differences 

at baseline or immediately after learning (0 hr), suggesting a similar baseline 

performance. However, after 12 hours, the Evening group shown an improvement 

on all the backward masking task compared to the Morning group. This 

improvement is likely to be the benefits of sleep as at the 12-hour timepoint only the 

those who were I the evening group encountered episode of sleep. However, at the 

24-hour timepoint, when the Morning group had also slept, the difference between 

the groups were gone. In relation to the pure discrimination tasks, no differences 

between groups were found on any of the task at any time point. This time-locked 

difference strongly suggests that sleep, not just simply the passage of time, caused 

the offline improvements and transfer. 
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However, while improvement was observed, they did not consistently 

develop across all retest periods or tasks. In contrast to the weak or insignificant 

effects in pure discrimination tasks, the findings showed considerably large effect 

sizes in sleep-dependent learning for backward masking-based tasks (η² > 0.80). 

Even though the effect sizes observed were big in both experiments, this trend is 

likely to occur in studies of perceptual learning and is also partly due to how the 

trials were set up. One factor can be related to the within-subject adaptable 

behavioural paradigms, which generate highly correlated repeated measures 

characterised by low error variance, resulting in inflated partial η² values (Bakeman, 

2005; Olejnik & Algina, 2003). Staircase methods that employ fixed baselines often 

cause post-training variances to be compressed and floor effects, which make 

contrasts more apparent (Garcıá-Pérez, 1998). Additionally, small samples decrease 

the stability of η², leading to increase of probability of overestimation (Levine & 

Hullett, 2002). When looking at the size of the effects that were seen, these 

problems should be taken into account. Future analyses should incorporate 

confidence intervals and possibly other measures of effect size (such as generalised 

η²) to assess the stability of the effects.  

 

Mixed-design ANOVA was used to look at the Time x Group interaction, and 

independent t-tests were used to look at the group effect. These analyses were 

chosen because the mixed-design ANOVA can examine whether learning trajectory 

changes over time for the Morning and Evening groups. However, the independent 

t-test was used to examine at each time point where the differences emerged, 

isolating the specific effects of sleep (at 12 hours) and their resolution after both 

groups had slept (at 24 hours). This two-step method keeps group differences 

separate from overall main effects and correlates well with repeated measures 

designs that have more than one retest. 
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Furthermore, the study in this Chapter revealed that morning learners 

exhibited improved performance in online learning tasks, which aligns with the 

hypothesis that the brain must undergo changes and form new connections to learn 

online effectively. Tononi and Cirelli (2003) proposed that sleep eliminates non-

essential synaptic connections, which provides a compelling foundation for 

understanding why sleep could be essential to learning. According to the theory of 

homeostasis, reducing the strength of synapses during sleep is an important step in 

maintaining the brain’s ability to change and adapt. This downsizing process may 

create extra room for learning, which could explain why one tend to have an overall 

understanding after a good night’s sleep. However, further research is necessary to 

validate this theory and explore how performance improvements carry over to 

testing sessions on the day of learning. It would also be valuable to investigate how 

variables like age, gender and sleep quality affect learning and memory 

consolidation. By conducting these types of studies, more profound insights can be 

gained into how sleep facilitates learning and optimises our cognitive abilities both 

when awake and asleep. 

 

The concept that learning generalisation happens during sleep has support 

from research on sessions conducted 12 hours and 24 hours after learning. 

Specifically for individuals who learned in the evening and then slept, there was an 

improvement in performance on tasks during the 12-hour retest. This suggests that 

sleep plays a role in promoting generalisation. Interestingly, those who learned in 

the morning and then retested after some sleep did not show the improvement. 

Furthermore, individuals who learned in the evening showed transfer of learning 

during the 12-hour retest compared to those who learned in the morning. This 

indicates that when sleep occurs might have an impact on the extent of 

generalisation achieved. However, during the 24-hour retest, this pattern was 

reversed; morning learners who had slept exhibited an increase in task performance. 
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In general, the findings of this study align with previous research (Fenn et al., 

2003; Tandoc et al., 2021; Yotsumoto et al., 2009) that suggests sleep plays a role in 

promoting the generalisation of learning. However, it is important to note that the 

study design did not allow for a comparison between learning on sleep and learning 

independent of sleep since all participants experienced both periods of wakefulness 

and sleep. To confirm the importance of sleep for generalisation and explore the 

underlying mechanisms, future studies with a more robust experimental design will 

be needed. 

 

2.11.2. The Effect of Transfer  

 

Sleep facilitates generalisation in perceptual learning, but this is not a universal 

phenomenon. According to the findings from Experiments 1 and 2, although some 

visual tasks showed transfer effects, the absence of improvement in pure 

discrimination tasks (flicker fusion, contrast, and orientation), indicates that 

generalisation depends on how learnt representations are reorganised during sleep 

rather than just memory retention. This distinction offers crucial information about 

the processes underlying perceptual learning, especially with relation to the kinds of 

learning that may be transferred and consolidated. 

 

The lack of transfer to tasks involving just pure visual discrimination is in line 

with other studies showing that intensive, repetitive training is usually necessary to 

improve performance on these tasks. Basic discrimination tasks seem to rely on low-

level sensory processes that do not easily benefit from sleep-dependent consolidation 

in the same manner as the backward masking tasks, which involve higher-level 

perceptual and cognitive processing (Fahle & Edelman, 1993; Karni & Sagi, 1993).  
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There is potential that pure discrimination learning will develop slowly and 

incrementally, requiring many trials and sessions before any changes and 

improvement to be seen, which is a gap the experiment in this Chapter, a this were 

not directly examined. However, as shown by Karni and Sagi's (1993) study, 

which demonstrated that significant gains in a visual discrimination test needed 

numerous sessions spaced out over a long period (i.e., several days). Similarly, Fahle 

and Edelman (1993) found that sustained gains in the vernier acuity tests only 

occurred after a long and intensive training sessions. According to these results, 

improvements in visual discrimination are usually dependent on extended and regular 

exposure to stimuli, whereas the backward masking tasks enable comparatively quick 

learning and transfer because they activate higher-order visual and attentional 

processes. 

 

The difference between supressed learning effect in the pure discrimination 

tasks and quick learning in the backward masking tasks suggests the possibility of 

underlying brain differences in the processing and consolidation of these tasks. One 

possible explanation of PL in the backward masking tasks includes the idea of top-

down regulation from higher cortical areas such as the prefrontal cortex (PFC) and 

parietal regions, as well as local plasticity in early visual areas (V1) (Seitz & Watanabe, 

2005; Watanabe & Sasaki, 2015). Pure discrimination tasks, on the other hand, could 

rely more on low-level retinotopic plasticity in V1 (Karni & Sagi, 1991; A. Schoups et 

al., 2001), which depends on a very narrow population of orientation and contrast 

sensitive neurons. Therefore, to have any measurable changes, the same neurons 

need to get-togethers ad repeatedly co-activate while neighbourhood neurons 

remain inactive (Gilbert et al., 2001; Li et al., 2004). Synaptic performance can only be 

changed by this highly selective and recurrent recruitment process. As a result, low=-

level visual tasks are very sensitive to the parameters of the stimulus and to the 

location in space. Even small changes can affect the precise neuronal co-firing that is 

needed for plastic change (Seitz & Watanabe, 2005). These limitations are one 
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possible explanation to the limited learning and generalisation found in the pure 

discrimination tasks and shows the need for extensive, location-specific learning.  

 

The amount of practical learning capacity in pure discrimination tasks may be 

fundamentally lower than in the backward masking learning if the lack of transfer to 

these tasks is to be argued to be a result of chance. Since fundamental sensory 

discrimination processes are already well optimised by past visual experience, pure 

discrimination tasks may have less space for improvement than tasks involving 

complicated feature integration, contextual modulation, or sequential processing 

(Fine & Jacobs, 2002). Prior studies have attempted to enhance pure discrimination 

tasks even further, but these efforts sometimes require a lengthy training 

period (Astle et al., 2010). Therefore, the findings from this chapter are consistent 

with previous research, indicating that the restricted transferability of pure 

discrimination tasks reflects basic differences in learning processes. While low-level 

sensory changes in V1 need extended and highly task-specific training to show any 

apparent gains, perceptual learning that relies on higher-order integration, feature 

binding, and attentional control is more transferable and generalisable. 

 

2.12. Strength and Limitations  

 

These tasks are widely utilised in visual learning research and allow for the 

accurate monitoring of changes in perceptual capacity over time by evaluating 

learning specificity and generalisation using well-established perceptual learning 

paradigms, such as the backward masking test. Additionally, the calculation of 

threshold estimations exposes a significant methodological flaw. Instead of using the 

complete trial data, overall thresholds are commonly derived from the average inter-

stimulus interval (ISI) of the final six reversals. This approach minimises early changes 
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in performance arising from task familiarisation or fatigue effects, therefore providing 

a more reliable and correct threshold estimate (Garcıá-Pérez, 1998; Levitt, 1971). 

 

However, some limitations should be acknowledged. Firstly, the interpretation 

and analysis of the data assumes that participants are not too tired, and performance 

remained stable both within and between sessions. If tiredness develops randomly, it 

might provide a confound as performance reductions could not follow a regular trend 

across individuals or sessions. The inherent unpredictability complicates the 

determination of whether the changes in threshold represent actual learning effects 

or merely temporary reductions in attentional capacity. Integrating objective or 

subjective markers of consciousness, such as self-reported tiredness or changes in 

reaction time, could help identify the difference between improvements in learning 

and short-term changes in performance. Secondly, the possible small sample size and 

strongly related repeated-measures methodology are effective for identifying within-

subject changes. This problem fits with established statistical artefacts in perceptual-

learning research and must be considered when assessing the significance of observed 

effects. 

 

 

2.13. Conclusion 

 

The field of perceptual learning has both important theoretical applications 

and considerable practical applications. It offers crucial theoretical insights into the 

flexibility and plasticity of adult perceptual systems, as well as an in-depth 

understanding of the constraints that are placed on how information is processed by 

an individual subject. It also explains how systematic training affects the 

development of the subject's perceptual state. On a practical level, PL implies a 
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potentially beneficial non-invasive technique for developing perceptual proficiency 

in healthy individuals. Additionally, it provides a successful training-based 

intervention approach for treating perceptual deficiencies among individuals with a 

range of cognitive difficulties. 

 

Our empirical results add to the body of behavioural research that is 

currently being conducted, particularly regarding the transferability of learned skills 

and the important role that sleep plays in the process of learning. In the past two 

decades, a growing number of studies have shown that learning continues in the 

brain even after initial training is complete. Instead, it continues to learn even when 

there is no additional practice - a phenomenon known as "offline" learning. 

Interestingly, this kind of learning seems to be most prominent while asleep. 

However, the underlying brain processes that support this offline learning during 

sleep are still unclear and completely undefined despite much investigation. 
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CHAPTER 3:  

The Role of Sleep and 

Wakefulness in Attentional 

Learning: Investigating 

Online and Offline 

Consolidation 
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3.1. Abstract  

 

In the field of selective attention, the focus is on the complex interaction of 

brain functions that enable individuals to filter and evaluate sensory input. This 

research is crucial for understanding learning mechanisms and the performance of 

daily tasks. The objective of this study is first to evaluate whether attentional 

learning can be learned, and secondly, whether the time of learning (online and 

offline sleep) would have an impact on the effect of learning. Specifically, the study 

differentiates between top-down, goal-oriented attention and bottom-up, stimulus-

driven attention. Two tasks (Attentional Capture and Visual Search) were used to 

test the different process streams. The purpose of the tasks was to evaluate the 

effectiveness of attention distribution before and after periods of sleep or 

wakefulness. Participants were separated into groups that were either morning or 

evening in order to investigate the temporal structure of learning as well as the 

potential function that sleep plays in consolidating learned tasks. 

 

Two separate groups of participants were recruited, one for the attentional 

capture task and one for the visual search task. Both online and offline were tested 

by allocating the participant to either the morning or evening group. Interestingly, 

online learning sessions demonstrated improvements in reaction times, indicating 

significant performance enhancements. However, there was no enhancement 

observed after sleep, which contradicts prior research that sleep aids the 

consolidation of perceptual learning tasks. This research indicates that the 

relationship between sleep and attentional learning is more intricate than previously 

thought. While perceptual learning seems to depend on sleep, attentional learning 

does not necessarily follow the same pattern. This disparity could be due to its 

integration of the learning processes. The study highlights the need for exploration 

using methodologies to unravel the complexities of sleep's role in learning, 



 130 

particularly regarding individual differences, task specificity and involvement of 

different sleep stages. 

 

3.2. Introduction  

 

In many reviews and research in the literature, selective attention represents 

the cognitive ability necessary for individual to focus on important details while 

ignoring distractions (Desimone & Duncan, 1995; Treisman, 1960). This allows 

people to learn and digest information in a way that makes sense to them and to 

make choices when issues get difficult. From navigating a complex visual world to 

sustaining concentration in the face of conflicting stimuli, the capacity to flexibly 

allocate attentional resources is essential for completing goal-directed activities. 

Imagine being in a café trying to have a conversation with someone next to you. 

Despite the surrounding environmental factors, our minds possess the ability to 

focus on the words spoken by our friends or family members effortlessly by filtering 

out the background noise of other conversations, clattering dishes, and the whining 

of a coffee machine. This skill of paying attention is not just convenient; it is a 

cognitive technique that allows us to engage in meaningful interactions even in 

distracting surroundings. Therefore, selective attention is believed to be critical for 

understanding many occurrences in learning.   

 

A long-standing topic in the field of psychology is whether learning and 

experience can improve attentional processes and if offline consolidation 

mechanisms, such as sleep, can affect such learning (Ahissar & Hochstein, 1997; 

Jiang & Chun, 2001). This is because attention plays a crucial role in directing 

cognition. Only a small amount of research has been conducted to investigate how 

much attentional learning follows similar consolidation trajectories to perceptual 
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learning, which is the improvement of sensory discrimination via repeated exposure 

(Fahle, 2005; Karni & Sagi, 1991). The process of learning is influenced by selective 

attention, which has implications for generalisation. When learners focus on the 

characteristics of a task, they become better at recognising and adapting to similar 

situations. This ability to selectively attend to components is crucial for developing 

thinking and applying learned knowledge in various academic and real-world 

scenarios. 

 

Furthermore, the development of selective attention can be understood by 

considering it from previous literature contributing to this field. From an 

evolutionary perspective, having the ability to give preference to salient stimuli—

such as threats or food sources—over meaningless background activity would have 

provided significant survival benefits through the selective allocation of cognitive 

resources. From an evolutionary viewpoint, the ability to prioritise salient or survival-

relevant stimuli explains the power and universality of selective attention as a 

mechanism (Cosmides & Tooby, 1994; Öhman & Mineka, 2001). However, while this 

viewpoint offers a compelling framework, it is primarily theoretical and may 

oversimplify the many processes behind attention in contemporary cognitive 

environments.  

 

In contrast to early deterministic models of attention, which characterised it 

as an involuntary bottleneck (Broadbent, 1958), modern ideas stress its dynamic, 

adaptive character. For example, reviews looking into the biased competition model 

(Desimone & Duncan, 1995) highlights that selective attention is not a filter but 

rather an active and dynamic system that shapes our experiences, learning, and 

relationships. This suggests that stimuli will compete for neural representation, and 

attention assists in selecting goal-relevant information by biasing this conflict. Still, 

this model is not without its limitations; criticism has arisen for failing to properly 

account for how top-down motivation affects attention distribution (Pessoa, 2009). 
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Converging psychological frameworks demonstrate this interaction. Corbetta and 

Shulman’s (2002) dual-network model distinguishes between goal-directed (dorsal) 

and stimulus-driven (ventral) systems, while Treisman and Gelade’s (1980) Feature-

Integration Theory and Wolfe’s Guided Search (1994) model elucidate the joint 

influence of features and goals on cognitive selection. These viewpoints collectively 

underscore selective attention as an evolutionarily established yet cognitively 

adaptable system, perpetually influenced by external needs and internal objectives. 

 

Additionally, selective attention is not unchanging; differences in cognitive 

ability, previous knowledge, and neurodevelopmental characteristics cause 

significant variances between individuals. Studies have shown, for example, that 

selective attention performance is substantially predicted by working memory 

capacity (Engle, 2002) implying that executive functioning is tightly correlated with 

attentional control. Still up for debate, however, is the causality of this association. 

Therefore, even if it is helpful to understand selective attention as an adaptable and 

enhanced cognitive process, this must be balanced by a knowledge of its limitations 

and variability. 

 

Although, as previously mentioned, selective attention is often characterised 

as a basic cognitive mechanism allowing individuals to focus relevant inputs while 

preventing distractions, it is now increasingly viewed as a flexible process moulded 

by learning and experience. The conventional view once held that sensory salience 

or inbuilt biological limitations governed attentional selection. More recently, 

however, studies have shown that with repeated exposure and reinforcement, 

attention may be taught to develop into more efficient and goal-directed (Chun & 

Jiang, 1998; Leong et al., 2017; Rehder & Hoffman, 2005). This process is often 

referred to as 'learnt selective attention', which reflects the ability of individuals to 

fine-tune attentional resources based on the demand of a task, influence of the 

environment and the acquired expectation (Kruschke, 2001; Turk-Browne et al., 
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2005). In order to allocate cognitive resources efficiently, attention entails either 

enhancing or suppressing input processing (Reynolds & Chelazzi, 2004). The 

selectivity ensures that attention is regulated differently to give priority to 

information that is important to the goal over distractions, rather than being evenly 

distributed across all stimulus elements (Broadbent, 1958; Desimone & Duncan, 

1995; Treisman, 1960). The term "learning" here refers to the experience-dependent 

alteration of attentional allocation, which implies that attentional biases may be 

formed by past exposure and used in future circumstances. However, the 

distribution of attention is very context-sensitive and changes constantly based on 

the demands of the task and the cognitive control skills of an individual. 

Learning could change selective attention, according to empirical studies, and task 

relevance and stimulus salience have been identified as key determinants of 

attentional regulation (Chun & Jiang, 1998; Leber et al., 2008). Task salience ensures 

that attention is automatically drawn to high-contrast or novel stimuli, regardless of 

their relevance to a task (Forschack et al., 2023), whereas task relevance focuses 

attention on goal-driven stimuli, thereby improving processing efficiency (Boehler et 

al., 2011; Fecteau & Munoz, 2006).  

 

One of the most important questions in this area is whether these 

attentional improvements are merely wake-dependent or whether they are 

consolidated during offline processes, such as sleep. According to research on 

perceptual learning, discrimination and efficiency are improved by repeated 

exposure to sensory stimuli, while retention and generalisation are improved by 

post-training sleep (Stickgold et al., 2000; Walker & Stickgold, 2004). It is unclear, 

however, whether attentional learning has a similar consolidation trajectory. It was 

shown by Sigman et al. (2005) that training in a visual conjunction search task made 

people respond faster and more accurately. This suggests that practice may help 

attentional selection. Although performance was only evaluated during training 

sessions, their results were regarded as evidence of improved neural efficiency in 

attentional networks. However, it remains unclear whether offline consolidation 
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maintains or strengthens these gains. However, in a visual discrimination test, 

Schoups et al. (2001) found that attention-related brain plasticity depended on post-

training sleep, suggesting that specific components of attentional learning may be 

sleep-dependent. The degree to which this holds true for top-down compared 

to bottom-up stimulus-driven attentional regulation has not been well investigated. 

 

Selective attention is a complex concept that encompasses two main 

processes: processes that operate from the top down and processes that operate 

from the bottom up. Top-down attention is focused on a goal-oriented decision 

(Theeuwes, 2010). An individual's cognitive targets, expectations, and intentions 

serve as their compass (Desimone & Duncan, 1995). Basically, it is a proactive way of 

choosing what to pay attention to when faced with a particular circumstance. 

Individuals can intentionally direct their cognitive resources towards certain 

information using this type of attention, frequently in line with their present goals. 

Top-down attention is helpful for many kinds of everyday tasks. For example, 

individuals use top-down attention to focus on the content and understand the 

meaning of words when reading a book (Egeth & Yantis, 1997). Theoretical 

frameworks have shed light on the mechanisms of top-down regulation of attention. 

The Feature-Integration Theory (Treisman & Gelade, 1980) claims that attention 

integrates different perceptual features, such as colour, shape, and orientation, into 

cohesive object representations, highlighting its constructive function in perception. 

This model shows that when addressing problems, top-down attention ensures that 

cognitive assets are focused on the task at hand by keeping the individual focused 

and ignoring irrelevant distractions. Effective use of top-down attention is essential 

for higher-order cognitive processes, including critical thinking and decision-making. 

 

In contrast, bottom-up attention is uncontrollable and activated by external 

stimuli regardless of the environment. One possible explanation for this is that it is 
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an unexpected occurrence, such as a loud noise that abruptly grabs our attention. 

On the other hand, review on works showed that stimuli naturally drive the process 

of bottom-up attention (Itti & Koch, 2001). Some environmental or sensory factors 

attract attention regardless of cognitive goals, which is why it happens. This type of 

attention, which is characterised by its reactive nature, functions as a warning 

system for information that is perceived in the environment that is uncommon or 

may be noteworthy (Belopolsky et al., 2010). The research that is conducted on 

bottom-up attention makes it feasible to get a good understanding of how humans 

prioritise and interpret sensory input in real-time, which is often necessary when 

rapid responses are required. To have a complete understanding of how people 

make decisions, how they deal with challenges, and how they effectively traverse 

their environment, it is vital to have a dynamic interaction between top-down and 

bottom-up attention processes. 

 

Overall, attention can be consciously directed toward an item in a goal-

directed way (e.g., when you are looking for your bike among other bikes); attention 

can also be acquired subconsciously by a physically salient stimulus (e.g., a flashing 

light) that distinguishes itself from the surrounding items in some fundamental 

feature (e.g., colour and orientation). This is a crucial aspect relating to learning. It 

was hypothesised that the effective learning occurs when both types of attention 

work well together. Top-down attention assists us in maintaining focus on our 

learning objectives, managing distractions, and establishing connections between 

new information and our existing knowledge. At the same time, bottom-up attention 

signals us to pay attention to new information that might be important. 

 

Studies on perceptual learning have shown that exposure to certain visual 

characteristics on a regular basis improves discriminating skills, which in turn 

improves task performance (Censor et al., 2006; Chen et al., 2016; Fiorentini & 

Berardi, 1980). These enhancements suggest that PL plays a crucial role in focusing 
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attention on complicated stimuli, potentially enhancing both top-down and bottom-

up processing. Su et al. (2014), for example, investigated the effects of training in 

colour-orientation conjunction tasks on perceptual discrimination. Participants 

learnt to distinguish a goal stimulus from distractions using elements that changed in 

colour and orientation. According to the research findings, learning significantly 

improved accuracy and decreased response time, indicating that perceptual learning 

improved attentional selection efficiency. Importantly, post-training enhancements 

were restricted to combinations of learnt features, suggesting that learning effects 

strengthened attentional selection for the learnt characteristics rather than being 

generalised across all visual stimuli. The findings highlights that perceptual learning 

could be a technique for gradually improving selective attention to intricate, task-

relevant inputs. 

 

 In the same vein, Sigman et al. (2005) investigated the effects of extended 

learning on brain plasticity and attentional efficiency in a visual conjunction search 

task. To test top-down attentional control, participants had to locate a specific shape 

among a field of distractors. Participants' response times gradually decreased across 

many training sessions, indicating improved cognitive efficiency and attentional 

selection. Significantly, these enhancements were linked to decreased activity in 

frontoparietal attentional networks, according to functional imaging data, indicating 

that repeated practice of the task resulted in a more effective brain processing 

approach. These results demonstrate that attentional learning reduces the cognitive 

load necessary to perform visual search tasks by enhancing perceptual sensitivity 

and optimising brain resource allocation. As a result, it is hypothesised that 

perceptual learning facilitates the allocation of attention to learnt complex stimuli, 

due to the idea proposed by Dowd and Mitroff (2013), which suggests that attention 

is sorted through a selection process driven by bottom-up cues (e.g., when attention 

is captivated by an item's physical uniqueness) and top-down cues (e.g., when 

attention is guided toward a task-relevant location). These results are consistent 

with theoretical models that propose PL improves both top-down and bottom-up 



 137 

processes to enhance attention allocation. Dowd and Mitroff (2013) state that 

attentional selection processes via a dual-process framework in which top-down 

signals (such as task-relevant objectives that direct attention) and bottom-up cues 

(such as salient objects that naturally catch attention) interact to maximise visual 

processing. Their study demonstrated that working memory signals are crucial for 

directing both top-down and bottom-up attention, thereby supporting the notion 

that attentional selection involves a dynamic interplay between goal-directed 

processes and stimulus salience. 

 

Perceptual learning research has found that practice can increase 

performance in discriminating (Karni & Sagi, 1991; Li et al., 2004) and detection 

(Meyer & Petrov, 2011; A. A. Schoups & Orban, 1996). These experiments have 

shown a significant improvement in a spatially or featurally specific way, implicating 

the early sensory cortex as the location of plasticity, which has also been shown in 

electrophysiological experiments. For instance, in the study by Schoups et al (2001), 

they found that the neuronal correlates are significantly related to behavioural 

improvement and that training in monkeys induces a specific and efficient neuronal 

sensitivity in the V1 region. This indicates that the characteristics of stimuli are tuned 

to individual neurons. Although most research focuses on training on specific 

regional locations or stimulus feature categories, there has been considerable 

discussion regarding the causes of more general task improvement. Some research, 

for instance, has linked learning to higher cortical regions (Law & Gold, 2008). 

Plasticity effects in later visual cortical regions, including areas such as V4, have been 

observed because of perceptual learning (T. Yang & Maunsell, 2004). It has also been 

demonstrated that learning in activities, including visual search, is less specific 

(Fahle, 2005). In the study carried out by Sireteanu and Rettenbach (1995), they 

highlighted the non-specificity of perceptual learning effects in visual search tasks 

and therefore set a new insight that plasticity for acquiring a visual search task is 

higher than in sensory cortices. One open question is whether learning can improve 

the effectiveness of the dynamic top-down attention-biasing process itself through 
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practice learning, as opposed to expressing stronger visual discrimination abilities for 

a specific type of goal or location or improving speed and/or performance on a task 

in general. This form of non-specific learning is still unclear, and more precisely, the 

coupling of learning inside a visual search task to investigate the impacts of training 

top-down attention is open to research. Another intriguing question is to evaluate 

how the learning effect differs between top-down and bottom-up attentional 

learning, which remains unclear within the literature. 

 

The field of science has devoted attention to exploring the relationship 

between sleep and learning. Many studies have shown that sleep has effects on 

learning activities. Early research by Smith (2001) and subsequent studies by 

Marshall and Born (2007) and Fattinger et al. (2017) have collectively provided 

evidence that sleep can significantly enhance memory consolidation and learning 

across different domains. While the focus has often been on the immediate results, 

this improvement can be extended over time. For instance, Wagner et al. (2006) 

found that sleep following the acquisition of learnt information can enhance 

memory retention for up to four years. While it is commonly assumed that sleep aids 

are involved in memory consolidation within the visual perceptual learning domain, 

recent investigations have unveiled a more intricate understanding (Gais et al., 2000; 

Mednick et al., 2003). Some previous research indicates that sleep may not 

universally benefit all forms of learning in the way it has not been consistently 

demonstrated to improve tasks. For example, when it comes to memory tasks that 

involve remembering information, sleep has shown improvements. However, when 

it comes to learning tasks related to adapting our perception, the role of sleep might 

not be as crucial. This suggests that the process of consolidating memories during 

sleep is influenced by the type of learning and the neural circuits involved. 

 

Furthermore, within the realm of learning itself, there can be variations in 

how sleep affects task performance. Some complex tasks show an improvement 
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after a night of sleep, while others do not demonstrate any substantial changes. This 

variation not only sheds light on the relationship between sleep and learning but 

also raises an important question: Does attention-based visual learning rely on sleep 

for consolidation, or does it follow a different trajectory? As researchers delve 

deeper into understanding how sleep impacts various forms of learning, the 

controversy surrounding this topic persists. However, it requires more experimental 

studies to ascertain the specific impact of sleep on attention-based learning. By 

focusing on this chapter of research, it can uncover whether attention-based 

learning is as dependent on sleep as it is and if it exhibits different characteristics in 

terms of consolidation. The impact of this research goes beyond the sphere. It has 

real-world implications for methods, cognitive recovery, and our understanding of 

development and functioning. 

 

Attention is a network of specialised brain systems that assist in selecting 

relevant inputs while suppressing irrelevant information, rather than a single 

cognitive function. To ensure maximum cognitive function, these networks 

undertake intricate calculations to filter competing distractions, resolve target 

selection conflicts, and control attentiveness (Lega et al., 2019; Oberauer, 2019). 

Salient environmental cues may attract attention involuntarily (bottom-up 

processing) or actively (top-down processing), which is motivated by task objectives 

and expectations (Itti & Koch, 2001; Theeuwes, 2010). Learning, decision-making, 

and behavioural results are all impacted by how individuals assign cognitive 

resources to their environment, and this dual process is crucial in deciding these 

outcomes. 

 

Empirical evidence supports the significance of attentional control in 

cognitive information processing, demonstrating that problems with attention are 

linked to inefficient encoding, increased impulsivity, and accuracy-speed trade-offs 

(Heitz, 2014; Metin et al., 2013). In settings like air traffic control, clinical diagnostics, 
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or complex visual search tasks, where quick decisions must be made under a lot of 

cognitive strain, sustained attention is especially crucial. According to research, 

attentional engagement problems happen when cognitive demands are higher than 

available attentional resources. This leads to poor task performance, lower accuracy, 

and slower reaction times (Oberauer, 2019). These results emphasise how important 

it is to comprehend how training might improve attentional processes and whether 

these gains are long-lasting. 

 

The effect of sleep on attentional maintenance is one topic of growing 

scientific interest. It is well acknowledged in a meta-analysis that sleep is crucial for 

cognitive function, especially executive control and memory consolidation (Lim & 

Dinges, 2010). Fewer studies have looked at whether post-training sleep-dependent 

consolidation enhances attentional learning itself, even though a large body of 

research has studied how sleep deprivation (SD) affects attentional ability. It remains 

unclear whether attention-based learning follows a similar trajectory or whether 

gains are only wake-dependent, given that sleep has been shown to enhance 

perceptual learning (Walker & Stickgold, 2006) 

 

To investigate whether visual attention tasks can be learnt and whether sleep 

would help with the learning for both top-down and bottom-up processes, two 

different tasks will be used. Attentional capture tasks provide a classic illustration of 

bottom-up attention. These tasks include presenting participants with items that, 

because of their importance, novelty, or sudden presence, naturally and 

involuntarily grab their attention. Individuals respond to these stimuli—which are 

well-known attention-getters—without realising it (such as colours, brightness, and 

shape). Individuals in these activities must react when certain, noticeable stimuli 

emerge, making them reactive in nature. The idea of a stimulus-driven, external 

process is reinforced by their limited cognitive control over what attracts their 

attention (Belopolsky et al., 2010; Yantis & Jonides, 1984). Therefore, the attentional 
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capture task is a good example of a bottom-up process task because the features of 

the stimuli, like the colour of the presented stimuli, in this instance, usually play a 

role in capturing our attention. Our motives or internal states do not influence these 

inherent features of the world around us. 

 

On the other hand, visual search tasks represent top-down attention. Under 

the direction of predetermined objectives, participants actively search among 

distractions for a specified target item in these activities. Goal-oriented, voluntary, 

and regulated procedures are required for these activities. To find the target, 

individuals concentrate on specific characteristics or qualities using their cognitive 

resources. Participants have a considerable cognitive responsibility from this active 

and purposeful search since they must stay focused on their objectives and ignore 

distractions in order to achieve their objectives (Wolfe et al., 1989). Notably, 

bottom-up and top-down attention function independently of one another and 

interact to affect how individual interpret and comprehend the outside 

environment. However, bottom-up and top-down attention may operate 

simultaneously, according to previous studies (McMains & Kastner, 2011; Pinto et 

al., 2013). Both top-down (such as task-related goals) and bottom-up (such as 

prominent aspects of stimuli) elements affected the attention of participants in a 

visual display used in the study (Leber et al., 2008; Theeuwes, 1994). According to 

the results, top-down variables influenced how much attention was assigned, even 

when bottom-up elements did indeed catch attention. 

 

 Examining the relationship between attention mechanisms and sleep is 

essential for getting an insight into the temporal dynamics of learning. This becomes 

especially significant when assessing whether sleep contributes to the strengthening 

of attentional learning or if enhancements arise solely from processes occurring 

while awake. The research presented in this chapter seeks to ascertain if attentional 

learning takes distinct routes during offline and online learning scenarios. In this 
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context, offline learning refers to periods when an individual is not actively 

participating in the task at hand. This can include both offline sleep (e.g., sleep-

dependent consolidation) and offline wakefulness (e.g., inactive consolidation in the 

absence of further exposure to the learning task). Whether sleep enhances 

attentional learning, as suggested by perceptual learning research, or whether 

attentional gains occur only as a result of repeated task exposure and reinforcement 

while awake, is a key topic. 

 

Whether sleep consolidates attentional learning has been the subject of 

contradictory studies in the past. According to some research, active reinforcement 

rather than passive consolidation is the primary mechanism behind attentional 

control, which means that performance gains only happen during training sessions 

and are not enhanced by post-training sleep (Law & Gold, 2008; Lim & Dinges, 

2010). However, other research suggests that sleep has little to no impact on 

bottom-up, stimulus-driven attention but selectively improves specific attentional 

processes, especially those related to top-down control mechanisms (Gevers et al., 

2015; A. Schoups et al., 2001). These differences bring up a crucial empirical 

question: Is attentional learning exclusively wake-dependent, or does it also follow 

the same sleep-dependent consolidation trajectory as perceptual learning? 

 

The current work investigates attentional learning in two different paradigms 

to answer this question: visual search tasks, which evaluate top-down, goal-directed 

attention, and attentional capture tasks, which evaluate bottom-up, stimulus-driven 

attention. This research attempts to ascertain if offline consolidation processes alter 

attentional performance improvements by varying the training period (morning vs. 

evening) and post-training interval (sleep vs. awake). Performance gains during post-

learning sleep should be higher than during a comparable period of awake if 

attentional learning is sleep-dependent. On the other hand, enhancements should 
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only occur during training sessions and not after sleep if attentional learning is only 

wake-dependent. 

 

The present study intends to add to the larger body of literature on 

attentional learning, executive control, and memory consolidation by methodically 

examining these processes and advancing theoretical debates on the function of 

sleep in cognitive plasticity. Gaining further insight into whether offline brain 

reorganisation affects attentional learning might have important ramifications for 

educational tactics, cognitive training therapies, and performance optimisation in 

high-demand settings. 

 

3.3. Materials and Methods 

3.3.1. Participants  

 

Thirty healthy volunteers with normal or corrected-to-normal vision were 

recruited for the attentional capture task. A separate group of thirty participant 

were recruited for the visual search. All participants were recruited via the 

university's internal system and were compensated for their time with either 16 

course credits or £13. The study received approval from the research ethics 

committee at Cardiff University (EC.18.02.13.5226G). Participants were instructed to 

maintain their regular sleep patterns and refrain from consuming alcohol or 

caffeinated beverages for two weeks prior to the study's commencement and 

throughout all testing sessions.  
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3.3.2. Experimental Set-up 

 

Matlab was used in combination with the Psychotoolbox program to create 

the visual stimuli, which were used in both of the tests (Attentional Capture and 

Visual Search). Following this, the stimuli were presented on a computer monitor 

(ASUS VG248QE, viewing distance: 61.5 cm, screen size: 54 × 30 cm). To ensure that 

there was no interference from daylight or any other brightness, the participants 

were situated in a completely dark room. During the course of the experiment, a 

chin rest had been used in order to keep the head in a constant posture and to 

minimise any movement that would have the potential to influence the results. No 

eye-tracker was used in this experiment, due to the limited resources available due 

to the COVID-19 impact. 

 

3.3.3. Visual Stimuli  

 

In the AC task (without the top-down component), the stimuli display included 

one diamond and 4, 6, or 10 blue circles. In this task, one of the circles could be the 

distractor, in which case it would be red, rather than blue. Within each shape was 

the letter "L" or the letter "R". All the presented shapes that were given were 

different in terms of the distance between them on an imagined circle that had a 

diameter of three, five, or ten around the fixation dot that was placed on a black the 

background of the screen (see Figure 1.1 for example).  

 

On the other hand, in the VS task, the display consisted of a rotating set of 

letters arranged in a circle around a central fixation dot. Among the letters in this 

circular array, one was a 'T', rotated either the tail of the 'T' pointing left or right, and 
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the other letters were rotated 'Ls' (see Figure 1.2 for example). The stimuli were 

presented in white letters on a black background. 

 

3.3.4. Experimental Design  

 

The experiment comprises two distinct perceptual tasks designed to assess 

attentional capture and visual search abilities. The tasks were conducted over four 

days, with each day containing a specific number of trials based on the parameter 

setups of each task.  

 

In the AC task, participants were instructed to search for the only diamond in 

the display and indicate whether there was a letter "L" or letter "R" displayed inside 

the diamond (by pressing the left or right key on the keyboard). Participants were 

instructed to react as quickly and accurately as possible. The number of circles varied 

across trials, and each set size included trials with different distractor conditions. In 

some trials, one of the circles was the only red item on display, acting as a distractor. 

In other trials, the distractor will be absent, and all shapes will be displayed in blue 

colour. The identity of the letter within each shape was randomly determined, with 

the constraint that there was an equal number of "L" and "R" letters across trials. 

The trials were randomly intermixed to prevent predictability. The AC task consisted 

of 144 trials per day, conducted over four days, resulting in a total of 576 trials. The 

144 trials per day were structured based on 18 parameter setups, combining 3 

eccentricities (3, 5, 10), 3 set sizes (4, 6, 10), and 2 distractor conditions (absent or 

present). Each parameter setup included 8 trials. 
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Figure 1.1. Example of the attentional capture task (no top-down component). Participants were instructed to 

indicate the letter located inside the diamond. The left panel illustrates the distractor is different from the target 

with a set size 6; the right panel illustrates no distractor is present with a set size of 10. 

 

During the VS task, participants were instructed to keep their eyes fixated on 

a dot without any movement, which was located at the centre of the screen at the 

exact location throughout the whole testing session. This strict requirement ensured 

that each participant was relying on their peripheral vision to locate the target 

stimulus. On the screen, a circle of letters was displayed, with one letter "T" being 

rotated. The crucial aspect was that participants had to identify which direction the 

tail of the 'T' was pointing (either left or right). To respond, participants were given a 

choice; if they observed the tail of the "T" pointing towards the left, they pressed the 

'left' key; conversely, if it pointed towards the right, they pressed the 'right' key. This 

task aimed not only to measure participants' peripheral vision acuity but also to 

assess their ability to process and respond to information while maintaining a fixed 

gaze. Similar to situations in real life, where a individual must remain aware of our 

surroundings despite focusing on something specific. 
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Based on the conditions within the VS task, each session consisted of 132 

trials per day, conducted over four days, resulting in a total of 528 trials. In each 

session, it includes 9 parameter setups, combining 3 eccentricities (3, 5, 10) and 3 

set sizes (2, 6, 10). The number of trials per parameter setup varied, with 20 trials 

per setup for set size 10 and 12 trials per setup for set size 2 or 6. 

 

 

Figure 1.2. An example of the visual search task. Participant were instructed to answer whether the target stimuli 

(‘T’) was pointing to the left (left diagram) or pointing to the right (right diagram). Participant were instructed to 

make the response on the keyboard.  

 

Both tasks were assessed based on how fast participants reacted and how 

accurate they were in their responses. The AC task looked at how much the 

distracting element affected participants’ ability to focus on the task at hand, 

whereas the VS task focused on how participants could keep their gaze fixed and 

accurately respond using their side vision. The study aimed to understand how 

bottom-up and top-down attention processes interact by analysing reaction times 

and accuracy levels under different conditions. The goal was to determine if sleep 

could improve learning in an attentional-based perceptual learning task, similar to 

the effect found in Chapter 2 with the backward masking task.  
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3.3.5. Assessment and Experimental Timeline  

 

For both the AC and VS task, participants were randomly allocated to either 

the morning or evening group. To reduce the potential for confounding effects 

related to task familiarity, practice effects, and cognitive fatigue, a between-groups 

design was used. This can also avoid prior experience with one task, which could 

influence performance on the other, which will make it difficult to differentiate the 

effects of sleep on learning. Furthermore, learning in one task may unintentionally 

improve or impair performance in another due to transfer effects, which may result 

from overlapping cognitive pathways across different attentional tasks. To ensure 

that the effects were more directly related to sleep and time of day rather than to 

the inter-task interference, separate participants were allocated to the two tasks.  

 

In the morning group participants completed the first session in the morning 

and were retested after 12 hours of wake period (no nap in between), followed by a 

24-hour retest after a night of sleep, then another retest after 36 hours. In contrast, 

the evening group participants completed the first session (learning) in the evening 

and completed their retest after an overnight sleep and their 24-hour retest after 

another 12 hours of wakefulness, then tested again after another 12 hours (Figure 

1.3). By manipulating the time-of-day which the tasks were learned, the experiment 

design could allow for the examination of whether there is any improvement in the 

task that was learned and by testing participants after sleep can help identify 

whether sleep is beneficial to the learned task.  

 

During the first session participants complete four blocks of the AC task 

which allows us to record a baseline pre-learning measure which can be used to 

compare to participants’ post-learning session. Session 2 was held 12-hours after the 

first session with the same task and for the same time-length, this will allow for the 
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assessment of the need for sleep for the consolidation of the learning to occur. 

Session 3 was then carried out another 12 hours after the second session (i.e., 24 

hours post-learning). Finally, session 4 was carried out after a further 12 hours of 

either wake or sleep period. Following this pattern, we can assess at which stage of 

time spent offline is needed (sleep or wake) for the consolidation of learning to 

occur. 

 

 

Participant data were recorded and pre-processed using MATLAB R2021b 

(MathWorks, Inc., Natick, MA, USA). During pre-processing, trials in which 

participants failed to respond or provided incorrect responses were excluded from 

the RT analysis to ensure accurate estimation of perceptual processing speed. The 

RTs were calculated based on correct trials only, and accuracy was calculated as the 

proportion of correct responses. Based on the distribution of the data, it was found 

that the data did not follow a normal distribution. Therefore, a non-parametric t-test 

(Wilcoxon rank-sum) was used for the analysis. Since the Wilcoxon rank-sum test 

Figure1.3. Participants were randomly assigned to either the morning or the evening group, for both tasks. 

Diagram a) showing the experimental timeline for morning learning group. Diagram b) showing the 

experimental timeline for evening group learners.  

. 
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add together all the individual observations to get the Sum of Ranks, therefore the 

numbers can look very big. In this study, every participant's trial was considered as a 

separate observation instead of averaging by individual. This was done to get a more 

comprehensive look at the subtle changes occurring within a session and to make it 

easier to identify small effects. Furthermore, multiple t-tests were conducted, and 

the Benjamini-Hochberg correction was applied to control for the false discovery 

rate and maintain statistical rigour. This method effectively minimises the risk of 

Type I errors while preserving sensitivity to detect significant learning effects. 

 

Online learning (within-session improvement) was examined by comparing 

RTs between the start and end of each testing session for the morning and evening 

groups. To investigate offline learning, experiment was conducted with comparison 

between sessions separated by sleep or rest. To analyse between-group differences, 

time comparisons (between-group) was conducted to assess whether learning 

trajectories differed between the morning and evening groups.  

 

In addition to analysing parameter-specific data, statistical analyses was also 

performed on the overall performance regardless of parameter variations, providing 

a holistic evaluation of learning effects. The study aimed to determine if attentional 

capture and visual search skills showed enhancement over sessions and whether 

these improvements varied between the morning and evening groups. RT and 

accuracy analyses collectively yielded convincing evidence of any learning effects, 

confirming that both speed and precision were assessed as measures of attentional 

enhancement. 

 

Following common research practice, the experimental data and analytic 

scripts are kept safe and private on a cloud server (OneDrive). Access is available 
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only through a private link (Appendix xxxx). Once current study is accepted for 

publication, the data and code will be made publicly accessible via Open Science 

Framework. This approach ensures both transparency and data protection prior to 

formal publication. 

 

3.4. Results  

3.4.1. Demographic Data  

 

For the attention capture task, 30 participants were recruited for the study. 

Following the exclusion of one participant who felt unwell during the session, the 

morning group included a group of 14 participants, with a mean age of 20.43 and an 

SD of 0.76. The evening group contained a group of 15 participants with a mean age 

of 21.33 and an SD of 2.41. 

 

For the visual search task, a separate group of 30 participants was recruited 

for the study. Three participants were excluded from the final analysis, one from the 

morning group and two from the evening group, due to no-show for experimental 

sessions. The morning group consists of 14 participants with a mean age of 19.23 

and an SD of 2.13, and the evening group consists of 13 participants with a mean age 

of 18.38 and an SD of 0.51. 
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3.4.2. Learning of Attentional Capture Task  

3.4.2.1. Online Within-Session Performance  

 

The reaction time (RT) performance was assessed for online learning for the 

morning and evening groups separately for each parameter, as well as a combined 

analysis of all parameters. When examining individual parameters, the morning 

group showed significant reduction in RT for the 10-degree eccentricity, set size 10, 

distractor absent condition from session 1 start to session 1 end (Z = 4.153, p 

= .012). This shows that attentional efficiency significantly improved in the morning 

group, especially for this specific condition, particularly under conditions with larger 

eccentricity and set size (detailed in statistical table, Appendix A). On the other hand, 

the evening did not show any significant improvement in RT across the parameters, 

as detailed in Appendix B. This implies that the impact of attentional learning may be 

affected by circadian components, indicating that the morning groups seem to have 

more significant benefits. Furthermore, as shown in Figure 2, the RT performance for 

the set of parameters with error bars indicating the standard error mean and the 

central dot represent the average RT for each parameter for the morning (red) and 

evening group (blue). 
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Figure 2. Each figure presents the reaction time (RT) data across different set of parameters plotted separately 

by eccentricity (3°, 5°, 10°), set size (4, 6, 10), with error bars representing the standard error of the mean and 

dots indicating the average values for each session. The red dot represents the morning group performance and 

blue dot represent the evening group.  
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In addition, analysis was conducted by combining all parameters together 

(Table 1), significant improvement was found in the morning group between session 

1 start and session 1 end (Z = 6.989, p < .001). However, under this case, the evening 

group also demonstrated a significant reduction in RT (Z = 4.224, p < .001), with 

additional improvement found between session 4 start and session 4 end (Z = -

1.430, p < .001). This suggested that both groups benefited from online training for 

the AC in general rather than learning only for specific parameters. As shown in 

Figure 2.1, both groups showed a clear decrease in RT over the sessions.  

 

 

Figure 2.1. The figure represents the reaction time (RT) when all parameters are combined, with error bars 

representing the standard error of the mean and dots indicating the average values from session 1 to 4 (each 

session further breakdown into 4 sub-sessions). The red dot represents the morning group performance and blue 

dot represent the evening group. 
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Table 1. 

All parameters combined: RT performance across online learning session for the morning 

and evening group  

Online Session 

Comparison (RT) 

Morning Evening 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

S1_Start vs S1_End 246478 6.989 <.001*** 248358.5 4.224 <.001 

S2_Start vs S2_End 226665 1.225 0.286 241995 -1.421 0.256 

S3_Start vs S3_End 219556 -0.817 0.464 240338 -1.294 0.277 

S4_Start vs S4_End 216951 -1.213 0.286 253605 -1.430 <.001 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 

 

When looking at the accuracy scores during each session of online learning, 

neither the morning (Appendix C) nor the evening group (Appendix D) showed 

significant improvement across all parameters. Combined parameter analysis also 

showed that there are no significant changes in accuracy scores between the start 

and end of all the learning sessions (Table 1.1). However, from the plot displayed in 

Figure 2.3 and Figure 2.4, and can see that individuals maintained a high accuracy 

rate throughout the sessions for both the morning (red) and evening (blue) group.  
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Table 1.1 

All parameters combined: Accuracy score across online learning session for the morning and 

evening group  

Online Session 

Comparison 

(Accuracy) 

Morning Evening 

Sum of 

Rank 

Z p  

(corrected) 
Sum of 

Rank 

Z p  

(corrected) 

S1_Start vs S1_End 252523.5 -0.724 0.664 289741 -0.674 0.667 

S2_Start vs S2_End 256788 1.222 0.490 289440 -1.051 0.513 

S3_Start vs S3_End 251244 -1.622 0.367 287550 -1.858 0.331 

S4_Start vs S4_End 250758 -1.735 0.331 290790 -0.539 0.935 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 
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Figure 2.2. Each figure presents the accuracy data across different set of parameters, with error bars representing 

the standard error of the mean and dots indicating the average values for each session. The red dot represents 

the morning group performance and blue dot represent the evening group. 
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Figure 2.4. The figure represents the accuracy data when all parameters are combined, with error bars 

representing the standard error of the mean and dots indicating the average values from session 1 to 4 (each 

session further breakdown into 4 sub-sessions). The red dot represents the morning group performance and blue 

dot represent the evening group. 

 

These results show that during online sessions, RT changes were more 

noticeable than accuracy changes. 

 

3.4.2.2. Offline Learning (Offline-Wake and Offline-Sleep) 

 

Offline learning was also examined, and RT comparisons between offline-

wake and offline-sleep intervals were assessed. For the morning group, RT 

performance was not statistically significant for the offline wake condition (S1_End 

vs S2_Start: Z = 1.820, p = .131; S3_End vs S4_Start: Z = 1.811, p = .131). However, a 

significant improvement was observed after offline sleep when comparing S2_End vs 
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S3_Start (Z = 3.537, p = .001) (Table 2). This indicates that sleep may play an 

important role in consolidating attentional learning, particularly for tasks involving 

complex attentional processing.  

 

Table 2. 

All parameters combined: RT performance of offline session comparison for the morning 

and evening group  

Morning 

Group 

Sum of 

Rank 

Z p  

(corrected) Evening Group 

Sum of 

Rank 

Z p  

(corrected) 

S1_End vs 

S2_Start 

(Offline Wake) 229453 1.820 0.131 

S1_End vs 

S2_Start 

(Offline Sleep) 256319 4.270 <.001*** 

S2_End vs 

S3_Start 

(Offline Sleep) 230523 3.537 0.001*** 

S2_End vs 

S3_Start 

(Offline Wake) 274093 4.861 <.001*** 

S3_End vs 

S4_Start 

(Offline Wake) 236121 1.811 0.131 

S3_End vs 

S4_Start 

(Offline Sleep) 279587 4.487 <.001*** 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 
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In contrast, the evening group showed significant improvements in RT after 

both offline wake and offline sleep conditions. Specifically, RT improved significantly 

after offline sleep (S1_End vs S2_Start: Z = 4.270, p < .001) and offline wake (S2_End 

vs S3_Start: Z = 4.861, p < .001). Further significant improvement was also observed 

when comparing S3_End vs S4_Start after offline sleep (Z = 4.487, p < .001) (Table 2). 

The findings suggest that both offline wake and offline sleep in the evening group 

contributed to the learning of the AC task, unlike the morning group, where offline 

sleep seems to be more critical. However, the accuracy performance of offline 

learning across both groups remains non-significant (Table 2.1) regardless of the 

offline condition.  

 

Furthermore, when looking at individual parameters, both RT and accuracy 

scores showed no significant changes for both the morning (Appendix E) and evening 

(Appendix F) group. 
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Table 2.1. 

All parameters combined accuracy performance of offline session comparison for the 

morning and evening group  

Morning 

Group 

Sum of 

Rank 

Z p  

(corrected) Evening Group 

Sum of 

Rank 

Z p  

(corrected) 

S1_End vs 

S2_Start 

(Offline Wake) 252992.5 -0.266 0.885 

S1_End vs 

S2_Start 

(Offline Sleep) 288068 -1.169 0.490 

S2_End vs 

S3_Start 

(Offline Sleep) 252756 -0.715 0.664 

S2_End vs 

S3_Start 

(Offline Wake) 295380 1.484 0.429 

S3_End vs 

S4_Start 

(Offline Wake) 257544 1.743 0.331 

S3_End vs 

S4_Start 

(Offline Sleep) 291600 -0.130 0.935 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 

 

Time comparison (between-group) analysis was also conducted to examine 

the change in performance between the morning and the evening groups. The 

results showed that there is improvement in RT at specific timepoints, particularly in 

mid-study sessions (Table 2.2) during Session 1-2 (Z = -3.26, p = .005), Session 1-4 (Z 

= -3.45, p = .003), Session 2-2 (Z = -3.95, p = .001), Session 2-4 (Z = -3.68, p = .002), 

Session 3-1 (Z = -2.77, p = .016), Session 3-2 (Z = -4.55, p < .001), Session 3-3 (Z = -

4.01, p = .001), and Session 3-4 (Z = -3.15, p = .007), indicating enhanced attentional 
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processing speed over time. On the other hand, accuracy performance did not show 

the same pattern, with a marginal increase found in Session 1-2 (Z = 3.04, p = .019). 

These results indicate that although attentional learning enhances RT, accuracy 

stayed consistent, which shows a trade-off between speed and accuracy. 

 

Table 2.2. 

Overall Time comparison between the morning and evening group 

Session 

Timepoint 

RT Accuracy 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

Session 1-1 220332 0.204 0.895 268434 2.043 0.119 

Session 1-2 209311 -3.262 0.005** 270810 3.037 0.019* 

Session 1-3 224082.5 -1.293 0.314 268884 2.471 0.054 

Session 1-4 209750.5 -3.449 0.003** 267253.5 2.112 0.111 

Session 2-1 225110 -0.986 0.451 266058 1.248 0.415 

Session 2-2 212513 -3.945 0.001*** 263502 0.077 0.969 

Session 2-3 233135 -0.826 0.545 263376 0.019 0.985 

Session 2-4 208354 -3.675 0.002 261090 -1.027 0.451 

Session 3-1 213660 -2.773 0.016 265986 1.160 0.415 
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Session 3-2 213972 -4.545 <.001*** 264096 0.382 0.803 

Session 3-3 219179.5 -4.008 0.001*** 265176 0.958 0.451 

Session 3-4 223948.5 -3.151 0.007** 265194 0.984 0.451 

Session 4-1 227637 -0.276 0.864 261432 -0.923 0.456 

Session 4-2 212167 -1.699 0.159 262278 -0.451 0.773 

Session 4-3 229588 -0.103 0.948 261198 -1.059 0.451 

Session 4-4 236019 -0.563 0.684 263146.5 0.322 0.824 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 

 

The results demonstrate that RT performance improves significantly with offline 

sleep in the morning group, whereas the evening group benefits from both offline wake and 

sleep conditions. Which may indicate a role of the circadian rhythms in how learning is 

consolidated in the AC task. 

 

3.4.3. Learning of Visual Search Task  

3.4.3.1. Online Within-Session Performance  
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The visual search task aims to evaluate how well an individual can locate a 

target among a set of distractors, reflecting the efficiency of selective attention. 

When examined the data parameter by parameter (eccentricity and set size) 

separately, no significant improvement in RT was observed for both the morning and 

evening (Appendix G and Appendix H). This pattern was consistently observed across 

different eccentricities (3°, 5°, and 10°) and set sizes (2, 6, and 10), as shown in 

Figure 3.1. In the figure, the morning and evening group is represented in red and 

blue dots, respectively, and it shows a similar trajectory across each of the sessions 

across parameters without a significant difference, suggesting that VS learning is 

limited or has no sleep-dependent improvement. 

 

When combining all parameters, the overall comparison between the start 

and end of session 1 for both morning and evening groups showed that RT 

significantly improved (Morning: Z = 3.834, p < .001; Evening: Z = 6.553, p < .001). 

This significant improvement was also observed in the morning group in session 2 (Z 

= 4.018, p < .001), suggesting a persistence or maintenance of improvement in 

performance. This trend is represented in Figure 3.2. The figure demonstrated that 

both the morning (red) and evening (blue) groups showed a similar decline 

trajectory in RT across sessions and parameters, which reflects a general practice 

effect rather than being restricted to certain eccentricities or set sizes. 
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Table 3. 

All parameters combined: RT performance across online learning session for the morning 

and evening group  

Online Session 

Comparison (RT) 

Morning Evening 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

S1_Start vs S1_End 181795 3.834 <.001*** 141041.5 6.553 <.001*** 

S2_Start vs S2_End 193195 2.573 0.026 151937 4.018 <.001*** 

S3_Start vs S3_End 195185 0.482 0.630 159200 0.988 0.377 

S4_Start vs S4_End 185001 0.743 0.475 148948 -1.340 0.277 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 
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Figure 2.1. Each figure presents the RT performance across different set of parameters, with error bars 

representing the standard error of the mean and dots indicating the average values for each session. The red dot 

represents the morning group performance and blue dot represent the evening group. 
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Figure 3.2. The figure represents RT performance when all parameters are combined, with error bars 

representing the standard error of the mean and dots indicating the average values for each session from session 

1 to 4 (each session further breakdown into 4 sub-sessions). The red dot represents the morning group 

performance and blue dot represent the evening group. 

 

Analysis of accuracy performance on the other hand showed no statistically 

significant differences between start and end sessions for both morning (Appendix I) 

and evening (Appendix J) groups when parameters are examined separately (Figure 

3.3). This finding was further supported by combining all parameters together to 

examine accuracy scores between the start and end of each session, which also did 

not reach statistical significance (Table 3.1; see also Figure 3.4). This consistent 

pattern shows that accuracy performance remained stable throughout the learning 

sessions for both groups, which indicates that to a certain degree, participants did 

not trade speed for accuracy.  
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Table 3.1. 

All parameters combined: Accuracy score across online learning session for the morning and 

evening group  

Online Session 

Comparison 

(Accuracy) 

Morning Evening 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

S1_Start vs S1_End 216678 1.325 0.490 185757 0.614 0.686 

S2_Start vs S2_End 212289 -0.777 0.664 184255.5 0 1.000 

S3_Start vs S3_End 215061 0.889 0.616 183612 -0.381 0.820 

S4_Start vs S4_End 213906 0.123 0.935 180609 -2.161 0.215 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 
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Figure 3.3. Each figure presents the accuracy performance across different set of parameters, with error bars 

representing the standard error of the mean and dots indicating the average values for each session. The red dot 

represents the morning group performance and blue dot represent the evening group. 
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Figure 3.4. The figure represents the accuracy performance when all parameters are combined, with error bars 

representing the standard error of the mean and dots indicating the average values for each session from session 

1 to 4 (each session further breakdown into 4 sub-sessions). The red dot represents the morning group 

performance and blue dot represent the evening group. 

 

3.4.3.2. Offline Learning (Offline-Wake and Offline-Sleep) 

 

Offline learning was examined for both offline-wake and offline-sleep. The 

results revealed distinct patterns in RT changes between the two conditions, 

indicating differences in how sleep and wakefulness impacted attentional 

performance. The morning group showed no significant difference in RT 

performance across offline sessions when examined the parameters individually 

(Appendix K), suggesting neither offline-wake and offline-sleep had an impact on 

learning. Evening group showed a similar pattern ((Appendix L). Combined 
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parameter analysis also showed that there are no significant changes in accuracy 

scores between the offline sessions (Table 4.1). 

 

However, when the analysis was run by combining all parameters together 

(regardless of eccentricity and set size), the evening group showed a notable 

difference (Table 4). Significant improvement in RT was found between the end of 

session 3 and the start of session 4 (Z = 2.788, p = .015), which is a period where the 

individual would have encountered sleep in the evening group. This suggests that 

offline sleep significantly improved RT performance after the third session. This 

result suggests that sleep between evening sessions played a crucial role in 

enhancing reaction time, likely due to sleep consolidation processes that facilitate 

quicker attentional responses.  
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Table 4. 

All parameters combined: RT performance of offline session comparison for the morning 

and evening group  

Morning 

Group 

Sum of 

Rank 

Z p  

(corrected) Evening Group 

Sum of 

Rank 

Z p  

(corrected) 

S1_End vs 

S2_Start 

(Offline Wake) 170646 1.288 0.277 

S1_End vs 

S2_Start 

(Offline Sleep) 129881 1.846 0.131 

S2_End vs 

S3_Start 

(Offline Sleep) 196543.5 1.904 0.131 

S2_End vs 

S3_Start 

(Offline Wake) 141465.5 -0.761 0.475 

S3_End vs 

S4_Start 

(Offline Wake) 191650 1.080 0.341 

S3_End vs 

S4_Start 

(Offline Sleep) 164662 2.788 0.015* 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 
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Table 4.1. 

All parameters combined accuracy performance of offline session comparison for the 

morning and evening group  

Morning Group 

Sum of 

Rank 

Z p  

(corrected) Evening Group 

Sum of 

Rank 

Z p  

(corrected) 

S1_End vs 

S2_Start 

(Offline Wake) 207669 -2.801 .130 

S1_End vs 

S2_Start 

(Offline Sleep) 178249.5 -2.600 .130 

S2_End vs 

S3_Start 

(Offline Sleep) 211827 -1.162 .490 

S2_End vs 

S3_Start 

(Offline Wake) 179965.5 -2.227 .215 

S3_End vs 

S4_Start 

(Offline Wake) 215523 1.051 .513 

S3_End vs 

S4_Start 

(Offline Sleep) 186400.5 1.215 .490 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 

 

Time comparison (between-group) was further carried out by breaking down 

each session into 4 timepoint to examine the change in performance between the 

morning and the evening groups in deeper depth. Several significant differences 

across sessions were found. In particular, RT showed significant differences at 

specific session time points, indicating variability in performance depending on the 

time of day. For instance, the morning group demonstrated a significant 

improvement in RT during Session 1-3 compared to the evening group (Z = 3.008, p 
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= .008), and from Session 2-2 (Z = 3.669, p = .002). Also, there was a significant 

difference in RT between the groups at Session 2-4 (Z = 3.104, p = .007) and Session 

3-3 (Z = 2.470, p = .033), as well as at Session 4-1 (Z = 2.652, p = .021) (Table 4.2). 

The results indicates that faster RT processing at these specific timepoint. 

Furthermore, the accuracy performance also exhibited similar findings. Session 1-1 

showed significantly higher accuracy in the morning compared to the evening group 

(Z = 3.155, p = .017). Furthermore, Session 2-2 (Z = 3.832, p = .004), Session 2-3 (Z = 

2.902, p = .024), and Session 2-4 (Z = 3.338, p = .014) also showed significant 

accuracy differences. These results highlight that while both RT and accuracy are 

affected by the time of day, accuracy improvements appear more pronounced in the 

morning, particularly during the second learning session. 

 

Table 4.2. 

Overall Time comparison between the morning and evening group for RT and accuracy 

Session 

Timepoint 

RT  Accuracy  

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

Session 1-1  152571.5 -2.094 .073 213312 3.155 .017* 

Session 1-2 153649 -0.541 .684 210441 1.888 .135 

Session 1-3 163204.5 3.008 .008* 207520.5 0.638 .644 

Session 1-4  152899 0.994 .451 212140.5 2.488 .054 

Session 2-1 177344 1.872 .115 211249.5 2.594 .051 
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Session 2-2 185848 3.669 .002* 213691.5 3.832 .004* 

Session 2-3 182355 2.230 .059 211629 2.902 .024* 

Session 2-4 185181 3.104 .007* 212536.5 3.338 .014* 

Session 3-1 186170.5 0.527 0.684 209632.5 2.219 .094 

Session 3-2 183184.5 0.035 0.972 209203.5 1.921 .135 

Session 3-3 190794.5 2.470 .033* 208312.5 1.378 .359 

Session 3-4 184737.5 1.028 .451 207652.5 0.968 .451 

Session 4-1 182889 2.652 .021* 208246.5 1.175 .415 

Session 4-2 180804.5 1.462 .242 202768.5 -1.955 .135 

Session 4-3 182010 2.106 .073 206415 0.201 .896 

Session 4-4 179141 0.619 .684 204105 -1.159 .415 

Note. Significant levels: *<0.05, **<0.01, ***<0.001. The large sum-of-rank values show that 

the analysis was done on consolidated trial-level data. This means that all of the participants' 

trials were combined within each condition, so the analysis treated all of the trials as one 

aggregated sample per session to find within-session learning trends. 
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3.5. Discussion 

 

The current chapter focuses on first examining whether attentional-related 

perceptual learning tasks can be learnt and if the role of sleep plays a role in this 

process, with a focus on the differences between morning and evening groups 

across attentional capture (AC) and visual search (VS) tasks. The findings showed 

that the effect of sleep on learning is not uniform and is shaped by the type of task 

and the time of day, hence questioning previously held assumptions about sleep's 

universal function in improving cognitive performance (Stickgold & Walker, 2005). 

The lack of performance enhancement due to sleep may result from the significant 

cognitive demands placed on attention during the learning process. Tasks that 

demand attention require a dynamic allocation of cognitive resources, which 

includes working memory and executive control functions. This contrasts with 

fundamental perceptual learning tasks, such as the backward masking task discussed 

in Chapter 2, which mainly depend on sensory processing and have demonstrated 

beneficial effects from sleep (Karni & Sagi, 1991; Li et al., 2004). The consolidation 

mechanisms that support PL may not apply to attentional learning in the same way 

due to the prefrontal cortex's role in top-down attentional regulation and its varying 

activation across sleep phases (Desimone & Duncan, 1995; Miller & Cohen, 2001). 

While sleep is linked to the improvement of neural connections and the decrease of 

memory interference, it does not consistently promote learning that requires higher-

level executive functioning. Learning of this kind may depend more heavily on 

regular practice and reinforcement instead of solely on the passive consolidation 

that takes place while sleeping (Stickgold & Walker, 2005). 

 

The lack of significant learning effects in this chapter, especially when 

compared to the pronounced impacts identified in Chapter 2, requires further 

review. One potential explanation is because attentional learning activates higher-

order control systems that are less vulnerable to short-term sleep-dependent 
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consolidation (Barham et al., 2021; Quentin et al., 2021), whereas the perceptual 

learning task in Chapter 2 depended on other sensory and retinotopic mechanisms 

that are more effectively stabilised during sleep (Tamaki & Sasaki, 2022). Another 

possibility is that differences in the design of the task (e.g., trial structure 

and duration) and statistical power may have restricted the sensitivity to identify 

minor increases; therefore, further experimentation should include power analysis 

to examine the power it will require to see an even more reliable effect. However, 

these differing results show that not all types of learning are equally susceptible to 

sleep-related advantages, and that the lack of effects here does not mean that 

strong effects are absent elsewhere (Borragán et al., 2015; Paller et al., 2021). 

 

The sleep protocol used in this chapter allows the exploration of the 

differences in morning and evening learners by conducting the first learning session 

at various times of the day. In particular, the morning group completed the first 

learning session in the morning and then had a time of offline wakefulness before 

offline sleep. At the same time, the evening group started their learning in the 

evening and encountered a sleep period directly afterwards. The design of the study  

allowed for the investigation on how attentional consolidation was affected by the 

time of sleep in relation to the learning session due to this approach. 

 

The findings suggest that sleep and circadian cycles both affect attentional 

learning, but the exact nature of this association differs depending on the task. Early 

in the day, cognitive attention and task engagement may naturally occur, as seen by 

the morning group's typically faster gains after first task exposure (Hasher & Zacks, 

1988). The evening group, on the other hand, showed more steady gains after both 

waking and sleep periods, indicating that repeated learning and sleep consolidation 

may be beneficial for evening learners. This result is consistent with other studies, 

which show that sleep's ability to consolidate learning may differ depending on an 

individual's chronotype and the time of day (Rasch & Born, 2013). 
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Nonetheless, it is important to note that these effects were minor in 

magnitude and did not reach the significant effect sizes observed in Chapter 2. The 

very large η² values reported in the previous chapter could be due to task-specific 

sensitivity and within-subject dependence that raise variance estimates; by contrast, 

the more variable and complicated attentional paradigms here naturally create 

weaker and more diverse effects. This difference demonstrates how important it is 

to be cautious when interpreting effect sizes across tasks and encourages the use of 

more robust mixed-effects models in future research to better account for 

differences between individuals. 

 

A key observation is that the characteristics of the task influence the impact 

of sleep on attentional learning. The VS task, characterised by selective attention 

and strategic processing, showed greater enhancement from sleep consolidation. 

However, the AC task, dependent on rapid attentional changes, did not demonstrate 

a similar trend. This reinforces the concept that sleep primarily consolidates 

complicated cognitive processes rather than straightforward or stimulus-driven tasks 

(Fahle, 2005; Schoups et al., 2001). This assumption has been supported in the 

literature, which suggests that the influence of sleep on learning is modulated by 

task complexity. Sleep is more likely to help with emotionally charged activities and 

complicated sequence learning (Wagner et al., 2006; Rasch & Born, 2013). Given 

their fundamental stimulus-response nature, the AC tasks used in this chapter could 

not have activated the brain systems necessary for sleep-dependent consolidation. 

Attentional learning requires a balance between top-down cognitive control and 

bottom-up sensory input, in contrast to PL, which benefits from sleep because it 

helps to improve sensory discrimination (Gais & Born, 2004). Instead of quick 

overnight consolidation, attentional learning could need longer-term reorganisation 

of cognitive networks. The consolidation of attentional learning may rely on several 

processes that are not primarily driven by sleep, as it is more dispersed throughout 

various brain regions, such as the prefrontal and parietal networks. Maintaining a 
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balance between top-down signals influenced by cognitive strategies, expectations, 

and knowledge, and bottom-up signals driven by sensory input is crucial for this 

process. For example, the prefrontal cortex, a region known for the involvement in 

functions and regulating other brain areas, which plays a more prominent role in the 

top-down aspect (Miller & Cohen, 2001). Given that these cognitive connections are 

complicated, the nature of sleep may not exert the same influence on perceptual 

learning as it does on attentional learning. The consolidation mechanisms that occur 

during sleep may selectively enhance the types of fundamental sensory 

discriminations involved in perceptual learning as opposed to the more intricate, 

strategy-dependent processes involved in attentional learning (Gais & Born, 2004). 

 

Another factor to consider would be the idea of emotional salience to sleep-

dependent memory consolidation. As stated by Wagner et al. (2006), sleep is the 

preferred time for consolidating emotionally important knowledge. Nonetheless, the 

lack of a benefit related to sleep could be attributed to the exclusion of emotionally 

significant stimuli in the tasks employed in this study. Future research should also 

consider whether distinct consolidation patterns are present in attentional learning 

tasks with emotionally charged content. The results highlight the importance of 

distinguishing between gains associated with practice and those related to learning 

that occurs during sleep. 

 

Furthermore, enhancements in RT relative to accuracy suggest that 

attentional learning primarily enhances processing speed rather than accuracy. This 

is in line with ideas that there is a trade-off between speed and accuracy in tasks 

that require quick changes in attention (Desimone & Duncan, 1995). The speed-

accuracy trade-off suggests that when individuals develop skill in a task, they often 

prioritise speed over accuracy (Liu & Watanabe, 2012). In the attentional tasks, this 

phenomenon may arise because faster responses often include unconsciousness or 

focused efficiency. However, accuracy tends to be more consistent due to the task's 
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inherent perceptual or cognitive requirements. The similarity of accuracy across 

sessions suggests that while individuals improve in processing speed, the 

fundamental processes driving correct attentional allocation remain strong and less 

prone to changing with learning. This result is important as it implies that attentional 

learning optimises the efficiency of current processes, rather than implying 

qualitative changes in how attention is distributed or maintained. As mentioned by 

Metin et al. (2013), this trend may indicate the efficiency-oriented characteristic of 

attentional learning, whereby repetition and training primarily reduce processing 

delay rather than error rates.  

 

The current study was primarily based on non-parametric statistics. This is 

why the sum-of-ranks figures are so high, as they show the overall ranking of all the 

observations, not just the raw data values. This should not be considered as inflated 

effects, but rather as a result of the analytical methodology. Future analyses might 

use mixed-effects or Bayesian models to evaluate participant-level variance with 

greater precision. 

 

The research underscores the need of controlling for individual differences 

when assessing the impact of sleep on learning. The morning learners appeared to 

benefit from early cognitive activation, resulting in quicker advancement during first 

sessions, but evening learners demonstrated incremental advancements, indicating 

that the evening training coupled with sleep may enhance the consolidation of 

complex attentional processes. These distinctions emphasise the significance of 

chronotype in determining the interaction between sleep and practice in relation to 

attentional performance (Smith, 2001). 
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3.6. Future Directions  

 

To gain an understanding of how sleep impacts learning and attention, future 

research should adopt a more dynamic approach. One way to investigate the 

relationship between the effect of cognitive load and how sleep influences learning 

is by designing a range of tasks with varying levels of complexity. This gradient of 

task difficulty will enable researchers to pinpoint the threshold at which sleep begins 

to affect learning consolidation. Additionally, it will help determine which types of 

learning rely on sleep and which ones do not. Furthermore, conducting long-term 

studies that span over weeks or months would be valuable in assessing the 

effectiveness and development of sleep-related learning benefits. These studies 

would examine the advantages and look into the integration and retention of 

acquired knowledge and skills over time. 

 

The intricate nature of sleep provides opportunities for exploration with the 

advancements in polysomnographic devices. By establishing connections between 

stages of sleep like rapid eye movement (REM) and slow wave sleep (SWS), 

researchers can enhance their understanding of the underlying processes involved in 

learning. Exploring intervals and their potential impact on memory consolidation and 

effective learning could also contribute to this line of investigation. Researchers can 

gain insights into the impact of experiences between periods of sleep by studying 

sleep intervals. These wakeful periods provide an opportunity to investigate how 

learning and exposure to information during these intervals may influence 

reconsolidation processes during sleep. For instance, does engaging in new learning 

or being exposed to relevant information during wakeful periods prompt 

reconsolidation mechanisms during the subsequent sleep (such as during REM or 

SWS sleep)? 
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Finally, combining measurements from electroencephalograms (EEG) with 

neuroimaging methods like structural and functional magnetic resonance imaging 

(sMRI and fMRI) may improve the application of neurobiological evaluations prior to, 

throughout, and following sleep. This progress may allow us to identify the circuits 

involved in the consolidation process and to map alterations in the brain. By 

combining these measurements with treatments like medication or adjustments to 

sleep patterns, it could potentially help to establish a clear connection between 

sleep, learning, and brain function. Additionally, these techniques might shed light 

on why specific tasks are dependent on sleep (Texture Discrimination Task) while 

others are not (e.g., visual search task) by identifying the changes in structure or the 

connectivity change during learning. The scientific community could potentially 

delve into the relationship between sleep and learning by employing these 

comprehensive and detailed research methodologies. This exploration may lead to 

targeted therapies that enhance learning abilities and cognitive performance across 

populations. 

 

3.7. Conclusion 

 

Research into attention and sleep-dependent learning has revealed a 

complex relationship, indicating that the interplay between attention mechanisms 

and sleep is multifaceted. Research into attention and sleep-dependent learning has 

revealed a complex relationship, indicating that the interplay between attention 

mechanisms and sleep is multifaceted. While online learning has shown 

improvements in both top-down and bottom-up attention processes, the anticipated 

benefits of learning through sleep did not manifest significantly. This evidence 

suggests that the impact of sleep on learning is multifaceted and dependent on 

factors, including the type of learning and specific task characteristics. The study 

found that, in contrast to other forms of perceptual learning, such as the backward 

masking task discussed in Chapter 2, which can be directly impacted by sleep via 
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mechanisms like the enhancement and decrease of neural noise, attentional 

learning encompasses a broader array of cognitive processes that might not 

uniformly derive advantages from sleep. This divergence emphasises the need for a 

nuanced approach when studying how sleep affects different types of learning. The 

complexity of attention processes, which integrate input from the environment with 

control from within, necessitates further exploratory research to understand how 

sleep interacts with these dual streams of information processing. 

 

In summary, it is important to recognise that the relationship between sleep 

and learning is intricate and cannot be universally applied to all types of learning (at 

least in the perceptual learning field). The field is currently making discoveries that 

could potentially enhance the understanding of processes and optimise learning 

outcomes. Therefore, exploring this essential relationship between sleep's enigma 

and the extraordinary capacity of the mind to learn and remember remains an 

exciting journey for researchers. 
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Chapter 4:  

General Discussion  
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4.1. Overview  

 

This thesis delves into the concept of learning. It suggests that learning is a 

complex process, influenced by changes in brain structure over an individual's 

lifetime. According to this principle, learning is an evolving and dynamic process 

affected by both internal and external factors. The previous belief that cognitive 

performance inevitably declines with age has been replaced by research indicating 

that learning can actually lead to changes in the brain, allowing for the preservation 

or even improvement of cognitive abilities throughout adulthood (Li et al., 2008; 

Salthouse, 2019). A fundamental concept that lies in this thesis is the notion of brain 

plasticity, which highlights the capacity of the brain to modify its structure and 

function in response to new experiences (Park & Bischof, 2013).  

 

Sleep is an additional process that is closely related to plasticity, which plays 

a role in the consolidation of newly learned information and skills (Stickgold & 

Walker, 2013). Therefore, the research in this thesis focuses specifically on the 

interconnected relationships that exist between learning, sleep, brain plasticity, and 

cognitive functioning, addressing a critical gap in understanding how and when 

learned skills become generalisable rather than remaining task specific. To address 

this, there is a need to explore the different types of perceptual learning tasks to see 

whether all different forms of perceptual tasks can be learned, and sleep plays a 

crucial role in this process (Chapters 2 and 3). 

 

These questions and gaps in the literature inspired the research conducted 

throughout this thesis. It comprises two empirical chapters, each designed to assess 

a unique but complementary component of the link between sleep and learning. 

 



 186 

The primary focus of Chapter 2 is on the generalisability of perceptual 

learning by employing a well-established learning paradigm of the backward masking 

task to examine the role of generalisability within perceptual domains, building on 

existing paradigms emphasising the particularity of perceptual learning (Watanabe & 

Sasaki, 2015; Zhang et al., 2008), this chapter presented sleep as a variable to 

investigate whether learnt perceptual abilities can transfer to untrained 

characteristics or other visual locations. The results showed that although perceptual 

learning changes were first task-specific, but after sleep there was a modest 

generalisation to untrained stimuli. This is consistent with the system consolidation 

model (Diekelmann & Born 2010; Stickgold & Walker 2013) and the hypothesis that 

sleep helps to integrate new abilities into more general cognitive networks (Maquet 

et al., 2000). 

 

In Chapter 3, the focus shifts to attentional learning (another form of 

perceptual learning) to examine whether, firstly, attention-related perceptual tasks 

can be learned and, secondly, whether sleep differently impacts the development of 

the attentional task compared to the findings found in Chapter 2.  The results 

showed that although learning had significantly decreased in RT, accuracy was 

constant across measures within sessions. However, the benefits associated with 

sleep were limited and task-specific, suggesting that attentional learning may be less 

dependent on the need for sleep and rely more on active engagement during 

wakefulness. 

 

These two empirical chapters together indicate that learning mechanisms are 

not the same in all domains; instead, they rely on working conditions. Empirically, 

this thesis advances the field by demonstrating that sleep facilitates the 

generalisation of perceptual learning (Chapter 2), while attentional learning appears 

to rely more on active engagement during wakefulness (Chapter 3), challenging the 

assumption of uniform sleep-dependent consolidation. Theoretically, this 
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dissociation leads models of cognitive plasticity by implying that different types of 

learning activate separate neural systems: perceptual learning matching more 

closely with early sensory consolidation processes, and attentional and motor 

learning depending on more extensive executive and procedural systems. 

 

The reminder of this chapter will begin by summarising the findings arising 

from each of the experiments of this thesis and discuss their limitations. Then, will 

integrate the results of these experiments with previous literature, looking at 

learning in general. What can the current experiments in the thesis and previous 

research tell us about the mechanisms underlying learning and the contribution of 

sleep in relation to the generalisability of skills. Finally, the discussion will highlight 

theoretical and practical implications and propose future directions for research. 

 

4.2. Empirical Experiments 

4.2.1.  Summary of Findings 

 

In Chapter 2, the complex relationship between sleep and the generalisation 

of learning was explored. This topic is essential to understanding cognitive 

neuroscience. The main idea behind this research is that sleep not only helps us to 

recover but also plays a role in our brain's ability to apply what was learned to 

different situations. The experiment used the backward masking task to assess 

learning and examine how sleep affects performance improvement in visual tasks. 

After conducting tests, the research provides evidence that the timing of learning 

sessions – whether in the morning or evening – has a significant impact on how well 

one can retain and utilise skills. Specifically compared to those who learned in the 

evening, individuals who learned in the morning demonstrated improvements in 

applying their skills after getting some sleep. This finding supports the research 
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premise that sleep following a learning session strengthens the connections related 

to that task, allowing us to apply what was learned beyond its initial context (Brawn 

et al., 2008; Deliens et al., 2014; Tamaki et al., 2020). 

 

The findings challenge the held belief that perceptual learning only applies to 

specific locations or features (Fahle, 1994; Shiu & Pashler, 1992). Instead, the results 

from Chapter 2 demonstrate that learning can be transferred to untrained tasks and 

untrained sensory modalities. This suggests that higher level brain functions play a 

role, in generalising learning beyond stimuli and characteristics, implying a top-down 

contribution from higher-order cortical regio, such as the prefrontal cortex (PFC) 

(Kok et al., 2012). The importance of the PFC is especially emphasised, pointing to a 

top-down impact on the learning processes and bolstering the theory that higher 

cortical areas enable cognitive control mechanisms that are essential to the 

observed generalisation. This study not only supports the importance of sleep in 

learning processes, but it also raises the possibility that the interaction between 

alertness and sleep may be essential for maximising cognitive capacities. It requires 

further study to be done in order to fully understand the neuroplasticity processes 

that are at work during various states of consciousness and to clarify how these 

mechanisms contribute to our apparently infinite potential for adaptation and 

learning. All things considered, the chapter integrates a wide range of intricate data 

into a convincing story that emphasises sleep as a potent facilitator of learning 

generalisation, with broad ramifications for theoretical frameworks as well as real-

world uses in cognitive improvement and rehabilitation.  

 

Chapter 3 aimed to investigate whether selective attention, especially those 

involving top-down and bottom-up mechanisms, can be improved through repeated 

learning and whether the role of sleep contributes to this type of learning. While the 

tasks in Chapter 3 showed a reliable within-session improvement in RT, however, the 

hypothesis that sleep will help enhance learning was not supported by the findings in 
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this Chapter. These results showed an opposite trend to the sleep-dependant 

consolidation effect found in Chapter 2 and contradicted previous studies in the 

literature (Karni & Sagi, 1991; Stickgold & Walker, 2005). The lack of sleep-

dependent benefits in attentional tasks is conceptually important and implies an 

essential distinction between the consolidation paths of perceptual and attentional 

learning. 

 

The lack of significant effects in Chapter 3, compared to the significant 

learning and transfer observed in Chapter 2, can be explained by both task-specific 

and theoretical differences. While both chapters used paradigms that share 

commonality, the backward masking task in Chapter 2 primarily engaged low-level 

perceptual learning, dependent on visual plasticity and error minimisation in early 

sensory cortices (Bao et al., 2010; Op de Beeck et al., 2007). These representations 

are particularly vulnerable to sleep-dependent consolidation, because reactivation 

during sleep strengthens and integrates specific feature traces (Diekelmann & Born, 

2010; Karni & Sagi, 1991). On the other hand, the AC and VS paradigms in Chapter 3 

rely more on the higher-order executive functions, specifically goal-directed and 

context-sensitive control facilitated by fronto-parietal networks (Miller & Cohen, 

2001; Vossel et al., 2014). These types of learning depend on continuous adaptation 

and selective attention, rather than fixed associative mappings. This means that 

short-term replaying offline is less likely to be beneficial for these tasks. From a 

psychological viewpoint, this dissociation corresponds to the differentiation between 

the Rescorla–Wagner model (Recorla & Wagner, 1972), where prediction error 

facilitates gradual improvement, in accordance with Chapter 2, and the Mackintosh 

model (Mackintosh, 1975), which suggests that learning is dependent upon the 

dynamic distribution of attention according to cue relevance, aligning more closely 

with Chapter 3. 
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Furthermore, methodological concerns may have contributed to the absence 

of measurable effects, including the relatively short training duration, lack of direct 

feedback, and the potential for ceiling effects in accuracy. Nonetheless, these 

absences are theoretically informative, suggesting that sleep-related consolidation is 

not a universal process but a domain-specific mechanism dependent on the 

representational level and brain circuitry involved in the task. 

 

Previous studies have suggested that sleep helps to strengthen the brain 

connections involved in learning new abilities or knowledge. This is because 

perceptual learning has been shown to be highly connected with slow wave sleep 

(SWS) as it is responsible for consolidating very fine sensory representations in early 

visual regions (Karni & Sagi, 1991; Walker & Stickgold, 2006; Tamaki et al., 2020). 

These results in the literature provided a foundation for the widely accepted notion 

that sleep improves learning by stabilising and integrating newly acquired knowledge 

into long-term memory. However, the findings in Chapter 3 demonstrated that the 

assumption on sleep may not extend to all types of learning. Selective attention 

acquisition is more cognitive in character, particularly when it involves higher-order 

processes such as goal-directed (top-down attention); therefore, it may not benefit 

from sleep in the same manner as the backward masking task used in Chapter 2. 

Nonetheless, attentional learning activates separated frontoparietal control 

networks (Miller & Cohen, 2001; Vossel et al., 2014) and could consolidate through 

continuous wakeful engagement rather than offline reactivation. This is in-line with 

the developing framework that the contribution of sleep in learning is domain-

specific and depends on the nature of the task, the neural system involved and the 

complexity of the learning content (Diekelmann & Born, 2010; Klinzing et al., 2019). 

These tasks are naturally more dispersed and general, which means that they 

may not depend on the same offline consolidation mechanisms as the backward 

masking task, or they might need longer or more focused consolidation windows 

than those seen in this current experimental setup. Certainly, the absence of sleep-

related enhancement could imply that attentional improvement relies more on 
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repeated active engagement and reinforcement during wakefulness than on passive 

reactivation during sleep. 

 

Furthermore, the results showed that RT consistently improved over 

sessions, but accuracy did not improve in the same manner. This is often referred to 

as the speed-accuracy trade-off, which implies that attentional learning may 

maximise processing efficiency instead of perceptual fidelity (Liu & Watanabe, 2012). 

Previous research has recorded such a trade-off, which indicates a movement 

towards automatised, efficient response techniques (Desimone & Duncan, 1995; Liu 

& Watanabe, 2012). This can be beneficial in situations that demand quick reactions; 

the result highlights the shortcomings of the present duties in addressing more 

profound, structural changes in attention control. Future research might use more 

flexible task designs or provide error-driven feedback to see if training could also 

hone attentional accuracy. 

 

The theoretical implication of this dissociation is that the term "perceptual 

learning" could be overly broad to accurately characterise the range of cognitive 

processes engaged in tasks like backward masking, AC, and VS. Although all of these 

tasks to some degree involve shared characteristics, they are different in 

qualitatively diverse ways which rely on different brain systems. AC and VS tasks rely 

more on higher-order attentional processing, such as stimulus-driven or goal-

directed selection. Despite the fact that AC and VS tasks may seem comparable on 

the surface with PL paradigms, they should not be grouped under the same 

theoretical category. Treating all of these as instances of "PL" operates the danger of 

missing important differences in the kinds of representations they interact with and 

how their representations are combined. From this perspective, learning is more 

functionally differentiated; therefore, the nature and needs of the task determine 

the role sleep plays, and maybe the structure of learning itself. 
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4.2.2.  Limitations of the Experiments  

 

Numerous methodological constraints that need to be carefully considered 

have been brought to light by the research provided in the various chapters. One of 

the first limitations identified was the use of self-reported data on sleeping habits in 

Chapter 2. Although individuals may not always remember details well or may not 

precisely record their sleep habits, such a method is susceptible to prejudice and 

mistakes. A distorted perception of the connection between sleep and learning may 

result from this. Secondly, the backward masking was the main learning task for 

Chapter 2, which raises the question of how broadly applicable the results are. There 

is also uncertainty about whether the same findings would apply to other learning 

activities, especially ones that are more complicated or non-visual in nature. The fact 

that all activities fall under the perceptual learning domain in Chapter 2 and Chapter 

3, which restricts the range of inferences that can be made, even though the 

learning tasks (backward masking, visual search and attentional capture) used in 

these chapters are comparable tasks. Future research should aim to incorporate 

multisensory or cross-domain paradigms to discover if sleep-related consolidation 

serves as a universal or modality-specific phenomenon. 

 

The staircase method was used, which rapidly changed task complexity to 

keep performance at 70.7% accuracy, to account for variability and maintain 

consistency. This adaptive quality allows individuals to perform at an ideal level 

where learning-related increases in sensitivity could be significantly observed, hence 

avoiding ceiling or floor effects. However, a possible concern with using this method 

to calculate discrimination threshold is that distinct reversals based on the 

calculation may introduce variability due to noise or individuals’ approach in 

completing the task. Future research may consider combining the staircase method 
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with other threshold estimation approaches, such as psychometric function fitting, 

Bayesian adaptive techniques like QUEST (Watson & Pelli, 1983) or signal detection 

analysis. These techniques may improve measurement accuracy and confirm that 

the reported effects of learning are not confounded by response bias or random 

variation. 

 

Across both chapters, the sample sizes between groups may limit the 

statistical power to identify modest group differences. While the effect outcomes 

were aligned with theoretical assumptions, using bigger populations or hierarchical 

mixed-effects models might enhance sensitivity and generalisability. 

 

Additionally, in consideration of learning session arrangement, the study 

makes an effort to distinguish between morning and evening sessions, but it is 

unable to fully explore the range of potential learning periods during the day. 

Furthermore, individual circadian preferences are not taken into consideration in 

this study, despite the possibility that they may have a big impact on cognitive 

function. All participants experience both alertness and sleep across the testing days, 

consequently the study does not adequately examine the claim that sleep directly 

affects learning because there is neither a crossover design nor a control group. 

 

 Finally, all learning tasks relied on behavioural metrics. Although these serve 

as strong indicators of performance change, they provide limited understanding and 

interpretation of the underlying brain mechanisms. Further studies integrating 

behavioural data with neuroimaging techniques (such as EEG or fMRI) could clarify 

the relationship between sleep-related consolidation and specific brain networks. 
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Taken together, although the present methodology effectively identified a 

sleep-related benefit in perceptual generalisation (Chapter 2) and its lack in 

attentional learning (Chapter 3), various enhancements, such as objective sleep 

metrics, increased statistical power, chronotype control, and multimodal imaging, 

will be essential for comprehensively defining the parameters of sleep-dependent 

learning. 

 

4.3. The Impact of Sleep in Learning  

 

In-depth understanding of the cognitive psychology of learning is provided by 

the thesis's investigation into the connection between sleep-related learning 

conducted to look at online (wake) and offline (sleep) learning in Chapters 2 and 

Chapter 3. Chapter 2 continues the idea put out by Stickgold (2005) and Diekelmann 

& Born (2010), which is that sleep can help learning become more consolidated and 

generalised, especially if the learning task are scheduled in accordance with 

circadian cycles. The between-group analyses in Chapter 2 showed that individuals 

who trained in the evening and slept before the retest did significantly better and 

were able to transfer what they learnt to new locations compared to those who 

trained in the morning and stayed awake for the first 12 hours after learning. This 

finding supports the notion that sleep contributes to the stabilisation of complex 

perceptual traces and their integration into advanced cognitive networks (Maquet et 

al., 2000; Tamaki et al., 2016). It also shows that the individual's physical condition at 

the time of encoding affects consolidation. For example, training followed by sleep 

at an appropriate time of day leads to better strengthening of neural 

representations (Walker & Stickgold, 2004). In theory, these findings enhance 

current models of sleep-dependent learning in the field. Instead of illustrating 

consolidation merely as a neurobiological replay mechanism, the results support a 

multi-level approach that connects neural reactivation with cognitive resource 

theories (Craik & Tulving, 1975; Robertson, 2012). Consequently, effective 
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consolidation requires the reactivation of task-specific sensory circuits and the 

restoration of contextual or attentional connections that structure memory at a 

psychological level. This combination of perceptual and cognitive points of view 

makes the link between neuroplasticity and applied learning theory stronger. 

 

The present chapter broadens the comprehension of sleep's function in 

learning by demonstrating that sleep is crucial for reinforcing previously acquired 

knowledge, and that the scheduling of the learning session may greatly impact the 

efficiency of this process (Ahmadi et al., 2018; Al-Sharman & Siengsukon, 2013). 

Sleep has the ability to improve cognitive flexibility and the transfer of acquired 

abilities to new situations, as evidenced by the results showing morning learners 

improved on untrained activities following a 24-hour interval. According to Walker 

and Stickgold (2004), these benefits imply that sleep after morning sessions may be 

especially beneficial for memory consolidation and processing. This result offers 

behavioural evidence that offline consolidation facilitates the integration of localised 

visual representations into more extensive perceptual networks. Theoretically, these 

findings align with prediction-error-based learning models (Rescorla & Wagner, 

1972), suggesting that sleep may function to reduce remaining error signals by 

reactivating relevant neural networks. The findings from Chapter 2 also make one 

think about the mechanisms underlying this consolidation. In the event that sleep is 

strengthening the brain connections made during learning, the improvements seen 

in the morning group may indicate that learning is best aligned with normal 

biological cycles, which may result in more effective encoding and consolidation 

during sleep. 

 

On the other hand, Chapter 3 presents an alternative analysis to these data, 

demonstrating that although participating in online learning sessions improves 

attentional performance, there were no significant differences across the sleep-

wake groups. This means that attentional learning can be maintained by active 
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practice when awake without needing further sleep to improve. When interpreted 

via the Mackintosh model of selective attention, the result shows that practice leads 

to better attention by changing the weight of predictive cues over time. This 

happens through conscious awareness rather than unconscious consolidation. 

 

However, at the neurobiological level, this division suggests that the role of 

sleep plays in learning is task-specific and low-level perceptual tasks that require 

accurate sensory encoding are enhanced by sleep, while higher-order attentional 

processes are predominantly influenced by online engagement and feedback-driven 

adaptation (Miller & Cohen, 2001; Vossel et al., 2014). Which support previous 

studies that highlight non-sleep dependency on learning. For example, in the study 

by Atienza (2002), the finding from this study provide support to the fact that both 

rapid and slow brain alterations underlie the development of enhanced perception. 

This alteration could occur hours, suggesting the fact that sleep is not necessary for 

this enhancement. This raises doubt on sleep's more general benefits for learning 

and raises the possibility that a mechanism of selective consolidation is in operation. 

Sleep may preferentially consolidate some forms of learning over others, as shown 

by the absence of discernible sleep-related increases in attentional tasks. These 

findings challenge the held belief that sleep aids in learning consolidation. Instead, 

they indicate that the optimal amount of sleep, for enhancing learning consolidation 

may vary depending on the type of task such as in different perceptual tasks (Gais & 

Born, 2004; Stickgold, 2005). 

 

These findings indicate that the impact of sleep on learning is dependent on 

the interaction of task type, visualisation level, and time in relation to the circadian 

cycle. This thesis presents a task-specific and context-specific model of sleep-

dependent consolidation, addressing contradictions in the research by 

contextualising sleep's effects within particular learning hierarchies. Furthermore, 

this argument has implications for theories in the field of cognitive science and 
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educational approaches. It suggests that aligning learning sessions with an 

individual’s rhythm and tailoring them to match the learning task could impact the 

effectiveness of learning outcomes. This study underscores the necessity for 

exploration, into how sleep contributes to learning consolidation while also calling 

for a re-assessment of teaching methods to incorporate these findings. Additionally, 

it also advocates for individualised learning schedules. 

 

4.4. Future Direction  

 

During the discussion of findings, I have made note of some future directions 

for research. Firstly, an important area to explore further is the development of 

neuroimaging methods. These methods aim to investigate the functional changes 

that occur in the brain as a result of learning. By utilizing techniques such as 

functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI) 

researchers can delve into the relationships between regions of the brain during the 

learning process and gain insights into how sleep contributes to neuroplasticity. For 

instance, fMRI allows us to detect changes in blood flow within the brain, which 

serves as an indicator of certain activity. This approach provides us with a map of 

brain activity highlighting which areas are active during tasks or in response to 

particular stimuli. This information is highly valuable in studying learning and 

memory activities as it allows us to understand how different tasks may involve 

distinct neural pathways that evolve over time. In contrast DTI enables researchers 

to track how water molecules diffuse throughout the brain along white matter 

pathways. This understanding is crucial for unravelling the interconnectedness of 

different regions within the human brain. 

 

Overall, these advancements in neuroimaging methods hold promise, for 

investigating how learning influences the structure and function of our brains. DTI 
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has the capability to capture images of the fibre channels that help brain cells 

communicate by tracking the movement of water molecules along axons. This 

imaging method can reveal changes, in the brains matter, such as reorganization or 

increased density, which are associated with learning. Combining fMRI and DTI 

provides an understanding of how the brain transforms during the learning process. 

FMRI shows which areas of the brain become active and how this activity changes 

throughout learning and after sleep. DTI complements this by illustrating how 

learning experiences reshape the brains connections and how these changes may 

contribute to consolidating acquired knowledge and skills. By examining these 

strategies after learning activities or before and after sleep, insights can be gained 

regarding to how the brain adapts to information and how sleep can strengthen 

these neural connections. This knowledge is important for developing therapies that 

enhance learning capabilities and term cognitive health plans. Additionally, it is 

important to investigate the basis for differences, in learning abilities. Further 

exploration into the diversity of brain structure and function along with its 

connection to learning styles can pave the way for tailored teaching strategies and 

interventions to enhance cognition. This could potentially revolutionize learning 

methods by considering the learners psychological needs. 

 

To delve into the applicability of learning principles across inputs and 

cognitive functions it is crucial to diversify the range of learning tasks in addition to 

advancements in neuroimaging techniques. Comparative studies that encompass 

tasks can evaluate how patterns of learning generalise from one domain or sensory 

modality to another. These research findings might shed light on whether learning's 

primarily integrative and cross domain or if it tends to be more modular or domain 

specific. For example, do auditory abilities required for language acquisition 

correlate with the visual and sensory skills necessary for mastering a musical 

instrument? Furthermore, this line of inquiry should consider the underlying 

mechanisms like executive function, working memory and attention that support 

activities. By comparing activities utilizing different modalities but requiring similar 
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cognitive processes researchers can start mapping out commonalities as well, as 

distinct neural substrates associated with these processes. By providing the insights 

on how to promote transferable learning in real life situations, this approach has the 

potential to reform learning methods and cognitive therapy. It enables an 

understanding of the underlying mechanisms of learning and cognition. 

 

In addition, future studies should also consider controlling for variables that 

may impact performance outcomes. Learning goes beyond processes; it is closely 

connected to motivation and emotional states for example. These aspects 

significantly influence engagement in learning tasks the effectiveness of learning 

strategies and overall success in acquiring skills or knowledge. A holistic approach 

that examines the interplay between emotional aspects of the mind can lead to a 

more comprehensive understanding of the learning process. Furthermore, 

considering the impact of moods on neuroplasticity—the brains ability to form 

neural pathways and connections—provides strong support for investigating these 

factors further (McEwen, 2000). Motivation and emotional well-being might play a 

role, in either facilitating or hindering the learning processes. For example, stress is 

known to inhibit neuroplasticity while positive emotional experiences and a 

motivated mindset greatly enhance it (Ashby et al., 1999). By comprehending these 

interconnections, can potentially unlock the gateway to treatments aimed at 

enhancing the brain’s ability to adapt and learn. 

 

4.5. Conclusion  

 

The summary provides an overview of the nature of learning, which is closely 

intertwined with neuroplasticity, sleep and cognitive performance. It portrays 

learning as a multidimensional process. The findings emphasised the significance of 

the role of sleep play in enhancing generalisation of learning, suggesting that the 
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consolidation of information and abilities occurs actively during sleep than passively 

for specific tasks. The idea of brain plasticity, which highlights the brain’s ability to 

adapt its structure and function in response to experiences or external pressures is 

fundamental to this theory. It becomes evident that sleep plays a role in brain 

development and learning processes by not restoring but also strengthening 

cognitive skills. 

 

 Chapter 2 of the thesis explores learning generalisation challenging the 

notion that perceptual learning is limited to certain activities or stimuli. It 

demonstrates how the acquired abilities can be transferred to different situations 

such as different task features and location, suggesting the involvement of higher 

order brain functions. Additionally, the thesis delves into the dynamics of learning by 

providing insights into combining online and offline learning phases to facilitate 

information acquisition and skill development. The complex relationship, between 

learning and sleep is also addressed in this thesis. The impact of sleep on attention 

focused tasks seems to differ from its effect on perceptual learning and skill 

generalisation, as seen in Chapter 2. This suggests that the importance of sleep for 

consolidating learning may depend on the demands of a task and the level of 

complexity. Additionally, when considering differences in learning, it becomes 

evident that learning abilities can be both a general characteristic and specific to 

particular domains. Therefore, personalised approaches to learning and training are 

necessary to accommodate variations in individual learning styles and rates of 

progress. 

 

Chapter 3 look more closely at the link between sleep and learning. It 

showed that attentional learning takes a different path compared to perceptual 

learning in Chapter 2. The two studies together show that sleep helps with learning 

in a specific way and for specific tasks. It helps with certain sensory perceptual 

plasticity more than higher-order attentional adaptability. 
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Overall, this thesis provides conceptual and empirical methods to better 

capture the richness and complexity of human cognitive plasticity, as well as 

increases the field's knowledge of how learning functions within and across domains. 

Learning methods, skill development, and rehabilitation programs all benefit greatly 

from these insights as they help to customise treatments to individual learning 

profiles and help to know when sleep or repeated practice is most advantageous, 

hence greatly improving outcomes. 

 

4.5.1. Data and Code Availability  

Following common research practice, the experimental data and analytic 

scripts are kept safe and private on a cloud server (SharePoint). Access is available 

only through a private link (Appendix M). Once current study is accepted for 

publication, the data and code will be made publicly accessible via Open Science 

Framework. This approach ensures both transparency and data protection prior to 

formal publication. 
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Appendices  

 

Appendix A 

RT of Online learning session comparison in the morning group  

Parameter Session Comparison Sum of Rank 

Z p  

(corrected) 

3 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 679 1.570 .396 

S2_Start vs S2_End 596 -0.070 .983 

S3_Start vs S3_End 804 0.328 .882 

S4_Start vs S4_End 583 -0.058 .987 

3 degree eccentricity, set size 

4, distractor present 

 

S1_Start vs S1_End 889 1.759 .337 

S2_Start vs S2_End 705 0.044 .993 

S3_Start vs S3_End 829 1.221 .532 

S4_Start vs S4_End 701 -0.009 1 

3 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 761 -0.379 .862 

S2_Start vs S2_End 661 -1.401 .484 

S3_Start vs S3_End 585 -1.009 .620 

S4_Start vs S4_End 719 -0.650 .767 
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3 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 936 3.339 .050 

S2_Start vs S2_End 777 -0.109 .973 

S3_Start vs S3_End 736 -0.104 .973 

S4_Start vs S4_End 781 0.657 .767 

3 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 933 2.500 .142 

S2_Start vs S2_End 893 1.549 .402 

S3_Start vs S3_End 824 0.665 .767 

S4_Start vs S4_End 846 0.778 .727 

3 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 818 1.868 .303 

S2_Start vs S2_End 822 1.646 .373 

S3_Start vs S3_End 793 0.615 .778 

S4_Start vs S4_End 701 0.454 .841 

5 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 832 0.800 .725 

S2_Start vs S2_End 816 0.287 .895 

S3_Start vs S3_End 588 -2.190 .203 

S4_Start vs S4_End 576 -1.755 .337 

S1_Start vs S1_End 896 2.349 .184 
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5 degree eccentricity, set size 

4, distractor present 

S2_Start vs S2_End 605 0.591 .785 

S3_Start vs S3_End 717 -0.432 .841 

S4_Start vs S4_End 806 0.615 .778 

5 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 803 0.783 .727 

S2_Start vs S2_End 815 0.513 .824 

S3_Start vs S3_End 588 -2.190 .203 

S4_Start vs S4_End 699 -1.614 .375 

5 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 832 2.608 .115 

S2_Start vs S2_End 723 0.128 .968 

S3_Start vs S3_End 749 0.580 .793 

S4_Start vs S4_End 702 -0.953 .647 

5 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 615 -0.427 .115 

S2_Start vs S2_End 629 -2.254 .968 

S3_Start vs S3_End 621 -2.736 .793 

S4_Start vs S4_End 629 -2.130 .647 

5 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 945 3.174 .054 

S2_Start vs S2_End 925 3.149 .054 
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S3_Start vs S3_End 686 -0.276 .902 

S4_Start vs S4_End 734 -1.041 .606 

10 degree eccentricity, set 

size 4, distractor absent 

S1_Start vs S1_End 630 1.440 .464 

S2_Start vs S2_End 697 1.930 .285 

S3_Start vs S3_End 673 1.175 .547 

S4_Start vs S4_End 662 0.961 .646 

10 degree eccentricity, set 

size 4, distractor present 

S1_Start vs S1_End 726 -0.044 .993 

S2_Start vs S2_End 728 -0.248 .912 

S3_Start vs S3_End 654 -0.405 .847 

S4_Start vs S4_End 654 -1.326 .507 

10 degree eccentricity, set 

size 6, distractor absent 

S1_Start vs S1_End 716 1.513 .421 

S2_Start vs S2_End 695 0.101 .973 

S3_Start vs S3_End 655 -1.099 .580 

S4_Start vs S4_End 743 0.240 .914 

10 degree eccentricity, set 

size 6, distractor present 

S1_Start vs S1_End 622 1.993 .261 

S2_Start vs S2_End 477 -1.585 .391 

S3_Start vs S3_End 589 -1.630 .375 
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S4_Start vs S4_End 422 -1.566 .396 

10 degree eccentricity, set 

size 10, distractor absent 

S1_Start vs S1_End 774 4.153 .012* 

S2_Start vs S2_End 727 1.727 .352 

S3_Start vs S3_End 659 3.306 .050 

S4_Start vs S4_End 720 2.895 .078 

10 degree eccentricity, set 

size 10, distractor present 

S1_Start vs S1_End 666 2.415 .170 

S2_Start vs S2_End 586 -0.802 .725 

S3_Start vs S3_End 589 -0.651 .767 

S4_Start vs S4_End 623 -0.499 .824 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix B 

 

RT of Online learning session comparison in the evening group  

Parameter Session Comparison 

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 744 0.493 .825 

S2_Start vs S2_End 684 -1.204 .540 

S3_Start vs S3_End 872 0.487 .825 

S4_Start vs S4_End 815 0.503 .824 

3 degree eccentricity, set size 

4, distractor present 

 

S1_Start vs S1_End 877 1.286 .511 

S2_Start vs S2_End 834 -0.104 .973 

S3_Start vs S3_End 856 0.000 1.000 

S4_Start vs S4_End 874 -0.599 .782 

3 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 854 -0.248 .912 

S2_Start vs S2_End 760 -1.660 .370 

S3_Start vs S3_End 765 -0.311 .890 

S4_Start vs S4_End 815 -0.826 .714 

S1_Start vs S1_End 894 1.301 .507 
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3 degree eccentricity, set size 

6, distractor present 

S2_Start vs S2_End 842 0.008 1.000 

S3_Start vs S3_End 823 -0.039 .995 

S4_Start vs S4_End 806 -0.762 .734 

3 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 989 1.611 .375 

S2_Start vs S2_End 818 -1.236 .532 

S3_Start vs S3_End 859 -0.159 .957 

S4_Start vs S4_End 823 -0.957 .646 

3 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 814 1.228 .532 

S2_Start vs S2_End 929 0.935 .655 

S3_Start vs S3_End 802 1.239 .532 

S4_Start vs S4_End 871 1.188 .541 

5 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 909 0.879 .685 

S2_Start vs S2_End 676 -2.626 .115 

S3_Start vs S3_End 810 -1.545 .402 

S4_Start vs S4_End 734 -1.700 .355 

5 degree eccentricity, set size 

4, distractor present 

S1_Start vs S1_End 874 2.266 .193 

S2_Start vs S2_End 892 0.326 .882 
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S3_Start vs S3_End 747 -0.361 .868 

S4_Start vs S4_End 731 -1.285 .511 

5 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 877 1.557 .399 

S2_Start vs S2_End 720 -1.642 .373 

S3_Start vs S3_End 753 -1.397 .484 

S4_Start vs S4_End 785 -1.089 .580 

5 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 781 1.397 .484 

S2_Start vs S2_End 919 0.735 .743 

S3_Start vs S3_End 853 -0.031 .996 

S4_Start vs S4_End 938 1.023 .615 

5 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 801 0.508 .824 

S2_Start vs S2_End 819 -1.221 .532 

S3_Start vs S3_End 832 -1.220 .532 

S4_Start vs S4_End 784 -1.104 .580 

5 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 910 2.584 .119 

S2_Start vs S2_End 1000 2.239 .194 

S3_Start vs S3_End 862 1.305 .507 
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S4_Start vs S4_End 937 0.318 .887 

10 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 626 0.510 .824 

S2_Start vs S2_End 512 -0.754 .734 

S3_Start vs S3_End 542 -0.651 .767 

S4_Start vs S4_End 778 -0.330 .882 

10 degree eccentricity, set size 

4, distractor present 

S1_Start vs S1_End 568 -0.630 .775 

S2_Start vs S2_End 691 -0.882 .685 

S3_Start vs S3_End 595 -2.069 .243 

S4_Start vs S4_End 730 -1.944 .282 

10 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 704 1.008 .620 

S2_Start vs S2_End 648 -1.340 .507 

S3_Start vs S3_End 701 -0.009 1.000 

S4_Start vs S4_End 782 -0.471 .831 

10 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 567 -1.066 .586 

S2_Start vs S2_End 571 -1.281 .512 

S3_Start vs S3_End 600 -1.620 .375 

S4_Start vs S4_End 634 -1.681 .362 
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10 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 755 3.270 .050 

S2_Start vs S2_End 786 2.744 .098 

S3_Start vs S3_End 853 2.678 .112 

S4_Start vs S4_End 793 2.307 .189 

10 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 624 1.011 .620 

S2_Start vs S2_End 581 0.096 .973 

S3_Start vs S3_End 616 0.331 .882 

S4_Start vs S4_End 660 0.690 .765 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix C 

Accuracy of Online learning session comparison in the morning group  

Parameter Session Comparison 

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 784 -0.386 .892 

S2_Start vs S2_End 784 -0.386 .892 

S3_Start vs S3_End 812 0.964 .748 

S4_Start vs S4_End 742 -1.697 .748 

3 degree eccentricity, set size 

4, distractor present 

 

S1_Start vs S1_End 812 0.964 .748 

S2_Start vs S2_End 784 -0.567 .851 

S3_Start vs S3_End 784 -0.964 .748 

S4_Start vs S4_End 784 -0.567 .851 

3 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 812 0.964 .748 

S2_Start vs S2_End 798 0 1.000 

S3_Start vs S3_End 798 0.000 1.000 

S4_Start vs S4_End 840 1.743 .748 

3 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 798 0 1.000 

S2_Start vs S2_End 812 0.964 .748 
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S3_Start vs S3_End 798 0 1.000 

S4_Start vs S4_End 798 0 1.000 

3 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 812 0.964 .748 

S2_Start vs S2_End 798 N/A N/A 

S3_Start vs S3_End 812 0.964 .748 

S4_Start vs S4_End 798 N/A N/A 

3 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 826 1.010 .748 

S2_Start vs S2_End 812 0.567 .851 

S3_Start vs S3_End 784 -0.964 .748 

S4_Start vs S4_End 728 -1.428 .748 

5 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 812 0.964 .748 

S2_Start vs S2_End 798 N/A N/A 

S3_Start vs S3_End 770 -1.402 .748 

S4_Start vs S4_End 756 -1.743 .748 

5 degree eccentricity, set size 

4, distractor present 

S1_Start vs S1_End 784 -0.964 .748 

S2_Start vs S2_End 756 -1.187 .748 

S3_Start vs S3_End 798 0.000 1.000 
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S4_Start vs S4_End 826 1.402 .748 

5 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 784 -0.964 .748 

S2_Start vs S2_End 812 0.964 .748 

S3_Start vs S3_End 770 -1.402 .748 

S4_Start vs S4_End 798 N/A N/A 

5 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 798 0.000 1.000 

S2_Start vs S2_End 826 1.010 .748 

S3_Start vs S3_End 770 -1.402 .748 

S4_Start vs S4_End 840 1.743 .748 

5 degree eccentricity, set size 

10, distractor absent 

S1_Start vs S1_End 798 0.000 1.000 

S2_Start vs S2_End 840 1.743 .748 

S3_Start vs S3_End 812 0.964 .748 

S4_Start vs S4_End 784 -0.964 .748 

5 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 784 -0.964 .748 

S2_Start vs S2_End 798 0.000 1.000 

S3_Start vs S3_End 784 -0.567 .851 

S4_Start vs S4_End 798 N/A N/A 
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10 degree eccentricity, set size 

4, distractor absent 

S1_Start vs S1_End 826 0.679 .851 

S2_Start vs S2_End 784 -0.386 .892 

S3_Start vs S3_End 770 -0.841 .807 

S4_Start vs S4_End 770 -0.841 .807 

10 degree eccentricity, set size 

4, distractor present 

S1_Start vs S1_End 812 0.567 .851 

S2_Start vs S2_End 854 2.039 .748 

S3_Start vs S3_End 812 0.448 .892 

S4_Start vs S4_End 812 0.567 .851 

10 degree eccentricity, set size 

6, distractor absent 

S1_Start vs S1_End 798 0.000 1.000 

S2_Start vs S2_End 798 0.000 1.000 

S3_Start vs S3_End 826 1.010 .748 

S4_Start vs S4_End 812 0.567 .851 

10 degree eccentricity, set size 

6, distractor present 

S1_Start vs S1_End 726.5 -0.799 .829 

S2_Start vs S2_End 784 -0.348 .909 

S3_Start vs S3_End 782.5 0.973 .748 

S4_Start vs S4_End 712.5 -1.130 .748 

S1_Start vs S1_End 686 -2.350 .748 
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10 degree eccentricity, set size 

10, distractor absent 

S2_Start vs S2_End 768.5 0.406 .892 

S3_Start vs S3_End 699 -1.557 .748 

S4_Start vs S4_End 727 -0.888 .797 

10 degree eccentricity, set size 

10, distractor present 

S1_Start vs S1_End 758.5 -2.350 .851 

S2_Start vs S2_End 868 0.406 .748 

S3_Start vs S3_End 756 -1.557 .748 

S4_Start vs S4_End 757.5 -0.888 .748 

Note. "N/A" indicates that no statistical difference was calculated because the accuracy remained at 

100% throughout the compared sessions. 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix D 

 

Accuracy of Online learning session comparison in the evening group  

Parameter Session Comparison  

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, set 

size 4, distractor absent 

S1_Start vs S1_End 885 -0.839 .807 

S2_Start vs S2_End 900 -0.448 .892 

S3_Start vs S3_End 930 0.568 .851 

S4_Start vs S4_End 870 -1.743 .748 

3 degree eccentricity, set 

size 4, distractor present 

 

S1_Start vs S1_End 915 0 1.000 

S2_Start vs S2_End 930 0.568 .851 

S3_Start vs S3_End 915 0 1.000 

S4_Start vs S4_End 915 N/A N/A 

3 degree eccentricity, set 

size 6, distractor absent 

S1_Start vs S1_End 960 1.743 .748 

S2_Start vs S2_End 900 -0.967 .748 

S3_Start vs S3_End 930 0.448 .892 

S4_Start vs S4_End 900 -0.967 .748 

S1_Start vs S1_End 900 -0.568 .851 
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3 degree eccentricity, set 

size 6, distractor present 

S2_Start vs S2_End 930 0.568 .851 

S3_Start vs S3_End 885 -1.403 .748 

S4_Start vs S4_End 915 0 1.000 

3 degree eccentricity, set 

size 10, distractor absent 

S1_Start vs S1_End 945 1.403 .748 

S2_Start vs S2_End 930 0.967 .748 

S3_Start vs S3_End 900 -0.967 .748 

S4_Start vs S4_End 945 1.403 .748 

3 degree eccentricity, set 

size 10, distractor present 

S1_Start vs S1_End 915 0 1.000 

S2_Start vs S2_End 960 1.743 .748 

S3_Start vs S3_End 870 -1.374 .748 

S4_Start vs S4_End 915 0 1.000 

5 degree eccentricity, set 

size 4, distractor absent 

S1_Start vs S1_End 975 2.036 .748 

S2_Start vs S2_End 930 0.568 .851 

S3_Start vs S3_End 915 N/A N/A 

S4_Start vs S4_End 930 0.568 .851 

5 degree eccentricity, set 

size 4, distractor present 

S1_Start vs S1_End 975 0.409 .892 

S2_Start vs S2_End 930 -0.967 .748 
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S3_Start vs S3_End 915 -1.009 .748 

S4_Start vs S4_End 930 -0.568 .851 

5 degree eccentricity, set 

size 6, distractor absent 

S1_Start vs S1_End 930 0.448 .892 

S2_Start vs S2_End 885 -1.403 .748 

S3_Start vs S3_End 930 0.568 .851 

S4_Start vs S4_End 915 0.000 1.000 

5 degree eccentricity, set 

size 6, distractor present 

S1_Start vs S1_End 900 -0.385 .892 

S2_Start vs S2_End 900 -0.967 .748 

S3_Start vs S3_End 915 0 1.000 

S4_Start vs S4_End 900 -0.967 .748 

5 degree eccentricity, set 

size 10, distractor absent 

S1_Start vs S1_End 885 -1.009 .748 

S2_Start vs S2_End 930 0.967 .748 

S3_Start vs S3_End 915 N/A N/A 

S4_Start vs S4_End 915 0 1.000 

5 degree eccentricity, set 

size 10, distractor present 

S1_Start vs S1_End 900 -0.448 .892 

S2_Start vs S2_End 915 0 1.000 

S3_Start vs S3_End 930 0.448 .892 
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S4_Start vs S4_End 915 N/A N/A 

10 degree eccentricity, set 

size 4, distractor absent 

S1_Start vs S1_End 900 -0.320 .916 

S2_Start vs S2_End 840 -1.643 .748 

S3_Start vs S3_End 870 -0.982 .748 

S4_Start vs S4_End 945.5 1.414 .748 

10 degree eccentricity, set 

size 4, distractor present 

S1_Start vs S1_End 900 -0.320 .916 

S2_Start vs S2_End 915 0 1.000 

S3_Start vs S3_End 885 -0.839 .807 

S4_Start vs S4_End 915 0.000 1.000 

10 degree eccentricity, set 

size 6, distractor absent 

S1_Start vs S1_End 900 -0.347 .909 

S2_Start vs S2_End 870 -1.374 .748 

S3_Start vs S3_End 900 -0.385 .892 

S4_Start vs S4_End 900 -0.568 .851 

10 degree eccentricity, set 

size 6, distractor present 

S1_Start vs S1_End 838.5 -0.793 .829 

S2_Start vs S2_End 915 0 1.000 

S3_Start vs S3_End 915 0 1.000 

S4_Start vs S4_End 930 0.385 .892 
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10 degree eccentricity, set 

size 10, distractor absent 

S1_Start vs S1_End 823.5 -1.120 .748 

S2_Start vs S2_End 855 -1.494 .748 

S3_Start vs S3_End 900 -0.385 .892 

S4_Start vs S4_End 795 -2.341 .748 

10 degree eccentricity, set 

size 10, distractor present 

S1_Start vs S1_End 903 0.054 1.000 

S2_Start vs S2_End 930 0.300 .921 

S3_Start vs S3_End 840 -1.781 .748 

S4_Start vs S4_End 930 0.320 .916 

Note. "N/A" indicates that no statistical difference was calculated because the accuracy remained at 

100% throughout the compared sessions. 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix E 

 

RT and Accuracy of offline learning session comparison in the morning group  

Parameter 

Session 

Comparison 

RT Accuracy 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

3 degree 

eccentricity, set size 

4, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 608 -0.330 .882 812 0.386 .892 

S2_End vs 

S3_Start (Offline 

Sleep) 714 0.686 .765 756 -1.743 .748 

S3_End vs 

S4_Start (Offline 

Wake) 694 0.097 .973 854 1.697 .748 

3 degree 

eccentricity, set size 

4, distractor present 

 

S1_End vs 

S2_Start (Offline 

Wake) 784 0.970 .644 812 0.567 .851 

S2_End vs 

S3_Start (Offline 

Sleep) 712 -0.519 .824 798 0.000 1.000 
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S3_End vs 

S4_Start (Offline 

Wake) 797 0.459 .840 826 1.402 .748 

3 degree 

eccentricity, set size 

6, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 882 2.405 .170 798 0.000 1.000 

S2_End vs 

S3_Start (Offline 

Sleep) 822 1.941 .282 826 1.010 .748 

S3_End vs 

S4_Start (Offline 

Wake) 699 0.419 .843 756 -1.743 .748 

3 degree 

eccentricity, set size 

6, distractor present 

S1_End vs 

S2_Start (Offline 

Wake) 792 0.598 .782 784 -0.964 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 809 1.142 .570 798 0.000 1.000 

S3_End vs 

S4_Start (Offline 

Wake) 729 -0.225 .918 798 0.000 1.000 

3 degree 

eccentricity, set size 

10, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 782 0.429 .841 784 -0.964 .748 
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S2_End vs 

S3_Start (Offline 

Sleep) 755 -0.696 .765 798 N/A N/A 

S3_End vs 

S4_Start (Offline 

Wake) 683 -1.221 .532 784 -0.964 .748 

3 degree 

eccentricity, set size 

10, distractor 

present 

S1_End vs 

S2_Start (Offline 

Wake) 667 0.073 .983 770 -1.010 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 737 0.614 .778 784 -0.567 .851 

S3_End vs 

S4_Start (Offline 

Wake) 713 -0.757 .734 812 1.428 .748 

5 degree 

eccentricity, set size 

4, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 810 0.901 .684 784 -0.964 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 875 1.809 .320 826 1.402 .748 

S3_End vs 

S4_Start (Offline 

Wake) 881 2.218 .201 840 1.743 .748 
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5 degree 

eccentricity, set size 

4, distractor present 

S1_End vs 

S2_Start (Offline 

Wake) 728 0.000 1.000 868 2.306 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 757 0.970 .644 784 -0.567 .851 

S3_End vs 

S4_Start (Offline 

Wake) 738 -0.295 .891 784 -0.964 .748 

5 degree 

eccentricity, set size 

6, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 826 0.451 .841 798 N/A N/A 

S2_End vs 

S3_Start (Offline 

Sleep) 850 2.144 .209 812 0.567 .851 

S3_End vs 

S4_Start (Offline 

Wake) 887 1.450 .463 798 N/A N/A 

5 degree 

eccentricity, set size 

6, distractor present 

S1_End vs 

S2_Start (Offline 

Wake) 725 0.400 .848 784 -0.567 .851 

S2_End vs 

S3_Start (Offline 

Sleep) 648 -0.028 .996 784 -0.448 .892 
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S3_End vs 

S4_Start (Offline 

Wake) 825 0.434 .841 798 N/A N/A 

5 degree 

eccentricity, set size 

10, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 869 3.448 .050 756 -1.743 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 848 3.074 .054 756 -1.743 .748 

S3_End vs 

S4_Start (Offline 

Wake) 874 2.266 .193 798 0.000 1.000 

5 degree 

eccentricity, set size 

10, distractor 

present 

S1_End vs 

S2_Start (Offline 

Wake) 667 -1.961 .277 812 0.964 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 749 0.347 .877 812 0.567 .851 

S3_End vs 

S4_Start (Offline 

Wake) 834 1.305 .507 784 -0.964 .748 

10 degree 

eccentricity, set size 

4, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 507 -0.209 .928 770 -0.679 .851 
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S2_End vs 

S3_Start (Offline 

Sleep) 570 -1.090 .580 812 0.386 .892 

S3_End vs 

S4_Start (Offline 

Wake) 640 -0.437 .841 826 0.841 .807 

10 degree 

eccentricity, set size 

4, distractor present 

S1_End vs 

S2_Start (Offline 

Wake) 793 1.342 .507 770 -1.402 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 724 2.165 .209 770 -0.841 .807 

S3_End vs 

S4_Start (Offline 

Wake) 708 0.824 .714 770 -1.010 .748 

10 degree 

eccentricity, set size 

6, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 680 0.556 .804 784 -0.448 .892 

S2_End vs 

S3_Start (Offline 

Sleep) 810 1.913 .285 784 -0.567 .851 

S3_End vs 

S4_Start (Offline 

Wake) 704 0.751 .734 770 -1.010 .748 
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10 degree 

eccentricity, set size 

6, distractor present 

S1_End vs 

S2_Start (Offline 

Wake) 680 1.383 .489 826 0.743 .851 

S2_End vs 

S3_Start (Offline 

Sleep) 700 1.699 .355 744 -1.335 .748 

S3_End vs 

S4_Start (Offline 

Wake) 695 2.360 .184 827.5 1.130 .748 

10 degree 

eccentricity, set size 

10, distractor absent 

S1_End vs 

S2_Start (Offline 

Wake) 642 -2.022 .251 812 1.428 .748 

S2_End vs 

S3_Start (Offline 

Sleep) 532 -1.213 .535 827.5 1.130 .748 

S3_End vs 

S4_Start (Offline 

Wake) 501 -2.975 .065 813 0.888 .797 

10 degree 

eccentricity, set size 

10, distractor 

present 

S1_End vs 

S2_Start (Offline 

Wake) 622 0.184 .946 741 -0.490 .892 

S2_End vs 

S3_Start (Offline 

Sleep) 566 1.877 .301 756 -0.988 .748 
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S3_End vs 

S4_Start (Offline 

Wake) 791 1.374 .493 826 1.010 .748 

Note. "N/A" indicates that no statistical difference was calculated because the accuracy 

remained at 100% throughout the compared sessions. 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix F 

 

RT and Accuracy of offline learning session comparison in the evening group  

Parameter 

Session 

Comparison 

RT Accuracy 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

3 degree 

eccentricity, set 

size 4, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 884 1.675 .362 930 0.448 .892 

S2_End vs 

S3_Start 

(Offline Wake) 867 0.870 .685 900 -0.568 .851 

S3_End vs 

S4_Start 

(Offline Sleep) 762 -0.362 .868 930 0.448 .892 

3 degree 

eccentricity, set 

size 4, distractor 

present 

 

S1_End vs 

S2_Start 

(Offline Sleep) 872 0.950 .647 900 -0.568 .851 

S2_End vs 

S3_Start 

(Offline Wake) 896 1.333 .507 900 -0.568 .851 
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S3_End vs 

S4_Start 

(Offline Sleep) 925 0.826 .714 900 -0.967 .748 

3 degree 

eccentricity, set 

size 6, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 959 3.099 .054 885 -1.009 .748 

S2_End vs 

S3_Start 

(Offline Wake) 1017 2.046 .251 945 1.403 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 818 0.787 .727 885 -1.009 .748 

3 degree 

eccentricity, set 

size 6, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 949 1.446 .463 915 0.000 1.000 

S2_End vs 

S3_Start 

(Offline Wake) 817 0.303 .891 915 0.000 1.000 

S3_End vs 

S4_Start 

(Offline Sleep) 982 1.236 .532 930 0.967 .748 

3 degree 

eccentricity, set 

S1_End vs 

S2_Start 

(Offline Sleep) 943 1.813 .320 885 -1.403 .748 
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size 10, distractor 

absent 

S2_End vs 

S3_Start 

(Offline Wake) 1000 2.239 .194 915 0.000 1.000 

S3_End vs 

S4_Start 

(Offline Sleep) 979 0.939 .654 915 N/A N/A 

3 degree 

eccentricity, set 

size 10, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 814 0.487 .825 870 -1.743 .748 

S2_End vs 

S3_Start 

(Offline Wake) 714 -0.258 .912 930 0.385 .892 

S3_End vs 

S4_Start 

(Offline Sleep) 881 0.631 .775 930 0.568 .851 

5 degree 

eccentricity, set 

size 4, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 828 1.677 .362 870 -1.374 .748 

S2_End vs 

S3_Start 

(Offline Wake) 1056 3.571 .045* 885 -1.403 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 1034 2.024 .251 930 0.967 .748 
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5 degree 

eccentricity, set 

size 4, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 760 -0.148 .961 885 -1.009 .748 

S2_End vs 

S3_Start 

(Offline Wake) 953 1.319 .507 960 1.743 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 918 1.221 .532 930 0.568 .851 

5 degree 

eccentricity, set 

size 6, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 830 1.237 .532 900 -0.448 .892 

S2_End vs 

S3_Start 

(Offline Wake) 1086 2.813 .093 930 0.967 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 906 1.492 .431 900 -0.568 .851 

5 degree 

eccentricity, set 

size 6, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 817 0.771 .731 900 -1.009 .748 

S2_End vs 

S3_Start 

(Offline Wake) 884 -0.235 .916 930 0.967 .748 
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S3_End vs 

S4_Start 

(Offline Sleep) 962 1.648 .373 900 0.000 1.000 

5 degree 

eccentricity, set 

size 10, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 944 1.114 .580 900 -0.967 .748 

S2_End vs 

S3_Start 

(Offline Wake) 1014 2.176 .207 900 -0.967 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 1075 2.646 .115 930 0.967 .748 

5 degree 

eccentricity, set 

size 10, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 840 0.439 .841 900 -0.568 .851 

S2_End vs 

S3_Start 

(Offline Wake) 817 -0.375 .863 930 0.568 .851 

S3_End vs 

S4_Start 

(Offline Sleep) 806 0.360 .868 870 -1.743 .748 

10 degree 

eccentricity, set 

S1_End vs 

S2_Start 

(Offline Sleep) 568 -0.672 .765 960 0.922 .782 
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size 4, distractor 

absent 

S2_End vs 

S3_Start 

(Offline Wake) 777 1.713 .352 975 1.363 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 842 1.913 .285 870 -1.374 .748 

10 degree 

eccentricity, set 

size 4, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 757 1.722 .352 885 -0.741 .851 

S2_End vs 

S3_Start 

(Offline Wake) 833 1.841 .308 930 0.385 .892 

S3_End vs 

S4_Start 

(Offline Sleep) 970 2.514 .141 900 -0.568 .851 

10 degree 

eccentricity, set 

size 6, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 742 0.961 .646 915 0.000 1.000 

S2_End vs 

S3_Start 

(Offline Wake) 977 2.773 .095 960 1.374 .748 

S3_End vs 

S4_Start 

(Offline Sleep) 726 -0.497 .824 900 -0.448 .892 
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10 degree 

eccentricity, set 

size 6, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 802 1.575 .396 945 0.741 .851 

S2_End vs 

S3_Start 

(Offline Wake) 745 1.781 .330 900 -0.347 .909 

S3_End vs 

S4_Start 

(Offline Sleep) 840 2.446 .160 900 -0.385 .892 

10 degree 

eccentricity, set 

size 10, distractor 

absent 

S1_End vs 

S2_Start 

(Offline Sleep) 616 -1.613 .375 960 1.064 .748 

S2_End vs 

S3_Start 

(Offline Wake) 634 -2.346 .184 945 0.839 .807 

S3_End vs 

S4_Start 

(Offline Sleep) 632 -1.312 .507 931.5 0.793 .829 

10 degree 

eccentricity, set 

size 10, distractor 

present 

S1_End vs 

S2_Start 

(Offline Sleep) 579 0.564 .802 867 -0.054 1.000 

S2_End vs 

S3_Start 

(Offline Wake) 572 0.681 0.765 915 0.000 1.000 
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S3_End vs 

S4_Start 

(Offline Sleep) 806 0.882 .685 960 1.183 .748 

Note. "N/A" indicates that no statistical difference was calculated because the accuracy 

remained at 100% throughout the compared sessions. 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix G 

 

RT of Online learning session comparison in the morning group  

Parameter Session Comparison 

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, 

set size 2 

S1_Start vs S1_End 1452 2.318 .189 

S2_Start vs S2_End 1607 1.189 .541 

S3_Start vs S3_End 1385 -0.444 .841 

S4_Start vs S4_End 1574 0.674 .765 

3 degree eccentricity, 

set size 6 

S1_Start vs S1_End 1253 1.028 .615 

S2_Start vs S2_End 1143 2.209 .201 

S3_Start vs S3_End 1212 -0.150 .961 

S4_Start vs S4_End 898 -0.407 .847 

3 degree eccentricity, 

set size 10 

S1_Start vs S1_End 4721 1.418 .477 

S2_Start vs S2_End 4550 -0.173 .948 

S3_Start vs S3_End 5197 -0.674 .765 

S4_Start vs S4_End 4584 -0.618 .778 
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5 degree eccentricity, 

set size 2 

S1_Start vs S1_End 1830 3.360 .050 

S2_Start vs S2_End 1569 0.791 .727 

S3_Start vs S3_End 1713 0.873 .685 

S4_Start vs S4_End 1490 0.474 .831 

5 degree eccentricity, 

set size 6 

S1_Start vs S1_End 1008 1.368 .495 

S2_Start vs S2_End 996 0.994 .630 

S3_Start vs S3_End 1132 -0.295 .891 

S4_Start vs S4_End 944 -1.093 .580 

5 degree eccentricity, 

set size 10  

 

S1_Start vs S1_End 4075 0.800 .725 

S2_Start vs S2_End 4200 -0.079 .981 

S3_Start vs S3_End 4203 0.246 .912 

S4_Start vs S4_End 3775 -0.176 .948 

10 degree eccentricity, 

set size 2 

S1_Start vs S1_End 2342 1.081 .581 

S2_Start vs S2_End 2222 1.393 .484 

S3_Start vs S3_End 2644 1.536 .406 

S4_Start vs S4_End 2404 0.004 1.000 
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10 degree eccentricity, 

set size 6 

S1_Start vs S1_End 1545 -0.506 .824 

S2_Start vs S2_End 2044 -0.393 .852 

S3_Start vs S3_End 1739 -0.756 .734 

S4_Start vs S4_End 2261 0.894 .684 

10 degree eccentricity, 

set size 10 

S1_Start vs S1_End 3689 1.632 .375 

S2_Start vs S2_End 4847 1.417 .477 

S3_Start vs S3_End 4287 0.897 .684 

S4_Start vs S4_End 4603 2.779 .095 

    Significant level: *<0.05, **<0.01,***<0.001 
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Appendix H 

 

RT of Online learning session comparison in the evening group  

Parameter Session Comparison 

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, 

set size 2 

S1_Start vs S1_End 1427 3.985 .013 

S2_Start vs S2_End 1428 2.298 .189 

S3_Start vs S3_End 1298 -0.835 .713 

S4_Start vs S4_End 1577 -0.295 .891 

3 degree eccentricity, 

set size 6 

S1_Start vs S1_End 575 2.615 .115 

S2_Start vs S2_End 1119 0.178 .948 

S3_Start vs S3_End 1038 0.703 .765 

S4_Start vs S4_End 582 0.564 .802 

3 degree eccentricity, 

set size 10 

S1_Start vs S1_End 3196 0.882 .685 

S2_Start vs S2_End 3008 -0.422 .843 

S3_Start vs S3_End 2790 -1.914 .285 

S4_Start vs S4_End 2902 -1.800 .320 
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5 degree eccentricity, 

set size 2 

S1_Start vs S1_End 915 3.238 .050 

S2_Start vs S2_End 980 1.839 .308 

S3_Start vs S3_End 1105 0.708 .764 

S4_Start vs S4_End 881 -1.072 .586 

5 degree eccentricity, 

set size 6 

S1_Start vs S1_End 695 1.190 .541 

S2_Start vs S2_End 960 0.874 .685 

S3_Start vs S3_End 968 -0.113 .973 

S4_Start vs S4_End 887 -0.145 .961 

5 degree eccentricity, 

set size 10  

 

S1_Start vs S1_End 2755 2.642 .115 

S2_Start vs S2_End 3507 0.255 .912 

S3_Start vs S3_End 3476 -0.979 .642 

S4_Start vs S4_End 2789 -1.506 .423 

10 degree eccentricity, 

set size 2 

S1_Start vs S1_End 2245 3.107 .054 

S2_Start vs S2_End 1542 1.301 .507 

S3_Start vs S3_End 1722 0.533 .820 

S4_Start vs S4_End 1941 0.643 .771 
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10 degree eccentricity, 

set size 6 

S1_Start vs S1_End 1625 0.787 .727 

S2_Start vs S2_End 1806 1.714 .352 

S3_Start vs S3_End 1672 -2.035 .251 

S4_Start vs S4_End 2043 -1.332 .507 

10 degree eccentricity, 

set size 10 

S1_Start vs S1_End 4003 3.049 .054 

S2_Start vs S2_End 3420 1.863 .303 

S3_Start vs S3_End 4184 1.136 .573 

S4_Start vs S4_End 4170 0.000 1.000 

       Significant level: *<0.05, **<0.01, ***<0.001 
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Appendix I 

 

Accuracy of Online learning session comparison in the morning group  

Parameter Session Comparison  

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, set 

size 2 

S1_Start vs S1_End 1635.5 -0.662 .851 

S2_Start vs S2_End 1755 -1.369 .748 

S3_Start vs S3_End 1503 -0.315 .916 

S4_Start vs S4_End 1786 -0.592 .851 

3 degree eccentricity, set 

size 6 

S1_Start vs S1_End 1533.5 1.926 .748 

S2_Start vs S2_End 1060.5 0.343 .909 

S3_Start vs S3_End 1438.5 1.580 .748 

S4_Start vs S4_End 1143 0.147 1.000 

3 degree eccentricity, set 

size 10 

S1_Start vs S1_End 5720 0.652 .851 

S2_Start vs S2_End 5229.5 0.448 .892 

S3_Start vs S3_End 6301.5 0.183 .997 

S4_Start vs S4_End 5372.5 -0.274 .941 



 300 

5 degree eccentricity, set 

size 2 

S1_Start vs S1_End 1820 0.000 1.000 

S2_Start vs S2_End 1550 -1.693 .748 

S3_Start vs S3_End 1777 0.866 .807 

S4_Start vs S4_End 1786 1.456 .748 

5 degree eccentricity, set 

size 6 

S1_Start vs S1_End 1137 0.343 .909 

S2_Start vs S2_End 1094 -0.304 .921 

S3_Start vs S3_End 1190 0.971 .748 

S4_Start vs S4_End 1159.5 -0.918 .782 

5 degree eccentricity, set 

size 10  

 

S1_Start vs S1_End 4965 1.158 .748 

S2_Start vs S2_End 4712 -0.828 .815 

S3_Start vs S3_End 4639 -0.132 1.000 

S4_Start vs S4_End 4548 -0.015 1.000 

10 degree eccentricity, 

set size 2 

S1_Start vs S1_End 2649 -0.167 1.000 

S2_Start vs S2_End 2449 -1.284 .748 

S3_Start vs S3_End 2623 -0.218 .972 

S4_Start vs S4_End 2685 -0.822 .818 
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10 degree eccentricity, 

set size 6 

S1_Start vs S1_End 2112.5 -0.648 .851 

S2_Start vs S2_End 2529.5 1.135 .748 

S3_Start vs S3_End 2043 0.372 .900 

S4_Start vs S4_End 2552.5 2.355 .748 

10 degree eccentricity, 

set size 10 

S1_Start vs S1_End 4503.5 0.871 .807 

S2_Start vs S2_End 5421 0.159 1.000 

S3_Start vs S3_End 4606 -0.141 1.000 

S4_Start vs S4_End 4611 -1.580 .748 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix J 

Accuracy of Online learning session comparison in the evening group  

Parameter Session Comparison  

Sum of 

Rank 

Z p  

(corrected) 

3 degree eccentricity, 

set size 2 

S1_Start vs S1_End 1791.5 0.661 .851 

S2_Start vs S2_End 1625 -0.027 1.000 

S3_Start vs S3_End 1594.5 -0.611 .851 

S4_Start vs S4_End 1829.5 -0.668 .851 

3 degree eccentricity, 

set size 6 

S1_Start vs S1_End 777.5 0.562 .853 

S2_Start vs S2_End 1336 0.919 .782 

S3_Start vs S3_End 1169 -2.774 .748 

S4_Start vs S4_End 593 -1.748 .748 

3 degree eccentricity, 

set size 10 

S1_Start vs S1_End 4521 0.896 .797 

S2_Start vs S2_End 4087 0.186 .997 

S3_Start vs S3_End 3897 -1.512 .748 

S4_Start vs S4_End 3824 -1.861 .748 

S1_Start vs S1_End 1083.5 -1.268 .748 
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5 degree eccentricity, 

set size 2 

S2_Start vs S2_End 1066.5 0.158 1.000 

S3_Start vs S3_End 1073 0.793 .829 

S4_Start vs S4_End 1169 0.480 .892 

5 degree eccentricity, 

set size 6 

S1_Start vs S1_End 896 -0.063 1.000 

S2_Start vs S2_End 1190 -1.053 .748 

S3_Start vs S3_End 1242.5 0.000 1.000 

S4_Start vs S4_End 1105.5 -1.173 .748 

5 degree eccentricity, 

set size 10  

 

S1_Start vs S1_End 3800 -1.227 .748 

S2_Start vs S2_End 4541 0.581 .851 

S3_Start vs S3_End 4595 1.109 .748 

S4_Start vs S4_End 3573 -1.240 .748 

10 degree eccentricity, 

set size 2 

S1_Start vs S1_End 2572.5 -0.363 .906 

S2_Start vs S2_End 1834 -0.406 .892 

S3_Start vs S3_End 1810 -1.410 .748 

S4_Start vs S4_End 2200 1.808 .748 

S1_Start vs S1_End 2285.5 0.992 .748 
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10 degree eccentricity, 

set size 6 

S2_Start vs S2_End 2096.5 -0.914 .782 

S3_Start vs S3_End 2172.5 0.312 .916 

S4_Start vs S4_End 2516.5 -1.338 .748 

10 degree eccentricity, 

set size 10 

S1_Start vs S1_End 4946 0.569 .851 

S2_Start vs S2_End 4394 0.272 .941 

S3_Start vs S3_End 4620.5 2.642 .748 

S4_Start vs S4_End 5062.5 -0.463 .892 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix K 

 

RT and Accuracy of offline learning session comparison in the morning group  

Parameter 

Session 

Comparison 

RT Accuracy 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

3 degree 

eccentricity, 

set size 2 

S1_End vs 

S2_Start 

(Offline Wake) 1975 0.694 .765 2456.5 0.257 .946 

S2_End vs 

S3_Start 

(Offline Sleep) 2528 0.690 .765 2675 -0.492 .892 

S3_End vs 

S4_Start 

(Offline Wake) 2425 0.805 .725 2600 1.787 .748 

3 degree 

eccentricity, 

set size 6 

S1_End vs 

S2_Start 

(Offline Wake) 976 0.444 .841 1264.5 -2.075 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 1447 1.082 .581 1465.5 -0.500 .892 
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S3_End vs 

S4_Start 

(Offline Wake) 1168 1.096 .580 1382.5 -0.443 .892 

3 degree 

eccentricity, 

set size 10 

S1_End vs 

S2_Start 

(Offline Wake) 4232 1.101 .580 4924.5 -1.733 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 4856 2.039 .251 5101.5 0.008 1.000 

S3_End vs 

S4_Start 

(Offline Wake) 5014 1.846 .308 5362.5 -0.332 .916 

5 degree 

eccentricity, 

set size 2 

S1_End vs 

S2_Start 

(Offline Wake) 1738 -0.609 .780 2135 -0.730 .851 

S2_End vs 

S3_Start 

(Offline Sleep) 2561 1.351 .506 2444 1.118 .748 

S3_End vs 

S4_Start 

(Offline Wake) 1738 -0.029 .996 1965.5 -0.260 .946 

5 degree 

eccentricity, 

set size 6 

S1_End vs 

S2_Start 

(Offline Wake) 951 0.296 .891 1156 -0.384 .892 
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S2_End vs 

S3_Start 

(Offline Sleep) 966 1.181 .544 941 -1.495 .748 

S3_End vs 

S4_Start 

(Offline Wake) 1173 1.096 .580 1223.5 0.978 .748 

5 degree 

eccentricity, 

set size 10 

 

S1_End vs 

S2_Start 

(Offline Wake) 3481 1.771 .332 3941.5 -1.480 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 3639 1.317 .507 3719.5 0.557 .855 

S3_End vs 

S4_Start 

(Offline Wake) 3518 0.681 .765 3907 0.766 .850 

10 degree 

eccentricity, 

set size 2 

S1_End vs 

S2_Start 

(Offline Wake) 1593 0.781 .727 1835 0.446 .892 

S2_End vs 

S3_Start 

(Offline Sleep) 1488 0.853 .698 1490 0.122 1.000 

S3_End vs 

S4_Start 

(Offline Wake) 1565 -0.597 .782 1821 0.878 .804 
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10 degree 

eccentricity, 

set size 6 

S1_End vs 

S2_Start 

(Offline Wake) 2152 2.149 .209 1835 -0.818 .818 

S2_End vs 

S3_Start 

(Offline Sleep) 1929 1.881 .301 1490 -1.368 .748 

S3_End vs 

S4_Start 

(Offline Wake) 2153 0.650 .767 1821 -1.069 .748 

10 degree 

eccentricity, 

set size 10 

S1_End vs 

S2_Start 

(Offline Wake) 3725 0.498 .824 4710 -1.378 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 4494 -0.732 .744 5467 -0.671 .851 

S3_End vs 

S4_Start 

(Offline Wake) 4220 -1.099 .580 5233.5 1.110 .748 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix L 

 

RT and Accuracy of offline learning session comparison in the evening group  

Parameter 

Session 

Comparison 

RT Accuracy 

Sum of 

Rank 

Z p  

(corrected) 

Sum of 

Rank 

Z p  

(corrected) 

3 degree 

eccentricity, set 

size 2 

S1_End vs 

S2_Start 

(Offline Wake) 1642 -0.083 .981 2687.5 -1.263 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 2052 0.411 .847 2596 -0.773 .847 

S3_End vs 

S4_Start 

(Offline Wake) 2540 1.170 .548 2737.5 0.539 .869 

3 degree 

eccentricity, set 

size 6 

S1_End vs 

S2_Start 

(Offline Wake) 772 0.748 .734 1054 -2.279 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 1180 0.129 .968 1596 0.651 .851 
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S3_End vs 

S4_Start 

(Offline Wake) 1256 -0.223 .918 1353 1.923 .748 

3 degree 

eccentricity, set 

size 10 

S1_End vs 

S2_Start 

(Offline Wake) 3178 2.303 .189 4113 -1.277 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 3443 2.000 .261 4201.5 0.067 1.000 

S3_End vs 

S4_Start 

(Offline Wake) 4161 3.064 .054 4357 1.231 .748 

5 degree 

eccentricity, set 

size 2 

S1_End vs 

S2_Start 

(Offline Wake) 1230 0.635 .775 1547 -0.441 .892 

S2_End vs 

S3_Start 

(Offline Sleep) 1251 -0.513 .824 1497 -1.877 .748 

S3_End vs 

S4_Start 

(Offline Wake) 1656 2.281 .193 1598 0.929 .782 

5 degree 

eccentricity, set 

size 6 

S1_End vs 

S2_Start 

(Offline Wake) 632 1.132 .573 814 0.171 1.000 
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S2_End vs 

S3_Start 

(Offline Sleep) 1029 0.062 .987 1260 0.384 .892 

S3_End vs 

S4_Start 

(Offline Wake) 1079 1.189 .541 1291 0.256 .946 

5 degree 

eccentricity, set 

size 10 

 

S1_End vs 

S2_Start 

(Offline Wake) 2624 1.066 .586 3240.5 -0.622 .851 

S2_End vs 

S3_Start 

(Offline Sleep) 2792 1.290 .511 3280 -1.109 .748 

S3_End vs 

S4_Start 

(Offline Wake) 2745 2.157 .209 3169 -0.655 .851 

10 degree 

eccentricity, set 

size 2 

S1_End vs 

S2_Start 

(Offline Wake) 855 0.225 .918 1077.5 0.253 .946 

S2_End vs 

S3_Start 

(Offline Sleep) 1064 0.479 .829 1200.5 -0.520 .885 

S3_End vs 

S4_Start 

(Offline Wake) 1313 0.249 .912 1348.5 1.071 .748 
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10 degree 

eccentricity, set 

size 6 

S1_End vs 

S2_Start 

(Offline Wake) 1309 1.802 .320 1719.5 -0.992 .748 

S2_End vs 

S3_Start 

(Offline Sleep) 1422 -0.119 .972 1655.5 -0.312 .916 

S3_End vs 

S4_Start 

(Offline Wake) 1806 2.885 .078 1781 0.219 .972 

10 degree 

eccentricity, set 

size 10 

S1_End vs 

S2_Start 

(Offline Wake) 3940 -0.127 .968 5785 -0.569 .851 

S2_End vs 

S3_Start 

(Offline Sleep) 3139 -0.536 .819 3959.5 -3.040 .748 

S3_End vs 

S4_Start 

(Offline Wake) 3377 0.555 .804 4248.5 -0.592 .851 

Significant level: *<0.05, **<0.01,***<0.001 
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Appendix M: Link to Experimental Scripts and Data  

https://cf.sharepoint.com/:f:/r/teams/ProjectHCP/Shared%20Documents/ZhishanLiu

?csf=1&web=1&e=ayEBFF  

 


