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Abstract— Robotic automation is accelerating scientific dis-
covery by reducing manual effort in laboratory workflows.
However, precise manipulation of powders remains challenging,
particularly in tasks such as transport that demand accuracy
and stability. We propose a trajectory optimisation framework
for powder transport in laboratory settings, which integrates
differentiable physics simulation for accurate modelling of gran-
ular dynamics, low-dimensional skill-space parameterisation
to reduce optimisation complexity, and a curriculum-based
strategy that progressively refines task competence over long
horizons. This formulation enables end-to-end optimisation of
contact-rich robot trajectories while maintaining stability and
convergence efficiency. Experimental results demonstrate that
the proposed method achieves superior task success rates and
stability compared to the reinforcement learning baseline.

I. INTRODUCTION

Robotic automation is accelerating scientific discovery
by streamlining workflows in areas such as photocataly-
sis [1] and synthetic chemistry [2]. These systems reduce
manual workload and allow scientists to focus on higher-
level reasoning and design [3]. However, while macroscale
processes have seen rapid automation, challenges persist
at the microscale, particularly in the precise handling of
powders. Powders play a critical role in pharmaceuticals
and materials science, where precise transport is essential
for reproducibility and system stability. Despite some efforts
in weighing [4], [3] and grinding [5], [6], powder transport
is often treated as secondary, and its reliable optimisation
remains underexplored.

This research gap is not incidental. The dynamic behavior
of powders during motion and interaction is highly non-
linear and sensitive to environmental variability, making it
difficult to address with conventional learning or control
techniques. Recent advances in differentiable physics and
high-performance parallel computation [7], [8] present a
promising direction for addressing this challenge. By op-
timising within high-fidelity, real-world-consistent differen-
tiable simulation environments, it becomes possible to obtain
precise and reliable powder transport trajectories in a safe
manner. While prior studies have applied such methods to the
manipulation of materials like elastoplastic solids [9], [10],
[11] and fluids [12], [13], no existing work has systematically
addressed the problem of powder transport in laboratory
settings using skill or trajectory optimisation.
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Fig. 1: Powder manipulation setup in our simulated environ-
ment. Our renderer is built based on LuisaRender [14].

To address this gap, we propose a trajectory optimisation
framework for powder transport in a laboratory setting.
Specifically, we build a differentiable physics simulator using
Taichi to model powder dynamics and define differentiable
skill parameters mapped to control inputs. To tackle the chal-
lenges of long-horizon manipulation, we further adopt a cur-
riculum optimisation strategy that first focuses on scooping-
related parameters before optimising the full parameter set.
These parameters are optimised via gradient backpropagation
through a task-specific loss. Comparative experiments with
standard reinforcement learning (RL) methods demonstrate
the effectiveness and efficiency of our approach.

II. RELATED WORK

A. Powder Manipulation in Lab Automation

Powder manipulation plays a critical role in lab automa-
tion, particularly in pharmaceuticals and materials science,
where precise transport is key to maintaining accuracy
and material integrity. Prior work has explored powder-
related tasks such as grinding [5], [6], weighing [4], [3],
scooping [15], scraping [16], and dispensing [17]. Notably,
[4] proposed a sim-to-real RL framework for weighing,
while [3] improved simulation fidelity using flowability-
aware Bayesian inference. Although [15] tackles scooping,
its focus is on hand design rather than control strategy. To
date, no existing work systematically addresses trajectory-
level optimisation for powder transport in lab settings.



B. Differentiable Simulation-based Manipulation

Differentiable simulation enables gradient-based reasoning
over physical processes, making it a compelling tool for
learning control policies. Early examples like DeLaN [18],
[19] applied this to rigid-body systems, though they lack
support for complex material interaction. Recent frameworks
such as Taichi [8] have enabled scalable differentiable sim-
ulation across domains like deformable solids [9], [10],
[11], fluids [12], [13], granular materials [20], and thin-shell
structures [21]. Among these, [20] guided RL with differ-
entiable trajectory optimisation in granular media. However,
most methods optimise low-level actions per timestep, which
can suffer from instability. Our approach instead introduces
skill-level parameterisation to improve stability and reduce
dimensionality.

III. METHOD

A. Problem Formulation

This study focuses on optimising powder transport tra-
jectories in laboratory settings. We aim to find an optimal
set of skill parameters Θ that generate control sequences
of horizon T for the dynamic system. We formulate a
time-discretised trajectory optimisation problem with state
trajectory S = (s0, ..., sT ), observations O = (o0, ...,oT ),
and control inputs U = (u0, ...,uT−1). Starting from an
initial state s0, the optimisation is defined as:

min
Θ

L(oT ,p
target) (1)

s.t. si+1 = f(si,ui) (2)
ui = g(Θ)[i] ∀i = 0, . . . , T−1 (3)

Θ =

{
Θinit j = 0

Θ− − α · ∇Θ−L(X−,Θ−) j > 0
(4)

Here, L(·) measures the distance between the final observa-
tion oT and the target position ptarget, f(·) represents system
dynamics, and g(·) maps skill parameters to control inputs.
The parameter update follows a gradient descent rule with
learning rate α, using the gradient of the loss evaluated on
the previous trajectory and parameters.

B. Task Specification

We consider a powder transport task in a laboratory
setting, where the objective is to move as much powder
as possible from a source container to an initially empty
target container. The simulated environment replicates the
real-world configuration: one container is filled with powder,
while the other is empty. The system state s contains full
particle-level information (e.g., positions, velocities, acceler-
ations), while the robot has access only to partial observa-
tions o, consisting of particle positions.

The robot action is represented as a 6-dimensional Carte-
sian displacement u ∈ R6, encompassing translation and
rotation. These control inputs are generated from a low-
dimensional skill parameter set Θ via a differentiable map-
ping g(·). To guide the optimisation, we define a task-
level loss function L based on spatial proximity, rather than

matching a fixed target configuration. Specifically, the loss
is computed as the sum of absolute distances between the
final observed particle positions oT and a designated goal
position ptarget:

L =
∑

pj∈oT

|pj − ptarget| (5)

where j indexes the observed particles. This formulation not
only ensures efficient powder delivery to the target while
accommodating variations in the final distribution.

C. Skill Parameters

To reduce the complexity of long-horizon 6D control,
we introduce a compact representation of robot behaviour
through a set of bounded skill parameters Θ ∈ [θmin, θmax].
These parameters, derived from human demonstrations, de-
fine temporally abstracted behaviours and are mapped to con-
trol sequences U over a time horizon T via a differentiable
function g(·).

In our implementation, five parameters govern key aspects
of the motion: scooping depth θd, scooping angle θs, post-
scoop lifting height θl, transport displacement θt, and pouring
angle θp. As shown in Fig. 2, these parameters collectively
define the spatiotemporal structure of the robot’s trajectory.

Fig. 2: Transport Task Process Visualisation.

Given fixed translational and rotational velocities, the
number of steps for each control segment is computed by
dividing the desired displacement in each control dimension
by its corresponding velocity and rounding the result. These
per-step increments are then distributed across time to form
the complete control sequence U .

D. Differentiable Simulation

We simulate granular dynamics using the Moving Least
Squares Material Point Method (MLS-MPM) [22], combined
with St. Venant-Kirchhoff elasticity and the Drucker-Prager
plasticity model [23]. Each global time step ∆t is divided
into Nsub substeps of size ∆tsub = ∆t/Nsub, with control
input scaled as usub = u/Nsub. The global simulation update
f is decomposed into Nsub sub-processes f , where each
substep is computed as Algorithm 1.

Here, F , C, σ, g, and I denote the per-particle deforma-
tion gradient, affine velocity field, Cauchy stress, gravity,
and identity matrix, respectively. Each F is decomposed
as F = USV ⊤ via singular value decomposition. Material
properties are included in κ. x and v are particle positions
and velocities, while sagent and scon denote the robot and
container states. Sub-functions include fsvd (SVD), fcon (con-
stitutive model), fp2g and fg2p (particle-grid transfers), fmove
(robot actuation), and fcol (collision handling). Superscript ′

indicates updated values at the next substep.



Algorithm 1: Simplified Sub-step Procedure f

1 Grid Reset and Initialisation
2 Ftmp = (I +∆tsubC)F
3 U, S, V = fsvd(Ftmp)
4 F ′, σ = fcon(U, S, V, κ)
5 vgrid = fp2g(x,v, σ, C,∆tsub)
6 s′agent = fmove(sagent,u

sub,∆tsub)
7 v′

grid = vgrid +∆tsubg

8 v′
grid = fcol(s

′
agent, scon,v

′
grid,∆tsub)

9 v′, C ′ = fg2p(v
′
grid,∆tsub)

10 v′ = fcol(s
′
agent, scon,x,v

′,∆tsub)
11 x′ = x+∆tsubv

′

Our framework enables end-to-end optimisation of skill
parameters using differentiable physics. Gradients of the task
loss are propagated through the entire pipeline, including
perception, simulation, and control. All components are dif-
ferentiable, and gradient flow is carefully maintained across
non-smooth operations (e.g., rounding) to ensure end-to-end
differentiability.

E. Curriculum Optimisation

We formulate powder transport as a long-horizon manip-
ulation task. Prior approaches often divide such tasks into
sequential stages such as scooping, transporting, and dump-
ing, with each trained separately and executed in a chained
manner [20]. In contrast, our framework optimises the entire
process in an end-to-end fashion, which significantly reduces
training overhead. However, both the quantity of material
scooped and the accuracy of its deposition are critical to over-
all task success. In particular, the quality of the initial scoop-
ing action directly affects the feasibility of the subsequent
transport and pouring stages. To address this, we adopt a
curriculum-based optimisation strategy. Specifically, training
initially focuses on the first three skill parameters associated
with scooping (θd, θs, θl), and gradually expands to include
the full parameter set. This progressive approach encourages
the agent to acquire reliable foundational behaviours before
learning full-sequence coordination, resulting in improved
convergence and final performance.

IV. EXPERIMENTS AND RESULTS

We compare our trajectory optimisation method with a
representative RL baseline, Soft Actor-Critic (SAC) [24],
on the powder transport task in a simulated laboratory en-
vironment. The simulation replicates real-world conditions,
including robot, container, and tool models. Physical param-
eters are calibrated using our prior DPSI framework [9] to
ensure sim-to-real consistency. The simulator runs at ∆t =
0.01 s with 20 substeps per step.

Skill parameters are optimised within [−1, 1] using RM-
Sprop [25] with βr = 0.9 and a learning rate of 0.05,
for 30 epochs. In the first 15 epochs, only scoop-related
parameters are optimised, and the full parameter set is
optimised thereafter. SAC is trained for the same number

of episodes, with γ = 0.99, batch size 8, and actor/critic
learning rates of 0.001. The task loss (Eq. 5) is negated and
used as the reward for SAC to ensure consistent objectives.
For evaluation, we report an indicator metric defined as
the difference between the target value and the number of
particles transported.
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Fig. 3: Indicator metric curves for the powder transport task.

To evaluate the performance of our method, we conducted
experiments under three different random seeds. The indi-
cator metric curves for our approach and the RL baseline
are presented in Fig. 3. In the initial stage of training
(the first 15 epochs), the indicator metric for our method
remains relatively flat. This behaviour is expected, as the full
set of parameters is not yet being optimised at this stage.
Instead, the robot is primarily acquiring the prerequisite
skills required for powder scooping. Once this foundational
skill is sufficiently acquired, the optimisation process shifts
toward the entire skill set, leading to a more noticeable
and stable decrease in indicator metric. Compared to the
RL baseline, our method demonstrates a more consistent
and eventually better indicator metric trajectory, indicating
better convergence and overall performance on the powder
transport task.

V. CONCLUSIONS
This work presents a trajectory optimisation framework

for powder transport in laboratory settings. By constructing
a differentiable physics simulator, designing differentiable
skill mappings, and incorporating a curriculum optimisa-
tion strategy, our method addresses the challenges of long-
horizon, contact-rich powder manipulation. Experimental re-
sults demonstrate that our approach achieves higher task suc-
cess rates and improved stability compared to the representa-
tive RL baseline, underscoring its effectiveness for precision
powder handling in laboratory automation scenarios.
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