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Abstract

The band structure from the reduced density-matrix functional theory with an entropic
functional for correlation has a simple mathematical structure following the Fermi-Dirac dis-
tribution, which accommodates a band gap according to the occupation numbers of the lowest
conduction band and the highest valence band. Calculations are demonstrated for Si and dia-

mond with the exchange energy approximated using the X, model.

A peculiar problem of density-functional theory (DFT) is the underestimates of band gaps for
semiconductors and insulators, which has been argued to be persistent even with the unknown exact

Kohn-Sham potential and is connected with the derivative discontinuity in the exchange-correlation
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energy. " It is not easy to design an exchange-correlation model with the correct derivative discon-
tinuity, nevertheless, several sophisticated exchange-correlation functionals containing derivative
discontinuity have been reported.®”’ In recent years, several meta-generalized gradient approxi-
mation(GGA)®*'* and hybrid functionals which mix some percentage of Hartree-Fock exchange
with conventional exchange-correlation functionals, !> have been found to improve the band gap,
without the necessity to invoke derivative discontinuity.'>!'# In this paper, we study the band gap
within the reduced density-matrix functional theory (RDMFT). !>:16

In RDMFT, the variable is the one-particle reduced density-matrix (IRDM),

M

y(1L,1) = > mpa(y; (1) (1)

1

where y; are called the natural orbitals,!” and »; are their occupation numbers. M is number of
orbitals, which can be larger than the number of electrons N in the system. In the configuration
interaction (CI) wave function method, electron correlation is brought in by adding more con-
figurations, n; is expressible through the expansion coefficients c; of the configurations in wave
8

function.

The diagonal element y(1, 1) is the density. The density in DFT is defined as

N
p(1) = > @i (1) @)

where the orbitals ¢;, often called Kohn-Sham(KS) orbitals, are derived from the KS equations.
The orbitals are occupied by the electrons according to the Aufbau principle. In case of no degen-
eracy at the Fermi level, only the lowest N orbitals from the total M orbitals are occupied by N
electrons. The density in DFT is assumed to be identical to the density from the wave function,
re. p(1) = y(1, 1), so a density functional can be regarded as a density-matrix functional as well.
In order to implement a density functional in the context of RDMFT, one need optimize both the
orbitals y;(1) and their occupation numbers n;.

The occupation number n; in 1RDM follows the Pauli principle, i.e. 0<n;<1, which is also



called the ensemble representability condition. ! To comply with this condition, one usually changes
variables by n; = cos?6; so that the conditional variation problem is converted into a non-conditional
variation problem. Gilbert then found that all partially occupied natural spin orbitals are degener-
ate, i.e. having the same orbital energy.!®> The consequence of this degeneracy is that one can not
have a normal spectrum of orbital energies as one usually has with the Hartree-Fock equation or
the KS equations in DFT. Burke?® once commented that “if this methodology ever does become
popular, it would represent a true paradigm shift, as it does not even use KS equations. But, for
this reason, it is difficult to see how many of the impressive results of DFT approximations could
be retained.”

In our analysis of wave functions for small molecules, we observed a linear relation between

the cumulant energy and the information entropy based on IRDM.?!>?

Eqm = —«S = b (3)

Here « and b are system dependent constants. Mazziotti et al*

recently proposed an approximation
for the cumulant energy based on the lowest unitary invariant of the cumulant, from which one may

derive?*

o) M
K= SMMI=D) ;(ijliﬁ = (ijlj0 “)

where M is the total number of spin-orbitals, so « is some average of the antisymmetrized two-
electron integrals. Zamani and Carter-Fenk? recently proposed an alternative formula by con-
necting the cumulant energy to Mller-Plesset’s second order perturbation energy. The constant b
produces a shift to the whole energy surface, it can be used to set the reference zero energy.

For the information entropy S, its mathematical form may be different in classical or quantum



theory. For fermions, it has the form,?¢

S = —Z[nilnni+(l —n)In(1 - n)] 5)

Justification for the entropic function has appeared in different contexts. Especially notable here
is Weinert and Davenport ’s discovery?’ that if fractional occupation numbers are allowed, then an
additional term as Eq. (5) is required in the energy in order for it to be variational. The energy
expression then looks like the free-energy in finite temperature DFT.?®2° However, it is origi-
nated from fractional occupations, instead of temperature, so the entropy here is better identified

3031 or correlation entropy.3? One consequence of the entropy term is the

as information entropy
automatic removal of the extra force due to the changes in occupation number, which complicates
force calculation in molecular dynamics simulation.?”-* It also improves the description of static
correlation and multi-reference property in DFT, which characterizes the CI method. **

Recently, we found that Gilbert’s degeneracy problem in RDMFT can be removed with the
entropic functional, so that self-consistent-field one-electron eigenvalue equation, as the Hartree-
Fock equation or the KS equation in DFT, can be obtained.*> Due to its connection to the infor-
mation entropy, the method has been named as i-DMFT. It has since been successfully used to
generate accurate potential energy curves as a result of total energy calculation.?*® In this paper,
we focus on the band structure of solids.

In RDMFT, functionals are usually constructed based on an approximation to the two-particle

reduced density-matrix (2RDM).*”* The 2RDM can be decomposed as***3

1
I(1,2) = S Iv(L Dy(2.2) = v(1. 2)¥(2, D] + (1. 2). (6)

The first term is the independent-particle contribution, the second term accounts for the exchange

effect. The A(1,2) term is called the two-electron cumulant. The cumulant energy is defined as

Ecum:ff/l(l’z)dle @)
8V




which has been identified as the correlation energy in RDMFT by Levy.*¢ The kinetic energy is
expressed exactly with 1RDM, there is no need of a coupling-constant integration to fold any cor-
rection to the kinetic energy into the correlation energy as in DFT.*’ The modeling of correlation
energy is more convenient in RDMFT, because its behavior can be checked against the cumulant

21,22

energy from wave function calculations, instead of relying on uniform electron gas model.

The exact exchange energy is

Ex:_lff—y(lﬂ)y@,l)dldz )
2 rio

Unlike the exchange energy in DFT, the 1RDM (1, 2) here is non-idempotent. The difficulty to
apply the exact exchange to solid systems is its long-range or nonlocal property.*-° For the similar
problem in the Hartree-Fock method, Slater once proposed an approximation to the exchange

potential and further simplified it to a density functional.>' The idea led to the X, model for E >

Ep®)] = C. f (0 ©)

C. = —(9/8)(3/m)!*a in atomic unit. The parameter  can be optimized and is system depen-
dent.>*>* At the beginning, Slater proposed a=1, later the value a = 0.7 becomes popular among
X, practitioners.>>~° In DFT, the value a=2/3 is preferred and has been built into the exchange
part of the local density approximation (LDA).?’ The choice of a=1 or 2/3 is due to different strat-
egy in constructing the effective exchange potential, either taking the average or a state at the top
of the Fermi distribution.?*’ It is found that @=2/3 underestimates exchange energies’® and the
ionization energy (the negative orbital energy).’>* Verma and Truhlar®®! proposed the high local
exchange (HLE) functional with a high « value, such as @ = 1.25x2/3, to improve semiconductor
band gaps and excitation energies.

In the GGA model for exchange,%>% an enhancement factor F,(s) is introduced to systemati-



cally tune the exchange effect

ECNp) = 3C, [ pFF o) (10)

where s is a dimensionless density gradient. A similar enhancement factor is introduced in meta-
GGA exchange model.®!° In the following, we will examine which exchange model is the most
suitable to combine with the entropic correlation functional in band structure calculations.

The one-electron energies, including the kinetic energy and the electron-nucleus Coulomb en-

ergy, are expressed exactly with IRDM, the total energy of an electronic system then becomes

(1,2
E = Zhiini+ff L2 sz
; ri2

1
= D hani+ 5 D Giflify + Ex + Eoun +Z (11)
i ij
with h; = (yilhly;) where
A Z
h=--vVi-) = 12
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and (i ji j) are the two-electron Coulomb integrals.® Z is the Coulomb interactions energy between
all pairs of nuclei.
In RDMFT, the variables are {n;} and {y;}. To optimize the energy E under the constraint

>, n; = N and the orthonormality conditions for the spin orbitals, one has the Lagrangean

Q = E_,u[zni_N]_Z/linXilXj)_dij] (13)
i ij
where u and A;; are Lagrange multipliers. Using the chain rule with p(1) = »3; nyx;(1)x (1)

OE[p()] _ SEJp(1)] dp(1)
;1) op(1)  dx; (1)

(14)



the Euler-Lagrange equations 0Q/dx; (1) = 0 yield
mith+ > nidi+ V(1) = > D) (15)
J k

where V, = 6E,[p(1)]/6p(1).
The Hermitian property of Lagrange multipliers A;; requires Ay = Aj;, i.e. (n; — m)<k| f iy =0,

which implies an eigenvalue problem for the orbitals

i) = exD) (16)
where the operator f is,
F=h+ ) nidi+v, (17)
J
The Euler-Lagrange equations 0Q/dn; = 0 for the occupation numbers yield
hu+§:m0ﬁﬁ+<MMD+KWMr4ml—mﬂ=u (18)
J

Once the eigenvalue Eq. (16) is solved, we insert the eigenvalues ¢ into the above equation to

obtain
€ +k[lnn;, —In(1 —n)] =pu (19)

which leads to the solution

1
M T+ expl(e — m)/x]

(20)

Thus the occupation numbers follow the Fermi-Dirac distribution, which automatically satisfy the

ensemble representability conditions. The Lagrange multiplier u is fixed by the sum rule ), n,=N.



Previously, the Fermi-Dirac distribution is invoked as an ad hoc convenience to accelerate conver-
gence. %% In this method, the Fermi-Dirac distribution is intrinsic, so the calculation converges
fast.

The calculation of band gap in DFT is connected with Janak’s theorem,®’

OE[on; = € 2D

i.e. the orbital energy is equal to the derivative of the total energy with respect to the orbital oc-
cupation. The result is independent of the exchange-correlation functional. Similar relation has
been known in Hartree-Fock and X, method.® Janak’s theorem is based on fractional variable oc-
cupation numbers, as Weinert and Davenport pointed out,?’ fractional occupation numbers should

come along with an entropic term. In our case,

oF
— =¢ +«[lnn, —1In(1 — n)] 22)
671,'

Janak noted that when an electron is added to or removed from an infinite periodic solid, the
highest occupied orbital energy will change only infinitesimally. Due to fol [In f=In(1 - f)]df=0,

the following important relations discussed by Perdew et al'%%7° still hold

I(N) = E(N — 1) — E(N)

1
_ f ev(N — 1+ f)df = —ex(N - 6)
0

1
ANN) =EN)-EN+1) = —f ev+1(N + f)df = =€y 1(N +6) (23)
0

where ¢ is a positive infinitesimal, /(N) is the ionization potential and A(N) is the electron affinity
of a N-electron system. ey(N) and ey,;(IN) are, respectively, the highest valence band and the
lowest conduction band of the N-electron system. As electron number increases through an integer

N, the chemical potential jumps from E(N) — E(N — 1) to E(N + 1) — E(N), the band gap or



fundamental band gap can be written as. -

E, = I(N)-A(N) = eya(N) —exn(N) +C (24)

where C is the derivative discontinuity caused by the exchange-correlation energy. For exchange-
correlation functional which is continuous, such as LDA, X,, etc., then C=0."3

In solids, orbitals take the Bloch form y;) = exp kT

u;x, where the subscript i is for band index
and k is for the k-point vector in the Brillouin zone.”! For practical calculations, we choose the
CP2K package which is an open source code.’? The equations to solve the orbitals and occupation
numbers can be realized with the smearing technique using the Fermi-Dirac scheme.” For the
band structure of Si and diamond, we choose the DZVP basis set and GTH pseudopotentials,74
along with the 8 X 8 x 8 Monkhorst-Pack”” set of k-points to sample the Brillouin zone.

In this paper, we take a pragmatic approach to determine the parameters in the entropic func-
tional for correlation and the X, model for exchange. For the parameter b in Eq. (3), it amounts
to shifting the whole potential energy surface with a constant. Its value does not affect the identi-
fication of the minimum from the total energy calculations, and also the eigenvalue equation Eq.
(16) does not dependent on b, so it can be set to zero. Start with an initial value, say @=2/3 for
the X, model, k will be optimized until the minimum of the potential energy surface locates at the
experimental lattice constant. Then the band structure is calculated and the band gap is identified.
If the band gap does not equal to the experimental band gap within a given accuracy (say 0.001
eV), the parameter « is then modified and above computation steps are repeated.

Table 1 displays test results for Si, along with the experimental data and the LDA result. The
message from the Table 1 is that all exchange-only models, LDA,, GGA,, and meta-GGA,, give
equilibrium lattice constants larger than the experimental lattice constant. LDA, gives R,=5.527A.
GGA, gives R,=5.696A, even larger than LDA . That is unexpected because the GGA, model has
an enhancement factor F,(s) > 1. When we look carefully at the total energy data, there are too

many spurious minima, that is caused by the oscillating behavior of F,(s). Similar behavior has
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Figure 1: Band structure of Si and diamond in this work (black) compared to LDA (dashed red).
For Si, the exchange-correlation functional is X,-24/25 + Ecum(k = 26520), which gives a lattice
constant 5.43 A and band gap 1.17 eV. For diamond, the exchange-correlation functional is X,-1 24
+ Ecum(k = 61920). which gives a lattice constant 3.567 A and band gap 5.48 eV.

Table 1: The lattice constant R, and the indirect band gap E, for Si from different computational
methods, compared to the experimental data.

R, (A) E,(eV)

Expt. 5430 1.17
LDA 5433 047
LDA,(Xyo2/3) 5527 043
GGA, (PW86%) 5696 0.57
meta-GGA, (SCAN®) 5556 151
Xoot 5053  0.74

Xa=1 + Ecum(xk=29000) 5430 1.26
Xo=24/25 + Ecum(k=26520) 5.430 1.17

Table 2: The lattice constant R, and the indirect band gap E, for diamond from different parameters
of @ and «, compared to experimental data and LDA calculation.

R.(A) E,(eV)
Expt. 3.567 5.48
LDA 3.542  4.02
Xo=08 + Ecum(k=30000) 3.567 4.31
Xo=09 + Ecum(¥k=38700) 3.567 4.60
Xo=10 + Ecum(k=46050) 3.567 4.87
Xo=11 + Ecum(k=52880) 3.567 5.13
Xo=12 + Ecum(k=59370) 3.567 5.38
XQ:1'24 + Ecum(K:61920) 3.567 5.48

10



Table 3: The band energies in Si at special k-points I', X and L from present calculations and
compared with available theoretical and experimental data. Energies are given in eV and measured

with respect to the valence-band maximum (I} ).

k-pOil’lt LDA’® LDA Xa:24/25 + Ecum GW7 EXpt. 7
Iy, -11.93 -12.12 -11.90 12.04  -12.5
I 0 0 0 0 0
Iyse 2.53 2.44,2.56 2.84,2.96 3.35 34
I, 3.29 2.90 2.98 4.08 4.2
Xy -7.718  -7.98,-8.07 -7,86,-7.94 -7.94
Xy -2.88  -3.00,-3.05 -2.77,-2.82 -299 -29,-33
Xie 0.61 0.59,0.65 1.31,1.38 1.44 1.3
X3¢ 9.97 9.97 10.14

L, 952 985 9.73 979 93
Ly, -7.00 -7.12 -6.8 -7.18

L, -1.20  -1.33,-1.40 -1.25,-1.32 -1.27  -1.2,-1.5
L. 1.48 1.34 1.72 227 21,24
L3, 3.31 3.33,3.42 3.85,3.94 4.24 4.15
L 7.48 7.97 8.90

been reported in functionals employing gradient.>’®7° The meta-GGA , model of SCAN® does not
show oscillating behavior in total energy, it gives a single minimum at R,=5.556 A. A remarkable
difference of the X,-; model from LDA,, GGA, and meta-GGA, is the shrinkage of the lattice
constant R,=5.053 A, which is less than the experimental value of 5.430 A.

The correlation functional in DFT are orbital or density dependent, which can reduce the lattice
constant, as is evident from comparison of the lattice constants from LDA, and LDA. However, the
entropic functional in RDMFT is only occupation-number dependent. The mathematic form of the
entropic functional also appears in finite temperature formulation of DFT,?*2° k reflects the effect
of temperature. Increasing k tends to populate electrons into higher virtual orbitals, which will
eventually cause the lattice constant to expand. Since the lattice constant from LDA,, or GGA,,
or meta-GGA, is larger than the experimental value, it is no more possible to reduce the lattice
constant to the experimental value of 5.430 A with the entropic functional. But it is different if
we combine the entropic functional with the X,-; model. By increase the parameter « to 29000 K,
we arrive at a lattice constant equal to the experimental value of 5.430 A. The lattice gives a band

gap E,=1.26 eV, which agrees well with the value E,=1.29 eV"” or E,=1.24* predicted by two

11



separate GW calculations.

For Si, one can still tune the two parameters, « for exchange and « for correlation, to find the
best values for the lattice constant and the band gap, i.e. @ = 24/25 = and xk=26520 K. The band
structure is displayed in Fig. 1 along with that from LDA (dashed red). A remarkable feature is
the up-shift of the conduction bands from the corresponding LDA bands.

Similar calculation for diamond is shown in Table 2. The band structure is compared with the
LDA result (in red) also in Fig. 1. Diamond has a large band gap at 5.48 eV, a large « is expected
to excite electron to the higher virtual orbitals. A large @ >1 has been previously reported for
molecules.>* For a given a value, k can be varied to fit the lattice constant to the experimental
value, then the band structure can be calculated and band gap deducted. The procedures is repeated
until both the experimental lattice constant and band gap are reproduced. For diamond, it occurs
at @=1.24 and k=61920 K. The GW band gap for diamond is E,=5.6 eV"’ or E,=5.33* from two
separate groups.

From Eq. (19) or the Fermi-Dirac distribution of Eq. (20), by eliminating yu, one obtains a

simple formula for the energy difference of any two levels

€ — & = k{In[ny(1 = ny)] = In[n; (1 = ny)} (25)

In RDMFT, the valence bands are those with occupation number close to 1, while the conduction
bands are those close to 0. If n; is the highest valance band and #n, is the lowest conduction band,
then because the logarithmic function rises sharply for an argument between 0 and 1, In[ny(1 —
ny)] — In[n;(1 — ny)] gives rise to a large factor, which is the reason for the opening up of the band
gap.

The band energies at special points for Si are listed in Table 3. For comparison, the theoretical
LDA calculation by Yin and Cohen,”® GW calculation by Hybertsen and Louie’” and the experi-
mental data’”” are also listed. The slight difference in our LDA data from Yin and Cohen’s”® can

be due to different pseudopotentials employed in the calculations. Their data of lattice constant

12



R.=5.451 A and band gap E£,=0.48 eV agree well with our LDA data. In some entry of the Table
3, there are two numbers, that is due to lifting of degeneracy. Fig. 1 and Table 3 indicate that the
band structure from RMDFT is comparable to available theoretical and experimental results.

In conclusion, band structure is realized for the first time in 50 years since Gilbert’s first
RDMEFT paper. > The method is based on a correlation functional measured by the information en-
tropy (i-DMFT?%). Unlike DFT orbital or density dependent correlation functional, the occupation-
number dependent entropic functional has a tendency to stretch the lattice constant. To combine
with the entropic functional, the X, model for exchange is more convenient to adjust than conven-
tional DFT exchange models. The band structure follows the Fermi-Dirac distribution, so the band
gap can be written in closed form in terms of orbital occupation numbers and a system dependent
parameter «, as shown in Eq. (25). The two parameters, a for exchange and « for correlation, can be
optimized by explicit try-and-error calculations to reproduce the lattice constant and band gap, as
demonstrated for Si and diamond. Lattice constants are usually available from X-ray diffraction.
If experimental band gap is not available, one may choose other data such as excitation energy,
ionization energy, etc. to fit the parameters. The method can be implemented within current DFT
softwares coded with the Fermi-Dirac smearing technique, and provides an efficient alternative to

DFT method for band structure.
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