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Abstract. The Vicsek-Bhatnagar--Gross--Krook (BGK) equation is a kinetic model for align-
ment of particles moving with constant speed between stochastic reorientation events with sampling
from a von Mises distribution. The spatially homogeneous model shows a steady state bifurcation
with exchange of stability. The main result of this work is an extension of the bifurcation result to
the spatially inhomogeneous problem under the additional assumption of a sufficiently large Knudsen
number. The mathematical core is the proof of linearized stability, which employs a new hypoco-
ercivity approach based on Laplace--Fourier transformation. The bifurcation result includes global
existence of smooth solutions for close-to-equilibrium initial data. For large data, smooth solutions
might blow up in finite time, whereas weak solutions with bounded Boltzmann entropy are shown to
exist globally.
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1. Introduction.

The Vicsek-BGK equation. The Vicsek-Bhatnagar--Gross--Krook (BGK) equation
is a kinetic model for alignment dynamics. It describes the time-evolution of a particle
distribution in position and direction of motion.

Let \BbbT d be the (flat) d-dimensional torus and \BbbS d - 1 be the unit sphere in \BbbR d,
d\geq 2. The initial value problem for the Vicsek-BGK equation for the particle density
F = F (t, x,\omega ), depending on position x\in \BbbT d, movement direction \omega \in \BbbS d - 1, and time
t\geq 0, is given by

\partial tF + \gamma \omega \cdot \nabla xF = \rho FMJF
 - F ,

F (0, x,\omega ) = F \circ (x,\omega ) ,
(1.1)

where \gamma > 0 is a given parameter and F \circ \geq 0 denotes the initial datum. The position
density \rho F , the flux JF , and the von Mises distribution MJ are given by

\rho F (t, x) :=

\int 
\BbbS d - 1

F (t, x,\omega ) d\omega ,

JF (t, x) :=

\int 
\BbbS d - 1

\omega F (t, x,w) d\omega ,

MJ(w) :=
exp(\omega \cdot J)

Z(J)
, with Z(J) :=

\int 
\BbbS d - 1

exp(\omega \cdot J) d\omega .(1.2)
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6018 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

The left-hand side of the Vicsek-BGK equation (1.1) is a transport term describing
movement with constant speed in the direction \omega . The right-hand side, the ``collision
operator"" in the language of kinetic theory, describes a direction jump process, where
postcollisional directions are sampled from the von Mises distribution.

The problem has been nondimensionalized, where the scaling of F has been chosen
to remove a (temperature) parameter in the exponent of the von Mises distribution,
the reference length is the length of the original torus, and the reference time is
the mean time between directional jumps. The dimensionless parameter \gamma > 0 is the
Knudsen number, i.e., the ratio between the mean free path and the length of the torus
or, equivalently, between the free flight time and the time a particle needs to traverse
the torus (see Appendix C for the dimensional analysis of the equation). A second
important dimensionless parameter is the scaled total number of particles or, equiva-
lently, the scaled total mass \mu , which is (at least formally) conserved by the evolution\int 

\BbbT d

\int 
\BbbS d - 1

F (t, x,\omega ) d\omega dx=

\int 
\BbbT d

\int 
\BbbS d - 1

F \circ (x,\omega ) d\omega dx=: \mu , t\geq 0 .

The classical prototypes for individual based alignment models are the Cucker--Smale
model [8], where particle speeds can be arbitrary, and the Vicsek model [25], where all
particles share the same speed and vary only their movement direction. In both mod-
els the velocity/direction of each particle is changed toward a weighted average over
the other particles. A link between both types of models is provided by Cucker--Smale
models with additional relaxation of the speed toward a constant value (see, e.g., [1]).
Kinetic versions of these models can be seen as models (sometimes limits [13]) for
large particle ensembles. The Vicsek-BGK equation (1.1) belongs to this group with
the collision operator mimicking alignment under stochastic perturbations. Strongly
related is the Vicsek--Fokker--Planck version of the model [10, 11, 16, 18], where the
collision operator is replaced by a Fokker--Planck-type differential operator in \omega , which
has the same equilibria as (1.1). Extensions of these models, used for the description
of flocking dynamics, typically include long range attraction and short range repulsion
via distance dependent interaction potentials [5, 6, 7, 8].

The spatially homogeneous problem---Bifurcation. For given total mass \mu \geq 0, the
Vicsek-BGK equation (1.1) admits spatially homogeneous equilibria of the form

F\infty (x,\omega ) = \mu MJ\infty (\omega ) ,

where J\infty \in \BbbR d must satisfy the consistency relation

J\infty = \mu 

\int 
\BbbS d - 1

\omega MJ\infty (\omega ) d\omega = \mu c(| J\infty | ) J\infty 
| J\infty | 

, c(r) :=

\int \pi 

0
cos\theta er cos\theta sind - 2 \theta d\theta \int \pi 

0
er cos\theta sind - 2 \theta d\theta 

.

(1.3)

Obviously, the direction of J\infty is arbitrary, but its modulus L= | J\infty | has to satisfy

L= \mu c(L) .(1.4)

This equation has been studied in [10, 11, 16, 18]. For any \mu \geq 0 it has the trivial
solution L = 0, which is the only solution for \mu \leq d. At the critical mass \mu = d a
bifurcation occurs, and for \mu > d there exists a continuous branch of unique nontrivial
solutions L\mu \in (0, \mu ) with Ld = 0. At the bifurcation point we expect an exchange of
stability from the trivial to the nontrivial steady state. Motivated by this, we define
the manifold of supposedly stable steady states.
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6019

Definition 1.1 (equilibrium set). The equilibrium set \scrS (\mu )\subset \BbbR d is defined by

\scrS (\mu ) :=

\Biggl\{ 
\{ 0\} , 0\leq \mu \leq d ,

\{ L\mu \omega : \omega \in \BbbS d - 1\} , \mu > d ,

where L\mu > 0 denotes the nontrivial solution of (1.4).

For the spatially homogeneous problem our expectation is correct.

Proposition 1.2 (convergence to equilibria in the spatially homogeneous case).
The problem

\partial tF = \rho FMJF
 - F , F (0, \cdot ) = F \circ (\cdot ) ,(1.5)

with F \circ \in L1
+(\BbbS d - 1) has a global solution satisfying limt\rightarrow \infty F (t,\omega ) = \mu MJ\infty (\omega ) with

\mu =

\int 
\BbbS d - 1

F \circ (\omega ) d\omega , J\infty =

\left\{   0 for 0\leq \mu \leq d or JF\circ = 0 ,

L\mu 
JF\circ 

| JF\circ | 
for \mu > d and JF\circ \not = 0 .

Proof. By mass conservation we have \rho F (t) = \mu , t\geq 0. The flux then satisfies the
closed initial value problem

d

dt
JF =

\biggl( 
\mu c(| JF | )
| JF | 

 - 1

\biggr) 
JF , JF (0) = JF\circ ,

which conserves the direction of JF . Its solution has the form JF (t) = L(t) JF\circ 
| JF\circ | ,

where L(t) solves

dL

dt
= \mu c(L) - L, L(0) = | JF\circ | .

The function c has the properties

c(0) = 0 , c\prime (0) =
1

d
, L \mapsto \rightarrow c(L)

L
is strictly decreasing and tends to zero as L\rightarrow \infty ,

which have been shown in [18]. They imply that

lim
t\rightarrow \infty 

L(t) =

\Biggl\{ 
0 , 0\leq \mu \leq d or JF\circ = 0 ,

L\mu , \mu > d and JF\circ \not = 0 .

The result is now obvious by solving (1.5) with given \rho F and JF .

The situation is simpler in models where the equilibrium is a von Mises distribu-
tion with JF replaced by its normalized version. In this case the consistency relation
corresponding to (1.3) is always satisfied and there is only one stable equilibrium
without any bifurcation behavior (see, e.g., [23]).

Challenges, results, perspectives. It is the main goal of this work to extend the
result of Proposition 1.2 to the spatially inhomogeneous model (1.1). Since the trans-
port operator is not dissipative, a hypocoercivity result [26] is needed to prove that
the combination of collisions and transport provide dissipation also in the position
variable. Challenges are caused by three somewhat related properties of the model:

\bullet The bifurcation behavior discussed above,
\bullet the lack of a sufficient number of conservation laws to explicitly determine

the asymptotic equilibrium from the initial data, and finally
\bullet the lack of an entropy.
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6020 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

Since the established approaches for proving hypocoercivity [2, 3, 14, 15, 21, 26]
are based on entropy dissipation, they cannot be applied here. The lack of a complete
set of conservation laws also has important implications for the derivation of macro-
scopic limits since, again, classical methods fail. The curious reader is referred to [13].

Our analysis starts with a rather straightforward approach for the linearized equa-
tion, employing a Laplace--Fourier transformed problem. This decouples the Fourier
modes, and therefore separates an explicitly treatable low-dimensional problem show-
ing the bifurcation behavior, from the higher-order modes which are expected to de-
cay. This can actually be proven by rather involved estimates and subsequent inverse
Laplace transformation, which seems to be a new approach to showing hypocoerciv-
ity. The decay result in L2 can easily be raised to an L2-based Sobolev space of
high enough differentiability order to allow the control of the nonlinearities. Since
the equilibrium is not known, an iterated procedure with linearizations around im-
proved approximations of the equilibrium is necessary. The final result is exponential
convergence to equilibrium for initial data close enough to the set of stable equilibria.

The approach also produces global existence of strong solutions for initial data
close to the set of stable equilibria. For large initial data, finite time blow-up of strong
solutions cannot be excluded. Therefore we complement our analysis by proving global
existence of weak solutions for large initial data with bounded Boltzmann entropy.
Although the entropy is not deceasing in general, it can be shown to increase at an
at most exponential rate.

Many open questions and venues of research remain:
\bullet The domain of attraction of the stable equilibria considered here is unclear.

Global attraction might be conjectured, but so far we do not even have bound-
edness of large solutions.

\bullet Supposedly our results can be extended to different settings of the position
space, where hypocoercivity approaches have been used successfully, such as
whole space with [14] or without [4] confinement.

\bullet One can also consider other versions of the Vicsek model, in particular, the
Vicsek--Fokker--Planck studied in [10, 11, 16, 18]. There exists already some
preliminary results on the stability of equilibria in the space-inhomogenous
case presented in [17], though the methodology there is very different from
the one used here.

\bullet Finally, there are other models for collective dynamics that present phase
transitions, including models based on body attitude coordination and apolar
alignment [9, 12, 19]. For these models the question of stability in the space-
inhomogeneous case is still a completely unexplored subject.

The rest of this work is structured as follows: section 2 contains precise formula-
tions of the main results. The results on the linearized problem are proven in section 3.
Local stability for the nonlinear problem across the bifurcation is shown in section 4.
The global existence result of weak solutions with bounded Boltzmann entropy is
proven in section 5. Finally there are two short appendices with technical results.

2. Main results.

Stability of the linearized equation. The linearization of (1.1) around a spa-
tially homogeneous equilibrium F\infty = \mu M\scrJ with \scrJ \in \scrS (\mu ) is given by

\partial tf + \gamma \omega \cdot \nabla xf = \rho fM\scrJ + \mu Jf \cdot \nabla JM\scrJ  - f ,

f(t= 0) = f\circ , with

\int 
\BbbT d\times \BbbS d - 1

f\circ (x,\omega ) dx d\omega = 0 .
(2.1)

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6021

The constraint on the initial datum f\circ of the perturbation f is a consequence of the
assumption that \mu is the (conserved) total mass of the initial datum F \circ of F . Mass
conservation carries over to the linearized problem, and therefore we expect\int 

\BbbT d\times \BbbS d - 1

f(t, x,\omega ) dx d\omega = 0 , t\geq 0 .

This can be written as \rho f (t) = 0, t\geq 0, using the spatial average

G(t,\omega ) :=

\int 
\BbbT d

G(t, x,\omega ) dx .

Contrary to the nonlinear problem, the equilibrium for the linearized equation can be
determined from the initial data by additional conservation laws. The spatial average
of the flux satisfies the closed equation

d

dt
Jf =

\biggl( 
\mu 

\int 
\BbbS d - 1

\omega \otimes \nabla JM\scrJ d\omega  - Id

\biggr) 
Jf .(2.2)

We shall prove (Lemma 3.5) that the coefficient matrix is symmetric and that for
\mu < d (i.e., \scrJ = 0) it has negative eigenvalues and, thus, Jf (t)\rightarrow 0 as t\rightarrow \infty . On the
other hand, for \mu > d the coefficient matrix possesses the (d - 1)-dimensional nullspace
\scrJ \bot , and the remaining eigenvalue with eigenvector \scrJ is negative for \mu close to d.

When the solution of (2.1) converges to a steady state, we expect hypocoercivity,
i.e., spatial homogeneity of the steady state, and therefore

\rho f (t, x)\approx \rho f (t) = 0 , Jf (x, t)\approx Jf (t) as t\rightarrow \infty .

As a consequence, the long time behaviour of the solution of (2.2) completely deter-
mines the equilibrium. In particular, we define

f\infty (x,\omega ) =

\Biggl\{ 
0 for \mu \leq d ,

\mu 
\bigl( 
P\bot 
\scrJ Jf\circ 

\bigr) 
\cdot \nabla JM\scrJ (\omega ) for \mu > d ,

with the orthogonal projection

P\bot 
\scrJ := Id - \scrJ 

| \scrJ | 
\otimes \scrJ 

| \scrJ | 
,

to the nullspace of the coefficient matrix in (2.2).
We remark that for \mu \leq d, the linearized equation reads

\partial tf + \gamma \omega \cdot \nabla xf = \rho fM0 + \mu Jf \cdot \omega M0  - f ,

f(t= 0) = f\circ , with

\int 
\BbbT d\times \BbbS d - 1

f\circ (x,\omega ) dx d\omega = 0 .

In this case, any function f \in L2(\BbbT d \times \BbbS d - 1) can be decomposed orthogonally into

f = \rho M0 + dJf \cdot \omega M0 + f\bot ,

and we obtain

1

2
\partial t\| f\| 2L2(\BbbT d\times \BbbS d - 1) = - \| f\bot \| 2L2(\BbbT d\times \BbbS d - 1)  - (d - \mu )

\int 
\BbbT d

| J(x)| 2 dx\leq 0,

so the L2 norm is monotone decreasing for \mu \leq d.

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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6022 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

Theorem 2.1 (exponential stability for the linearized equation). There exist
\gamma min, \kappa > 0 such that for \gamma \geq \gamma min, 0< \mu \leq d+ \kappa , \mu \not = d, m\geq 0, there exist \lambda ,C > 0
such that for each \scrJ \in \scrS (\mu ) the solution f of (2.1) satisfies

\| f(t, \cdot , \cdot ) - f\infty \| Hm
x (\BbbT d\times \BbbS d - 1) \leq Ce - \lambda t\| f\circ \| Hm

x (\BbbT d\times \BbbS d - 1) ,

where the space Hm
x is defined by

\| g\| Hm
x (\BbbT d\times \BbbS d - 1) :=

\sum 
| \alpha | \leq m

\| D\alpha 
x g\| L2(\BbbT d\times \BbbS d - 1) .

The decay rate satisfies \lambda =O(| \mu  - d| ) as \mu \rightarrow d.

Remark 2.2. An analogous result holds when derivatives in \omega are included. Since
we only need derivatives in x for the control of nonlinear terms, we state the result in
this form.

Exponential stability of equilibria for the nonlinear equation. We start
with local existence of strong solutions of the nonlinear problem and provide a blow-up
criterion. The proof follows standard arguments and will only be outlined in section 4.

Lemma 2.3 (existence). Let m>d/2 and F \circ \in Hm
x (\BbbT d\times \BbbS d - 1). Then there exists

a time T\ast > 0 such that (1.1) has a strong solution F \in C1([0, T\ast );H
m
x (\BbbT d \times \BbbS d - 1))

and either

T\ast =\infty or limsup
t\rightarrow T\ast 

\| \rho (t)\| L\infty (\BbbT d) =\infty .

Furthermore, the total mass of F \circ is conserved by the evolution\int 
\BbbT d\times \BbbS d - 1

F (t, x,\omega ) d\omega dx=

\int 
\BbbT d\times \BbbS d - 1

F \circ (x,\omega ) d\omega dx=: \mu , 0\leq t < T\ast .

The following theorem is the main result of the paper and includes the global well-
posedness and local stability of von Mises equilibria, extending the spectral stability
result Theorem 2.1.

Theorem 2.4 (long time behavior: bifurcation for the Vicsek-BGK equation
(1.1)). Let m > d/2 and \gamma ,\mu as in Theorem 2.1. Then there exists \varepsilon 0 > 0 such
that for any J1 \in \scrS (\mu ) and any nonnegative initial datum F \circ \in Hm

x (\BbbT d \times \BbbS d - 1) with
\mu =

\int 
\BbbT d\times \BbbS d - 1 F

\circ (x,\omega ) d\omega dx and

\| F \circ  - F\mu ,J1\| Hm
x (\BbbT d\times \BbbS d - 1) < \varepsilon 0 ,

there exists a global solution F = F (t) of (1.1) with initial datum F \circ . Moreover, there
exist \^\lambda ,C > 0 and J\infty \in \scrS (\mu ) such that

\| F (t) - F\mu ,J\infty \| Hm
x (\BbbT d\times \BbbS d - 1) \leq Ce - 

\^\lambda t\| F \circ  - F\mu ,J1
\| Hm

x (\BbbT d\times \BbbS d - 1) .

Remark 2.5. (a) The proof, given in section 4, shows that the result degenerates
as \mu \rightarrow d, whence both \varepsilon 0 > 0 and \^\lambda tend to zero, just as the exponential decay rate
\lambda in Theorem 2.1.

(b) By the lack of an appropriate conservation law there is no formula for the
equilibrium flux J\infty . The proof shows that it satisfies

| J1  - J\infty | \leq C\| F \circ  - F\mu ,J1
\| Hm

x (\BbbT d\times \BbbS d - 1) .
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6023

Global existence of weak solutions. Our stability result close to equilibrium
is complemented by a global-in-time well-posedness for initial data with finite entropy.

Theorem 2.6. Let d\geq 2, 0\leq F \circ \in L1(\BbbT d \times \BbbS d - 1), and\int 
\BbbT d\times \BbbS d - 1

F \circ | logF \circ | dx d\omega =E0 <\infty .

Then there exists a nonnegative mild solution F \in C([0,\infty ),L1(\BbbT d \times \BbbS d - 1)) of the
Vicsek-BGK problem (1.1). Moreover, the total mass of F is constant in time and
the entropy grows at most exponentially, i.e., there exist c,C > 0 such that\int 

\BbbT d\times \BbbS d - 1

F (t, x, v)| logF (t, x, v)| dx dv\leq C(1 + ect) .

Remark 2.7. There is no satisfactory theory of uniqueness known to us for entropy
solutions such as those provided by Theorem 2.6.

3. The linearized equation.

Spectral stability: Proof of Theorem 2.1. Well posedness of the linearized
problem (2.1) in L2(\BbbT d\times \BbbS d - 1) is a simple consequence of the fact that the right-hand
side of the equation is a bounded operator, which follows from the inequalities

| \rho f | , | Jf | \leq 
\sqrt{} 
| \BbbS d - 1| \| f\| L2(\BbbT d) .

For the stability analysis we shall employ the Fourier--Laplace transform: for a func-
tion g= g(t, x), t\geq 0, x\in \BbbT d, its Fourier transform is defined by

\^gk(t) :=

\int 
\BbbT d

g(t, x)e - ix\cdot k/\gamma dx , k \in \gamma \BbbZ d := \{ \xi \in \BbbR d : \xi = \gamma k\prime , k\prime \in \BbbZ d\} ,

and g can be recovered by the inverse transform

g(t, x) = (2\pi )d
\sum 

k\in \gamma \BbbZ d

\^gk(t)e
ix\cdot k/\gamma .

The Fourier--Laplace (F-L) transform of g is defined by

\~gk(z) :=

\int \infty 

0

\^gk(t)e
 - zt dt , z \in \BbbC , k \in \gamma \BbbZ d .

Applying the F-L transform to the linearized equation (2.1), we obtain

(1 + z + ik \cdot \omega ) \~fk(z,\omega ) = \~\rho k(z)M\scrJ + \mu \~Jk(z) \cdot \nabla JM\scrJ + \^f\circ 
k (\omega ) ,(3.1)

where, for simplicity, we abbreviate by \~\rho = \~\rho f and \~J = \~Jf . By division by the
coefficient on the left-hand side and taking moments with respect to \omega , we obtain
closed systems for ( \~Jk, \~\rho k) for each k \in \gamma \BbbZ d:

\~Jk = b\scrJ \~\rho k + \mu A\scrJ \~Jk + rJ,k ,

\~\rho k = a\scrJ \~\rho k + \mu \=b\scrJ \cdot \~Jk + r\rho ,k ,
(3.2)

with the coefficients

a\scrJ (z, k) =

\int 
\BbbS d - 1

M\scrJ 

1 + z + ik \cdot \omega 
d\omega , A\scrJ (z, k) =

\int 
\BbbS d - 1

\omega \otimes \nabla JM\scrJ 

1 + z + ik \cdot \omega 
d\omega ,

b\scrJ (z, k) =

\int 
\BbbS d - 1

\omega M\scrJ 

1 + z + ik \cdot \omega 
d\omega , \=b\scrJ (z, k) =

\int 
\BbbS d - 1

\nabla JM\scrJ 

1 + z + ik \cdot \omega 
d\omega ,

(3.3)
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6024 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

and with the inhomogeneities

rJ,k =

\int 
\BbbS d - 1

\omega \^f\circ 
k

1 + z + ik \cdot \omega 
d\omega , r\rho ,k =

\int 
\BbbS d - 1

\^f\circ 
k

1 + z + ik \cdot \omega 
d\omega .

With the formula (3.14) for \nabla JM\scrJ we have the following relations between the coef-
ficients:

A\scrJ =

\int 
\BbbS d - 1

\omega \otimes \omega M\scrJ 

1 + z + ik \cdot \omega 
d\omega  - 1

\mu 
b\scrJ \otimes \scrJ , \=b\scrJ = b\scrJ  - 1

\mu 
a\scrJ \scrJ .

The problem will be solved after reduction to a scalar equation by elimination of \~Jk.
This requires the following result, where initially we restrict our attention to k \not = 0.

Lemma 3.1. For any \gamma > 0 and d \geq 2 there exist constants \kappa , \delta ,C > 0 such that
for any \mu \in [0, d+ \kappa ), \scrJ \in \scrS (\mu ), z \in \BbbC with \Re (z) \geq  - \delta , and 0 \not = k \in \gamma \BbbZ d the matrix
Id - \mu A\scrJ (z, k) is invertible (where ``Id"" denotes the identity matrix) and satisfies

\| (Id - \mu A\scrJ (z, k)) - 1\| \leq C ,

where \| \cdot \| is any matrix norm.

Proof. Since the matrix depends smoothly on \mu and \scrJ , it is sufficient to prove
the result for the case \mu \leq d, \scrJ = 0, since then it can be extended by continuity to
0<\mu  - d\ll 1, | \scrJ | \ll 1.

With \Omega \in \BbbC d, | \Omega | = 1, it is sufficient to prove that \Omega tr(Id - \mu A0(z, k))\Omega is bounded
away from zero by a constant only depending on \gamma and d (where ``tr"" denotes ``trans-
pose""). We immediately have

| \Omega \ast (Id - \mu A0)\Omega | \geq 1 - \mu 

\int 
\BbbS d - 1

| \omega \cdot \Omega | 2M0

| 1 + z + ik \cdot \omega | 
d\omega 

\geq 1 - d

\int 
\BbbS d - 1

| \omega \cdot \Omega | 2M0

((1 - \delta )2 + (\Im (z) + k \cdot \omega )2)1/2
d\omega .

As a consequence of \int 
\BbbS d - 1

\omega i\omega jM0 d\omega =
\delta ij
d

, i, j = 1, . . . d ,

the right-hand side vanishes if the denominator is replaced by 1. Therefore help from
the imaginary part is needed to allow for a positive \delta . We define

\BbbS k = \{ \omega \in \BbbS d : sign(k \cdot \omega ) = sign(\Im (z)) , (k \cdot \omega )2 \geq | k| 2/2\} ,

implying

(\Im (z) + k \cdot \omega )2 \geq \gamma 2

2
for \omega \in \BbbS k ,

where we have used 0 \not = k \in \gamma \BbbZ d. It is important to note that \BbbS k has a positive
(d - 1)-dimensional surface measure, which implies that

\alpha (\Omega ) := d

\int 
\BbbS k

| \omega \cdot \Omega | 2M0 d\omega 
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6025

takes only positive values. By rotational symmetry it only depends on the angle be-
tween \Omega and k/| k| (note that \BbbS k only depends on k/| k| ). With these notations we have\bigm| \bigm| \Omega tr(Id - \mu A0)\Omega 

\bigm| \bigm| \geq 1 - \alpha (\Omega )

((1 - \delta )2 + \gamma 2/2)1/2
 - 1 - \alpha (\Omega )

1 - \delta 
.

For \delta = 0, the right-hand side takes the value

\alpha (\Omega )

\biggl( 
1 - 1

(1 + \gamma 2/2)1/2

\biggr) 
\geq \alpha min

\biggl( 
1 - 1

(1 + \gamma 2/2)1/2

\biggr) 
> 0 ,

where \alpha min :=min| \Omega | =1\alpha (\Omega )> 0, since it is the minimum of a positive valued continu-
ous function over a compact manifold. It is independent of k by rotational symmetry.
By continuity the positivity is preserved for small enough positive \delta , which completes
the proof.

With \mu ,\scrJ , z, k as in Lemma 3.1, the system (3.2) can be reduced to the scalar
equation \bigl( 

1 - a\scrJ  - \mu \=btr\scrJ (Id - \mu A\scrJ ) - 1b\scrJ 
\bigr) 
\~\rho k = r\rho ,k + \mu \=btr\scrJ (Id - \mu A\scrJ ) - 1rJ,k .(3.4)

As in the proof of Lemma 3.1, the essential information will come from the case \mu \leq d,
\scrJ = 0. Straightforward computation gives

a0 = c0 , \=b0 = b0 = c1
k

| k| 
, A0k= c2k ,

with

cj(z, k) =

\int 
\BbbS d - 1

\omega j
1M0

1 + z + i| k| \omega 1
d\omega , j = 0,1,2 .

With these observations, the coefficient of \~\rho k in (3.4) with \mu \leq d \scrJ = 0 becomes

h(z, k) := 1 - c0  - 
\mu c21

1 - \mu c2
,(3.5)

and we shall need estimates on c0, c1, c2.

Lemma 3.2. Let \Re (z)\geq 0 and 0 \not = k \in \gamma \BbbZ d. Then

\Re (c0)\leq 1 - \phi 0(\gamma , d) , | c1| \leq 
1

2
\surd 
d
+

1

\gamma 
, d| c2| \leq 1 - \alpha 2(d, \varepsilon )\phi 2(\varepsilon \gamma ) ,

with \phi 0(\cdot , d), \phi 2 : [0,\infty ) \rightarrow [0,1) continuous and increasing, \phi 0(0, d) = \phi 2(0) = 0,
\phi 0(\infty , d) = \phi 2(\infty ) = 1, and with

\alpha 2(d, \varepsilon ) := d

\int 
\BbbS d - 1
\varepsilon 

\omega 2
1M0 d\omega , \BbbS d - 1

\varepsilon := \{ \omega \in \BbbS d - 1 : \omega 1 \geq \varepsilon \} , 0< \varepsilon < 1 ,

a continuous, strictly decreasing function of \varepsilon , satisfying \alpha 2(d,0) = 1/2, \alpha 2(d,1) = 0.

Proof. In the following we set z = x+ iy, x\geq 0, and compute

\Re (c0) =
\int 
\BbbS d - 1

(1 + x)M0 d\omega 

(1 + x)2 + (y+ | k| \omega 1)2
<

1

1 + x
\leq 1 .
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6026 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

On the other hand, for d\geq 3,

\Re (c0)\leq cd

\int 1

 - 1

(1 + x)d\omega 1

(1 + x)2 + (y+ | k| \omega 1)2
=

cd
| k| 

\int (y+| k| )/(1+x)

(y - | k| )/(1+x)

du

1 + u2
\leq cd\pi 

| k| 
.(3.6)

For d= 2 and | k| > 1,

\Re (c0) =
1

2\pi 

\int 1

 - 1

(1 + x)

(1 + x)2 + (y+ | k| \omega 1)2
d\omega 1\sqrt{} 
1 - \omega 2

1

=\Re 1 +\Re 2

with

\Re 1 :=
1

2\pi 

\int 
(1 - \omega 2

1)| k| <1

(1 + x)

(1 + x)2 + (y+ | k| \omega 1)2
d\omega 1\sqrt{} 
1 - \omega 2

1

\leq 1

\pi (1 + x)

\int 1

\surd 
1 - 1/| k| 

d\omega 1\surd 
1 - \omega 1

\leq 2

\pi 
\sqrt{} 

| k| 

and

\Re 2 \leq 
\sqrt{} 
| k| 
2\pi 

\int 1

 - 1

(1 + x)d\omega 1

(1 + x)2 + (y+ | k| \omega 1)2
\leq 1

2
\sqrt{} 
| k| 

,

where the last inequality follows from (3.6). This completes the proof of the estimate
for \Re (c0) with \phi 0(\gamma , d) =max\{ 0,1 - cd\pi /\gamma \} for d\geq 3 and a similar definition for d= 2.

For the estimation of c1 we start rewriting it by symmetrization (\omega 1 \rightarrow  - \omega 1):

c1 =
1

2

\int 
\BbbS d - 1

\biggl( 
1

1 + z + i| k| \omega 1
 - 1

1 + z  - i| k| \omega 1

\biggr) 
\omega 1M0 d\omega 

= - i| k| 
\int 
\BbbS d - 1

\omega 2
1M0 d\omega 

(1 + z)2 + | k| 2\omega 2
1

.

This implies

| c1| \leq | k| 
\int 
\BbbS d - 1

\omega 2
1M0 d\omega \sqrt{} 

((1 + x)2  - y2 + | k| 2\omega 2
1)

2 + 4(1 + x)2y2
.

Minimization of the denominator with respect to x\geq 0 and y \in \BbbR gives\sqrt{} 
((1 + x)2  - y2 + | k| 2\omega 2

1)
2 + 4(1 + x)2y2 \geq 

\Biggl\{ 
1 + | k| 2\omega 2

1 for | k| 2\omega 2
1 \leq 1 ,

2| k| | \omega 1| for | k| 2\omega 2
1 > 1 ,

and, thus,

| c1| \leq 
1

2

\int 
| k| 2\omega 2

1>1

| \omega 1| M0 d\omega + | k| 
\int 
| k| 2\omega 2

1\leq 1

\omega 2
1M0 d\omega 

1 + | k| 2\omega 2
1

\leq 1

2
\surd 
d
+

1

| k| 
.

Jensen's inequality has been used for the estimation of the first term.
For c2 we proceed similarly to the estimation of \Re (c0):

d| c2| \leq d

\int 
\BbbS d - 1

\omega 2
1M0 d\omega \sqrt{} 

(1 + x)2 + (y+ | k| \omega 1)2
\leq d

\int 
\BbbS d - 1
\varepsilon 

\omega 2
1M0 d\omega \sqrt{} 
1 + \varepsilon 2\gamma 2

+ d

\int 
\BbbS d - 1\setminus \BbbS d - 1

\varepsilon 

\omega 2
1M0 d\omega 

=
\alpha 2\sqrt{} 

1 + \varepsilon 2\gamma 2
+ 1 - \alpha 2 .

Here we have assumed y \geq 0, which can always be achieved by the transformation
\omega \rightarrow  - \omega . This completes the proof with \phi 2(u) = 1 - (1+u2) - 1/2. The stated properties
of \alpha 2 are obvious from its definition.
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6027

Corollary 3.3. There exist \gamma min, \delta , \kappa > 0 with \delta < 1 such that for 0<\mu \leq d+\kappa ,
\scrJ \in \scrS (\mu ), \Re (z)\geq  - \delta , \gamma \geq \gamma min, 0 \not = k \in \gamma \BbbZ d,

\Re 
\bigl( 
1 - a\scrJ  - \mu \=btr\scrJ (Id - \mu A\scrJ ) - 1b\scrJ 

\bigr) 
\geq 1

5

holds, where a\scrJ , b\scrJ , \=b\scrJ , and A\scrJ are defined in (3.3).

Proof. With the estimates of the lemma, we get for the coefficient (3.5) for \Re (z)\geq 
0 and 0<\mu \leq d

\Re (h)\geq 1 - \Re (c0) - 
\mu | c1| 2

1 - \mu | c2| 
\geq 1 - \Re (c0) - 

d| c1| 2

1 - d| c2| 

\geq \phi 0(\gamma , d) - 
1

4\alpha 2(d, \varepsilon )\phi 2(\varepsilon \gamma )

\Biggl( 
1 +

2
\surd 
d

\gamma 

\Biggr) 2

\geq 1

4
,

where the last inequality is achieved by first choosing \varepsilon > 0 small enough to get
\alpha 2(d, \varepsilon ) = 3/8 and then choosing \gamma large enough, i.e., \gamma \geq \gamma min(d)> 0. By continuity
with respect to z, \mu , and \scrJ , this result can be extended to 0 <  - \Re (z) \ll 1 and
0<\mu  - d\ll 1.

By Lemma 3.1 and Corollary 3.3 the system (3.2) can be solved, and we need
estimates of the solution.

Lemma 3.4. Let 0<\mu \leq d+\kappa , \scrJ \in \scrS (\mu ), \Re (z)\geq  - \delta , \gamma \geq \gamma min, 0 \not = k \in \gamma \BbbZ d (with
the notation of Corollary 3.3). Then (3.2) has a unique solution, and there exists
C > 0, independent from z, k, and f\circ , such that

| \~\rho k(z)| + | \~Jk(z)| \leq 
C

\langle \Im (z)\rangle 
\| \^f\circ 

k\| L2(\BbbS d - 1) for | \Im (z)| \geq 2| k| ,where \langle y\rangle :=
\sqrt{} 
1 + | y| 2 ,

(3.7)

| \~\rho k(z)| + | \~Jk(z)| \leq 
C

\langle k\rangle 1/5
\| \^f\circ 

k\| L2(\BbbS d - 1) for | \Im (z)| \leq 2| k| .

(3.8)

Proof. Lemma 3.1 and Corollary 3.3 imply the bounded invertibility of the coef-
ficient matrix, i.e.,

| \~\rho k(z)| + | \~Jk(z)| \leq C(| r\rho ,k(z)| + | rJ,k(z)| ) .

With z = x+ iy, in the case | y| \geq 2| k| we estimate

| r\rho ,k(z)| + | rJ,k(z)| \leq 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS d - 1

\omega \^f\circ 
k (\omega )

1 + z + ik \cdot \omega 
d\omega 

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbS d - 1

\^f\circ 
k (\omega )

1 + z + ik \cdot \omega 
d\omega 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 2

\int 
\BbbS d - 1

| \^f\circ 
k (\omega )| 

| 1 + x+ i(y+ k \cdot \omega )| 
d\omega ,

and observe that the condition ensures | 1 + x + i(y + k \cdot \omega )| \geq c\langle y\rangle with a constant
c > 0 independent of k \in \BbbZ d and y \in \BbbR . Inserting this above yields

| r\rho ,k(z)| + | rJ,k(z)| \leq 
2

c\langle y\rangle 

\int 
\BbbS d - 1

| \^f\circ 
k (\omega )| d\omega \leq C

\langle y\rangle 
\| \^f\circ 

k\| L2(\BbbS d - 1)
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6028 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

by the Cauchy--Schwarz inequality. For | y| \leq 2| k| we use again the Cauchy--Schwarz
inequality:

| r\rho ,k(z)| + | rJ,k(z)| \leq 2\| \^f\circ 
k (\cdot )\| L2(\BbbS d - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + z + ik \cdot \omega 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbS d - 1)

.

It remains for us to estimate the norm on the right. By rotational symmetry we may
assume k= | k| e1 and compute\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + z + ik \cdot \omega 

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\BbbS d - 1)

=

\int 
\BbbS d - 1

1

(1 + x)2 + (y+ | k| \omega 1)2
d\omega .(3.9)

The set

A\alpha (y, k) := \{ \omega \in \BbbS d - 1 : | y+ | k| \omega 1| \leq | k| 1 - \alpha \} , \alpha > 0 ,(3.10)

is the intersection of the sphere with a strip of width | k|  - \alpha . Therefore it satisfies

| A\alpha (y, k)| \leq C\langle k\rangle  - \alpha /2 .

We split the integral (3.9) as\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + z + ik \cdot \omega 

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(\BbbS d - 1)

=

\int 
A\alpha 

1

(1 + x)2 + (y+ | k| \omega 1)2
d\omega +

\int 
\BbbS d - 1\setminus A\alpha 

1

(1 + x)2 + (y+ | k| \omega 1)2
d\omega 

\leq C
\Bigl( 
\langle k\rangle  - \alpha /2 + \langle k\rangle 2\alpha  - 2

\Bigr) 
.

Now choosing \alpha = 4/5 yields the claim.

The next step is to apply the inverse Laplace transform to the solution

\~fk(z,\omega ) =
\~\rho k(z)M\scrJ + \mu \~Jk(z) \cdot \nabla JM\scrJ + \^f\circ 

k (\omega )

1 + z + ik \cdot \omega 

of (3.1), where the integration contour is chosen to be z = x+ iy \in  - \delta + i\BbbR , with \delta < 1
as in Corollary 3.3:

\^fk(t,\omega ) =
e - \delta t

2\pi 
lim

M\rightarrow \infty 

\int M

 - M

eiyt \~fk(z,\omega ) dy

=
e - \delta t

2\pi 
lim

M\rightarrow \infty 

\int M

 - M

eiyt
\~\rho kM\scrJ + \mu \~Jk \cdot \nabla JM\scrJ 

1 + z + ik \cdot \omega 
dy+ e - t(1+ik\cdot \omega ) \^f\circ 

k .

We split the integral as

\^fk(t,\omega ) =
e - \delta t

2\pi 
lim

M\rightarrow \infty 

\int 
2| k| \leq | y| \leq M

eiyt
\~\rho kM\scrJ + \mu \~Jk\nabla \scrJ M\scrJ 

1 + z + ik \cdot \omega 
dy

+
e - \delta t

2\pi 

\int 
| y| \leq 2| k| 

eiyt
\~\rho kM\scrJ + \mu \~Jk\nabla \scrJ M\scrJ 

1 + z + ik \cdot \omega 
dy+ e - t(1+ik\cdot \omega ) \^f\circ 

k .
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6029

For the first integral we use (3.7) and for the second integral we use (3.8) to obtain

| \^fk(t,\omega )| \leq Ce - \delta t

\Biggl( 
lim

M\rightarrow \infty 

\int M

 - M

\| \^f\circ 
k (\cdot )\| L2(\BbbS d - 1)

\langle y\rangle 2
dy

+

\int 2| k| 

 - 2| k| 

\| \^f\circ 
k (\cdot )\| L2(\BbbS d - 1)

| 1 - \delta + i(y+ k \cdot \omega )| \langle k\rangle 1/5
dy+ | \^f\circ 

k | 

\Biggr) 
.

The second integral is computed explicitly:\int 2| k| 

 - 2| k| 

1

| 1 - \delta + i(y+ k \cdot \omega )| \langle k\rangle 1/5
dy

= \langle k\rangle  - 1/5

\biggl( 
sinh - 1

\biggl( 
k \cdot \omega + 2| k| 

1 - \delta 

\biggr) 
 - sinh - 1

\biggl( 
k \cdot \omega  - 2| k| 

1 - \delta 

\biggr) \biggr) 
\leq 2\langle k\rangle  - 1/5 sinh - 1

\biggl( 
3| k| 
1 - \delta 

\biggr) 
\leq C ,

with C independent from k. Inserting this estimate above yields

| \^fk(t,\omega )| \leq Ce - \delta t
\Bigl( 
\| \^f\circ 

k\| L2(\BbbS d - 1) + | \^f\circ 
k (\omega )| 

\Bigr) 
,

implying

\| \^fk\| L2(\BbbS d - 1) \leq Ce - \delta t\| \^f\circ 
k\| L2(\BbbS d - 1) .(3.11)

It remains for us to analyze the case k = 0. The discussion has already been started
in section 2, since \^f0 = f , satisfying

\partial tf = \mu Jf \cdot \nabla JM\scrJ  - f ,(3.12)

where Jf solves the linear ODE system (2.2), and we collect results on the properties
of its coefficient matrix.

Lemma 3.5. Let \mu > 0, \scrJ \in \scrS (\mu ), and let

C\scrJ := \mu 

\int 
\BbbS d - 1

\omega \otimes \nabla JM\scrJ d\omega  - Id.

Then C\scrJ is symmetric, and for \mu \leq d (i.e., \scrJ = 0) it is given by

C0 =
\Bigl( \mu 
d
 - 1
\Bigr) 
Id.(3.13)

For \mu > d (i.e., | \scrJ | = L(\mu ) > 0 with L(\mu ) satisfying (1.4)), there is a (d  - 1)-
dimensional nullspace given by \scrN (C\scrJ ) = \scrJ \bot . The remaining eigenvalue \lambda \scrJ (with
eigenvector \scrJ ) satisfies

\lambda \scrJ = \mu  - d - | \scrJ | 2

\mu 
= - 2

\Bigl( \mu 
d
 - 1
\Bigr) 
+O((\mu  - d)2) as \mu \rightarrow d+ .

Proof. The gradient with respect to J of the von Mises distribution evaluated at
an equilibrium flux \scrJ \in \scrS (\mu ) is given by

\nabla JM\scrJ (\omega ) = \omega M\scrJ (\omega ) - e\omega \cdot \scrJ 

Z(\scrJ )2

\int 
\BbbS d - 1

\omega \prime e\omega 
\prime \cdot \scrJ d\omega \prime =

\biggl( 
\omega  - \scrJ 

\mu 

\biggr) 
M\scrJ (\omega ) ,(3.14)
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6030 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

where the consistency relation (1.3) has been used. This implies

C\scrJ = \mu 

\int 
\BbbS d - 1

\omega \otimes \omega M\scrJ d\omega  - 1

\mu 
\scrJ \otimes \scrJ  - Id ,

and, thus, the symmetry of C\scrJ . Since M0 = | \BbbS d - 1|  - 1, (3.13) follows immediately,
since \int 

\BbbS d - 1

\omega i\omega j d\omega = 0 for i \not = j and

\int 
\BbbS d - 1

\omega 2
i d\omega =

| \BbbS d - 1| 
d

.

For \mu > d, taking the gradient of the equilibrium relation (1.3) along \scrS (\mu ) shows
\scrN (C\scrJ ) = \scrJ \bot . With the representation \omega = \omega 1

\scrJ 
| \scrJ | + \omega \bot (whence M\scrJ becomes a

function of \omega 1) the computation\biggl( \int 
\BbbS d - 1

\omega \otimes \omega M\scrJ d\omega 

\biggr) 
\scrJ =

\int 
\BbbS d - 1

\biggl( 
\omega 1

\scrJ 
| \scrJ | 

+ \omega \bot 
\biggr) 
\omega 1| \scrJ | M\scrJ d\omega =

\biggl( \int 
\BbbS d - 1

\omega 2
1M\scrJ d\omega 

\biggr) 
\scrJ 

shows that \scrJ is an eigenvector of C\scrJ . For the computation of the eigenvalue, the
value of the integral on the right-hand side is needed.

We choose a unit vector z \in \scrN (C\scrJ ), i.e., z \cdot \scrJ = 0 and | z| = 1. Then, with the
representation \omega = \omega 1

\scrJ 
| \scrJ | + \omega 2z + \omega \bot we have

0 =C\scrJ z = \mu 

\int 
\BbbS d - 1

\biggl( 
\omega 1

\scrJ 
| \scrJ | 

+ \omega 2z + \omega \bot 
\biggr) 
\omega 2M\scrJ d\omega  - z =

\biggl( 
\mu 

\int 
\BbbS d - 1

\omega 2
2M\scrJ d\omega  - 1

\biggr) 
z .

This implies \int 
\BbbS d - 1

\omega 2
2M\scrJ d\omega =

1

\mu 
.

By symmetry this remains valid when \omega 2 is replaced by \omega j , j \not = 1. Since M\scrJ is
normalized, we also have

1 =

\int 
\BbbS d - 1

M\scrJ d\omega =

\int 
\BbbS d - 1

\omega 2
1M\scrJ d\omega + (d - 1)

\int 
\BbbS d - 1

\omega 2
2M\scrJ d\omega .

Combining these results leads to\int 
\BbbS d - 1

\omega 2
1M\scrJ d\omega = 1 - d - 1

\mu 
,

which proves the formula for \lambda \scrJ . The asymptotic expansion is a direct consequence
of (5.3).

The lemma implies that Jf tends to its equilibrium exponentially for \mu \not = d with
linear degeneration of the decay rate as \mu \rightarrow d. The equilibrium is zero for \mu < d,
and it is given by P\bot 

\scrJ Jf\circ for \mu > d. It is obvious from (3.12) that f = \^f0 also
converges exponentially for \mu \not = d. Combination of these observations with (3.11) and
application of Parseval's identity complete the proof of Theorem 2.1.

4. Nonlinear stability for small data: Proof of Lemma 2.3 and Theorem
2.4. We consider an initial datum close to the manifold of equilibria; i.e.,

\| F \circ  - F\mu ,J1
\| Hm

x
=: \varepsilon 
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6031

is assumed to be small (\varepsilon < \varepsilon 0), with J1 \in \scrS (\mu ) and Hm
x = Hm

x (\BbbT d \times \BbbS d - 1) as in
Theorem 2.1. We start by choosing an improved estimate of the equilibrium flux by
projecting the average flux of the initial datum to the equilibrium manifold \scrS (\mu ):

J2 := 0 for \mu < d , and J2 :=L\mu 
JF\circ \bigm| \bigm| JF\circ 

\bigm| \bigm| for \mu > d ,

with L\mu as in Definition 1.1. In the second case J2 is well defined, if we assume
\varepsilon 0| \BbbS d - 1| 1/2 \leq L\mu , since\bigm| \bigm| JF\circ 

\bigm| \bigm| \geq L\mu  - 
\bigm| \bigm| \bigm| \bigm| JF\circ 

\bigm| \bigm|  - | J1| 
\bigm| \bigm| \geq L\mu  - 

\bigm| \bigm| JF\circ  - J1
\bigm| \bigm| 

\geq L\mu  - | \BbbS d - 1| 1/2\| F \circ  - F\mu ,J1\| L2 \geq L\mu  - | \BbbS d - 1| 1/2\varepsilon > 0 .

As a consequence of the definition of J2 we have

| J2  - JF\circ | \leq | J1  - JF\circ | \leq \varepsilon ,(4.1)

and

\| F \circ  - F\mu ,J2
\| Hm

x
\leq \| F \circ  - F\mu ,J1

\| Hm
x
+ \| F\mu ,J1

 - F\mu ,J2
\| Hm

x

\leq \varepsilon +C| J1  - J2| \leq (1 + 2C)\varepsilon ,(4.2)

where we have used that the mapping J \mapsto \rightarrow F\mu ,J from \BbbR d to Hm
x is locally Lipschitz.

The next step is linearization around F\mu ,J2
. We rewrite the Vicsek-BGK problem

(1.1) in terms of f1 = F  - F\mu ,J2
:

\partial tf1 =\scrL \mu ,J2
f1 + \scrS \mu ,J2

(f1) ,

f1(t= 0) = f\circ := F \circ  - F\mu ,J2
,

(4.3)

where

\scrL \mu ,J2
f = \rho fMJ2

+ \mu Jf \cdot \nabla JMJ2
 - f  - \gamma \omega \cdot \nabla xf and

\scrS \mu ,J2
(f) = (\mu + \rho f )(MJ2+Jf

 - MJ2
) - \mu Jf \cdot \nabla JMJ2

are the linearized operator (as in (2.1)) and the nonlinear remainder, respectively.
With the semigroup \scrT \mu ,J2

generated by \scrL \mu ,J2
, the Duhamel formulation of (4.3) reads

f1(t) = \scrT \mu ,J2(t)f
\circ +

\int t

0

\scrT \mu ,J2(t - s)\scrS \mu ,J2(f1(s)) ds .(4.4)

Theorem 2.1 shows that \scrT \mu ,J2
is bounded on Hm

x . Since \scrS \mu ,J2
(f) depends smoothly on

\rho f and Jf and since Hm(\BbbT d) is a Banach algebra (as a consequence of the continuous
imbedding Hm(\BbbT d) \lhook \rightarrow L\infty (\BbbT d)), local existence of f1 in Hm

x can be shown by Picard
iteration. Standard arguments prove that finite time blow-up implies blow-up of
\| \rho f1\| L\infty (\BbbT d), completing the proof of Lemma 2.3.

The Banach algebra property also implies that for each R> 0 there exists CR > 0
such that

\| \scrS \mu ,J2
(f)\| Hm

x
\leq CR\| f\| 2Hm

x
for \| f\| Hm

x
\leq R.

Since by construction
\int 
f\circ dxd\omega = P\bot 

J2
Jf\circ = 0, Theorem 2.1 can be used for the action

of the semigroup on f\circ ,

\| \scrT \mu ,J2
(t)f\circ \| Hm

x
\leq Ce - \lambda t\| f\circ \| Hm

x
\leq C1\varepsilon e

 - \lambda t ,
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6032 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

by using (4.2). Application of these results to (4.4) gives

\| f1(t)\| Hm
x
\leq C1\varepsilon e

 - \lambda t +CR

\int t

0

\| f1(s)\| 2Hm
x
ds ,

as long as \| f1(s)\| Hm
x

\leq R for 0 \leq s \leq t. For fixed R we restrict \varepsilon 0 further to satisfy
2C1\varepsilon 0 \leq R and try to prove

\| f1(t)\| Hm
x
\leq 2C1\varepsilon e

 - \lambda t

on an appropriate time interval. This is satisfied if

4CRC
2
1\varepsilon 

2

\int t

0

e - 2\lambda s ds\leq 2CRC
2
1\varepsilon 

2

\lambda 
\leq C1\varepsilon e

 - \lambda t ,

which holds for

t\leq 1

\lambda 
log

\biggl( 
\lambda 

2CRC1\varepsilon 

\biggr) 
.(4.5)

Now we set

T :=
1

\lambda 
log (4C1) ,(4.6)

which satisfies (4.5) under the further restriction

\varepsilon 0 \leq 
\lambda 

8CRC2
1

.

This implies

\| f1\| Hm
x
\leq 2C1\varepsilon on [0, T ] and \| f1(T )\| Hm

x
\leq \varepsilon 

2
.

Now the procedure is iterated with \varepsilon replaced by \varepsilon /2, producing a sequence (Jk+1,
fk)k\geq 1 with Jk+1 \in S(\mu ) and fk = F  - F\mu ,Jk+1

: [(k - 1)T,kT ]\rightarrow Hm
x such that P\bot 

Jk+1

Jfk((k - 1)T ) = 0,

\| fk\| Hm
x
\leq C1\varepsilon 

2k - 2
on [(k - 1)T,kT ] , and \| fk(kT )\| Hm

x
\leq \varepsilon 

2k
.

From (4.1) we deduce | J1  - J2| \leq 2\varepsilon and therefore

| Jk  - Jk+1| \leq 
\varepsilon 

2k - 2
, k\geq 1 .(4.7)

This implies convergence:

lim
k\rightarrow \infty 

Jk = J\infty .

We expect F (t)\rightarrow F\mu ,J\infty as t\rightarrow \infty and estimate for (k - 1)T \leq t\leq kT ,

\| F (t) - F\mu ,J\infty \| Hm
x

\leq \| fk(t)\| Hm
x
+

\infty \sum 
l=k+1

\| F\mu ,Jl
 - F\mu ,Jl+1

\| Hm
x
\leq C1\varepsilon 

2k - 2
+

\infty \sum 
l=k+1

C2\varepsilon 

2l
=

C3\varepsilon 

2k

\leq C3\varepsilon 

2t/T
=C3\varepsilon e

 - \^\lambda t , with \^\lambda =
\lambda log 2

log(4C1)
,

where we have used Lipschitz continuity as in (4.2) as well as (4.7) and (4.6). This
completes the proof.
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STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6033

5. Global existence of weak solutions: Proof of Theorem 2.6. In this
section we prove the global well-posedness of the nonlinear equation, proceeding simi-
larly to the methods of [24] for the Boltzmann-BGK equation. We introduce a family
of approximate equations

\partial tF + \omega \cdot \nabla xF = \rho FMJ\epsilon 
F
 - F ,

F (t= 0) = F \circ ,
(5.1)

where J\varepsilon 
F is given by

J\varepsilon 
F =

JF
| JF | 

min\{ | JF | ,
1

\varepsilon 
\} , \varepsilon > 0 .

For the initial datum, we impose boundedness of the total mass and of the logarithmic
entropy: \int 

\BbbT d

\int 
Sd - 1

F \circ (1 + | logF \circ | ) dx d\omega <\infty .

For every \varepsilon > 0, classical methods show that the problem (5.1) has a unique global
mild solution in C([0,\infty );L1(\BbbT d\times \BbbS d - 1)). In order to pass to the limit \varepsilon \rightarrow 0, we need
estimates which are uniform in \varepsilon \rightarrow 0. For this purpose, a bound for the J-dependence
of the von Mises distribution is needed.

Lemma 5.1. For d \geq 2 there exists Cd > 0 such that the von Mises distribution
(1.2) satisfies

0<MJ(\omega )\leq Cd

\Bigl( 
1 + | J | (d - 1)/2

\Bigr) 
\forall \omega \in \BbbS d - 1 .

Proof. The von Mises distribution can be written as

MJ(\omega ) = cd e
\omega \cdot J
\biggl( \int \pi 

0

e| J| cos\theta sind - 2 \theta d\theta 

\biggr)  - 1

.

Its maximum,

sup
\omega 

MJ(\omega ) = cd

\biggl( \int \pi 

0

e| J| (cos\theta  - 1) sind - 2 \theta d\theta 

\biggr)  - 1

,

is a smooth function of | J | \in [0,\infty ). Its behavior for large | J | can be studied by the
new coordinate u= | J | (1 - cos\theta ), giving\int \pi 

0

e| J| (cos\theta  - 1) sind - 2 \theta d\theta =
1

| J | 

\int 2| J| 

0

e - u

\biggl( 
2u

| J | 
 - u2

| J | 2

\biggr) (d - 3)/2

du\approx | J |  - 
d - 1
2 2

d - 3
2 \Gamma 

\biggl( 
d - 1

2

\biggr) 
,

as | J | \rightarrow \infty .

Lemma 5.2. Let the assumptions of Theorem 2.6 hold. Then there exist c,C > 0,
independent of \varepsilon > 0, such that the solution F\varepsilon of (5.1) satisfies\int 

\BbbT d

\int 
\BbbS d - 1

F\varepsilon (t, x,\omega )(1 + | logF\varepsilon (t, x,\omega )| ) dx d\omega \leq C(1 + ect) .
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6034 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

Proof. By the mass conservation and by the boundedness of the domain, the
integral of F\varepsilon and the product of F\varepsilon with the negative part of the logarithm are
uniformly bounded. Therefore it suffices to show uniform boundedness of the entropy
functional

\scrE [F\varepsilon ] =

\int 
\BbbT d

\int 
\BbbS d - 1

\biggl( 
1

e
+ F\varepsilon logF\varepsilon 

\biggr) 
dx d\omega \geq 0.

To this end, we estimate its time derivative:1

d

dt
\scrE [F\varepsilon ] =

\int 
\BbbT d

\int 
\BbbS d - 1

(\rho F\varepsilon 
MJ\varepsilon 

F\varepsilon 
 - F\varepsilon ) logF\varepsilon dx d\omega 

=
| \BbbS d - 1| 

e
 - \scrE [F\varepsilon ] - 

\int 
\BbbT d

\int 
\BbbS d - 1

\rho F\varepsilon 
MJ\varepsilon 

F\varepsilon 
log

\biggl( 
\rho F\varepsilon 

MJ\varepsilon 
F\varepsilon 

F\varepsilon 

\biggr) 
dx d\omega 

+

\int 
\BbbT d

\int 
\BbbS d - 1

\rho F\varepsilon MJ\varepsilon 
F\varepsilon 

log(\rho F\varepsilon MJ\varepsilon 
F\varepsilon 
)

\leq | \BbbS d - 1| 
e

 - \scrE [F\varepsilon ] +

\int 
\BbbT d

\int 
\BbbS d - 1

\rho F\varepsilon MJ\varepsilon 
F\varepsilon 

log(\rho F\varepsilon MJ\varepsilon 
F\varepsilon 
) dx d\omega ,(5.2)

where the inequality is due to the nonnegativity of the relative entropy\int 
\BbbT d

\int 
\BbbS d - 1

\rho FMJ\varepsilon 
F
log

\biggl( 
\rho FMJ\varepsilon 

F

F

\biggr) 
dx d\omega 

=

\int 
\BbbT d

\int 
\BbbS d - 1

\biggl( 
\rho FMJ\varepsilon 

F
log

\biggl( 
\rho FMJ\varepsilon 

F

F

\biggr) 
 - \rho FMJ\varepsilon 

F
+ F

\biggr) 
dx d\omega \geq 0 .

After splitting the last term in (5.2) by the functional equation of the logarithm, we
use the Jensen inequality

\rho F

| \BbbS d - 1| 
log

\rho F

| \BbbS d - 1| 
\leq 1

| \BbbS d - 1| 

\int 
\BbbS d - 1

F logF d\omega 

for the first part to obtain\int 
\BbbT d

\int 
\BbbS d - 1

\rho F\varepsilon MJ\varepsilon 
F\varepsilon 

log(\rho F\varepsilon ) dx d\omega 

=

\int 
\BbbT d

\rho F\varepsilon log(\rho F\varepsilon ) dx\leq \| F \circ \| L1(\BbbT d\times \BbbS d - 1) log | \BbbS d - 1|  - | \BbbS d - 1| 
e

+ \scrE [F\varepsilon ] .

For the second part we use Lemma 5.1, as well as | J\varepsilon 
F | \leq | JF | \leq \rho F :\int 

\BbbT d

\int 
\BbbS d - 1

\rho F\varepsilon 
MJ\varepsilon 

F\varepsilon 
log(MJ\varepsilon 

F\varepsilon 
) dx d\omega \leq 

\int 
\BbbT d

\rho F\varepsilon 
log
\Bigl( 
Cd

\Bigl( 
1 + | \rho F\varepsilon 

| (d - 1)/2
\Bigr) \Bigr) 

dx .

It is easily seen that there exists c\geq d - 1
2 such that \rho log(1+ \rho (d - 1)/2)\leq c(1+ \rho log\rho ).

Applying this and collecting our results, we have

d

dt
\scrE [F\varepsilon ]\leq \| F \circ \| L1(\BbbT d\times \BbbS d - 1) log(Cd| \BbbS d - 1| 1+c) + c

\Biggl( 
1 - | \BbbS d - 1| 

e
+ \scrE [F\varepsilon ]

\Biggr) 
.

1This estimate can be made rigorous with a standard regularization argument which we omit
here.

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0

license

D
ow

nl
oa

de
d 

11
/1

8/
25

 to
 8

6.
13

0.
18

9.
21

9 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



STABILITY OF THE INHOMOGENEOUS VICSEK-BGK EQUATION 6035

This differential inequality implies the desired uniform (in \varepsilon ) boundedness of \scrE [F\varepsilon ] on
finite time intervals.

Lemma 5.2 ensures uniform integrability of \{ F\varepsilon , \varepsilon > 0\} and therefore the weak
convergence

F\varepsilon \rightharpoonup F inL1((0, T )\times \BbbT d \times \BbbS d - 1)

for appropriate subsequences by the Dunford--Pettis theorem (as in, e.g., [24, page
196]). In the proof of Lemma 5.2 we have bounded the last term in (5.2) in terms
of \scrE [F\varepsilon ], implying uniform integrability of \rho F\varepsilon MJ\varepsilon 

F\varepsilon 
. An application of the averaging

lemma B.4 implies the strong convergence

\rho F\varepsilon 
\rightarrow \rho F in L1((0, T )\times \BbbT d)

and therefore, by | JF1
 - JF2

| \leq | \rho F1
 - \rho F2

| , also

JF\varepsilon 
\rightarrow JF in L1((0, T )\times \BbbT d) ,

again for appropriate subsequences. A further application of the Dunford--Pettis the-
orem gives weak convergence of \rho F\varepsilon 

MJ\varepsilon 
F\varepsilon 
, following the argument of Perthame (see

third step in [24, page 199]). Its weak limit is given by \rho FMJF
since, again taking

subsequences, the convergence of \rho F\varepsilon and JF\varepsilon (and therefore also of J\varepsilon 
F\varepsilon 
) is pointwise

almost everywhere. Since the other terms in (5.1) are linear, we can pass to the limit.
Since F,G := \rho FMJF

\in L\infty ((0, T ),L1(\BbbT d\times \BbbS d - 1)), the weak solution is actually a
mild solution. In particular, for 0\leq t1 \leq t2 we have, almost everywhere, the identity

F (t2, x,\omega ) = et1 - t2F (t1, x - \omega (t2  - t1), \omega ) +

\int t2

t1

et - t2G(t, x - \omega (t2  - t), \omega ) dt .

In the limit t2 \rightarrow t1+, the first term on the right-hand side converges to F (t = t1)
(Fr\'echet--Kolmogorov) and the second to zero in L1(\BbbT d \times \BbbS d - 1). This proves F \in 
C([0,\infty ),L1(\BbbT d \times \BbbS d - 1)) and completes the proof of Theorem 2.6.

Appendix A: Asymptotics close to the bifurcation point. We look for an
expansion of the solution L(\mu ) > 0 of (1.4) for 0 < \mu  - d \ll 1, with L(d) = 0. The
equation can be written as

\mu 

\int \pi 

0

cos\theta eL cos\theta sind - 2 \theta d\theta =L

\int \pi 

0

eL cos\theta sind - 2 \theta d\theta ,

and with Taylor expansion around L= 0 we get

\mu LI2,d - 2 + \mu 
L3

6
I4,d - 2 =LI0,d - 2 +

L3

2
I2,d - 2 +O(L5) ,

where

Ik,m :=

\int \pi 

0

cosk \theta sinm \theta d\theta .

These integrals satisfy the recursions

I4,m = I2,m  - I2,m+2 , I2,m =
1

m+ 1
I0,m+2 , I0,m =

m - 1

m
I0,m - 2 ,

which can be shown by trigonometric identities and by integrations by parts. Using
them, all the integrals appearing in the equation above can be written as multiples of
I0,d - 2. This leads to

L2 = (d+ 2)(\mu  - d) +O((\mu  - d)2) as \mu \rightarrow d+ .(5.3)
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6036 S. MERINO-ACEITUNO, C. SCHMEISER, AND R. WINTER

Appendix B: Averaging lemmas. Although the averaging lemma we need
here cannot really be considered as a new result (see, e.g., [22]), its precise formulation
does not seem to be readily available in the literature. We follow along the lines of
[20], first proving an L2-averaging lemma and then using it for the extension to L1.

Lemma B.3. Let \mu be a positive bounded measure on \BbbS d - 1, satisfying for appro-
priate C,\beta > 0

ess sup
e\in \BbbS d - 1, y\in \BbbR d

\mu 
\Bigl( \Bigl\{ 

\omega \in \BbbS d - 1 : | \omega \cdot e+ y| \leq \varepsilon 
\Bigr\} \Bigr) 

\leq C\varepsilon \beta \forall \varepsilon > 0 .(5.4)

Let f, g \in L2(dt\otimes dx\otimes d\mu ), \gamma > 0, satisfy

\partial tf + \gamma \omega \cdot \nabla xf + f = g in \BbbR \times \BbbT d \times \BbbS d - 1 .(5.5)

Then there exists c > 0 such that\bigm\| \bigm\| \bigm\| \~f\bigm\| \bigm\| \bigm\| 
H\beta /(2+\beta )(dt\otimes dx)

\leq c\| g\| L2(dt\otimes dx\otimes d\mu ) , \~f :=

\int 
\BbbS d - 1

f d\mu .

Proof. As in section 3 we use Fourier series with respect to x (with Fourier variable
k \in \gamma \BbbZ d) but the Fourier transform (instead of the Laplace transform) with respect
to t (with Fourier variable \tau ). Denoting the Fourier transform by \scrF [\cdot ] we have

\scrF 
\Bigl[ 
\~f
\Bigr] 
(\tau , k) =

\int 
\BbbS d - 1

\scrF [g](\tau , k,\omega )

1 + i(\tau + k \cdot \omega )
d\mu (\omega ) .

Now we proceed similarly to the proof of Lemma 3.4 with x= 0, y= \tau :\bigm| \bigm| \bigm| \scrF \Bigl[ \~f\Bigr] (\tau , k)\bigm| \bigm| \bigm| \leq \| \scrF [g](\tau , k, \cdot )\| L2(d\mu )

\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + i(\tau + k \cdot \omega )

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(d\mu )

.

For | \tau | \leq 2| k| we consider the set A\alpha defined in (3.10), satisfying \mu (A\alpha ) \leq C\langle k\rangle  - \alpha \beta 

by (5.4). Then\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + i(\tau + k \cdot \omega )

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(d\mu )

=

\int 
A\alpha 

d\mu 

1 + (\tau + k \cdot \omega )2
+

\int 
\BbbS d - 1\setminus A\alpha 

d\mu 

1 + (\tau + k \cdot \omega )2

\leq C1

\bigl( 
\langle k\rangle  - \alpha \beta + \langle k\rangle 2\alpha  - 2

\bigr) 
= 2C1\langle k\rangle  - 2\beta /(2+\beta )

\leq C2

\Bigl( 
1 + | k| 2\beta /(2+\beta ) + | \tau | 2\beta /(2+\beta )

\Bigr)  - 1

,

with \alpha = 2
2+\beta . For | \tau | \geq 2| k| we have | \tau + k \cdot \omega | \geq | \tau | /2, and therefore\bigm\| \bigm\| \bigm\| \bigm\| 1

1 + i(\tau + k \cdot \omega )

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2(d\mu )

\leq C3

\langle \tau \rangle 2
\leq C4

1 + \tau 2 + | k| 2
\leq C5

\Bigl( 
1 + | k| 2\beta /(2+\beta ) + | \tau | 2\beta /(2+\beta )

\Bigr)  - 1

.

Combination of these results gives\Bigl( 
1 + | k| 2\beta /(2+\beta ) + | \tau | 2\beta /(2+\beta )

\Bigr) \bigm| \bigm| \bigm| \scrF \Bigl[ \~f\Bigr] (\tau , k)\bigm| \bigm| \bigm| 2 \leq c2\| \scrF [g](\tau , k, \cdot )\| 2L2(d\mu ) ,

and an application of Parseval's and Plancherel's identities completes the proof.

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
license
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Lemma B.4. Let (5.4) hold. Define the operator T from L1(dt \otimes dx \otimes d\mu ) into
L1(dt\otimes dx) by Tg= \~f , where f is the unique solution in L1(dt\otimes dx\otimes d\mu ) of (5.5). If
K \subset L1(dt\otimes dx\otimes d\mu ) is bounded and uniformly integrable, then T (K) is compact in
L1
loc(dt\otimes dx).

We omit the proof, which is the same as the proof of Proposition 3 in [20] with
the obvious changes, in particular using Lemma B.3 instead of Theorem 1 of [20].

Appendix C: Dimensional analysis. A dimensional version of (1.1) can be
written as

\partial tF + v0\omega \cdot \nabla xF =
\rho FM

(\eta )
JF

 - F

\tau 
,

with \rho F , JF defined just before (1.2) and with

M
(\eta )
J (\omega ) :=

e\omega \cdot J/\eta 

Z(\eta )(J)
, Z(\eta )(J) :=

\int 
\BbbS d - 1

exp(\omega \cdot J/\eta ) d\omega .

Parameters are the particle speed v0, the relaxation time \tau , and the reference flux \eta 
determining how spread out the von Mises distributionM

(\eta )
J is. Independent variables

are time t \geq 0, position x in the flat torus of length L, i.e., x \in L\BbbT d, and direction
\omega \in \BbbS d - 1. Note that F , \rho F , JF , and \eta have the same dimension, since the direction
\omega is dimensionless. The nondimensionalization

(F,\rho F , JF )\rightarrow \eta (F,\rho F , JF ) , t\rightarrow \tau t , x\rightarrow Lx ,

produces (1.1) with the dimensionless Knudsen number \gamma = v0\tau 
L , the ratio between

the mean free path v0\tau and the reference length L.
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