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Abstract

This paper addresses the challenge of improving the thermal performance of building
envelopes in hot arid climates by identifying optimal configurations for biomimetic opaque
ventilated façade (OVF) designs. To overcome the complexity of parameter interactions in
such systems, a multi-objective optimization framework is developed using computational
fluid dynamics (CFD) simulations integrated with parametric modeling and machine learn-
ing surrogate models. A central contribution of this research is the application of machine
learning-based surrogate models to predict CFD simulation outcomes with high accuracy.
This predictive capability enables the rapid generation and evaluation of thousands of
façade design alternatives without the need for full-scale CFD runs, significantly reducing
computational effort and time. The proposed workflow establishes a direct connection be-
tween parameterized biomimetic geometries and thermal performance indicators, allowing
for a comprehensive exploration of the design space through automated optimization. The
optimization process relies on response surface modeling to approximate system behavior
and evaluate design performance across multiple objectives. The final results reveal that
the computationally optimized biomimetic façades achieved superior thermal performance
compared to the initial bio-inspired design. To validate and extend the findings, additional
simulations were carried out to evaluate the performance of selected designs under varying
wind conditions and solar exposures. The larger wide mound configuration consistently
performed best, offering a strong balance across the defined objectives. This solution was
then applied to three-floor and five-floor commercial buildings in Riyadh, Saudi Arabia,
where it showed a clear reduction in the average inner skin surface temperature of the
OVF. The design proved suitable for construction with conventional methods and could be
integrated into a range of architectural styles without major changes to the façade. These re-
sults reinforce the potential of combining biomimetic design strategies with computational
optimization to develop high-performance façade systems for hot desert climates. The
novelty of this work lies in combining biomimetic design principles with machine learning-
driven optimization to systematically explore the design space and identify configurations
that balance thermal efficiency with material economy.

Keywords: Opaque Ventilated Façades; Machine Learning; CFD; building envelope;
computational design optimization; parametric design; biomimetic façade; Ansys
DesignXplorer
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1. Introduction
In performance-based architectural design, optimizing façade systems involves balanc-

ing multiple, often conflicting, objectives such as thermal performance, material efficiency,
and constructability. Opaque ventilated façades (OVFs), particularly in hot arid climates,
have demonstrated significant potential in reducing heat gain [1–4]. However, identifying
optimal design configurations remains a complex task due to the intricate interplay of
geometric and thermal parameters. While computational fluid dynamics (CFD) simulations
provide detailed insights into the thermal behavior of such systems, their use as standalone
tools is computationally intensive, especially when large numbers of design alternatives
need to be evaluated.

To address this challenge, this study presents a computational framework that
combines CFD simulations with parametric modeling and machine learning-based sur-
rogate modeling to facilitate efficient multi-objective optimization of biomimetic OVF
systems. Following an earlier concept and sensitivity analysis phase that identified a
promising biomimetic geometry in the form of a wide mound design, as seen in Fig-
ure 1 [4], this phase focuses on optimizing its thermal performance using a multi-objective
optimization workflow.

Figure 1. Wide mound biomimetic OVF design from the previous study [4].

Parametric modeling allows for the creation of digital models in which the geometric
elements are defined by user-specified parameters. By modifying these parameters, a
broad range of design options can be explored [5]. In this study, parametric modeling
was used as a primary framework to represent the relationships between the given input
parameters and the CFD outcomes. Among the available parametric modeling tools, the
Grasshopper plugin for Rhinoceros [6] is the most widely adopted visual programming
language in architectural research. The graphical algorithm editor in Grasshopper applies
systematic logic to embed the design intent from the beginning and facilitates interaction
with performance simulation tools and multi-objective evolutionary algorithm solvers
for optimization.

However, since Ansys Fluent CFD software, 2022 [7] was selected for this study based
on a comparison of widely accepted CFD tools in the preceding research on which this study
is based [3], the parametric modeling had to be carried out within the Ansys Workbench
platform. Ansys DesignXplorer [8] is a comprehensive system that uses a deterministic
approach, incorporating Design of Experiments (DOE) and various optimization methods,
with parameters playing a central role. These parameters can be defined within any com-
patible modeling tool, such as Ansys DesignModeler or Spaceclaim. The process involves
solving the optimization problem using set objectives and parameters and identifying
the best outcome by finding a suitable balance between those objectives [8]. As a result,
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the proposed biomimetic OVF solutions were redesigned and parameterized using the
Spaceclaim block record feature to take full advantage of the DesignXplorer system.

Ansys DesignXplorer has been widely adopted in engineering disciplines for
simulation-based optimization due to its ability to efficiently couple design of experi-
ments (DOE), surrogate modeling, and sensitivity analysis with CFD tools. In recent
research, the significance of Ansys DesignXplorer has been underscored for optimizing
flow characteristics in curved conduits. This tool facilitates efficient parametric studies,
significantly reducing the number of required CFD simulations [9]. By employing re-
sponse surface methodology, DesignXplorer enables rapid exploration of various vane
configurations, which significantly cuts down computational time [9]. Furthermore, its
capability to manage multi-objective optimization allows users to effectively balance the
trade-offs between minimizing pressure drop and maximizing velocity uniformity, guiding
the design process toward optimal solutions [9]. The integration of DesignXplorer with
Ansys Fluent ensures that the optimization results are grounded in reliable CFD simula-
tions, enhancing the overall accuracy of the outcomes [9]. In another study, Ayancik et al.
(2016) [10] highlight the necessity of using sophisticated optimization techniques to ensure
the creation of cavitation-free runner blades with high efficiency. The study highlights
the significance of balancing conflicting goals, such as enhancing efficiency and reducing
the risk of cavitation [10]. By adopting this strategy, the design process becomes more
efficient, and turbine performance is improved, underscoring the essential role of advanced
optimization techniques in hydraulic engineering [10]. These examples highlight the ver-
satility of DesignXplorer for high-fidelity CFD-based optimization, enabling significant
performance improvements while reducing computational cost.

In building performance research, optimization methods have emerged as vital tools
for enhancing architectural design variables. Kaseb and Montazeri (2022) [11] investigated
the aerodynamic optimization of building-integrated ducted openings using metamod-
eling techniques. Their study revealed that such optimization significantly increased
predicted annual available power and energy production for urban wind energy sys-
tems [11]. Fallahpour et al. (2025) [12] proposed a multi-objective optimization frame-
work designed to enhance mass flow rate and average air velocity while simultaneously
minimizing the temperature differential between indoor and outdoor environments in
buildings situated in hot-arid climates. They employed iterative optimization alongside
CFD simulations, demonstrating advancements in the design process [12]. In another study,
Abdeen et al. (2019) [13] conducted an in-depth investigation into the optimization of solar
chimney configurations as a means to enhance natural ventilation within buildings. By em-
ploying a systematic evaluation process and utilizing Ansys DesignXplorer, the researchers
were able to identify design modifications that significantly improved thermal comfort and
airflow performance [13]. These studies collectively demonstrate the growing relevance of
DesignXplorer in architectural contexts, where it supports efficient, performance-driven
decision-making in complex environmental systems.

Ansys DesignXplorer offers two approaches to optimization: direct optimization and
indirect optimization. These approaches produce similar results, although they follow dif-
ferent procedures. Direct optimization proceeds without intermediate steps and can quickly
determine the most effective solution. However, it does not provide detailed intermediate
results or graphical representations of how individual or multiple parameters influence the
objectives. In contrast, indirect optimization uses data generated from a response surface
cell, and its accuracy depends on the precision and quality of this surface in predicting sys-
tem behavior. The response surface method utilizes machine learning algorithms to create
a mathematical model that can reliably estimate system performance based on changes
in input parameters. Therefore, the indirect optimization method allows for immediate
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approximations of CFD results without the need to run full simulations, unlike the direct
optimization approach [8] (ANSYS 2023). In this research, Ansys DesignXplorer with the
indirect optimization method was employed to improve the thermal performance of the
proposed biomimetic opaque ventilated façade solutions.

The optimization process integrates four interdependent components. First, the
biomimetic OVF was parametrically reconstructed in Ansys SpaceClaim to enable de-
sign variable manipulation. Second, a DOE methodology was applied to strategically
sample the parameter space and generate training data. Third, machine learning algo-
rithms embedded within Ansys DesignXplorer were used to construct response surface
surrogate models that predict key CFD outputs, namely inner skin surface temperature
and surface area. Fourth, multi-objective optimization algorithms were applied to these
surrogate models to identify optimal configurations that balance thermal efficiency with
material economy.

In the present study, the surrogate models generated through DesignXplorer effectively
approximate CFD outputs across thousands of design configurations, enabling comprehen-
sive optimization without resorting to computationally expensive full CFD simulations for
every iteration. This approach demonstrates a scalable, simulation-integrated method for
optimizing façade systems in extreme climate conditions, combining parametric control,
thermal simulation, and machine learning within a unified environment. By leveraging the
synergy between bio-inspired design strategies and data-driven optimization, the study
contributes a replicable and efficient methodology for advancing performance-driven
façade design in architectural practice.

To explore the practical implications of the optimized design, the study also extends
beyond simulation by examining its application in real-world building scenarios. The
most promising façade configuration was further evaluated under varying environmental
conditions and applied to low-rise commercial buildings in a hot arid climate. This ap-
plication demonstrated the design’s potential for real-world implementation, confirming
its effectiveness in enhancing thermal performance and its adaptability to conventional
construction practices.

2. Biomimetic Opaque Ventilated Façade Optimization
2.1. Parametrization Process

Any design optimization problem involves defining variables, objectives, and con-
straints. Variables are subsets of design parameters, while objectives define the design’s
goodness. Constraints are functions of design variables that define a feasible variable
space. Optimization is the iterative process of altering the design space for a design that
maximizes or minimizes the objectives. In this study, four input parameters were selected
to minimize the two identified objectives, or output parameters, as called in the Ansys
workbench system, which are reducing both the average inner skin surface temperature
and the total surface area.

In the previous study conducted by Alyahya et al. (2025) [4], it was found that changes
to the height and angle of the top mound had a notable effect on the average temperature
of the inner skin surface. To investigate this, three CFD simulations were carried out for
each selected mound height to analyze airflow behavior and performance differences. For
the analysis of top mound angle configurations, four additional CFD simulations were
performed using mounds with a fixed height of 30 cm. These configurations are illustrated
in Figure 2 [4]. The results related to mound height showed that increasing the height
from 0.3 m to 1 m led to a corresponding decrease in the average inner skin temperature.
However, this temperature reduction came with an increase in the total surface area [4].
In this study, to explore the potential for reducing both the inner skin temperature and
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the surface area, the front and back face heights of the top mound were parameterized
independently. This approach aimed to determine whether adjusting one side more than
the other could help balance the two performance goals. The height values for both faces
were constrained between 0.1 m and 1 m. In this context, the height of the front face is
referred to as “Front H,” while the height of the back face is referred to as “Back H,” as
shown in Figure 3.

 

Figure 2. The tested heights and angles of the biomimetic top mound design from the previous
study [4].

Figure 3. The height parameters of the mound’s front and back faces.

With respect to the mound angle, it was previously demonstrated that the wide mound
proved to be the most effective solution. However, the ideal angle that optimizes thermal
performance remains uncertain, as there was a point at which the thermal performance
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began to deteriorate with the extra-wide mound. In addition, it should be noted that the
front and back sides of the mound were symmetrically expanded. So, the performance of
the mound in situations where the front and back faces have varying angles has not yet
been assessed. In order to parameterize the expansion of the top mound angle, the distance
from zero, which represents a no-tilt mound, was increased to a distance of 0.2 m from
the cavity. For instance, in the case where the parameter “Front W”, which represents the
measurement of the front face expansion, is set at 0.2 m, and the parameter “Back W” is set
to zero, the resulting mound will exhibit no tilt in the back face and only a tilt in the front
face, as displayed in Figure 4.

Figure 4. The expansion parameters of the mound’s front and back faces.

2.2. Design of Experiments

After parametrizing the wide mound solution, the Design of Experiments (DOE)
technique is employed to systematically find the placement of sampling points. In the
field of engineering, there is a vast selection of different DOE algorithms and methods that
can be used. They serve the aim of dividing the range of changes in variables or input
parameters into different values ranging from the minimum to the maximum based on
a specific pattern; these values are known as design points. Following that, a collection
of these defined values, or design points, are allocated into separate rows within a table,
with each row representing an individual solution. The results obtained from each solution
illustrate the impact of the input parameters on the output parameters.

The default design of experiments type in Ansys is the Central Composite Design
(CCD). The CCD is a robust and effective method that yields significant information regard-
ing experimental variables and errors while requiring a limited number of experimental
runs [14]. This approach incorporates a center point, points along the axis of the input
parameters, and additional points selected using a fractional factorial design. The Auto-
Defined design type of CCD was used as the process of design exploration involves the
automatic selection of the appropriate design type, which is determined by the number of
input variables. It is advisable to utilize this option in the majority of situations due to its
automated switching between G-Optimality when the number of input variables is five
and VIF-Optimality otherwise [8].

The DOE generated a table with 26 design points; subsequent experiments, or, in this
case, CFD simulations, were conducted to obtain results for the defined targets, as seen in
Table 1. The process required an extremely long time because each of the 26 defined design
points had to be solved individually in order to calculate the output parameters result. The
phrase “crown area” in the table represents the total surface area of the raised top mound
from all four sides, without the entire surface of the opaque ventilated façade. Figure 5 is a
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graph demonstrating the relationship between design points and output parameters. Each
design point on the lower horizontal x-axis is accompanied by a range of values on the
right and left y-axes, which reflect the inner skin surface temperature and crown area.

Table 1. The design points generated during DOE.

Design Points of Design of Experiments

Input Parameters Output Parameters

Design Points Back H (m) Back W (m) Front H (m) Front W (m) Average Inner Skin
Surface Temperature (◦C) Crown Area (m2)

1 0.55 0.1 0.55 0.1 54.33 3.68

2 0.1 0.1 0.55 0.1 54.36 2.30

3 1 0.1 0.55 0.1 55.07 5.16

4 0.55 0 0.55 0.1 54.33 3.60

5 0.55 0.2 0.55 0.1 54.27 3.82

6 0.55 0.1 0.1 0.1 56.31 2.30

7 0.55 0.1 1 0.1 54.08 5.16

8 0.55 0.1 0.55 0 54.35 3.60

9 0.55 0.1 0.55 0.2 54.28 3.82

10 0.233 0.030 0.233 0.030 54.72 1.52

12 0.233 0.170 0.233 0.030 54.66 1.71

13 0.867 0.170 0.233 0.030 56.18 3.64

14 0.233 0.030 0.867 0.030 54.25 3.56

15 0.867 0.030 0.867 0.030 54.30 5.60

16 0.233 0.170 0.867 0.030 54.22 3.84

17 0.867 0.170 0.867 0.030 54.15 5.77

18 0.233 0.030 0.233 0.170 55.44 1.71

19 0.867 0.030 0.233 0.170 56.84 3.84

20 0.233 0.170 0.233 0.170 55.47 1.91

21 0.867 0.170 0.233 0.170 56.32 3.92

22 0.233 0.030 0.867 0.170 54.16 3.64

23 0.867 0.030 0.867 0.170 54.18 5.77

24 0.233 0.170 0.867 0.170 54.24 3.92

25 0.982 0.006 0.150 0.002 58.33 3.63

26 0.993 0.192 0.966 0.192 54.13 6.76

Figure 5. DOE Design points vs. output parameters.
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2.3. Response Surfaces

The next step to perform the optimization process after the DOE is to use the response
surface method. The response surface method uses machine learning algorithms for
obtaining a mathematical function that is capable of accurately predicting the behavior
of a system as a result of variations in its input parameters. Without performing a full
solution, it instantly provides approximations of the output parameters throughout the
design space based on the results of the 26 design points that were generated during
the DOE step. The accuracy of a response surface is dependent upon several factors,
including the complexity of the variables in the solution, the number of points in the initial
DOE table, and the type of response surface employed. When it comes to the response
surface type, the genetic aggregation algorithm is the one that is used by default. In this
research, the genetic aggregation algorithm was employed because it is an automated
method that selects, customizes, and generates the best suitable response surface for each
output parameter. It is important to note that the machine learning capabilities used in this
study are based on the built-in surrogate modeling tools provided by Ansys DesignXplorer.
These tools employ automated algorithms, such as the genetic aggregation method, to
generate response surface models from the DOE data. However, Ansys does not provide
detailed access to the internal structure of the machine learning models or training metrics.
As a result, information such as root mean square error (RMSE), training versus testing
performance, number of epochs, or hyperparameter tuning processes is not available to the
user. In this context, the machine learning functionality serves as a streamlined and efficient
means of accelerating CFD-driven design exploration, rather than a fully customizable or
transparent machine learning framework.

After generating the response surface, the goodness of fit for each output parameter
was evaluated to determine whether the answer was satisfactory. The results demonstrated
a reasonable correlation between the predicted values and the simulated design points;
however, the maximum predicted error value of the average inner skin surface temperature
was 0.5 ◦C, which is greater than what was expected. As a result, additional simulations
were carried out by making refinement points, which are design points added to enrich
and improve the predicted values of the response surface.

Automatically, refinement points are added, and when each point is completely solved,
the maximum predicted error value is updated until each output parameter’s tolerance
value is met. For the average inner skin surface temperature and the crown surface area,
the identified tolerance value target was set at 0.3 ◦C and 0.1 m2, respectively. As shown
in Figure 6 and Table 2, the refinement process created seven design points until the
target was reached with maximum predicted error values of the average inner skin surface
temperature and the crown area of 0.24 ◦C and 0.03 m2, respectively. As a result, Figure 7
demonstrates how the predicted and observed points are in excellent agreement, indicating
that it is possible to assume that the data obtained would provide the best values possible
for each output parameter based on the inputs.

Selecting Min-Max search in the Outline pane after the response surface has been
updated displays the sample points, which represent the minimum and maximum values
determined for each output parameter in the response surface database. The Min-Max
search algorithm analyzes the complete range of output parameters inside the response
surface in order to estimate the minimum and maximum values associated with each
parameter. Within the design space, there is a variation of 5.08 ◦C between the lowest
possible average inner skin surface temperature and the highest possible temperature.
Regarding the crown area, the difference is 6.27 m2 between the smallest and largest
possible designs, as displayed in Table 3. Both output parameters have large ranges, but
the crown area is exceptionally extreme, with a range of more than 10 times the area of
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the minimum design point. Thus, finding the trade-off between the output parameters to
achieve the correct balance is very important in this study.

Figure 6. Refinement points’ convergence curves.

Table 2. The generated refinement points data.

Refinement Points

Input Parameters Output Parameters

Design Points Back H (m) Back W (m) Front H (m) Front W (m) Average Inner Skin
Surface Temperature (◦C) Crown Area (m2)

1 1 0.14 0.1 0.07 57.59 3.71

2 0.57 0 0.1 0 57.59 2.15

3 0.9 0.09 0.38 0.2 55.51 4.50

4 0.41 0 0.1 0.1 56.26 1.81

5 0.1 0 0.1 0 55.46 0.64

6 0.59 0.11 0.1 0 56.76 2.25

7 0.24 0.2 0.1 0.08 55.51 1.43

Table 3. The estimated minimum and maximum values of each output parameter.

Min-Max Search

Name Back H (m) Back W (m) Front H (m) Front W (m)
Average Inner Skin

Surface Temperature
(◦C)

Crown Area (m2)

Output parameter minimums

Average inner skin
surface temperature 0.4 0 0.77 0.1 53.85 3.82

Crown area 0.1 0 0.1 0 55.46 0.64

Output parameter maximums

Average inner skin
surface temperature 1 0 0.1 0 58.93 3.53

Crown area 1 0.2 1 0.2 54.2 6.91
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Figure 7. Goodness of fit diagram for the output parameters.

The design space can be explored more easily with response surface charts, which
show visually how different parameters affect each other. There are four charts available:
the Spider chart, the Response chart, the Local Sensitivity chart, and the Local Sensitivity
Curves chart. When a response surface is modified, one response point and one of each
chart type are automatically generated. There is no limit to the number of response points
and charts that can be explored. To begin understanding and exploring the effect of
parameters on one another, the response point was set to the same dimensions as the
original wide mound solution, which is 0.3 m for front and back height and 0.07 m for front
and back width.

The response surface charts generated in response to the original wide mound design
point reveal some interesting findings. Regarding the back height, both the inner skin
surface temperature and the crown area indicate that in order to minimize them, the
height of the back face should not exceed 0.2 m, as can be seen in Figure 8, which displays
two-dimensional contour graphs that provide a visual representation of the impact of
changes in the back height parameter on each output parameter. Consequently, in the
next optimization step, the allowable range of values for the back face height parameter
is limited to 0.1 m to 0.2 m, rather than 1 m. The design space range is kept the same
for the optimization step for the back width and front height parameters since these
parameters demonstrate an opposite influence between the output parameters, which
means minimizing one output parameter leads to maximizing the other, as illustrated in
Figures 9 and 10. Regarding the front width parameter, the range is constrained to be
between 0 and 0.04 m, as the minimal values for both output parameters fell within this
range, as displayed in Figure 11.
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Figure 8. Two-dimensional graphs of the impact of changes in Back H parameter.
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Figure 9. Two-dimensional graphs of the impact of changes in Back W parameter.
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Figure 10. Two-dimensional graphs of the impact of changes in Front H parameter.
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Figure 11. Two-dimensional graphs of the impact of changes in Front W parameter.
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2.4. Goal-Driven Optimization

Goal-driven optimization refers to a combination of strategies used to optimize sev-
eral objectives while considering constraints. These techniques aim to identify the most
optimal designs from a given sample set, based on predefined goals established for the
parameters. Response surface optimization and direct optimization are two different types
of goal-driven optimization methods that DesignXplorer provides. A response surface
optimization system relies on the data from its own response surface cell, and hence its
performance is dependent upon the accuracy and quality of the response surface. Screen-
ing, Multi-Objective Genetic Algorithm (MOGA), Nonlinear Programming by Quadratic
Lagrangian (NLPQL), and Mixed-Integer Sequential Quadratic Programming (MISQP) are
the optimization methods that can be used in Ansys [8]. These optimization techniques all
make use of response surface assessments rather than real solves, as is the case in the direct
optimization system.

Due to the presence of two objectives or output parameters in this study, only screening
and multi-objective genetic algorithm methods are applicable. Screening is commonly
employed to identify an initial set of candidate points for a preliminary design; however, a
multi-objective genetic algorithm offers a more sophisticated approach compared to the
screening method [8]. Hence, the optimization is carried out using the multi-objective
genetic algorithm approach. The multi-objective genetic algorithm employed in goal-driven
optimization is a hybrid adaptation of the well-known NSGA-II (Non-dominated Sorted
Genetic Algorithm-II) that incorporates controlled elitism principles.

The process of the multi-objective genetic algorithm begins by using the initial popula-
tion. The second step comes after the first iteration. Each population is run and generates a
new population through cross-over and mutation until it meets the number of samples set
by the property for the number of samples per iteration. The third step involves updating
the design points in the new population. In the fourth step, the optimization is validated to
make sure it has converged, and this can be performed by either achieving the allowable
Pareto percentage or the convergence stability percentage. If the previous conditions are
not met, the procedure proceeds to the fifth step, in which the optimization is assessed
to determine if it satisfies the specified stopping criterion. If the task for the maximum
number of iterations is met, the procedure is halted before achieving convergence. If not,
the procedure iterates steps 2 through 5 and produces a new population until convergence
or the specified stopping criteria are achieved. In this study, the number of initial samples,
the number of samples per iteration, the maximum allowable Pareto percentage, the con-
vergence stability percentage, and the maximum number of iterations are set to the default
value to avoid the process converging prematurely.

To find optimal designs, the optimization cell of a goal-driven optimization system
requires the specification of design goals in the form of objectives and constraints. The
objective type of both output parameters has been specified to be minimized with a target
that is lower than the initial wide mound solution. The target average temperature for
the inner skin surface was set at 54.0 ◦C, while the area of the crown was set at 1.2 m2

with no constraints. Due to the use of response surface evaluations rather than actual
solutions, the optimization procedure took only a few seconds to reveal the results. The
optimization process converged after 543 evaluations. Figure 12 represents the evolution of
the population of these 543 evaluation points during the iterations of the optimization for
each output parameter until it converged, whereas Figures 13 and 14 exhibit the evolution
of the population for each input parameter.
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Figure 12. The population evolution history charts for output parameters.
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Figure 13. The population evolution history charts for Back H and Back W parameters.
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Figure 14. The population evolution history charts for Front H and Front W parameters.

The optimization process revealed the three most optimal candidate points, as illus-
trated in Figure 15. The candidate points share common values with many design points, as
demonstrated in the trade-off chart and the samples chart of the last iteration in Figure 16.
However, the forms of all these points are nearly identical. When compared to the initial
solution of a wide mound, all of the candidate points that were found show outcomes that
are better in both objectives. The average temperature differential on the inner skin surface
was approximately 0.4 ◦C, whereas the crown area had a difference of about 0.3 m2. The
outcome is satisfactory; however, it would be ideal to investigate other possibilities that, at
one point in time, cause the optimization process to give more significance to the target of
the average inner skin surface temperature and, at another point in time, to the objective of
the crown area.
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Figure 15. The first candidate points (the number of gold stars indicate how well the parameter meets
the stated objective).

In the Min-Max search of the response surfaces, the minimum average inner skin
surface temperature achievable is 53.85 ◦C, and the minimum crown area is 0.64 m2.
Consequently, the first optimization target was set to reach 53.85 ◦C, and the crown area
target was set to 2 m2, which is the same as the original wide mound solution. The second
time, the target was the opposite, with the average inner skin surface temperature set to
54.4 ◦C and the crown area target set to 0.64 m2. Figure 17 displays the candidate points of
this optimization that prioritize the objective of the average inner skin surface temperature.
The results indicate that the temperature difference on the average inner skin surface is less
than 0.1 ◦C compared to the initial optimization, which is quite insignificant. Furthermore,
the crown area has risen by around 0.2 m2. As a result, these candidate points were not
considered as optimal solutions.

Figure 18 illustrates the candidate points of the optimization that prioritize the crown
area, revealing a noteworthy finding. This round of optimization resulted in a crown area
that is 1.3 m2 rather than 1.7 m2 in the earlier optimization, and it is 0.7 m2 less than the wide
mound solution in the initial phase. Simultaneously, the inner skin surface temperature
drops by 0.1 ◦C as compared to the initial wide mound solution.

All of these optimizations demonstrate a significant decrease in the average inner skin
surface temperature, particularly in the first optimization, where it achieved a level that
was only around 0.15 ◦C higher than the minimum achievable average temperature for the
inner skin surface. On the other hand, the crown area in the best scenario for optimizing
it still has a difference of around 0.7 m2 when compared to the minimal value that is
reachable. Therefore, a constraint was placed on the target of the crown area, requiring the
optimization to identify design points that are less than the specified upper bound of 1 m2.
Afterwards, the optimization process was updated. This optimization approach resulted in
the identification of certain potential points that have half of the total area of the original
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crown and lead to an only 0.3 ◦C rise in the average temperature of the inner skin surface,
as illustrated in Figure 19.

 

Figure 16. The samples chart (top) and the trade-off chart (bottom).
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Figure 17. The candidate points of the optimization that prioritize the objective of the average
inner skin surface temperature (the number of gold stars indicate how well the parameter meets the
stated objective).

 

Figure 18. The candidate points of the optimization that prioritize the objective of the crown area (the
number of gold stars indicates how well the parameter meets the stated objective).
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Figure 19. The candidate points of the optimization that prioritize the objective of the crown area with
constraint (the number of gold stars indicates how well the parameter meets the stated objective).

The following candidate points were chosen as the best options as a result of all these
optimizations for the wide mound solution. The first design point achieved an inner skin
surface temperature of 54◦ C and a crown area of 1.7 m2, which prioritizes the average inner
skin surface temperature objective. The second optimal solution prioritizes minimizing
the crown area and achieves a 54.7◦ C average inner skin surface temperature and a
0.9 m2 crown area. Both optimal solutions were verified by conducting real CFD solutions
with geometric dimensions that were approximated to two decimal places. These are the
measurements of the first optimal solution, which is called the larger: 0.1 m for the back
height, 0.05 m for the back width, 0.42 m for the front height, and 0.02 m for the front
width. The second optimal solution, which is called the smaller, has dimensions of 0.1 m
for the back height, 0.05 m for the back width, 0.18 m for the front height, and 0.01 m for the
front width.

The larger optimal wide mound solution, when calculated with real CFD simulation,
shows a little higher average inner skin surface temperature than predicted in the final
results. The average inner skin surface temperature was 54.3 ◦C, whereas the crown area
remained the same at 1.7 m2. On the other hand, the outcome of the actual CFD simulation
of the smaller optimal wide mound solution is almost the same as the one that was expected,
which was 54.8◦ C for the average temperature of the inner skin surface and 0.9 m2 for the
area of the crown. Figure 20 displays a visual comparison between the final two optimal
wide mound solutions.
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Figure 20. The optimal wide mound solutions.

3. The Optimal Solution Application
3.1. Solutions Comparison

During the parametric optimization process, two optimal solutions were identified for
the wide mound façade design. To determine which of the two offered the best balance
between reducing façade surface area and lowering the average temperature of the inner
skin, additional CFD simulation scenarios were conducted. These simulations replicated
the conditions previously applied to the baseline and unventilated façades in the author’s
previous study [3], including variations in wind velocity, wind direction, and solar exposure.
The aim was to evaluate performance under realistic environmental conditions, and the
best-performing solution was later implemented on a multi-floor commercial building in
Riyadh, Saudi Arabia.

To streamline the analysis, simulations were conducted under 10 km/h wind speed
with full sun exposure, as this condition reliably indicated performance outcomes. These
additional simulation scenarios focused specifically on the 10 km/h windward condition
during full sun exposure, as this was found to be a reliable indicator of a solution’s
performance based on the author’s previous study [4]. This approach allowed for a
meaningful comparison between the two wide mound options in terms of both thermal
performance and design efficiency. In terms of surface area, both wide mound options had
slightly higher values compared to the baseline façade, but the difference between them
was relatively minor, as illustrated in Figure 21.
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Figure 21. The total façade surface area of each solution in comparison to the baseline façade [3].

When assessing performance under different wind velocities, the larger wide mound
solution consistently demonstrated better thermal performance than the smaller version.
At all tested wind speeds (5, 10, and 20 km/h), the larger design exhibited lower average
inner skin temperatures, with a maximum difference of 0.5 ◦C observed at lower wind
speeds, as shown in Figure 22. Similarly, when wind direction varied, the larger wide
mound performed slightly better, particularly under windward and side winds compared
to the smaller option. Under leeward winds, both solutions had similar performance, as can
be seen in Figure 22. In terms of solar exposure, both options behaved comparably under
partial shading. However, the larger wide mound maintained a slight advantage when
façades were fully exposed to the sun, as shown in Figure 22. Across all environmental
scenarios, including variations in wind velocity, wind direction, and sun exposure, the
larger wide mound solution consistently demonstrated better overall performance. While
its thermal advantage over the smaller option was modest, it was consistent, and its surface
area remained within a reasonable range. Overall, the larger wide mound solution proved
to be the most effective in achieving the dual objectives of reducing both average inner skin
surface temperature and façade surface area. Its consistent performance across varying
environmental conditions made it the most suitable final choice for implementation.

3.2. Solution Application

The analysis has determined that the larger wide mound solution is the most optimal
solution that can be achieved. Therefore, this solution has been implemented on a facade
of three-floor commercial building in Riyadh, Saudi Arabia. This step verifies whether
the performance of the optimal design remains comparable to that of the one that was
measured and implemented on the 3 × 3 × 3 m test cell, which represents a single-floor
building. In addition, to demonstrate how the building appears from an architectural
standpoint when represented in a manner that is nearly the same as the real building.

In order to match the earlier findings, the same CFD simulation settings were employed
in this stage. An expanded domain was built around the building in order to capture all
flow motions. This was necessary because the façade of the three-floor commercial building
is larger than the single-floor test cell used in the entire study. The measurements of the
tested three-floor larger wide mound solution in this section are 9 m in width and 9 m
in height.

Since the previous optimal solutions comparison section reaffirmed that a 10 km/h
windward during full sun exposure simulation is sufficient to provide an accurate indicator
of a solution’s performance, the CFD simulation results for this case were conducted under
such conditions. The CFD simulation results yielded an interesting finding. The velocity



Buildings 2025, 15, 4130 25 of 32

contour images of both the single-floor and the three-floor larger wide mound solutions
are shown in Figure 23. Additionally, the average air velocity in the middle of the cavity is
shown in this figure. It is evident that there was a noticeable increase in average air speed
within the three-floor larger wide mound solution’s cavity. The average air velocity in the
cavity adjacent to only the lower floor of the three-floor larger wide mound solution, which
is the first three meters from the ground, was 13.9 km/h, which is more than 43% faster than
the velocity in the case of the single-floor larger wide mound solution. Consequently, the
rise in the number of floors resulted in an advantageous influence on the average airflow
velocity within the cavity.

(A) 

(B) 

(C) 

Figure 22. The average inner skin surface temperature comparison of each solution under varying
environmental parameters: (A) wind velocity, (B) wind direction, and (C) solar exposure [3].
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Figure 23. The velocity contour images and the average air velocity inside the cavity chart of both the
single-floor and the three-floor larger wide mound solutions.

The rise in the average airflow velocity within the cavity of the three-floor larger wide
mound solution led to a decrease in the average temperature of the inner skin surface,
particularly on the lower floor, which experienced the highest average airflow speed. The
average inner skin surface temperature on the lower floor was 53.0 ◦C, representing a
reduction of 0.3 ◦C compared to the average inner skin surface temperature of the single-
floor larger mound solution.

However, when the entire three-floor average inner surface temperature was taken
into account, the average inner surface temperature of this three-floor larger wide mound
solution was 55.6 ◦C, as shown in Figure 24. In opaque ventilated facades, the stack or
chimney effect occurs, which causes the warm air to rise, making it buoyant and pressing
upward to exit the cavity through the outlet. This is the reason why the average temperature
of the inner skin surface of the middle and upper floors increased. This was due to the
fact that the air temperature inside the cavity had dramatically increased, as shown in
Figure 25.
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Figure 24. The average inner skin surface temperature of both the single-floor and the three-floor
larger wide mound solutions.

 
Figure 25. The air temperature inside the cavity of both the single-floor and the three-floor larger
wide mound solutions.
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The application of the larger wide mound solution to low-rise buildings with multiple
floors remains effective in enhancing the thermal performance of the opaque ventilated
façade and substantially reducing the average inner skin surface temperature, without
adversely affecting performance. However, there are situations in which the height of a
floor can reach up to 5 m. This indicates that the solution for the three-floor larger wide
mound should be examined not only when the total height is 9 m but also when it is
15 m. Another CFD simulation was carried out for a similar façade, but with a height of
15 m, to evaluate the effectiveness of this solution in lowering the average inner skin surface
temperature. This 15 m-high façade can be viewed as either a tall three-floor building or a
five-floor building, each 3 m tall.

The CFD simulation results clearly indicate a significant rise in average air speed
within the cavity of the five-floor-wide mound solution, as depicted in Figure 26. The
average air velocity in the cavity next to the lower floor was 15.6 km/h, over 60% faster
than the velocity in the single-floor larger wide mound solution. As a result, the increased
number of floors continued to have a positive effect on the average airflow velocity within
the cavity.

 
Figure 26. The air velocity inside the cavity of all the five-floor, three-floor and single-floor larger
wide mound solutions.

The increased airflow velocity in the cavity of the five-floor larger wide mound solution
resulted in a drop in the average temperature of the inner skin surface, especially on the
lowest floor where the airflow speed was maximum, as shown in Figure 27. The average
inner skin surface temperature on the lower floor was 52.5◦ C, which was 1.8◦ C lower than
the average inner skin surface temperature of the single-floor larger wide mound solution.
When the average inner surface temperature of the five floors was taken into consideration,
the average inner skin surface temperature was 56.0◦ C. The difference between the average
inner surface temperature of the three-floor larger wide mound solution and the average
inner surface temperature of the five-floor solution was only 0.4◦ C higher. This indicates
that even when the facade reaches 15 m, this solution continues to be effective in improving
the thermal performance of the opaque ventilated façade.
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Figure 27. The average inner skin surface temperature of the five-floor larger wide mound solutions.

When applied to a three-story commercial building in Riyadh, Saudi Arabia, the
larger wide mound façade solution demonstrates its potential for seamless architectural
integration. One of the most notable advantages of this system is its versatility, allowing
it to be incorporated into a wide range of building designs without requiring alterations
to the original façade concept. As shown in Figure 28, the façade retains a conventional
appearance when viewed from the human perspective. The only visible distinction is a
20 cm elevation from the ground, which serves as the air inlet to the concealed cavity. This
minimal change allows architects to implement the solution without compromising their
intended design vision. Furthermore, the system supports a variety of outer skin materials,
enabling it to adapt to different architectural styles and esthetics, as can be seen in Figure 28.
This flexibility ensures that the façade can be customized to meet the specific visual goals of
each project. In terms of constructability, the proposed design follows standard practices for
opaque ventilated façades. The additional top wide mound component can be fabricated
using conventional or digital manufacturing methods and installed on top of the façade
without the need for specialized labor, making the system both practical and efficient
to implement.
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Figure 28. The appearance of the larger wide mound solution on a three-floor commercial building in
Riyadh, Saudi Arabia.

4. Conclusions
This study presented an integrated computational framework for the multi-objective

optimization of biomimetic opaque ventilated façades (OVFs) tailored to hot arid climates.
By combining parametric modeling, CFD simulations, and machine learning-based surro-
gate models within the Ansys DesignXplorer environment, the research demonstrated an
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efficient and scalable approach for optimizing complex façade systems. A key contribution
of this research is the novel application of machine learning algorithms to accurately predict
CFD simulation outcomes for opaque ventilated façades. This predictive capability allowed
for the generation and evaluation of a vast number of design alternatives without the need
for time-intensive real-time simulations. Additionally, the study established a direct link
between parametric modeling tools and CFD simulations, enabling the development of a
fully computationally optimized façade design grounded in performance-based criteria.

This framework offers several advantages, including reduced computational time, the
ability to evaluate a large number of design configurations, and strong predictive capability.
However, some limitations remain, particularly the restricted access to internal machine
learning parameters and reliance on automated algorithms within the software environ-
ment. Recognizing these aspects helps guide future improvements in the transparency and
adaptability of similar optimization workflows.

The optimization process identified the larger wide mound configuration as the most
effective solution, demonstrating superior thermal performance compared to the original
bio-inspired geometry. Subsequent simulation scenarios and building-scale applications
confirmed the practical viability of this biomimetic OVF design. When implemented in
low-rise commercial buildings in hot desert regions, the design significantly reduced the
inner skin surface temperature and enhanced overall thermal performance. Moreover, it
proved to be constructible using conventional façade techniques and adaptable to various
architectural styles without requiring alterations to the external appearance.

Future research should focus on refining airflow control strategies, such as adjust-
ing vent sizes and introducing intermediate or adjustable vents. Further investigation
into long-term energy performance, real-world prototyping, and integration with smart
building systems will also help advance the applicability of biomimetic OVFs in diverse
climatic contexts.

Overall, this research advances the field by introducing a replicable, performance-
driven workflow that integrates bio-inspired design, simulation-based optimization, and
machine learning. The findings support the development of high-performance building
envelopes in extreme climate conditions and open avenues for further exploration into
lifecycle performance, real-world prototyping, and broader architectural integration.
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