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Confronting general relativity with principal component analysis:
Simulations and results from GWTC-3 events
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We present a comprehensive assessment of multiparameter tests of general relativity (GR) in the
inspiral regime of compact binary coalescences using principal component analysis (PCA). Our analysis is
based on an extensive set of simulated gravitational-wave (GW) signals, including both general relativistic
and non-GR sources, injected into zero-noise data colored by the noise power spectral densities of the
LIGO and Virgo GW detectors at their designed sensitivities. We evaluate the performance of PCA-based
methods in the context of two established frameworks: TIGER and FTI. For GR-consistent signals, we
find that PCA enables stringent constraints on potential deviations from GR, even in the presence of
multiple free parameters. Applying the method to simulated signals that explicitly violate GR, we
demonstrate that PCA is effective at identifying such deviations. We further test the method using
numerical relativity waveforms of eccentric binary black hole systems and show that missing physical
effects—such as orbital eccentricity—can lead to apparent violations of GR if not properly included in the
waveform models used for analysis. Finally, we apply our PCA-based test to selected real gravitational-
wave events from GWTC-3, including GW190814 and GW190412. We present joint constraints from
selected binary black hole events in GWTC-3, finding that the 90% credible bound on the most
informative PCA parameter is 0.0370¢% in the TIGER framework and —0.01700; in the FTT framework,
both of which are consistent with GR. These results highlight the sensitivity and robustness of the
PCA-based approach and demonstrate its readiness for application to future observational data from the
fourth observing runs of LIGO, Virgo, and KAGRA.
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I. INTRODUCTION
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these models aim to capture hitherto unknown physics, they
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tested against data, this high dimensionality can hinder
inference by diluting constraints or inflating uncertainties.
Principal component analysis (PCA), a linear algebra
technique, offers an effective solution to this challenge.
PCA reduces the effective dimensionality of the parameter
space by identifying the best-measured linear combinations
of the original parameter set without compromising on the
information content in the data. It has been used recently in
the context of gravitational-wave-based (GW-based) tests
of GR [7-13].

Our focus here is on parametrized tests of compact binary
inspirals [14-23]. The adiabatic inspiral phase of a compact
binary is well described by post-Newtonian (PN) theory (see
Ref. [24] for a review), in which the amplitude and phase of
the gravitational-wave signal are expanded in powers of the
characteristic orbital velocity » of the binary [25]. Since the
phase evolution carries more critical information for param-
eter inference than the amplitude, a widely used approach
for parametric models of the GW phase in a non-GR theory
is to introduce additive deviations to the PN phasing
coefficients at various orders—eight in total till 3.5PN,
corresponding to O(v/c)” [19,21,23]. Recently, Ref. [26]
reported the 4.5PN phasing expression for quasicircular,
nonspinning compact binaries; however, in this work, we
restrict ourselves to the 3.5PN order since the newly
computed terms are yet to be integrated into the standard
tests of GR.

The PN phasing coefficients elegantly capture the rich-
ness of nonlinear effects in the compact binary dynamics
(such as “tail” effects [25,27,28], tails of tails [29], tail
square [30], memory effects [31-34], spin-orbit effects
[35,36], spin-spin effects [35,37], etc.) at different PN
orders in GR. Since these effects in a non-GR theory can
differ from GR (see, for instance, Ref. [38] for scalar-tensor
gravity theories), the additive parameters in the phasing are
sensitive to such deviations. The parametrization is termed
null because all deviations vanish identically in GR; thus,
any statistically significant departure from the null hypoth-
esis could hint at physics beyond GR. This formulation of
the inspiral phase enables several distinct strategies for
testing GR, which we now discuss.

A. Single versus multiparameter tests

There are different ways in which these tests can be
performed.' Along with the usual GR parameters, one can
choose to (a) estimate only one parameter at a time

lCurrently, the inspiral tests performed in the LVK papers use
ten PN deformation parameters. These include eight fractional
PN deformation parameters corresponding to the eight non-
vanishing PN coefficients in GR up to 3.5PN order, along with
absolute PN deformation parameters at the — 1PN dipole term and
the 0.5PN term. We do not include the absolute deformation
terms in this analysis and consider deformations only to those
which are nonzero in GR.

(keeping all other testing GR parameters fixed at zero),
(b) estimate all the parameters simultaneously, or (c) esti-
mate a subset of them together while keeping the others
fixed at zero. The single-parameter tests in (a) are the
simplest among the tests that can be performed and are the
ones implemented by the LIGO-Virgo-KAGRA (LVK)
Collaboration [1,2,4,5], but they are subject to a funda-
mental limitation related to the theoretical framework of
gravity. Should the true theory of gravity differ from GR,
several phasing coefficients may deviate from their GR
values. Therefore, a test of GR where all eight (or a
sufficiently large number of) PN deformation coefficients
are varied simultaneously would be ideal. Such a test
involves estimating several additional parameters besides
the standard GR ones from the data. This is a daunting task
due to the strong degeneracies between the parameters that
lead to uninformative posteriors. For example, Ref. [1]
performed such a multiparameter test on GW150914 [39]
and found uninformative posteriors on the PN deformation
parameters due to the aforementioned correlations among
parameters (see Fig. 7 of Ref. [1]).

The curse of dimensionality could be mitigated by
multiband observations, where data from both space-based
detectors, such as the Laser Interferometer Space Antenna,
and ground-based observatories operating at that time are
jointly analyzed for the same source [40,41]. Unfortunately,
current GW detectors lack the sensitivity required to break
the correlations between various parameters. The question
then becomes whether there exist interesting parameters in
terms of which a multiparameter test can be cast without
having to deal with the parameter degeneracies. In this
context, Ref. [42] proposed that a waveform model para-
metrizing the GW amplitude and phase in terms of the
radiative multipole moments of the binary system [43-46]
could serve as an effective approach to enable high-
precision, multiparameter tests of GR.

In the current implementation of parametrized PN tests
within the LVK tests of GR, PCA can be of help since it can
identify the best-measured linear combinations of the
original eight PN parameters, bringing down the dimen-
sionality of the non-GR parameter space. Despite having
the advantage of dealing with lower-dimensional parameter
space, the posteriors of the PCA parameters carry the
information of the original multiparameter test. In other
words, instead of choosing to test one of the eight PN
parameters at a time, PCA allows one to optimize the
multiparameter test of GR by identifying the new set of
parameters that account for most of the information and
have the least correlation between them.

B. Review of PCA-based tests in the literature

Reference [7] proposed the idea of PCA to address the
problem of degeneracies caused when one looks for
simultaneous departures from GR predictions in several
of the PN coefficients [16]. Using 3.5PN accurate
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nonspinning phasing in the frequency domain [25,47—49],
the authors argued that the linear combination of the
original PN coefficients can be measured with significantly
better precision [O(107%)~O(107*)] than the original PN
coefficients using second-generation or third-generation
ground-based detector configurations. Recently, Ref. [9]
carried out such a test in the case of GW170817 [50], for
which the inspiral-based PN waveform model TaylorF2
[51] was accurate enough, and derived the bounds on the
PCA parameters.

Reference [10] revisited the problem in terms of PN
fractional deformation parameters (as opposed to directly
using the PN phasing coefficients as observables [7,9]) that
are regularly employed for testing GR using the Test
Infrastructure for General Relativity (TIGER) [21,22]
and Flexible Theory-Independent (FTI) [23] frameworks.
As mentioned earlier, these are fractional additive defor-
mations introduced at every PN order which, by definition,
are zero in GR. First, they performed a multiparameter test
of GR varying six out of the eight PN deformation
parameters along with all the standard GR parameters in
a binary black hole (BBH) signal. Then, they obtained the
covariance matrix corresponding to the six-dimensional
posteriors of the deformation parameters by marginalizing
over the GR parameters, in the TIGER framework. The
covariance matrix was then diagonalized to obtain the new
set of parameters that are linear combinations of the
original deformation parameters. These are referred to as
PCA parameters. The precision with which the PCA
parameters are inferred was studied for a variety of
simulated signals. As expected, the PCA-based method
yields significantly tighter constraints on deviations from
GR than the original multiparameter approach.

When fiducial non-GR signals are injected, the PCA-
based method is capable of excluding GR with high
statistical confidence, provided the signal-to-noise ratio
(SNR) is sufficiently large: For a non-GR signal with an
SNR of 54, GR was ruled out at a confidence level of ~14c,
while an SNR of 40 yielded a 11 exclusion. In contrast, a
signal with an SNR of 27 led to a GR exclusion at only
~4¢. This demonstrates the method’s sensitivity to both the
SNR and the injected deviation.

Additionally, Ref. [10] also carried out this test on a
selected subset of GW events in the first GW transient
catalog [52] and obtained the corresponding bounds on the
PCA parameters.

C. This work

In this paper, we extend the work of Ref. [10] by
performing a comprehensive study that includes both the
TIGER and FTI frameworks, a wider set of injections
covering precession and nonquadrupole modes, and a
broader range of GR and non-GR signals. This is an
important step before deploying the PCA-based test of GR
(or “PCA-TGR”) on the real signals as they will exhibit

several of these physical effects. Precisely quantifying the
test’s response to a diverse set of injections is crucial for
identifying potential systematic biases and for accurately
interpreting results from real events—the primary objective
of the present study.

More specifically, in this paper, we address the following
questions:

(1) How does PCA-TGR respond to different types of
GR injections, which cover different physical effects
present in the waveform, and how confidently does it
recover GR?

(2) How well can PCA-TGR detect a GR violation, and
how does this ability depend on SNR, with analyses
carried out independently using both the TIGER and
FTI frameworks and considering a broader range of
deviation scenarios, beyond the case where all PN
coefficients are deformed by the same magnitude?

(3) How does PCA-TGR respond to unmodeled physics
in the waveform, such as eccentricity? Which of the
PCA parameters capture this “false” GR violation?

(4) What do the PCA-TGR results tell us about possible
GR violation when applied to selected GWTC-3
[4,53] events?

This paper is organized as follows. Section II details the
analysis framework. Sections III and IV report the results
from GR and non-GR injections, respectively. Section V
discusses how PCA-TGR responds to eccentric numerical
relativity (NR) injections, and Sec. VI discusses the results
from selected events from the third observing run of LVK.
Section VII summarizes the conclusions and caveats of the
method.

II. ANALYSIS FRAMEWORK

In GR, the early inspiral phase of a gravitational-wave
signal from a compact binary coalescence is well approxi-
mated by the PN formalism [24,25]. In this formalism, the
amplitude and phase of gravitational waves are expressed
as a series in powers of the characteristic orbital velocity v
of the system. The frequency domain GW phase of the
inspiral part from a quasicircular compact binary, computed
using the stationary phase approximation [54,55], for the
leading quadrupolar harmonic [56-58], takes the following
form in GR

3
12850°

Ping(f) = 2ft, = e =5 +

k=7
<X @t pumoyst 00 )

k=0

where ¢, and ¢,. are the time and phase of coalescence, and
n is the symmetric mass ratio defined as the ratio of the
reduced mass to the total mass of the binary. The character-
istic orbital velocity parameter, in geometrical units, is
given by v = (zMf)'/3, where f is the GW frequency and
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M is the (redshifted) total mass of the binary.2 Terms with a
kth power of v are identified as the k/2 PN order
corrections to the GW phase. The PN coefficients, denoted
by ¢; (nonlogarithmic) and ¢, (logarithmic), are unique
functions of the compact binary’s component masses and
spins, capturing several physical effects and nonlinearities
in GR. In GR, up to 3.5PN order, the logarithmic
coefficients ¢, are nonzero only for k = 5, 6.

A. Multiparameter test of general relativity

In alternative theories of gravity, one or more of the PN
coefficients may show deviation from GR [6,38,59,60].
They may have different dependencies on the component
masses and spins than GR, and/or they may depend on
additional parameters that characterize the alternative
theory (see, for example, Ref. [38] for scalar-tensor gravity
theories).

The parametrized inspiral tests search for possible
deviations from the unique structure of the PN coefficients
predicted by GR. This is done by introducing phenom-
enological, dimensionless fractional deviation parameters
into the PN coefficients [1,19-21]:

by = PSR(1+ 5. (2)

where the subscript “b” collectively represents both loga-
rithmic and nonlogarithmic coefficients of Eq. (1). This is a
theory-agnostic approach wherein the parametrized frac-
tional deviations 5&7;, are identically zero in GR, whereas in
alternative theories of gravity, one or more of these
parameters could differ from zero. Therefore, a direct

measurement of 5&517 using GW data allows us to constrain
any deviation from GR. Such tests are referred to as “null”
tests of GR, with the null hypothesis being GR.
Currently, among LVK analyses, there are two different
frameworks that can perform this type of GR null test. The
first one is TIGER [21,61], and the second is FTTI [23].
The two frameworks differ in the choice of baseline GR
waveform models and in how the inspiral test is imple-
mented. TIGER [62] uses the IMRPhenomX waveform
family [63-65], which accounts for precession, as the
baseline GR waveform model. The FTI [66] relies on the
SEOBNRv4_ROM waveform family [67-69] and is cur-
rently limited to aligned-spin systems. In the TIGER
framework, the fractional PN deviation parameters are
added directly to the PN coefficients in the frequency-
domain inspiral phase of the IMRPhenomX waveform
family, which ends at the minimum energy circular
orbit (MECO) frequency. In the FTI framework, the
fractional PN deviation parameters are added to the full

*We note that in the LVK papers, (1 4 z)M is used to denote
the redshifted total mass, where z is the cosmological redshift and
M is the source-frame total mass. Here, however, we denote M as
the redshifted (detector-frame) total mass for brevity.

frequency-domain inspiral-merger-ringdown phase of the
SEOBNRv4_ROM waveform family and are smoothly
tapered off at the frequency corresponding to the peak
of the (2, 2) mode. Note that parametric fractional
deviations are only applied to the nonspinning portion
of the inspiral phase in both frameworks.”

In the current implementation of this null test by the LVK
Collaboration, only one fractional deviation parameter,
by, is varied at a time while keeping the others fixed at
their GR values to obtain the bounds on all the fractional
deviation parameters. We refer to this approach as single-
parameter tests, which leads to a set of null tests of GR,
each corresponding to a PN coefficient, although the tests
are not necessarily all independent. While single-parameter
tests can detect deviations from GR [70,71], they cannot be
uniquely attributed to a real deviation at the corresponding
PN order due to degeneracies in the waveform. In other
words, it is possible that a deviation at particular PN order
in a non-GR theory can be suboptimally captured by a test
which looks for departures at a different PN order.
Additionally, single-parameter tests ignore potential mod-
ifications of multiple PN coefficients, which can lead to an
underestimation of errors and biases [72]. As a conse-
quence, despite their ability to detect GR deviations, the
single-parameter tests provide a somewhat limited insight
into the nature of alternative theories of gravity.

In light of the limitations of single-parameter tests, we
advocate for a more robust multiparameter approach to test
GR, wherein multiple fractional deviation parameters are
varied simultaneously [7,16,61,70]. More specifically, we
consider simultaneous variation of all the fractional defor-

—_— —
mation parameters: { 8¢ ;, 6¢ 1, }. Taking into account the
inspiral phase in GR up to 3.5PN order with nonzero PN
coefficients, we have a set of eight fractional deformation
parameters*:

5—¢)k = {5&0’ 5&2’ 5&37 5&547 5‘2’6’ 5&57}’ (3)

5 1o = {5dse, ber}- (4)

The major obstacle of performing this class of tests is the
uninformative posteriors due to high correlations between
the parameters. We employ principal component analysis to
remedy this shortcoming and identify the best measured

3This choice is motivated by the convenience of mapping the
results to nonlinear effects in general relativity, such as tails, tails
of tails, and so on. Since we are performing null tests, whether the
deformation is applied to the total phasing or only to the
nonspinning part will have a negligible impact on the results.
However, this distinction should be kept in mind when interpret-
ing the outcomes of the tests.

We do not consider fractional deviations to the nonlogar-
ithmic term at 2.5PN order, 6¢s, as it is independent of frequency
and can therefore be absorbed by redefining the phase at
coalescence, ¢,.
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linear combinations of the deformation parameters
[7,9,41,73]. The details of the method are described below.

B. Bayesian formulation
The baseline GR waveform model for a BBH is a
function of several binary parameters (denoted as éGR),
including component masses, spins, luminosity distance,
and angular parameters describing the orientation of the
binary orbit. For nonprecessing and precessing BBHs on
quasicircular orbits, §GR contains 11 and 15 parameters,5

respectively. In addition to §GR, the parametrized waveform
models under consideration are also functions of eight
- —_— —
fractional PN deviation parameters: 6p = { 8¢ 1, 6¢ s}
In general, the parametrized waveform models depend on
m GR parameters and n fractional deviation parameters.
In a multiparameter test of GR, this implies running a
Bayesian parameter estimation algorithm to infer m GR
parameters 90R and n non-GR parameters GD Given a
hypothesis H that the data d; of event j are a sum of
Gaussian noise and a GW s1gna1 described by a waveform
model that is a function of HGR and HD parameters the

posterior probability distribution of parameters HGR and HD
can be written using Bayes’ theorem as

£(d;1{0ax, 0o} H)x({0r Oo} M)

p({éGRvéDde’H): Z(d;|H)

(5)

Here, 7({fz. QD}|H) is the prior probability distribution

of HGR and Op, L(d, |{€GR,9D} H) is the likelihood
function, and Z(d;|H) is the Bayesian evidence in favor
of the hypothesis H. To generate discrete samples for the
probability distribution function p({éGR,éDHd i H), we
used the Bayesian parameter inference package BILBY TGR
[74] based on BILBY [75,76], with the DYNESTY [77]
sampler (which uses the nested sampling algorithm
[78]). We adopt the prior probability distribution

7({6gr. O }|H) following the standard setup used in the

The observed GW signal emitted by quasicircular, precessing
BBHs within GR depends on 15 parameters: detector-frame
masses m; (primary black hole) and m, (secondary black hole);
spin magnitudes y, and y,; spin-orbit tilt angles #; and 6, (angles
between the spin vectors and the orbital angular momentum); spin
azimuthal angle difference ¢, (the difference between the
azimuthal angles of the two spin vectors); ¢;; (the angle between
the orbital and total angular momentum); inclination angle 6,y
(between the line of sight and total angular momentum);
luminosity distance D;; sky location (right ascension a and
declination §); polarization angle y; time of coalescence, 7..; and
phase at coalescence, ¢,.. For aligned-spin binaries, only two spin
parameters (y;, y,) are relevant, reducing the total number of
parameters to 11.

publicly available LVK data [4,53,79]. This means for the
GR sector the detector-frame component masses and spin
magnitudes of individual black holes have uniform priors,
while spin orientations are distributed isotropically over a
sphere. The luminosity distance D; is assigned a prior so
that sources are uniformly distributed in the comoving
volume and source-frame time. The priors for all other
angular parameters are chosen to be isotropic over a sphere.
In general, the chosen priors of the standard GR parameters
are uninformative and sufficiently broad to encompass the
regions of the parameter space where the posterior dis-
tributions are supported while also balancing computa-
tional efficiency and remaining within the calibration range
of the waveform models. For the non-GR parameters, we
assume a uniform symmetric prior between —20 and 20,
centered at zero.

As our focus is on the fractional deformation parameters,
we marginalize Eq. (5) over the m GR parameters to obtain

n-dimensional joint posterior distribution of 6,

p(@old; H) = / p(106x.Op}ld; H)dBer.  (6)

Moreover, we only vary six deviation parameters
from 1.5PN to 3.5PN, fixing the OPN and 1PN deviation
parameters to their GR value of zero, leading to
Op = {503,504, 5¢ss. 5. 5pes. 67 }. The reason for this
is explained at the end of Sec. Il C. We do not consider
—1PN and 0.5PN deviations, which we set to zero.

C. Principal component analysis
As noted earlier, the fractional deformation parameters

5]3 are generally correlated. Consequently, a multipara-
meter test using the fractional deformation parameters
described in the previous section can lead to degenerate
posteriors, resulting in a nondiagonal covariance matrix in
their joint distribution. To address this, we aim to construct
a new set of orthogonal parameters by rotating the axes of
the original fractional deformation parameters such that the
resulting covariance matrix becomes diagonal. This is
accomplished by using the principal component analysis,
following the method outlined in Ref. [10], with the key
steps summarized below.

(i) We compute the variance-covariance matrix for

fractional deviation parameters from the éD poste-
riors obtained in Eq. (6),

Cap = (640 = (50)) (b, = (5s))).  (7)

where the angular brackets denote averaging over
the marginalized posterior distribution.
(i) We diagonalize the covariance matrix C as

C=USU", (8)
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(iif)

(iv)

™)

where S is the diagonal matrix containing the
eigenvalues, and U is the unitary matrix whose
columns are the corresponding eigenvectors repre-
senting the transformation of the basis vectors. Here,
we use the numpy . 1inalg. svd function in Python
[80] to diagonalize the covariance matrix—or more
specifically, to obtain the U and S matrices.

In this context, S represents a diagonal variance-
covariance matrix corresponding to the new defor-
mation parameters, which are obtained by applying
the transformation matrix U (with elements a;;,) on
the original deformation parameters,

Spin = > iy, )
D

which we refer to as the PCA parameters.

PCA has an inherent sign ambiguity because the
direction of eigenvectors is not uniquely defined;
flipping the sign of an eigenvector does not change
the variance it explains. In other words, both u; and
—1u; are valid eigenvectors of the covariance matrix
C, yielding the same diagonalized form S. This
ambiguity carries over to the principal components

5&5% A» potentially causing inconsistencies in inter-
pretation across analyses of different GW events. To
resolve this, we adopt a sign convention in which
each eigenvector, and the corresponding principal
component, is adjusted based on the sign of the
eigenvector’s largest (in magnitude) element—
ensuring it is always positive. This choice does
not affect the statistical properties of the PCA
parameters but guarantees consistency in the orien-
tation of the new basis. As a result, the PCA
parameters remain well defined and on a comparable
footing across different GW events in our analysis.
We perform numerical consistency checks to vali-
date the diagonalization procedure. First, we assess
the orthonormality of the transformation matrix U
by evaluating the maximum absolute value of the
off-diagonal elements of UUT —T:

T _
max|(UU" =Dy, (10)

where (I),, denotes the element in the ath row and
bth column of the identity matrix. This should
vanish for a perfectly orthonormal matrix. Second,
we reconstruct the covariance matrix using C =
USUT and compute the Frobenius norm of the
difference with the original covariance matrix:

IUSUT = C|l . (11)

to quantify the total reconstruction error introduced
by the numerical diagonalization.

In all cases applied here, we find that the maxi-
mum off-diagonal element of |[UUT| is O(1071),
and the Frobenius norm of USUT — C is O(10713),
confirming the numerical stability and internal con-
sistency of the PCA-based diagonalization.

(vi) The primary advantage of the PCA formalism is
dimensionality reduction. In our case, this is guided
by examining the eigenvalues, i.e., the diagonal
elements of the matrix S. Each eigenvalue corre-
sponds to the variance (squared uncertainty) of the
posterior along the direction defined by the asso-
ciated eigenvector in U. A hierarchy naturally
emerges: eigenvectors associated with smaller ei-
genvalues correspond to directions with tighter
constraints and, hence, carry more information.
Conversely, directions with large eigenvalues (i.e.,
large error bars) are poorly constrained and largely
uninformative—often yielding posteriors that re-
semble the priors. Therefore, such directions can be
safely excluded from further analysis, enabling a
truncated, lower-dimensional representation of the
parameter space depending on the acceptable tol-
erance in reproducing the data with the lower
dimensional PCA parameters.

(vii) The information content encoded in the posterior
distribution can be assessed using the inverse of the
covariance matrix, also known as the information
matrix. The overall information can then be quanti-
fied by computing the determinant of the inverse of
S. Previous studies [10,12] have shown that retaining
only the two most tightly constrained principal
components often captures more than 99% of the
total information. In this work, rather than relying
solely on eigenvalue hierarchy, we also use the
Jensen-Shannon (JS) divergence [81] to determine
the number of PCA parameters to retain. Specifically,
we retain only those PCA components for which the
JS divergence between the posterior and prior dis-
tributions exceeds 0.1 bits, ensuring that the selected
components carry meaningful information gained
from the data.

Equation (9) defines a new set of dimensionless defor-
mation parameters, each of which is a linear combination of
the original PN fractional deviation parameters. These
transformed parameters effectively encapsulate the joint
information content of a multiparameter test. The approach
outlined above is data-driven, meaning that the new
parameters are derived directly from the posterior distribu-
tion, making the resulting parametrization inherently unique
to each event. Because the posterior is unique to each event,
this motivates the use of a data-driven parametrization, as it
allows the method to adapt to the information content of
each event while avoiding assumptions about the underlying
parameter values. An alternative strategy involves estimat-
ing the covariance matrix using the Fisher information
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matrix formalism [82-85]. However, this requires prior
knowledge of the true parameter values—information that is
generally inaccessible, especially in scenarios where devia-
tions from GR might be present. Furthermore, preliminary
investigations have shown inconsistencies between Fisher
matrix predictions and the outcomes of the data-driven
approach, likely due to the approximations and limitations
inherent in the Fisher formalism for the SNRs of typical
LVK events, such as bimodality and other non-Gaussianities
in the posteriors.

In the current formulation of the PCA-based multi-
parameter test, we exclude OPN and 1PN fractional
deformation parameters and instead vary coefficients from
1.5PN to 3.5PN. This is due to the limited sensitivity of
current GW detectors, which cannot effectively disentangle
these lower-order fractional deformations from intrinsic
binary parameters like the chirp mass and symmetric mass
ratio. Furthermore, the lower PN deviation parameters are
already tightly constrained by binary pulsar observations
[86,87]. For this reason, the current analysis is limited to a
six-dimensional multiparameter test, with deformation
parameters introduced at orders ranging from 1.5PN to
3.5PN. However, with future improvements in detector
sensitivity or the observation of high-SNR events with
longer inspirals, the PCA framework can be extended to
perform a full eight-dimensional test, enabling a more
complete exploration of PN deformations.

D. Combining information from multiple events

The PCA parameters, obtained by the procedure outlined
above, will be different for different events. Therefore, joint
constraints on the PCA parameters have to be clearly
defined. There are two commonly used approaches for
combining results from single-parameter tests of GR across
multiple GW events. The first approach, which we adopt in
this work, involves multiplying the individual likelihoods of
the deformation parameters obtained for each event [20,88].
This method assumes that the value of each deformation
parameter is identical across all events, an admittedly strong
and potentially unrealistic assumption given the variation in
source properties, but one that is valid if GR holds true. An
alternative approach involves hierarchical inference [89,90],
which models event-to-event variation through a population
distribution, typically modeled as Gaussian.

In the context of PCA-based multiparameter tests, com-
bining results across events presents additional challenges.
Unlike single-parameter analyses, PCA parameters are
event-specific due to differences in the transformation
matrix that defines them. As a result, the same PCA index
corresponds to different linear combinations of the original
fractional PN deviation parameters across events, making
the post-PCA combination technically inconsistent. We
therefore combine events at the level of the original multi-
parameter posteriors—using the shared-parameter likeli-
hood multiplication method adopted in this work—and

then perform PCA on the combined posterior. While a
hierarchical approach could, in principle, be extended to this
setting, modeling the joint distribution of six correlated
parameters would require estimating 27 hyperparameters
under the Gaussian model assumption, a task not yet
explored in high-dimensional GW analyses. We leave such
developments to future work.

To combine data from a set of, say, N events, we begin
by computing the six-dimensional marginalized likelihood

for the deformation parameters, éD, for each event, follow-
ing Eqgs. (5) and (6). The combined likelihood is then
constructed as the product of the N multidimensional
likelihoods:

N
Ecombined({dj}|gD’H) = H‘C(dj‘gD’,}_O’ (12)
=1

where each L(d j|5D, H) is computed by dividing the
marginalized posterior distribution in Eq. (6) by the prior
on Oy, n(éD |H). Given that uniform priors were used for all
six parameters in the original analyses, the likelihoods are
directly proportional to the posteriors, and because the
posteriors of each event are provided as discrete samples,
the likelihoods are constructed by sampling from the
six-dimensional kernel density estimator fits using the
sklearn.mixture.GaussianMixture  function

[91]. The combined posterior on 51) is then obtained by
multiplying the combined likelihood, as given in Eq. (12),
with the same uniform prior on 5]3 used in the original
single-event analysis:

P(éDl{dj}vH) & ”(5D\H>£Combmed({dj}|5DvH)- (13)

Furthermore, to generate discrete samples for the proba-
bility distribution function p(6p|{d :},'H), we again used
the Bayesian parameter inference library BILBY [75] with
the dynesty [77] sampler. Finally, the PCA formalism,
described in Sec. I C, is applied to the discrete samples of
the combined six-dimensional posterior probability distri-

bution p(§D|{d ;},H) to obtain the joint constraints on the
PCA parameters.

After describing the analysis framework of the PCA-
TGR, we validate its efficacy through various types of
injection studies, as discussed below.

ITI. RESPONSE OF pca-TGR TO GR INJECTIONS

First, we briefly summarize the key characteristics
common to all injections discussed in this section and the
following two sections (Secs. IV and V). Unless otherwise
specified, all reported injections assume the “‘zero-noise”
approximation in a three-detector LIGO-Virgo network
[92-94] using the predicted noise power spectral densities
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at design sensitivity: aL.LIGOZeroDetHighPower for the
LIGO detectors [95] and AdvVirgo for the Virgo detector
[96]. This approximation is used to isolate potential sys-
tematic biases and to avoid statistical fluctuations arising
from specific noise realizations. A lower cutoff frequency of
20 Hz is used in the computation of the likelihood, while the
upper cutoff frequency varies across systems, primarily
based on their masses. These values are chosen to ensure
that no signal content is lost, at the same time avoiding
unnecessarily high computational costs arising from arbi-
trarily large cutoffs. All other parameter estimation settings
—such as signal duration, sampling frequency, and sampler
configurations—generally follow the standard setup used in
previous LVK publications [4,53,79]. It is worth noting that
signal duration and sampling frequency are system depen-
dent, chosen based on the physical properties of the
injections. In contrast, the sampler settings remain largely
consistent across all analyses.

To quantify if the posterior distributions of deform-
ation parameters include or exclude the GR value, for

each injection we compute the GR quantiles Qgr =
P(&,?)l(,l(): A < 0) of the PCA posterior distributions. A value
of Qgr significantly different from 0.5 indicates that the
GR hypothesis falls in the tail of the distribution. We also
compute the GR z score (zgr), defined as the number of
standard deviations by which the GR value (zero) deviates
from the statistical median of the posterior.

TABLE 1L

A. TIGER framework

1. Aligned-spin systems

Our first goal is to assess the efficacy of the PCA-TGR in
response to GR-consistent signals across different regions of
the BBH parameter space (i.e., varying total masses, mass
ratios, and spin magnitudes, and network SNRs). Because
of the computational cost of multiparameter analyses, we
begin with a simplified setup using aligned-spin quadru-
polar waveform models to reduce computational overhead.
In later sections, however, we incorporate more complex
models that include spin precession and higher-order
modes.

Results for the GR-consistent, aligned-spin injections are
shown in Table I and Fig. 1. As shown in Table I, we
consider binaries with fixed intrinsic parameters evaluated
at two network SNRs: ~20 (low) and ~40 (high), achieved
by adjusting the luminosity distance. The extrinsic param-
eters—such as sky position, polarization angles, and phase
at coalescence—are chosen randomly. To span a broad
parameter space, we use total detector-frame masses of
25M  and 60M o, with mass ratios ¢ = 1.5 and 4. For spin
magnitudes, we choose (y;,x>) = (0.2,0.1) and (0.8, 0.7)
as representative low- and high-spin configurations, respec-
tively. These combinations yield eight distinct binary
configurations, each analyzed at both low and high network
SNRs, as listed in Table I. We use the IMRPhenomXAS

Summary of results from the simulated aligned-spin BBH GR injections study within the TIGER framework,

demonstrating the efficacy of the PCA-TGR method as discussed in Sec. III A 1. We simulate GW signals using the IMRPhenomXAS
waveform model and perform parameter estimation with the parametrized IMRPhenomXAS model. The specifications of the binary
systems and the network SNRs (rounded to the nearest integer) of the injected signals are listed. For each injection, the table shows the

median value, as well as the upper and lower limits of the 90% credibility interval, Qgg, and zgg for the posteriors of 647)](32 4 and 65}5](38 A

No. Properties of GR injections Properties of 69?;98 A Properties of 6&5% A
M Mgy) ¢ (r1.42) Dy Mpc) SNR Median and 90% errors  Qgr (zgr) Median and 90% errors  Qgr (Zgr)
L. 25 15 (02,01) 1200 20 —0.02195] 0.57 (0.16) —0.09+08 0.57 (0.15)
650 40 —0.010{ 0.52 (0.05) 0.0+93 0.5 (0.01)
2. 25 1.5 (08,07) 1400 20 —0.07%9¢ 0.76 (0.66) —0.1810%1 0.63 (0.26)
700 40 —0.0415% 0.77 (0.73) —0.091 04 0.63 (0.28)
3. 25 4 (02,01) 900 20 —0.01293! 0.53 (0.06) 0.124]3, 0.42 (0.16)
500 40 —0.0913 0.5 (0.0) 0.04+]00 0.46 (0.07)
4. 25 4 (08,07) 1000 20 -0.04103 0.66 (0.34) —0.21+0% 0.62 (0.24)
550 40 —0.0319* 0.75 (0.62) —0.0214021 0.53 (0.06)
5. 60 15 (02,01) 2400 20 —0.041933 0.6 (0.22) —0.181)37 0.56 (0.15)
1200 40 —0.0101¢ 0.5 (0.01) —0.041118 0.52 (0.06)
6. 60 1.5 (08,07) 2800 20 0.0703, 0.49 (0.02) 0.59+19% 0.23 (0.71)
1400 40 0.02+02 0.45 (0.13) 0.21+0% 0.29 (0.52)
7. 60 4 (02,01) 1800 20 —0.02103¢ 0.54 (0.09) 0.32123% 041 (0.22)
950 40 0.07921 0.5 (0.0) 0211168 041 (0.23)
8. 60 4 (08,07 2100 20 0.01+022 0.48 (0.03) —0.1111)7 0.56 (0.13)
1100 40 —0.01:01¢ 0.55 (0.11) 0.03+0%3 0.47 (0.06)
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FIG. 1. Posteriors of 6&51(,2 A (upper panel) and 6&5&) A (ower panel) for each simulated injection—listed in Table I and discussed in
Sec. III A 1—with the left and right panels displaying results from BBHs with detector-frame total masses of 25M, and 60M,
respectively. In each violin plot, the colored horizontal bars and the horizontal white solid line denote the 90% credible intervals and the
posterior median, respectively. We mark the GR value of zero with dashed gray lines.

waveform model [97] to generate injected GW signals
consistent with GR and employ the parametrized
IMRPhenomXAS model [62] for parameter estimation,
producing discrete samples of the posterior probability
distribution given in Eq. (5) within the TIGER framework.
We then perform PCA on the marginalized six-dimensional
posteriors of the fractional PN deviation parameters to
construct the dominant linear combinations that are best
measured, as described in Sec. II C.

We find that the JS divergence between the posterior and
prior distributions exceeds 0.1 bits® for the first two leading
PCA parameters in all injections, while it is marginally
greater than 0.1 bits for the third leading PCA parameter for
some cases. As expected, due to the nature of PCA, the

widths of the first two dominant PCA parameters, 5&5&) A

and 5(2)1(,2C>A, are significantly smaller than those of the
original fractional PN deformation parameters.

In Fig. 1, we show the posterior distributions for the
leading two PCA parameters presented as violin plots for
each injection analysis. Each binary configuration is

®When the JS divergence is O bit, the two distributions are
identical, and when it is 1 bit, the two distributions are maximally
different.

labeled by a number on the x axis, corresponding to the
list of binaries in Table I. In Table I, we also report the
median and 90% credible intervals, along with Qgr and
zgr for the posteriors of the two leading PCA parameters.
First, we observe that the GR value is well recovered in all
cases, as zero lies within the 90% credible interval. This
confirms that PCA-TGR can successfully recover GR
across different binary configurations. Second, as expected,
the constraints on the PCA parameters improve with
increasing SNR. We also find that the constraints are
slightly tighter for ¢ =4 compared to g = 1.5, which
can be attributed to the larger number of signal cycles
within the detector’s sensitivity band.

2. Precessing systems

We now present results for a set of GR-consistent
injection runs involving precessing BBHs. The configura-
tions span a range of effective precession parameters y,
[98,99] and network SNRs, allowing us to investigate the
performance of the PCA-TGR in recovering the injected
GR signal under varying levels of precessional dynamics
and signal strength.

All injections correspond to binary systems with
total mass 30My and mass ratio ¢ = 2. To probe both
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TABLE II.

Summary of results from the simulated precessing-spin BBH GR injection study conducted within the TIGER framework,

as described in Sec. Il A 2. GW signals are simulated using the IMRPhenomXP waveform model, and parameter estimation is
performed using the parameterized IMRPhenomXP model. The statistics of the two leading PCA parameters are reported, and their

corresponding posterior distributions are shown in Fig. 2.

No. Properties of GR injections

Properties of 64?5198 A Properties of 5%23 A

M Mo) g (risx2)  (0,,0,)

¥p Dr (Mpc) SNR Median and 90% errors Qgr (zgr) Median and 90% errors Qgr (zgr)

1. 30 2(0.3,0.2) (z/9,z/4) 0.10 1200 20
650 40
2. 30 2(0.8,0.7) (z/3,7x/4) 0.69 1200 20
650 40

0.02348 0.49 (0.02) —0.08+035 0.56 (0.14)
0.027513 0.41 (021) ~0.05+05 0.56 (0.15)
—0.04707, 0.63 (0.29) ~0.197997 0.64 (0.32)
—0.02107 0.61 (0.27) —0.09+0:38 0.62 (0.27)

moderately and strongly precessing regimes, we consider
two configurations differing in spin magnitudes and ori-
entations. For a high-precession configuration, we consider
(x1,x2) = (0.8,0.7) with tilt angles (6,,0,) = (z/3,7/4),
corresponding to y, = 0.69. For a low-precession configu-
ration, we use (y;.x,) = (0.3,0.2) with smaller tilt angles
(01.6,) = (x/9,7/4), yielding y, = 0.102. In each case,
we choose O,y = 2.7 radians, ¢;; = 1.7 radians, and
¢1» = 3 radians. Each system is analyzed at two network
SNRs: ~20 and ~40, corresponding to low and high signal
strengths, respectively.

For GR-consistent injection, we employ the
IMRPhenomXP waveform model [63], a frequency-
domain phenomenological waveform approximant that
extends the IMRPhenomXAS [97] by incorporating spin-
induced precession effects in the quadrupolar mode. For
recovery in the parameter estimation process, we use the
parametrized IMRPhenomXP [62] waveform model
approximant to produce discrete samples of the posterior
probability distribution given in Eq. (5) within the TIGER
framework and subsequently perform the PCA-TGR
analysis.

The binary configurations used in this analysis are
summarized in Table II, which also reports the median
and 90% credible intervals of the posteriors for the leading

two PCA parameters. Here, we find that the JS divergence
between the posterior and prior distributions exceeds
0.1 bits only for the first two leading PCA parameters.
The values of Qggr and zgg for the PCA posteriors are also
provided. Figure 2 displays the posterior distributions of
5(}1(,1(:) A and 5(27&) A as violin plots for all injection configu-
rations. We find that, in all cases, the GR value lies well
within the 90% credible regions of the PCA parameters.
This is reflected in the corresponding Qggr and zgr values
reported in Table II. Moreover, as expected, the constraints
on the PCA parameters tighten with increasing SNR,
illustrating the dependence of the PCA-TGR method’s
constraining power on the signal strength.

3. Systems with precession and higher-order harmonics

We now extend our analysis to investigate the impact of
higher-order harmonics and spin-induced precession by
performing injection studies using binary parameters of
known detected BBH systems. Specifically, we consider
configurations inspired by three well-studied BBH merger
events: GW151226 [100], GWI190412 [101], and
GW190814 [102]. GW190412 and GW190814 exhibit
pronounced mass asymmetry, which enhances the ampli-
tude of higher-order harmonics in the GW signal. In

0.75
0.50 —
0.25

0.00 -

5
6¢PCA

-0.25

—-0.50

-0.75 :

No.

SNR
I 20
T 40
__________ GR value __>____
-2 T T
1 2
No.

FIG. 2. Posterior distributions of 5&55,1(:) A (left panel) and 5&55,28 A (right panel) for each simulated precessing-spin GR injection—listed in
Table II and discussed in Sec. III A 2—presented as violin plots. The colored and white horizontal bars have the same meaning as in
Fig. 1. For all the binary configurations, both the PCA parameters are consistent with the GR value (dashed gray line) of 0.
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TABLE III. Summary of the PCA-TGR results from injection studies using simulated GR-consistent signals from GW151226-like,
GW190412-like, and GW190814-like BBH systems, conducted within the TIGER framework, as discussed in Sec. III A 3. Each row
lists the waveform model used for injection (with recovery performed using its corresponding parametrized version, which is not
separately listed), along with the binary parameters and the statistical properties of the leading two PCA parameters. Posterior

distributions for the dominant two PCA components are shown in Fig. 3.

No. Event Waveform Properties of GR injections Properties of 5(}55)2 A Properties of &?){,ZC) A
Median and Median and

MMy q (:x2) (01,6,)  SNR 90% errors Qgr (zgr) 90% errors Qgr (zgr)
1. GWI151226-like IMRPhenomXPHM 23.72 191 (0.61, 0.455) (1.02, 1.385) 20 —0.08%0/8 0.77 (0.7) 0.067055 0.44 (0.13)
40 _o,ozjg‘-gg 0.69 (0.46) _o_ozjg:jl 0.53 (0.06)
2. GWI190412-like IMRPhenomXHM 46.66 4.24 (0.46, 0.56) (0,0) 35 —0.03707 0.65(0.32) 0.11707 0.39 (0.26)
IMRPhenomXPHM (0.68, 1.66) 35  0.01751; 043 (0.15) —0.037955 0.53 (0.06)
3. GWI190814-like IMRPhenomxHM 272 9 (0.03, 0.47) (0,0) 25 —0.02100 0.64(0.32) 0.1310¢ 035 (0.34)
IMRPhenomXPHM (1.57, 1.46) 25 0. jgg;‘ 0.48 (0.04) o,ogjggg 0.4 (0.23)

contrast, GW151226 is more symmetric in masses and
features moderate spin-induced precession. The injection
parameters—component masses, spin magnitudes, and tilt
angles—are selected to approximate the inferred properties
of these observed systems and are summarized in Table III.

To systematically disentangle the effects of precession
and higher modes, we perform injections and recoveries
using two types of waveform models. The first,
IMRPhenomXHM [64] (for injection) and its parametrized
version (for recovery), includes higher-order modes but
assumes spins aligned with the orbital angular momentum.
The second, IMRPhenomXPHM [63] (for injection) and its
parametrized version (for recovery), extends the former by
incorporating spin-precession effects.

For GW151226-like injections (mass ratio ¢~ 2,
Xp ™ 0.52), we use IMRPhenomXPHM for injection and
parametrized IMRPhenomXPHM for recovery, with net-
work SNRs of 20 and 40. For the mass-asymmetric
GW190412-like (¢ ~4, y, ~0.29) and GW190814-like
(g~9, xp ~0.07) systems, we conduct separate injection
studies: one set using IMRPhenomXHM with zero spin tilts
(aligned-spin case) and its parametrized version for recov-
ery, and another set using IMRPhenomXPHM along with its
parametrized version to include spin precession effects.
This strategy allows for a direct comparison of aligned and
precessing versions of the same system, thereby isolating
the contributions from spin precession and higher-order
modes. Such comparisons are essential, as spin-induced
precession can alter the mixing of angular modes, thereby
modulating the detectability and influence of higher-order
harmonics on the waveform. Verifying that PCA-based
tests remain robust in these scenarios is crucial for
assessing PCA-TGR’s applicability to future complex
signals.

For GW190814-like injections, we use the noise PSDs
estimated with BAYESWAVE [103,104] from the actual
event data for each detector [102]. For the other two events,

we use the same detector-specific noise PSDs as in the
previous sections. The results of this injection analysis are
summarized in Table III and Fig. 3. Here, we also find that
the JS divergence between the posterior and prior distri-
butions exceeds 0.1 bits for the first two leading PCA
parameters in all cases while it is marginally greater than
0.1 bits for the third leading PCA parameter for some cases.
The statistics of the two leading PCA posteriors are listed in
Table III. Figure 3 shows their posterior distributions. The

top row corresponds to 5&51(,2 , and the bottom row to 5(}5&) A
In each row, the left panel shows the posteriors of
GW151226-like injections at low and high SNR. The right
panel shows the posteriors for GW190412-like and
GW190814-like injections, considering both aligned-spin
and precessing cases. In summary, the PCA posteriors are
consistent with GR in all cases, with the injected value of
zero lying within the 90% credible intervals. The bounds on
the PCA parameters for the GW190814-like injection are
relatively tighter compared to the others, due to the greater
strength of higher-order modes in the injected signal, which
helps break degeneracies between different model
parameters.

B. FTI framework

In the previous subsection, we studied the efficacy of
PCA-TGR within the TIGER framework using a variety of
simulated GR-consistent injected signals. We now shift out
focus to the efficacy of PCA-TGR within the FTI frame-
work. One important point to note is that, in its current
implementation, the FTI framework uses aligned-spin
waveform models.

We consider GW150914-like BBH systems, with
injected binary parameters set to the median values
obtained from the parameter estimation of the
GW150914 event [105]. The luminosity distance is varied
to achieve the desired network SNR values of 20 (low) and
40 (high). To simulate GR-consistent GW signals, we first
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FIG. 3. Posterior distributions of the dominant two PCA parameters (&Eﬁgg A> [Op TOW; 6&5&) A» bottom row) obtained from
GR-consistent injections based on GW151226-, GW190412-, and GW190814-like BBH systems, as described in Sec. III A 3. The
left panel compares PCA posteriors for GW151226-like injections at network SNRs of 20 and 40, using IMRPhenomXPHM for injection
and its parametrized version for recovery. The right panel compares aligned-spin (IMRPhenomXHM for injection and its parametrized
version for recovery) and precessing (IMRPhenomXPHM for injection and its parametrized version for recovery) injections for
GW190412-like and GW190814-like systems. The colored and white horizontal bars have the same meaning as in Fig. 1. In all cases,
the PCA constraints are consistent with the GR value of 0, marked by the dashed gray line.

use the SEOBNRv4_ROM waveform approximant [67]. For
parameter estimation, we employ the parametrized
SEOBNRv4_ROM [23,66] model for signal recovery, pro-
ducing discrete samples from the posterior probability
distribution given in Eq. (5), within the FTI framework.
We repeat the same exercise but now using the
SEOBNRvV4HM_ROM waveform model [68,69], which
incorporates higher-order modes beyond the quadrupo-
lar ones.

The results from this analysis are summarized in Table IV
(first two entries) and Fig. 4. The JS divergence between the
posterior and prior distributions exceeds 0.1 bits for the first
three leading PCA parameters in all cases; however, we
present results only for the first two. Similarly to the
previous subsection, the statistical properties of the two
leading PCA parameters are listed in Table IV, while their
posterior distributions are shown as violin plots in Fig. 4. In
every case, the PCA posteriors are found to be consistent
with GR, with the injected value of zero lying within
the 90% credible intervals. The PCA-TGR analysis with
similar GR injections has also been repeated using the
SEOBNRvV5_ROM waveform family [106], yielding results
similar to those from SEOBNRv4_ROM, although these
results are not included here for brevity.

Within the FTI framework, we also explore the effect
of spin precession on the PCA-TGR analysis since the

waveform models used in the FTT analysis do not account
for it. We consider the BBH system with a total mass of
30Mg, a mass ratio of ¢ =2, and a network SNR of
approximately 20. We study this system using two different
values of the effective spin-precession parameter, y, =
0.102 (weak precession) and y,, = 0.69 (strong precession),
obtained by varying the spin magnitudes and tilt angles. For
each case, GR-consistent injected signals are simulated
using the IMRPhenomXPHM waveform model, which
incorporates both higher-order modes and precession
effects. Parameter estimation is performed using the para-
metrized SEOBNRv4HM_ROM model, which accounts for
higher-order modes but not for precession.

Similar to the previous injection analysis, we again find
that the JS divergence between the posterior and prior
distributions exceeds 0.1 bits for the three leading PCA
parameters in both injections. The statistical properties of
the first two PCA parameters for both cases are shown in
entries 3 and 4 of Table IV, respectively. Since this is a GR
injection, any apparent GR deviation observed in the
posteriors of the PCA parameters can be attributed to
the effects of unaccounted spin precession in the waveform
model used for parameter estimation during recovery. As
shown in Fig. 5, the posterior medians of the leading two
PCA parameters exhibit significant offsets from zero in
both cases. In particular, the GR value is excluded at
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TABLE IV. Summary of the PCA-TGR results from the simulated BBH GR injection study conducted within the FTT framework, as
described in Sec. III B. Each row lists the binary parameters, the waveform models used for injection and recovery, and the statistical
properties of the leading two PCA parameters. Posterior distributions for the leading two PCA components are shown in Figs. 4 and 5
corresponding to the first two and the last two entries in the table, respectively.

No. Properties of 6&51()18 A Properties of 6(}5&) A
Waveform injection Median and Median and
Event Waveform recovery SNR 90% errors Qgr (zgr) 90% errors  Qgr (Zgr)
1. GW150914-like SEOBNRv4_ROM 20 0.03f8;1232 0.39 (0.23) —o. 04:‘))255 0.55 (0.12)
parametrized SEOBNRv4_ROM 40 0. 02+g<01§ 0.35 (0.31) o,o1jg.33§' 0.49 (0.04)
2. GW150914-like SEOBNRv4HM_ROM 20 0. oz+g(§§ 0.38 (0.26) —0.03%3%, 0.53 (0.08)

parametrized SEOBNRv4HM_ROM 40 0_01j8_36 0.38 (0.26) o,ozjggg 0.46 (0.09)

Effect of precession on PCA

3. M=30Mgy.q=2y,=0.69 IMRPhenomXPHM 20 _o_()7j8-]052 091 (1.31) -0.62292¢ 1.0 (2.59)
parametrized SEOBNRv4HM_ROM
4. M =30My,q=2.y,=0.102 IMRPhenomXPHM 20 —0. oejg ‘l’g 0.86 (0.93) —0.23701> 083 (0.9)

parametrized SEOBNRv4HM_ROM

2.0
1.5

1.0
0.5
0.0—-
~0.5
~1.04

50
6¢PCA

_1.5 —
-2.0 T T

No. No.

FIG. 4. Violin plots showing the posteriors of 6(/)PC A and 6(}55,28 A from the GR-consistent aligned-spin injection analysis within the FTTI
framework, using the SEOBNRv4_ROM (x-label:1) and SEOBNRv4HM_ROM (x-label:2) waveform models for GW150914-like BBH
systems, as listed in entries 1 and 2 of Table IV and discussed in Sec. III B. The horizontal bars have the same meaning as in Fig. 1. In
every case, the PCA posteriors remain consistent with the GR prediction of zero, indicated by the dashed gray line.

0.2

0.1

004 GR value

A1)
é‘¢PCA

FIG. 5. Violin plots showing the posteriors of 5¢PC A and 5&51(,28 A from the GR-consistent precessing-spin injection analysis within the
FTI framework, as presented in entries 3 and 4 of Table I'V and discussed in Sec. III B. GR-consistent GW signals are simulated using
the IMRPhenomXPHM waveform model, and parameter estimation is performed using the parametrized SEOBNRv4HM_ROM model.
The horizontal bars have the same meaning as in Fig. 1. The median values of the PCA parameter posteriors show notable deviations
from zero in all cases. Specifically, for the strongly precessing binary configuration, the GR value is excluded from the 90% credible

interval of the 5(}51()28 A posterior.
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90% confidence in the posterior of 5&5&) A for the strongly

precessing binary configuration. The posteriors of 5&5&) A
are almost an order of magnitude less constrained than

those of 5(%,28 A and are not shown here. Although their
posteriors are consistent with GR, the posterior medians
show a slight offset from zero. The conclusion from this
injection study is that using an aligned-spin waveform
model in the FTT framework could lead to a false violation
of GR in the PCA-TGR analysis if significant spin
precession is present in the signal.

IV. RESPONSE OF pca-TGR TO NON-GR
INJECTIONS

After demonstrating the ability of PCA-TGR to recover
GR in an unbiased manner when the signal in the data is that
of a BBH merger in GR—with the exception of its response
in the FTI framework when an aligned-spin waveform is
used to analyze strongly precessing signals—we now turn

our attention to non-GR injections and PCA-TGR’s ability
to detect GR deviations.

A. TIGER framework

In order to simulate GR violating signals, we consider
BBH waveforms whose inspiral phasing coefficients are
deformed at different PN order using the TIGER frame-
work. We consider different types of non-GR injections
which are summarized in Table V. Broadly speaking, the
injections cover the following three scenarios:

(1) All the PN coefficients above 1PN are deformed by
the same magnitude. We consider small, moderate,
and large deviations which correspond to fractional
deviations of 0.1, 0.5, and 0.9, respectively.

(2) The fractional deviations in the PN coefficients
above 1PN increase (decrease) with PN order,
ranging from 0.3 to 0.8 in steps of 0.1 (or vice versa).

(3) All the PN coefficients above 1PN are deformed by
the same magnitude but by —0.5 to study the

TABLE V. Summary of results from the simulated non-GR injection study within the TIGER framework that demonstrates the
capability of the PCA-TGR method to detect GR violations in the PN phasing coefficients. The values of the fractional PN deviation
parameter, binary systems, and the network SNRs (rounded to the nearest integer) of the injected signals are listed. For each non-GR
injection, the table shows the median value, as well as the upper and lower limits of the 90% credibility interval, Qggr, and zgr for the

posteriors of 51,?)]()1(:) A and 647)1()28 A- The posteriors on 647)]()](:) A exclude GR at >3 in most of the cases, while the posteriors on 6(2)1()28 A
encompass the GR value within 90% credibility in all cases. The PCA-TGR method can rule out GR at > 3o for a fractional deviation of

magnitude >0.5 in the PN phasing coefficients.

Properties of non-GR injections

Properties of 5(?)1(,18 A

Properties of 5(}5&) A

Median and Median and
90% errors 96r (Zgr) 90% errors 96r (zgr)
GWI1509 GWI512 GWI509 GWI512 GWI509 GWI512 GWI509 GWI512
No. {60} SNR l4-like  26-like  14-like  26-dike  l4-like  26-like  14-like  26-like
L. 6y =0(a=-2,0,1,2) 20 010792 0.00570 0.26 (0.62) 0.50 (0.01) —0.074)J} 0.07:05+ 0.53 (0.06) 0.45 (0.11)
8y = 0.1(b =3,4,51,6,61,7) 40 011717 0061011 0.09 (1.17) 0.16 (0.94) —0.07:9% 0037041 0.55 (0.11) 0.45 (0.10)
2. 6y =0(a=-2,0,1,2) 20 0517019 041102 0.00 (4.09) 0.01 2.74) 0.03126 054109 0.49 (0.02) 0.15 (0.98)
Sy = 0.5(b = 3,4,50,6,61,7) 40 052705 048751 0.00 (6.50) 0.00 (5.66) —0.171]2% 0.155932 0.59 (0.23) 0.30 (0.49)
3. 6y =0(a=-2,0,1,2) 20 0923015 0.901372 0.00 (9.16) 0.00 (7.90) —0.0313& 0.48%)4i 051 (0.02) 0.21 (0.75)
8y =0.9(b =3.4,51,6,61,7) 40 0.93'0{7  0.9377|7 0.00 (12.83)0.00 (13.17) —0.317}7  0.12705] 0.63 (0.33) 0.35 (0.37)
4. 6y =0(a=-2,0,1,2) 20 035502 018102 0.01 (248) 0.12 (1.16) 0.09+ % 048093 0.47 (0.08) 0.15 (0.89)
552;3 :0.3,5&14:0.4 40 0371014 0307013 0.00 (4.13) 0.00 (3.58) —0.045197 0.287045 0.52 (0.05) 0.12 (1.06)
5hs; = 0.5,8¢s = 0.6
S¢pe) = 0.7.5¢, =08
5. 6o =0(a=-2,0,1,2) 20 077917 0737921 0.00 (7.17) 0.00 (6.17) —0.05'28% 0437117 0.51 (0.03) 0.23 (0.67)
5y = 0.8,5¢, = 0.7 40 0787910 0.78%01+ 0.00 (11.03)0.00 (10.43) —0.374]35  0.07:9%0  0.67 (0.44) 0.42 (0.21)

5hs; = 0.6,5g = 0.5
5o = 0.4,8¢, = 0.3

6. 5, =0(a=—2,0,1,2) 20 -0.507039 —0.56703) 0.99 (2.83) 1.00 (4.33) 0.00735¢

0.00+0200.50 (0.00) 0.50 (0.00)

5y = —0.5(b = 3,4.51.6,61,7) 40 —0.497021 0534013 1.00 (4.11) 1.00 (7.59) —0.037115 —0.11305! 0.52 (0.04) 0.65 (0.34)
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difference between a positive fractional deviation
and a negative one.

We consider GW150914- and GW151226-like BBH sys-
tems, using the same binary parameters as in the previous
section. We take two different values of the luminosity
distance for each of the chosen BBH systems to produce
two different network SNRs of ~20 and ~40. We use the
parametrized IMRPhenomXP waveform model to generate
the injected GW signal with GR violations and to perform
parameter estimation while analyzing the injected signal in
the TIGER framework. Indeed, the injected GR violations
are ad hoc and do not follow the predictions of any known
modified theories of gravity. Our aim here is to assess the
capability of the PCA-TGR to detect a violation of GR

when the GW signal does not follow the GR prediction.
Our results are summarized in Table V and Fig. 6. We find
that, in all injections, the JS divergence between the
posterior and prior distributions exceeds 0.1 bits only for
the first two leading PCA parameters. Figure 6 shows the
violin plots for the posterior probability distributions of the
leading two PCA parameters from our injection analysis
using the TIGER framework. From Table V and Fig. 6, we
find that the posteriors of 5(%,2 A €xclude GR at > 3¢ level in
most of the cases when we consider a fractional deviation of
magnitude > 0.1 in the PN phasing coefficients and for all
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cases with SNR of 40. Howeyver, for a fractional deviation of
magnitude 0.1, the PCA-TGR is unable to detect GR
violation with a high confidence level even for signals with
a network SNR of 40. Our simulations currently are not
exhaustive enough to find the SNR at which a fractional
deviation of 0.1 at every PN order will show up as a GR
violation in the PCA parameters. However, a simple scaling
suggests that a minimum SNR of ~103 (126) is required to
detect this level of GR violation at more than the 3¢ level for
a GW150914-like (GW151226-like) system. In all the
simulations considered here, the subleading PCA parame-
ters show consistency with GR within 90% credibility. For
deviations that are fractional in nature, such as those

considered here, 5(}1(,2 A 1s most efficient in detecting a
GR violation. However, we cannot comment whether this is
a generic feature for all possible types of GR violations with
our limited set of injections. As these deviations are not
motivated by any specific theory of gravity but are repre-
sentative examples for demonstration of the method, we do
not consider more combinations of the fractional deforma-
tion values. We will discuss other forms of GR deviations
and the response of the PCA-TGR in the next section.

In most of the non-GR injections, the error bars on the

first PCA parameter 5(}1(32 A are comparable for GW150914-

like and GW151226-like systems, with GW150914-like
injections providing slightly better constraints in most

. GW151226-like
"4 sNR '
_ 0.2
107 w20 > -
0.0—-----
0.8 I 40 i
] —-0.2
_= 0.6—_ > s 4
T & =U.4 —
= > 05 1P
0.2 ]
. > ~0.8
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20 SNR
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FIG. 6. Posteriors of 5(}519(3) A (upper panel) and 5(27&) A (lower panel) for each simulated non-GR injection (the left and right panels show
the results obtained from GW150914- and GW151226-like BBH injections, respectively) listed in Table V presented as violin plots. The
results from the injections with network SNR ~ 20 (~40) are shown in blue (orange). The horizontal bars have the same meaning as in

Fig. 1. We mark the GR value of zero with dashed gray lines.
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TABLE VI. Summary of results from the simulated non-GR injection study within the FTI framework that demonstrates the
capability of the PCA-TGR to detect GR violations in the PN phasing coefficients. The injected values of the fractional PN deviation
parameter, injected binary systems, and the network SNRs (rounded to the nearest integer) of the injected signals are listed. For each
non-GR injection, the table shows the median value, as well as the upper and lower limits of the 90% credibility interval, Qggr, and zgr

for the posteriors of 5&);2 A and 5&5% A- The posteriors on 6&)&) A €xclude GR at > 3¢ in the second case but not in the first case, while the

posteriors on &%ZC) A encompass the GR value within 90% credibility in both cases. The PCA-TGR can rule out GR at >3¢ for a

fractional deviation of magnitude >0.5 in the PN phasing coefficients.

Properties of Non-GR injections

Properties of 6&5% A

Properties of 64?5{,28 A

Median and
90% errors

Median and

90% errors

Qcr (Z6r) Qcr (Zgr)

GW1509 GW1512

No. {60} SNR 14-like  26-like

GW1509 GWI1512 GWI1509 GWI1512 GWI1509 GW1512
14-like

26-like 14-like 26-like 14-like 26-like

1. 8y = 0(a =-2,0,2),

5By = 0.1(b = 3.4.51,6,61,7) 20 0.1170]
2. S, = 0(a = =2,0,2),

50y = 0.5(b = 3,4.51,6,6,7) 20 05179}

0.042013 0.02 (1.76)0.27 (0.47) —0.05%335 —0.241943 0.56 (0.14)0.81 (0.76)

—-0.60 —0.59

046913 0.00 (7.51)0.00 (5.28) 0.11*982 —0.03%042 0.39 (0.29)0.54 (0.09)

—0.64

cases. In contrast, GW151226-like systems consistently
provide better constraints on the second PCA parameter
SP,. For pily, GW150914-like injections generally
yield higher zgr values compared to GW151226-like
injections, except for injection No. 6 and the SNR 40 case
in injection No. 3. This is likely due to the trade-off
between the relative weights of the different 8¢, in the PCA
parameters, the magnitudes of these deformations, and the
measurement uncertainties associated with these devia-
tions. For detector configurations with better low-frequency
sensitivity, GW151226-like systems may still produce

high zgr values. For the second PCA parameter 5(2}1(328 A
GW151226-like injections generally give higher zgr values
than GW150914-like injections, except in the SNR 40 case

of injection Nos. 1 and 5. However, for (Sg?ﬁﬁ,zc) A» We find the
deviations from GR are much less significant across the
simulations, as mentioned earlier. This makes the com-
parison across different systems less meaningful, as we
have not quantified the statistical error bars on the z scores,
and the observed differences may, in many cases, lie within
these unquantified uncertainties. Broadly speaking, this
trend indicates that the second PCA parameter is unable to
detect GR violations for the specific types of fractional
deviations used in this analysis, particularly for signals
with SNR < 40.

B. FTI framework

We now examine a couple of non-GR injections pre-
viously considered in the TIGER framework but now
analyzed within the FTI framework. Specifically, we
consider the first two cases in Table V, which correspond
to fractional deviations of 0.1 (where the PCA - TGR method

could not rule out GR at >3¢ in the TIGER framework)
and 0.5 (where the PCA-TGR method could rule out GR at
>3 in the TIGER framework). The injection setups are
identical to those in the previous subsection, except that
here we use the parametrized SEOBNRv4HM_ROM wave-
form model both to generate the injected GW signals with
GR violations (which therefore do not include the effects of
precession) and to perform parameter estimation within the
FTI framework. We also restrict our analysis to scenarios
with a network SNR of approximately 20.

The results from this analysis are presented in Fig. 7 and
Table VI. Figure 7 shows violin plots of the posterior
probability distributions for the leading two PCA param-
eters from our injection analysis using the FTI framework.

0.8 L5-| Ml GWI50914

7 7 =3 Gwisi1226
i 1.0
0.6 i
7 0.5
. 044 . i

=L . SN — o 2

g 027 > 2 05
00T--"YF GRvalb ] —1.04
—0.2 _1.5:

1 2 1 2

No. No.

FIG. 7. Posteriors of 6(}5]()2  (left panel) and 6(;5](,23 4 (right panel)
for each simulated injection listed in Table VI presented as violin
plots. The results from GW150914-like (GW151226-like) BBH
injections are shown in blue (orange). The horizontal bars have
the same meaning as in Fig. 1. We mark the GR value of zero with
dashed gray lines.
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The posterior medians, 90% credible intervals, Qggr, and
zgr Vvalues for the two leading PCA parameters for each
injection are summarized in Table VI. The posteriors on

5&5&3 A €xclude GR at > 3¢ in the second case (correspond-
ing to a fractional deviation of 0.5) but not in the first case
(with a fractional deviation of 0.1). In contrast, the poste-

riors on 5$§2C)A encompass the GR value within the 90%
credible interval in both cases. These results demonstrate
that the PCA-TGR, within the FTT framework, can robustly
identify GR violations at the > 3¢ level when the deviation
in the PN phasing coefficients exceeds 0.5 in magnitude—
consistent with our earlier findings using the TIGER
framework. However, in the case with a fractional deviation

of 0.5, the posteriors on 5&5{,@ A in the FTT framework show
a slightly stronger deviation from GR compared to the
TIGER framework (see the zgr values in Tables V and VI).
This enhancement arises because the PCA parameters are
slightly better constrained in the FTT framework than in the
TIGER framework, due to differences in how the end of
the inspiral regime is defined in the two frameworks (see the
first paragraph of Sec. VI).

In summary, we find that the PCA-TGR is successfully
able to detect GR violations of magnitude 0.5 with a high
confidence level. The ability to detect a GR violation
depends on the magnitude of violation and the SNR of the
signal.

V. RESPONSE OF pca-TGR TO INJECTIONS
WITH ECCENTRICITY

Previous studies have found that the unmodeled eccen-
tricity in the parametrized waveform models can lead to
false violation of GR in TIGER/FTI tests if the BBH has

TABLE VIIL.

significant residual eccentricity by the time it enters the
detector frequency band [107,108]. In this section, we
study the response of PCA-TGR to eccentric BBH signals
when we employ a parametrized quasicircular inspiral-
merger-ringdown waveform model for inference. The
question is how the different PN deformation parameters
of the quasicircular inspiral-merger-ringdown waveform
respond to the neglect of eccentricity in the signal and how
the response translates into the PCA parameters.

We adopt the simulated eccentric BBH signals used in
Ref. [108]. These eccentric signals are nonspinning BBH
NR simulations from the SXS catalog [109] (see also
Ref. [110]) with mass ratios ¢ = 1,2,3 and a redshifted
total mass of 80M at a luminosity distance of 400 Mpc.
Other extrinsic parameters take the values given in [108].
For each mass ratio, we consider simulated signals with
eccentricities, defined at 17 Hz, e;; ~0.05, ~0.1 (repre-
senting binaries with small eccentricities) and <107™*
(representative of BBH in quasicircular orbits). For each
set of BBH parameters, we consider injections which have
(2, 2) and (3, 2) modes of the NR simulation and analyze the
simulated signal using the parametrized IMRPhenomXPHM
waveform model. The injection SNRs for the (2,2) + (3, 2)
mode for mass ratios ¢ = 1,2,3 are 67, 230, and 137,
respectively. We briefly summarize the properties of the
simulations adopted in Table VII. The reader may refer to
Sec. III of [108] for a more detailed discussion of the
simulations used here.

The JS divergence between the posterior and prior
distributions exceeds 0.1 bits for the first three leading
PCA parameters in all injections, except for those with
(g =1,e,7=0.053,0.097) and (g =3,e;; =0.093,
<107*), where the JS divergence for the third leading

Summary of results from the simulated eccentricity injection analysis performed in Sec. V that studies the response of the

current implementation of the PCA-TGR framework to the eccentric BBH signals. The properties of the simulated eccentricity injections
are listed (see the text for more details). For each injection, the table shows the median value, as well as the upper and lower limits of the

90% credibility interval, Qgg, and zgg for the posteriors of 5&»{}3 A 5&5{% A» and 5(}% A~ The posteriors on PCA parameters in all the cases
with e;; <107* show consistency with GR at 90% credibility. For the injections with e,; ~ 0.05 and e;; ~ 0.1, the posteriors on at least

one of the PCA parameters exclude GR at >90% credibility.

Properties of injections

Properties of 5(}5]()2 A

Properties of 5&5](,28 A Properties of 555](,’2 N

Median and Median and Median and
ID Mass ratio ey Mode 90% errors  Qgr (zgr) 90% errors  Qgr (zgr) 90% errors Qgr (zgr)
SXS:BBH:1155 1 <107 (2.2)+(3.2) 00179 027 (0.57)  0.007017 048 (0.04) 1.26%3%% 041 (0.22)
SXS:BBH:1355 1 0053 (2.2)+(3.2) -0.0470%2 1.00 (244) —05470% 085 (1.33) 15971227 0.42(0.22)
SXS:BBH:1357 1 0.097 (2,2)+(3,2) 025705 0.00 (7.83) —1.30%08 1.00 2.91) 9.26*117¢ 0.25 (0.88)
SXS:BBH:1222 2 <107 (2.2)+(3.2) 001709 037 (026) —0.017025 0.54 (0.08) —0.6871959 0.54 (0.10)
SXS:BBH:1364 2 0.044 (2,2)+(3.2) 00770 000275 -0.0893 073 (0.59) —14.25"367 0.99 (3.49)
SXS:BBH:1368 2 0.097 (2,2)+(3,2) 006705 000 477) -0.64702 1.00 (4.20) —11.22+718 0.98 (2.03)
SXS:BBH:2265 3 <107 (2,2) +(3,2) —0.087022 0.76 (0.52) 0.807% 020 (0.82) —0.527/24¢ 0.52 (0.04)
SXS:BBH:1371 3 0.055 (2,2)+(3,2) —0.03*0%2 099 (249) —0.1801¢ 0.97 (1.87) —10.10*]35 0.98 (2.43)
SXS:BBH:1373 3 0.093 (2,2)+(3,2) 0.2870% 0.00 (13.22) —4.91%032 1.00 (22.28) —3.53+/834 0.63 (0.34)
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FIG. 8. Posteriors of 5&51(,18 A (upper panel), 54?)% A (middle panel), and 64251(,38 A (lower panel) for each simulated eccentric injection listed
in Table VII presented as violin plots. The left, middle, and right panels show the results obtained from eccentric BBH injections with
mass ratios 1, 2, and 3, respectively. The horizontal bars have the same meaning as in Fig. 1. We mark the GR value of zero with dashed

gray lines.

PCA parameter falls below 0.1 bits. Nevertheless, we

include a discussion of the third PCA parameter (SQ;SSC) A
as it can carry a significant imprint of apparent GR
violation in certain cases, as discussed below. We show
the violin plots for the posterior probability distributions of
the leading three PCA parameters for all the eccentric
injections in Fig. 8. We also present the posterior median
and 90% credible intervals, Qggr, and zgr of the leading
three PCA parameters for each injection in Table VII. As
expected, the posteriors on PCA parameters in all the
quasicircular (e;; < 10™) injection analyses show con-
sistency with GR at 90% credibility. In all other eccen-
tricity (e;; ~0.05 and e;7 ~0.1) injection analyses, the
posteriors on at least one of the PCA parameters (more
than one PCA parameter in most of the cases) exclude GR

at >90% credibility. It can be seen that 5(;51(,38 A 1s the least
informative with respect to detecting a GR violation for
most of the cases. For all the higher-eccentricity (e;7 ~ 0.1)
injection cases, the posterior distributions on at least one of
the PCA parameters show strong GR violation with GR
excluded at the > 30 level. More precisely, as expected, the
amount of GR violation detected increases as eccentricity

increases for all mass ratios. For ¢ = 1,2, 5&5&) A Picks

larger GR violation than 5551(,28 A» While for g = 3 this trend
is reversed and the second PCA parameter shows larger
GR violation. In the previous section, we saw that only the

. 7 (1 I
posteriors on 5¢§,g A show strong GR deviation when one
considers fractional deviations in PN coefficients from GR.
However, in the eccentric injection analyses, in many cases

the posteriors on 5(251(,28 A (and occasionally even the 5(251(,38 A)
also exclude GR at > 90% credibility.

Unlike the “linear” fractional deviations we considered in
the previous section, the eccentric BBH signal in GR
induces “nonlinear” modifications to the PN phasing of
the waveform of BBH in a quasicircular orbit in GR. By
nonlinear we mean deviations that cannot be simply
absorbed into deformations of the existing PN phasing
coefficients. Hence, when we perform a parameter estima-
tion with parametrized IMRPhenomXPHM on these injec-
tions, the eccentricity-induced corrections will show up as
deviations in all of the PN coefficients with different degrees
of departures which propagate into the posteriors on the
PCA parameters, as we see. Therefore, it is reasonable to
expect that for generic departures from GR (or unknown
waveform systematics)—not limited to the specific types of
fractional deviations considered in the previous section—
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more than one PCA parameter can show statistically
significant deviations from GR.

To summarize, we find that the unmodeled eccentricity
in the parametrized waveform models might show up as an
apparent GR violation in the posteriors of PCA parameters
if we apply the PCA-TGR method to the eccentric
BBH signals. Furthermore, we find that the nonlinear
modifications to the PN phasing could make the posteriors
of the higher-order PCA parameters deviate significantly
from GR.

VI. ANALYSIS OF GWTC-3 EVENTS

We now present the results obtained by applying the
PCA-TGR within the TIGER and FTI frameworks to
selected GW events detected during the first three observ-
ing runs (O1, O2, and O3) of the Advanced LIGO and
Advanced Virgo detectors [52,53,111,112]. The multi-
parameter runs involve sampling from 21- and 17-dimen-
sional parameter spaces for precessing and aligned-spin
BBHs, respectively, which is computationally expensive.
Moreover, the combined bounds on the PCA parameters
are largely dominated by the loudest and longest-duration
inspiral signals in the catalog, which contribute the
majority of the overall information content. To manage
computational cost, ensure a longer inspiral phase, and
minimize the impact of noise artifacts, we impose selection
criteria that reduce the number of BBH events analyzed
while retaining the most informative signals. Specifically,
we focus on events that are sufficiently loud—thereby
reducing potential biases due to noise—by requiring a
false-alarm rate of <1073 yr~!, a network SNR > 15 in the
inspiral regime, and a redshifted chirp mass <20M.

The end of the inspiral regime is defined by the MECO
frequency in the TIGER framework and by the peak
frequency of the (2, 2) mode in the FTI framework. The
optimal SNR in the inspiral regime is computed using the
maximum likelihood parameters from standard BBH
parameter estimation under the GR hypothesis: The maxi-
mum likelihood parameters are extracted from parameter
estimation samples with the tag COl:IMRPhenomXPHV,
provided by the LVK Collaboration and accessible on
Zenodo [113]. To compute the inspiral SNR, we use the
IMRPhenomXPHM waveform model for the TIGER analy-
sis and SEOBNRv4HM ROM waveform model for FTI
analysis. For the chirp mass, we use the median of its
posterior distribution from the same GR parameter estima-
tion analysis. Both the optimal SNR in the inspiral regime
and the chirp mass are rounded to the nearest integer. We
find that only four events in GWTC-3 satisty the selection
criteria: GW190412, GW190814, GW191204_171526, and
GW191216_213338. The optimal SNRs in the inspiral
regime, along with the upper frequency cutoffs that define
the end of the inspiral regime for these four selected events,
are listed in Table VIIL

We perform the PCA-TGR analysis on the above-chosen
events within the TIGER and FTI frameworks. The FTI
multiparameter runs are performed with the parametrized
SEOBNRvV5HM_ROM waveform [106], while the TIGER
multiparameter runs are performed with the parametrized
IMRPhenomXPHM-SpinTaylor  waveform  [65].
Figure 9 shows the posterior distributions of the first three
dominant PCA parameters that capture the most informa-
tion (JS divergence between the prior and posterior dis-
tributions greater than 0.1 bits). Although there are few
cases, especially for the TIGER framework, where only the
first two leading PCA parameters have a JS divergence
greater than 0.1 bits, we present the posterior distributions
of the three most dominant PCA parameters for both FTI
and TIGER for broad comparison. The reason why the
third-dominant PCA parameter for FTI is more informa-
tive than TIGER is because the SNR and number of cycles
in the inspiral regime for FTTI are larger than TIGER. As
mentioned before, the inspiral cutoff frequency for FTT is
the peak frequency of the (2, 2) mode, which is larger than
the MECO frequency used for TIGER as the inspiral cutoff
frequency. The longer inspiral for the FTI analysis
compared to TIGER enables the measurement of more
PCA parameters and provides overall tighter constraints, if
not comparable, as can be seen in Fig. 9. At the same time,
the PN phase in Eq. (1) becomes increasingly inaccurate at
higher frequencies. Hence, the differences between the FTI
and TIGER results can be considered as an estimate of the
typical systematics of inspiral tests, with TIGER providing
more conservative bounds.

The bounds on the leading PCA parameters for all four

events are |5g?)£,1c) Al £0.5 and are consistent with GR for
both TIGER and FTI. Of the four events, GW190814
provides the best constraints, which has the highest inspiral
SNR and is the most asymmetric system, leading to the
largest number of GW cycles in the inspiral regime. The
second-best constraint is provided by GW191204_171526
and GW190412, which have comparable inspiral SNRs, as
shown in Table VIIL

The second leading PCA parameters for GW190412,
GW191204_171526, and GW191216_213338 are consis-
tent with GR for TIGER and FTTI within the 90% credible
interval. However, for GW190814, the median of the
posterior distribution for TIGER shows a significant offset

"Note that in all the injection analyses presented in the
previous section, we used the parametrized IMRPhenomX or
parametrized IMRPhenomX-MSA-version and the parametrized
SEOBNRv4_ROM-version within the TIGER and FTI frame-
works, respectively. However, in this section, we have used the
newer parametrized IMRPhenomX-SpinTaylor-version and
the parametrized SEOBNRv5_ROM-version in the TIGER and
FTI frameworks, respectively. These newer versions are slightly
improved compared to the previous versions, so we do not expect
any changes in the results or conclusions presented in the
previous sections.
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FIG. 9. Posterior probability distribution of the first three
leading PCA parameters from the GW events from GWTC-3
passing the selection criteria described in the first paragraph of
Sec. VI presented as violin plots. In each violin plot, the colored
horizontal bars and the white solid line denote the 90% credible
intervals and the posterior median, respectively. We mark the GR
value of zero with dashed gray lines.

from the GR value. For TIGER, the GR value lies at 0.01
quantile, indicating a statistically significant violation from
the GR value. The posterior distribution of the second
leading PCA parameter for FTI is statistically consistent
with GR. The composition of the second leading PCA
eigenvector shows significant contributions from higher-
order PN deformation parameters at 2.5PN, 3PN, and
3.5PN, indicating that these terms play a relatively larger
role in shaping the posterior distribution peak away from

TABLE VIII. Rounded-off optimal SNRs in the inspiral regime
and the upper cutoff frequencies (f,.x), Which define the end of
the inspiral regime, of the four GWTC-3 events selected for the
PCA-TGR analysis using the TIGER and FTI frameworks.

TIGER FTI
Events SNR S max SNR fmax
GW190412 17 127 20 257
GW190814 23 159 24 359
GW191204_171526 17 260 18 522
GW191216_213338 16 126 19 322

the GR value. This is consistent with the results obtained by
the LVK Collaboration [3], which showed that the GR
value falls near the tails of the posterior distribution of the
PN deformation parameters.

The maximum likelihood values of all mass parameters
obtained from the multiparameter TIGER/FTI runs differ
from those obtained through standard parameter estimation
using BBH waveforms in GR. In Sec. Il A3, we per-
formed a GW190814-like GR injection under the zero-
noise approximation in the TIGER framework, using the
IMRPhenomXPHM waveform for injection and the para-
metrized IMRPhenomXPHM waveform for recovery. The
posterior distributions of the first two dominant PCA
parameters from this analysis are shown in blue in the
rightmost plots of Fig. 3. We see that the GR value is
recovered well, which demonstrates that PCA-TGR works
robustly in the parameter space spanned by GW190814-
like events. This injection study confirms that, at least,
correlations between different parameters are not respon-
sible for the offset observed in the PCA posteriors. For
example, Ref. [66] discusses a case where a degeneracy
between the OPN deviation parameter and the chirp mass
led to an apparent GR violation in the posterior of the 0PN
fractional PN deviation parameter for GW230529 [114].
Therefore, the offsets in the posterior distribution of the
second leading PCA parameter away from zero could be
due to waveform systematics or noise artifacts in the data.

The posterior distributions of the third PCA parameter
for TIGER are not particularly informative for all events
except GW190814, which also shows a significant offset
from the GR value. For FTI, the third PCA parameter also
shows deviation from GR, especially for GW190814, for
which the GR value lies at 0.96 quantile. The correspond-
ing eigenvector of the third dominant PCA parameter has a
significant contribution from the higher order PN defor-
mation parameters, with the 3.5PN deformation parameter
contributing ~50%. To understand the underlying reason
for the deviations from GR shown by the most dominant
PCA parameters, one first needs to examine various sources
of possible false indications of GR violation [115], such as
the impact of unmodeled physics in the current waveform
model or noise artifacts in the data. A detailed investigation
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FIG. 10. Joint posterior probability distributions on the first

four leading PCA parameters from all the selected GWTC-3
events. The joint bounds are obtained through the marginalized
likelihood multiplication technique. We mark the GR value of
zero with dashed gray lines.

of such waveform systematics or noise artifacts is beyond
the scope of this paper.

A. Joint bounds on the PCA parameters
from selected GWTC-3 events

We follow the method described in Sec. IID to
combine information from the selected GWTC-3
events, GW190412, GW190814, GW191204_171526,
and GW191216_213338 to obtain joint bounds on the
PCA parameters. We find that the joint posterior distribu-
tion of the first four most dominant PCA parameters,
plotted in Fig. 10, have JS divergence greater than 0.1 bits,
indicating that they carry significant information. The
median and the 90% credible interval for joint posteriors
along with the corresponding GR quantiles are shown in
Table IX. For the joint posterior of the leading PCA
parameter, the GR value lies at the 0.27 quantile in the
TIGER framework and the 0.61 quantile in the FTI
framework, indicating good consistency with the GR.
However, the medians of the joint posterior distributions
of the subdominant PCA parameters show a large offset
from zero. In the TIGER framework, the posterior

TABLE IX. Combined constraints on the leading four PCA
parameters from all selected GWTC-3 events. The table shows
the median, 90% credible intervals, Qgr, and zgr of the
combined PCA posteriors.

Median and 90% errors 96r (zgr)
53;{;& TIGER FTI TIGER FTI
S, 0031008 001798 027 (0.60)  0.61 (0.26)
5(;,§C>A 0_54ng~§’99 _o,ozjé):gg 0.01 (2.26) 0.56 (0.15)
sl 197128 0.147982 0.09 (1.24)  0.36 (0.29)
spl,  —452173¢ 23218 084 (1.01) 0.98 (2.06)

distribution of the second PCA parameter exhibits the
highest deviation from the GR value (GR at the 0.01
quantile), followed by the third (GR at the 0.09 quantile)
and fourth (GR at 0.84 quantile). The trend is the opposite
for FTI, where the highest deviation from GR is shown by
the least dominant fourth PCA parameter (GR at the 0.98
quantile), followed by the third (GR at the 0.36 quantile)
and second (GR at the 0.56 quantile) PCA parameters. We
find the above interesting characteristics because of
GW190814,% for which we get a statistically significant
deviation from GR for the second PCA parameter in the
case of TIGER and a statistically significant deviation from
GR for the third PCA parameter for FTT as shown in Fig. 9.
The same is reflected in the joint posterior distributions of
the subdominant PCA parameters but to a varied degree, as
the joint posteriors are obtained after diagonalizing the joint
posterior distribution of the original PN deformation
parameters and not simply by multiplying the posteriors
of a PCA parameter across events.

VII. CONCLUSIONS

It is likely that a deviation from GR will manifest as
changes in multiple PN coefficients in the phase evolution
of a compact binary. Therefore, a test that measures
possible simultaneous departures from GR in these PN
coefficients can act as a powerful test of GR. However, the
high dimensionality of the parameter space—which
includes both the standard GR parameters and fractional
deviations in various PN coefficients, along with strong
parameter degeneracies—poses a significant challenge to
this test. Diagonalization of the covariance matrix that
corresponds to the space of deformation parameters helps
in identifying the best-measured linear combination of
these parameters, and the relative weights of the new set
of parameters helps to reduce the dimensionality of the
parameter space. This variant of the multiparameter test is
referred to as the principal component assisted test of GR or
PCA-TGR.

We have done an extensive study of the efficiency of
PCA-TGR, using the TIGER and FTI frameworks, that
uses Phenom and EOB families of waveforms, respectively,
to perform parametrized tests. Besides an extensive zero-
noise injection campaign that covers aspects such as spin-
precession and higher modes for GR as well as non-GR
injections, we also studied how nonzero eccentricity would
manifest as a (false) GR violation and how PCA-TGR
would respond to this for different values of eccentricities.
We then applied this framework to some of the selected
events in O3 that have long inspirals and found no
statistically significant deviation from GR. We reported

*We have verified that the combined posteriors on the PCA
parameters, using only three events, excluding GW190814, do
not show any significant offset away from GR.
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joint bounds by combining the constraints from these
events.

Listed below are some of the caveats and future

directions.

(1) It is likely that any true deviation from GR in the
inspiral phase will manifest as nonzero (and corre-
lated) values of multiple PN deviation parameters
6475;,, which is the primary motivation for this PCA
analysis. However, it is not possible to predict the
pattern of these deviations for any generic beyond-
GR model, or even (at present) for a specific beyond-
GR theory. Additionally, it is not unlikely that any
true deviation from GR in the inspiral phase will
manifest as a different pattern of PN deviation
parameters for different events (different masses,
mass ratio, and spins). Thus, this analysis must be
thought of as a test of the null hypothesis (GR is
correct). Results that are inconsistent with zero
deviation in the best-measured PCA combination
(s) (both for the single-event analyses and especially
for the multievent “multiplication of likelihoods”
analysis) will require careful follow-up with other
methods to understand the origin of the deviation.
However, in the scenario that a true deviation from
GR in the inspiral phase manifests as a fractional
(small compared with 1, so approximately linear)
deviation of a single PN parameter from zero (which
may be the same or different parameters for different
events), the PCA analysis has been demonstrated to
be essentially as sensitive as the single parameter
tests with TIGER and FTI.

(2) Our results are based on 3.5PN phasing. However,
when recently computed terms at 4 and 4.5PN are
integrated into the TIGER/FTI frameworks, this
method can be straightforwardly extended to in-
clude them.

(3) Currently, the multiparameter test on which PCA is
performed simultaneously varies PN fractional de-
formation coefficients starting from 1.5PN onwards
and does not include OPN, 0.5PN, and 1PN orders.
This is because the sensitivity of the current detec-
tors is not good enough to break the degeneracies
these PN order deformations have with chirp mass
(OPN) and symmetric mass ratio (1PN). However,
the algorithm allows this, and hence, if there is an
event with high enough SNR and large enough
inspiral cycles, such a test can be performed.

(4) In its current implementation, PCA-TGR deals with
only fractional deformation parameters in the inspiral
phase. Frameworks such as TIGER allow for simul-
taneous deformations in the postinspiral phase of the
compact binary waveform. This method can be
straightforwardly extended to include such deforma-
tions, though a fresh injection campaign similar to

the present one will be required to understand the
results.

(5) Our mock non-GR waveforms are based on para-
metric waveforms and not from any specific theory
of modified gravity. It would be interesting to use
one of the inspiral-merger-ringdown waveforms
from numerical simulations of modified gravity
theories (such as Ref. [116]) and test how PCA-
TGR responds to such waveforms.

Finally, we note that PCA-TGR is not limited to para-
metrized PN tests—it can be applied to any parametrized
null test of GR to derive constraints from multiparameter
analyses. The framework is designed to be general and
flexible, making it applicable to a wide range of theory-
agnostic, beyond-GR null tests, such as BBH mimicker
tests [117,118], parametrized ringdown tests [119-121],
and more.
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