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Abstract. The Vicsek-Bhatnagar—Gross—Krook (BGK) equation is a kinetic model for align-
ment of particles moving with constant speed between stochastic reorientation events with sampling
from a von Mises distribution. The spatially homogeneous model shows a steady state bifurcation
with exchange of stability. The main result of this work is an extension of the bifurcation result to
the spatially inhomogeneous problem under the additional assumption of a sufficiently large Knudsen
number. The mathematical core is the proof of linearized stability, which employs a new hypoco-
ercivity approach based on Laplace-Fourier transformation. The bifurcation result includes global
existence of smooth solutions for close-to-equilibrium initial data. For large data, smooth solutions
might blow up in finite time, whereas weak solutions with bounded Boltzmann entropy are shown to
exist globally.
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1. Introduction.

The Vicsek-BGK equation. The Vicsek-Bhatnagar—Gross—Krook (BGK) equation
is a kinetic model for alignment dynamics. It describes the time-evolution of a particle
distribution in position and direction of motion.

Let T? be the (flat) d-dimensional torus and S9! be the unit sphere in RY,
d > 2. The initial value problem for the Vicsek-BGK equation for the particle density
F =F(t,z,w), depending on position x € T¢, movement direction w € S¥!, and time

t >0, is given by
W OF +yw- Vo F =ppMy, — F,
F0,z,w) =F°(z,w),
where v > 0 is a given parameter and F° > 0 denotes the initial datum. The position
density pg, the flux Jp, and the von Mises distribution M ; are given by

pr(t,x) ::/ F(t,z,w) dw,
gd-1

Jr(t,x) ::/ wF(t,z,w) dw,
gd—1

exp(w - J)

(1.2) My(w) = =7

, with Z(J) ::/ exp(w-J) dw.

Sd—1
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The left-hand side of the Vicsek-BGK equation (1.1) is a transport term describing
movement with constant speed in the direction w. The right-hand side, the “collision
operator” in the language of kinetic theory, describes a direction jump process, where
postcollisional directions are sampled from the von Mises distribution.

The problem has been nondimensionalized, where the scaling of F' has been chosen
to remove a (temperature) parameter in the exponent of the von Mises distribution,
the reference length is the length of the original torus, and the reference time is
the mean time between directional jumps. The dimensionless parameter v > 0 is the
Knudsen number, i.e., the ratio between the mean free path and the length of the torus
or, equivalently, between the free flight time and the time a particle needs to traverse
the torus (see Appendix C for the dimensional analysis of the equation). A second
important dimensionless parameter is the scaled total number of particles or, equiva-
lently, the scaled total mass p, which is (at least formally) conserved by the evolution

/ F(t,ac,w)dwdx:/ Fe(z,w)dwde=:pu, t>0.
Td Jgd—1 Td Jgd—1

The classical prototypes for individual based alignment models are the Cucker—Smale
model [8], where particle speeds can be arbitrary, and the Vicsek model [25], where all
particles share the same speed and vary only their movement direction. In both mod-
els the velocity/direction of each particle is changed toward a weighted average over
the other particles. A link between both types of models is provided by Cucker—Smale
models with additional relaxation of the speed toward a constant value (see, e.g., [1]).
Kinetic versions of these models can be seen as models (sometimes limits [13]) for
large particle ensembles. The Viesek-BGK equation (1.1) belongs to this group with
the collision operator mimicking alignment under stochastic perturbations. Strongly
related is the Vicsek—Fokker—Planck version of the model [10, 11, 16, 18], where the
collision operator is replaced by a Fokker—Planck-type differential operator in w, which
has the same equilibria as (1.1). Extensions of these models, used for the description
of flocking dynamics, typically include long range attraction and short range repulsion
via distance dependent interaction potentials [5, 6, 7, 8.

The spatially homogeneous problem—Bifurcation. For given total mass > 0, the
Viesek-BGK equation (1.1) admits spatially homogeneous equilibria of the form

Foo(xa Cd) = MMJW (W) ;
where Jo € R? must satisfy the consistency relation
(1.3)

T cosfe” 58 sin%2 9 do
Joo=/~t/ wM, (w) dw = pe(|J|) o
Sd—l

foﬂ ercost sin?=2 9 dg

Joo
ool

o(r):=

Obviously, the direction of J, is arbitrary, but its modulus L = |J| has to satisfy
(1.4) L=puc(L).

This equation has been studied in [10, 11, 16, 18]. For any g > 0 it has the trivial
solution L = 0, which is the only solution for u < d. At the critical mass p = d a
bifurcation occurs, and for p > d there exists a continuous branch of unique nontrivial
solutions L, € (0,p) with Ly =0. At the bifurcation point we expect an exchange of
stability from the trivial to the nontrivial steady state. Motivated by this, we define
the manifold of supposedly stable steady states.
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DEFINITION 1.1 (equilibrium set). The equilibrium set S(u) C R? is defined by

0 ) 0 S 12 S d,
swe=1"
{Lyw:weS* '}, p>d,

where L, >0 denotes the nontrivial solution of (1.4).

For the spatially homogeneous problem our expectation is correct.

PROPOSITION 1.2 (convergence to equilibria in the spatially homogeneous case).
The problem
(1.5) OF =ppMy, —F, F(0,)=F°(),
with F° € L (S%) has a global solution satisfying lim;_, F(t,w) = uM; . _(w) with

0 for0<u<d or Jpo =0,
= F°(w) dw, Joo = Jpo
a Sd—1 (w) dw L#L for w>d and Jpo #0.
| e |
Proof. By mass conservation we have pr(t) = p, t > 0. The flux then satisfies the
closed initial value problem

d . (pc(|JF]) _
dtJF_< e 1) Jp, Jr(0) = Jpo,

which conserves the direction of Jp. Its solution has the form Jp(t) = L(¥) |§§Z‘7

where L(t) solves

dL
T:uc(L)—L, L(0) =|Jpe].
t
The function ¢ has the properties
, 1 (L) . . .
¢(0)=0, ¢(0)= 7 L~ 7 i strictly decreasing and tends to zero as L — oo,
which have been shown in [18]. They imply that

. 0, 0<u<dor Jepo =0,
lim L(t) =
t—o0 L,, p>d and Jpo #0.
The result is now obvious by solving (1.5) with given pr and Jp. d

The situation is simpler in models where the equilibrium is a von Mises distribu-
tion with Jp replaced by its normalized version. In this case the consistency relation
corresponding to (1.3) is always satisfied and there is only one stable equilibrium
without any bifurcation behavior (see, e.g., [23]).

Challenges, results, perspectives. It is the main goal of this work to extend the
result of Proposition 1.2 to the spatially inhomogeneous model (1.1). Since the trans-
port operator is not dissipative, a hypocoercivity result [26] is needed to prove that
the combination of collisions and transport provide dissipation also in the position
variable. Challenges are caused by three somewhat related properties of the model:

e The bifurcation behavior discussed above,

e the lack of a sufficient number of conservation laws to explicitly determine
the asymptotic equilibrium from the initial data, and finally

e the lack of an entropy.

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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Since the established approaches for proving hypocoercivity [2, 3, 14, 15, 21, 26]
are based on entropy dissipation, they cannot be applied here. The lack of a complete
set of conservation laws also has important implications for the derivation of macro-
scopic limits since, again, classical methods fail. The curious reader is referred to [13].

Our analysis starts with a rather straightforward approach for the linearized equa-
tion, employing a Laplace—Fourier transformed problem. This decouples the Fourier
modes, and therefore separates an explicitly treatable low-dimensional problem show-
ing the bifurcation behavior, from the higher-order modes which are expected to de-
cay. This can actually be proven by rather involved estimates and subsequent inverse
Laplace transformation, which seems to be a new approach to showing hypocoerciv-
ity. The decay result in L? can easily be raised to an L2-based Sobolev space of
high enough differentiability order to allow the control of the nonlinearities. Since
the equilibrium is not known, an iterated procedure with linearizations around im-
proved approximations of the equilibrium is necessary. The final result is exponential
convergence to equilibrium for initial data close enough to the set of stable equilibria.

The approach also produces global existence of strong solutions for initial data
close to the set of stable equilibria. For large initial data, finite time blow-up of strong
solutions cannot be excluded. Therefore we complement our analysis by proving global
existence of weak solutions for large initial data with bounded Boltzmann entropy.
Although the entropy is not deceasing in general, it can be shown to increase at an
at most exponential rate.

Many open questions and venues of research remain:

e The domain of attraction of the stable equilibria considered here is unclear.
Global attraction might be conjectured, but so far we do not even have bound-
edness of large solutions.

e Supposedly our results can be extended to different settings of the position
space, where hypocoercivity approaches have been used successfully, such as
whole space with [14] or without [4] confinement.

e Omne can also consider other versions of the Vicsek model, in particular, the
Viesek—Fokker—Planck studied in [10, 11, 16, 18]. There exists already some
preliminary results on the stability of equilibria in the space-inhomogenous
case presented in [17], though the methodology there is very different from
the one used here.

e Finally, there are other models for collective dynamics that present phase
transitions, including models based on body attitude coordination and apolar
alignment [9, 12, 19]. For these models the question of stability in the space-
inhomogeneous case is still a completely unexplored subject.

The rest of this work is structured as follows: section 2 contains precise formula-
tions of the main results. The results on the linearized problem are proven in section 3.
Local stability for the nonlinear problem across the bifurcation is shown in section 4.
The global existence result of weak solutions with bounded Boltzmann entropy is
proven in section 5. Finally there are two short appendices with technical results.

2. Main results.

Stability of the linearized equation. The linearization of (1.1) around a spa-
tially homogeneous equilibrium F, = uM 7 with J € S(u) is given by

Of+yw-Vof=pfMg+pJg-V;Mg—f,

@1) fe=0=r  wih [ plw)drde=o.
TdxSd—1
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The constraint on the initial datum f° of the perturbation f is a consequence of the
assumption that p is the (conserved) total mass of the initial datum F° of F. Mass
conservation carries over to the linearized problem, and therefore we expect

/ ft,z,w)dedw=0, t>0.
Tdxsd-1

This can be written as py(t) =0, t > 0, using the spatial average

G(t,w):= | Gt,z,w)dr.
T
Contrary to the nonlinear problem, the equilibrium for the linearized equation can be
determined from the initial data by additional conservation laws. The spatial average
of the flux satisfies the closed equation

d— —
(2.2) ajf: (u/ OJ@VJMJdW-Id) Jr.
Sd—1

We shall prove (Lemma 3.5) that the coefficient matrix is symmetric and that for
p<d (i.e., J =0) it has negative eigenvalues and, thus, J;(t) — 0 as t — oo. On the
other hand, for p > d the coeflicient matrix possesses the (d—1)-dimensional nullspace
J*, and the remaining eigenvalue with eigenvector 7 is negative for i close to d.

When the solution of (2.1) converges to a steady state, we expect hypocoercivity,
i.e., spatial homogeneity of the steady state, and therefore

pi(t,x) =pr(t) =0, Jp(z,t)=J(t)  as t—o0.

As a consequence, the long time behaviour of the solution of (2.2) completely deter-
mines the equilibrium. In particular, we define

0 for p<d,

foo(z,w) = {‘LL(Pj_JfO) ViMgz(w) for p>d,

with the orthogonal projection

J J
PE.=1d— = ® =
7 719177

to the nullspace of the coefficient matrix in (2.2).
We remark that for u <d, the linearized equation reads

O f +yw-Vaof=psMo+pJs-wMo— f,
fE=0)=f°, with / fo(z,w)dedw=0.
Td x§d—1
In this case, any function f € L?(T¢ x S¢~1) can be decomposed orthogonally into
f=pMo+dJ-wMo+ f,

and we obtain
1
§at||f|‘%2(11‘d><§d*1) = _”fl”%?(TdXSd*l) —(d—p) /Td |J(2)? dz <0,

so the L? norm is monotone decreasing for y < d.

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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THEOREM 2.1 (exponential stability for the linearized equation). There exist
Yimins K > 0 such that for ¥ > Ymin, 0< pu < d+ kK, p#d, m >0, there exist A\,C >0
such that for each J € S(u) the solution f of (2.1) satisfies

1£(t,s) = fooll i (raxga-1) < OefAt||fo||H;n(1rdedfl) )

where the space H. is defined by

HgHH;"(deSd*l):: Z HD;;XQHLZ(Wxsd*ly

laj<m
The decay rate satisfies A=0(|p—d|) as p— d.

Remark 2.2. An analogous result holds when derivatives in w are included. Since
we only need derivatives in x for the control of nonlinear terms, we state the result in
this form.

Exponential stability of equilibria for the nonlinear equation. We start
with local existence of strong solutions of the nonlinear problem and provide a blow-up
criterion. The proof follows standard arguments and will only be outlined in section 4.

LEMMA 2.3 (existence). Let m > d/2 and F° € H™(TxS%). Then there exists
a time T, > 0 such that (1.1) has a strong solution F € C'([0,T.); H™(T% x $*71))
and either

T, =00 or limsup [|p(t)|| oo (ray =00
—T,

Furthermore, the total mass of F° is conserved by the evolution

TdxSd—1

/ F(t7x7w)dwdx:/ Fo(z,w)dwdz=:p, 0<t<T,.
TdxS§d—1

The following theorem is the main result of the paper and includes the global well-
posedness and local stability of von Mises equilibria, extending the spectral stability
result Theorem 2.1.

THEOREM 2.4 (long time behavior: bifurcation for the Vicsek-BGK equation
(1.1)). Let m > d/2 and v, as in Theorem 2.1. Then there exists g > 0 such
that for any Jy € S(p) and any nonnegative initial datum F° € H™(T¢ x S1) with
p= [raygi1 F°(z,w) dwdz and

I E° = Fpu, || o (ra xs2-1) < €0,

there exists a global solution F'= F(t) of (1.1) with initial datum F'°. Moreover, there
exist A,C >0 and Jo € S(p) such that

1F(#) = Fugoc |l raxsa-1y < Ce™MF® = Fy g, e (e xsa-1) -

Remark 2.5. (a) The proof, given in section 4, shows that the result degenerates
as u — d, whence both ¢ >0 and \ tend to zero, just as the exponential decay rate
A in Theorem 2.1.

(b) By the lack of an appropriate conservation law there is no formula for the
equilibrium flux J. The proof shows that it satisfies

1 = ool S CIF® = Fuu itz (roscsiny -

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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Global existence of weak solutions. Our stability result close to equilibrium
is complemented by a global-in-time well-posedness for initial data with finite entropy.

THEOREM 2.6. Let d>2, 0< F° e LY(T¢ x %1, and
/ F°|log F°|dz dw = FEy < 0.
desd 1

Then there exists a nonnegative mild solution F € C([0,00), L'(T% x S%1)) of the
Vicsek-BGK problem (1.1). Moreover, the total mass of F is constant in time and
the entropy grows at most exponentially, i.e., there exist ¢,C >0 such that

/ F(t,x,v)|log F(t,z,v)| dz dv < C(1 +e).
']l‘d XSd 1

Remark 2.7. There is no satisfactory theory of uniqueness known to us for entropy
solutions such as those provided by Theorem 2.6.

3. The linearized equation.

Spectral stability: Proof of Theorem 2.1. Well posedness of the linearized
problem (2.1) in L2(T% x $%~1) is a simple consequence of the fact that the right-hand
side of the equation is a bounded operator, which follows from the inequalities

o7l 1Tl S /IS Nz -

For the stability analysis we shall employ the Fourier-Laplace transform: for a func-
tion g=g¢(t,x), t >0, x € T, its Fourier transform is defined by

gk(t);:/ g(t,z)e =k dg | kenZ®:={¢eRe: =~k k' €7},
Td

and g can be recovered by the inverse transform

glt,x)=2m)" Y ge(t)e™ k.

keyzd

The Fourier-Laplace (F-L) transform of g is defined by
(oo}
Jr(2) ::/ gr(t)e =t dt, 2e€C, kenyz?.
0
Applying the F-L transform to the linearized equation (2.1), we obtain

(3.1) (142 +ik - w) fu(z,w) = pr(2) Mg + pJi(2) - ViMg + fR(w),

where, for simplicity, we abbreviate by p = py and J=1J ¢. By division by the
coefficient on the left-hand side and taking moments with respect to w, we obtain
closed systems for (Jy, px,) for each k € yZ%:

Ji=bgpk+pAzJx+ 1k,

(3.2) T
Pr=agpk+pbs Jk+1pk,

with the coefficients

M M
J(Z,k):/ 7‘7, dw, Aj(Z,k):/ 7w®v‘]_ J dw,
(33) §d— 11+Z+Zk w Sd_11+z+zk~w
’ UJMJ T VJMJ
k) — b k)= —=
(= / S dtetikew 7(z k) /Sd—l 1tztikw
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and with the inhomogeneities

wfi £z
TJk /Sd—11+2+’l:k’w w, Tok /S\d—ll‘FZ“r’L'k'w w

With the formula (3.14) for V ;M 7 we have the following relations between the coef-
ficients:

w®wMj 1 - 1
Ay = 2T Gw— b by=bs——asJ.
J /Sd711+z+ik-ww MJ®J, g =bg Majj

The problem will be solved after reduction to a scalar equation by elimination of Jpe.
This requires the following result, where initially we restrict our attention to k # 0.

LEMMA 3.1. For any v >0 and d > 2 there exist constants k,d,C > 0 such that
for any p € [0,d+ k), J € S(p), z € C with R(z) > =65, and 0 # k € yZ¢ the matrix
Id — pA (2, k) is invertible (where “Id” denotes the identity matriz) and satisfies

I(0d - uAg (2, k) < C,

where || - || is any matriz norm.

Proof. Since the matrix depends smoothly on u and 7, it is sufficient to prove
the result for the case u < d, J =0, since then it can be extended by continuity to
O<p—d<1, |J|< 1.

With Q € C4, |Q] =1, it is sufficient to prove that Q" (Id —pAg(2, k) is bounded
away from zero by a constant only depending on  and d (where “tr” denotes “trans-
pose”). We immediately have

|w - Q2 My
Q*(Id — pAg)Q >1— _—
[27(1d = pAo)2] 2 ”/Sdfl Ttztik-o
|w - Q> Mo
>1-d dw.
= e (=P B + kw2
As a consequence of
dij .
wiw; My dw = —, i,j=1,...d,
Sd—l d

the right-hand side vanishes if the denominator is replaced by 1. Therefore help from
the imaginary part is needed to allow for a positive §. We define

Sk = {weS?: sign(k-w) =sign(I(z)), (k-w)?>|k[>/2},
implying
A2
(%(z)—l—k-w)ZZ? for we S,

where we have used 0 # k € yZ?. It is important to note that S, has a positive
(d — 1)-dimensional surface measure, which implies that

a(Q):=d [ |w-Q*Mydw
Sk

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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takes only positive values. By rotational symmetry it only depends on the angle be-
tween Q and k/|k| (note that Sy only depends on k/|k|). With these notations we have

. () 1—a(9)
R () R TR

For 6 =0, the right-hand side takes the value

o) (1~ ) 2 0w (1= ) >0

where app, := minjg|—; a(€) > 0, since it is the minimum of a positive valued continu-
ous function over a compact manifold. It is independent of k by rotational symmetry.
By continuity the positivity is preserved for small enough positive d, which completes
the proof. 0

With p,J, 2,k as in Lemma 3.1, the system (3.2) can be reduced to the scalar
equation

(3.4) (1—ag —pbF(1d = pAz) ') pr = 1ok +pb (Id — pAg) " ryy.

As in the proof of Lemma 3.1, the essential information will come from the case p < d,
J =0. Straightforward computation gives

— k
ap =cp, bo=by=c1—, Aok
||
with
w Mo .
(2, k — dw =0,1,2.
¢i(2,k) = /Sd 1 1+ 2+l kjwn =5

With these observations, the coefficient of jy, in (3.4) with u <d J =0 becomes

pct
1— e’

(3.5) h(z,k):=1—c¢co—

and we shall need estimates on cg, cq, co.

LEMMA 3.2. Let ®(z) >0 and 0%k € yZ®. Then

R(co) <1 —=¢o(7,d), |Cl‘_7+* dlea| <1 — aa(d, e)a(e),
with ¢o(-,d),¢2 : [0,00) = [0,1) continuous and increasing, ¢o(0,d) = ¢2(0) = 0,
Do(00,d) = ¢a(00) =1, and with

az(d,s);:d/d_lwaodw, Stti={westtiw >}, 0<e<l,

a continuous, strictly decreasing function of e, satisfying a2(d,0)=1/2, as(d,1) =0.
Proof. In the following we set z =z + iy, * > 0, and compute

(1+2z)Modw 1
% =
(co) /Sd 1 (T4 2)2 + (y+ |k|w)? < 1+x—

© 2025 University of Vienna. Published by SIAM under the terms of the Creative Commons 4.0
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On the other hand, for d > 3,

! Y (D /(4a)
(3.6) %(CO)Scd/ (1 + o)dwy 222/ u_ G

21 (22 + (y+ klw)? R ke LHu? 7 K
For d=2 and |k| > 1,

1/t (1+z) dw,
R = =R, + R
(co) o [1 (1+2)2 4 (y+ | k|w:)? /717w% 1+ Jt

with
R, ::i/ (14 x) dw
21 Ja—w) k<1 (1+ )%+ (y + |klw)? 1—w?
o1 /1 doy 2
Ta(l+z) S V- T ok
and

NN (1 + z)dw, 1
§R2 S ) 2 S )
2 Jo1 (T+2)2 + (y + |klw1)? ~ 2./]K]
where the last inequality follows from (3.6). This completes the proof of the estimate
for R(co) with ¢o(y,d) =max{0,1—cqm/v} for d > 3 and a similar definition for d = 2.
For the estimation of ¢; we start rewriting it by symmetrization (w3 — —w1):

1 1 1
_1 _ My d
@ 2/Sd—1 <1+Z+i|k|W1 1+Zi|k|w1>W1 0
2 Mo d

si-1 (1+2)2 + [k[2wi’
This implies
2 M, d
el <1kl [ e .
set V(L4 2)? — g2+ [kPwd)” +4(1 + 2)°

Minimization of the denominator with respect to x >0 and y € R gives

1+ |kPwi for |k|?wi <1
1+ 2)% —y? + |k|Pw])? + 4(1 + 2)%y? > ’
\/(( oyt k) ( Syt = 2|k||w1 | for |k|?w? >1,
and, thus,
1 w2 My dw 1 1
Cq1 S*/ wlModw—l—k/ 1 < + —.
al 2 \k|2wf>1| | ¥ ki2wz<1 1+ BP0 = 2vd K|

Jensen’s inequality has been used for the estimation of the first term.
For ¢y we proceed similarly to the estimation of R (co):

2 Mo d 2 Mo d
dles| <d W10 W gd/ AT g w2 My dw
st VAT P Tyt R ot Tr e g
(e5)]

=————+1—as.
V1+e2y?
Here we have assumed y > 0, which can always be achieved by the transformation
w — —w. This completes the proof with ¢o(u) = 1—(14+u?)~1/2. The stated properties
of a9 are obvious from its definition. O
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COROLLARY 3.3. There exist Vmin, 6,k >0 with § <1 such that for 0 < u < d+k,
T €8(u), R(2) > =8, ¥ > Ymin, 0£ k €Z,

- _ 1
R(1—ag —pb7(Id—pAg) " 'og) > 3
holds, where az, bz, by, and Ay are defined in (3.3).

Proof. With the estimates of the lemma, we get for the coefficient (3.5) for R(z) >
Dand 0< pu<d

piler djea|?

>1— _ AP g . L

R(h)>1—R(cy) 1—M|02\_1 R(eo) T—dical
2

1 2Vd 1

> go(y,d) — ———— [ 1+ 22| >,

2 o) 4a2<d,a><z>2<m)< 7) 1

where the last inequality is achieved by first choosing ¢ > 0 small enough to get
as(d,e) =3/8 and then choosing ~ large enough, i.e., ¥ > Ymin(d) > 0. By continuity
with respect to z, p, and J, this result can be extended to 0 < —R(z) <« 1 and
O<p—d<g1. 0

By Lemma 3.1 and Corollary 3.3 the system (3.2) can be solved, and we need
estimates of the solution.

LEMMA 3.4. Let 0< p<d+k, J €S(p), R(2) > =3, ¥ > Vmin, 0# k €VZ? (with
the notation of Corollary 3.3). Then (3.2) has a unique solution, and there exists
C >0, independent from z, k, and f°, such that

(3.7)
156 (2)] + [k (2)] < sz» IfRllz2 a1y for|S(2)] > 2|k|, where (y) == /1+ [y|2,
(3.8)
5 c .
1ok (2)| + [ Jr(2)] < WH]‘?HL?(SH) Jor|3(2)| < 2[k|.

Proof. Lemma 3.1 and Corollary 3.3 imply the bounded invertibility of the coef-
ficient matrix, i.e.,

16k(2)] + T (2)] < C(rp(2)] + Irae(2)]) -

With z =z + iy, in the case |y| > 2|k| we estimate

gi-1 1 +z+ik-w gi-1 1+z+1k-w

< fl
S

a1+ +ily+k-w)

rpk(2)| + ran(2)] < +

and observe that the condition ensures |1 + x 4+ i(y + k - w)| > ¢(y) with a constant
¢ >0 independent of k € Z% and y € R. Inserting this above yields

e

2 ) fo
[, o) do < 2ol Ellaens

o (2 +Irar(z)l = 25
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by the Cauchy—Schwarz inequality. For |y| < 2|k| we use again the Cauchy—Schwarz
inequality:

7ok (D) + Iraw ()] < 2[R ()l 21y

1
‘l-i-z—i—ik-w

L2(S4-1) .

It remains for us to estimate the norm on the right. By rotational symmetry we may
assume k = |k|e; and compute

(3.9) ! i / ! d

: TS T — = w
1+z+ik - wlpoga-1y  Jser (1+2)% 4+ (y + [k|wr)?

The set

(3.10) An(y, k) :={we ST |y + |klw | < k|1 T, a>0,

is the intersection of the sphere with a strip of width |k|~“. Therefore it satisfies
[Aa(y, k)| < Ck) =72,

We split the integral (3.9) as

2

1
“1+Z+Zl€w LQ(Sdfl)

1 1
— d d
/Au (T 2)2 1 (y+ [klwr)? “’*/Sd% AT 22+ (y+ kwn)?
SC(<k>_a/2+<kJ>2a_2) )

Now choosing a =4/5 yields the claim. O

The next step is to apply the inverse Laplace transform to the solution

_ ~ pre(z)M g + i (2) - Vi Mg + f2(w)
Jrlz,w) = 14+ z+ik-w :

of (3.1), where the integration contour is chosen to be z =z +iy € —6 +iR, with § < 1
as in Corollary 3.3:

67515 M .

s m [ e iz dy
et
= lim -

2m M—oo J_py l+z+ik-w

fk(taw) =

M ~ T
iyt PkMg + pdy -V Mg —t(1+ik-w) fo
eyt dy+6 t(1+ik )fk

We split the integral as

-4t ~ T
. . Mg+ pJi,V s M
Fu(t,w) € li ezytpk 1J 14 kk J de
T M—oo 20k|<|y|<M +z4+1k-w

—& ~ T
e t/ ez‘ytpkMJ"'UkaJMJ dy + e~ t(Fikw) fo
ly| <2|k|

2w 1+z+ik-w
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For the first integral we use (3.7) and for the second integral we use (3.8) to obtain

M fo : d—1
fk(t,w)ISCe“St( lim / IR Olle2 e

M—=oo J_p (y)?

S VO] [P )
+ B d + o )
/—2|k N—8+i(y+k-w)|{k)1/> y+[fr]

dy

The second integral is computed explicitly:

2|k| 1
/ ' 175

_ 1 (kw+ 2|k .1 (kw—2|k|
1/5 1 _ 1
= (k) <s1nh < 5 > sinh < 15

< 2(k)~Y?sinh ! (ﬂ) <C,

with C independent from k. Inserting this estimate above yields
[Felt, ) < Ce™® (1 felzagan + 121

implying

(3.11) I fll 2 ga-1y < Ce™ || fRll L2 (a1 -

It remains for us to analyze the case k =0. The discussion has already been started
in section 2, since fy = f, satisfying

(3.12) Ohf=pJs-ViMg—f,

where Tf solves the linear ODE system (2.2), and we collect results on the properties
of its coefficient matrix.

LEMMA 3.5. Let u>0, J € S(u), and let
Cq ::,u/SdiloJ(X)VJdew—Id.
Then C g is symmetric, and for p<d (i.e., J=0) it is given by
(3.13) Co= (% - 1) Id.

For p > d (ie., |J| = L(p) > 0 with L(p) satisfying (1.4)), there is a (d — 1)-
dimensional nullspace given by N(Cz7) = J+. The remaining eigenvalue Ny (with
eigenvector J ) satisfies

7

_2(3_1>+0((H_d)2) as pp—d+ .

[
W

Proof. The gradient with respect to J of the von Mises distribution evaluated at
an equilibrium flux 7 € §(u) is given by

Ag=p—d-—

ewd ’
(3.14) ViMz(w)=wMg(w)— 7277 /Sd—l Wwe T dw' = (w - Z) Mz (w),
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where the consistency relation (1.3) has been used. This implies
1

Cyr=u wRwMysdw—-—-J®J —1d,
Sd-1 12

and, thus, the symmetry of C'7. Since My = [S? 1|71, (3.13) follows immediately,
since

s 2 S
wiwj dw=0 for i#j and wi dw=——.
§d—1 S§d—1 d

For p > d, taking the gradient of the equilibrium relation (1.3) along S(u) shows
N(C7) = J*+. With the representation w = wlﬁ + wt (whence M becomes a
function of wy) the computation

(/ w®wMde)j:/ <w1j+wL)w1|‘7|Mgdw:(/ OJ%deW)j
gd—1 gd-1 |T] gd—1

shows that J is an eigenvector of C'7. For the computation of the eigenvalue, the
value of the integral on the right-hand side is needed.

We choose a unit vector z € N(C7), ie., z-J =0 and |z| = 1. Then, with the
representation w = wy % + woz + wt we have

O:CJZ:/,L/ <W1J+W2Z+WL)W2Mde_Z:(M/ w%Mde—1>z.
Sd-1 |«7| §d—1

This implies

1
/ WMy dw=—.
Sd-1 H

By symmetry this remains valid when ws is replaced by wj;, j # 1. Since My is
normalized, we also have

1= Mgdw:/ W%MJdW‘i’(d—l)/ WiMy dw.
Sd*l Sd*l S

d—1

Combining these results leads to

d—1
/ WiMsdwo=1—- ——,
Sd—1 H
which proves the formula for A ;. The asymptotic expansion is a direct consequence
of (5.3). ad

The lemma implies that J; tends to its equilibrium exponentially for p # d with
linear degeneration of the decay rate as 4 — d. The equilibrium is zero for p < d,
and it is given by Pj-Jfo for > d. Tt is obvious from (3.12) that f = fo also
converges exponentially for p # d. Combination of these observations with (3.11) and
application of Parseval’s identity complete the proof of Theorem 2.1.

4. Nonlinear stability for small data: Proof of Lemma 2.3 and Theorem
2.4. We consider an initial datum close to the manifold of equilibria; i.e.,

1 = Fur iy =22
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is assumed to be small (¢ < &), with J; € S(u) and H™ = H™(T% x S¢1) as in
Theorem 2.1. We start by choosing an improved estimate of the equilibrium flux by
projecting the average flux of the initial datum to the equilibrium manifold S(u):

J o
Jo:=0 for p<d, and Jg:zLM’JL for p>d,
FO

with L, as in Definition 1.1. In the second case J, is well defined, if we assume
£0|Sd71\1/2 < L,, since

Tre

> Ly — |[Jpe| = |1l| = L = [ Tpe = J1
> L, — S Y2 F° = Fugy e > L, — 1S4V 2e > 0.

As a consequence of the definition of Jy we have
(4.1) |Jo = Jpo| < |1 — Jpe| <e,
and

1F° = Fupnllmm <IF° = Fu g llmm + 1 Fun — Fugllam
(4.2) <e+C|J; — S| < (1+20)¢,

where we have used that the mapping J +— F}, ; from R? to H" is locally Lipschitz.
The next step is linearization around F}, j,. We rewrite the Vicsek-BGK problem
(1.1) in terms of fr=F — F), j,:

8tfl = 'C,U.,szl +S;L,J2 (fl)v

(4.3) f[{t=0)=f:=F°—F,,,,

where

Lygf=pMy,+pJg-ViMj, —f—yw-Vof  and
Spa(f) =+ ps)(Myyy g, — My,) — pJy - Vi My,

are the linearized operator (as in (2.1)) and the nonlinear remainder, respectively.
With the semigroup 7,,.s, generated by £,, j,, the Duhamel formulation of (4.3) reads

t

(4.4) fl(t):ﬁ,Jz(t)fc’ﬂL/O T2 (t = 8)Spu,, (f1(s)) ds .

Theorem 2.1 shows that 7}, s, is bounded on H}". Since S, ,(f) depends smoothly on
py and Jy and since H m(']I‘d) is a Banach algebra (as a consequence of the continuous
imbedding H™(T%) < L>®(T%)), local existence of f; in H™ can be shown by Picard
iteration. Standard arguments prove that finite time blow-up implies blow-up of
|p£, | oo (Tay, completing the proof of Lemma 2.3.

The Banach algebra property also implies that for each R > 0 there exists Cr >0
such that

IS, (Dllzzy < CrIf Ny for [ flmy <R.

Since by construction [ f°dzdw = Pj;Jpo =0, Theorem 2.1 can be used for the action
of the semigroup on f°,

1T (0 f e < Ce | 0|1y < Cree™
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by using (4.2). Application of these results to (4.4) gives

t
11 (6) iz < Cree™ + Cr / 11 (5)]2n dis,
0

as long as || fi(s)||am < R for 0 < s <t. For fixed R we restrict g9 further to satisfy
2C1e9 < R and try to prove

I£1() |y < 20167

on an appropriate time interval. This is satisfied if

20301262
A

t
4CRrC2e? / e P ds < < Ciee M,

0
which holds for

1 A
4. < =1 — .
( 5) ts A 8 (203016)

Now we set
1
(4.6) T:= Xlog (4Cy) ,

which satisfies (4.5) under the further restriction

< — .
0= RCRC?

This implies
€
5"

Now the procedure is iterated with e replaced by €/2, producing a sequence (J1,
fi)k>1 with Jy1 € S(p) and fy=F —F, .., : [(k—1)T,kT] — H? such that Pj:

Jr+1

| fillzm <2C1e on [0,T] and I f1 ()| e <

It ((k—1)1) =0,

Cie 5
From (4.1) we deduce |J; — J2| < 2e and therefore
€
This implies convergence:
lim J, = Jo .

k—o0

We expect F(t) — F), ;. as t— oo and estimate for (k —1)T <t <kT,
() = Fy oo |l e

> ClE > CQE 035
<N e@llap + Y N Fun = Fullam < oz T > ST
I=k+1 I=kt1
5 N Alog2
= Cyee M ith A= —>—_
3€e y w1 10g(401) s

where we have used Lipschitz continuity as in (4.2) as well as (4.7) and (4.6). This
completes the proof.

< 036
— ot/T
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5. Global existence of weak solutions: Proof of Theorem 2.6. In this
section we prove the global well-posedness of the nonlinear equation, proceeding simi-
larly to the methods of [24] for the Boltzmann-BGK equation. We introduce a family
of approximate equations

OF +w-VyF=ppMj —F,

(5.1) F(t=0)=F°,

where Jg is given by
Jro . 1
Jp=— Jrl, — >0.
F ‘JF|m1n{| F|35}7 €

For the initial datum, we impose boundedness of the total mass and of the logarithmic
entropy:

/ / F°(1+|log F°|)dz dw < co.
Td Jgd—1

For every ¢ > 0, classical methods show that the problem (5.1) has a unique global
mild solution in C/([0,00); L' (T% x $*1)). In order to pass to the limit € — 0, we need
estimates which are uniform in € — 0. For this purpose, a bound for the J-dependence
of the von Mises distribution is needed.

LEMMA 5.1. For d > 2 there exists Cq > 0 such that the von Mises distribution
(1.2) satisfies

0< M;j(w)<Cy (1 + |J|<d—1>/2) Vwesit,

Proof. The von Mises distribution can be written as

™ -1
My(w)=cqe?” (/ elchosesind_QHdQ) .
0

Its maximum,

™ -1
sup M j(w) =cq </ el/I(cos0=1) gjpyd—=2 9d9> ,
w 0

is a smooth function of |J| € [0,00). Its behavior for large |J| can be studied by the
new coordinate u=|J|(1 — cos#@), giving

7T 1 2|J| 2% u2 (d—3)/2
[J|(cos0—1) s d_29d9 _ / —u ( _ )
e sin e
/0 171 Jo I
1 _a- d—1
dum|J|d212d23I‘<2 ) ,

as |J| = oo. d

LEMMA 5.2. Let the assumptions of Theorem 2.6 hold. Then there exist c¢,C >0,
independent of € >0, such that the solution F. of (5.1) satisfies

// F.(t,z,w)(1+ |log F.(t,r,w)|) dz dw < C(1 +e).
Td Jgd—1
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Proof. By the mass conservation and by the boundedness of the domain, the

integral of F. and the product of F. with the negative part of the logarithm are
uniformly bounded. Therefore it suffices to show uniform boundedness of the entropy

functional
1
E[Fg]z/ / <—|—FglogFE> dz dw > 0.
Td Jgd—1 e

To this end, we estimate its time derivative:!

d
—S[FE]:/ / (pr. Mys, — Fe)log F. do dw
Td JSd—1 €

dt
|Sd 1 M
/ / .My, log( )dxdw
Td Jsd— 1 F
+/ / pr. My, log(pr. My;, )
Td Jgd—1 € €

Sd—l
<!—5F +/d/d 1pF€M];£ log(pr. Mz ) da dw,
Td Jgd-

(5.2) -

where the inequality is due to the nonnegativity of the relative entropy

prM e
Mje 1 £
/’er/gd—lpF JFog( I )dxdw
prMye
= pFMJ%lOg — | —ppMje + F ) drdw >0.
Td Jgd—1 F F

After splitting the last term in (5.2) by the functional equation of the logarithm, we
use the Jensen inequality

PF PF 1
lo < FlogF dw
|Sd_1| g |Sd_1| — |Sd_1‘ g1 )

for the first part to obtain

/ / pr. Mz log(pr,) dz dw
Td J§d—1 €

= [, prtog(pr) di < |73 o log 8! -
T

Sdl
ClI

For the second part we use Lemma 5.1, as well as |J&| < |Jr| < pp:

/ / Js ].Og(MJa )dxdwﬁ/ pFEIQg (Cd <1+‘PFE|(d71)/2)) de .
Td JSd— 1 T

It is easily seen that there exists ¢ > % such that plog(1+ p(@=1/2) < ¢(1 + plogp).
Applying this and collecting our results, we have

Sd_l
75[ L] < NIFCl g1 (paxga—1y log(Ca |Sd“+6)+c<1| . |+5[F5]> .

1This estimate can be made rigorous with a standard regularization argument which we omit
here.
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This differential inequality implies the desired uniform (in £) boundedness of £[F;] on
finite time intervals. |

Lemma 5.2 ensures uniform integrability of {F.,e > 0} and therefore the weak
convergence

F.—~F inLY(0,T) x T x s¢71)

for appropriate subsequences by the Dunford—Pettis theorem (as in, e.g., [24, page
196]). In the proof of Lemma 5.2 we have bounded the last term in (5.2) in terms
of E[F;], implying uniform integrability of pr. M s - An application of the averaging
lemma B.4 implies the strong convergence

pr. = pr in L'((0,T) x T%)
and therefore, by |Jr, — Jp,| < |pr, — pr,|, also
Jr. = Jp in LY(0,T) x T%),

again for appropriate subsequences. A further application of the Dunford—Pettis the-
orem gives weak convergence of pr M i following the argument of Perthame (see
third step in [24, page 199]). Its weak limit is given by prM, since, again taking
subsequences, the convergence of pr. and Jp. (and therefore also of .J fps) is pointwise
almost everywhere. Since the other terms in (5.1) are linear, we can pass to the limit.

Since F,G := pp My, € L>®((0,T), L (T% x S91)), the weak solution is actually a
mild solution. In particular, for 0 <t; <t; we have, almost everywhere, the identity

12
F(ty,z,w)=e""2F(t;, 0 —w(ty — t1),w) + / TGt —w(ts —t),w) dt.
t1
In the limit to — ¢1+, the first term on the right-hand side converges to F(t = t1)
(Fréchet-Kolmogorov) and the second to zero in L'(T¢ x §%=1). This proves F €
C([0,00), L (T% x S91)) and completes the proof of Theorem 2.6.

Appendix A: Asymptotics close to the bifurcation point. We look for an
expansion of the solution L(u) > 0 of (1.4) for 0 < p—d < 1, with L(d) = 0. The
equation can be written as

™ T
u/ cosf el 3% sin?=20 df = L/ eleosfsin?=29dg,
0 0

and with Taylor expansion around L =0 we get
L3 L3
uLly g0+ ,UFI&d—Q =Llyg—o+ 712,(1—2 +O(L?),
where
Iim = / cos® Osin™ 0 de.
0

These integrals satisfy the recursions

1 m—1
IO.,m-&-Qa IO,m =

I4,m = I2,m - IQ,m+2 5 I?,m = IO,m—Q )

Com+1
which can be shown by trigonometric identities and by integrations by parts. Using

them, all the integrals appearing in the equation above can be written as multiples of
1p,q—2. This leads to

(5.3) L*=(d+2)(u—d) +O0((u—d)?) as u—d+ .
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Appendix B: Averaging lemmas. Although the averaging lemma we need
here cannot really be considered as a new result (see, e.g., [22]), its precise formulation
does not seem to be readily available in the literature. We follow along the lines of
[20], first proving an L2-averaging lemma and then using it for the extension to L'.

LEMMA B.3. Let u be a positive bounded measure on S satisfying for appro-
priate C, 5 >0

(5.4) esssup ,u({wESd_lz |w-e+y|§5}) <CeP Ve>0.
eESdil,yERd

Let f,g € L*(dt ® dz ® dp), v > 0, satisfy
(5.5) Wf+ 1w -Vof+f=g imRxT xS,

Then there exists ¢ >0 such that

f <c = du.
H HHB/(2+5>(dt®dz)_ 9l 2 (at@dz@dp) » ! Sdilf 12

Proof. Asin section 3 we use Fourier series with respect to z (with Fourier variable
k € vZ%) but the Fourier transform (instead of the Laplace transform) with respect
to t (with Fourier variable 7). Denoting the Fourier transform by F[-] we have

F [ﬂ (1,k)= /SGF1 Mdu(w).

Now we proceed similarly to the proof of Lemma 3.4 with z =0, y=7:

1
‘1+2’(T—|—k-w)

’]: [ﬂ (T, k)‘ < || Flgl(m, ks )l 22w

L2(dp) .

For |7| < 2|k| we consider the set A, defined in (3.10), satisfying u(Ay) < C(k)~8
by (5.4). Then
- / A / A
LQ(dH)_ A L+ (T+HEkw)? Jana, 14+ (T4 E-w)?
<Oy (k)78 + (K)222) =20, (k) 20/ +P)
< Gy (1 [P/ ‘T|25/(2+ﬂ))_1

1
Hl—i—i(T—i-k-w)

with a = ﬁ For |7| > 2|k| we have |7+ k- w| > |7|/2, and therefore

s

: C C -1
<y S Ty SO (L BP0 4 |20/ C40))
L2 (dp) <T> 1+7 +|k|

Combination of these results gives
. 2
(1 -+ K22/ |28/ |2 [ ] (k)| < @F Tl b

and an application of Parseval’s and Plancherel’s identities completes the proof. O
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LEMMA B.4. Let (5.4) hold. Define the operator T from L*(dt ® dx @ dy) into
LY(dt®dx) by Tg= f, where f is the unique solution in L'(dt @ dxz @ du) of (5.5). If
K C L'(dt ® dz ® dy) is bounded and uniformly integrable, then T(K) is compact in
L} (dt®dx).

loc

We omit the proof, which is the same as the proof of Proposition 3 in [20] with
the obvious changes, in particular using Lemma B.3 instead of Theorem 1 of [20].

Appendix C: Dimensional analysis. A dimensional version of (1.1) can be
written as

M(")—F
&gF—&—vow-VgEF:pF']iF,
=

with pp, Jp defined just before (1.2) and with

ew"]/n

M&n)(w) ::Z(T(J)’ ZM(J):= /Sdilexp(wu]/n) dw.

Parameters are the particle speed vy, the relaxation time 7, and the reference flux 7
determining how spread out the von Mises distribution M y') is. Independent variables
are time ¢ > 0, position z in the flat torus of length L, ie., x € LT, and direction
w € S41. Note that F, pp, Jr, and 1 have the same dimension, since the direction
w is dimensionless. The nondimensionalization

(Fypp,Jr) = n(F,pr,Jr), t—T1t, r— Lx,

produces (1.1) with the dimensionless Knudsen number v = 7, the ratio between
the mean free path vy7 and the reference length L.
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