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Abstract

The band structure from the reduced density-matrix functional theory with an entropic

functional for correlation has a simple mathematical structure following the Fermi-Dirac dis-

tribution, which accommodates a band gap according to the occupation numbers of the lowest

conduction band and the highest valence band. Calculations are demonstrated for Si and dia-

mond with the exchange energy approximated using the Xα model.

A peculiar problem of density-functional theory (DFT) is the underestimates of band gaps for

semiconductors and insulators, which has been argued to be persistent even with the unknown exact

Kohn-Sham potential and is connected with the derivative discontinuity in the exchange-correlation
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energy.1,2 It is not easy to design an exchange-correlation model with the correct derivative discon-

tinuity, nevertheless, several sophisticated exchange-correlation functionals containing derivative

discontinuity have been reported.3–7 In recent years, several meta-generalized gradient approxi-

mation(GGA)8–10 and hybrid functionals which mix some percentage of Hartree-Fock exchange

with conventional exchange-correlation functionals,11,12 have been found to improve the band gap,

without the necessity to invoke derivative discontinuity.13,14 In this paper, we study the band gap

within the reduced density-matrix functional theory (RDMFT).15,16

In RDMFT, the variable is the one-particle reduced density-matrix (1RDM),

γ(1, 1′) =
M∑
i

niχi(1)χ∗i (1′) (1)

where χi are called the natural orbitals,17 and ni are their occupation numbers. M is number of

orbitals, which can be larger than the number of electrons N in the system. In the configuration

interaction (CI) wave function method, electron correlation is brought in by adding more con-

figurations, ni is expressible through the expansion coefficients ci of the configurations in wave

function.18

The diagonal element γ(1, 1) is the density. The density in DFT is defined as

ρ(1) =
N∑
i

φi(1)φ∗i (1) (2)

where the orbitals φi, often called Kohn-Sham(KS) orbitals, are derived from the KS equations.

The orbitals are occupied by the electrons according to the Aufbau principle. In case of no degen-

eracy at the Fermi level, only the lowest N orbitals from the total M orbitals are occupied by N

electrons. The density in DFT is assumed to be identical to the density from the wave function,

i.e. ρ(1) = γ(1, 1), so a density functional can be regarded as a density-matrix functional as well.

In order to implement a density functional in the context of RDMFT, one need optimize both the

orbitals χi(1) and their occupation numbers ni.

The occupation number ni in 1RDM follows the Pauli principle, i.e. 0≤ni≤1, which is also

2



called the ensemble representability condition.19 To comply with this condition, one usually changes

variables by ni = cos2θi so that the conditional variation problem is converted into a non-conditional

variation problem. Gilbert then found that all partially occupied natural spin orbitals are degener-

ate, i.e. having the same orbital energy.15 The consequence of this degeneracy is that one can not

have a normal spectrum of orbital energies as one usually has with the Hartree-Fock equation or

the KS equations in DFT. Burke20 once commented that “if this methodology ever does become

popular, it would represent a true paradigm shift, as it does not even use KS equations. But, for

this reason, it is difficult to see how many of the impressive results of DFT approximations could

be retained.”

In our analysis of wave functions for small molecules, we observed a linear relation between

the cumulant energy and the information entropy based on 1RDM.21,22

Ecum = −κS − b (3)

Here κ and b are system dependent constants. Mazziotti et al23 recently proposed an approximation

for the cumulant energy based on the lowest unitary invariant of the cumulant, from which one may

derive24

κ =
2

5M(M − 1)

M∑
i, j

⟨i j|i j⟩ − ⟨i j| ji⟩ (4)

where M is the total number of spin-orbitals, so κ is some average of the antisymmetrized two-

electron integrals. Zamani and Carter-Fenk25 recently proposed an alternative formula by con-

necting the cumulant energy to Mller-Plesset’s second order perturbation energy. The constant b

produces a shift to the whole energy surface, it can be used to set the reference zero energy.

For the information entropy S , its mathematical form may be different in classical or quantum
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theory. For fermions, it has the form,26

S = −
∑

i

[ni ln ni + (1 − ni) ln (1 − ni)] (5)

Justification for the entropic function has appeared in different contexts. Especially notable here

is Weinert and Davenport ’s discovery27 that if fractional occupation numbers are allowed, then an

additional term as Eq. (5) is required in the energy in order for it to be variational. The energy

expression then looks like the free-energy in finite temperature DFT.28,29 However, it is origi-

nated from fractional occupations, instead of temperature, so the entropy here is better identified

as information entropy30,31 or correlation entropy.32 One consequence of the entropy term is the

automatic removal of the extra force due to the changes in occupation number, which complicates

force calculation in molecular dynamics simulation.27,33 It also improves the description of static

correlation and multi-reference property in DFT, which characterizes the CI method.34

Recently, we found that Gilbert’s degeneracy problem in RDMFT can be removed with the

entropic functional, so that self-consistent-field one-electron eigenvalue equation, as the Hartree-

Fock equation or the KS equation in DFT, can be obtained.35 Due to its connection to the infor-

mation entropy, the method has been named as i-DMFT. It has since been successfully used to

generate accurate potential energy curves as a result of total energy calculation.24,36 In this paper,

we focus on the band structure of solids.

In RDMFT, functionals are usually constructed based on an approximation to the two-particle

reduced density-matrix (2RDM).37–43 The 2RDM can be decomposed as44,45

Γ(1, 2) =
1
2

[γ(1, 1)γ(2, 2) − γ(1, 2)γ(2, 1)] + λ(1, 2). (6)

The first term is the independent-particle contribution, the second term accounts for the exchange

effect. The λ(1, 2) term is called the two-electron cumulant. The cumulant energy is defined as

Ecum =

∫ ∫
λ(1, 2)

r12
d1d2 (7)
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which has been identified as the correlation energy in RDMFT by Levy.46 The kinetic energy is

expressed exactly with 1RDM, there is no need of a coupling-constant integration to fold any cor-

rection to the kinetic energy into the correlation energy as in DFT.47 The modeling of correlation

energy is more convenient in RDMFT, because its behavior can be checked against the cumulant

energy from wave function calculations,21,22 instead of relying on uniform electron gas model.

The exact exchange energy is

Ex = −
1
2

∫ ∫
γ(1, 2)γ(2, 1)

r12
d1d2 (8)

Unlike the exchange energy in DFT, the 1RDM γ(1, 2) here is non-idempotent. The difficulty to

apply the exact exchange to solid systems is its long-range or nonlocal property.48–50 For the similar

problem in the Hartree-Fock method, Slater once proposed an approximation to the exchange

potential and further simplified it to a density functional.51 The idea led to the Xα model for Ex
52

Ex[ρ(r)] = Cx

∫
ρ(r)4/3d3r (9)

Cx = −(9/8)(3/π)1/3α in atomic unit. The parameter α can be optimized and is system depen-

dent.53,54 At the beginning, Slater proposed α=1, later the value α = 0.7 becomes popular among

Xα practitioners.55,56 In DFT, the value α=2/3 is preferred and has been built into the exchange

part of the local density approximation (LDA).29 The choice of α=1 or 2/3 is due to different strat-

egy in constructing the effective exchange potential, either taking the average or a state at the top

of the Fermi distribution.29,57 It is found that α=2/3 underestimates exchange energies58 and the

ionization energy (the negative orbital energy).59,60 Verma and Truhlar9,61 proposed the high local

exchange (HLE) functional with a high α value, such as α = 1.25×2/3, to improve semiconductor

band gaps and excitation energies.

In the GGA model for exchange,62,63 an enhancement factor Fx(s) is introduced to systemati-
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cally tune the exchange effect

EGGA
x [ρ(r)] =

2
3

Cx

∫
ρ4/3Fx(s)d3r (10)

where s is a dimensionless density gradient. A similar enhancement factor is introduced in meta-

GGA exchange model.8,10 In the following, we will examine which exchange model is the most

suitable to combine with the entropic correlation functional in band structure calculations.

The one-electron energies, including the kinetic energy and the electron-nucleus Coulomb en-

ergy, are expressed exactly with 1RDM, the total energy of an electronic system then becomes

E =
∑

i

hiini +

∫ ∫
Γ(1, 2)

r12
d1d2 + Z

=
∑

i

hiini +
1
2

∑
i j

nin j⟨i j|i j⟩ + Ex + Ecum + Z (11)

with hii = ⟨χi|ĥ|χi⟩ where

ĥ = −
1
2
∇2

1 −
∑
ν

Zν
r1ν

(12)

and ⟨i j|i j⟩ are the two-electron Coulomb integrals.64 Z is the Coulomb interactions energy between

all pairs of nuclei.

In RDMFT, the variables are {ni} and {χi}. To optimize the energy E under the constraint∑
ni = N and the orthonormality conditions for the spin orbitals, one has the Lagrangean

Ω = E − µ

∑
i

ni − N

 −∑
i j

λi j[⟨χi|χ j⟩ − δi j] (13)

where µ and λi j are Lagrange multipliers. Using the chain rule with ρ(1) =
∑

i niχi(1)χ∗i (1)

∂Ex[ρ(1)]
∂χ∗i (1)

=
δEx[ρ(1)]
δρ(1)

∂ρ(1)
∂χ∗i (1)

(14)
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the Euler-Lagrange equations ∂Ω/∂χ∗i (1) = 0 yield

ni[ĥ +
∑

j

n j Ĵ j + Vx]χi(1) =
∑

k

λikχk(1) (15)

where Vx = δEx[ρ(1)]/δρ(1).

The Hermitian property of Lagrange multipliers λki requires λik = λ
∗
ki, i.e. (ni − nk)⟨k| f̂ |i⟩ = 0,

which implies an eigenvalue problem for the orbitals

f̂χi(1) = ϵiχi(1) (16)

where the operator f̂ is,

f̂ = ĥ +
∑

j

n j Ĵ j + Vx (17)

The Euler-Lagrange equations ∂Ω/∂ni = 0 for the occupation numbers yield

hii +
∑

j

n j⟨i j|i j⟩ + ⟨i|Vx|i⟩ + κ[lnni − ln(1 − ni)] = µ (18)

Once the eigenvalue Eq. (16) is solved, we insert the eigenvalues ϵi into the above equation to

obtain

ϵi + κ[ln ni − ln (1 − ni)] = µ (19)

which leads to the solution

ni =
1

1 + exp[(ϵi − µ)/κ]
(20)

Thus the occupation numbers follow the Fermi-Dirac distribution, which automatically satisfy the

ensemble representability conditions. The Lagrange multiplier µ is fixed by the sum rule
∑

ni=N.
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Previously, the Fermi-Dirac distribution is invoked as an ad hoc convenience to accelerate conver-

gence.65,66 In this method, the Fermi-Dirac distribution is intrinsic, so the calculation converges

fast.

The calculation of band gap in DFT is connected with Janak’s theorem,67

∂E/∂ni = ϵi (21)

i.e. the orbital energy is equal to the derivative of the total energy with respect to the orbital oc-

cupation. The result is independent of the exchange-correlation functional. Similar relation has

been known in Hartree-Fock and Xα method.68 Janak’s theorem is based on fractional variable oc-

cupation numbers, as Weinert and Davenport pointed out,27 fractional occupation numbers should

come along with an entropic term. In our case,

∂E
∂ni
= ϵi + κ[ln ni − ln (1 − ni)] (22)

Janak noted that when an electron is added to or removed from an infinite periodic solid, the

highest occupied orbital energy will change only infinitesimally. Due to
∫ 1

0
[ln f − ln (1 − f )]d f =0,

the following important relations discussed by Perdew et al1,69,70 still hold

I(N) = E(N − 1) − E(N) = −
∫ 1

0
ϵN(N − 1 + f )d f = −ϵN(N − δ)

A(N) = E(N) − E(N + 1) = −
∫ 1

0
ϵN+1(N + f )d f = −ϵN+1(N + δ) (23)

where δ is a positive infinitesimal, I(N) is the ionization potential and A(N) is the electron affinity

of a N-electron system. ϵN(N) and ϵN+1(N) are, respectively, the highest valence band and the

lowest conduction band of the N-electron system. As electron number increases through an integer

N, the chemical potential jumps from E(N) − E(N − 1) to E(N + 1) − E(N), the band gap or
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fundamental band gap can be written as.1,2

Eg = I(N) − A(N) = ϵN+1(N) − ϵN(N) +C (24)

where C is the derivative discontinuity caused by the exchange-correlation energy. For exchange-

correlation functional which is continuous, such as LDA, Xα, etc., then C=0.13

In solids, orbitals take the Bloch form χi,k = exp−ik·rui,k, where the subscript i is for band index

and k is for the k-point vector in the Brillouin zone.71 For practical calculations, we choose the

CP2K package which is an open source code.72 The equations to solve the orbitals and occupation

numbers can be realized with the smearing technique using the Fermi-Dirac scheme.73 For the

band structure of Si and diamond, we choose the DZVP basis set and GTH pseudopotentials,74

along with the 8 × 8 × 8 Monkhorst-Pack75 set of k-points to sample the Brillouin zone.

In this paper, we take a pragmatic approach to determine the parameters in the entropic func-

tional for correlation and the Xα model for exchange. For the parameter b in Eq. (3), it amounts

to shifting the whole potential energy surface with a constant. Its value does not affect the identi-

fication of the minimum from the total energy calculations, and also the eigenvalue equation Eq.

(16) does not dependent on b, so it can be set to zero. Start with an initial value, say α=2/3 for

the Xα model, κ will be optimized until the minimum of the potential energy surface locates at the

experimental lattice constant. Then the band structure is calculated and the band gap is identified.

If the band gap does not equal to the experimental band gap within a given accuracy (say 0.001

eV), the parameter α is then modified and above computation steps are repeated.

Table 1 displays test results for Si, along with the experimental data and the LDA result. The

message from the Table 1 is that all exchange-only models, LDAx, GGAx, and meta-GGAx, give

equilibrium lattice constants larger than the experimental lattice constant. LDAx gives Re=5.527Å.

GGAx gives Re=5.696Å, even larger than LDAx. That is unexpected because the GGAx model has

an enhancement factor Fx(s) ≥ 1. When we look carefully at the total energy data, there are too

many spurious minima, that is caused by the oscillating behavior of Fx(s). Similar behavior has
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Figure 1: Band structure of Si and diamond in this work (black) compared to LDA (dashed red).
For Si, the exchange-correlation functional is Xα=24/25 + Ecum(κ = 26520), which gives a lattice
constant 5.43 Å and band gap 1.17 eV. For diamond, the exchange-correlation functional is Xα=1.24

+ Ecum(κ = 61920). which gives a lattice constant 3.567 Å and band gap 5.48 eV.

Table 1: The lattice constant Re and the indirect band gap Eg for Si from different computational
methods, compared to the experimental data.

Re (Å) Eg (eV)
Expt. 5.430 1.17
LDA 5.433 0.47
LDAx(Xα=2/3) 5.527 0.43
GGAx (PW8662) 5.696 0.57
meta-GGAx (SCAN8) 5.556 1.51
Xα=1 5.053 0.74
Xα=1 + Ecum(κ=29000) 5.430 1.26
Xα=24/25 + Ecum(κ=26520) 5.430 1.17

Table 2: The lattice constant Re and the indirect band gap Eg for diamond from different parameters
of α and κ, compared to experimental data and LDA calculation.

Re (Å) Eg (eV)
Expt. 3.567 5.48
LDA 3.542 4.02
Xα=0.8 + Ecum(κ=30000) 3.567 4.31
Xα=0.9 + Ecum(κ=38700) 3.567 4.60
Xα=1.0 + Ecum(κ=46050) 3.567 4.87
Xα=1.1 + Ecum(κ=52880) 3.567 5.13
Xα=1.2 + Ecum(κ=59370) 3.567 5.38
Xα=1.24 + Ecum(κ=61920) 3.567 5.48
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Table 3: The band energies in Si at special k-points Γ, X and L from present calculations and
compared with available theoretical and experimental data. Energies are given in eV and measured
with respect to the valence-band maximum (Γ′25v).

k-point LDA76 LDA Xα=24/25 + Ecum GW 77 Expt.77

Γ1v -11.93 -12.12 -11.90 12.04 -12.5
Γ′25v 0 0 0 0 0
Γ15c 2.53 2.44,2.56 2.84,2.96 3.35 3.4
Γ′2c 3.29 2.90 2.98 4.08 4.2
X1v -7.78 -7.98,-8.07 -7,86,-7.94 -7.94
X4v -2.88 -3.00,-3.05 -2.77,-2.82 -2.99 -2.9,-3.3
X1c 0.61 0.59,0.65 1.31,1.38 1.44 1.3
X3c 9.97 9.97 10.14
L′2v -9.52 -9.85 -9.73 -9.79 -9.3
L1v -7.00 -7.12 -6.8 -7.18
L′3v -1.20 -1.33,-1.40 -1.25,-1.32 -1.27 -1.2,-1.5
L1c 1.48 1.34 1.72 2.27 2.1,2.4
L3c 3.31 3.33,3.42 3.85,3.94 4.24 4.15
L′2c 7.48 7.97 8.90

been reported in functionals employing gradient.52,78,79 The meta-GGAx model of SCAN8 does not

show oscillating behavior in total energy, it gives a single minimum at Re=5.556 Å. A remarkable

difference of the Xα=1 model from LDAx, GGAx and meta-GGAx is the shrinkage of the lattice

constant Re=5.053 Å, which is less than the experimental value of 5.430 Å.

The correlation functional in DFT are orbital or density dependent, which can reduce the lattice

constant, as is evident from comparison of the lattice constants from LDAx and LDA. However, the

entropic functional in RDMFT is only occupation-number dependent. The mathematic form of the

entropic functional also appears in finite temperature formulation of DFT,28,29 κ reflects the effect

of temperature. Increasing κ tends to populate electrons into higher virtual orbitals, which will

eventually cause the lattice constant to expand. Since the lattice constant from LDAx, or GGAx,

or meta-GGAx is larger than the experimental value, it is no more possible to reduce the lattice

constant to the experimental value of 5.430 Å with the entropic functional. But it is different if

we combine the entropic functional with the Xα=1 model. By increase the parameter κ to 29000 K,

we arrive at a lattice constant equal to the experimental value of 5.430 Å. The lattice gives a band

gap Eg=1.26 eV, which agrees well with the value Eg=1.29 eV77 or Eg=1.2480 predicted by two
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separate GW calculations.

For Si, one can still tune the two parameters, α for exchange and κ for correlation, to find the

best values for the lattice constant and the band gap, i.e. α = 24/25 = and κ=26520 K. The band

structure is displayed in Fig. 1 along with that from LDA (dashed red). A remarkable feature is

the up-shift of the conduction bands from the corresponding LDA bands.

Similar calculation for diamond is shown in Table 2. The band structure is compared with the

LDA result (in red) also in Fig. 1. Diamond has a large band gap at 5.48 eV, a large κ is expected

to excite electron to the higher virtual orbitals. A large α ≥1 has been previously reported for

molecules.54 For a given α value, κ can be varied to fit the lattice constant to the experimental

value, then the band structure can be calculated and band gap deducted. The procedures is repeated

until both the experimental lattice constant and band gap are reproduced. For diamond, it occurs

at α=1.24 and κ=61920 K. The GW band gap for diamond is Eg=5.6 eV77 or Eg=5.3380 from two

separate groups.

From Eq. (19) or the Fermi-Dirac distribution of Eq. (20), by eliminating µ, one obtains a

simple formula for the energy difference of any two levels

ϵ1 − ϵ2 = κ{ln[n2(1 − n1)] − ln[n1(1 − n2)]} (25)

In RDMFT, the valence bands are those with occupation number close to 1, while the conduction

bands are those close to 0. If n1 is the highest valance band and n2 is the lowest conduction band,

then because the logarithmic function rises sharply for an argument between 0 and 1, ln[n2(1 −

n1)] − ln[n1(1 − n2)] gives rise to a large factor, which is the reason for the opening up of the band

gap.

The band energies at special points for Si are listed in Table 3. For comparison, the theoretical

LDA calculation by Yin and Cohen,76 GW calculation by Hybertsen and Louie77 and the experi-

mental data77 are also listed. The slight difference in our LDA data from Yin and Cohen’s76 can

be due to different pseudopotentials employed in the calculations. Their data of lattice constant
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Re=5.451 Å and band gap Eg=0.48 eV agree well with our LDA data. In some entry of the Table

3, there are two numbers, that is due to lifting of degeneracy. Fig. 1 and Table 3 indicate that the

band structure from RMDFT is comparable to available theoretical and experimental results.

In conclusion, band structure is realized for the first time in 50 years since Gilbert’s first

RDMFT paper.15 The method is based on a correlation functional measured by the information en-

tropy (i-DMFT35). Unlike DFT orbital or density dependent correlation functional, the occupation-

number dependent entropic functional has a tendency to stretch the lattice constant. To combine

with the entropic functional, the Xα model for exchange is more convenient to adjust than conven-

tional DFT exchange models. The band structure follows the Fermi-Dirac distribution, so the band

gap can be written in closed form in terms of orbital occupation numbers and a system dependent

parameter κ, as shown in Eq. (25). The two parameters, α for exchange and κ for correlation, can be

optimized by explicit try-and-error calculations to reproduce the lattice constant and band gap, as

demonstrated for Si and diamond. Lattice constants are usually available from X-ray diffraction.

If experimental band gap is not available, one may choose other data such as excitation energy,

ionization energy, etc. to fit the parameters. The method can be implemented within current DFT

softwares coded with the Fermi-Dirac smearing technique, and provides an efficient alternative to

DFT method for band structure.
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