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Computational Caustic Design for Surface Light
Source

Sizhuo Zhou, Yuou Sun, Bailin Deng, Member, IEEE, and Juyong Zhang†, Member, IEEE

Abstract—Designing freeform surfaces to control light based on real-world illumination patterns is challenging, as existing caustic lens
designs often assume oversimplified point or parallel light sources. We propose representing surface light sources using an optimized set
of point sources, whose parameters are fitted to the real light source’s illumination using a novel differentiable rendering framework. Our
physically-based rendering approach simulates light transmission using flux, without requiring prior knowledge of the light source’s
intensity distribution. To efficiently explore the light source parameter space during optimization, we apply a contraction mapping that
converts the constrained problem into an unconstrained one. Using the optimized light source model, we then design the freeform lens
shape considering flux consistency and normal integrability. Simulations and physical experiments show our method more accurately
represents real surface light sources compared to point-source approximations, yielding caustic lenses that produce images closely
matching the target light distributions.

Index Terms—differentiable rendering, surface optimization, light source modeling, computational design.

✦

1 INTRODUCTION

THE interaction between light and objects can produce
various captivating illumination effects, such as caustic

phenomena that occur when light undergoes refraction
or reflection. Precisely controlling this caustic process by
designing freeform surfaces has important applications in
computer graphics [1], [2] and geometric optics [3], [4].
Additionally, accurately controlling the caustic process to
achieve desired flux distributions has broad applications in
fields such as art design, interior lighting, and industrial
manufacturing.

In the field of non-imaging optics, the shape of freeform
surface lenses is typically designed to control various proper-
ties of light in order to create the desired illumination effects.
Freeform surfaces here refer to optical surfaces without linear
or rotational symmetry [5]. They offer a high degree of
freedom, thereby enabling precise control over light beams.

Existing methods in computer graphics typically recon-
struct the final freeform surface by calculating certain shape
characteristics of the required lens, such as its normals [1]
or visibility diagram [2]. However, these methods almost
always assume Lambertian point light sources or parallel
light [1], [2], [6], which are inaccurate for real-world scenarios
as ideal point or parallel light sources do not exist. Instead,
real light sources often have a finite area. This discrepancy
affects the accuracy of caustic design, causing the designed
lenses to produce blurred images on the receiving plane.

The root cause of this issue is the failure to accurately
simulate the emission pattern of LED surface light sources
during the design process of freeform caustic lenses. When
using a point light source or parallel light for illumination
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simulation, each point in space receives light from only
one direction. In contrast, with a surface light source, each
position in space receives light from multiple directions
emitted by the extended source. Especially when the light
source is close to the object or is itself large, using a
Lambertian point light source to simulate actual illumination
will significantly compromise the accuracy of caustic design.

Additionally, existing methods for simulating surface
light source illumination typically sample rays based on the
actual light intensity distribution on the surface [7], [8], [9].
This deviates from true physical behavior and incurs high
computational costs. More critically, the exact light intensity
distribution of an LED surface light source is often unknown,
making it impossible for ray-sampling-based methods to
accurately simulate illumination [10].

To overcome these issues, we propose a novel freeform
caustic lens design scheme based on surface light sources.
Our method is divided into two parts: 1) modeling and
optimizing an LED surface light source representation, and
2) optimizing the lens shape under the optimized surface
light source model. We first propose a novel surface light
source representation strategy and construct a fully differen-
tiable rendering framework based on the light path control
characteristics of freeform surfaces. This rendering frame-
work accurately simulates the propagation and refraction
behavior of light and can be used for both optimization of
our light source model and optimization of the caustic lens
shape.

Specifically, we first select a set of lenses with known
shapes represented by triangle meshes. We then use the
differences in brightness distribution between the rendered
patterns, produced by the interaction of the light source
model with these lenses, and the corresponding reference
patterns to drive the optimization of the model parameters.
This approach enables the model to continuously improve its
ability to accurately represent the illumination characteristics
of the surface light source. Afterwards, using the optimized
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Fig. 1. The rendered results of the optimized freeform surface lens under the illumination of a surface light source according to the target image. The
above lenses were obtained through the caustic design based on a point light source and an optimized surface light source model, respectively. The
light pattern produced by the caustic lens based on our method closely resembles the target image. Some regions are enlarged for better inspection
of details.

area light source model, we constructed an optimization
scheme for the shape of the freeform surface lens.

It is worth noting that optimizing the parameters of the
surface light source model with the help of caustic lenses
with known shapes is a crucial aspect of our design. In
the optimization process of the model, the introduction of
caustic lenses can amplify the differences in the propagation
directions of various light rays, clearly highlighting the
illumination characteristics of the surface light source. At
the same time, using caustic lenses can form meaningful
patterns on the receiving plane, making it easier for us to
evaluate image details. To address the issue of imprecision in
ray sampling strategies, we introduced the concept of light
flux. By calculating the light flux within a region, we achieve
an exact simulation of the light propagation process. This
light energy transfer approach is more accurate in a physical
sense and does not require prior knowledge of the intensity
distribution on the light source surface when combined with
our light source model. Furthermore, considering that the
inherent size of the surface light source introduces boundary
constraints, we designed a contraction mapping [11] to
transform the constrained optimization problem into an
unconstrained one, which can be efficiently solved by using
the L-BFGS algorithm [12]. To further reduce the time cost of
the rendering process, we incorporated a parallel design into
the optimization process.

This paper addresses a fundamental limitation in com-
putational caustic design: the rendering blur caused by
idealized point or parallel light source assumptions. By in-
troducing a physically-based, optimizable model for surface
light sources, our method significantly improves the accuracy
of caustic generation (see Figure 1). This advance is critical
for a variety of practical applications where precision is im-
portant, including artistic design [13], industrial lighting [14],
[15], solar energy collection [16], [17], [18], and the design
of advanced optical instruments and lenses for medical,
biochemical [19], [20], and astronomical applications [21].

In summary, our contributions include:

• A concise and effective representation model for surface
light sources, which can reflect the lighting characteristics
of real light sources;

• A differentiable rendering framework and algorithm to
optimize model parameters based on this rendering frame-
work;

• A freeform surface optimization method that applies an

optimized surface light source model, which results in a
rendered image closer to the target image compared to a
point light source-based caustic design.

2 RELATED WORK

Freeform caustic surface design. Freeform surfaces are
special optical devices commonly used to achieve beam
control. Specifically, by designing a high degree of freedom
optical surface (usually a lens), the light emitted by the
light source is redirected to produce a specified irradiance
distribution [22]. Compared with traditional optical surfaces
(including spherical, non-spherical, and cylindrical surfaces),
due to the huge degree of freedom of freeform surfaces, the
performance of optical systems can reach new heights in
fields such as imaging [23], [24], [25], illumination [26], [27],
and laser beam shaping [28]. In fact, many real-life scenarios
require specialized optical systems, such as automobile
headlights [14] and projectors [29], [30]. Thus, it can be seen
that freeform surfaces play an important role in achieving
specific control of light beams [31], [32].

Another type of work was first proposed by Finckh et
al. [33]. They used freeform surfaces to refract or reflect
light to form the desired caustic image. This work uses a
stochastic approximation optimization algorithm to deter-
mine the surface geometry from the caustics. This requires a
large amount of computation and cannot achieve accurate
control of areas with weak light intensity. Subsequent work
starts from the principle of local energy conservation and
formulates it as a problem of solving a class of Monge-
Ampère equations [14], [34], [35]. These methods assume
that the lens shape is a continuous and smooth surface,
thereby reducing artifacts to achieve higher-quality images.
Some other works solve the shape of the freeform surface by
means of the integral normal field [13] or formulate it as a
Poisson reconstruction problem [36]. However, the freeform
surfaces obtained based on these methods cannot produce
high-contrast images. Schwartzburg et al. [1] solved this
problem. They obtained the lens surface by calculating the
normal of the lens surface through optimal transport, which
can produce a pure black area on the receiving plane. Meyron
et al. [2] proposed an algorithm to solve the optimal transport
problem using visibility maps, further reducing the loss of
light energy. Marc et al. [37] combined caustic design with
novel neural denoising components and a learned gradient
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Fig. 2. Light source model optimization process: optimizing the surface light source model based on the difference between the rendering result and
the reference image.

descent optimizer, improving the stability and quality of the
iterative reconstruction process.

Differentiable rendering. Differentiable rendering is in-
cluded in the field of inverse rendering, which estimates
physical parameters from imaging data using a differentiable
renderer. These rendering methods describe the image
formation process in a differentiable way and can effectively
calculate the gradients of relevant free parameters. Therefore,
they can be used in parameter search strategies based on
gradient descent. In caustic design, differentiable rendering
is used to obtain images generated by the joint action of
illumination sources and free lenses, as well as the gradients
of relevant physical parameters. However, traditional render-
ing methods usually include non-differentiable components.
Rasterization [38] is a typical example. Therefore, it is not
easy to directly optimize the physical properties in the
rendering scene based on the simulation results. In recent
years, many works have been studying how to make the
rendering process differentiable. Liu et al. [39] proposed
soft rasterization, which uses probability distributions and
aggregation functions to make the rendering pipeline differ-
entiable. Other works [40], [41], [42], [43] solve the problem
of computing gradients with respect to the scene geometry,
which is not differentiable due to the discontinuity of the
mesh. After that, some differentiable renderers have emerged,
such as Mitsuba2 [44], [45], [46], Mitsuba3 [47], [48], and
Path Replay Backpropagation [49]. The ray tracing-based
approach in Mitsuba3 can be applied to caustic design. How-
ever, since this renderer is not specifically tailored for caustic
design, there remains considerable room for improvement
in its rendering results. Wang et al. [50] proposed a strategy
based on ray tracing and deep lens systems, which can be
applied to a variety of inverse design problems. However,
certain limitations still remain regarding its performance and
applicability.

In addition to path tracing algorithms, photon mapping
is also a classic global illumination algorithm. Originally
proposed by Jensen in 1996 [51], it efficiently simulates
complex lighting effects such as caustics by tracing photon
paths and constructing a photon map. To optimize memory
usage, Hachisuka et al. [52] introduced Progressive Photon

Mapping (PPM), which performs photon tracing in multi-
ple iterations. Several other studies have also introduced
various improvements to the photon mapping algorithm.
Stochastic Progressive Photon Mapping (SPPM) [53] enabled
the support of effects such as glossy reflections. Georgiev
et al. [54] and Hachisuka et al. [55] reformulated photon
mapping as a vertex merging technique compatible with
path integration, which laid the foundation for differentiable
photon mapping. Xing et al. [56] leveraged Extended Path
Space Manifolds (EPSMs) to achieve differentiability of path
vertex positions and color contributions with respect to the
scene parameters. However, the rendered results still exhibit
significant noise and continue to require light path sampling.
To achieve a physically more accurate caustic design, we use
a differentiable framework based on flux transport.

Optimal Transport in Caustic Design. The problem of
caustic lens design is essentially an issue of adjusting
the light field distribution. Finding the correspondence
between two density distributions is an important problem
in mathematics, and optimal transport (OT) is an effective
tool for solving this problem. It finds an optimal way to
transfer one mass distribution into another, minimizing the
total transportation cost. This problem was first proposed
by the French mathematician Gaspard Monge in 1781 [57]
and was later extended by Kantorovich to allow for the
splitting of mass [58]. The classic optimal transport problem
includes both discrete and continuous forms. Subsequently,
an important semi-discrete form emerged, which seeks an
optimal mapping that converts a discrete distribution into
a continuous one [59], [60]. [1], [61], [62], [63] all adopt the
optimal transport strategy. However, this strategy is only
suitable for caustics based on point light sources or parallel
light. Taking the triangle mesh representation of a lens as an
example, when the input light source is a surface light source,
each triangular area on the lens surface no longer controls
only a single light ray. Our approach solves the above issue.

3 METHOD

We aim to develop a design method for the shape of caustic
lenses based on surface light sources. Given a surface light
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Rectangular Light Source Surface Light Source Model

Fig. 3. The surface light source model. Each point light source in
this model contains three attributes: x-coordinate, y-coordinate, and
its illumination intensity qk.

source and a target image, our computational caustic design
approach consists of two key steps:
1) First, we approximate the surface light source with a

small number of point light sources (see Figure 3), and
optimize their positions and intensities by minimizing
the differences between their caustic images on a set of
reference lens shapes. These point light sources constitute
our light source model.

2) Afterwards, we utilize the optimized light source model
and rendering models (see Figure 4) to obtain the rendered
images, while simultaneously optimizing the lens shape
based on the differences between these images and the
target images.
Essentially, the rendered images obtained based on our

light source model are the superposition of caustic images
formed by individual point light sources in terms of flux. It
is worth noting that both steps use the same differentiable
method to model the rendering process. The main differences
between the two steps lie in the variables being optimized
and some design details, such as the loss terms. In the
following, we present the details of our rendering model.

3.1 Surface light source representation model

For simplicity, we consider surface light sources with planar
shapes in this paper, i.e., the light-emitting surface can be
represented as a 2D region D within the plane z = 0. To
optimize a lens shape according to a target image and a
surface light source, we need to derive a rendering model
that determines the caustic image for any given lens shape.
However, since the planar light source contains a continuous
light-emitting region, direct computation of the caustic
image would require integrating the caustics resulting from
each point in the region, which is complicated and time-
consuming.

To simplify the rendering model, we approximate the
planar light source using N ideal point light sources
{lk | k = 1, 2, . . . , N}. Each point light source lk has three
attributes: the local x- and y-coordinates (xk, yk) in the light
source plane, and the light intensity weight qk. We can easily
determine the resulting caustic image of these N point light
sources by superposition of the caustics from each individual
point light source.

To approximate the surface light source, we simultane-
ously optimize the attributes {(xk, yk, qk)} of all point light

Light Source
Model

Lens Receiving Plane Rendered Image

Fig. 4. Our rendering model. It consists of three components: an input
light source, a lens, and a receiving plane. The light undergoes two
refractions through the front and back surfaces of the lens before forming
an image on the receiving plane.

sources such that the caustic image is as close to the ground-
truth caustics of the surface light source as possible. This
optimization process ensures that our light source model
faithfully represents the illumination characteristics of the
original surface light source.

3.2 Luminous flux
After modeling the surface light source, we introduce the
concept of luminous flux to render the illumination intensity
of each point light source onto every pixel of the resulting
image. In our rendering model, for a certain area on the
front surface of the lens, its luminous flux is determined by
the solid angle generated by the illumination of point light
sources. The luminous flux on the back surface of the lens is
determined according to the corresponding relationship with
the area on the front surface, which we call the source flux.

Source flux. We assume that the front surface of each lens is
a plane positioned parallel to the light source plane, while the
back surface is a freeform surface represented by a triangle
mesh. We denote the domain of the front surface as U ⊂ R2.
The back surface can then be represented as a height field
over U .

In this paper, we assume the front and back surfaces
of the lens are regulated with the same connectivity and
with one-to-one correspondence between their vertices and
edges. For a single point light source lk, to determine the
flux passing through a triangle t′i on the back surface, we use
Snell’s law to compute its corresponding triangle tki on the
front surface (see Section 3.3 for more details). Assuming no
energy loss during the refraction process, we have

Φk(t′i) = Φk(tki ), (1)

where Φk(I) represents the flux passing through the region I
given by lk. Note that the flux Φk(tki ) is directly proportional
to the solid angle Ωk

i of the triangle tki with respect to the
point light source lk, which is the area of the spherical
triangle formed by the three unit vectors connecting lk and
the three vertices of tki (see Figure 5) and can be computed as

Ωk
i = 2arctan

(
r⃗1 · (r⃗2 × r⃗3)

1 + r⃗1 · r⃗2 + r⃗1 · r⃗3 + r⃗2 · r⃗3

)
, (2)

After normalization, we obtain the flux Φk(t′i) passing
through triangle t′i given by the point light source lk.

3.3 Differentiable rendering
In order to solve the corresponding relationship of triangular
areas on the front and back surfaces of the lens and on
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Fig. 5. Schematic diagram of solid angle calculation: r⃗1, r⃗2 and r⃗3 are
the unit vectors connecting lk and the three vertices of tki .

the receiving plane, we need to model the process of
light propagation and rendering. Given a freeform surface
represented by a triangle mesh and an input light source, our
objective is to develop a differentiable algorithm to compute
the flux distribution on the receiving plane, and adjust the
distribution to closely match the reference image.

Reverse solution of incident triangle. Assuming the
position of the light source lk has been given (without loss
of generality, translate it to the origin O), we first need to
determine the position of triangle tki on the front surface. In
other words, for each vertex A′(xA′ , yA′ , zA′) on the back
surface, we want to find the refraction point A, that is, the
intersection point of the light ray passing through A′ and the
front surface. Assume that the front surface lies in the plane
z = z0 and has a normal n = (0, 0, 1), then the coordinate
of A can be expressed as (kxA′ , kyA′ , z0), where k is an
unknown constant. According to Snell’s Law (see Figure 6),
we can deduce that

(ηb− a) ∝ n, (3)

where η is the refractive index of the medium, b and a

are unit vectors of
−−→
AA′ and

−→
OA, respectively. Using this

relationship, we can further derive the following quartic
equation about k:

(η2 − 1)(x2
A′ + y2A′) · k4 − 2(η2 − 1)(x2

A′ + y2A′) · k3

+[(η2 − 1)(x2
A′ + y2A′) + η2 · z20 − (zA′ − z0)

2] · k2

−2η2z20 · k + η2z20 = 0.

(4)

It is easy to prove the existence of solutions to the quartic
equation within the interval [0, 1]. Therefore, we can solve the
equation to obtain the specific coordinates of the intersection
point A on the front surface. If the position of the point light
source is not at the origin, a coordinate transformation is
required to convert it into the same form. Note that to ensure
the model remains differentiable, algorithms for solving
approximate solutions of high-order equations cannot be
used here.

Recall that for any triangular region t′i on the back surface
of the lens, its source flux Φk(t′i) is equal to the source flux
Φk(ti) of the corresponding triangle ti on the front surface
(see Equation (1)). Therefore, the flux of all triangles on the
back surface can be determined by calculating the flux of the
corresponding triangles on the front surface. Next, we will
establish the flux relationship between the triangular area
on the back surface of the lens and each pixel area on the
receiving plane.

Target flux. The light passing through the triangle t′i on
the surface will undergo a second refraction, and the exit

Refractive process Law of refraction

Fig. 6. From left to right: the refraction process of light on the front
surface of the lens; according to Snell’s law, the relationship between the
incident light a, refracted light b and the surface normal n.

direction b′ can be calculated by the following equation
derived from Snell’s law:

b′ = n′
√
1 + η2((a′ · n′)2 − 1) + η(a′ − (a′ · n′)n′), (5)

where a′ and n′ are the unit vector of incident light and the
normal of triangle t′i, respectively. Since the back surface is
represented as a triangle mesh, each point inside triangle t′i
has the same surface normal:

n′
i =

(v2
i − v1

i )× (v3
i − v1

i )

∥(v2
i − v1

i )× (v3
i − v1

i )∥
, (6)

where v1
i ,v

2
i ,v

3
i are the vertices of t′i in the positive ori-

entation. The light passing through t′i will intersect with
the receiving plane, forming a projection triangle area t′′i .
Each vertex of triangle t′′i is located on the outgoing ray b′

i

corresponding to the vertex of triangle t′i on the back surface
of the lens. Since there is no energy loss during the refraction
process, the following holds:

Φk(t′′i ) = Φk(t′i). (7)

Assuming that the distribution of flux is uniform within
any sufficiently small triangular region, we can allocate the
source flux of the projected triangle t′′i to each pixel pj on
the plane based on the intersecting area, as shown in the
following equation:

Φk
ij = Φk

i

A(t′′i ∩ pj)

A(t′′i )
. (8)

where Φk
ij represents the source flux contributed by the

image triangle t′′i to the pixel pj , A(·) denotes the area size of
a region. Therefore, the total flux Φj of a pixel pj is the sum
of the flux assigned to this pixel by each projection triangle
t′′i on the back surface of the lens:

Φj =
N∑

k=1

Nt∑
i=1

Φk
ij , (9)

where Nt is the number of triangles, Φk
ij is the flux allocated

to pixel pj by the k-th point light source lk through the
triangle t′′i . Figure 7 provides an intuitive illustration. We
refer to Φj as the target flux on the receiving plane. In order
to reduce the cost of the rendering process, we only consider
the projected triangles that intersect with each pixel in our
calculations. For each projection triangle t′′i , the scan-line
algorithm can be used within its bounding box to determine
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Fig. 7. The refraction process on the back surface of lenses with different
shapes and the rendering process on the receiving plane. The area with
more luminous flux distribution on the receiving plane will have higher
brightness.

which pixels it intersects with. Therefore, Equation (9) can
be further rewritten as:

Φj =
∑
k

∑
i∈Ij

Φk
ij , (10)

where Ij represents the index set of all projected triangles
intersecting with pj .

Gamma correction. We have obtained the target flux of each
pixel area on the receiving plane. Next, we will establish
the relationship between it and the pixel grayscale value.
Assuming the total brightness of the reference image is GΦ̃,
then the grayscale value g̃j of pixel pj on the reference image
satisfies:

np∑
j=1

γ(g̃j) = GΦ̃, (11)

where γ(·) is the gamma correction, np is the total number of
pixels on the reference image. Denote γj = γ(gj), where gj is
the grayscale value at pixel pj in the rendered image. There
is a proportional relationship between γj and the target flux
Φj . Thus, we can derive that:

gj = γ−1

(
GΦ̃ · Φj∑np

v=1 Φ
v

)
(12)

At this point, we have calculated the grayscale value of each
pixel on the rendered image.

This rendering model accurately allocates luminous flux
in a physically based way, eliminating the need for sampling
light rays, thus significantly reducing computational costs
and ensuring the differentiability of the entire process. In the
next subsection, we will employ a gradient-based solver to
optimize the variables of our light source model.

3.4 Optimization design for light source model
After establishing the above differentiable rendering method,
we can optimize our light source model based on its proper-
ties. For a surface light source of a certain size, we give an
appropriate numerical parameter N and choose a relatively
uniform initial distribution {(xk, yk) | k = 1, 2, . . . , N}. The
initial intensity parameters qk of each ideal point light source
are equal. By optimizing their positions and light intensity,
we ensure that the model, after passing through a lens
with a known shape, forms an image that closely matches
the reference image on the receiving plane (see Figure 2).
Here, the reference image refers to the caustic image formed
after the surface light source passes through the input lens.

Next, we will introduce our philosophy and formulas in
optimization design.

Reference data. In order to enable the light source model
to improve its expression ability of surface light source
characteristics during the optimization process, we need
to utilize two types of data: the input lens and its reference
image.

To generate intricate lens shapes that can serve as effective
references in the optimization process, we select target
images with specific details and derive the input lenses
through an optimization process that jointly considers flux
consistency and normal integrability.

After obtaining these input lenses, we generate their
caustic images under a real surface light source using
LuxCoreRender1, a physically-based renderer, referred to
as reference images. These reference images are the ground
truth in the optimization process of our light source model.

Optimization settings. We take a rectangular light source
with a side length of B as an example. Assume that the
plane where the surface light source, the front surface of
the lens, and the receiving plane are located is parallel (all
perpendicular to the z-axis of the spatial coordinate system),
and the x and y-coordinates of their centers are all zero.
The front surfaces of these lenses are rectangles with side
lengths of w× h. The back surfaces are composed of triangle
meshes, and their boundaries are rectangular and identical
to the front surfaces. Denote the number of vertices of the
triangle mesh on the boundary of the back surface as wv and
hv , respectively. The imaging area Ut on the receiving plane
is set to [−W/2,W/2]× [−H/2,H/2], and the resolution is
Wp×Hp. And we let the z-coordinate of the plane where the
surface light source is located be zero, the z-coordinate of the
planes where the front surface of the lens and the receiving
plane are located be zf , zr.

We use the following initialization method for the light
source model to be optimized: for the position parameters
(xk, yk), we choose a relatively uniform initial distribution
within the rectangular area, and at the same time make their
initial intensity parameters all equal. Since the rectangular
light source has symmetry, we can further limit the position
parameters of the model to be optimized in the first quadrant
of the x − y plane, and then obtain the information of the
other three quadrants through symmetry.

Flux term. To quantify the difference between the rendered
image and the reference image, we introduce a term rep-
resenting the mean squared error of the pixel flux values
between the two images:

Eflux =

Np∑
j=1

(Φj − Φ̃j)2, (13)

where Φj and Φ̃j are the target flux of the rendered image
and the reference image at pixel pj . Among them, Φ̃j can be
calculated by the following equation:

Φ̃j = γ(g̃j) (14)

By penalizing Eflux, we can ensure that the rendered result
becomes increasingly close to the reference image.

1. https://luxcorerender.org/

https://luxcorerender.org/
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Reference Image Initialization 1st Optimization 10th Optimization 100th Optimization Final Result

Fig. 8. The process of model initialization and optimization iterations. The first line is a visualized image of model parameters, x and y coordinates
are the model’s position parameters, while the color depth of the points indicates the light intensity parameters q. Darker colors represent higher light
intensities at those positions. The second line is the rendered result based on the current model. The third line is the color coding of the average pixel
error between the rendered result and the observed image. The labels at the bottom display the current iteration count of the model.

Optimization problem. Next, we will present the opti-
mization problem defined for the light source model. Before
presenting the specific optimization problem, we first define
two boundary penalty terms. These two boundary terms
are respectively for the position parameters and intensity
parameters of the light source model. Since the position
of each primitive lk in the light source model needs to be
inside the actual surface light source, we define the position
boundary term:

Ebp =
N∑

k=1

(
σ(|xk|−

B

2
)(|xk|−

B

2
)2+σ(|yk|−

B

2
)(|yk|−

B

2
)2
)
,

(15)
The definition of σ(·) here is as follows:

σ(x) =

{
1, |x| > 0,

0, |x| ≤ 0.
(16)

At the same time, since the intensity of lk is not less than
zero, we define the light intensity boundary term:

Ebi =
N∑

k=1

(
σ(−qk) · q2k

)
. (17)

The introduction of these two hard constraints ensures that,
after each optimization iteration, our light source model
remains physically consistent (see Figure 8). Thus, our
optimization problem can be expressed as:

min Etotal = λ1

M∑
m=1

E
(m)
flux + λ2Ebp + λ3Ebi, (18)

where {λi} are user-specified weights, E
(m)
flux is the flux

penalty term for the m-th set of reference data, and M is the
total number of input lenses.

Contraction function. In the above optimization prob-
lem (18), the penalty for boundary constraints does not nec-
essarily ensure that these parameters are strictly controlled
within the boundaries. Furthermore, the selection of the
coefficient of each penalty term has a significant impact on
the optimization process and may lead to early termination.
Inspired by [11], we design a monotonic and continuously
differentiable contraction function for the position parame-
ters:

T (x) =


B

2
(|x| − 1), |x| ≤ 1,

B

2
(1− 1

|x|
), |x| > 1.

(19)

We regard the currently to-be-optimized parameters (xk, yk)
as intermediate variables and construct new variables
(x̂k, ŷk) that are directly optimized (see Figure 10). The
relationship between them satisfies:

xk = T (|x̂k|), yk = T (|ŷk|), (x̂k, ŷk ∈ R). (20)

Similarly, we also construct new optimization variables
q̂k ∈ R for the light intensity parameters, which satisfy:
qk = |q̂k|. Thus, the optimization problem (18) is transformed
into the following unconstrained optimization problem:

min
M∑

m=1

E
(m)
flux (X̂, Ŷ , Q̂) =

∑
m

∑
j

(Φj
m − Φ̃j

m)2, (21)

where X̂ = {x̂k}, Ŷ = {ŷk} and Q̂ = {q̂k} are directly
optimized parameters of the model, Φj

m and Φ̃j
m respectively

represent the target fluxes of the m-th group of rendered
images and reference images. It is worth emphasizing that
since the contraction function has good differentiability, the
entire optimization problem is fully differentiable throughout
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Input Lens Reference Image Our Model(N = 64)

Fig. 9. The image rendered based on our light source model. The rendering results obtained by our method are very close to the observed images
under the real surface light source. The number in the lower right corner of each image represents the MAE with the reference image, and the
color-coding shows pixel-wise absolute error (see Equation (31)) compared to the reference image.

T (x)

Fig. 10. Left: contraction function curve. Right: mapping diagram of
position parameters (xk, yk) (assuming B = 1 in the figures). The
rectangular area in the lower left corner of the right figure is the physical
boundary of our light source model.

the process. Through the above optimization process, the ex-
pression ability of the light source model for the illumination
characteristics of the surface light source can be continuously
improved. It should be noted that, in the actual optimization
process, we first perform a reverse contraction transformation
T −1(·) on the initial values of (xk, yk, qk) to obtain the initial
values of (x̂k, ŷk, ŷk). After optimizing to convergence, the
results are then mapped back to the actual region using the
mapping T (·).

To solve unconstrained optimization problems (21), we

use the L-BFGS algorithm [12] to compute the numerical
solution and leverage GPU parallel computation for the
target value and its gradient (discussed in the next section).
Due to the scale and complexity of the aforementioned
optimization problem, we use an automatic differentiation
data structure to precisely evaluate the gradient after each
iteration.

Parallel design. Due to the high computational costs for
the rendering and optimization process, we have designed
a parallel algorithm to improve the solution efficiency. The
scale of the optimization problem (21) mainly depends on
the size of the number parameter N of the light source model
and the number of triangle meshes on the back surface of the
input lens. It is easy to find that in the actual optimization
process, the latter is often much larger than the former.
Therefore, we take each triangle mesh on the back surface as
a thread for parallel design.

Another important factor affecting the efficiency of the
algorithm is the calculation of the gradient. The gradient
of the optimization problem (21) can be obtained by the
following formula:

∂E

∂v
=

∑
m

∑
j

∂

∂v
(Φj

m(X̂, Ŷ , Q̂)− Φ̃j
m)2, (22)

where v ∈ {xk}∪{yk}∪{qk}. To solve these gradient values,
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Fig. 11. Caustic lens optimization process: using the optimized light source model as input to guide the optimization of the caustic surface through
image loss and smooth loss.

we use an automatic differentiation data structure in the
algorithm. Therefore, each step involves the calculation of
3N partial derivatives (each intermediate variable is 3N + 1
dimensional, including variable values and partial derivative
values), which incurs huge time and space overhead. To
solve this problem, we make full use of the characteristics of
this light source model and propose an algorithm that can
significantly reduce the computational cost. We re-express
the optimization problem (21) as:

min E(X̂, Ŷ , Q̂) =
∑
m

∑
j

(
∑
i

∑
k

Φk,m
ij − Φ̃j

m)2, (23)

where Φk,m
ij represents the flux allocated by lk to pixel pj of

the m-th rendered image through t′i. With the help of the
chain rule, we can infer that:

∂E

∂vs
= 2

∑
m

∑
j

(Φj
m − Φ̃j

m) · ∂

∂vs

(∑
i

∑
k

Φk,m
ij (X̂, Ŷ , Q̂)

)
= 2

∑
m

∑
j

(Φj
m − Φ̃j

m) ·
∑
i

∂

∂vs
Φs,m

ij (xs, ys, qs),

(24)
where vs ∈ {xs, ys, qs}. This takes advantage of the inde-
pendence between each primitive in the light source model.
Therefore, we only need to store three partial derivatives in
the automatic differentiation structure (not related to the size
of N ). Accordingly, we need to additionally add a parallel
process of summing the partial derivatives Φs,m

ij (xs, ys, qs).
Through the above design, we greatly reduce the com-
putational overhead of the overall optimization by only
adding a small-scale parallel process. In the next section,
we will embed the optimized light source model into the lens
optimization process.

3.5 Caustic design based on optimized model

After obtaining the optimized light source model, our current
goal is to optimize the lens shape so that the caustic
images formed under the combination of these point light
sources are closely aligned with the given target images (see
Figure 11). Given the high complexity and nonlinearity of this
optimization, it would be challenging to optimize the lens
shape directly from a planar surface. We comprehensively
consider flux consistency and normal integrability to obtain

the initial shape of the lens. Then, for optimization, we adapt
the design of several loss terms from [64].

Image term. In order to make the rendering results close
to the target image, we introduce a penalty term for the
difference in their pixel values:

Eimg =

Np∑
j=1

(gj − g̃j)2, (25)

where gj and g̃j are the pixel values of the rendered image
and the target image at pixel pj .

The transition to a pixel-based error metric for this stage,
in contrast to the flux-based metric used for light source
optimization (Equation (13)), reflects the different objectives
of the two optimization phases. While the light source
optimization aims to match the physical flux distribution as
accurately as possible, the goal of caustic design is to produce
an image that is visually similar to the target. It is well-known
that human perception of brightness does not scale linearly
with physical flux values. The pixel grayscale values, which
incorporate gamma correction (as described in Section 3.3),
provide a much better approximation of perceived brightness.
Therefore, optimizing on pixel differences allows our method
to prioritize perceptually significant improvements in the
final caustic image.

Meanwhile, in order to preserve the prominent features
in the target image, we construct a penalty term for the
difference between their image gradients:

Egrad = ∥Gx − G̃x∥2F + ∥Gy − G̃y∥2F , (26)

where Gx, Gy and G̃x, G̃y represent the gradient matrices of
the rendered image and target images, respectively.

In addition, we also introduce a light energy loss term to
penalize the situation where light rays are refracted outside
the specified imaging area:

Eout =
nt∑
i=1

3∑
k=1

∥ṽki − PI(ṽ
k
i )∥2, (27)

where ṽki ∈ R2 is k-th vertex position of the projected triangle
t′′i , and PI(ṽ

k
i ) ∈ R2 is the closest point to ṽki from the

imaging region.

Smooth term. Compared to an optical surface design with a
smooth shape, rough surfaces are very difficult to machine.
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Moreover, polishing a rough surface is also a major challenge,
especially on a surface represented as a high-resolution mesh.
To make the fabricated lens closer to the precision in the
design stage, we hope to obtain freeform surfaces with
better overall smoothness. Therefore, a smoothness term
that penalizes the mean curvature is introduced:

Esmooth =
nt∑
i=1

(Hi)
2Ai, (28)

where Hi is the discrete mean curvature for the face ti, Ai is
the area of ti. Specific details can be referred to [64].

Optimization problem. Combining all the above loss terms,
we present the final surface optimization problem:

min µ1Eimg + µ2Egrad + µ3Eout + µ4Esmooth, (29)

where {µi} represents the weights of each loss term. To
maintain consistency, we still adopt the same solver and the
design of the automatic differentiation structure as those
used in optimizing the light source model.

4 EXPERIMENTS

In this section, we will first present some specific details
of the experimental setup and the evaluation metrics. Sub-
sequently, we will display the optimization results of the
light source model to verify its effectiveness. Based on
the optimized model, we provide the shape optimization
results of the freeform surface lens. Finally, we present
the real rendering results of the physical prototypes of the
corresponding lenses.

4.1 Implementation Details

Light source model. In the actual computation, taking into
account both computational costs and model performance,
we choose M = 4 as the number of groups of reference data.
We set the side length of the rectangular light source B = 1
cm. The front surface of the lens is a rectangle with side
lengths w = 10 cm and h = 10 cm. The back surface of the
lens has wv = 641 and hv = 641 vertices on the boundary.
The width and height of the reference image W = 9.9 cm,
H = 9.9 cm. And the resolution of images is set to 640× 640.
The z-coordinates of planes where the front surface of the lens
and the receiving plane are located are 120cm and 150cm,
respectively. The refractive index η of the lens is 1.49. For the
number parameter of point light sources that constitute the
overall light source model, we select N = 36, 64, and 100,
respectively.

Caustic lens. In caustic design, we let the light source be
parallel to the front surface of the lens and the receiving plane.
The distance between the plane of the surface light source
and the front surface of the lens is 120 cm. The distance
between the light source and the receiving plane is 240 cm.
The resolution of the rendered image is 640 × 640 with an
actual size of 20.0 cm ×20.0 cm. The size of the light source
model is set to 0.1 cm. The size of the front surface of the
lens is 10 cm ×10 cm. The triangle mesh representing the
back surface of the lens consists of 1,638,400 triangles. The
refractive index η of the lens is 1.49.

Optimization. In the optimization process of the surface
light source model, we set the termination condition as the
norm of the current gradient of the objective function being
less than 10−2. In the optimization process of caustics design,
the termination condition is met if either the norm of the
current gradient of the objective function is less than 10−4,
or the total number of iterations reaches 300, 000. All the
rendering and optimization processes are implemented on
the GPU. In the optimization stage of the light source model,
we use NVIDIA GeForce RTX 3090 GPUs, and in the caustic
design stage, we use NVIDIA H100 GPUs.

4.2 Evaluation metrics
In the process of light source modeling and caustic design,
to verify the effectiveness of our method, we introduce two
evaluation metrics: mean absolute error (MAE) and peak
signal-to-noise ratio (PSNR).

MAE refers to the average of the absolute errors between
two objects, which can directly reflect the degree of closeness
between two sets of data. In Table 1 and Table 2, we evaluate
the difference between two images by using (MAE):

MAE =

( np∑
j=1

ej

)
/np, (30)

where ej is the pixel-wise absolute error defined as:

ej = |pj − qj |/Cmax, (31)

pj and qj are the pixel values of the rendered image and the
target image, Cmax is the maximum possible pixel value of
images.

Additionally, we also use the peak signal-to-noise ratio to
evaluate the similarity of the images. PSNR is a full-reference
quality evaluation metric. It can reflect to some extent the
differences that are not directly observable by the human
eye, such as image blurring, noise, block effects, and other
distortion phenomena:

PSNR = 10 · log10
(
C2

max

MSE

)
, (32)

where MSE is given by the following formula:

MSE =
1

Hp ×Wp
·
Np∑
j=1

(pj − qj)2. (33)

4.3 Surface light source model
Recall that when light emitted by a surface light source passes
through a lens, a blurred image is formed on the receiving
plane. This reflects its unique illumination characteristics.
However, in many computational rendering scenarios, it is
usually assumed that the light source is a point light source
or parallel light, which is obviously inaccurate. Therefore,
we hope to model the real surface light source and optimize
the model parameters based on the rendering model, so that
the light source model can reflect the real characteristics of
the physical light source.

Table 1 reflects the effectiveness of our model. The MAE
value indicates that the rendered image generated by our
proposed light source model after optimization is very close
to the reference image, as shown in Figure 9. In addition, we
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TABLE 1
The MAE and PSNR of the rendered images with the reference image
for both the un-optimised and optimised models through four freeform

lenses. MAE0 and PSNR0 are obtained from the model with initial
parameters, whereas MAE∗ and PSNR∗ come from the model after

optimisation converges.

Image N
MAE0

(×10−2)
MAE∗

(×10−2) ↓
PSNR0

(dB)
PSNR∗

(dB) ↑

Skadii

36 4.320 2.240 23.61 30.03

64 4.397 1.574 23.44 32.52

100 4.441 1.532 23.36 32.69

Tom

36 3.792 2.160 23.34 30.60

64 3.878 1.578 23.15 33.95

100 3.870 1.565 23.07 34.03

Harry

36 3.759 2.117 24.04 30.61

64 3.825 1.508 23.88 33.96

100 3.827 1.457 23.81 34.27

Kirby

36 3.025 1.915 25.49 31.75

64 3.101 1.539 25.34 34.16

100 3.057 1.533 25.33 34.20

visualized the changes in the model’s parameters during the
optimization process (see Figure 8). As the number of iter-
ations increases, the rendered image gradually approaches
the reference image, which verifies the effectiveness of the
optimization algorithm.

4.4 Caustic design

Given the input light source, target image, and refractive
index of the lens, caustic design is achieved by optimizing
the shape of the lens to control the direction of light, resulting
in an image on the receiving plane that is close to the target
image. In the rendering process, the light source is usually
assumed to be an ideal point light source, which is not
physically accurate. Specifically, if the lens is optimized based
on the illumination mode of a point light source, a blurred
observed image will be formed under the actual light source.

We obtain the caustic lens corresponding to the target
image based on the point light source and our light source
models respectively. Figure 12 shows their caustic effects
under a surface light source. We can intuitively find that
the caustic design based on the optimized light source
model obtains a rendering result that is very close to the
target image and is also relatively accurate in details. At
the same time, combined with the results in Table 2, we
verify the correctness of the overall method. Table 3 shows
some specific situations during the optimization process of
different lenses.

Our analysis ignores errors from reflection, absorption,
and surface imperfections, an assumption justified by our use
of acrylic (PMMA) for the physical prototypes. This material
was chosen for its ideal optical and mechanical properties. In
the visible spectrum, acrylic exhibits very low reflectance and
near-zero absorption, which minimizes energy loss during
light transport. Furthermore, its excellent wear resistance
and machinability allow for a high-fidelity surface finish that
reduces the impact of fabrication-related imperfections [65],

TABLE 2
The MAE and PSNR of the rendered images with the target images

under surface light source illumination for caustic design, which
respectively used a point light source model and our rectangular surface

light source model (N=100).

Image Light source MAE
(×10−3) ↓ PSNR (dB) ↑

Kirby
Point-based 8.7695 31.4568

Ours 2.3148 44.2671

Tree
Point-based 13.908 29.6808

Ours 1.4142 46.0483

Palace
Point-based 14.865 28.8148

Ours 1.8217 41.9505

Bridge
Point-based 13.174 32.3940

Ours 3.5797 41.5131

House
Point-based 31.740 25.7199

Ours 18.812 29.7512

Flower
Point-based 7.6488 35.9808

Ours 1.8860 44.0043

Table
Point-based 11.670 33.1791

Ours 5.1339 38.7847

[66]. Since these secondary physical effects are demonstrably
minimal in our experimental setup, it is a valid and well-
justified simplification for our model to focus on controlling
light transport purely through the refractive properties of the
lens geometry.

TABLE 3
The total time for optimizing different lenses and the average time for a
single iteration. The GPU memory size occupied by these lenses during

the optimization process is approximately 3305 MB.

Lens Total time
(hours)

Avg. time
(s/iter)

MAE
(×10−3)

PSNR
(dB)

Kirby 1.21 2.12 2.31 31.46
Tree 2.13 2.63 1.41 46.05

Palace 2.32 2.85 1.82 41.95
Bridge 2.14 2.77 3.58 41.51
House 2.62 3.10 18.8 29.8
Flower 3.72 2.72 1.89 44.00
Table 4.10 3.01 5.13 38.78

4.5 Effectiveness of algorithm components
Light transmission. In the simulation of light transmis-
sion, we adopt a flux-based transmission mode. Compared
with sampling light rays, our method has the following
advantages. First of all, each primitive in our transmission
model has continuous illumination characteristics (flux has
regionality), which is more accurate in a physical sense. At
the same time, compared to a large number of sampled light
rays, our method obviously has a lower computational cost
in the rendering process. Most importantly, the sampling
strategy needs to know the actual intensity distribution on
the surface of the light source to accurately characterize
its illumination characteristics, which is not easy in many
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Target Image Point Light Source Based Our Model(N = 100)

Fig. 12. The first column: Some target images with rich details. The second column: Rendering results of the lens obtained by caustic design
based on point light sources under the surface light source. The third column: Color-coding of the mean absolute error (MAE) between the rendering
images in the second column and the target images. The fourth column: Rendering results of the lens obtained by caustic design based on our
model under the surface light sources. The fifth column: Color-coding of the MAE between the rendering images in the fourth column and the target
images. All error maps are processed using the same method. The number in the lower right corner of each image represents the MAE (×10−3) with
the target image. Some regions are enlarged for better inspection of details.
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Fig. 13. Comparison between our method and the rendered images produced by Mitsuba3. The rendering results of Mitsuba3 in caustic design
exhibit a noticeable accuracy gap compared to our method from a visual perspective. In addition, its performance is suboptimal for caustic designs
targeting images with high-contrast regions, such as areas containing pure white or pure black pixels.

scenarios. However, our method does not need to determine
any physical properties of the input light source in advance,
so it has simplicity and universality.

We conducted comparative experiments with Mit-
suba3 [47]. Mitsuba3 uses a path tracing algorithm to
simulate the light transport process, which is a variant of ray
tracing. It employs a Monte Carlo estimator to compute
integral values by randomly emitting multiple rays to
evaluate light intensity, thereby simulating the propagation
of light in space. This method requires sampling light rays,
which has certain limitations in computational efficiency.
Moreover, Mitsuba3 is not specifically designed for caustic
design, and therefore its performance in terms of contrast
and accuracy is inferior to our method (see Figure 13). It also
completely neglects the consideration of actual fabrication in
the overall design process.

Light source model. In caustic scenes, it is not accurate
enough to use a point light source to represent an actual
LED surface light source. Especially when the actual light
source is relatively large in size or far away from an object, it
will significantly affect the accuracy of lens shape calculation
(see Figure 14). Our light source model solves this problem.
Table 2 gives a comparison between our method and the
point light source based strategy. Obviously, performing
caustic design based on our optimized light source model
can obtain rendering images that are closer to the target
compared with a point light source. In the seven examples
provided, our approach achieved an average reduction of
71% in the MAE metric and an average improvement of 9.87
dB in the PSNR metric. It can also be found from Figure 12
that our method can significantly improve the quality of
the rendered image, and at the same time, it also has better
effects in some details.

Furthermore, our modeling method for light sources
has good scalability and is directly applicable to curved
surface light sources in three-dimensional space. For LED

light sources with different sizes but the same light intensity
distribution, the corresponding model parameters can be
obtained by means of scaling transformation, eliminating
the need for repeated calculations. In addition, our light
source model only needs to be pre-optimized once. Once the
model parameters are optimized, the pre-packaged model
can be directly applied to rendering calculations in different
scenarios.

A key methodological choice in our work is the discrete
point source approximation. We considered an alternative,
fully continuous formulation, but concluded that it is theo-
retically complex and computationally prohibitive for this
application. A continuous approach would require comput-
ing the flux from the entire surface light source onto each
triangle of the lens’s rear face. This necessitates evaluating a
2D integral over the light source area for every triangle on the
lens, which presents two fundamental challenges. Firstly, the
integrand itself is non-trivial, as it must implicitly account
for the first refraction at the lens’s front surface. Deriving a
closed-form, differentiable integral under these conditions is
exceptionally difficult. Secondly, for a high-resolution lens
mesh like ours (with over 1.6 million triangles), this method
would require performing millions of 2D integrations at each
optimization step, leading to an intractable computational
cost. In contrast, our discrete model provides a pragmatic
and effective solution. By approximating the source with
a finite set of points, we avoid the complexity and cost of
continuous integration. As demonstrated by our results (e.g.,
Figure 9), this approach still achieves the accuracy required
to faithfully model the surface light source and produce
high-quality caustic images.

4.6 Physical verification
We have presented the physical prototype of the lens de-
signed using our method in Figure 16. The material of the
physical lens shown in this figure is acrylic (IOR: 1.49). The
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Target Image Point Light Source Based Our Model (N = 400)

Target Image Point-Based Ours Target Image Point-Based Ours

Fig. 14. Comparison between the point light source based method and our method (N=400) under a surface light source with a side length of 0.2 cm.
The first line shows the rendering results of the two methods, while the second and third lines provide a comparison of the details between these two
methods. When the actual size of the surface light source is larger, the advantages of our method become more apparent.

Fig. 15. The surface light source used in the physical experiment. The
side length of it is roughly 1 mm. Its output power is 50W, and it is driven
by a direct current of 12V and 4.2A.

machining process is mainly carried out through a JDGR100
milling machine in a three-axis mode. Firstly, it undergoes
rough milling and is then fabricated using a 0.4-mm ball-end
mill. Finally, the lens needs to be manually polished with
polishing wax and a cloth wheel.

During the experiment, we all used a rectangular surface
light source with a side length of approximately 1 millimeter
as the input light source, as shown in Figure 15.

Figure 17 presents the physical results from lenses de-
signed using both a point light source and our proposed
surface light source model. The manufacturing process
inevitably introduces minor imperfections, which appear
as stripes or ringing artifacts in the final image. These are
inherent to the fabrication method (specifically the visible
tool marks left by the ball-end mill during CNC machining),

Fig. 16. The physical prototype of the lens shape designed based on
our method. Although some machining errors are introduced during the
manufacturing process of the physical object, the real image generated
by the prototype is still quite close to the image produced by our rendering
model. Lower right corner: The target image corresponding to the lens.

and consequently appear in both fabricated lenses. Despite
these shared manufacturing limitations, a careful comparison
reveals that the lens designed with our method produces
a caustic image with details that more accurately match
the target. This demonstrates the superior performance of
our algorithm, as its advantages are evident even when
accounting for real-world fabrication constraints.

4.7 Ablation study
To verify the effectiveness of Egrad, Eout, and Esmooth in loss
function (29), we conducted ablation studies on each of
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TABLE 4
Partial results of the ablation experiment. We present the impact on experimental results when Egrad, Eout are removed from the loss function (29).

Image
Without Egrad Without Eout With All

MAE (×10−3) PSNR (dB) MAE (×10−3) PSNR (dB) MAE (×10−3) ↓ PSNR (dB) ↑

Bridge 4.63 41.23 4.08 40.96 3.58 41.51
House 19.06 29.82 19.17 29.67 18.81 29.75
Flower 3.43 41.37 2.83 42.63 1.89 44.00
Table 6.45 38.27 5.76 38.23 5.13 38.78
Butterfly 3.72 41.93 3.80 41.43 3.07 42.66
Bear 2.25 46.32 2.18 46.01 1.93 47.12

Target Image Point Light Source
Based

Our Method

Fig. 17. Comparison of physical results. From left to right: the target
image, the caustic pattern from the lens designed using a point light
source, and the pattern from the lens designed with our method.

Target Image Without Esmooth With Esmooth

Fig. 18. Ablation study on the Esmooth loss term during the lens
optimization process. From left to right: the target image, the physical
experiment result without the Esmooth term, and the physical experiment
result with the Esmooth term.

them individually. Table 4 presents the MAE and PSNR
of the rendered results after removing Egrad or Eout. As
shown in Table 4, the Egrad and Eout loss terms improve the
quality of the rendering results to a certain extent. Unlike
the previous two terms, the term Esmooth does not improve
the evaluation metrics. Instead, it results in a smoother lens
surface after optimization, which reduces the difficulty of
actual fabrication. We have included physical experiments
for this term, as shown in Figure 18. The introduction of
the Esmooth term enables the fabricated lens to produce
images that more closely match our designed results. In
addition, we conducted ablation experiments on whether to
use contraction mapping during the light source optimization
stage, as shown in Figure 19. The experimental results
indicate that contraction mapping can improve the accuracy
of rendering results to a certain extent. More importantly, it
limits the position of all optimized point light sources to the
area of the real surface light source, making the light source
model conform to physical reality.

Target Image Without Contraction With Contraction

Fig. 19. Ablation study on the contraction mapping. From left to right: the
target image, rendering results of light source model optimized based
on non contraction mapping, rendering results of light source model
optimized based on contraction mapping.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a strategy to design the entire caus-
tic process in two parts, incorporating the precise modeling
of surface light sources into the lens shape design process.
For simulating illumination light sources, we propose a
novel method for representing surface light sources and
design a differentiable rendering framework, then utilize the
differences between the caustic images of the input lenses
and the reference image to drive the optimization of model
parameters. For the design of the lens shape, based on the
optimized light source model, we guide the optimization of
the free-form surface shape through the design of multiple
types of penalty terms. Experimental results show that our
method better matches the illumination pattern of LED light
sources, significantly improves the accuracy of caustic design,
and achieves better detail performance.

Our method still has some limitations. The light source
model design in this paper is only for the most common
planar LED light source. In future work, it can be considered
to be extended to three-dimensional curved light sources to
adapt to more lighting scenarios.

Some existing renderers, such as Mitsuba3, have imple-
mented colored caustics at the simulation level. In future
work, our method could be extended to colored caustics
by incorporating wavelength or color attributes into the
parameters of each point light source and using different
refractive indices for different colors or wavelengths during
the lens refraction process. Additionally, future work can
incorporate CNC milling and polishing processes into the
design of freeform surfaces to improve the precision of lens
fabrication.
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