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Abstract

Plain language summary

Background Innovative diffusion Magnetic Resonance Imaging (MRI) models enable the
non-invasive measurement of cancer biological properties in vivo. However, while cancers
frequently spread to the liver, models tailored for liver application and easy to deploy in the
clinic are still sought. We fill this gap by delivering a practical, clinically-viable framework for
liver tumour diffusion imaging, informing its design through histology.

Methods: We compare MRI and histological data from mice and cancer patients, namely:
MRI and hemaotxylin-eosin (HE) stains from N = 7 fixed mouse livers; MRl of N = 38 patients
suffering from liver solid tumours, N = 18 of whom with HE biopsies. We study five diffusion
models, ranking them according to a total MRI-histology correlation score. Afterwards, we
test metrics from the top-ranking model on our cohort, assessing their sensitivity to cell
proliferation (Ki-67 staining, N = 10), evaluating their association with tumour volume

(N =140 tumours), and comparing them across primary cancer types.

Results: We select a dMRI signal model of restricted intra-cellular diffusion with negligible
extra-cellular contributions, which maximises radiological-histological correlations (total
score: 0.625). The model provides cell size and density estimates that i) correlate with
histology (e.g., for cell size: r = 0.44, p = 0.029), ii) are associated to Ki-67 cell proliferation (for
MRI cell density: r = 0.80, p = 0.006) and tumour volume (r = 0.40, p < 107 for tumour volume
regression), and iii) that distinguish melanoma (N = 8) from colorectal cancer (N = 13)
(p=0.011 for intra-cellular fraction).

Conclusions: Our biologically meaningful approach may complement standard-of-care
radiology, and become a new tool for enhanced cancer characterisation in precision
oncology.

Magnetic Resonance Imaging (MRI) is an
imaging tool used frequently to detect and
monitor malignant tumours. Notably, the
latest MRI technology enables physicians to
measure not only the size of a tumour, but
even properties related to the cells it contains.
This information, like number or size of cells
can help oncologists to choose the best
treatment. Obtaining this information using
thisimaging tool in tumors that have spread to
the liver, remained challenging. Here we
present an MRI method developed
specifically to capture the biology of liver
tumour cells. We base it on mathematical
models that use information gathered from
microscopy images — known as histology,
where individual cells are visible —to guide the
analysis of the scan. We show that the
method quantifies tumour cell size and
density from a simple, clinically feasible MRI
scan and propose this technique for
oncological applications.

The clinical use of Magnetic Resonance Imaging (MRI) in cancer is based on
revealing the presence of tumours within an area of interest, and on mea-
suring their size. Nonetheless, MRI also offers the possibility of obtaining
estimates of biological properties within each pixel making up the tumour
image. This approach, known as quantitative MRI (QMRI)', involves the
acquisition of multiple MRI contrasts, which are then analysed jointly with a

mathetmatical model. qMRI provides promising metrics, which could
become quantitative biomarkers complementing the qualitative assessment
by the expert radiologist’. Among existing qMRI approaches, diffusion MRI
(dMRI) sensitises the MRI signal to water diffusion in biological tissues*".
Since the patterns of diffusion are influenced by the microenvironment
where diffusion takes place (e.g., by obstacles such as cell membranes),
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dMRI ultimately enables the per-voxel estimation of properties related to the
size and density of cells™”, bridging the gap between radiology and histology.

dMRI has shown promise in multiple areas, including brain’, spinal
cord’, prostate’, breast’, or liver imaging'®"". The liver is a frequent site for
cancer metastasisationm, and liver tumours are common targets for treat-
ment response assessment in oncology. However, current image-based
response criteria such as RECIST " have limitations, in that they rely on MRI
or computed tomography merely to measure tumour size, without
accounting for changes under therapy at the cellular level. Novel dMRI
metrics could instead enable the non-invasive characterisation of cancer
microenvironments, shedding light on the composition of tumours that
cannot be biopsied. The new readouts could also provide information on
tumour heterogeneity, relevant to fight treatment resistance'*'"*, and better
stratify patients for personalised treatment planning, reducing sample sizes
in clinical trials and ultimately improving patient outcomes'®.

In practice, the estimation of the biological properties through
dMRI is made possible by mathematical models, which are used to
link the observed image contrasts to the biological properties
themselves'” . However, despite their promise, advanced liver dMRI
models are relegated almost exclusively to research contexts, and
seldom used in real-world clinical settings. This is due to two main
reasons: i) to the high number of dMRI images (and hence long scan
time) required to support the fitting of such models, and ii) to the
requirement for specialised dMRI acquisitions”', beyond those made
available by manufacturers in the scanner console.

We aim to fill this clinical-research gap by delivering a practical liver
dMRI framework that is truly feasible in hospital settings,i.e.,on 1.5 Tor3 T
systems, with scan time that does not exceed 15 min, and using vendor-
provided dMRI acquisitions. With this objective in mind, we embraced the
latest “histology-informed” dMRI development paradigm, which is based
on informing signal model design® with co-localised histology. The fra-
mework has shown promise in delivering dMRI approaches with unpre-
cedented fidelity to cellular architecture, enhancing the specificity or
medical imaging towards the underlying tissue biology”* .

Following preliminary abstract dissemination®, in this article we
compared candidate, state-of-the-art approaches using a rich data set of
dMRI scans and hematoxylin and eosin (HE)-stained images, from excised
mouse livers and patients’ liver biopsies. We used these unique data to select
the approach maximising the correlation of radiological and histological
estimates of metrics such as cell size, corroborating results with computer
simulations. To our knowledge, this is the first time that the approach
has been used on a rich data set of dMRI scans of liver tumours in patients
in vivo, featuring multiple types of malignancies. The proposed approach
is based on a model of restricted, intra-cellular (IC) diffusion with
negligible extra-cellular (EC) signal contributions, which is fitted to highly
diffusion-weighted (DW) images. The model provides histologically-
meaningful estimates of cell size and density, which are also shown to be
associated to cell proliferation within liver tumours, as well as to the tumour
size. These results suggest that our dMRI framework may provide
histologically-relevant descriptors of tumour characteristics. These may
complement standard-of-care readouts in research and clinical practice,
equipping oncologists with new tools for precision oncology in hospital
settings.

Methods

dMRI models

Common biophysical body dMRI signal models®'”'**"~*’ describe the signal
as arising from three, non-exchanging proton pools: vascular water;
restricted, intra-cellular water; hindered, extra-cellular, extra-vascular water.
The dMRI signal for a PGSE measurement at b-value b, gradient duration/
separation ¢/ A, and echo time TE is

s=so(fve May + (1= fy) (fre Fiar+ (1= fr)e o) ). ()

Above, s, is the apparent proton density, f, is the voxel vascular signal
fraction, f; is the tissue intra-cellular signal fraction, T2/T2;/T2y and
ayla;lag are compartment-wise T2 and diffusion-weighting factors. a,,
captures intra-voxel incoherent motion (IVIM) effects™. In vivo, the IVIM
vascular ADC ranges approximately’" in [15; 60] um* ms™. For this reason,
for b>100 s/mm’, the vascular signal vanishes (a,, = 0), and Eq. (1)
reduces to'’

s=s(L=fy) (fre Pa + (L= f,)e Tray) @

A common model for g; in Eq. (2) is that of restricted diffusion within
spheres of diameter L'"'*:

a = o~ bADC, (8.A.D,,,L) 3)

where
2 SN
ADC; = L
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)
is the Gaussian phase distribution approximation of the intra-cellular
ADC?. Above, a,,, is the m-th root ofocmR]é(ocmR) = 3J3(e,R) = 0,J5(x)
is the Bessel function of the first kind and order 3/2, and J é (x) its first-order
derivative (J é x) = % ]%(x)). ADC; depends on the intrinsic cytosol
diffusivity D, ; and on the cell size L = 2R (R: radius; L: diameter). Noting

that dMRI-derived L represents a volume-weighted mean cell size
statistics””, we will refer to it as volume-weighted cell size (vCS).

Conversely, the extra-cellular, extra-vascular signal may be described
in terms of hindered diffusion in a tortuous space'”****:

ag(b,A) = e—bADCb(AADEm,ﬁ) (5)
with

ADCg (A, Dg o, f) = Dy, +§ (6)

In Eq. (6), Dy , is the asymptotic*® ADCy, for A—co.
The 5 implementations of the two-compartment model
We investigated 5 implementations of Eq. (2), divided into two
families. The first family includes models that do not make assumptions on
which of ADC,/ADCy, is higher:
i. Diff-in-exTD: the most general model, relying on the full expression
of ADCy, in Eq. (6);
ii. Diff-in-ex: a simpler implementation of Diff-in-exTD that neglects
extra-cellular diffusion time dependence (TD) (8 =0 in Eq. (6)).
In the second family of models, we constrain ADCy > ADC;. This
family includes
i. Diff-in-exTDFast: equivalent to Diff-in-exTD, with the lower bound for
Dg o, ensuring ADCg, > ADC; for any L.
ii. Diff-in-exFast. equivalent to Diff-in-ex, but again ensuring that
ADCy > ADC; for any L.
ili. Diff-in: a model where the extra-cellular signal is negligible compared
to the intra-cellular one, due to ADC; being much larger than ADC;, so
that Eq. (2) simplifies to

s=so(1—fy)fre 7a;(6,8,4,D,,,L) @)

In all models we used T2; ~ T2;=T2;, given the challenge of
resolving accurately multiple T2 constants'®*.
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Fitting. We fitted the 5 models using custom-written Python routines,
based on objective function minimisation initialised by a grid search. The
objective function was f,,, = —In(1), where A is the offset-Gaussian
likelihood™. Fitting provides estimates of vCS and voxel IC signal fraction

F= (1 _f V) I (8)
We also combined vCS and F into a cell density per unit volume'®
F
CD=—— 9
vCS? ©)

Mouse data acquisition
Animals. We obtained data from 7 fixed livers of NOD.Cg-Prkdc**
IL2rg™™/Sz] mice. These mice develop various liver pathologies when
implanted with patient-derived tumour samples. They are routinely used
in patient-derived xenograft studies, and represent an ideal setting to
validate the performances of new MRI methods for liver imaging. All
experimental protocols were approved and monitored by the Vall
d’Hebron Institute of Research Animal Experimentation Ethics Com-
mittee (CEEA; registration number 68/20) in accordance with relevant
local and EU regulations. Animals were housed at the specific pathogen-
free barrier area of the Vall d'Hebron Institute of Oncology following
established institutional procedures. A study protocol was defined
internally at institutional level, with no registration in external platforms.
We studied six livers from mice implanted with cells derived from
biopsies of prostate cancer patients, as part of an ongoing study, plus an
additional liver from a mouse without any implantation. We implanted one
tumour biopsy core with growth factor-enriched Matrigel (Corning) sub-
cutaneously in the flank of each mice under isoflurane inhalant anaesthesia
(3—4% for induction and 1-3% for maintenance). Mice were all males, and
they were implanted when 6 weeks old. Author I.C.S. was aware of the status
of the mice (implanted vs not-implanted). We derived tissue from the
following biopsies: iliac bone metastasis biopsy (metastatic castration-
resistant prostate cancer, presenting with bone metastasis and Gleason score
3 + 4 adenocarcinoma); prostate biopsy (patient with metastatic hormone-
sensitive prostate cancer, presenting with bone metastasis and Gleason score
5+4 adenocarcinoma); two liver biopsies (patient with metastatic
castration-resistant prostate cancer, presenting with bone and visceral
metastasis and Gleason score 4 + 4 acinar adenocarcinoma; patient with
metastatic hormone-sensitive prostate cancer, presenting with bone
and liver metastasis and Gleason score 4 + 4 adenocarcinoma). After
implantation, we measured tumour size using calipers and monitored
mouse weight weekly, sacrificing animals by cervical dislocation under
general anaesthesia (isoflurane inhalant, 3-4%) when tumour volume
exceeded 2000 mm?, to reduce distress. No adverse events were observed in
the N=7 animals used in this study. We collected the livers, fixed them
overnight in formalin, and transferred them to phosphate-buffered saline
(PBS) solution.

MRI. We scanned livers on a 9.4 T Bruker Avance system at room tem-
perature. Livers were tightened with sewing thread to a histology cassette
and placed into a Falcon® tube, filled with PBS solution. A 1-channel
birdcage coil was used (excitation/reception). The protocol included a T2-
weighted fast spin echo sequence (resolution: 144 um x 144 um x 2.216
mm) and PGSE dMRI (Supplementary Fig. S27; TR = 2700 ms; resolution:
386 um x 386 um; matrix size: 86 x 86; 4 slices, 2.216 mm thick, NEX = 1).
The protocol featured: §=10 ms, A = {15, 30} ms, 10 linearly spaced
b-values for each A (minimum/maximum nominal b: 0/2800 s/mm?). DW
images corresponding to A = 15 ms were acquired at TE = {31, 45, 65} ms,
and images corresponding to A = 30 ms were acquired at TE = {45, 65} ms.
We i) denoised dMRI scans with the Marchenko-Pastur Principal Com-
ponent Analysis (MP-PCA) technique” (Python code; kernel: 7 x 7 x 3), i)
mitigated Gibbs ringing (MrTrix3 local sub-voxel shift method™), and iii)
corrected temporal signal drifts by assessing signal changes in a PBS
solution region, accounting for TE changes (PBS T2: 500 ms).

Finally, we fitted the Diff-in-exTD, Diff-in-exTDFast, Diff-in-ex, Diff-
in-exFast and Diff-in models voxel-by voxel (tissue parameter bounds: [0; 1]
for f1;[0.8; 2.6] pm’ ms™ for D, ; [8; 40] um for vCS; [0.8; 2.6] ym’ ms™ for
Dy, in models Diff-in-ex and Diff-in-exTD and [1.75; 2.6] pm’ ms™' in
models Diff-in-exFast and Diff-in-exTDFast; [0; 10] pm® for B in models
Diff-in-ex-TD and Diff-in-exTDFast). For fitting, we fixed f,, and T2, to
values obtained through a a two-pool vascular-tissue model” (fitting
bounds: [0; 1] for f,; [5; 80] ms for T2;). Fitting was performed i) on all
images with b> 1000 s/mm”* (suppressing vascular signals, referred to as
fitting on whole image set); i) on b>1000 s/mm’ images (high b-value
fitting). In our ex vivo data, the vascular signal captures PBS solution con-
tamination (PBS ADC: roughly 2.4 um” ms™). For this reason, we adopted a
b-value threshold of 1000 s/mm’ to achieve acceptable PBS signal sup-
pression. We used instead a minimum b-value of 1800 s/mm’ for high
b-value fitting (minimising extra-cellular contributions), given the reduc-
tion in intrinsic tissue diffusivity expected ex vivo.

For comparison, we computed ADC and apparent diffusion excess
kurtosis K by fitting

bADC+LK(bADC)*

s =spe” (10)
to DW images acquired at TE=45ms, A=30ms, with in-house
Python code.

Histology. After MRI, samples underwent histology. We cut two 4 pm-
thick histological sections at known position, stained them with HE, and
digitised them (Hamamatsu C9600-12 slide scanner; 0.227 um resolu-
tion). An experienced pathologist (S.S.) inspected images qualitatively.
We then processed them with the automatic cell detection tool of

£/ % A. Afterwards,

we split images into 386 pm x 386 um patches (matching the MRI
resolution), computing patch-wise histological volume-weighted cell size
vCS},;0» intra-cellular area fraction Fj;,, and cell density per unit area
CDjisto”"- VCSpisto» defined as

<>\
VCShisto = (K)

is a more accurate counterpart of dMRI cell size than the arithmetic mean”*
aCSy;y, = <1>. We accounted for biases coming from: i) estimating the
size of 3D objects from 2D views (bias 1), ii) tissue shrinkage (bias 2), by
rescaling vCS,,;,, and CDy,;,,. The final vCS,,;,, estimate was 1.4616 times
larger than the value obtained from direct image processing
(1.4616 = 1.2732 x 1.148; 1.2732, derived from the theory of spherical caps,
accounts for bias 1; 1.148 accounts for bias 2, and corresponds to a plausible
shrinkage of 12.9% following dehydration, clearing and paraffin
embedding™). The final CD,,, estimate was 1.318 times smaller than the
value derived from direct image processing, since 1 mm’ of shrunk tissue
corresponds to 1.148 x 1.148 mm*= 1318 mm” of unprocessed tissue
(plausible shrinkage 12.9%"). Lastly, we co-registered histological maps to
MRI* using DiPy".

QuPath®, obtaining per-cell area A and diameter [ =

11

Human data acquisition

Cohort. We obtained data from patients suffering from advanced solid
tumours, recruited for an ongoing imaging study approved by the Vall
d’Hebron University Hospital (VHUH) Ethics committee (PR(AG)29/
2020). Patients provided informed written consent to participate in the
imaging study. We included 38 patients with liver malignancies, either
primary or metastatic, being screened as potentially eligible candidates
for various phase I clinical trials at the VHUH. Patients were scanned
with either a 1.5 T or 3 T system. Approximately one week after MRI, a
biopsy from one of the imaged liver tumours was obtained from 18
patients. The histological material was stained for HE, and in 10 cases also
through Ki67 IHC, demonstrating cell proliferation. The eligibility
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criteria to enter this imaging study were: to have liver malignancies of
known origin, previously confirmed on a Computer Tomography scan
(diameter >10 mm); to meet all standard institutional requirements for
having an MRI scan. In those cases where a biopsy was also collected, all
standard institutional, requirements for having a biopsy had also
to be met.

MRI. We imaged patients at the level of the abdomen. We scanned 11
patients on a 1.5 T Siemens Avanto scanner using the vendor 18-channel
body coil for detection, and 27 patients on a 3T GE SIGNA Pioneer
scanner, using the vendor 48-channel torso coil for signal reception, with
32 channels enabled for detection. The 1.5 T system was located at the
Vall d’'Hebron Hospital radiology department, whereas the 3 T at the
CETIR Clinic of Barcelona. MRI scans were acquired between October
2020 and June 2023. No software or hardware upgrades were made to the
MRI systems during the acquisition of the data. Note that in this study we
do not employ any clinical outcome measure related to patient treatment
or to the participation in clinical trials.

In the 1.5 T Siemens system, the protocol included a T2-weighted fast
spin echo scan (resolution: 1.4 x 1.4x 5mm® 32 slices; TR = 4500 ms;
TE=82ms; echo train length: 29; NEX=8; GRAPPA=2) and fat-
suppressed DW TRSE (Supplementary Fig. S27) EPI (dMRI scan time:
16 min). It featured: resolution: 1.9 x 1.9 x 6 mm?; 32 slices; TR = 7900 ms;
bandwidth 1430 Hz/pixel; averaging of 3 orthogonal diffusion directions
x2 signal averages (effective NEX = 6); GRAPPA factor of 2; 6/8 partial
Fourier imaging. The dMRI protocol consisted of b = {0, 50, 100, 400, 900,
1200, 1600} s/mm®, each for TE = {93, 105, 120} ms. One additional image
(b=0s/mm’ TE=93ms) was acquired with reversed phase encoding
polarity. The gradient timings (Supplementary Fig. S27) were: §; = 8.9 ms,
§,=17.6ms, §5=204ms, §,=6.0ms, A;,=174ms and A, 4, =639 ms
when TE=93ms; §;=132ms, 6,=19.3ms, §;=24.8ms, §,=7.7ms,
A5,=217ms and A;4,=742ms when TE=105ms; &, =189 ms,
§,=21.0ms, §5=30.5ms, §,=9.5ms, A;,=27.5ms and A, ,=87.5ms
when TE = 120 ms. The b-value is

2
b=yG* <5§ (A, —8)) +5(8,+8,)°
' 3 (12)
(848, = 8:) (Ary = By — 8, - 8,))

Converely, the protocol implemented on the 3 T GE scanner included a
respiratory-gated T2-weighted fast spin echo scan (resolution:
1.4 x 1.4 x 6 mm?® 32 slices; TR =4615 ms; TE=52.86 ms; echo train
length: 16) and respiratory-gated, fat-suppressed PGSE (Supplementary
Fig. S27) EPI (dMRI scan time: 16 minutes). It featured: resolution:
24x24x6mm’ 32 slices; TR=6000ms; bandwidth 1953 Hz/pixel;
averaging of 3 orthogonal diffusion directions x2 signal averages (effective
NEX = 6); ASSET factor of 2. The dMRI protocol consisted of b = {0, 50, 100,
400, 900, 1200, 1500} s/mm’, each for TE = {75, 90, 105} ms. The gradient
timings (Supplementary Fig. S27) were: gradient duration 8 = {0.0, 3.9, 5.2,
9.2,15.0,18.2,21.0} ms for TE = 75 ms, § = {0.0,3.9,5.2,9.2,13.0, 15.8, 18.5}
ms for TE = 90 ms and 105 ms; gradient separation A = {0.0, 27.8, 29.0, 33.0,
28.7,31.8, 34.7} ms for TE = 75 ms and A = {0.0, 27.8, 29.0, 33.0, 37.0, 39.6,
42.3} ms for TE =90 ms and TE = 105 ms.

dMRI post-processing consisted of slice-wise Python MP-PCA
denoising (kernel: 5 x 5)*; MRTrix3 Gibbs unringing’’; motion correction
via affine co-registration®; FSL distortion correction* (1.5 T data only). An
experienced radiologists (R.P.L.) segmented tumours on the T2-w scan,
enabling per-patient tumour volume computation. Afterwards, we warped
the tumour mask to dMRI using ANTs* non-linear co-registration. Two
researchers independently reviewed the co-registered masks, and manually
edited them to correct for registration inaccuracies (F.G. and K.B.). Lastly,
we fitted the 5 dMRI models, fixing again f|, and T2 to previously com-
puted values™ (fitting bounds: [0; 1] for f/; [20; 140] ms for T2 5 [0; 1] for f 5
[0.8;3.0] um® ms™" for D ;; [8; 40] um for vCS; [0.8;3.0] um’ ms™ for Dy, in

models Diff-in-ex and Diff-in-exTD, and [1.75; 3.0] um* ms™ in models Diff-
in-exFast and Diff-in-exTDFast; [0; 10] pmz for B in models Diff-in-ex-TD
and Diff-in-exTDFast).

We fitted the 5 dMRI models i) on images acquired at a b-value
b > 100 s/mm’, to suppress vascular signals (fitting to the whole image set); ii)
to b > 900 s/mm” images, to also minimize extra-cellular contributions (high
b-value fitting). For scans performed on the 1.5 T Siemens system: i) we used
Ay, + 8, in place of A in Eq. (6) (Supplementary Fig. $27), ii) we replaced
Eq. (4) with a numerical implementation of restricted diffusion within
spheres, based on Radial Basis Function interpolation of synthetic signals
generated for DW-TRSE with Monte Carlo simulations™.

For both scanners, we also computed ADC and excess kurtosis K by
fitting Eq. (10) on b> 100 s/mm* images (shortest TE), with in-house
Python code.

Histology. We performed ultrasound-guided biopsies of one liver
tumour at the Barcelona Vall d’'Hebron University Hospital (Spain).
Biopsies were obtained approximately one week after dMRI. In two
patients, the biopsy was obtained after receiving immunotherapy as part
of a phase I trial. In those two cases, an additional dMRI scan was also
acquired after starting treatment, immediately before the biopsy. The
biological material underwent standard processing, HE staining and Ki67
IHC, and final digitalisation on a Hamamatsu C9600-12 slide scanner
(resolution: 0.454 pum). An experienced pathologist (S.S.) assessed the
images and drew a region-of-interest (ROI) outlining tumour tissue and
excluding non-tumour meterial. In parallel, an experienced radiologist
(RP.L.) inspected ultrasound and MR images, outlining the biopsied
tumour on the latter. We processed HE data with QuPath and computed
per-biopsy vCSy,; 10> Fristo @0d CDy,;.,, as previously described. Addition-
ally, we also computed the fraction of tumour labelled for Ki67 (referred
to as Fy;q,) with in-house routines, in those cases where Ki67 IHC was
available (IHC images acquired with the same Hamamatsu scanner used
for HE). vCS,;,, and CDy,;,, were rescaled to account for tissue shrinkage.
vCSy;s1, Was multiplied by 1.503, where 1.503 = 1.1806 x 1.2732 accounts
for two scaling factors, namely: i) 1.2732 accounts for cell size under-
estimation due to 2D sectioning, ii) 1.1806 accounts for a plausible tissue
shrinkage of 15.3% following fixation, dehydration, clearing and paraffin
embedding"'. The final CD,;,, estimate was instead 1.3938 times smaller
than the value derived from direct image processing, since 1 mm’ of
shrunk tissue corresponds to 1.1806 x 1.1806 mm’ = 1.3938 mm* of
unprocessed tissue for a shrinkage factor of 15.3%"".

Analyses
dMRI model selection. We carried out model selection independently
for each of the two fitting strategies. The MRI-histology Total Correlation
Score (TCS) selects the model providing the highest Pearson’s correlation
between vCS,z; and vCS),,,,, and between F; and Fj,;,,. It is defined as
TCS = r(VCSMRh Vcshism) + "(F mrn F histo) 13)
where 7(VCSyr;, VCSyigo) and 7 (F gy, Fliyo) are the correlation coeffi-
cients of vCSyp; and F,p; with histological vCS,;,, and Fy,;,. The corre-
lation between CD,; and CDy,;,;,, was not included in Eq. (13) since CD, 1z,
is determined analytically from vCS, z; and F ;. For TCS computation, we
pooled together mouse and human data (N =25, including the two cases
who had their biopsy collected after starting treatment, namely
immunotherapy).

We remark that the main objective of the study is to use histological
information to inform MRI signal model design, through MRI-histology
correlation analyses. A sample size of N =25 provides approximately 50%
power to detect a Pearson’s correlation of |r| = 0.4 (moderate correlation) at
a significance level a =0.05. Our study size enables the detection of even
moderate correlation at a conservative significance level, and was considered
appropriate to inform MRI signal modelling. Nonetheless, we also point out
that our sample size increases the risk of Type II vs Type I errors, given the
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statistical power of 50%. In practical terms, this implies that a true corre-
lation of |r| = 0.4 is roughly 10 times more likely to be missed (false negative)
than a false correlation of |r| = 0.4 detected (false positive).

We also performed model selection using a Histology Fidelity Criterion
(HEC), and popular Bayesian Information Criterion (BIC)***. HFC rewards
the models providing the best accuracy in the numerical estimation of
histological cell size and intra-cellular fraction estimation, i.e., minimising

}VCSMRI — VCSisto |
Vcshis to

|FMRI - Fhisf0|

HFC = (14)

F histo

Information on CD,; and CD,,, was not included in Eq. (14) since
CD, g is not a degree of freedom of the dMRI models (it is determined
analytically from vCS,; and F ;). BIC selects the model providing the
best goodness of fit, penalising complexity, by minimising

BIC = PIn(N) — In(A\) (15)

A\ is the maximised likelihood, and P/N are the number of model parameters/
signal measurements. We performed BIC selection voxel-wise, followed by
majority voting across voxels.

Analysis of the fitting residuals. For each voxel, fitting strategy and
dMRI model, we calculated the fitting residuals as s, — S,,qqreq> Where
Smeasured 18 the measured dMRI signal and s, the signal predicted by the
model at the corresponding b-values/diffusion time. Measured signals
were normalised according to Eq. (7), removing relaxation effects due to
changes in TE, and signal predictions were bounded between 0 and 1
(dMRI signal decay with respect to the b =0 signal). For each b-value,
diffusion time and fitting strategy, we visualised distributions across all
voxels (median and interquartile range), and also scattered s;, — s
against s,

measured

measured*

Simulated dMRI model selection. We validated results from MRI and
histology data through computer simulations. For this experiment, we
synthesised signals for each of the three dMRI protocols considered in the
study (ex vivo PGSE; in vivo PGSE; in vivo TRSE), fitted the 5 candidate
dMRI models, and performed model selection using TCS, HFC and BIC.
dMRI signals were synthesised through Monte Carlo simulations, which
we performed using code from the freely available MCDC simulator™®
(https://github.com/jonhrafe/MCDC_Simulator_public). We seeded
walkers in a substrate made of spherical cells of identical diameter®'’-***!
(Supplementary Fig. S17), controlling the intra-sphere fraction F by
adding gaps of increasing size in-between abutting spheres, packed in an
ideal cubic lattice. We probed four F values (0.197, 0.323, 0.406, 0.523)
and four sphere diameters vCS for each F (8, 16,22 and 30 pm). We varied
intra-/extra-sphere diffusivities (10 x 10 values; [0.8; 2.6] um* ms™" for the
ex vivo protocol and [0.8; 3.0] um” ms™" for in vivo protocols), for a total of
1600 synthetic voxels. Signals for each synthetic voxel, featuring a unique
combination of IC/EC diffusivities D, ;/Dj 5, cell diameter vCS and IC
fraction F, were generated for 3 levels of trans-cell water permeability,
namely: k=10 um s (low permeability); k=25pum s (intermediate
permeability); k=50pum s (high permeability)"’. We corrupted syn-
thetic signals with Rician noise (b=0 signal-to-noise ratio: 30), and
performed model selection according to TCS, HFC and BIC.

To gauge an understanding of the diffusion times for which modelling
trans-membrane water exchange becomes relevant, we also studied the
random walks of spins seeded in the IC space, and derived their corre-

sponding instantaneous apparent diffusion coefficients ADC,(t) =

2 2 2
w as a function of time f, given spin positions

p(t) = (x(t), ¥(¢), z(t)), and having defined Ax(t) = x(t) — x(0), Ay(t) =
y(t) — y(0) and Az(t) = z(t) — z(0), where p(0) is the initial spin position.

dMRI-histology correlation. We computed mean and standard devia-
tion of all metrics i) within the mouse liver samples, ii) within a mask
containing all liver tumours in patients, iii) within the biopsied patients’
tumours. We pooled together metrics from mice and patients to calculate
Pearson’s correlation coefficients r, as described above. ADC was nor-
malised to the ADC of the PBS solutions in mice and to the free water
diffusivity in patients (3.0 um”> ms™' at 37 °C), given the difference in
temperature. The correlation analysis aims to test whether MRI metrics
Fymrp vCSyry and CD,p; are capable of detecting and replicating the
contrasts seen across tumours/samples in Fy;,,, vCSy;, and CDj.,
which originate from a variety of histopathological processes, e.g.,
necrosis, fibrosis, oedema, or presence of active cancer.

Additionally, we also fitted linear regression models for dMRI metrics
Fitri> VCSyirr and CD,pp; from the selected dMRI approach. These test the
specificity of these metrics towards their direct histological counterparts
metrics Fp;y,, CSyiy, and CDy,,,. Models were:

VCSMRI = /30 + ﬂlvcshisto + ﬂthisto
FMRI = ﬂO + ﬂthisra + ﬁzvcshisto
CDMRI = /50 + ﬂlCDhisto + ﬁZFhistu + ﬂ?)vcshisto

(16)

The models allow us to test whether: (i) the association between vCS i,
and vCS,,, is confounded by F;,,; (ii) the association between F,; and
F}iq0 is confounded by vCS,,,,; (iii) the association between CD,; and
CDy,;, is confounded by either F,;,, or vCSy;,. Metrics were standardised
as z-scores before regression, to ensure comparability of the f coefficients.
Fitting was performed in python with statsmodels® (https://www.
statsmodels.org).

Association withimmunohistochemical markers of cell proliferation.
We assessed the association between F,, an IHC index assessing the
fraction of biopsied tissue stained for Ki67 and demonstrating cell pro-
liferation, with dMRI and HE-derived histological properties. For this
purpose, we calculated the Pearson’s correlation coefficient between F e,
and all dMRI and HE-derived metrics. We excluded two cases whose
biopsies were obtained after having started receiving immunotherapy as
part of a phase I trial (so N = 10).

Association with liver tumour phenotype. Finally, we tested whether
metrics from the proposed dMRI approach contribute to explaining the
macroscopic tumour phenotype. To this end, we studied the association
between dMRI metrics and tumour volume, and compared their values,
alongside histological metrics and patients’ age, between CRC and mel-
anoma liver metastases through ¢-tests. Both tumour volume assessment
and CRC-melanoma comparison were performed also for histological
metrics, excluding two cases who had entered an immunotherapy phase I
trial, and whose biopsy was obtained after receiving treatment (HE and
MRI metrics excluded).

Regarding the tumour volume assessment, we computed Pearson’s
correlation coefficients between mean values of dMRI metrics within each
individual liver tumour and the tumour volume (N =140 liver tumours
from 38 patients; 137 metastases, 3 primary cancers). Moreover, we per-
formed experiments in which we attempted to predict liver tumour volume
given per-tumour mean values of dMRI metrics. Following a standard
5-fold cross validation design, we split the set of tumours into training and
test sets. Afterwards, we used the training set to fit linear statistical models of
the form

3 n
log,o(TV) = B, + Z Z ﬁk,nxkyyn

n=1 k=n—1

(17)

Above, TV is the tumour volume in mm®, modelled as a 3* order
polynomial function of x and y, which is linear in the (unknown) f3 coeffi-
cients of the polynomial terms. x and y in Eq. (16) represent in turn different
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pairs of dMRI metrics, as for example DKI ADC and K, or pairs of metrics
from the Diff-in model (we tested explicitly vCS,z; and Fypp; Dy ; and Fypprs
and Dy; and vCSyy). Afterwards, we deployed the trained statistical
models on the test data, calculating the Pearon’s correlation coefficient
between ground truth and predicted log,,(TV) values, pooling together
predictions from all 5 cross-validation folds. Note that the log;, of the
volume was studied instead of the volume itself, since the latter spans almost
4 orders of magnitude in our data set, and is therefore difficult to handle
numerically.

Regarding the CRC-melanoma comparison instead, we harmonised
dMRI metrics across scanners with a custom-written ComBat® imple-
mentation, rescaling metrics obtained on the 1.5 T system to the 3 T range.
This was done before performing the CRC-melanoma comparions to
account for the fact that CRC scanned almost entirely with just one MRI
system.

Statistics and reproducibility. The following statistical analyses were
performed. (i) Evaluation of correlations between MRI and histology
data. This test was based on a sample size of N=25 paired MRI-
histological data points with a significance level of 0.05 (two-sided
Pearson’s correlation). P-values were unadjusted for multiple compar-
isons. Additional correlations models were also fitted accounting for the
confounding effect that other MRI metrics can have in the correlation
between each MRI index and its direct histological pair. These were based
on linear regression models on the same sample. P-values were also
unadjusted for multiple comparisons. (ii) Evaluation of correlations
between synthetic MRI signals and simulated histological properties.
This test was based on a sample size of N = 1600 synthetic tissue envir-
onments with a significance level of 0.05 (two-sided Pearson’s correla-
tion). P-values were unadjusted for multiple comparisons. (iii)
Evaluation of the correlation between MRI metrics and histological Ki-67
stains, visualising cell proliferation. This test was based on a sample size of
N =10 paired MRI-histology data points with a significance level of 0.05
(two-sided Pearson’s correlation). P-values were unadjusted for multiple
comparisons. (iv) Tumour volume prediction from mean tumour-wise
MRI metrics. This analysis was based on the analysis of N = 140 tumours
from N =38 patients. Tumour volume was predicted through logistic
regression in 5-fold cross-validation. Predicted and ground truth tumour
volumes were correlated through two-sided Pearson’s correlation tests
(sample size N =140). P-values were unadjusted for multiple compar-
isons. (v) MRI and histological metric comparison between CRC and
melanoma cases. This analysis relied on a cohortof N= 13 CRCand N= 8
melanoma cases for MRI metrics; N = 6 CRC and N = 4 melanoma cases
for histological HE metrics; N = 4 CRC and N = 2 melanoma cases for Ki-
67 immunostain fraction. The between-group comparison was based on
two-sided t-tests. P-values were unadjusted for multiple comparisons. No
imputation methods were used in any of the analyses above in case of
missing data (sample sizes already report the exact number of data points
available).

We carried out all our analyses in python 3.12.2 (Anaconda distribu-
tion), using the following third-party packages: scipy version 1.13.1; pandas
version 2.2.2; numpy version 1.26.4; matplotlib version 3.9.2; seaborn version
0.13.2; scikit-learn version 1.5.2; statsmodels version 0.14.4. The python
scripts written to perform the analyses reported in the main manuscript
have been included as supplementary data. Supplementary Data S6 per-
forms MRI-histology correlation analysis and model selection (analysis (i)
above); Supplementary Data S7 relates MRI metrics to Ki-67 cell pro-
liferation immunostains (analysis (iii) above); Supplementary Data S8
evaluates the association with tumour volume (analysis (iv) above); Sup-
plementary Data S9 compares MRI and histology metrics across CRC and
melanoma groups (analysis (v) above).

Ethics
All experimental protocols in animals and PDX generation were approved
and monitored by the Vall d'Hebron Institute of Research Animal

Experimentation Ethics Committee (CEEA; registration number 68/20 and
70/20) in accordance with relevant local and EU regulations. The imaging
study and sampe collection from cancer patients for histopathology as well
as PDX generation were approved by the Vall d'Hebron University Hospital
Ethics committee (PR(AG)29/2020, PR(AG)5248), Barcelona, Spain.
Patients provided informed written consent to participate in the PDX study
and in the imaging study.

Results

Overview: mouse and human data for histology-informed dMRI
signal modelling

We designed and demonstrated our dMRI approach using data obtained
from fixed mouse livers (mouse data) and from cancer patients in vivo
(human data) (Fig. 1). Mouse data consist of pulsed gradient spin echo
(PGSE) DW MRI scans of seven fixed mouse livers, performed ex vivo on a
94T Bruker system. It also includes whole-organ HE-stained sections,
obtained at known radiographic position. We obtained livers of mice
sacrificed as part of ongoing xenograft model development studies in
prostate cancer. Six had been implanted with biopsies of prostate
cancer patients, while one had not had any implantation. While the
livers from the implanted mice did not grow any tumours, they feature a
variety of pathologies, with three unique histopathological phenotypes
(Supplementary Fig. S1). The liver from the mouse with no implantation
features normal liver structures, and we will refer to it as Control. Of the six
implanted cases, two also show normal liver tissue, with normal repre-
sentation of all hepatic structures. We will refer to these cases as Paty4; and
Paty, (patient biopsy implantation, but normal appearing). Another case
exhibits generalised necrosis and diffuse acute and chronic inflammation
surrounding necrotic areas, with presence of occluded thrombotic vessels.
This specimen will be identified as Pat,,. (patient biopsy implantation,
with necrosis). Finally, three specimens feature an immature, lymphopro-
liferative process, with various degrees of infiltration of small, lymphoid,
atypical cells with abundant mitosis, which infiltrate portal vessels and
sinusoidal capillaries, but without producing tumours. These will be referred
to as Pat;,q to Patj,s (patient biopsy implantation, with lymphoid cell
infiltration).

We obtained human data on cancer patients suffering from advanced
solid tumours, participating in an imaging study at the Barcelona
Vall d’Hebron Institute of Oncology (VHIO, Spain), before being enrolled
in a number of clinical trials. We included data from 38 patients with
liver malignancies (mean/standard deviation (SD) of age: 61.88/11.90 years;
median/inter-quartile range (IQR) of age: 62.8/14.7 years; 19 male,
19 female), of which 3 suffered from primary hepatocellular carcinoma
(HCC), while 35 had liver metastases from different primary cancers (10
colon, 8 melanoma, 4 breast, 4 gastric, 3 rectal, 2 ovarian, 1 renal, 1 endo-
metrial, 1 ureteral, 1 thyroidal). dMRI was based on diffusion-weighted
(DW) echo planar imaging (EPI). We also obtained digitised HE-stained
biopsies from one of imaged liver tumours approximately one week
after MRI in 18 cases (mean/SD of age: 61.1/12.0 years; median/IQR of age:
62.1/14.4 years; 8 male, 10 female). Of these 18 patients, 2 suffered from
primary HCC, while 16 had liver metastases (5 from colon cancer, 4 from
melanoma, 3 from rectal cancer, 2 from ovarian cancer, 1 from breast and
endometrial cancer). In 10 cases, Ki67 imunnohistochemsitry (IHC),
demonstrating cell proliferation, was also available beyond routine HE
stains.

Overview: dMRI signal models for cell size and density

measurement

We studied five biophysical dMRI models, grouped into two families

(Fig. 2A). All models describe the dMRI signal as originating from a com-

bination of IC and EC contributions*"”*’, making different assumptions.

The first family, which is more general, includes:

1. Diff-in-exTD: a model accounting for restricted IC diffusion within

spherical cells®, and hindered diffusion in the EC space, with diffusion
time dependence™ in both IC and EC signals™. The diffusion time
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Mouse data

Human data
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* N =2 normally-appearing,
« N =3 small cell infiltration,
* N =1 necrosis)

19 F; mean/StD age: 61.9/11.9 years;
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"
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Ex vivo 9.4T MRI

l = Ureteral (1)
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(1.5T MRI: N = 11;
3T MRI: N = 27)
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MRI only
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Biopsy after MRI
N=18

(N = 2 primary, N = 16 metastases; 8 M,
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N = 8, HE only) =HCC (2)

= Endometrial (1)

Fig. 1| Ilustration of the liver MRI and histology data used in the study. Our data
set consisted of preclinical mouse data and clinical human data. The mouse data
encompass dMRI scans of seven fixed livers from mice (six implanted with tissue
from biopsies of patients suffering from prostate cancer (PC); one without any
implantation). We scanned the livers ex vivo on a 9.4 T system, and obtained HE
histological sections at known position. The clinical data include in vivo liver dMRI

= Breast (1)

HE sections and Llyer Hanour HE |
. biopsies and in
ex vivo MRI : .
N=7 vivo MRI
N=18 I
Co-localised MRI and HE histology: N = 25 I

scans performed on 38 patients suffering from advanced liver tumours. Scans were
performed on clinical 1.5 T and 3 T MRI systems, and a HE-stained biopsy from one
of the images tumours was collected after MRI in 18 cases. In 10 out of these 18, Ki67
immunohistochemsitry (IHC), demonstrating cell proliferation, was available
beyond routine HE. In the figure, PC stands for prostate cancer; HCC for hepato-
cellular carcinoma; IHC for immunohistochemsitry.

quantifies the time during which water molecules can sense cellular
barriers, before the MR signal is measured.

2. Diff-in-ex: similar to model Diff-in-exTD, but neglecting diffusion time
dependence in the EC space. Popular body dMRI techniques such as
IMPULSED" or VERDICT" are essentially implementations of
this model.

Conversely, the second family explicitly assumes that the EC apparent
diffusion coefficient (ADC) is higher in the EC than in the IC space, i.e., that

ADCy > ADC;, and assumption used in certain body dMRI techniques’".

This family includes:
i. Diff-in-exTDFast: equivalent to Diff-in-exTD, but ensuring
that ADC;, > ADC,.
ii. Diff-in-exFast:  equivalent to  Diff-in-ex, but  ensuring
that ADC;, > ADC,.

ili. Diff-in: a model where it is hypothesised that the EC extra-cellular
signal is negligible with respect to the IC one due to its much
larger ADC.
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Fig. 2 | Description of the dMRI signal models and study overview. A Top: cartoon
illustrating the two families of dMRI models considered in this study, consisting of 1)
models with no assumption of which of intra/extra-cellular ADC is higher, and 2)
models where the extra-cellular ADC is hypothesised to be higher than the intra-
cellular ADC. B Bottom: study overview. We analysed dMRI data from fixed mouse
livers and from cancer patients imaged in vivo to derive estimates of intra-cellular
fraction and of cell size. In parallel, we processed histological material from the same

Histology-informed
liver dMRI model

P |
91K 2M
Il/mm3]

tissues (whole-liver sections for the preclinical mouse data; biopsies from one of the
imaged tumours for the clinical data), and derived the histological counterparts of
such dMRI metrics. We compared dMRI and histological cell size and intra-cellular
fraction to select the dMRI model featuring the best fidelity to histology. In Fig. 2,
pictures from Servier Medical Art have been used. Image(s) provided by Servier
Medical Art (https://smart.servier.com), licensed under CC BY 4.0 (https://
creativecommons.org/licenses/by/4.0/).

All models enable the estimation of volume-weighted mean
cell size (CS) (vCSppp> expressed in pm) and IC signal fraction
(Fjrp> dimensionless). These can be combined into an apparent cell density
per unit volume (CDyr; = Fpri/VCSyry» €xpressed in cell/mm?®)'*. All
models were fitted twice: to the complete set of images, or to highly
diffusion-weighted (DW) images only (i.e., to high b-values), to minimse
signal contributions from the EC space. For comparison, we also considered

routine ADC (in pum’/ms) and apparent diffusion excess kurtosis K
(dimensionless) from diffusion kurtosis imaging (DKI)*, since these are
popular dMRI indices sensitive to cancer cellularity and easy to compute
from short acquisitions'*>,

We processed HE-stained histological data with automatic cell
detection® to derive histological counterparts of the dMRI metric.
The two were compared to inform the design of a dMRI signal model
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maximising radiological-histological correlations (Fig. 2B). The his-
tological metrics were: histological volume-weighted mean cell size
(vCSyis» In pm), histological intra-cellular area fraction (Fj;y,,
dimensionless), and histological cell density per unit area (CDy;y,, in
cell/mm?). In patients for which Ki-67 ICH was available, the fraction
of histological material stained for Ki-67 within the biopsy was also
computed through custom routines (metric Fyq;).

Supplementary Data S1 contains a CSV file with the MRI and
histology data used for model selection, while Supplementary Data S2
contains a CSV file with MRI and histology data for model selection
based on high b-value images only. Supplementary Data S3 contains
a CSV file with MRI and histology metrics for each individual
tumour. Additionally, Supplementary Data S4 and Supplementary
Data S5 contain a CSV file with cohort information and the histo-
logical and mean MRI metrics across all tumour voxels (inter-scan-
ner harmonisation performed in Supplementary Data S5).

A model of restricted intra-cellular diffusion with negligible extra-
cellular contributions maximises radiological-histological
correlations

We compared dMRI models through an MRI-Histology Total Cor-
relation Score (TCS). TCS measures the overall correlation between
histological and radiological readouts of cell size and intra-cellular
fraction, and is obtained by summing Pearson’s correlation coeffi-
cients between MRI and histological cell size and IC fraction (i.e.,
vCSyr; and vCS,;,» and Fyp; and Fy, ). Negative correlations are
penalised, since the model providing the highest TCS should be
preferred. TCS values unequivocally suggest that models where the
IC ADC is constrained to be smaller than the EC ADC provide
higher correlations with histology. Among all dMRI implementa-
tions, fitting a model of IC restricted diffusion with negigilble EC
signal contributions to highly DW images (referred to as model Diff-
in) provides the highest TCS values, and hence the highest correla-
tion to histological readouts (Fig. 3). Figure 3A summarises the
different dMRI models, while Fig. 3B, C reports actual TCS values. In
the figure, models where ADCy>ADC;, shown in violet shades,
provide consistently higher TCS values than models that do not make
such an assumption (orange shades), with the highest TCS observed
for model Diff-in fitted to highly DW images.

Additional model selection criteria used to compare dMRI models
confirm findings from TCS-based model selection. The additional criteria
were: an Histology Fidelity Criterion (HFC), measuring the sum of absolute
errors in F and vCS estimation via dMRI, compared to histology; and the
Bayesian Information Criterion (BIC)". BIC is a common criterion for
dMRI model selection®*": it quantifies the model fitting quality, penalising
model complexity. Note that model performance increases as both HFC and
BIC decrease. Supplementary Fig. S2 reports the number of times, in per-
centage terms, that a model provides the lowest HFC and BIC across our
N =25 MRI-histology cases. TCS ranking is confiremd: models hypothe-
sising ADCy, > ADC; are selected more frequently than models that do not
do, according to HFC. The model Diff-in is the most selected model
according to both BIC and HFC (Supplementary Fig. S3B; fitting to high
b-value images). Supplementary Fig. S3 splits HFC and BIC rankings
depending on the MRI scanner. In all cases, models with ADCy > ADC;
(Diff-in, Diff-in-exFast, Diff-in-exFastTD) are selected more frequently than
models Diff-in-ex and Diff-in-ex-TD. When fitting is performed only on
high b-value images, Diff-in is the most selected model according to both
BIC and HFC.

Supplemetnary Figs. S4-S10 show examples of signal model fitting to
dMRI measurements obtained from exemplificatory voxels. Supplementary
Figs. S4-S6 refer to ex vivo mouse data (examples of voxels from the three
main histological phenotypes); Supplementary Figs. S7-S10 refer instead to
in vivo cancer patient (active tumour, necrosis, and other tumour regions-
of-interest, from both 3T and 1.5T systems). On visual inspection, all
models capture the main trends of the signal as a function of the b-value and

of the diffusion time, e.g., low diffusion attenuation in highly cellular areas;
high diffusion attenuation in necrosis; increasing dMRI signal for increasing
diffusion time.

The analysis of fitting residuals reveals differences among
dMRI models

We also studied fitting residuals as a function of the acquisition parameters,
as patterns in the distribution of the residual can provide insight onto the
features of the signal that are best — or worst — estimated by a model.
Supplementary Figs. S11-S13 show median and interquartile of residual
(i.e., signal predicted by a dMRI model, minus the measured signal) dis-
tributions as a function of the b-value and of the diffusion time, for both
fitting strategies (Supplementary Fig. S11: distributions across ex vivo
mouse tissue voxels; Supplementary Fig. S12: distributions across in vivo
cancer patients voxels, 3T scans; Supplementary Fig. S13: distributions
across in vivo cancer patients voxels, 1.5 T scans). In general, all models tend
to overestimate the signal at longer diffusion times, compared to shorter
diffusion times acquired at the same b-value. This is potentially compatible
with the fact that as the diffusion time increases, the measured signal
becomes more sensitivie to IC/EC water exchange - a biological phenom-
enon not considered by our models, and leading to an increase in apparent
diffusivities (and hence, to stronger signal decay) compared to ideal diffu-
sion restriction'’. The underestimation of the signal is more apparent for
models that assume faster EC diffusion, i.e., Diff-in, Diff-in-exFast and Diff-
in-exTDFast, compared to the models that do not make assumptions on
which is faster between IC and EC diffusion.

These trends are confirmed by voxel-wise scatter plots in Supple-
mentary Figs. S14-S16, in which residuals are scattered against the corre-
sponding measured dMRI signals (Supplementary Fig. S14: ex vivo mouse
tissue voxels; Supplementary Fig. S15: in vivo cancer patients voxels, 3 T
scans; Supplementary Fig. S16: in vivo cancer patients voxels, 1.5 T scans).
Another important aspects revelead by all plots in Supplementary
Figs. S11-S16 is that, for a given dMRI measurement (ie., fixed b and
diffusion time), residuals are smaller when fitting is performed only on high
b-value images, rather than on all images. This finding remarks that sim-
plified analytical models with 3-5 parameters, as those considered here, may
not always capture the full complexity of the dMRI signal over large
acquisition spaces due to anaccounted biological processes, as water
exchange and intra-compartmental relaxation.

Computer simulations give insight into histology-informed model
selection
We related the model selection performed on mouse and human dMRI data
to computer simulations of diffusion in virtual substrates made of packed
spheres, representing cells, a common tissue representation in body
dMRI*"7"*7" (Supplementary Fig. S17). Simulations consisted in: i) syn-
thesing dMRI signals for the three acquisition protocols used in this study,
through Monte Carlo simulations; ii) fitting all candidate models to the
synthetic dMRI signals; iii) selecting the best approach according to the TCS
(correlation ground truth-estimated parameters), HFC (accuracy in para-
meter estimation) and BIC (quality of signal fit, penalising model com-
plexity) criteria introduced above. Our signal synthesis explicitly accounted
for IC/EC water exchange (3 membrane permeability levels, ie., low,
intermediate and high), and probed a wide range of IC fractions, cell sizes
and IC/EC diftusivities.

In our synthetic data, TCS confirms that model Diff-in fitted to highly
DW images provides the best overall performances in terms of correlation
between ground truth and estimated CS and IC fraction, when trans-
membrane permeability is low (Supplementary Table S1). In this scenario,
neglecting EC signal contribution at high b provides a compact signal
representation that captures salient contrasts in terms of CS and IC fraction.
Nontheless, Supplementary Table S1 also shows that the performances of
such a model degrade as permeability levels grow. As IC/EC water exchange
increases, the IC and EC signals become more and more intermixed, and
models that account explicitly for EC diffusion provide increasingly better
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(A) Summary of diffusion MRI signal models
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Fig. 3 | Biophysical dMRI signal model selection based on the MRI-histology
Total Correlation Score (TCS). A Panel summarising the salient differences
between the biophysical dMRI models compared in this study. Models can be
divided in two families, i.e.: i) models where it is hypothesised that the extra-cellular
ADC is higher than the intra-cellular ADC, and ii) models with no hypothesis on
which, between intra-/extra-cellular ADC is higher. Violet shades are used for the
first family (models Diff-in, Diff-in-exFast and Diff-in-exTDFast), while orange
shades for the second family (models Diff-in-ex and Diff-in-exTD). B Values of TCS
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for all models, as obtained by fitting them on the whole set of images featuring
negligible vascular signal contribution (b > 1000 s/mm” in the fixed mouse livers;
b > 100 s/mm’ in vivo). C TCS values for all models when these are fitted only on
high b-value images (b > 1800 s/mm” in the fixed mouse livers; b > 900 s/mm’
invivo). TCS was computed using a sample size of N = 25 MRI-histology data points.
In this figure, pictures from Servier Medical Art have been used. Image(s) provided
by Servier Medical Art (https://smart.servier.com), licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

performances. Rankings based on HFC (Supplementary Table S2) show that
while Diff-in excels in ground truth-estimated parameter correlations, it is
outperformed by other models in terms of accuracy of the estimation,
regardless of the permeability level. This finding suggests that while a
simplified signal representations such as Diff-in suffices to capture CS and
IC fraction contrasts, it may provide biased microstructural estimates, due to
accounted diffusion processes. Finally, BIC-based rankings (Supplementary
Table S3) show that Diff-in, despite being a simplified signal representations
that by design neglects signal contributions from specific water pools (i.e.,
EC), suffices to capture salient patterns of the dMRI signal. According to
BIC, Diff-in provides excellent goodness of fit, as it systematically ranks first
for almost all protocols and all fitting strategies.

To more clearly visualise how trans-membrane water exchange affects
diffusion, and hence dMRI signal modelling, we plotted the instantaneous
diffusion coefficient for spins seeded inside cells (ADC(?)) for different CS,
intrinsic diffusivities and cell permeability levels (Supplementary Fig. S18).
The figure shows that IC/EC water exchange affects the temporal profile of
ADC,(t), as compared to curves obtained for impermeable cells. For

example, in presence of membrane permeability, ADC,(t) is in general
higher than when obtained for impermeable cells, for any . Moreover, it
does not exhibit the characteristic decreasing behaviour approaching
ADC; — 0 typical of restricted diffusion: while firstly it decreases sharply,
due to the restricting effect of cell membranes, it then increases with time,
as more and more spins leave the cells and explore the EC space with
their random walks. However, the plots also show that exchange-
induced deviations of ADC; from the ideal diffusion restriction case are
the strongest for diffusion times that are unlikely to be probed with clinical
systems in vivo (t>40 ms), and that they are small for large cell diameters
(22-30 um), as those that can be expected in normal liver or in certain liver
tumours.

Cell size and density estimates from the proposed dMRI model
correlate with histology

In view of the results obtained from the analysis of in silico, ex vivo and
in vivo MRI data, our recommended liver tumour dMRI approach is the
fitting of model “Diff-in” - a one-compartment model of restricted, IC
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Table 1| Correlation between metrics from the selected biophysical dMRI approach with their direct histological counterparts

Histology F;s¢0

Histology vCS;,;st0 Histology CDp;sto0

Model Diff-in fitted to high b-value images With F g

r=0.19; p =0.370

With vCS) 5
r=0.44; p = 0.029

With CDy
r=0.70; p = 0.00011

DKIADC r=-0.28;p=0.180

r=0.49; p = 0.014 r=-0.47; p = 0.017

DKIK r=0.40; p = 0.048

r=-0.31;p=0.130 r=0.43; p =0.033

The table reports Pearson’s correlation coefficients r and corresponding p-values p for dMRI metrics F g, (intra-cellular fraction), vCS,g, (volume-weighted cell size index) and CD,,g, (cell density per unit
volume) of model Diff-in, fitted to high b-value images. The correlations are reported between each MRI metric and its direct histological counterpart (F sz, for Fysg/; VCSpso fOr vCSys;; and CDy,igy, for CDypy)-
For comparison, the table also reports correlation coefficients between routine ADC and K from DKI and each of F 1, VCSys1, and CDy,sy,- The sample size was N = 25, implying that p < 0.05 if |r| > 0.396.
p <0.05 is flagged by bold font. The p-values were obtained from two-sided Pearson’s correlation tests, and are unadjusted for multiple comparisons.

diffusion within spherical cells, with negligible EC signal contributions - to
high b-values images (21800 s/mm’ ex vivo, 900 s/mm’ in vivo).

The model provides estimates of IC fraction, cell size and cell
density that are weakly, moderately and strongly correlated to the
underlying histology. Table 1 shows Pearson’s correlation between
Diff-in metrics F)p; (intra-cellular fraction), vCS,z; (cell size index)
and CD,;;; (cell density) with their histology counterparts Fj;,,,
vCS},iit and CDy;,,. We observe a weak correlation between Fj; and
Fiio (r=0.19, p=0.370), moderate between vCS,;z; and vCS,,
(r=0.44, p =0.029), and strong between CD,; and CDy;,, (r=0.70,
p=0.0001). The weak correlation between F,;; and Fj,, is likely
due, at least in part, to the fact that F,, is a signal fraction, rather
than an actual volume/area fraction. This implies that F,;; also
encodes T2/T1 differences between IC and EC signals, unlike F,;,*.
Moreover, F,;; values may have also been biased by the exchange
between intra- and extra-cellular water'””, especially in presence of
small cells” - a phenomenon that is is not accounted for in none of
the studied signal models. Finally, we emphasise that in the N=18
human observations, dMRI metrics from an entire tumour have been
compared to a small sliver of biopsied tissue. This implies that the
correlation between dMRI and histology may have been under-
estimated, especially for the IC fraction, for example when the biopsy
misses large areas of necrosis or fibrosis, which affect Fj;; values.
Supplementary Table S4 shows results from linear regression models
that test the specificity of vCSy g, Fpry and CD,z; to their histologica
counterparts vCSy;y;0» Fpisto ad CDy;,,. Results suggest that vCSy;,, is
the main correlate of vCS,;;; (even when considering the con-
founding effect of F,;,,), that F,,, is the main correlate of Fj,
(even when considering the confounding effect of vCS,;,), and that
CDy;t, is the main correlate of CD,; (even when considering the
confounding effect of vCS,,, and Fj;,). Note that collinearity
among the regressors may cause P coefficients be larger than 1 even
when working with z-scores (i.e., for the model featuring CD,;; as
dependent variable). In general, the association between F,, and
Fyprr is confirmed to be weak; between vCSy;,, and vCSy;; to
be moderate; and between CDjy,,, and CD,;; to be strong. These
results give additional confidence about the biological specificity of
the proposed dMRI approach.

Table 1 also reports correlation coefficients for DKI ADC and kurtosis
K. The correlations are in line with previous studies”’. For example, both
ADC and K exhibit significant, moderate correlations with histological
properties, i.e., a negative correlation with cell density CD,;,, for ADC,and a
positive correlation with CDj,;,, for K (r=-0.47 and 0.43 respectively).
Significant correlations are also seen between DKI metrics and Fj,
(r=0.40, p = 0.048 for K).

Supplementary Figs. S19, S20 show Pearson’s correlation coefficients
for all possible pairs of metrics, in the form of correlation matrices. Sup-
plementary Data S1, S2 contain all MRI/histology metric values used to
generate such matrices. In general, metrics from dMRI models where
ADCy > ADC; show stronger correlations with their histological counter-
parts than models Diff-in-exTD and Diff-in-ex. Specifically, we observe the
strongest dMRI-histology correlations for model Diff-in fitted to high
b-value images. Correlations among pairs of dMRI metrics are also seen, e.g.,

a strong negative correlation between CD,; and vCS,; (r=-0.81 for
model Diff-in fitted to high b-value images). This finding, indicating that
tighter cell packings per unit volume are achieved with smaller cells, is
mirrored by histological CDy,;,, and vCS,,;,, (r = -0.88 between these two),
and thus appears biophysically plausible.

The proposed dMRI model reveals histologically-meaningful
tumour characteristics
The proposed model Diff-in is demonstrated in 7 fixed livers of mice suffering
from a variety of pathologies, as well as in a cohort of 38 patients suffering
from advanced solid tumours of the liver (both primary and metastatic).
Voxel-wise Diff-in parameteric maps reveal intra-tissue and inter-tissue
contrasts that are histologically meaningful, being compatible with histolo-
gical features observed in HE stains. These include, for example, presence of
small cells in areas characterised by lymphoproliferative processes in mouse
livers, or reductions in cell density in necrosis or fibrosis in human tumours.
Figure 4 shows Diff-in and histological maps in 3 mouse livers, repre-
sentative of the 3 phenotypes seen in our mouse data (Control, for normal
liver structures; Pat;,q, for small cell infiltration; Pat,,,, for necrosis). Visually,
we observe excellent co-localisation between MRI slices and HE sections. The
histological details reveal higher cellularity in sample Pat;,; compared to
Control, due to packing of small cells in between larger hepatocytes, or an
alternation of areas with lower/higher cell density in sample Pat,,.. These
qualitative trends are confirmed in the histological maps Fj,, vVCSp0s
CD,,io» With values in physiologically plausible ranges, as for example intra-

58,59

cellular fractions around 0.75 and cell sizes of the order of 20 pm’
Maps Fypp, VCSypr and CDygp; replicate the contrasts seeing in their
histological counterparts Fj,,, vCS)y, and CDy,,. Supplementary
Fig. $21 shows standard DKI ADC and kurtosis excess K in the same mouse
livers. Visual trends highlight that the higher cell density of sample Pat;,
translates to remarkably reduced ADC and increased K compared to
the Control. Lastly, Supplementary Fig. S22, S23 show additional dMRI-
metrics, including metrics from model Diff-in-exFast (i.e., the one providing
the higher TCS when fitting is performed to the whole dMR image set).
The figures highlight that overall, spatial trends seen in maps from the
selected model Diff-in agree with those seen in Diff-in-exFast, but metrics
from the latter appear noisier. Metrics D, ; and Dy, , show limited between-
sample contrast, and are difficult to validate histologically. Supplementary
Table S5 report per-sample mean and standard deviation of all MRI and
histology metrics in mice (see also Supplementary Data S1, S2). F,; slightly
underestimates F,,,, while vCS,p, slightly overestimates vCS,,,,. We
speculate that the discrepancies may be due, at least in part, to unaccounted
factors such as variability in intrinsic cell shape/cytosol diffusivity” or
water exchange”, and by the difficulty of relating accurately 2D histology to
3D MRI”.

Figure 5 shows Fjp;, VCS and CD,; maps in patients, alongside
biopsies. Supplementary Table S6 reports salient demographic, MRI and
histology information of the cohort. Histopathological assessments high-
light the variety of characteristics that can coexist within advanced solid
tumours, e.g.: areas of fibrosis; localised areas of tightly packed cancer cells,
sourrounded by stromal fibres; necrosis. AMRI Fp;, vCSygp; and CDypp
show contrasts that are plausible with such histopathological features. For
example, in a breast cancer liver metastasis in Fig. 5, we observe a core of low
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Fig. 4 | Maps from the selected dMRI model Diff-in with their histological
counterparts in the fixed mouse livers scanned at 9.4 T ex vivo. The figure reports
MRI and histology data for 3 specimens, representative of the 3 microstructural
phenotypes observed in our ex vivo data set, namely: normal liver structures (Control
case); a proliferative process, characterized by infiltration of small cells (Pat;,; case);
necrosis and inflammation (Pat,,, case). For all specimens, the following is shown.
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A Top left: a high-resolution T2-w anatomical scan is shown next to the corre-
sponding HE section, with histological details. B Bottom left: histological maps
warped to the dMRI space (intra-cellular patch area fraction F,, ; volume-weighted
mean cell size index vCSy,;q,,; cell density per unit patch area CDy,,,). C Bottom right:
dMRI maps Fz;, VCSyr; and CD, e, from the selected dMRI signal model (model
Diff-in, fitted to high b-value images, i.e., b> 1800 s/mm?).

intra-cellular fraction F; and low cell density CD,;, compatible with
necrosis. In a HCC case instead, we see areas of high F,; and high CD,,,
sourrounded by lower F,;, and lower CD,;, potentially indicating
the alternation of high cell densities with fibrotic tissue. Supplementary
Fig. S24 shows routine dMRI ADC and K in the same tumours. These
show plausible contrasts given the known tumour histology, e.g., a core of
high ADC and low K are seen in the necrotic core of the breast cancer
tumour. Supplementary Fig. S25 shows Fj;, vCSypr and CD,p; from
model Diff-in-exFast. Image contrasts match visually those seen in Diff-in
metrics (the proposed approach), although Diff-in-exFast metrics appear
noisier on visual inspection. Supplementary Fig. S26 shows intra-cellular
cytosol diffusivity D, ; asymptotic ADCy, (D ). Their speckled appear-
ance suggests that these metrics are difficult to measure accurately
in vivo'"®",

Metrics from the proposed dMRI model correlate with cell pro-
liferation in liver tumours

We tested the potential utility of the proposed model for non-invasive liver
tumour phenotyping. To this end, we studied associations between dMRI
metrics an cell proliferation within patients” biopsied liver tumours, quan-
tified through Ki67 immunohistochemistry (IHC). The maing finding of
this analysis is that dMRI cell size (vCS,;) and density (CD,p,) are
respectively negatively and positively associated to the fraction of Ki67
staining (F ;). This results, confirmed by histological cell size and density
(vCSyis1, and CDy,;,,), suggests that tumours featuring high cell proliferation
are made, on average, by smaller and more densely packed cells, compared
to tumours with lower proliferation. Figure 6 visualises the association
between Fy;,, and MRI histological cell size and density through scatter
plots, reporting Pearons’s correlation coefficients. There is a strong, positive
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Fig. 5 | Examples of maps from the proposed dMRI model Diff-in in liver tumours
of patients scanned at 1.5 T and 3 T in vivo, with co-localised biopsies. MRI maps
are shown in a biopsied liver tumour in two patients for each MRI scanner, arranged
along rows. A Examples of slices from the high-resolution anatomical T2-w image
and from a high b-value image, with biopsied tumour outlined. B Maps from the
selected model (Diff-in, fitted to high b-value images b > 900 s/mm?). From left to
right: intra-cellular signal fraction Fp;; volume-weighted mean cell size index
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VCS) s cell density per unit volume CD,,;. C Histological details from the HE-
stained biopsy. For the 1.5 T Siemens scanner (first and second rows from top) we
report: patient 6 (primary hepatocellular carcinoma) and patient 3 (liver metastases
from ovarian cancer). For the 3 T GE scanner (third and fourth rows from top) we
report: patient 24 (primary hepatocellular carcinoma (HCC)) and patient 30 (liver
metastases from breast cancer).

correlation between CD,p; and Fyye, (r=0.80, p =0.006), which is con-
firmed by a positive correlation between CD,,,, and Fy,, (r=0.66,
p=0.038). Regarding cell size, there is a moderate, negative correlation
between vCS,z; and Fye, (r =-0.53, p = 0.111). This correlation, albeit not
statistically significant owing to the small sample size (N = 10), is in the same
direction of the correlation observed between histological vCS,, and F;,
(r=-0.68, p=0.031). Concerning other MRI metrics, weaker correlations
are seen between DKI indices and Fye, (r=0.17, p = 0.633 between ADC
and Fy;e,;7 =012, p = 0.744 between K and F ), or between F; and Dy
from the proposed dMRI model and Fy, (r=-0.35, p=0.319 between
Fyrr and Fyer; 7=0.07, p = 0.857 between D ; and Fp,,).

Figure 6 also visualises examples of biopsies from two liver tumours,
featuring respectively strong and weak Ki67 staining for cell proliferation.
These are: a metastatic ovarian cancer (Fig. 6F), whose Fy, is of 0.197,and a
primary HCC (Fig. 6E), which features a Fy;¢, of 0.008. The former tumour,
with stronger Ki67 immunostain, is characterised by smaller and more
densely packed cells than the latter, as suggested by both MRI and histology
(for histology: vCS,,;;, of 23.41 um against 27.50 um, and CDy,;,, of 5.24:10’
cell/mm” against 2.44:10° cell/mm?’ for MRI: vCS,; of 25.15 um against
29.39 um, and CD,z; 0f 2.08 - 10° cell/mm’ against 0.58 - 10° cell/mm’).

Metrics from the proposed dMRI model are associated with
macroscopic tumour characteristics

We investigated whether the microscopic composition of each individual
liver tumour assessed through dMRI can explain its macroscopic pheno-
type, e.g., salient characteristics such as its volume. For this analysis,

we studied correlations between tumour-wise dMRI indices and the
corresponding tumour volume, using data from N=140 liver tumours
from the 38 patients. We also performed cross-validation experiments in
which we predicted liver tumour volume through statistical models that
used dMRI metrics as predictors. The main finding of this analysis is that
Diff-in metrics are significantly correlated with tumour volume, as is the
case, for example, for MRI-derived cell size vCS, ;. Statistical models that
rely on cell size vCS); as a regressor enable meaningful predictions of
tumour volumes, which are significantly correlated with ground truth
values, and outperforming predictions from statistical models based on DKI
metrics.

Figure 7A reports Pearson’s correlation coefficients between tumour
volume and dMRI metrics from both Diff-in and DKI dMRL The strongest,
statistically significant associations are seen for Diff-in metrics D, ; and
VCSyp (r=-0.305, p=2.50-10"* and r = 0.256, p = 2.26:10" respectively),
while no significant associations are seen for DKI ADC (r=-0.092,
p=0277) and kurtosis K (r=-0.035, p=0.680). Figure 7B shows an
example of two tumours, one larger (a primary hepatocellular carcinoma,
with a volume of circa 431-10° mm®) and one considerably smaller (an
ovarian cancer liver metastasis, with a volume of circa 21-10° mm?®) (same
tumours shown in Fig. 6). Histology shows that the former contains, on
average, larger cells than the latter, a contrast that is detected by dMRI
vCSyr; - Figure 7C-F reports scatter plots of different pairs of dMRI metrics
coloured by tumour volume, visualising the latter as a bi-dimensional
function of the diffusion metrics. Trends are seen in the colouring of the
plots, e.g., in panel 7F, where the dependence of tumour volume on D, ; and
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p-values were obtained from two-sided Pearson’s correlation tests and are unadjusted for multiple comparisons
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Fig. 6 | Association between dMRI metrics and cell proliferation within the
biopsied tumours in patients. Top row: scatter plots and Pearson’s correlation
coefficients between Fyg, (strength of the IHC stain demonstrating proliferation
within the biopsied tumour, here expressed in percentage terms) and indices of cell
size and density from both MRI and HE histology (sample size: N = 10). From left to
right, A scatter plot and correlation between vCS,; and Fy;,; B between vCS,,,
and Fy;q; C between CDyp; and Fygqr; D between CDy;,, and Fyge,. In the scatter
plots, p-values were obtained from a two-sided Pearson’s correlation test, and are
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Cancer: ovarian
Biopsy: liver metastasis
VCSysto = 23.41 ym
CDpsto = 5.24 - 103 cell/mm?
Fyis7 = 0.197 (or 19.7 %)

vCSyr =25.15 um
CD,g, = 0.208 - 106 cell/mm?3

m— 40 ym

unadjusted for multiple comparisons. E Middle row: example of HE and Ki67 stains
from a slowly-proliferating tumour (primary hepatocellular carcinoma, Fy;q, of
0.8%). F Bottom row: example of HE and Ki67 stains from a fast-proliferating
tumour (ovarian cancer liver metastasis, Fy;q; of 19.7%), with a summary of salient
MRI and histological metrics. MRI maps of the two patients are shown in

Figs. 5 and 7 (both patients were scanned on the 1.5 T system). In (E) and (F), length
bars are reported (2 mm for the HE and THC tissue biopsies; 40 um for the zoomed
details visualising cells).

vCS) gy is visualised (Fig. 7F). In Fig. 7F, the tumour volume does not appear
to be monotonic in the (D, ;, vCSyr;) plane, as it peaks for (D, vCSyrr)
around (1.8 um?*ms; 28 um). Finally, Fig. 7G-J shows results from the
5-fold cross-validation experiments, by scattering ground truth and pre-
dicted tumour volume values for different statistical models. The highest
correlation between ground truth and predicted volumes is obtained for a
model where D, ; and vCS); are used as predictors, ie., a moderate but
significant Pearson’s r = 0.396 (p = 1.26:10°%; range of r across the 5 folds of
(0.146; 0.524)). This surpsasses values obtained when other dMRI metrics
are used, e.g., DKI ADC and kurtosis K (r=0.244, p = 3.68107%; range of r
across the 5 folds of (0.226; 0.403)). Supplementary Data S3 reports all liver
tumour values used for these analyses.

The proposed dMRI model distinguishes colorectal cancer from
melanoma liver metastases

Lastly, we tested whether the proposed dMRI approach may complement
standard diffusion metrics, such as ADC, to aid the interpretation of
between-tumour differences. For this purpose, we compared the composi-
tion of liver metastases from colorectal cancer (CRC) and melanoma, the
two most frequent primary cancers in our cohort. We tested for differences

in dMRI metrics between the two groups, verifying results with histology.
These two cancers feature distinct cellular composition: while CRC
metastases are characterised by the presence of large luminal spaces, mel-
anoma metastases consist of tightly packed malignant melanocytes (Fig. 84,
B)***. The proposed Diff-in model provides estimates of IC fraction Fp;
that are significantly larger in melanoma than in CRC metastases (p = 0.011,
N=21; Fig. 8A, B, K), a finding that is consistent with the presence of EC
water trapped within CRC luminal spaces. This result is confirmed by the
histological IC fraction F,,,, which is also lower in CRC than in melanoma
(p=0.034, N = 12; Fig. 8A, B, E). More standard diffusion indices also detect
differences between the two cancer types: DKI ADC is higher in CRC than in
melanoma metastases (p = 0.038, N = 21; Fig. 8A, B, I), also consistent with
presence of free diffusion in the lumina. No statistically significant differ-
ences between CRC and melanoma were detected for any other metric,
including patient’s age.

Discussion

The latest liver dMRI models aim to disentangle IC and EC water con-
tributions to the total signal®’***". This powerful approach enables the
estimation of innovative tissue property maps, but its clinical deployment is
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p-values are unadjusted for multiple comparisons and were obtained from two-sided Pearson’s correlation tests

Fig. 7 | Association between dMRI metrics and liver tumour volume in patients.
A Pearson’s correlation coefficients between liver tumour volume and per-tumour
mean values of Diff-in and DKI metrics. B Examples of large and small tumours from
a primary hepatocellular carcinoma (large) and a metastatic ovarian cancer (small),
with corresponding vCS,,z; dMRI metric of cell size and HE histology.

C-E Visualisation of tumour volume as a bi-dimensional function of different pairs
of dMRI metrics, namely: DKI ADC and K in (C); Diff-in Dy ; and F ), in (D); Diff-
in vCSyp; and F g, in (E); Diff-in D ; and vCSyp; in (F). G-J prediction of tumour
volume based on different pairs of input dMRI, in 5-fold cross validation experi-
ments. These were: DKI ADC and K in (G); Diff-in D, ; and Fy; in (H); Diff-in
VCSyrr and Fyp; in (I); Diff-in Dy ; and vCSyg; in (J). In panels (G)~(J), scatter plots
of ground truth tumour volumes against predicted tumour volumes are obtained by
pooling together predictions from all 5 cross-validation folds. The figures also report
the Pearson’s correlation coefficient between ground truth and predicted tumour

volume values, with the linear regression line in grey. The line visualises the fitting
relating ground truth and predicted tumour volumes through a linear relationship
(Xpredicted = @ + b Xground-truth)- The line visualises slope/off-set of the fit, which was
performed on the sample made of predictions and ground truth volumes for all

N =140 tumours from 38 patients included in this experiment. The grey interval
around the regression line represents the 95% confidence interval over 1000 boo-
strap repetitions of the tumour volume regression. The p-values refer to a two-sided
Pearson’s correlation test between ground truth and predicted tumour volumes (in
logarithmic scale), and are unadjusted for multiple comparisons. The range for the
correlation coefficient is obtained across cross-validation folds. Note that in these
experiments, the log;, of the tumour volume was studied, since the tumour volume
spans several orders of magnitude and is therefore challenging to handle numeri-
cally. The results shown in this figure are based on a sample size of N = 140 tumours
from 38 patients.

hampered by the high number of unknown tissue parameters to estimate,
which requires impractically long dMRI acquisitions'”****. With this chal-
lenge in mind, this paper delivers a practical implementation of a two-
compartment dMRI signal model, tailored for liver imaging, and truly
feasible in the clinic. Through histology-informed model selection, we
design a compact framework consisting of fitting a model of restricted IC
diffusion to highly DW images, with negligible EC signal contributions. This
provides cell size and density estimates that correlate with histology, and
which may provide additional information to standard-of-care imaging for
non-invasive tumour phenotyping.

To find the optimal dMRI signal implementation, we analysed co-
localised dMRI and histology data (N =25) from fixed mouse livers and
from human tumours of the liver. We compared 5 signal models, each fitted
according to two distinct strategies, and ranked them for their ability to
estimate histological IC fraction and cell size (the uknown tissue parameters
in the dMRI signal models). Rankings unequivocally suggest the highest
radiological-histological agreement is obtained by fitting a model of

restricted diffusion within spherical cells, with negligible EC signal con-
tributions - a model here referred to as Diff-in -, to images acquired
with b-values higher than ~900 s/mm” in vivo and 1800 s/mm’ ex vivo.
Interestingly, our central result, points towards the use of simpler models
of diffusion if these are deployed in appropriate measurement regimes,
is consistent with recent estimates of the EC liver ADC, as high as
2.5 um’/ms"”. Such a high ADCy, implies that the EC signal would decay to
roughly 5% or less of its non-DW value even for b-values of 1200 s/mm’
(exp(~b ADCg) = 0.05 for b= 1.2 ms/pum’ and ADCg = 2.5 pm’ ms™), jus-
tifying the hypothesis of negligible EC signal contributions™**"". Never-
theless, we also point out that our main modelling result should be
interpreted with care, since some unaccounted biological processes may also
contribute to explaining the performances of the simplified Diff-in model
(one-pool model of restricted intra-cellular diffusion). Notably, none of the
tested signal models accounts for water exchange across cell membranes, a
these are assumed to be perfectly impermeable. It is therefore possible that
the good performances of the Diff-in model, or, more generally, of models
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All p-values are unadjusted and derived from two-sided t-tests

Fig. 8 | Differences in dMRI and histological metrics between liver metastases
from melanoma and colorectal cancer (CRC). Visualisation of illustrative para-
metric maps in a liver metastasis from melanoma and CRC, and differences between
the two groups across dMRI and histological metrics. Differences are assessed
through two-sided t-tests, and p-values are reported as unadjusted for multiple
comparisons. A data from a melanoma liver metastasis (from left to right: DW
image, ADC map and Fj; map from dMRI; HE histology, with quantitative IC
fraction F,,). B Same data as in (A), but for a colon cancer liver metastasis. C Age
differences between the CRC and melanoma groups (N = 13 CRC; N = 8 melanoma).
D Tumour volume differences (N = 13 CRC; N = 8 melanoma). E Histological IC

fraction Fj,, differences (N =8 CRC; N =4 melanoma). F Histological cell size
vCS},;1, differences (N = 6 CRC; N = 4 melanoma). G Histological cell density CDy,;,,,
differences (N = 6 CRC; N = 4 melanoma). H Histological Ki67 staining fraction
Fyg; differences (N =4 CRC; N = 2 melanoma). I DKI ADC differences (N = 13
CRG; N = 8 melanoma). J DKI kurtosis K differences (N =13 CRC; N = 8 mela-
noma). K Diff-in model IC fraction F),; differences (N = 13 CRC; N = 8 melanoma).
L Diff-in model cell size vCS,,; differences (N = 13 CRC; N = 8 melanoma). M Diff-
in model cell density CD,; differences (N =13 CRC; N = 8 melanoma). N Diff-in
model IC diffusivity D, ; differences (N = 13 CRC; N = 8 melanoma).

featuring faster EC diffusion may be, at least in part, a consequence of non-
negligible membrane permeability, and hence a manifestation of fast IC/EC
water exchange.

To corroborate dMRI model selection on ex vivo and in vivo MRI, we
performed model selection on simulated dMRI data. These were generated
using virtual cellular models made of packed spherical cells, exhibiting a
variety of packing densities, IC/EC diffusivities, and cell membrane per-
meabilities. Results from simulations essentially confirm rankings from
ex vivo and in vivo imaging in presence of low cell permeability, as model
Diff-in fitted to high b-value images provides among the best performance in
terms of ground truth-parameter estimate correlation (high ranking in
TCS). However, as permeability increases, the performances of Diff-in
degrade, and models that account explicitly for EC signals (Diff-in-ex and
Diff-in-exTD), without imposing constraints of IC vs EC diffusion, provide
better performances - a finding that is in line with the lower biases in signal
estimation of these models seen on actual ex vivo and in vivo dMRI mea-
surements. Despite the degradation in performances measured by TCS and
HEFC as exchange increases, the model Diff-in is still capable of delivering
acceptable signal fitting quality for all permeability levels in silico, as
demonstrated by the fact that it ranks high on BIC (recall that BIC essentially
corrects fitting mean squared errors, penalising model complexity).
Nonetheless, while ranking high on BIC, the simulated HFC model selection
also reveals that Diff-in is outperformed by other models in terms of
accuracy of the parameter estimation. This result is consistent with the fact
that the estimation of dMRI parameters can be biased by unaccounted
biological processes, as, in this case, residual EC signals at high b as well as
water exchange. All in all, these finding confirm that Diff-in, while being a

simplified dMRI signal representation that is more prone to biases than
more complex models, is a compact and potentially useful representation for
liver tumour imaging when deployed in appropriate measurement regimes.
These should feature negligible EC signal contributions from sufficiently
high b-values, and slow IC/EC water exchange with respect to the mea-
surement diffusion times.

Our proposed dMRI modelling approach provides metrics that
visualise tissue heterogeneity over a wide field of view, beyond what can be
routinely sampled in the clinic with biopsies. Diff-in metrics point,
for example, to areas of high cell densities in some of the fixed
mouse livers, or areas of necrosis within the core of large tumours in
patients in vivo - facts that are all confirmed by histology.
Notably, spatial trends from the dMRI model Diff-in agree with
metrics from other candidates dMRI signal implementation, e.g., Diff-in-
exFast, the model selected when fitting is performed on the whole image
data set (Supplementary Figs. S22, S25). On the one hand, this gives con-
fidence on the robustness of our signal modelling routines. On the other
hand, the noisier appearance of metrics Diff-in-exFast compared to Diff-in is
consistent with ill-posedness of complex dMRI models, when they include
several unknowns to estimate®'.

We investigated the potential clinical utility of the proposed Diff-in
dMRI approach by testing whether its metrics can serve as non-invasive
biomarkers of biologically relevant processes in cancer. For this, we con-
ducted three analyses, namely: i) we studied the association between Diff-in
metrics and cell proliferation; ii) we investigated the relationship between
Diff-in metrics and macroscopic tumour characteristics, as their volume; iii)
we tested whether Diff-in metrics reveal between-tumour differences that
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are histologically meaningful. Regarding the comparison with Ki67
immunostains demonstrating cell proliferation, we found that dMRI cell
size and density are sensitive to Ki67 stains of cell proliferation, being
respectively moderately and strongly correlated with the staining fraction
Frie7- This finding, confirmed by histological cell size and density from HE-
stained biopsies, may indicate that tumours featuring higher proliferation
levels contain smaller and more densely packed cells. This is in line with
previous in vitro measurements, as those obtained, for example, in colon
carciomas®, in which the time required for malignant cell populations to
double in number was shorter for small cells with large nuclei, compared to
larger cells but with small nuclei. The main takeaway of this analysis is that
cell morphology assessment through our dMRI model may offer sensitivity
to key biological processes of cancer biology, as cell proliferation®’, which are
directly linked to clinical outcomes. The reported association between
in vivo cell size measurements and Ki67 proliferation is, to the best of our
knowledge, a novel finding. However, we acknowledge that its exact bio-
logical implications deserve additional elucidation in larger cohorts, given
the small size of our data sample.

Regarding the analysis on tumour volume instead, our key result is that
metrics from the proposed Diff-in approach are associated to tumour
volume, albeit only moderately, in a data set of N = 140 liver tumours. This
fact allowed us to develop simple regression models capable of predicting
tumour volume given characteristic per-tumour dMRI metric values. The
best prediction was obtained using cell size vCS,; and cell diffusivity D ; -
statistical properties of the tumour cell ensemble — as regressors (correlation
r=0.396, p = 1.26:10"° between ground truth and tumour volume predic-
tions), surpassing correlations obtained with DKI ADC and K, which only
provides r = 0.244, p = 3.6810".

Taken as a whole, these findings may suggest that biological properties
directly related to the morphology of cancer cells may contribute to
explaining, at least in part, the macroscopic phenotype of individual
tumours, as for example their size. Therefore, our proposed dMRI approach
may offer value to complement standard-of-care radiological assessments,
which focus on macroscopic tumour descriptors, providing information
that is more closely related to the tumour biology. Nevertheless, we
acknowledge again that further validation in larger cohorts is required to
confirm these findings, since we were not able to validate the dependence of
tumour volume on dMRI metrics histologically, given the limited size of the
histological data sample (Supplementary Table S7). Future work will focus
on studying areas of active tumour, since necrosis — common in the large
tumours contained in our advanced patients’ cohort — may confound in part
the associations, being CS values from both automatic histology processing
and dMRI less reliable in highly necrotic areas (see, for example, Fig. 5).

As a final demonstration of the potential utility of our approach, we
compared Diff-in dMRI metrics across melanoma and CRC liver metastases,
being these the two most frequent cancers in our advanced cohort. The analysis
showed that the Diff-in model pins down the exact microstructural property
underlying the higher ADC seen in CRC, i.e., the lower IC fraction, being Fj
higher in CRC than in mealona, in agreement with F,;, . This finding points
once again towards the higher biological specificity of the proposed approach
against standard dMRI techniques such as DKI: these, while sensitive to tissue
cellulear properties, provide surrogate markers that are more difficult to
interpret, and that pool several tissue properties into one number®.

In our data, ADC and K do offer value beyond standard-of-care
tumour size assessment for cancer characterisation, for example correlating
significantly with cancer cellularity and cell size, a fact that agrees with
known literature’*, and revealing inter-tumour differences, as discussed
above for CRC and melanoma. However, we point out that histology-
informed, biophysical AMRI techniques as the one proposed in this article
attempt to provide truly quantitative indices, with a direct biological
interpretation, and thus overcome the issues related to the interpretaibility
and biological specificity of DKI. Contrarily to our proposed metrics, ADC
and K are semi-quantitative and protocol-dependent, and their numerical
value can change as function of factors as the dMRI sequence effective
diffusion time*>*. This may be one of the reason contributing, for example,

to the disappointing association between DKI metrics and Ki67 cell pro-
liferation, a fact that confirming the need for developing novel dMRI
approaches with high biological specificity for liver tumour imaging — one of
the key objectives of this work.

We would like to acknowledge the following potential limitations.
Firstly, our sample size is relatively small. This paper provides a first
demonstration of the potential utility of metrics from a practical liver dMRI
model, e.g., as markers of cell proliferation or of other biological phenomena
that drive tumour phenotypes. Nonetheless, while works proposing related
dMRI techniques relied on similar”* (if not even smaller'”'*) sample sizes,
we acknowledge that our exploratory findings require further confirmation
in larger cohorts. Confirmation from larger samples is needed to ensure the
generalisability of the proposed “Diff-in” approach, as well as to rule out
additional confounding effects. The limited statistical power of our study
(sample of N =25 MRI-histology acquisitions) implies that additional data
from different MRI manufacturers and scanner models are required to
better characterise the effect of diffusion time. These could enable us to test,
for example, whether the same model selection results would be obtained
with shorter diffusion times through oscillating gradient diffusion encoding
in vivo'”", or had different malignancies been included in the in vivo data
set. These could have included, for example, lymphomas, being this a class of
malignancies that involve the liver and in which malignant lymphocites
infiltrate the liver parenchyma”. Lymphocites are much smaller compared
to hepatic cells'”"”. As a consequence, the dMRI signal from the former is
more likely to be sensitive to IC/EC water exchange than the latter,
potentially requiring more complex dMRI signal models than those used
here, as discussed in more detail below. Similarly, additional data from other
animals, beyond mice, would be needed to confirm the generalisbility of the
proposed dMRI findings across species.

Secondly, we point out that results from any dMRI-histology compar-
ison should always be taken with care. Here we related dMRI metrics
obtained in vivo to histological indices from biopsies. While we were able to
identify the tumours from which the biopsies were taken, we could not
identify exactly the tumour area that was biopsied. This implies that a biopsy
may not be fully representative of the characteristics of an entire tumour, so
that the true extent of the associations between dMRI and histology may have
been underestimated. Also, histology has its own limitations per se, since it
provides readouts that may not be fully accurate (a fact that may explain, for
example, the discrepancy in HFC rankings seen when comparying in silico
and actucal in vivo/ex vivo dMRI experiments). For example, routine HE
histology is an inherently 2D technique, unlike 3D MRI. Moreover, it is
affected by artifacts (e.g., due to dehydration, paraffin embedding, imperfect
staining, cutting, etc"'), and the automatic processing of large fields-of-view
requires trading off between sensitivity and specificity. We took steps to
mitigate these issues, e.g., by accounting for biases due to tissue shrinkage.
Nonetheless, our histology-derived estimates of cell properties are likely
biased versions of the true figures, and are also subject to sampling biases
compared to full 3D volumetric imaging in MRI. While it is well known that
acquiring high-quality, co-localised dMRI and histology data is challenging,
especially when dMRI scans are acquired in vivo in humans (e.g., prior to
tumour excision), future studies are required to confirm the findings pre-
sented in this article, and ensure its generalisability across MRI manufactures,
scanner models, dMRI encoding schemens, as well as tumour types.

We would also like to acknowledge that the proposed dMRI approach
neglects other potentially relevant microstructural properties, such as water
exchange between intra-/extra-cellular spaces'*”, presence of cell size/
cytosolic diffusivity distributions™*, or intra-compartmental T2 or T1”. On
the one hand, ignoring these properties may have biased the estimation of
Frr and vCSyp;'>*. Fypp» for example, is known to be underestimated
when cell permeability is neglected'>”, and is also confounded by TE
changes across imaging sessions or across images from the same session
acquired at varying TE”". This latter aspects makes F,; inherently proto-
col-dependent, potentially hindering the adoption of the metric as a
quantitative biomarker. On the other hand, these properties, overlooked in
our modelling framework, may be relevant markers of cellular stress per se.
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In future, we plan to incorporate these properties in our models, while
ensuring the clinical feasibility of the dMRI protocols required to fit them.
Incorporating IC/EC water exchange modelling and intra-compartmental
relaxation effect may be especially relevant to increase the disappointing
MRI-histology correlations observed for the IC fraction F for all dMRI
models and fitting strategies, being the metric known to be biased by both
permeability and relaxation effects'*>’".

Conclusions

To conclude, this study delivers a practical liver dMRI signal model con-
sisting of restricted diffusion within spherical cells, with negligible EC sig-
nals, which should be fitted to b-values higher than, approximately, 900 s/
mm’ in vivo. This model offers estimates of cell size and density that are
correlated to the underlying histology, and which may provide com-
plementary information to routine standard-of-care imaging, as for
example for the characterisation of cell proliferation, or for non-invasive
tumour phenotyping in vivo. The proposed approach is appropriate in
regimes where IC/EC water exchange is slow compared to the measurement
diffusion time, as for example to image liver tumours containing pre-
dominantly large cells, e.g., 20-30 um in diameter for diffusion times not
exceeding 40 ms. In applications where high cell permeability is expected, as,
for example, to image tumours rich in small cells, as lymphocites” (e.g., in
immunotherapy or in lymphomas), care would be needed in interpreting
metrics from the proposed model, due to potential biases coming from
unaccounted IC/EC water exchange, and non-negligible EC signals.

Supplementary information

This article includes Supplementary Figs. S1-S27, Supplementary
Tables S1-S7, and Supplementary Data S1-S9. Supplementary Data SI:
CSV file with MRI and histology data for model selection. Supplementary
Data S2: CSV file with MRI and histology data for model selection based on
high b-value images only. Supplementary Data S3: CSV file with MRI and
histology metrics for each individual tumour. Supplementary Data S4: CSV
file with cohort information, histological and mean MRI metrics across all
tumour voxels. Supplementary Data S5: CSV file with cohort information,
histological and mean ComBat-harmonised MRI metrics across all tumour
voxels. Supplementary Data S6: zipped folder containing the code gen-
erating Table 1 and Fig. 3. Supplementary Data S7: zipped folder containing
the code generating Fig. 6. Supplementary Data S8: zipped folder containing
the code generating Fig. 7. Supplementary Data S9: zipped folder containing
the code generating Fig. 8.

Data availability

Raw MRI and histological images from the mouse livers are available online
through the Radiomics Group web site’”. They can also be accessed by
contacting the corresponding authors directly. Raw MRI and histological
images of patients cannot be made freely available due to ethical restrictions
at this stage (the release of the linked MRI-histology data was not con-
templated in the current institutional project protocol, ethical approval and
patient’s consent form). Scientists interested in accessing them for research
purposes can contact the corresponding authors to establish appropriate
data sharing agreements at institutional level. Requests should be sent via
e-mail to Dr Raquel Pérez Lopez (rperez@vhio.net). They should include: (i)
a short of description of the reasons for requesting the data (project
description, hypotheses to be tested, expected contribution of the data
towards hypothesis testing); (ii) contact details of the researcher(s) in charge
of the data analysis, of their direct principal investigator/line manager, and
of a representative of the legal team of the institution. A first response will be
provided in reasonable time (approximately 10 working days), from which
legal steps may be coordinated for the stipulation of an official data sharing
agreement. Requests will be assessed on a case-by-case basis and may be
denied if not deemed of satisfactory scientific quality, unclear or unethical,
or for any other relevant reason. For approved data sharing, the data must be
used solely for the purposes stipulated in the data sharing agreement and
may not be used for commercial purposes. Requests will only be considered

from not-for-profit scientific or research institutions. The submission of a
request shall be considered the initiation of a formal collaboration between
the requesting institution and VHIO. Spreadsheets with per-patient and
per-tumour values of MRI and histological metrics, jointly with salient
demographical information, are included as Supplementary Data S1-S5.
Supplementary Data S6 contains the code used to generate Table 1 and
Fig. 3. Supplementary Data S7 contains the code used to generate Fig. 6.
Supplementary Data S8 contains the code used to generate Fig. 7. Supple-
mentary Data S9 contains the code used to generate Fig. 8.

Code availability

Python routines enabling the computation of the diffusion MRI and his-
tological metrics presented in this article are freely available online”
(command line tools pgseZsphereinex.py, mri2micro_dictml.py and get-
PatchMapFromQuPath.py). Python scripts reproducing Fig. 3 and Figs. 6-8
are included as Supplementary Data S6-S9. All other scripts used to pre-
process the MR and histological images can be obtained by contacting the
corresponding authors.
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