



Article

# BTN2A1 and BTN3A1 as Novel Coeliac Disease Risk Loci: An In Silico Analysis

Kim Ngan Luu Hoang  $^{1}$ , Shelley Evans  $^{1}$ , Thomas W. Willis  $^{2,3}$ , Kate Davies  $^{1,4}$ , Hannah Kockelbergh  $^{5,6}$ , Lee Silcock  $^{7}$ , Kim Piechocki  $^{7}$ , Anna Fowler  $^{5}$  and Elizabeth J. Soilleux  $^{1,*}$ 

- <sup>1</sup> Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge CB2 1TN, UK; tw395@cam.ac.uk
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4YS, UK
- Department of Health Data Science, University of Liverpool, Liverpool L69 7ZX, UK
- 6 The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX1 2JD, UK
- Nonacus Ltd., Quinton Business Park, Birmingham B32 1AF, UK
- \* Correspondence: ejs17@cam.ac.uk

### **Abstract**

Coeliac disease (CeD) is a gastrointestinal enteropathy triggered by the consumption of gluten in predisposed individuals. A recent study showed that individuals were at more than 10% risk of having CeD if a first-degree relative also had the disease. However, only around 50% of CeD genetic heritability is attributable to specific loci, with the majority of this heritable risk attributed to the HLA loci, while the remaining 50% of disease risk is currently unidentified. We investigated the butyrophilin family of immunomodulators as novel CeD risk loci. We sequenced the butyrophilin loci of 48 CeD and 46 control patients and carried out gene-based burden testing on the captured single-nucleotide polymorphisms (SNPs). We found a significantly increased BTN2A1 gene burden in CeD patients. To validate these results, the SNP data of 3094 CeD patients and 29,762 control participants from the UK Biobank database were subjected to single-variant analyses. Fourteen BTN2A1, ten BTN3A1, and thirteen BTN3A2 SNPs were significantly associated with CeD status. These results are interesting, as BTN2A1 and BTN3A2 have not been associated with CeD risk previously but are known to modulate the activation of  $V\gamma9+\gamma\delta$  T cells and NK cells. Twenty of the 37 SNPs above were associated with CeD status independent of the riskassociated HLA genotypes. All twenty of these SNPs, alongside a novel SNP not included in the above SNPs, were associated with CeD in *HLA-DQ2.5*-matched case-control groups. We reaffirm the association of the BTN3A2 locus with CeD risk and identify BTN2A1 and BTN3A1 as putative novel CeD risk loci.

Keywords: coeliac disease; butyrophilin family; hypervariable region 4 (HV4); UK Biobank



Academic Editor: Consolato M. Sergi

Received: 20 September 2025 Revised: 18 October 2025 Accepted: 29 October 2025 Published: 3 November 2025

Citation: Luu Hoang, K.N.; Evans, S.; Willis, T.W.; Davies, K.; Kockelbergh, H.; Silcock, L.; Piechocki, K.; Fowler, A.; Soilleux, E.J. BTN2A1 and BTN3A1 as Novel Coeliac Disease Risk Loci: An In Silico Analysis. Int. J. Mol. Sci. 2025, 26, 10697. https://doi.org/10.3390/ijms262110697

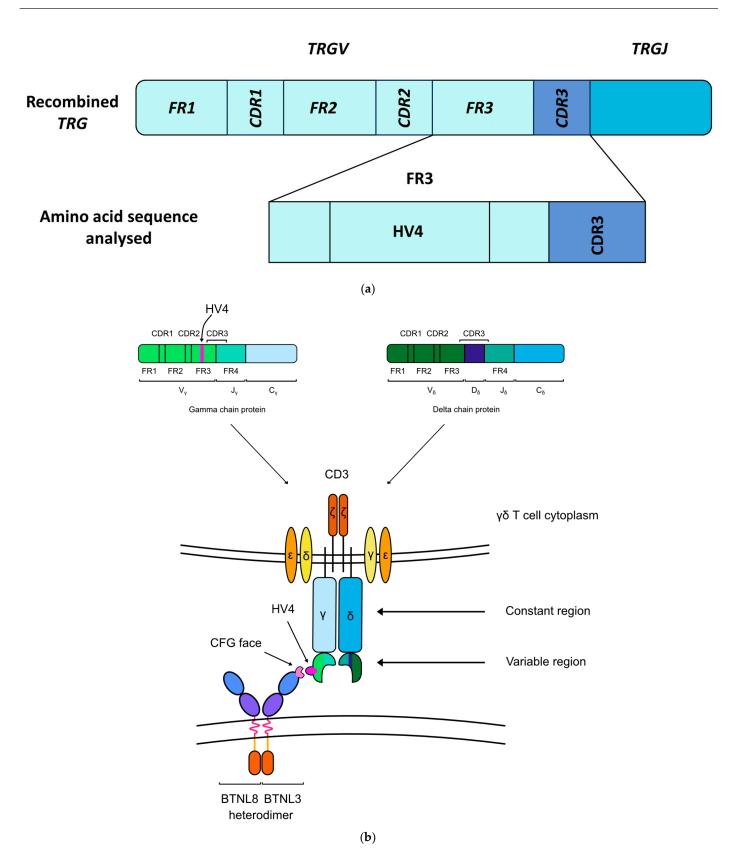
Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

# 1. Introduction

# 1.1. Background to Coeliac Disease

Coeliac disease (CeD) is a T cell-mediated autoimmune enteropathy triggered by the consumption of gluten, a protein found in wheat, rye, and barley [1]. During active CeD, individuals with underlying genetic risk suffer from small intestinal inflammation after the consumption of dietary gluten [2]. This chronic inflammation causes villous atrophy that can lead to symptoms including abdominal pain, diarrhoea, malabsorption,

and malnutrition [3]. Currently, the only treatment for CeD is eliminating gluten from the diet of patients with CeD predisposition [4].


The genetic background of CeD predisposition is still not fully understood, as only 50% of the genetic heritability has been attributed to specific loci [1]. The most well-established CeD risk loci are the human leukocyte antigen (*HLA*) complex [1,5–10]. The HLA-DQ2.5, HLA-DQ2.2, and HLA-DQ8 heterodimers are present in more than 80% of CeD patients [11–15]. In contrast, about 20–30% of healthy controls have the CeD-associated risk *HLA* genotypes [11,12,16]. These *HLA* genotypes were estimated to explain about 30–40% of the total CeD genetic heritability [17,18]. Although these *HLA* genotypes greatly contribute to CeD predisposition, non-*HLA* loci are increasingly becoming regions of interest in exploring the remaining 50% of CeD heritability. In order to further understand CeD susceptibility, genes involved in immunoregulatory pathways must be examined, such as the butyrophilin family of immunomodulators. Recent evidence has shown the butyrophilin family genes to be non-*HLA* CeD risk loci of interest [19–21].

# 1.2. The Emerging Role of the Butyrophilin Family of Genes and Their Role in Maintaining $\gamma\delta$ T Cells

The butyrophilin proteins are a family of immunoglobulin-like cell surface receptors that have been shown to regulate both innate and adaptive immunity, including the activity of dendritic cells (DC), natural killer (NK) cells,  $\alpha\beta$  T cells, and  $\gamma\delta$  T cells [22–26]. Members of the butyrophilin family were found to maintain local  $\gamma\delta$  T cell compartments in the blood and epithelia of both mice and humans (Table 1) [27–33]. Hayday and Vantourout [34] hypothesised that butyrophilin proteins serve as a steady-state signal that maintains the local  $\gamma\delta$  T cell population in a quiescent or inactive state. In the duodenum, the BTNL3/BTNL8 heterodimers act as the ligand for V $\gamma$ 4+/V $\delta$ 1+  $\gamma\delta$  intraepithelial lymphocytes (IELs) (Figure 1) [21,27,28]. Specifically, the BTNL3/BTNL8 heterodimer binds the germline-encoded hypervariable region 4 (HV4) of T cell receptor gamma (TCR- $\gamma$ ), when the variable (V) gene segment encoding that TCR- $\gamma$  is the *TRGV4* gene.

**Table 1.** Butyrophilins maintain and activate the  $\gamma\delta$  T cell compartments of mice and humans. Human butyrophilin family members are shortened with all letters capitalised, while only the first letter of mouse butyrophilins is capitalised [24].

|                | Butyrophilins                                                      | γδ T Cell Subset | <b>Role of Butyrophilins</b>                                                     | References    |
|----------------|--------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------|---------------|
|                | Mouse unidentified                                                 | Unidentified     | Unidentified                                                                     | NA            |
| Peripheral     | Alpaca BTN3                                                        | Vγ9Vδ2+ T cells  | No interaction has been identified                                               | [35,36]       |
| blood          | Human BTN3A<br>homodimers/<br>heterodimers and<br>BTN2A1 homodimer | Vγ9Vδ2+ T cells  | Phosphoantigen-mediated,<br>CDR3-independent γδ T<br>cell activation             | [30,33,37,38] |
| Skin           | Mouse Skint1 and Skint2                                            | Vγ5Vδ1+ DETC     | Thymic selection, tissue<br>homing of dendritic epidermal<br>T cells to the skin | [27,28,32]    |
|                | Human?                                                             | Vδ1+ T cells     | Unidentified, unknown if there is butyrophilin involvement                       | [39]          |
| Intestinal     | Mouse Btnl1 and Btnl6                                              | Vγ7+ IEL         | Phenotypic maintenance of the intestinal IEL compartment                         | [27,28]       |
| epithelium<br> | Human BTNL3 and BTNL8                                              | Vγ4Vδ1+ IEL      | Phenotypic maintenance of the intestinal IEL compartment                         | [21,27,29]    |



**Figure 1.** The germline-encoded HV4 loop of the T cell receptor (TCR) of V $\gamma$ 4+  $\gamma$ δ IELs directly binds to BTNL3. (a) HV4 is located at amino acid positions 10–25 in the FR3 of the TRGV4 segment [31]. (b) The HV4 of V $\gamma$ 4+  $\gamma$ δ T cells binds to the C, C", F, and G canonical immunoglobulin-fold  $\beta$ -strands (CFG face) of the BTNL3 protein [29]. Abbreviations: CDR: complementarity-determining region; FR: framework region; HV4: hypervariable region 4; TRGJ: T cell receptor  $\gamma$  joining region; TRGV: T cell receptor  $\gamma$  variable region.

During active CeD, these  $\gamma\delta$  T cells, alongside CD4+ and CD8+  $\alpha\beta$  IELs, are activated by dietary gluten [40]. Mayassi et al. [21] showed the loss of interaction between BTNL3/BTNL8 heterodimers and the duodenal V $\gamma$ 4+  $\gamma\delta$  T cells as a characteristic of active CeD in a study of 62 active CeD, 57 gluten-free diet (GFD)-treated CeD, and 99 control participants. During chronic inflammation induced by dietary gluten, the expression of the BTNL3/BTNL8 heterodimer was lost in the small intestine of patients with CeD predisposition. This was accompanied by the permanent loss of BTNL3/BTNL8-reactive V $\gamma$ 4+/V $\delta$ 1+  $\gamma\delta$  T cells. The chronic inflammation only subsided when patients followed a GFD. Although the BTNL3/BTNL8 expression recovered, the local  $\gamma\delta$  TCR repertoire was permanently reshaped: the innate-like V $\gamma$ 4+/V $\delta$ 1+  $\gamma\delta$  T cells and T cell receptor  $\gamma$  variable region 4 (TRGV4) gene transcripts were significantly decreased [21].

### 1.3. A Hypothesis for the Role of Butyrophilin Variation and $\gamma \delta$ T Cells in CeD Risk

Recently, a common *BTNL8\*BTNL3* deletion copy number variant (CNV) was described by Aigner et al. [41] in a cohort of more than 4000 samples (Appendix A). The study reported that 58.4% of their 346 samples of European ancestry had at least one *BTNL8\*BTNL3* deletion allele (Table A1). This CNV has been shown to encode a BTNL8\*3 fusion protein, which likely has an impaired ability to bind to the  $V\gamma 4V\delta 1+T$  cells in the small intestine [31]. As Mayassi et al. [21] observed a permanent shift in the duodenal  $\gamma\delta$  TCR repertoire when the interaction between the T cells and the BTNL3/BTNL8 heterodimer was disrupted, this fusion protein could predispose carriers to CeD.

Alongside *BTNL3* and *BTNL8*, *BTNL2* and *BTN3A1* were also implicated in CeD risk. Goudey et al. [19] have identified 14 SNPs associated with CeD, independent of the known CeD risk *HLA* loci, in a study of 763 CeD and 1420 control samples. One of the SNPs was located in the proximity of *BTNL2*, a gene harbouring among the highest density of GWAS hits in autoimmune and inflammatory diseases from the butyrophilin family [42–47]. Goudey et al. [19] showed that this SNP was marked as being an expression quantitative trait locus (eQTL) for the *BTNL2* gene in RegulomeDB, a database annotating the function of non-coding SNPs [48,49]. Furthermore, RegulomeDB also reported a high level of evidence for transcription factor binding for this eQTL [19].

In a separate paediatric study of 26 active CeD, 5 treated CeD, and 25 control subjects, BTN3A1 expression was associated with active CeD in children [20]. The study examined the differential expression of more than 25 defence-related genes in the three subject groups, demonstrating the upregulation of BTN3A1 mRNA and protein expression in the intestinal epithelial cells of children with active CeD. This is an intriguing finding, as BTN3A1 is required for the phosphoantigen (pAg)-induced activation of  $V\gamma9V\delta2+T$  cells in peripheral blood, a subset of  $\gamma\delta$  T cells not previously implicated in CeD. These two studies indicate that the full functions and roles of the butyrophilin family of proteins in immunomodulation remain to be explored.

These findings raise a previously unexplored question about CeD heritability. Do certain individuals co-inherit polymorphisms in their butyrophilin family genes and/or their *TRGV4* gene segments that predispose them to CeD? The objective of this study was to assess the association of butyrophilin gene-based burden with CeD risk using a 94-patient discovery cohort. The association of butyrophilin SNPs with CeD predisposition was validated via the UK Biobank's genome-wide genotyping dataset of 25,192 participants. In this study, we show that 14 *BTN2A1*, 10 *BTN3A1*, and 13 *BTN3A2* SNPs are significantly associated with CeD status, while HV4 sequence variation was not associated with CeD risk.

# 2. Results

The impact of genetic variation in the butyrophilin family of genes and the HV4 sequence of duodenal  $\gamma\delta$  T cells on CeD predisposition was examined in three studies (Figure 2). First, 48 CeD and 46 control samples were subjected to targeted sequencing to capture SNPs in 10 butyrophilin family genes known to be expressed in small intestinal tissues and immune cells. The sequenced butyrophilin variance in CeD samples was burden tested via the control samples. Next, these results were validated, subjecting all available BTN2A1, BTN3A1, and BTN3A2 SNPs to single-variant testing, in a cohort of 3094 CeD and 29,762 control participants from the UK Biobank genome-wide genotyping database. Finally, targeted sequencing of the TRGV4-HV4 sequence was undertaken in 141 CeD and 238 control samples, to investigate the association between TRGV4-HV4 variation and CeD risk.

# 2.1: Targeted sequencing of selected butyrophilin family genes BTN2A1, BTN2A2, BTN3A1, BTN3A2, BTN3A3, BTNL2, BTNL3, BTNL8, ERMAP, MOG 48 CeD samples 46 control samples

3094 CeD patients 29,762 control participants

BTN2A1, BTN3A1, BTN3A2 SNPs

# 2.3: TRGV usage and TRGV4-HV4 analysis

141 CeD samples238 control samples

**Figure 2.** Workflow of the study on the association of the butyrophilin family loci and the TRGV4-HV4 sequences with CeD predisposition.

# 2.1. BTN2A1 SNPs Were Significantly Associated with CeD Risk in a Study of 94 Samples

To investigate the association between butyrophilin genes and CeD risk, a cohort of 48 CeD and 46 control patients was examined for SNPs in 10 butyrophilin family genes, selected based on their gene expression profile in the duodenum, small intestines, and immune cells (Tables A2 and A3) and their role in immunomodulation: *BTN2A1*, *BTN2A2*, *BTN3A1*, *BTN3A2*, *BTN3A3*, *BTNL2*, *BTNL3*, *BTNL8*, *ERMAP*, and *MOG*.

# 2.1.1. Risk-Associated HLA Genotypes Were Significantly More Frequent in CeD Patients

First, by way of data quality control, the *HLA* genotypes of the samples were examined. In accordance with previous literature, 95.8% (46/48) of the CeD patients, compared with 54.3% (25/46) of the control group, had CeD risk-associated *HLA* genotypes (Fisher's exact test,  $p = 5.5 \times 10^{-10}$ ) (Table A7, Figure A6) [11,13,50].

# 2.1.2. The BTNL8\*BTNL3 Copy Number Variant Was Not Associated with CeD

Next, the *BTNL8-BTNL3* loci were examined for the presence of the deletion CNV. The presence of the CNV was determined using a surrogate SNP, the rs72494581 minor allele known to be associated with the presence of the deletion variant [51]. A total of 58.3% (28/48) of the CeD patients and 47.8% (22/46) of the control participants were found to possess at least one deletion variant (Table A8). Interestingly, 10.9% (5/46) of controls were homozygous for the *BTNL8\*BTNL3* deletion compared to only 4.2% (2/48) of CeD patients, but this did not reach statistical significance (Table A8, Figure A7, Fisher's exact test, p = 0.2144).

### 2.1.3. BTN2A1 Gene Burden Was Significantly Higher in CeD Patients

To determine whether any of the butyrophilin family variants were associated with CeD risk, gene-based burden testing, using the TRAPD program [52], was carried out to burden test the non-synonymous coding variants identified in the CeD patients against the variants in the control samples.

The analysis was carried out on qualifying variants at sites where more than 90% of samples had a read depth coverage of >10. Of the 108 and 58 non-synonymous coding variants discovered in the CeD and control samples, respectively, only 5 bi-allelic SNPs shared by both the CeD and control groups qualified for burden testing (Tables 2 and A9–A11). Only BTN2A1 variants were significantly associated with CeD risk gene burden in both the dominant (adjusted  $p = 1.46 \times 10^{-5}$ ) and the recessive (adjusted  $p = 3.70 \times 10^{-8}$ ) models, indicating that the presence of a single qualifying BTN2A1 SNP significantly increased CeD risk (Table 2a,b). BTN2A1 variants were more frequent in CeD patients, as 45.8% (22/48) of CeD participants had at least one qualifying BTN2A1 variant compared to 10.9% (5/46) of controls (Table 2a,b). To summarise, the gene burden analysis of butyrophilin genes in CeD patients compared with controls showed a significant association between BTN2A1 gene burden and CeD risk.

Although these results were promising, due to the *BTN2A1* gene being part of the extended MHC region and its close proximity (~4 Mb) to the classical MHC region (6p21.3), we could not exclude the possibility that this significant association could be secondary to the risk-associated *HLA* genotypes of the CeD patients [54,55]. Therefore, these results were validated in the 500,000 genome-wide genotyping dataset of the UK Biobank, by single-variant testing of *BTN3A1*, *BTN3A2*, *BTN2A1*, *BTNL3*, and *BTNL8* SNPs.

Int. J. Mol. Sci. 2025, 26, 10697 7 of 64

Table 2. Gene-based burden testing of butyrophilin family non-synonymous coding variants in CeD patients (n = 48) against controls (n = 46) showed significant differences in the disease burden of BTN2A1 variants. Non-synonymous coding variants that were predicted to be pathogenic or had low minor allele frequencies were considered qualifying variants for burden testing. (a) Burden tests were carried out using the TRAPD program [52] on butyrophilin family qualifying variants in CeD patients (n = 48) against controls (n = 46). Multi-allelic sites were separated into bi-allelic SNPs, as required by the TRAPD documentation [53]. The dominant model defines carriers for gene burden as individuals with at least one qualifying variant within a gene, while the recessive model requires at least two or more qualifying variants. Significant results were highlighted in bold. A version of table (a) with the percentage of individuals and alleles within the CeD and the control groups can be found in Table A10. (b) The BTN2A1 qualifying SNPs demonstrated a significant burden in CeD samples. Count data of individuals and alleles are in parentheses after the percentage value in columns 6–9 and columns 10–11, respectively. The percentage and count data were calculated from the per sample genotypes found in Table A11.

|                                                            | (a)           |                  |                  |                      |                           |                      |                      |                          |                                  |                                      |                                       |
|------------------------------------------------------------|---------------|------------------|------------------|----------------------|---------------------------|----------------------|----------------------|--------------------------|----------------------------------|--------------------------------------|---------------------------------------|
| Gene                                                       | Qual.<br>SNPs | CeD N(≥1<br>HET) | CeD N(≥2<br>HET) | CeD<br>N(HOM<br>ALT) | CeD Total Allele<br>Count | Control<br>N(≥1 HET) | Control<br>N(≥2 HET) | Control<br>N(HOM<br>ALT) | Control<br>Total Allele<br>Count | Dominant<br>Model<br><i>p-</i> Value | Recessive<br>Model<br><i>p-</i> Value |
| BTN2A1                                                     | 3             | 22               | 21               | 3                    | 81                        | 5                    | 4                    | 0                        | 13                               | $1.46 \times 10^{-5}$                | $3.70 \times 10^{-8}$                 |
| BTN3A2                                                     | 1             | 5                | 0                | 1                    | 7                         | 9                    | 0                    | 1                        | 11                               | 0.929                                | 0.946                                 |
| ERMAP                                                      | 1             | 21               | 0                | 8                    | 37                        | 20                   | 0                    | 7                        | 34                               | 0.516                                | 0.988                                 |
| (b) BTN2A1 variants significantly associated with CeD risk |               |                  |                  |                      |                           |                      |                      |                          |                                  |                                      |                                       |

| (b) BTN2A1 variants significantly associated with CeD risk |  |
|------------------------------------------------------------|--|
|                                                            |  |

| Position<br>(GRCh38) | rsID       | Variation | Impact                         | HET CeD    | HOM ALT<br>CeD | HET Control | HOM ALT<br>Control | Alt Allele in<br>CeD | Alt Allele in<br>Controls |
|----------------------|------------|-----------|--------------------------------|------------|----------------|-------------|--------------------|----------------------|---------------------------|
| 6:26463432           | rs13195509 | G > A     | Missense variant,<br>Val > Met | 43.8% (21) | 6.3% (3)       | 8.7% (4)    | 0.0% (0)           | 27.1% (26)           | 4.3% (4)                  |
| 6:26468098           | rs3734542  | G > A     | Missense variant,<br>Arg > Gln | 45.8% (22) | 6.3% (3)       | 10.9% (5)   | 0.0% (0)           | 29.2% (28)           | 5.4% (5)                  |
| 6:26468317           | rs3734543  | G > C     | Missense variant,<br>Gly > Ala | 43.8% (21) | 6.3% (3)       | 8.7% (4)    | 0.0% (0)           | 28.1% (27)           | 4.3% (4)                  |

Abbreviations: Alt allele: alternative or minor allele; CeD: coeliac disease; GRCh38: Genome Reference Consortium Human Build 38; HET: heterozygous; HOM ALT: homozygous for alternative allele; N( $\geq$ 1 HET): number of individuals carrying at least one heterozygous qualifying variant within the gene; N( $\geq$ 2 HET): number of individuals carrying at least two heterozygous qualifying variant within the gene; N(HOM ALT): number of individuals carrying at least one homozygous qualifying variant within the gene; qual: qualifying; SNP: single-nucleotide polymorphism.

# 2.2. BTN3A1, BTN3A2, and BTN2A1 Genes Were Significantly Associated with CeD in HLA-DQ2.5-Matched Participants of the UK Biobank Database

The UK Biobank dataset was used to validate the association between *BTN2A1* and CeD risk and to investigate the association between CeD and butyrophilin SNPs in potentially CeD-relevant genes. After removing participants with missing HLA imputation or genotype data, the final cohort consisted of 3094 CeD patients and 29,762 control participants (Appendix H).

# 2.2.1. Risk-Associated *HLA* Genotypes Were Significantly More Frequent in CeD Patients of the UK Biobank

First, as a means of quality control for CeD diagnosis, the *HLA* genotypes of the CeD and control participants of the UK Biobank were examined. The majority of participants selected from the 500,000 genome-wide genotyping dataset had CeD risk *HLA* genotypes regardless of their CeD status (Table A13, Figure A12). Risk *HLA* genotypes were found in 92.4% (2860/3094) of CeD patients and 57.6% (17,144/29,762) of controls. In both control and CeD participants, *HLA-DQ2.5* was the most frequent *HLA* genotype at 21.6% (6416/29,762) and 53.4% (1652/3094), respectively. Interestingly, *HLA-DQ8* was the second most frequent risk genotype in controls at 14.1% (4203/29,762). Meanwhile, individuals heterozygous for HLA-DQ2.5/HLA-DQ8 were the second most frequent in the CeD group, with 19.6% (606/3094) of participants possessing that risk *HLA* genotype.

To compare the proportion of CeD risk-associated HLA genotypes in CeD and control participants in the 500,000 genome-wide genotyping dataset, a chi-square test of independence was used. Similar to the results from the targeted butyrophilin sequencing dataset, the CeD participants had significantly higher proportions of CeD risk HLA genotypes compared with controls (X-squared = 4062.5, df = 6,  $p < 2.2 \times 10^{-16}$ ).

Indeed, when the association between the CeD risk HLA genotypes and CeD status was investigated using a binomial regression model in the UK Biobank dataset, the association between the risk HLA genotypes and CeD status was confirmed. Interestingly, in the regression analysis, all risk HLA genotypes were significantly associated with CeD (adjusted  $p \le 5.13 \times 10^{-4}$ , Table A14) except the HLA-DQ8 genotype (adjusted p = 0.125).

# 2.2.2. BTN2A1, BTN3A1, and BTN3A2 SNPs Were Significantly Associated with CeD Status in the UK Biobank

Single-variant analyses were carried out to test the association between CeD status and SNPs from the *BTN3A1*, *BTN3A2*, *BTNL3*, and *BTNL8* genes in the UK Biobank [56]. Due to the genotyping array used by the UK Biobank, the genetic information of only a limited number of SNPs from each gene was available. A total of 101 butyrophilin SNPs were individually tested for association with CeD status in the UK Biobank (Table 3). As the *HLA* loci were significantly associated with CeD risk [1], and the *BTN3A1* and *BTN3A2* loci are in close proximity [22,24], the CeD risk *HLA* genotypes were also taken into account for the single-variant analyses by including the risk *HLA* genotypes in the binomial models and analysing the association between butyrophilin SNPs and CeD status in HLA-matched case-control groups as well. The genetic associations were tested by building binomial regression models, where the association between each variable and CeD status was examined.

A total of 37 SNPs were significantly associated with CeD status in the UK Biobank:  $14\ BTN2A1$ ,  $10\ BTN3A1$ , and  $13\ BTN3A2$  SNPs (adjusted p-value  $\leq 0.05$ , Tables 4, A15 and A16). All 37 SNPs were in Hardy–Weinberg equilibrium in the control cohort (Table A17). Most of the significant SNPs were non-coding, with 25 of the 37 SNPs being located in intronic regions. Only one BTN3A1 (rs41266839) and three BTN2A1 (rs13195509, rs3734542, and rs3734543) SNPs were missense variants, and one BTN2A1

(rs13195402) SNP encoded a STOP codon. Of the 37 SNPs, the reference alleles of 30 SNPs were associated with a decreased CeD risk. No *BTNL3* nor *BTNL8* SNPs were significant in predicting CeD status in the UK Biobank dataset, after Bonferroni correction.

**Table 3.** SNPs of selected butyrophilin genes present in the UK Biobank.

| Gene   | SNPs in NCBI | Unique SNPs in NCBI | SNPs in UK Biobank |
|--------|--------------|---------------------|--------------------|
| BTN2A1 | 7912         | 7605                | 30                 |
| BTN3A1 | 5348         | 5164                | 27                 |
| BTN3A2 | 5905         | 5611                | 21                 |
| BTNL3  | 6164         | 5929                | 10                 |
| BTNL8  | 18,889       | 18,197              | 13                 |

**Table 4.** SNPs from *BTN2A1*, *BTN3A1*, and *BTN3A2* genes were significantly associated with CeD status in the UK Biobank. The name of the SNPs in the UK Biobank database is a combination of the reference SNP ID (rsID) from the SNP database (dbSNP) and the reference allele. All *BTN2A1*, *BTN3A1*, *BTN3A2*, *BTNL3*, and *BTNL8* SNPs in the UK Biobank were subjected to single-variant testing to examine their association with CeD. Due to multiple testing, Bonferroni correction was applied. SNPs with a negative ln(OR) are associated with lower CeD risk in this binomial model, meaning that the reference allele is less frequent in CeD patients. SNPs in bold remained significantly associated with CeD in the binomial regression models that also took the *HLA* genotype into account. SNP count and allele count data for the significant SNPs can be found in Table A16. All significant SNPs in control participants were in Hardy–Weinberg equilibrium (Table A17).

| Position<br>(GRCh38) | SNP, Reference<br>Allele | Gene   | SNP Consequence  | CeD Allele<br>Freq | Control<br>Allele Freq | Total<br>Allele Freq | ln(OR) | CeD<br>Risk | Adjusted<br>p-Value     |
|----------------------|--------------------------|--------|------------------|--------------------|------------------------|----------------------|--------|-------------|-------------------------|
| 6:26463347           | rs13195402               | BTN2A1 | STOP gained      | 0.768              | 0.892                  | 0.880                | -0.924 | decrease    | $4.67 	imes 10^{-158}$  |
| 6:26463432           | rs13195509               | BTN2A1 | missense         | 0.754              | 0.879                  | 0.867                | -0.857 | decrease    | $1.61 \times 10^{-151}$ |
| 6:26475927           | rs1407045                | BTN2A1 | intronic         | 0.584              | 0.516                  | 0.522                | 0.273  | increase    | $6.07 \times 10^{-22}$  |
| 6:26465807           | rs2273558                | BTN2A1 | intronic         | 0.583              | 0.677                  | 0.667                | -0.396 | decrease    | $1.69 \times 10^{-41}$  |
| 6:26460493           | rs2893856                | BTN2A1 | intronic         | 0.113              | 0.131                  | 0.130                | -0.175 | decrease    | $3.23 \times 10^{-3}$   |
| 6:26468098           | rs3734542                | BTN2A1 | missense         | 0.753              | 0.878                  | 0.867                | -0.855 | decrease    | $8.59 \times 10^{-151}$ |
| 6:26468317           | rs3734543                | BTN2A1 | missense         | 0.760              | 0.879                  | 0.868                | -0.844 | decrease    | $1.59 \times 10^{-140}$ |
| 6:26466954           | rs3799380                | BTN2A1 | intronic         | 0.683              | 0.790                  | 0.780                | -0.549 | decrease    | $8.59 \times 10^{-77}$  |
| 6:26474343           | rs56296968               | BTN2A1 | intronic         | 0.696              | 0.807                  | 0.796                | -0.604 | decrease    | $9.70 \times 10^{-89}$  |
| 6:26456215           | rs6456724                | BTN2A1 | 2 kb<br>upstream | 0.113              | 0.131                  | 0.130                | -0.176 | decrease    | $2.87 \times 10^{-3}$   |
| 6:26458037           | rs6929846                | BTN2A1 | 5′ UTR           | 0.146              | 0.174                  | 0.172                | -0.206 | decrease    | $3.60 \times 10^{-6}$   |
| 6:26473816           | rs7773938                | BTN2A1 | intronic         | 0.696              | 0.806                  | 0.796                | -0.600 | decrease    | $1.15 \times 10^{-87}$  |
| 6:26469647           | rs9358944                | BTN2A1 | intronic         | 0.695              | 0.806                  | 0.796                | -0.604 | decrease    | $1.55 \times 10^{-89}$  |
| 6:26471886           | rs9358945                | BTN2A1 | intronic         | 0.694              | 0.806                  | 0.796                | -0.606 | decrease    | $4.37 \times 10^{-90}$  |
| 6:26404730           | rs10456045               | BTN3A1 | intronic         | 0.596              | 0.698                  | 0.688                | -0.448 | decrease    | $2.97 \times 10^{-57}$  |
| 6:26410572           | rs1796520                | BTN3A1 | intronic         | 0.405              | 0.474                  | 0.467                | -0.276 | decrease    | $2.40 \times 10^{-22}$  |
| 6:26404146           | rs3799378                | BTN3A1 | intronic         | 0.653              | 0.762                  | 0.752                | -0.535 | decrease    | $2.92 	imes 10^{-75}$   |
| 6:26405825           | rs3857549                | BTN3A1 | intronic         | 0.948              | 0.935                  | 0.936                | 0.221  | increase    | $1.53 \times 10^{-2}$   |
| 6:26409662           | rs41266839               | BTN3A1 | missense         | 0.764              | 0.892                  | 0.880                | -0.924 | decrease    | $2.12 	imes 10^{-168}$  |
| 6:26407180           | rs4609015                | BTN3A1 | intronic         | 0.871              | 0.854                  | 0.855                | 0.141  | increase    | $3.82 \times 10^{-2}$   |
| 6:26412860           | rs6900725                | BTN3A1 | intronic         | 0.870              | 0.853                  | 0.855                | 0.139  | increase    | $4.33 \times 10^{-2}$   |
| 6:26401210           | rs6912853                | BTN3A1 | 2 kb<br>upstream | 0.863              | 0.844                  | 0.846                | 0.153  | increase    | $7.85 \times 10^{-3}$   |

Table 4. Cont.

| Position<br>(GRCh38) | SNP, Reference<br>Allele | Gene   | SNP Consequence     | CeD Allele<br>Freq | Control<br>Allele Freq | Total<br>Allele Freq | ln(OR) | CeD<br>Risk | Adjusted p-Value        |
|----------------------|--------------------------|--------|---------------------|--------------------|------------------------|----------------------|--------|-------------|-------------------------|
| 6:26413007           | rs6920986                | BTN3A1 | intronic            | 0.870              | 0.854                  | 0.856                | 0.138  | increase    | $4.99 \times 10^{-2}$   |
| 6:26415409           | rs742090                 | BTN3A1 | 500 b<br>downstream | 0.406              | 0.474                  | 0.468                | -0.276 | decrease    | $3.58 \times 10^{-22}$  |
| 6:26374321           | rs11758089               | BTN3A2 | intronic            | 0.866              | 0.844                  | 0.846                | 0.176  | increase    | $6.30 	imes 10^{-4}$    |
| 6:26372558           | rs12176317               | BTN3A2 | intronic            | 0.744              | 0.867                  | 0.856                | -0.809 | decrease    | $6.72 	imes 10^{-140}$  |
| 6:26366990           | rs12199613               | BTN3A2 | intronic            | 0.514              | 0.612                  | 0.602                | -0.400 | decrease    | $1.76 	imes 10^{-47}$   |
| 6:26377318           | rs1977                   | BTN3A2 | 3′ UTR              | 0.740              | 0.864                  | 0.853                | -0.808 | decrease    | $1.17 \times 10^{-136}$ |
| 6:26377363           | rs1979                   | BTN3A2 | 3′ UTR              | 0.743              | 0.867                  | 0.855                | -0.809 | decrease    | $8.23 	imes 10^{-140}$  |
| 6:26375933           | rs1985732                | BTN3A2 | intronic            | 0.595              | 0.698                  | 0.688                | -0.457 | decrease    | $2.87 	imes 10^{-59}$   |
| 6:26374430           | rs2073526                | BTN3A2 | intronic            | 0.370              | 0.442                  | 0.435                | -0.295 | decrease    | $9.15 \times 10^{-25}$  |
| 6:26363527           | rs9358934                | BTN3A2 | 2 kb<br>upstream    | 0.744              | 0.866                  | 0.855                | -0.803 | decrease    | $2.34 \times 10^{-137}$ |
| 6:26364702           | rs9379855                | BTN3A2 | 2 kb<br>upstream    | 0.743              | 0.866                  | 0.855                | -0.804 | decrease    | $8.85 \times 10^{-138}$ |
| 6:26367461           | rs9379858                | BTN3A2 | intronic            | 0.743              | 0.866                  | 0.855                | -0.802 | decrease    | $3.19 \times 10^{-137}$ |
| 6:26369321           | rs9379859                | BTN3A2 | intronic            | 0.744              | 0.867                  | 0.855                | -0.803 | decrease    | $5.37 \times 10^{-137}$ |
| 6:26373450           | rs9393713                | BTN3A2 | intronic            | 0.743              | 0.868                  | 0.856                | -0.814 | decrease    | $1.07 	imes 10^{-141}$  |
| 6:26373512           | rs9393714                | BTN3A2 | intronic            | 0.743              | 0.868                  | 0.856                | -0.813 | decrease    | $6.99 \times 10^{-141}$ |

Abbreviations: CeD: coeliac disease; freq: frequency; GRCh38: Genome Reference Consortium Human Build 38; kb: kilobase; ln(OR): natural logarithm of the odds ratio; SNP: single-nucleotide polymorphism; UTR: untranslated region.

# 2.2.3. Twenty Butyrophilin SNPs from the UK Biobank Remained Significantly Associated with CeD Status When the Participants' Risk *HLA* Genotypes Were Taken into Account

To investigate whether the butyrophilin SNPs in the UK Biobank remained significantly associated with CeD status when taking the HLA loci into account, a second set of binomial regression models was produced. Single-variant models were built for each of the 101 SNPs of interest, which included the risk HLA genotypes of the UK Biobank participants as an additional predictor variable (Table A18). Only 7 BTN2A1, 2 BTN3A1, and 11 BTN3A2 SNPs remained significantly associated with CeD status after applying Bonferroni correction (adjusted  $p \leq 0.05$ , Table 5). All of the significant SNPs were in Hardy-Weinberg equilibrium in the control cohort (Table A19). Similar to the previous model, the majority of the significant SNPs were non-coding, with the exception of a STOP gained SNP (rs13195402) and three missense SNPs (rs13195509, rs3734542, and rs3734543) in the BTN2A1 gene. Out of the 17 non-coding SNPs, 11 SNPs were located in intronic regions. The reference alleles for all 20 SNPs were associated with a decreased CeD risk, meaning that the alternate alleles were more frequent in CeD patients. As the HLA loci were taken into account, these SNPs are likely to be real associations with CeD status, instead of being caused by linkage disequilibrium (LD) due to the proximity of the BTN and HLA loci on chromosome 6.

# 2.2.4. Twenty-One Butyrophilin SNPs Were Significantly Associated with CeD Status in *HLA-DQ2.5*-Matched Case-Control Groups of UK Biobank Participants

The final set of analyses was carried out to investigate whether the butyrophilin SNPs were significantly associated with CeD status in all of the CeD risk *HLA* genotype patients. Therefore, the UK Biobank participants were separated into risk *HLA*-matched CeD and control groups (Table 6). All 101 butyrophilin SNPs were single-variant tested for their association with CeD status in the *HLA*-matched groups.

**Table 5.** Twenty SNPs from *BTN2A1*, *BTN3A1*, and *BTN3A2* genes were significantly associated with CeD status in the UK Biobank when *HLA* genotypes were included in the single-variant testing models. *BTN2A1*, *BTN3A2*, *BTNL3*, and *BTNL8* SNPs in the UK Biobank were subjected to single-variant testing to examine their association with CeD. Due to multiple testing, Bonferroni correction was applied. SNPs with a negative ln(OR) are associated with lower CeD risk in this binomial model. All significant SNPs in control participants were in Hardy–Weinberg equilibrium (Table A19).

| SNP, Reference Allele | Gene   | SNP Consequence | ln(OR)   | CeD Risk | Adjusted <i>p</i> -Value |
|-----------------------|--------|-----------------|----------|----------|--------------------------|
| rs13195402            | BTN2A1 | STOP gained     | -0.20727 | decrease | $8.15 \times 10^{-6}$    |
| rs13195509            | BTN2A1 | missense        | -0.19239 | decrease | $1.62 \times 10^{-5}$    |
| rs3734542             | BTN2A1 | missense        | -0.18831 | decrease | $2.94 \times 10^{-5}$    |
| rs3734543             | BTN2A1 | missense        | -0.16744 | decrease | $8.23 \times 10^{-4}$    |
| rs56296968            | BTN2A1 | intronic        | -0.11753 | decrease | $4.20 \times 10^{-2}$    |
| rs9358944             | BTN2A1 | intronic        | -0.11786 | decrease | $3.83 \times 10^{-2}$    |
| rs9358945             | BTN2A1 | intronic        | -0.12018 | decrease | $2.91 \times 10^{-2}$    |
| rs3799378             | BTN3A1 | intronic        | -0.14327 | decrease | $7.04 \times 10^{-4}$    |
| rs41266839            | BTN3A1 | missense        | -0.21469 | decrease | $1.06 \times 10^{-6}$    |
| rs12176317            | BTN3A2 | intronic        | -0.1974  | decrease | $3.50 \times 10^{-6}$    |
| rs12199613            | BTN3A2 | intronic        | -0.12296 | decrease | $3.31 \times 10^{-3}$    |
| rs1977                | BTN3A2 | 3′ UTR          | -0.20238 | decrease | $2.06 \times 10^{-6}$    |
| rs1979                | BTN3A2 | 3′ UTR          | -0.19756 | decrease | $3.40 \times 10^{-6}$    |
| rs1985732             | BTN3A2 | intronic        | -0.10975 | decrease | $3.35 \times 10^{-2}$    |
| rs9358934             | BTN3A2 | 2 kb upstream   | -0.19286 | decrease | $7.53 \times 10^{-6}$    |
| rs9379855             | BTN3A2 | 2 kb upstream   | -0.19406 | decrease | $6.04 \times 10^{-6}$    |
| rs9379858             | BTN3A2 | intronic        | -0.19156 | decrease | $8.99 \times 10^{-6}$    |
| rs9379859             | BTN3A2 | intronic        | -0.19261 | decrease | $8.10 \times 10^{-6}$    |
| rs9393713             | BTN3A2 | intronic        | -0.2056  | decrease | $9.27 \times 10^{-7}$    |
| rs9393714             | BTN3A2 | intronic        | -0.20087 | decrease | $2.08 \times 10^{-6}$    |

Abbreviations: CeD: coeliac disease; ln(OR): natural logarithm of the odds ratio; SNP: single-nucleotide polymorphism.

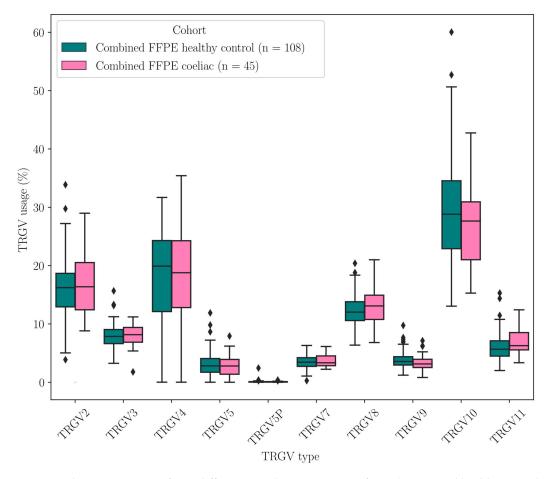
**Table 6.** Single-variant testing in *HLA*-matched groups from the UK Biobank dataset only identified significant SNPs associated with CeD status in individuals with *HLA-DQ2.5* genotypes. The CeD and control participants of the UK Biobank dataset were divided into *HLA*-matched case-control groups for single-variant testing. The association between *BTN2A1*, *BTN3A1*, *BTN3A2*, *BTNL3*, and *BTNL8* SNPs and CeD status was investigated. Significant association between the SNPs and CeD status was only present in *HLA-DQ2.5*-matched individuals (in bold).

| HLA Genotype of Individuals in Model | Number of<br>CeD Participants | Number of Controls | Number of<br>Significant SNPs |
|--------------------------------------|-------------------------------|--------------------|-------------------------------|
| HLA-DQ2.2                            | 199                           | 4154               | 0                             |
| HLA-DQ2.5                            | 1652                          | 6416               | 21                            |
| HLA-DQ8                              | 171                           | 4203               | 0                             |
| HLA-DQ2.2, HLA-DQ2.5                 | 606                           | 895                | 0                             |
| HLA-DQ2.2, HLA-DQ8                   | 50                            | 590                | 0                             |
| HLA-DQ2.5, HLA-DQ8                   | 182                           | 886                | 0                             |
| Other                                | 234                           | 12,618             | 0                             |

HLA-DQ2.5 was the most common risk HLA genotype in CeD patients, both in the UK Biobank as well as in previous studies [11,12]. A significant association between butyrophilin SNPs and CeD status was only present in the HLA-DQ2.5-matched UK Biobank participants. The BTN2A1, BTN3A1, and BTN3A2 SNPs significantly associated with CeD status in the *HLA* single-variant testing models remained significant in the *HLA-DQ2.5*matched tests as well (Tables 7, A20 and A21). Interestingly, the allele frequency of all significantly associated SNPs significantly differed from the Hardy–Weinberg equilibrium in the control group (Table A22). Additionally, rs7773938, an intronic BTN2A1 SNP, is a novel SNP that was only significantly associated with CeD status in UK Biobank participants with the *HLA-DQ2.5* genotype. The reference alleles of all 21 significant SNPs were more frequent in controls compared to CeD individuals, meaning that having the alternate allele at these loci significantly increases an individual's CeD risk. These results imply that butyrophilin SNPs could only explain additional CeD risk in HLA-DQ2.5-matched individuals of the UK Biobank. As the presence of these reference alleles remained significantly associated with decreased CeD risk even after HLA-matching, the association with these SNPs was not likely to be caused by LD to the *HLA* loci. Therefore, the 21 butyrophilin SNPs identified were significantly associated with CeD status and contributed to further CeD risk in UK Biobank participants possessing the HLA-DQ2.5 genotype.

**Table 7.** Butyrophilin SNPs only remained significantly associated with CeD status in the *HLA-DQ2.5*-restricted UK Biobank analysis. The name of the SNPs in the UK Biobank database is a combination of the SNP name and the reference allele. All *BTN2A1*, *BTN3A1*, *BTN3A2*, *BTNL3*, and *BTNL8* SNPs in the UK Biobank were subjected to single-variant testing to examine their association with CeD. Due to multiple testing, Bonferroni correction was applied. SNPs with a negative ln(OR) are associated with lower CeD risk in this binomial model. The SNP in bold was a novel SNP significantly associated with CeD unique to the *HLA-DQ2.5* model, while the other SNPs were also significant in the non-*HLA* and the *HLA* models. SNP count and allele count data for the significant SNPs can be found in Table A21. The allele frequency of all the significantly associated SNPs in the control group significantly differed from the Hardy–Weinberg equilibrium (Table A22).

| SNP, Reference<br>Allele | Gene   | SNP Consequence  | CeD Allele<br>Freq | Control<br>Allele Freq | Total Allele<br>Freq | ln(OR)   | CeD Risk | Adjusted p-Value      |
|--------------------------|--------|------------------|--------------------|------------------------|----------------------|----------|----------|-----------------------|
| rs13195402               | BTN2A1 | STOP gained      | 0.704              | 0.751                  | 0.741                | -0.27812 | decrease | $5.10 \times 10^{-7}$ |
| rs13195509               | BTN2A1 | missense         | 0.687              | 0.734                  | 0.724                | -0.25542 | decrease | $1.75 \times 10^{-6}$ |
| rs3734542                | BTN2A1 | missense         | 0.687              | 0.733                  | 0.723                | -0.25235 | decrease | $2.52 \times 10^{-6}$ |
| rs3734543                | BTN2A1 | missense         | 0.695              | 0.736                  | 0.728                | -0.23279 | decrease | $5.43 \times 10^{-5}$ |
| rs56296968               | BTN2A1 | intronic         | 0.640              | 0.673                  | 0.666                | -0.15928 | decrease | $2.33 \times 10^{-2}$ |
| rs7773938                | BTN2A1 | intronic         | 0.640              | 0.672                  | 0.666                | -0.15755 | decrease | $2.66 	imes 10^{-2}$  |
| rs9358944                | BTN2A1 | intronic         | 0.638              | 0.671                  | 0.664                | -0.16238 | decrease | $1.61 \times 10^{-2}$ |
| rs9358945                | BTN2A1 | intronic         | 0.638              | 0.671                  | 0.665                | -0.16499 | decrease | $1.26 \times 10^{-2}$ |
| rs3799378                | BTN3A1 | intronic         | 0.596              | 0.637                  | 0.628                | -0.18712 | decrease | $8.10 \times 10^{-4}$ |
| rs41266839               | BTN3A1 | missense         | 0.697              | 0.747                  | 0.737                | -0.28267 | decrease | $7.25 \times 10^{-8}$ |
| rs12176317               | BTN3A2 | intronic         | 0.679              | 0.729                  | 0.719                | -0.26575 | decrease | $2.82 \times 10^{-7}$ |
| rs12199613               | BTN3A2 | intronic         | 0.459              | 0.500                  | 0.491                | -0.1717  | decrease | $2.06 \times 10^{-3}$ |
| rs1977                   | BTN3A2 | 3′ UTR           | 0.676              | 0.726                  | 0.716                | -0.268   | decrease | $2.99 \times 10^{-7}$ |
| rs1979                   | BTN3A2 | 3′ UTR           | 0.679              | 0.728                  | 0.718                | -0.26376 | decrease | $3.63 \times 10^{-7}$ |
| rs1985732                | BTN3A2 | intronic         | 0.539              | 0.574                  | 0.567                | -0.15063 | decrease | $2.35 \times 10^{-2}$ |
| rs9358934                | BTN3A2 | 2 kb<br>upstream | 0.680              | 0.729                  | 0.719                | -0.25825 | decrease | $8.85 \times 10^{-7}$ |
| rs9379855                | BTN3A2 | 2 kb<br>upstream | 0.680              | 0.728                  | 0.718                | -0.25967 | decrease | $6.76 \times 10^{-7}$ |


| SNP, Reference<br>Allele | Gene   | SNP Consequence | CeD Allele<br>Freq | Control<br>Allele Freq | Total Allele<br>Freq | ln(OR)   | CeD Risk | Adjusted p-Value      |
|--------------------------|--------|-----------------|--------------------|------------------------|----------------------|----------|----------|-----------------------|
| rs9379858                | BTN3A2 | intronic        | 0.680              | 0.728                  | 0.718                | -0.25566 | decrease | $1.18 \times 10^{-6}$ |
| rs9379859                | BTN3A2 | intronic        | 0.681              | 0.729                  | 0.719                | -0.26105 | decrease | $6.31 \times 10^{-7}$ |
| rs9393713                | BTN3A2 | intronic        | 0.678              | 0.729                  | 0.719                | -0.27313 | decrease | $1.06 \times 10^{-7}$ |
| rs9393714                | BTN3A2 | intronic        | 0.679              | 0.729                  | 0.719                | -0.26778 | decrease | $2.25 \times 10^{-7}$ |

Abbreviations: CeD: coeliac disease; freq: frequency; ln(OR): natural logarithm of the odds ratio; SNP: single-nucleotide polymorphism.

# 2.3. HV4 Variation Was Not Significantly Associated with CeD Risk in a Study of 379 Samples 2.3.1. TRGV Usage Was Not Significantly Different Between CeD and Control Samples

Previous evidence by our group showed that the  $\gamma\delta$  T cell repertoire is permanently altered in the duodenum of CeD patients [57]. Mayassi et al. [21] also showed that the BTNL3-reactive duodenal V $\gamma$ 4+  $\gamma\delta$  T cells are lost after active CeD, and the local  $\gamma\delta$  TCR repertoire is permanently reconfigured.

First, we investigated TRGV usage in the duodenal TRG repertoires of 108 healthy controls and 45 CeD patients (Table 8, Figure A13). The *TRGV10*, *TRGV4*, and *TRGV2* variable (V) gene segments were the most frequent in this dataset. We focused on the TRGV4 segment usage, which is capable of binding the BTNL3/BTNL8 heterodimer. The mean TRGV4 segment usage did not differ between CeD (18.50% of the TRG repertoire) and healthy control samples (18.06%) (Figure 3, Table A23).



**Figure 3.** There were no significant differences in the TRGV usage of CeD (n = 45) and healthy control (n = 108) duodenal samples.

| Table 8. The coeliac disease and healthy control patient TRG datasets analysed for TRGV usage and |
|---------------------------------------------------------------------------------------------------|
| HV4 sequence variations. FFPE: formalin-fixed, paraffin-embedded.                                 |

|           | Coeliac Disease                                            | <b>Healthy Control</b>          | Sequencing Method                                                                                       |
|-----------|------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------|
| Dataset 1 | 34 FFPE, 12 fresh<br>frozen duodenal                       | 97 FFPE duodenal                | Lymphotrack (Invivoscribe Inc.,<br>San Diego, CA, USA) and Illumina<br>Miseq micro (San Diego, CA, USA) |
| Dataset 2 | 11 FFPE duodenal                                           | 11 FFPE duodenal                | Lymphotrack (Invivoscribe Inc.) and<br>Illumina Miseq                                                   |
| Dataset 3 | 84 blood                                                   | 130 blood                       | Illumina NextSeq                                                                                        |
| Combined  | 84 blood,<br>48 FFPE duodenal,<br>12 fresh frozen duodenal | 130 blood,<br>108 FFPE duodenal | NA                                                                                                      |

# 2.3.2. HV4 Sequence Variation Was Not Significantly Associated with CeD Risk

Next, the TRGV4-HV4 amino acid sequences were examined in 141 CeD and 238 healthy control samples (Table 8). As demonstrated by Melandri et al. [29] and Willcox et al. [31], only HV4 loops with the wild-type (reference) KYDTYGSTRKNLRMILR amino acid sequence could directly bind BTNL3. Substitutions in the amino acids underlined (KY $\underline{\mathbf{D}}$ TY $\underline{\mathbf{G}}$ STRKNLRMILR) were found to disrupt this direct binding between BTNL3 and V $\gamma$ 4+ T cells, while substitutions in the following underlined amino acids (KYDTYGSTR $\underline{\mathbf{K}}$ NLR $\underline{\mathbf{M}}$ ILR) only caused a marginal reduction in binding [31]. As the HV4 is germline-encoded and does not undergo recombination, we hypothesised that variations in the germline-encoded TRGV4-HV4 amino acid sequence could alter the binding of the V $\gamma$ 4+  $\gamma$ 8 T cells to BTNL3 protein in the duodenum, predisposing to CeD.

Seven unique HV4 amino acid sequences were identified in the dataset (Table 9a,b). The reference HV4 sequence KYDTYGSTRKNLRMILR capable of binding the BTNL3 protein was the most frequent in both the healthy control (95.8%, 228/238) and CeD (97.9%, 138/141) samples. Approximately 84.9% (202/238) of healthy control samples and 82.3% (116/141) of CeD were homozygous for the WT HV4 sequence. There were no significant differences in the HV4 amino acid sequence distribution between CeD and healthy control samples (Fisher's exact test, p = 0.26, Figure A14, Table A24). Thus, neither TRGV usage nor HV4 amino acid sequence variation could explain CeD risk in a dataset of 379 samples.

**Table 9.** More than 95% of participants possessed at least one reference HV4 loop regardless of their CeD status. The dataset consisted of 238 healthy controls and 141 CeD samples. (a) Seven unique HV4 amino acid sequences were identified in the dataset. (b) The homozygous WT HV4 phenotype was the most frequent in both the healthy control and CeD groups.

| (a)                        |                     |                                      |                 |                                   |                                     |  |  |
|----------------------------|---------------------|--------------------------------------|-----------------|-----------------------------------|-------------------------------------|--|--|
| HV4 Amino Acid Sequence    | Amino Acid Change   | Amino Acid Change Effect C           |                 | Freq. in CeD<br>Samples (n = 141) | Predicted Change<br>in Binding [31] |  |  |
| KYDTYGSTRKNLRMILR<br>(WT)  | -                   | -                                    | 430/476 = 0.903 | 254/282 = 0.901                   | -                                   |  |  |
| KYDTYGSTRQNLRMILR          | Lysine > Glutamine  | Positive charge > polar uncharged    | 41/476 = 0.086  | 23/282 = 0.082                    | Marginal reduction in binding       |  |  |
| KYDTYGSTRK <u>S</u> LRMILR | Asparagine > Serine | Polar uncharged > polar uncharged    | 4/476 = 0.008   | 2/282 = 0.007                     | Unknown                             |  |  |
| KYDTYGSTR_ELENDTA          | Lysine > frameshift | Positive charge > different sequence | 0               | 1/282 = 0.003                     | Unknown                             |  |  |

Table 9. Cont.

| KY <u>N</u> TYGSTRKNLRMILR                              | Aspartic acid ><br>Asparagine         | Negative charge > polar uncharged          | 0             | 1/282 = 0.003                  | Disrupted binding |
|---------------------------------------------------------|---------------------------------------|--------------------------------------------|---------------|--------------------------------|-------------------|
| KYDTYG <u>N</u> TRKNLRMILR                              | KYDTYGNTRKNLRMILR Serine > Asparagine |                                            | 1/476 = 0.002 | 0                              | Unknown           |
| KYDTYGS <u>I</u> RKNLRMILR                              | Threonine > Isoleucine                | Polar uncharged > apolar                   | 0             | 1/282 = 0.003                  | Unknown           |
|                                                         |                                       | (b)                                        |               |                                |                   |
| Phenotype                                               |                                       | Combined Healthy Control Samples (n = 238) |               | Combined CeD Samples (n = 141) |                   |
| WT                                                      |                                       | 202                                        |               | 116                            |                   |
| WT, KYDTYGSTR                                           | QNLRMILR                              | 23                                         |               | 18                             |                   |
| KYDTYGSTRQ                                              | NLRMILR                               | 9                                          |               | 2                              |                   |
| WT, KYDTYGSTR                                           | K <u>S</u> LRMILR                     | 2                                          |               | 2                              |                   |
| KYDTYGSTR <u>O</u> NLRMILR,<br>KYDTYGSTR <u>ELENDTA</u> |                                       | 0                                          |               | 1                              |                   |
| WT, KY <u>N</u> TYGSTRKNLRMILR                          |                                       | 0                                          |               | 1                              |                   |
| WT, KYDTYG <u>N</u> TRKNLRMILR                          |                                       | 1                                          |               | 0                              |                   |
| KYDTYGSTRKS                                             | ELRMILR                               | 1                                          |               | 0                              |                   |
| WT, KYDTYGSIRF                                          | KNLRMILR                              | 0                                          |               | 1                              |                   |

### 3. Discussion

Around 30% of genetic heritability for CeD can be explained by the *HLA* risk genotypes *HLA-DQ2.5*, *HLA-DQ8*, and *HLA-DQ2.2*, which were first connected to CeD in 1972 [17,18,58,59]. However, an estimated 50% of genetic heritability remains unexplored [60]. Recently, the butyrophilin family of genes were proposed as non-*HLA* CeD risk loci [19–21]. These genes encode transmembrane proteins that were implicated in regulating the activity of innate and adaptive immune cells, alongside maintaining characteristic epithelial  $\gamma\delta$  T cell populations in mice and humans [22,24]. Prior to this study, four genes were associated with CeD: *BTN3A1*, *BTNL2*, *BTNL3*, and *BTNL8* [19–21].

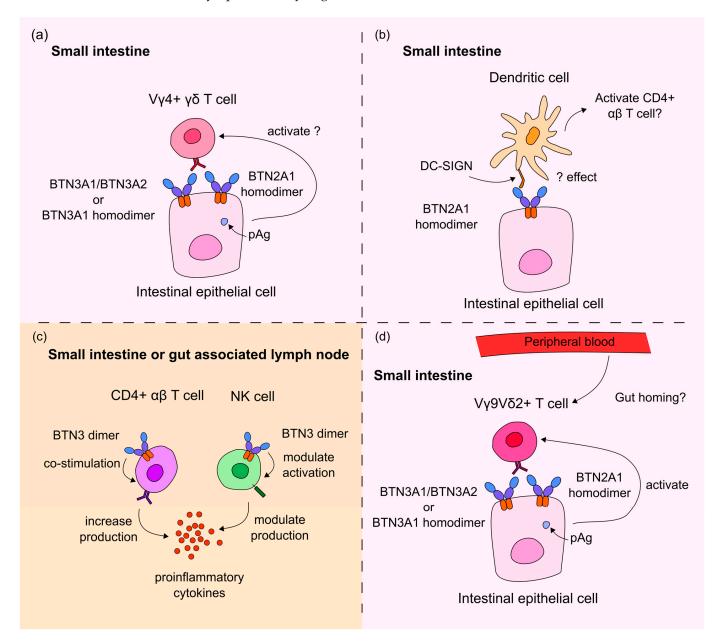
Burden testing the non-synonymous coding butyrophilin SNP data of 46 healthy control and 49 CeD samples showed the *BTN2A1* gene burden to be significantly higher in CeD patients in both the dominant (adjusted  $p = 1.46 \times 10^{-5}$ ) and the recessive models (adjusted  $p = 3.70 \times 10^{-8}$ ). CNV analysis of the *BTNL8-BTNL3* region in these samples did not show a significant association with CeD risk.

The significant association between BTN2A1 SNPs and CeD predisposition was validated using the UK Biobank 500,000 genome-wide genotyping dataset. Fourteen BTN2A1, 10 BTN3A1, and 13 BTN3A2 SNPs were significantly associated with CeD (adjusted  $p \leq 0.05$ ), the majority of which were non-coding variants. When the risk-associated HLA genotypes of these participants were taken into account, only 7 BTN2A1, 2 BTN3A1, and 11 BTN3A2 SNPs remained significant (adjusted  $p \leq 0.05$ ), showing HLA-independent associations with CeD risk. Finally, butyrophilin SNPs were single-variant tested in CeD risk HLA-matched groups. The 20 SNPs above, alongside a novel intronic BTN2A1 SNP, were significant in predicting CeD status in 1652 CeD and 6416 control participants with the HLA-DQ2.5 genotype (adjusted  $p \leq 0.05$ ).

We thus identified BTN2A1 and BTN3A2 as novel CeD risk loci and corroborated BTN3A1 as a CeD risk locus. The association between BTN3A1 and CeD is in accordance with evidence shown by Pietz et al. [20], who hypothesised that the pAg presentation by intestinal epithelial cells in active CeD may contribute to IFN- $\gamma$  production and T cell proliferation. Indeed, all three of these butyrophilin genes are involved in the pAgmediated, innate-like activation of peripheral blood  $\gamma\delta$  T cells [37,38,61,62]. Interestingly,

the majority of the UK Biobank SNPs significantly associated with CeD predisposition were outside coding regions. Of note, UK Biobank validation indicated that only non-coding *BTN3A1* and *BTN3A2* SNPs were significantly associated with CeD risk. These results could provide an explanation for these genes not having significantly increased gene burden in CeD patients, as the burden testing only considered coding variants.

Due to the association between butyrophilin family members and CeD status, and the involvement of butyrophilin heterodimers in shaping  $\gamma\delta$  T cell repertoires via binding to V $\gamma$ 4+  $\gamma\delta$  T cells [21,27,28,31], we investigated the likely effects of polymorphisms in the TCR  $\gamma$  V segment, TRGV4, on the interaction between V $\gamma$ 4+  $\gamma\delta$  T cells and the BTNL3/BTNL8 heterodimer, but we failed to find any significant association between the TRGV4-HV4 amino acid sequences and CeD risk, which may suggest that the interaction between V $\gamma$ 4+  $\gamma\delta$  T cells and the BTNL3/BTNL8 heterodimer is not a primary event in determining whether or not CeD develops. However, these results could be due to both the coding regions of butyrophilin genes and the HV4 amino acid sequence being conserved via stabilising selection. This could be due to the interaction between butyrophilins and  $\gamma\delta$  T cells, including *BTN3A1* and *BTN3A2* PAg-dependent activation of peripheral blood V $\gamma$ 9+ T cells, and HV4-BTNL3 interaction, which serves as the maintenance signal for the V $\gamma$ 4+  $\gamma\delta$  T cells in the duodenum [21]. Taking these results together, we provide a new hypothesis for the role of butyrophilins in CeD (Figure 4).


Firstly, these results could imply that BTN2A1 and BTN3A2 act on duodenal  $V\gamma4+\gamma\delta$  T cells, as well as on peripheral blood  $V\gamma9V\delta2+\gamma\delta$  T cells, perhaps mediating their pAgdependent activation (Figure 4a). This hypothesis could explain why the *BTNL8\*BTNL3* deletion variant, which encodes a BTNL8\*3 fusion protein but no full-length BTNL3 or BTNL8 proteins, was not significantly associated with CeD risk in the cohort of 94 samples. Participants who are homozygous for the deletion can only express the truncated BTNL8\*3 fusion protein, which lacks the BTNL3-IgV extracellular domain required for maintaining the duodenal TCR of  $V\gamma4+\gamma\delta$  T cells, which we hypothesised could increase CeD risk [21,29,31,41]. If BTN2A1, BTN3A1, or BTN3A2 could provide a survival signal to the  $V\gamma4V\delta1+$  IELs in the healthy small intestine, this could explain why controls could be homozygous for the BTNL3/BTNL8 deletion variant without having CeD.

Secondly, BTN2A1 variants may predispose patients to CeD, via BTN2A1's role as a ligand for DC-SIGN on DCs, which are important in CD pathogenesis in presenting gluten antigens to CD4+  $\alpha\beta$  T cells [24,25]. Thus, BTN2A1 might regulate the autoimmune response in CeD indirectly via DC activity (Figure 4b). Additionally, previous evidence has shown that BTN3 proteins can provide co-stimulatory signals to  $\alpha\beta$  T cells, increasing their production of interferon- $\gamma$  (IFN- $\gamma$ ), a proinflammatory cytokine [26]. This same study showed the dual effect of butyrophilins on NK cell activity: BTN3A1 upregulated, while BTN3A2 downregulated IFN- $\gamma$  production and NK cell activation (Figure 4c).

Thirdly, peripheral blood V $\gamma$ 9V $\delta$ 2+ T cells might undergo BTN2A1-mediated PAgdependent activation in CeD (Figure 4d), either being recruited to infiltrate the small intestine from the peripheral blood or contributing to CeD pathogenesis in an as yet undetermined way. Interestingly, in the analysis of our cohort of 108 healthy control and 45 CeD duodenal samples, only 3–4% of  $\gamma\delta$  T cells were V $\gamma$ 9+ T cells (Figure 3, Table 8). There were no significant differences in the proportion of V $\gamma$ 9+ T cells in CeD and healthy controls (adjusted p=0.728), a finding which may argue against a key role for V $\gamma$ 9+ T cells in CeD.

In conclusion, the butyrophilin family of genes are promising immunomodulators involved in connecting the adaptive and innate immunity [24]. Our results provide evidence that the butyrophilin genes BTN2A1, BTN3A1, and BTN3A2 may be putative CeD risk loci. Due to their important roles in the maintenance, activation, and regulation of  $\gamma\delta$  T cells, the

butyrophilins may be involved in the pathogenesis of other autoimmune and inflammatory disorders. Our work provides a clear rationale for further research into the role of the butyrophilin family of genes in CeD.



**Figure 4.** BTN2A1, BTN3A1, and BTN3A2 may be involved in CeD pathogenesis by modulating T cell and innate immune cell activity. *BTN2A1* gene burden was significantly higher in CeD patients in a cohort of 94 samples. Meanwhile, *BTN2A1*, *BTN3A1*, and *BTN3A2* SNPs were significantly associated with CeD status in the UK Biobank database. Based on our results and evidence on the immunomodulatory role of butyrophilins on innate and adaptive immune cells, butyrophilins could contribute to CeD pathogenesis in multiple potential manners [25,26,37,38,61]: (a) via the novel, hypothesised pAg-dependent activation of Vγ4+ γδ T cells; (b) via the interaction of BTN2A1 with dendritic cells through the DC-SIGN receptor on the DC cell surface; (c) by increasing the co-stimulation and IFN-γ production of CD4+  $\alpha\beta$  T cells, or by modulating the activity and IFN-γ production of NK cells depending on whether BTN3A1 or BTN3A2 is expressed predominantly on the surface of the NK cell; or (d) via the pAg-dependent activation of potentially gut-homing Vγ9Vδ2+ γδ T cells in the small intestine.

# 4. Materials and Methods

### 4.1. Participant Selection Criteria

All patient samples used for sequencing were obtained with full ethical approval (IRAS project ID: 162057, REC reference: 04/Q1604/21, PI: Prof. E. Soilleux).

CeD patient samples were selected using hospital records, while control samples were selected to exclude suspected CeD patients.

Control exclusion criteria:

- Has CeD diagnosis;
- Malabsorption;
- Anaemia;
- Lymphocytosis;
- On a GFD;
- Diarrhoea.

# 4.1.1. Participant Selection for the Butyrophilin Family Gene Sequencing

A total of 48 CeD samples (40 blood, 8 formalin fixed, paraffin-embedded (FFPE) duodenal biopsies) and 46 control samples (38 blood, 8 FFPE duodenal biopsies) were obtained from Cambridge Haematopathology and Oncology Diagnostic Service or Cambridge University Hospitals NHS Foundation Trust Department of Haematology (blood samples) and the Human Research Tissue Bank of Cambridge University Hospitals NHS Foundation Trust (FFPE biopsies).

# 4.1.2. Validation Cohort Participant Selection from the UK Biobank for Single-Variant Analysis

CeD patients and controls were selected from the anonymised UK Biobank online database using the Cohort Browser program on the online Research Analysis Platform (RAP, https://ukbiobank.dnanexus.com/, application ID: 18532, accessed on 23 May 2022). Participants' sociodemographic, lifestyle, hospital record information, HLA imputation, and genome-wide genotyping data were available from the UK Biobank online resource centre (https://biobank.ndph.ox.ac.uk/, accessed on 23 May 2022).

Control and CeD participants were selected based on their responses to the CeD online questionnaire (data-field 21068, https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21086, accessed on 23 May 2022), the dietary web questionnaire (data-field 20086, https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20086, accessed on 23 May 2022), their hospital inpatient record (category 2000, https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=2000, accessed on 23 May 2022), and their death record (category 100093, https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100093, accessed on 23 May 2022). All participant clinical data were classified using the World Health Organisation's International Classification of Disease (ICD) system [63]. Most of the hospital inpatient data were coded in ICD-10, but some pre-1997 data collected in Scotland used ICD-9 (https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=138483, accessed on 23 May 2022).

Control exclusion criteria were the same as for the blood and biopsy cohort, with the CeD online questionnaire, hospital inpatient record, or death record serving as evidence of a CeD diagnosis.

Coeliac disease inclusion criteria included either of the following:

- Hospital diagnosis record includes coeliac disease: ICD9 (5790), ICD10 (K90.0);
- Cause of death includes coeliac disease: ICD10 (K90.0).

After removing individuals with missing data, the finalised UK Biobank cohort consisted of 3094 CeD patients and 29,762 control participants.

### 4.1.3. Samples Selected for the HV4 Analysis

The sequencing data from three different datasets were used that were selected using the same criteria. A total of 141 CeD and 238 healthy control tissue samples were selected for the HV4 analysis (Table 8).

4.2. Analysis of Butyrophilin Family Variation in the Targeted Sequencing Cohort 4.2.1. Sequencing of HLA Loci and Selected Butyrophilin Family Genes by Hybridisation Capture

The expression profiles of the 15 butyrophilin family members outlined by Rhodes et al. [24] were examined in the Human Protein Atlas (HPA, accessed on 27 October 2020) for protein (or, where protein was unavailable, mRNA) expression in the duodenum, small intestine, rectum, and colon (Appendix B, Table A2), as well as mRNA expression in T cells, DCs, NK cells, macrophages, regulatory T cells, and  $\gamma\delta$  T cells (Table A3) [64]. BTN2A1, BTN2A2, BTN3A1, BTN3A2, BTN3A3, BTNL2, BTNL3, BTNL8, ERMAP, and MOG were selected.

The Genome Reference Consortium Human Build 38 patch release 12 (GRCh38.p12) genomic position of the 10 butyrophilin genes of interest was determined using the NCBI database [65], the regions of interest were uploaded to the Nonacus Ltd. probe design platform (panel id: 890, Table A4) [66], and 2× tiling probes were designed maximising coverage of the target regions, while avoiding under or over sequencing any regions [67,68]. *HLA* hybridisation probes were designed and provided by Nonacus Ltd. Hybridisation capture was performed using the Nonacus Cell3 Target Hybridisation & Capture Kit (Nonacus) version (b) protocol (Figure A1, Appendices B.2 and B.3). Captured libraries were sequenced using the Illumina MiSeq system. Sequencing data obtained are available at https://zenodo.org/records/15203243 (accessed on 12 April 2025).

# 4.2.2. Germline Short-Variant Discovery and HLA Genotyping

The quality of the sequencing files was assessed using the default FastQC v0.11.9 settings, and the Illumina adapters were removed using Trimmomatic v0.39 [69,70].

The variant call pipeline was built by adapting the GATK best practices for germline short-variant discovery [71], the analysis pipelines of Zhao et al. [72], the Du group [73,74], and Matthews [75] (Appendix C). The code for the pipeline calling SNPs from the raw, unmapped FASTQ sequencing files is available at https://gitlab.developers.cam.ac.uk/path/soilleux/soilleux-group/ced\_butyrophilin\_phd/-/tree/dropbox/nonacus\_miseq\_analysis/variant\_call (accessed on 19 March 2025).

*HLA* genotypes were determined from the sequencing data using HLA-HD version 1.7.0 [76], and the CeD risk-associated *HLA* genotypes (Section 4.3.1) were called from the alleles. The code for the risk *HLA* genotyping is available at https://gitlab.developers.cam. ac.uk/path/soilleux/soilleux-group/ced\_butyrophilin\_phd/-/tree/dropbox/nonacus\_miseq\_analysis/hla\_typing (accessed on 24 September 2024).

### 4.2.3. Copy Number Variation (CNV) Analysis of the BTNL8-BTNL3 Loci

The presence of the 56 kb deletion variant in the BTNL8-BTNL3 loci (chr5:180948027–181003596, GRCh38) was analysed by using a surrogate SNP, the T > C rs72494581 (chr5:181003797, GRCh38) BTNL3 intronic SNP, which is associated with the CNV (Table A5) [51]. Fisher's exact test was performed to investigate differences in BTNL8-BTNL3 CNV between cohorts.

### 4.2.4. Burden Testing Analysis

The TRAPD program was used for burden testing the variants found in selected buty-rophilin genes in samples of the targeted sequencing cohort, as described in Appendix D.2 (Figure A4) [52,53,77,78].

The variants in the CeD and control groups were burden tested using both the recessive and the dominant models.

The burden testing analysis codes are available at https://gitlab.developers.cam.ac.u k/path/soilleux/soilleux-group/ced\_butyrophilin\_phd/-/tree/dropbox/nonacus\_mis eq\_analysis/burden\_testing/Code (accessed on 25 September 2024).

# 4.3. Single-Variant Testing of Butyrophilin Family Variance in the UK Biobank Database

# 4.3.1. CeD Risk-Associated HLA Genotyping in the UK Biobank Cohort

HLA genotyping was performed using the HLA imputation values of the UK Biobank 500,000 genome-wide genotyping cohort (Appendix E.1.), to identify the following CeD risk-associated alleles: *HLA-DQA1\*02:01* with *HLA-DQB1\*02:02* (making up the HLA-DQ2.2 heterodimer in the DR2-DQ2 haplotype), *HLA-DQA1\*05:01* with *HLA-DQB1\*02:01* (making up the HLA-DQ2.5 heterodimer in the *DR3-DQ2* and *DR5-DQ7/DR7-DQ2* haplotypes), and *HLA-DQA1\*03:01* with *HLA-DQA1\*03:02* (making up the HLA-DQ8 heterodimer in the DR4-DQ8 haplotype).

## 4.3.2. Single-Variant Testing Using Binomial Regression Models

The single-variant testing model was built into R version 4.2.1 by adapting the UK Biobank analysis of Yu et al. [79]. The code for investigating the association between butyrophilin family SNPs and CeD risk in the UK Biobank is available at https://gitlab.dev elopers.cam.ac.uk/path/soilleux/soilleux-group/ced\_butyrophilin\_phd/-/tree/dropbo x/ukbiobank\_butyrophilin\_snp/Butyrophilin\_SNP\_analysis?ref\_type=heads (accessed on 13 November 2024).

The UK Biobank individual SNP data were annotated using the reference SNP cluster IDs (rsIDs) from the SNP database (dbSNP) and the reference allele for these SNPs from the Genome Reference Consortium Human Build 37 (GRCh37) [56,65,80,81]. Further methodological information can be found in Appendix E.2.

### 4.4. Analysis of TRGV Usage and HV4 Variation in CeD and Control Samples

### 4.4.1. Processing Samples and TCR Sequencing

The methods of DNA extraction, bulk amplification, and sequencing of the TCR repertoires in Dataset 1 and Dataset 2 were described in Foers et al. [57]. For Dataset 3, the DNA from FFPE duodenal samples and from fresh frozen duodenal samples were extracted using the QiaAmp FFPE DNA kit (Qiagen, Hilden, Germany) and the DNeasy Blood & Tissue Kit (Qiagen), respectively, according to the manufacturer's instructions (Figure A5).

Hybridisation capture probes were designed for the targeted sequencing of the TCR repertoires of Dataset 3, in collaboration with Nonacus Ltd., Birmingham, UK. Capture probes were designed against the 3' end of all productive V segments and the 5' end of all productive J segments available on IMGT, according to their genomic position in the GRCh38.p13 reference genome [82]. Four capture probes (120 bp long) were designed for each productive segment, with the first probe to anneal 10 bp away from the junctional end, with subsequent probes 6 bp away from the previous one.

Samples were prepared for hybridisation capture using the Cell3 Target Library Preparation Kit (b) (Nonacus Ltd., Birmingham, UK), according to the manufacturer's instructions, and sequenced on an Illumina MiSeq platform.

# 4.4.2. TRGV and HV4 Analysis Pipeline

The paired-end FASTQ files containing the TRG sequencing data were analysed using MiXCR v4.0.0 (Appendix F) [83,84].

To examine if the TRGV usage was significantly different between CeD and healthy control duodenal samples, pairwise Mann–Whitney U tests were carried out for each of the 10 TRGV segments. To eliminate any false positives due to multiple testing, Bonferroni correction was applied to the *p*-values. For each test, the proportion of the specific TRGV segment was compared between the CeD and the control groups.

The germline HV4 analysis was carried out using Python 3, by identifying variations in the amino acid sequence that directly binds BTNL3 [29,31]. The HV4 was defined as amino acids 10–25 of the FR3, as described by Willcox et al. [31]. The HV4 reference amino acid sequence 'KYDTYGSTRKNLRMILR' (named WT sequence for the purposes of this analysis) was demonstrated to be capable of binding BTNL3 [29,31]. Patients were designated as homozygous or heterozygous for the WT amino acid sequence of the HV4 loop, with a minimum of 10% of each HV4 sequence being used as a cutoff percentage for heterozygosity. Fisher's exact test was applied to compare HV4 WT frequency between CeD and healthy control samples [85].

**Author Contributions:** Conceptualization, E.J.S.; methodology, K.N.L.H., S.E., H.K., K.D., L.S., K.P. and A.F.; software, K.N.L.H., T.W.W., H.K. and A.F.; validation, K.N.L.H., A.F. and E.J.S.; formal analysis, K.N.L.H. and A.F.; investigation, K.N.L.H., K.D. and S.E.; resources, E.J.S. and A.F.; data curation, K.N.L.H., S.E. and K.D.; writing—original draft preparation, K.N.L.H.; writing—review and editing, T.W.W. and E.J.S.; visualization, K.N.L.H.; supervision, E.J.S.; project administration, E.J.S.; funding acquisition, E.J.S. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by the PhD scholarship of the Department of Pathology, University of Cambridge, and a joint grant from Coeliac UK and Innovate UK to Nonacus Ltd. and EJS (INOV01-18). KNLH also received a Sponsored Dissertation Grant from Coeliac UK. The Cambridge University Hospitals Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre (NIHR203312).

**Institutional Review Board Statement:** This study was conducted in accordance with the Declaration of Helsinki and approved by the Oxfordshire Research Ethics Committee A (4 June 2004, IRAS project ID: 162057, REC reference: 04/Q1604/21, Principal Investigator: E. Soilleux).

**Informed Consent Statement:** Study-specific patient consent was not required under the terms of our ethical approval. Study subject selection and risks and benefits: As this study required anonymised patient tissue or cells, surplus to diagnostic or therapeutic requirements or tissues collected by others for research purposes (for example during clinical trials, or by commercial tissue providers, or other research groups etc.), no patient recruitment or specific consenting was required and no interventions were undertaken.

**Data Availability Statement:** Targeted sequencing data of selected butyrophilin family genes in a cohort of 94 samples (2.1): https://zenodo.org/records/15203243 (accessed on 12 April 2025).  $\gamma\delta$  TCR sequencing data of 46 CeD and 97 healthy control duodenal samples (Dataset 1, Table 2): https://dataview.ncbi.nlm.nih.gov/object/PRJNA1330789?reviewer=sp7hjkohgpbo6mt3qv7thd57fp (accessed on 26 October 2025).  $\gamma\delta$  TCR sequencing data of 11 CeD and 11 healthy control duodenal samples (Dataset 2, Table 2): https://dataview.ncbi.nlm.nih.gov/object/PRJNA1330746?reviewer=dcl0ipo3ftc3m83b637i0hjmpd (accessed on 26 October 2025).  $\gamma\delta$  TCR sequencing data of 84 CeD and 130 healthy control blood samples (Dataset 3, Table 2): https://dataview.ncbi.nlm.nih.gov/object/PRJNA1330754?reviewer=uoqvavqemvh35apdc0ifn99585 (accessed on 26 October 2025).

Acknowledgments: We are grateful to the Haematopathology and Oncology Diagnostic Service (HODS), Cambridge University Hospitals NHS Foundation Trust, for the provision of patient DNA samples. We thank the Cambridge University Hospitals NHS Foundation Trust Human Tissue Research Biobank (HTRB) for the provision of patient tissue samples. We thank the patients, without whom this research would not have been possible. This research has been conducted using the UK Biobank Resource under Application Number 18532. We thank the participants of the UK Biobank.

**Conflicts of Interest:** L.S. and K.P. are employees of Nonacus Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

### **Abbreviations**

The following abbreviations are used in this manuscript:

BTN/BTNL Butyrophilin/butyrophilin-like CeD Coeliac disease **CNV** Copy number variation DC. Dendritic cell **GFD** Gluten-free diet **FFPE** Formalin-fixed, paraffin-embedded HLA. Human leukocyte antigen **HPA** Human Protein Atlas HV4 Hypervariable region 4 **IEL** Intraepithelial lymphocyte NK cell Natural Killer cell TRGV T cell receptor  $\gamma$  variable region SNP/SNV Single-nucleotide polymorphism/variation WT Wild-type

# Appendix A. The Molecular Background of the 56 kb BTNL3\*BTNL8 Deletion Variant

The *BTNL3* and *BTNL8* loci are segmental duplications and share a high sequence similarity. During meiosis, highly identical sequences are prone to recombination, which can give rise to CNVs. This is the likely explanation for the *BTNL8\*BTNL3* 56 kb deletion copy number described by Aigner et al. [41]. This study reported that 58.4% of their 346 samples of European ancestry had at least one *BTNL8\*BTNL3* deletion allele (Table A1). This CNV has been shown to encode a BTNL8\*3 fusion protein, which consists of the transmembrane domain, the extracellular IgV and IgC domains of BTNL8, and the intracellular signalling domain of BTNL3. As the BTNL3-IgV domain is missing in the fusion protein, it is plausible that the BTNL8\*3 fusion protein has an impaired ability to bind to the V $\gamma$ 4V $\delta$ 1+ T cells in the small intestine [31].

**Table A1.** The *BTNL8\*BTNL3* copy number variation is present in 58.4% of individuals of European ancestry, as first described by Aigner et al. [41]. Carriers are defined as individuals with at least one *BTNL8\*BTNL3* deletion allele. Abbreviations: CEU: Utah residents with Northern and Western European ancestry; HapMap: International HapMap Project; het.: heterozygous; HGDP: Human Genome Diversity Panel; hom.: homozygous; N: number.

|        | Population           | Hom. for<br>Deletion | Het. for<br>Deletion | Hom. for<br>Full<br>Sequences | Deletion<br>Allele N | Deletion<br>Allele<br>Frequency | Group N | Carriers N | Carriers<br>% |
|--------|----------------------|----------------------|----------------------|-------------------------------|----------------------|---------------------------------|---------|------------|---------------|
| НарМар | CEU                  | 17                   | 56                   | 68                            | 90                   | 0.319                           | 141     | 73         | 51.8          |
| пармар | Toskani, Italia      | 9                    | 45                   | 34                            | 63                   | 0.358                           | 88      | 54         | 61.4          |
| HGDP   | France               | 7                    | 28                   | 17                            | 42                   | 0.404                           | 52      | 35         | 67.3          |
|        | Italy                | 5                    | 18                   | 13                            | 28                   | 0.389                           | 36      | 23         | 63.9          |
| HGDI   | Italy (Bergamo)      | 3                    | 2                    | 9                             | 8                    | 0.286                           | 14      | 5          | 35.7          |
|        | Orkney Islands       | 1                    | 11                   | 3                             | 13                   | 0.433                           | 15      | 12         | 80.0          |
| Total  | European<br>ancestry | 42                   | 160                  | 144                           | 244                  | 0.353                           | 346     | 202        | 58.4          |

# Appendix B. Selecting and Sequencing the Butyrophilin Genes of Interest

Appendix B.1. HPA Expression Profiles of Butyrophilin Family Genes

**Table A2.** The expression of the butyrophilin family members in intestinal tissues provided by the HPA. Butyrophilin protein expression in (a) the duodenum and in (b) the small intestine, colon, and rectum was extracted from the Tissue section of the Human Protein Atlas database [64,86].

|         | (a) Butyrophilin family expression in the duodenum |                                                                     |                                                                                                                          |                                                                                                                                            |                             |                        |  |
|---------|----------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|--|
|         | Reliability as<br>Defined by<br>the HPA            | Protein<br>Expression in<br>Duodenum (IHC)<br>*If RNA<br>Data Only* |                                                                                                                          | Comment                                                                                                                                    |                             | Included?              |  |
| ERMAP   | Uncertain                                          | High                                                                | Uncertain Tissue Atlas reliability score High High expression in digestive tissues Low-medium expression in immune cells |                                                                                                                                            |                             | Yes                    |  |
| MOG     | Enhanced                                           | None                                                                | 1                                                                                                                        | sed in immune cells or<br>ce control for the signi<br>variation in CeD r                                                                   | ficance of butyrophilin     | Yes                    |  |
| BTN1A1  | Supported                                          | None                                                                | Not express                                                                                                              | sed in digestive tissue                                                                                                                    | s or immune cells           | No                     |  |
| BTN2A1  | Approved                                           | Medium                                                              |                                                                                                                          | due to reliability score<br>n the stimulation of V                                                                                         | 1                           | Yes                    |  |
| BTN2A2  | Uncertain                                          | High                                                                | Medium                                                                                                                   | rtain Tissue Atlas relia<br>–high expression in d<br>Expressed in immune                                                                   | igestive tissues<br>e cells | Yes                    |  |
| BTN3A1  | Approved                                           | Medium                                                              |                                                                                                                          | due to reliability score<br>n the stimulation of V                                                                                         | 1                           | Yes                    |  |
| BTN3A2  | Uncertain                                          | Medium                                                              |                                                                                                                          | Uncertain Tissue Atlas reliability score<br>Implicated in the stimulation of Vγ9Vδ2+ T cells [27]                                          |                             |                        |  |
| BTN3A3  | Enhanced                                           | Medium                                                              | Included due to reliability score and expression                                                                         |                                                                                                                                            | Yes                         |                        |  |
| BTNL2   | Pending                                            | *None*                                                              | Pending Tissue Atlas reliability score  HLA-independent significant association with CeD [19]                            |                                                                                                                                            |                             | Yes                    |  |
| BTNL3   | Pending                                            | *High*                                                              | Penc<br>No protein expre<br>Previo                                                                                       | Yes                                                                                                                                        |                             |                        |  |
| BTNL8   | Enhanced                                           | Medium                                                              | Previo                                                                                                                   | Previously documented role in CeD [21]                                                                                                     |                             |                        |  |
| BTNL9   | Pending                                            | *Low*                                                               | No protein expre                                                                                                         | Pending Tissue Atlas reliability score<br>No protein expression data available for the intestinal tissues<br>Not expressed in immune cells |                             |                        |  |
| BTNL10  | NA                                                 | NA                                                                  |                                                                                                                          | No entry                                                                                                                                   |                             | No                     |  |
| SKINT1L | NA                                                 | NA                                                                  |                                                                                                                          | No entry                                                                                                                                   |                             | No                     |  |
| BTN2A3P | NA                                                 | NA                                                                  |                                                                                                                          | No entry                                                                                                                                   |                             | No                     |  |
|         | (b) Expression                                     | of selected butyroph                                                | ilin family members                                                                                                      | in the small intestine,                                                                                                                    | colon, and rectum           |                        |  |
|         |                                                    | Tissue Expression                                                   | (IHC) *If RNA Data                                                                                                       | Only*                                                                                                                                      |                             | Included in the Panel? |  |
|         | Reliability as<br>Defined by<br>the HPA            | Small Intestine<br>(Glandular)                                      | Duodenum<br>(Glandular)                                                                                                  | Rectum<br>(Glandular)                                                                                                                      | Colo<br>(Glandular)         |                        |  |
| ERMAP   | Uncertain                                          | High                                                                | High                                                                                                                     | High                                                                                                                                       | High                        | Yes                    |  |
| MOG     | Enhanced                                           | none                                                                | none                                                                                                                     | none                                                                                                                                       | none                        | Yes                    |  |
| BTN2A1  | Approved                                           | Low                                                                 | Medium                                                                                                                   | Medium                                                                                                                                     | Medium                      | Yes                    |  |
| BTN2A2  | Uncertain                                          | High                                                                | High                                                                                                                     | Medium                                                                                                                                     | Medium                      | Yes                    |  |
| BTN3A1  | Approved                                           | High                                                                | Medium                                                                                                                   | High                                                                                                                                       | High                        | Yes                    |  |
| BTN3A2  | Uncertain                                          | High                                                                | Medium                                                                                                                   | Medium                                                                                                                                     | Medium                      | Yes                    |  |
| BTN3A3  | Enhanced                                           | Medium                                                              | Medium                                                                                                                   | Medium                                                                                                                                     | Medium                      | Yes                    |  |
| BTNL2   | Pending                                            | *Very low*                                                          | none                                                                                                                     | none                                                                                                                                       | none                        | Yes                    |  |
| BTNL3   | Pending                                            | *High*                                                              | *High*                                                                                                                   | *High*                                                                                                                                     | *High*                      | Yes                    |  |
| BTNL8   | Enhanced                                           | Medium                                                              | Medium                                                                                                                   | none                                                                                                                                       | none                        | Yes                    |  |

The reliability score of each entry was provided by the HPA. The score was based on the reliability between the RNA sequencing and antibody staining data. For most genes, the HPA provided immunohistochemical evidence for the protein expression of the genes. Only RNA sequencing data were available for *BTNL2*, *BTNL3*, and *BTNL9* expression, denoted with \*. Evidence linking the butyrophilins to immune cell function and CeD risk was also used to determine inclusion in the custom sequencing panel [19,21,30]. The expression of butyrophilin family members in (b) is shown only for the genes that were selected for the custom probe panel [data accessed in 2021].

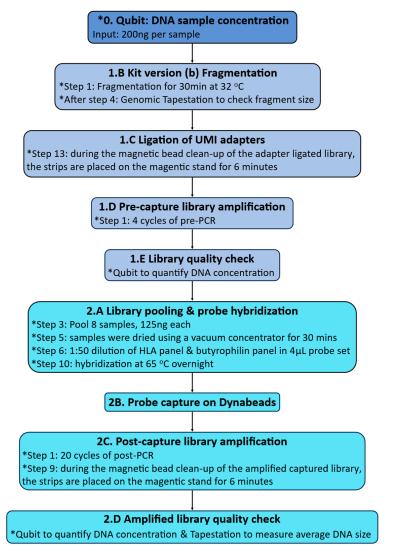
**Table A3.** The expression of butyrophilin family genes of interest in immune cells provided by the HPA. The butyrophilin family mRNA expression data in immune cells were accessed from the Human Protein Atlas (HPA) [64,86].

| Immune Cell Expression (RNA Sequencing) |                                         |            |         |          |        |             |          | Included in the Panel? |
|-----------------------------------------|-----------------------------------------|------------|---------|----------|--------|-------------|----------|------------------------|
|                                         | Reliability<br>as Defined<br>by the HPA | γδ T Cells | T Cells | T-Reg    | DCs    | Macrophages | NK Cells |                        |
| ERMAP                                   | Uncertain                               | Low        | Medium  | Medium   | Medium | Medium      | Low      | Yes                    |
| MOG                                     | Enhanced                                | Very low   | None    | Very low | None   | None        | None     | Yes                    |
| BTN2A1                                  | Approved                                | Medium     | Medium  | Medium   | Medium | High        | Low      | Yes                    |
| BTN2A2                                  | Uncertain                               | Low        | Medium  | Medium   | High   | High        | Medium   | Yes                    |
| BTN3A1                                  | Approved                                | High       | High    | High     | Low    | Medium      | High     | Yes                    |
| BTN3A2                                  | Uncertain                               | High       | High    | High     | Medium | High        | High     | Yes                    |
| BTN3A3                                  | Enhanced                                | High       | High    | High     | Medium | Medium      | High     | Yes                    |
| BTNL2                                   | Pending                                 | None       | None    | None     | None   | None        | None     | Yes                    |
| BTNL3                                   | Pending                                 | None       | None    | None     | None   | None        | None     | Yes                    |
| BTNL8                                   | Enhanced                                | None       | None    | None     | None   | None        | None     | Yes                    |

The reliability score of each entry was provided by the HPA. The score was based on the reliability between the RNA sequencing and antibody staining data. The RNA expression data from T cells, DCs, NK cells, and macrophages were selected from the Single cell type section of the gene entries. The RNA expression data from T-regs and  $\gamma\delta$  T cells were accessed from the Immune cell type section of the gene entries [data accessed in 2021].

**Table A4.** The GRCh38.p12 genomic location of the selected butyrophilin genes.

| Gene of Interest | Location (GRCh38.p12)        |
|------------------|------------------------------|
| BTN2A1           | chr6:26,457,955–26,476,622   |
| BTN2A2           | chr6:26,382,893-26,394,874   |
| BTN3A1           | chr6:26,402,269-26,415,216   |
| BTN3A2           | chr6:26,365,170-26,378,320   |
| BTN3A3           | chr6:26,440,504-26,453,415   |
| BTNL2            | chr6:32,393,339-32,408,879   |
| BTNL3            | chr5:180,988,846–181,006,727 |
| BTNL8            | chr5:180,899,097-180,952,166 |
| ERMAP            | chr1:42,817,122-42,844,991   |
| MOG              | chr6:29,657,092–29,672,365   |


Appendix B.2. Modified Nonacus Cell3 Hybridisation Capture and Illumina Sequencing

To summarise the modified protocol, the DNA quality of all samples was measured initially, to acquire 200 ng input DNA for the fragmentation step (1.B) of the hybridisation capture protocol (Figure A1). Fragmentation time in step 1.B was modified to 30 min to achieve 200 bp DNA fragments. Afterwards, the Genomic Tapestation kit (Agilent Technologies, Santa Clara, CA, USA) was used to check the correct fragment size.

Next, in step 1.C, unique molecular identifier (UMI) adapters were ligated to the DNA fragments. During the magnetic bead clean up using NGS Target Pure Clean-Up Beads (Nonacus), the adapter-ligated DNA fragments were incubated for 6 min on the magnetic strip. Nuclease-free water was used in the final step of the clean up.

The pre-hybridisation PCR in step 1.D was carried out for 4 cycles. Afterwards, the DNA concentration of each reaction was measured in step 1.E. Samples with DNA concentrations lower than 10 ng/ $\mu$ L were subjected to additional rounds of amplification, and steps 1.D and 1.E were repeated. CB22, CB24, CB26, CB27, and CB30 had low DNA

concentration after the amplification step; therefore, they were subjected to 5 additional cycles of PCR. Sample NB7 was also subjected to 6 more cycles of PCR.



**Figure A1.** The Nonacus Cell3 capture hybridisation capture method was modified for the HLA and butyrophilin sequencing panel. All modifications to the manufacturer's protocol were noted with \*. The HLA probes were provided by Nonacus Ltd.

In step 2.A, the samples were pooled together, each library containing DNA fragments from 8 patients. For each sample, 125 ng of DNA was used, and the pooled libraries were dried using a vacuum concentrator for 30 min. Each pooled library was hybridised overnight at 65  $^{\circ}$ C with the designed butyrophilin probes and a 1:50 dilution of *HLA* probes provided by Nonacus.

In step 2.B, the hybridised library was captured on Dynabeads M-270 Streptavidin beads (Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA). Post-hybridisation PCR was carried out for 20 cycles in step 2.C. This was followed by bead clean up using NGS Target Pure Clean-Up Beads. Similar to step 1.C, the beads and the amplified captured library were incubated for 6 min on the magnetic strip. Nuclease-free water was used in the final step of the clean up.

In step 2D, the concentration of the captured library was measured using Qubit (CAT Q32851, lot 2313066), and the size of the DNA fragments in each hybridisation library was quantified using the 4200 Tapestation (CAT G2991A, lot DEDAA01701).

Illumina MiSeq sequencing required each captured hybridisation library to be diluted to 10 nM concentration. The concentration of each sample in nM was calculated using the following equation:

$$\textit{concentration} \; (nM) = \frac{\textit{concentration} \; (ng/\mu L)}{660 \times \textit{DNA fragment size (bp)}} \times 10^6$$

where the concentration (ng/ $\mu$ L) was the DNA concentration of the captured library as quantified by Qubit, and the DNA fragment size (bp) was the average DNA fragment size as measured by Tapestation.

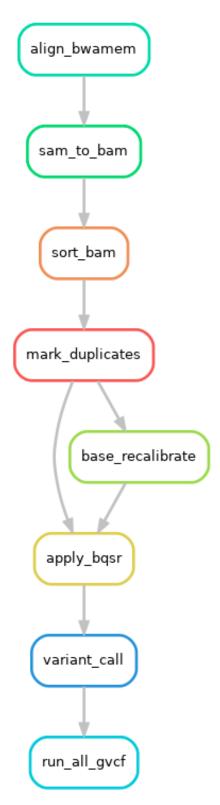
After each of the 12 hybridised libraries was diluted to 10 nm, 2  $\mu$ L of each diluted library was mixed together. Afterwards, 10  $\mu$ L was sent to the Department of Biochemistry, University of Cambridge, UK for sequencing using the Illumina MiSeq system (San Diego, CA, USA).

Appendix B.3. Measuring DNA Quantity and Fragment Size

A Qubit 2.0 fluorometer (Invitrogen) was used to measure nucleic acid quantity, using the Qubit dsDNA High Sensitivity Quantification Assay kit (Invitrogen) according to the manufacturers' instructions.

The 4200 Tapestation System (Agilent Technologies) was used to measure the fragment size of DNA samples. The Genomic DNA ScreenTape Analysis kit (Agilent Technologies) was used to measure the fragment sizes of DNA samples after step 1.B of the Nonacus hybridisation capture protocol (Nonacus). The D1000 ScreenTape Assay kit (Agilent Technologies) was used to measure the DNA sizes of the pooled hybridisation libraries in step 2.D of the Nonacus hybridisation capture protocol.

# Appendix C. Detailed Germline Short-Variant Discovery Protocol


Appendix C.1. Per Sample Preprocesses and Variant Call Using GATK

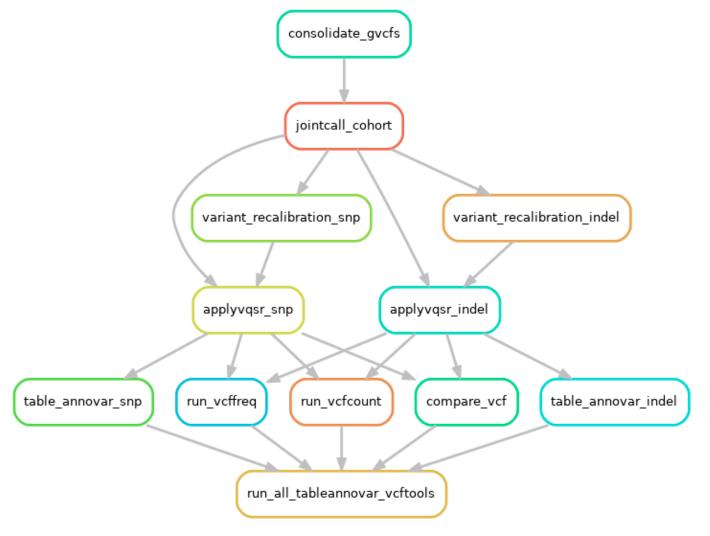
The variant discovery process for the targeted sequencing cohort was split into two parts. In the first part, each patient sample was processed separately. The variants were called per sample as recommended by the GATK v4.2.6.0 documentation. In the second part of the variant discovery process, the variant-called samples were consolidated, and genotyping was performed jointly for the whole cohort (Appendix C.2).

The workflow management software Snakemake 7.12.1 (accessed on 1 August 2022) was used to orchestrate the per sample preprocessing and variant calling part of the pipeline (Figure A2) [87].

Based on the preprocessing methods of Cucco et al. [73,74], the adapter-trimmed raw sequencing files were mapped to the Genome Reference Consortium Human Build 38 (GRCh38) human reference genome using the Burrow-Wheeler Aligner (bwa) v0.7.17 program in the 'align\_bwamem' rule [88,89]. The resulting sequence alignment map (SAM) files were converted to binary alignment maps (BAM) ('sam\_to\_bam') and then sorted ('sort\_bam') and indexed using the SAMtools version 1.16.1 program [77]. The mapping efficiency of the sorted BAM files was assessed using the command 'samtools stats'.

Next, we used GATK v4.2.6.0 to carry out germline short-variant discovery in accordance with GATK best practices [71]. First, any duplicate reads that were derived from the same original DNA sample were marked using the MarkDuplicates tool ('mark\_duplicates'). This was followed by calculating ('base\_recalibrate') and correcting any errors detected in the base quality scores ('apply\_bqsr') using the BaseRecalibrator and ApplyBQSR tools, respectively. Following these preprocessing steps, the SNP and indel variants were called for each sample using the HaplotypeCaller tool in GVCF mode ('variant\_call').




**Figure A2.** The genetic variants were called per sample for the hybridisation capture samples by adapting GATK best practices. Each box symbolises a step or rule in the Snakemake workflow [87]. The directed acyclic graph was created using the Snakemake software's built-in commands.

Appendix C.2. Joint Genotyping Using GATK and Variant Annotation Using VCFtools and ANNOVAR

In the second part of the variant discovery process, the samples that had undergone variant calling were subjected to consolidation, followed by joint genotyping. Here, the

samples were separated into CeD and control groups before consolidating the samples into a joint dataset.

The joint genotyping was carried out using GATK programs with default settings (Figure A3). First, the germline cohort data were created by consolidating the per sample genomic variant call format (GVCF) files created by the HaplotypeCaller tool as described above. The sample consolidation step was carried out by the GenomicsDBImport tool ('consolidate\_gvcfs'). The resulting cohort database was passed to the Genotype-GVCFs joint genotyping tool ('jointcall\_cohort'). Next, the raw variants were filtered in a two-step process. First, the variant quality scores on the log-odds scale (VQSLOD) were calculated using the VariantRecalibrator tool ('variant\_recalibration'). A filtering threshold was applied to these variant quality scores to produce a set of high-quality variant calls using the ApplyVQSR tool ('applyvqsr'). The output of the above joint cohort processes was a recalibrated VCF file that contained all genotyping data of the cohort. The recalibrated VCF files were annotated by applying VCFtools v0.1.17 in frequency ('run\_vcffreq'), count ('run\_vcfcounts'), and comparison ('compare\_vcf') mode [90]. Variant annotation was also carried out using the table\_annovar program from ANNOVAR version 8 June 2020 with default settings ('table\_annovar') [91].



**Figure A3.** The samples of the targeted sequencing cohort (n = 94) were jointly genotyped, and the variants were annotated using an adapted GATK workflow. Each box symbolises a step or rule in the Snakemake workflow [87]. The directed acyclic graph was created using the Snakemake software's built-in commands.

# Appendix D. Detailed CNV Analysis and Burden Testing Protocols

Appendix D.1. BTNL8\*BTNL3 CNV Analysis

**Table A5.** The rs72494581 surrogate SNP was used to infer the CNV at the *BTNL8-BTNL3* region of chromosome 5.

|    | rs72494581 Genotypes              | Associated CNV at BTNL8-BTNL3 Region of Chromosome 5                                 |
|----|-----------------------------------|--------------------------------------------------------------------------------------|
| TT | Homozygous for reference allele   | Full-length BTNL8-BTNL3 region on both copies of chromosome 5                        |
| СТ | Heterozygous                      | One copy has full-length <i>BTNL8-BTNL3</i> region One copy has BTNL8*BTNL3 deletion |
| СС | Homozygous for alternative allele | BTNL8*BTNL3 deletion on both copies of chromosome 5                                  |

## Appendix D.2. Detailed Burden Testing Protocol

To summarise, qualifying variants within a gene were selected that had a low minor allele frequency or were predicted to be pathogenic. Any qualifying SNPs with more than two alleles, called multi-allelic sites, were split into SNPs with two alleles for the analysis: the reference allele and one of the alternative alleles. These variants are termed bi-allelic variants [53]. The disease risk burden, or the number of minor alleles, in the control and CeD cohorts was counted and compared. The burden testing was performed using dominant models and recessive models in TRAPD. The dominant model considers individuals as carriers for gene burden, if they have at least one qualifying variant from the selected sites within the gene, while the recessive model requires the presence of two or more variants to be labelled a carrier [53]. As gene burden is an additive value, the zygosity of the qualifying sites does not matter, only the number of qualifying variants. For example, in a gene with three qualifying sites, an individual who is homozygous for the alternate allele for one qualifying site carries the same amount of gene burden as an individual who is heterozygous for two of the qualifying sites. The analysis was modified from the one described by Guo [53], to adapt it to this cohort, as the original pipeline used an external control dataset.

The GATK processed sequences were subjected to further preprocessing before being burden tested with TRAPD, as recommended by Guo [53]. First, multi-allelic variants were separated using BCFtools version 1.16, as required by the TRAPD manual [77]. Next, the control and CeD cohort sequencing files were annotated using Ensembl Variant Effect Predictor (VEP) 109.3, and the SNPs were filtered to contain only non-synonymous coding variants [78]. The hybridisation capture sequencing files were then analysed after read depth filtering (Figure A4).

The cohort files were read depth filtered using VEP to select sites, where more than 90% of samples had a read depth coverage of >10. The final step of the preprocessing was to index and intersect the CeD and control sequencing files, to get the common SNPs between the two groups.

Following the preprocessing, the TRAPD code was applied using Python 2.7 to create the SNP file from the CeD and the control cohort sequencing files using 'make\_snp\_file.py', which contains the qualifying variants from each gene. Carriers of the qualifying SNPs from both the control and the CeD files were counted using the 'count\_cases.py' file. The 'burden.R' code was modified to adapt it to the targeted sequencing cohort, as the original pipeline used an external database as the control, while this analysis uses the control sequences from the same cohort.

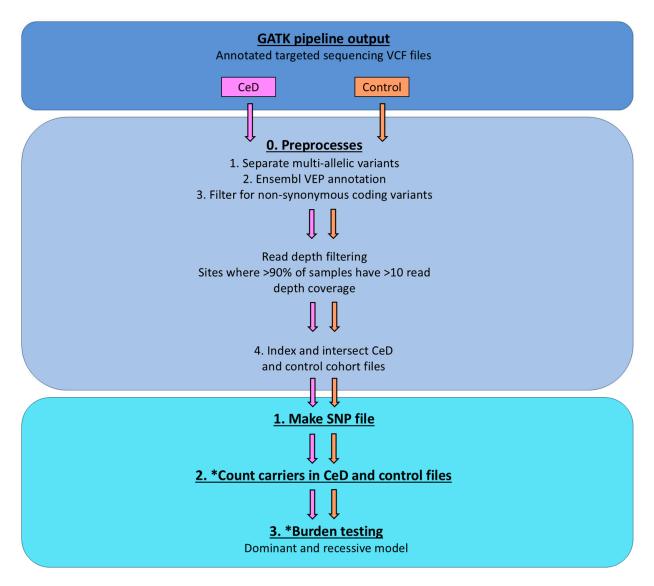



Figure A4. The variants in the CeD cohort (n = 48) were burden tested via the controls (n = 46) using the TRAPD program. Test Rare vAriants with Public Data (TRAPD) was used to burden test the variants in the hybridisation capture CeD cohort (n = 48) against the control cohort (n = 46) [52]. The annotated CeD and control files from the GATK pipeline were preprocessed as recommended by the manual [53]. The variants were burden tested after read depth filtering. Steps in which the code was modified are marked with \*.

# Appendix E. Detailed Protocol Single-Variant Testing Analysis of Selected Butyrophilin SNPs in the UK Biobank

Appendix E.1. HLA Genotyping in the UK Biobank Using the HLA Imputation Data

The HLA typing code using the UK Biobank HLA imputation data is available at https://gitlab.developers.cam.ac.uk/path/soilleux/soilleux-group/ced\_butyrophili n\_phd/-/tree/dropbox/ukbiobank\_hla\_typing/hla\_imputation\_only (accessed on 7 March 2025).

To summarise, the code used the HLA imputation values from data-field 22182. These values describe the likelihood of each *HLA* genotype, of which 14 were *HLA-DQA1* alleles and 18 were *HLA-DQB1* alleles. The *HLA* alleles were imputed by the UK Biobank from SNP data using the HLA\*IMP:02 program [92]. In resource 182 (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=182, accessed on 18 May 2022), the UK Biobank suggested using a threshold value of 0.7. If any *HLA* allele had an imputation value below 0.7, it was treated

as an absent allele. The code applied this posterior threshold on the HLA imputation data for each participant, and the output was a list of *HLA* alleles that each participant had.

Afterwards, the CeD risk-associated *HLA* genotypes were called from the *HLA* allele data. The code calling CeD risk genotypes from the HLA imputation-derived alleles is available at https://gitlab.developers.cam.ac.uk/path/soilleux/soilleux-group/ced\_butyrophilin\_phd/-/blob/dropbox/ukbiobank\_hla\_typing/hla\_imputation\_only/ukbhla\_fullcohort.ipynb (accessed on 2 September 2024).

To identify if a participant had CeD risk genotypes, the code looked for the presence of the risk alleles at the *HLA-DQA1* and *HLA-DQB1* loci. Participants who did not have alleles present at either locus were removed from the analysis. The participant was determined to have a CeD-associated *HLA* risk genotype if at least one copy of the risk *HLA-DQA1* and the *HLA-DQB1* alleles was present. If there were alleles present for more than one HLA risk genotype, the participant was typed as possessing both *HLA* risk genotypes.

Appendix E.2. Detailed Single-Variant Testing of BTN2A1, BTN3A1, and BTN3A2 SNPs in the UK Biobank

As the SNPs were annotated using the dbSNP instead of their genomic position, and the dbSNP was updated to GRCh38 data at the time of this analysis, the SNP data could be used without further modification.

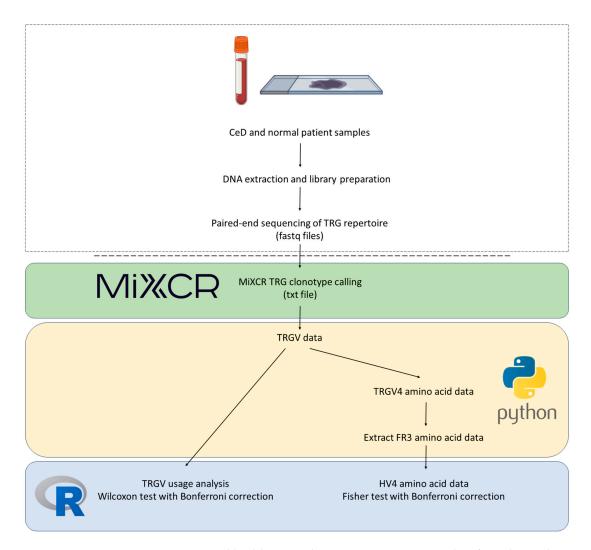
The individual SNP data in the UK Biobank were provided as the number of dbSNP reference alleles at each site, where 2 indicates that the individual is homozygous for the reference allele, while 1 indicates heterozygosity. If a participant had 0 reference alleles at a site, this could indicate homozygosity for the alternate allele or heterozygosity for two of the alternate alleles, depending on the number of potential alternate alleles. However, at the time of the analysis, the dataset did not provide information on which alternate allele was present.

To summarise the butyrophilin variant association analysis, firstly, the UK Biobank genome-wide genotyping dataset was curated and preprocessed for analysis. The downloaded per-chromosome UK Biobank genotyping data were loaded into R as a BEDMatrix object using the BGData 2.4.1 R package [80]. Afterwards, the genotype and phenotype data for the selected UK Biobank participants were merged. Next, data for all SNPs recorded in the *BTN2A1*, *BTN3A1*, *BTN3A2*, *BTNL3*, and *BTNL8* human genes were obtained from the National Centre for Biotechnology Information (NCBI) SNP database [65,81]. These SNPs were intersected with the genome-wide genotyping data, to identify the butyrophilin SNPs present in the UK Biobank dataset, which were 27 *BTN3A1*, 21 *BTN3A2*, 10 *BTNL3*, 13 *BTNL8*, and 30 *BTN2A1* SNPs. The final butyrophilin genotyping data in the UK Biobank dataset were provided as count data for the number of reference alleles at each SNP, identified by their rsIDs. Due to multiple testing, the resulting *p*-values were adjusted using Bonferroni correction.

Secondly, the association between butyrophilin variants and CeD risk was tested using binomial regression models, or binomial generalised linear models. In all of the linear models, the response variable was CeD status (CeD or no CeD, Table A6). The assumptions of the tests were that predictor variables were independent of each other. In the first test, the association between CeD risk *HLA* genotypes and CeD status was tested using one binomial model. In the second group of tests, individual binomial models were used to analyse the association between each butyrophilin family SNP and CeD risk. In the third group of tests, iterative binomial models were used that analysed the combined effect of butyrophilin family SNPs and *HLA* risk genotypes on CeD risk. In the fourth group of tests, the association between butyrophilin SNPs and CeD risk were analysed in *HLA*-matched groups.

**Table A6.** The binomial models tested the association between *HLA* risk genotypes and/or the individual butyrophilin family SNPs. Due to multiple testing, the resulting *p*-values were adjusted using Bonferroni correction. Abbreviations: CeD: coeliac disease; HLA: human leukocyte antigen; SNP: single-nucleotide polymorphism.

| Test/Group Number                     | Test/Group Number Association Being Tested                                                         |                                                                                                           | Response Variable             |
|---------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|
| First test                            | First test  Association between <i>HLA</i> risk genotypes and CeD risk                             |                                                                                                           | CeD status:<br>CeD or control |
| Second group of tests<br>(101 models) | Association between individual butyrophilin SNPs and CeD risk                                      | Butyrophilin SNP:<br>2 reference alleles<br>1 reference allele<br>0 reference allele                      | CeD status:<br>CeD or control |
| Third group of tests<br>(101 models)  | Association between the combined effect of <i>HLA</i> genotypes and butyrophilin SNPs and CeD risk | HLA risk genotype<br>Butyrophilin SNP:<br>2 reference alleles<br>1 reference allele<br>0 reference allele | CeD status:<br>CeD or control |
| Fourth group of tests                 | Association between butyrophilin SNPs and CeD risk in <i>HLA</i> -matched groups                   |                                                                                                           | CeD status:<br>CeD or control |

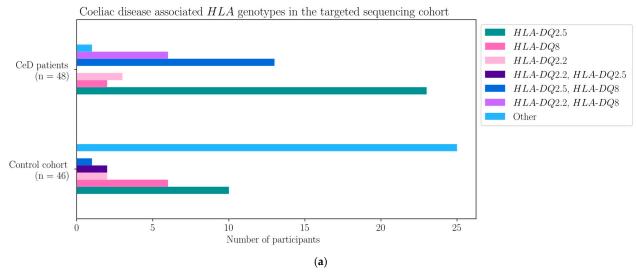

Thirdly, the risk ratio or odds ratio (OR), the p-value, and the 95% confidence intervals were calculated for each binomial model assessing the association between butyrophilin SNPs and CeD risk. The direction of each SNP was calculated from the natural logarithm of the OR values (ln(OR)). SNPs where ln(OR) < 1 indicated that the SNP decreased CeD risk. SNPs where ln(OR) > 1 indicated that the SNP increased CeD risk. Due to multiple testing, Bonferroni correction was applied for each group of tests.

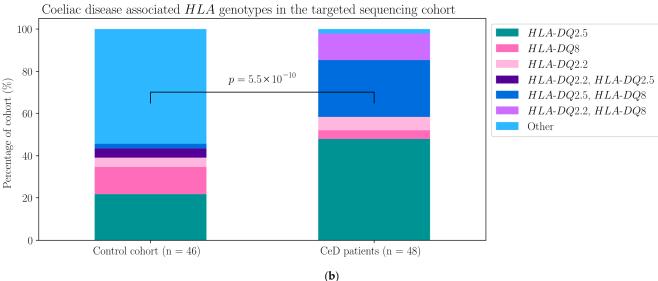
The rsnps 0.5.0.0 R package was used to annotate the butyrophilin family SNPs in the UK Biobank significantly associated with CeD using the NCBI database [93]. The Hardy–Weinberg equilibrium of each SNP in the control group was assessed using the HardyWeinberg 1.7.7 R package [94].

# Appendix F. Detailed TRGV4 Usage and HV4 Amino Acid Sequence Analysis Pipeline

At the time of analysis, the software had a built-in reference library and could identify the clonotypes and gene segments used in the repertoire. The 'analyze amplicon' was a one-step command that aligned the sequencing data, assembled and exported the clonotypes found in the TCR repertoire. For the purposes of analysing the germline HV4 sequence, the region of interest was set to include the *FR3* of the *TRGV* genes ('--region-of-interest {FR3Begin:CDR3End}'). The resulting text file contained the nucleotide sequence ('targetSequences'), amino acid sequence ('aaSeq'), clone count ('cloneCount'), and V and J segment usage ('allVHitsWithScore', 'allJHitsWithScore') for each unique TRG sequence. The results from the MiXCR output were analysed using the pipeline available at https://gitlab.developers.cam.ac.uk/path/soilleux/soilleux-group/ced\_butyrophilin\_phd/-/tree/dropbox/trgv\_hv4\_analysis (accessed on 20 March 2025).

To identify the differences in the TRGV usage of the duodenal TRG repertoire, the read count of the TRGV section ('allVHitsWithScore') from the MiXCR output was processed using Python 3. Only samples from the duodenum were analysed for TRGV usage. Therefore, TRGV data from blood samples were not subjected to TRGV usage analysis.





**Figure A5.** CeD and healthy control patient TRG sequencing data from three cohorts were used to analyse differences in TRGV usage and germline HV4 sequences.

# Appendix G. Supplementary Materials for Results Section 2.1

**Table A7.** CeD-associated HLA genotypes were found in 95.8% of CeD patients (n = 48) and 45.7% of controls (n = 46). (a) The CeD risk-associated HLA genotypes were called using HLA-HD [95]. (b) The HLA-DQA1 and HLA-DQB1 alleles of the two CeD patients, who did not have CeD risk-associated HLA genotypes. The HLA-DQA1 allele of sample CD1 could not be typed by HLA-HD. CeD patients possessed a significantly higher proportion of risk HLA genotypes, when compared with controls in this dataset (Figure A6, Fisher's exact test,  $p = 5.5 \times 10^{-10}$ ).

| (a)                  |                    |           |           |                             |                        |                      |       |
|----------------------|--------------------|-----------|-----------|-----------------------------|------------------------|----------------------|-------|
| HLA Genotypes        | HLA-DQ2.5          | HLA-DQ8   | HLA-DQ2.2 | HLA-DQ2.5<br>and DQ8        | HLA-DQ2.5<br>and DQ2.2 | HLA-DQ8<br>and DQ2.2 | Other |
| CeD patients         | 22                 | 3         | 2         | 6                           | 13                     | 0                    | 2     |
| Control participants | 10                 | 2         | 6         | 0                           | 1                      | 2                    | 25    |
|                      |                    |           |           | (b)                         |                        |                      |       |
| Sample               | HLA-DQ             | 41 Allele | HLA-D(    | QB1 Allele                  | Poter                  | ntial HLA-DQ Type    |       |
| CB26                 | HLA-DQA<br>HLA-DQ. | ,         | ~         | B1*02:01:01,<br>B1*05:01:01 |                        | HLA-DQ5.1            |       |
| CD1                  | Not t              | yped      | ~         | B1*02:01:01,<br>B1*06:02:01 | Unknowi                |                      |       |
|                      |                    |           |           |                             |                        |                      |       |





**Figure A6.** CeD patients (n = 46) had significantly higher proportions of CeD risk *HLA* genotypes compared to controls (n = 48). The (a) number and (b) percentage of individuals with CeD risk-associated *HLA* genotypes were significantly higher in CeD patients compared to controls in this dataset (Fisher's exact test,  $p = 5.5 \times 10^{-10}$ ). The *HLA* genotypes for participants were called using HLA-HD [95].

**Table A8.** At least 47% of CeD patients (n = 48) and controls (n = 46) had the BTNL8\*BTNL3 deletion variant using the rs72494581 surrogate SNP. The BTNL8\*BTNL3 deletion variant encodes a truncated BTNL8-BTNL3 fusion protein [41]. Dart et al. [51] identified rs72494581 in the intronic region of BTNL3, which serves as a surrogate SNP, and the alleles are associated with the BTNL8\*BTNL3 copy number variant. The major allele, the T allele, is associated with the full-length BTNL3 and BTNL8 genes, while the minor allele, the C allele, is associated with the BTNL8\*BTNL3 deletion. The differences between the frequencies in CeD and control individuals failed to reach statistical significance (Figure A8, Fisher's exact test, p = 0.2144).

| rs72494581 Genotype                                    | TT                          | CT                                       | СС                                     |
|--------------------------------------------------------|-----------------------------|------------------------------------------|----------------------------------------|
| BTNL8-BTNL3 genes  Homozygous for full-length sequence |                             | Heterozygous for<br>BTNL8*BTNL3 deletion | Homozygous for<br>BTNL8*BTNL3 deletion |
| Coeliac disease patients                               | Coeliac disease patients 20 |                                          | 2                                      |
| Control participants                                   | 24                          | 17                                       | 5                                      |

CeD patients (n = 48)

0



Genotype frequency of the BTNL3\*BTNL8 deletion variant associated surrogate SNP rs72494581 in the targeted sequencing cohort

**Figure A7.** There were no significant differences in the frequency of the BTNL8\*BTNL3 copy number variants between CeD patients (n = 48) and controls (n = 46). The BTNL8\*BTNL3 deletion variant encodes a truncated BTNL8-BTNL3 fusion protein [41]. Dart et al. [51] identified rs72494581 in the intronic region of BTNL3, which serves as a surrogate SNP, and the alleles are associated with the BTNL8\*BTNL3 copy number variants. The major allele, the T allele, is associated with the full-length BTNL3 and BTNL8 genes, while the minor allele, the C allele, is associated with the BTNL8\*BTNL3 deletion. Fisher's exact testing showed that there were no significant differences (adjusted p = 0.2144) in the frequency of the BTNL8\*BTNL3 deletion variant-associated rs72494581 genotypes in the CeD and control groups.

Control cohort (n = 46)

**Table A9.** Less than 40% of sites found in CeD samples were shared with controls. Shared polymorphic sites between CeD and control samples in (a) the whole hybridisation capture dataset, (b) in non-synonymous coding sites, (c) in read depth-filtered non-synonymous coding sites. Read depth was defined as the number of sequence reads per site. Read depth filtering was applied as a quality control step. Sites where the read depth (dp) was more than 10, in more than 90% of the samples in each group, passed the read depth filter. Sites described above can be multi-allelic, meaning they may have more than one alternative allele.

|         |                                                      | (a)                   |                       |                                   |  |
|---------|------------------------------------------------------|-----------------------|-----------------------|-----------------------------------|--|
|         | Number of Butyrophilin<br>Family Sites               | Sites Unique to Group | Shared Sites          | Non-Matching<br>Overlapping Sites |  |
| Coeliac | 1168                                                 | 701                   | 405                   | 22                                |  |
| Control | 769                                                  | 302                   | 435                   | 32                                |  |
|         |                                                      | (b)                   |                       |                                   |  |
|         | Number of Butyrophilin Fa<br>Coding S                |                       | Sites Unique to Group | Shared Sites                      |  |
| Coeliac | 108                                                  |                       | 79                    | 21                                |  |
| Control | 58                                                   |                       | 29                    |                                   |  |
|         |                                                      | (c)                   |                       |                                   |  |
|         | Number of Butyrophilin Fa<br>Coding Sites (>90% Samp |                       | Sites Unique to Group | Shared Sites                      |  |
| Coeliac | 60                                                   | 60 54                 |                       |                                   |  |
| Control | 21                                                   |                       | 15                    | 6                                 |  |

Non-matching overlapping sites were defined as polymorphic sites, where the reference and/or alternate alleles identified in each group were different alleles. For example, a non-matching overlapping SNP would have the same base pair position on the chromosome with the same reference allele, but the alternate allele in one group is different from the other group's. Comparisons were carried out using vcftools 0.1.17 [90].

**Table A10.** Percentage data of burden testing of butyrophilin variants in CeD samples against controls from the hybridisation capture dataset.

| Gene   | Qual.<br>SNPs | CeD<br>%(≥1<br>HET) | CeD<br>%(≥2<br>HET) | CeD<br>%(HOM<br>ALT) | CeD Total<br>Qual.<br>allele Freq | Control<br>%(≥1<br>HET) | Control<br>%(≥2<br>HET) | Control<br>%(HOM<br>ALT) | Control<br>Total Qual.<br>Allele<br>Freq | Dominant<br>Model<br><i>p</i> -Value | Recessive<br>Model<br>p-Value |
|--------|---------------|---------------------|---------------------|----------------------|-----------------------------------|-------------------------|-------------------------|--------------------------|------------------------------------------|--------------------------------------|-------------------------------|
| BTN2A1 | 3             | 45.8                | 43.8                | 6.3                  | 0.281                             | 10.9                    | 8.7                     | 0.0                      | 0.047                                    | $1.46 \times 10^{-5}$                | $3.70 \times 10^{-8}$         |
| BTN3A2 | 1             | 10.4                | 0.0                 | 2.1                  | 0.073                             | 19.6                    | 0.0                     | 2.2                      | 0.120                                    | 0.929                                | 0.946                         |
| ERMAP  | 1             | 43.8                | 0.0                 | 16.7                 | 0.385                             | 43.5                    | 0.0                     | 15.2                     | 0.370                                    | 0.516                                | 0.988                         |

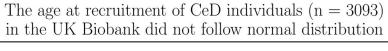
Burden testing was carried out on butyrophilin variants in CeD samples against controls from the dataset with read depth filtering. During read depth filtering, only sites where more than 90% of samples had a read depth coverage of >10 were selected. Percentage values in columns 3–5 and 7–9 show the percentage of individuals with each genotype within the CeD and the control groups of the dataset, respectively. Significant results are highlighted in bold. Abbreviations: CeD: coeliac disease; freq: frequency; HET: heterozygous; HOM ALT: homozygous for the alternative allele; N: number; qual.: qualifying; SNP: single-nucleotide polymorphism.

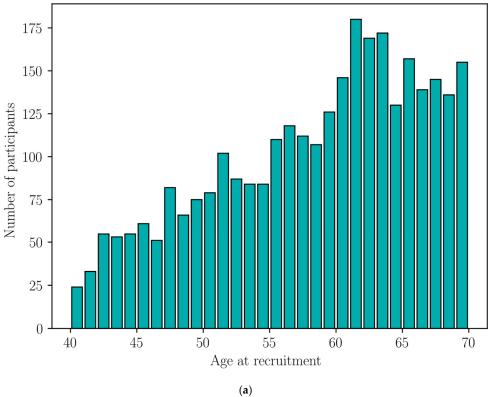
**Table A11.** Per sample genotype of participants at significant *BTN2A1* qualifying SNPs from the hybridisation capture cohort.

| a) CeD participants | 1          |            |            |
|---------------------|------------|------------|------------|
| Position            | 6:26463432 | 6:26468098 | 6:26468317 |
| rsID                | rs13195509 | rs3734542  | rs3734543  |
| CB22                | hom alt    | hom alt    | hom alt    |
| CB24                | hom alt    | hom alt    | hom alt    |
| CB26                | het        | het        | het        |
| CB27                | het        | het        | het        |
| CB29                | het        | het        | het        |
| CB31                | het        | het        | het        |
| CB32                | hom ref    | hom ref    | hom ref    |
| CB33                | hom ref    | hom ref    | hom ref    |
| CB34                | het        | het        | het        |
| CB35                | het        | het        | het        |
| CB36                | het        | het        | het        |
| CB37                | het        | het        | het        |
| CB38                | het        | het        | het        |
| CB39                | hom ref    | hom ref    | hom ref    |
| CB40                | hom ref    | hom ref    | hom ref    |
| CB41                | hom ref    | hom ref    | hom ref    |
| CB43                | hom ref    | hom ref    | hom ref    |
| CB44                | hom ref    | hom ref    | hom ref    |
| CB45                | het        | het        | het        |
| CB46                | hom ref    | hom ref    | hom ref    |
| CB48                | hom ref    | hom ref    | hom ref    |
| CB49                | hom ref    | hom ref    | hom ref    |
| CB50                | hom ref    | hom ref    | hom ref    |
| CB51                | het        | het        | het        |
| CB52                | hom ref    | hom ref    | hom ref    |

Table A11. Cont.

| CB53                  | het        | het        | het        |
|-----------------------|------------|------------|------------|
| CB54                  | het        | het        | het        |
| CB55                  | het        | het        | het        |
| CB56                  | hom ref    | hom ref    | hom ref    |
| CB57                  | hom ref    | hom ref    | hom ref    |
| CB58                  | het        | het        | het        |
| CB59                  | hom ref    | hom ref    | hom ref    |
| CB60                  | hom ref    | hom ref    | hom ref    |
| CB61                  | het        | het        | het        |
| CB62                  | het        | het        | het        |
| CB63                  | hom alt    | hom alt    | hom alt    |
| CB65                  | hom ref    | hom ref    | hom ref    |
| CB67                  | het        | het        | het        |
| CB69                  | het        | het        | het        |
| CB70                  | hom ref    | hom ref    | hom ref    |
| CD1                   | hom ref    | het        | hom ref    |
| CD2                   | hom ref    | hom ref    | hom ref    |
| CD3                   | hom ref    | hom ref    | hom ref    |
| CD4                   | het        | het        | het        |
| CD5                   | het        | het        | het        |
| CD6                   | hom ref    | hom ref    | hom ref    |
| CD7                   | hom ref    | hom ref    | hom ref    |
| CD8                   | hom ref    | hom ref    | hom ref    |
| (b) Control participa | ants       |            |            |
| Position              | 6:26463432 | 6:26468098 | 6:26468317 |
| rsID                  | rs13195509 | rs3734542  | rs3734543  |
| NB11                  | hom ref    | hom ref    | hom ref    |
| NB13                  | hom ref    | hom ref    | hom ref    |
| NB14                  | hom ref    | hom ref    | hom ref    |
| NB16                  | hom ref    | hom ref    | hom ref    |
| NB19                  | hom ref    | hom ref    | hom ref    |
| NB2                   | hom ref    | hom ref    | hom ref    |
| NB20                  | hom ref    | hom ref    | hom ref    |
| NB21                  | het        | het        | het        |
| NB22                  | hom ref    | hom ref    | hom ref    |
| NB25                  | hom ref    | hom ref    | hom ref    |
| NB28                  | het        | het        | het        |
| NB29                  | hom ref    | hom ref    | hom ref    |
| NB3                   | hom ref    | hom ref    | hom ref    |
| NB30                  | hom ref    | hom ref    | hom ref    |
| NB31                  | hom ref    | hom ref    | hom ref    |
|                       |            |            |            |


Table A11. Cont.


| NB32 | hom ref | hom ref | hom ref |
|------|---------|---------|---------|
| NB34 | hom ref | hom ref | hom ref |
| NB35 | hom ref | hom ref | hom ref |
| NB37 | hom ref | hom ref | hom ref |
| NB38 | hom ref | hom ref | hom ref |
| NB39 | hom ref | hom ref | hom ref |
| NB41 | hom ref | hom ref | hom ref |
| NB42 | hom ref | hom ref | hom ref |
| NB44 | hom ref | hom ref | hom ref |
| NB46 | hom ref | hom ref | hom ref |
| NB47 | hom ref | hom ref | hom ref |
| NB48 | hom ref | hom ref | hom ref |
| NB49 | hom ref | hom ref | hom ref |
| NB5  | hom ref | hom ref | hom ref |
| NB50 | het     | het     | het     |
| NB52 | hom ref | hom ref | hom ref |
| NB56 | hom ref | hom ref | hom ref |
| NB58 | hom ref | hom ref | hom ref |
| NB68 | hom ref | hom ref | hom ref |
| NB69 | hom ref | hom ref | hom ref |
| NB7  | hom ref | hom ref | hom ref |
| NB70 | hom ref | hom ref | hom ref |
| NB71 | hom ref | hom ref | hom ref |
| ND1  | hom ref | hom ref | hom ref |
| ND10 | hom ref | hom ref | hom ref |
| ND2  | hom ref | hom ref | hom ref |
| ND5  | het     | het     | het     |
| ND6  | hom ref | hom ref | hom ref |
| ND7  | hom ref | hom ref | hom ref |
| ND8  | hom ref | hom ref | hom ref |
| ND9  | hom ref | het     | hom ref |

Abbreviations: het: heterozygous; hom alt: homozygous for the alternative allele; hom ref: homozygous for the reference allele.

### Appendix H. Demographic Data of the Selected UK Biobank Participants

Firstly, the ages at recruitment of the participants were analysed. The distribution of the age at recruitment of neither controls nor of CeD patients followed a normal distribution (Figure A8). The mean age at recruitment for controls was 62, which was significantly higher than that of CeD patients (t = 27.297, df = 3539.3,  $p < 2.2 \times 10^{-16}$ ), whose average age at recruitment was 58.





The age at recruitment of control participants (n=29,762) in the UK Biobank had a left-skewed distribution

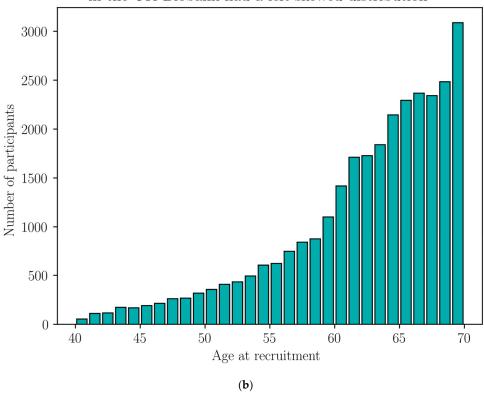
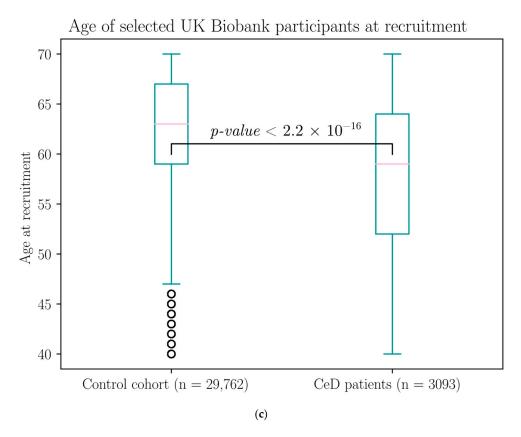




Figure A8. Cont.



**Figure A8.** CeD patients were significantly younger than control individuals when they were recruited for the initial UK Biobank study. The distribution of the age at recruitment of (**a**) 29,762 control participants and (**b**) 3094 CeD patients from the UK Biobank dataset did not follow a normal distribution. (**c**) The mean age at recruitment was significantly higher in control individuals (t = 27.297, df = 3539.3, p-value < 2.2 × 10<sup>-16</sup>).

Secondly, the sex of CeD and control participants in the UK Biobank was investigated (Figure A9). Interestingly, the proportion of female participants was significantly higher in the CeD group (64.8%, 2005/3094) than in the control group (40.4%, 12 010/29,762) (X-squared = 683.91, df = 1,  $p < 2.2 \times 10^{-16}$ ).

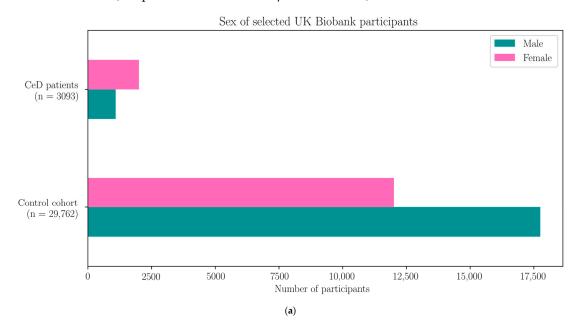
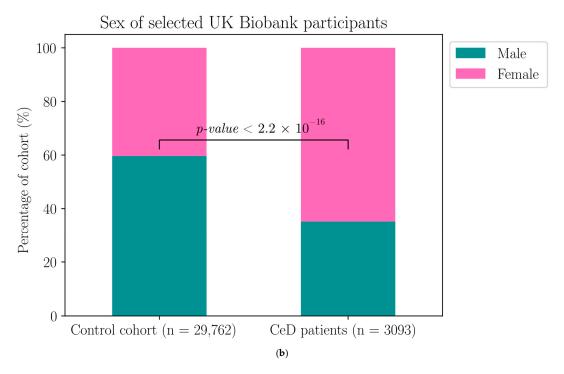
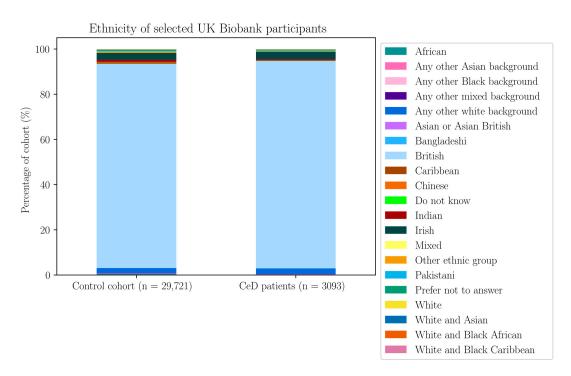
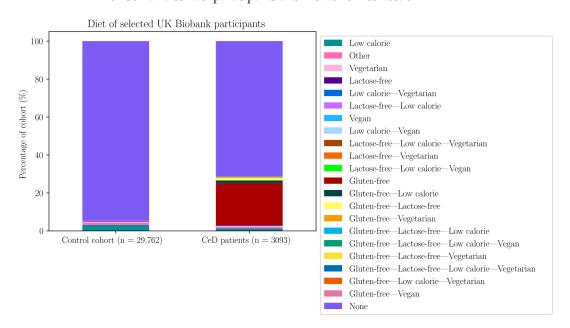




Figure A9. Cont.




**Figure A9.** A significantly higher proportion of individuals diagnosed with CeD were female participants, compared with the control cohort in the UK Biobank dataset. The sex of 3094 CeD patients and 29,762 control participants was analysed from the UK Biobank. The figure shows the (a) number and (b) percentage of each sex for CeD and control participants. The CeD group in the UK Biobank had a significantly higher proportion of female participants (X-squared = 683.91, df = 1,  $p < 2.2 \times 10^{-16}$ ).

Thirdly, the ethnic background of the UK Biobank participants was analysed. In both CeD and control groups, the majority of participants had White British backgrounds, at 91.8% (26 850/29,762) and 90.2% (2841/3094), respectively (Figure A10). In both groups, Irish and any other white background were the second and third most frequent ethnic backgrounds, respectively. When the ethnic background of CeD and control participants was compared (X-squared = 42.294, df = 21, p = 0.00384), no significant difference was present after Bonferroni correction for multiple testing (adjusted p > 0.05).


Finally, the dietary web questionnaire answers of CeD and control individuals were examined for any differences between the two groups. GFD was excluded from the statistical analysis of dietary differences between CeD and control individuals in the UK Biobank. Firstly, being on a GFD was one of the exclusion criteria for the control cohort, to exclude potential, undiagnosed CeD cases. Therefore, this diet would have zero occurrences in the control group. Secondly, CeD patients generally follow a GFD, as it is currently the only treatment for CeD [4]. This created a higher occurrence of GFD in CeD patients compared to controls selected from the UK Biobank dataset. The majority of UK Biobank participants did not adhere to any special diet, with 94.7% of controls (28,185/29,762) and 71.2% of CeD patients (2204/3094) reporting no special diet (Figure A11). A low-calorie diet was the most common special diet in controls (3.1%, 926/29,762).

A GFD was the most common special diet in CeD participants of the UK Biobank (22.2%, 686/3094), with an additional 3.6% (112/3094) of patients following a GFD in addition to other special diets. The second and third most common special diet in the CeD group was a combination of a GFD with a low-calorie diet, and a GFD with a lactose-free diet, at 1.5% (45/3094) and 1.3% (40/3094), respectively. When any variation in a GFD was excluded from the CeD group, the most common diet was a low-calorie diet (1.3%, 39/3094). Interestingly, 74.2% (2296/3094) of CeD participants did not follow a diet that excluded gluten.

Int. J. Mol. Sci. 2025, 26, 10697 42 of 64



**Figure A10.** White British was the most common ethnic background in the UK Biobank participants, regardless of CeD status. The ethnic backgrounds of 3094 CeD patients and 29,762 control participants were analysed from the UK Biobank. There were no significant differences in the ethnic background of CeD and control participants after Bonferroni correction.



**Figure A11.** The majority of UK Biobank participants reported no special diet in both control and CeD groups. The diet of 3094 CeD patients and 29,762 control participants was analysed from the UK Biobank. The majority of UK Biobank participants reported no special diet in both control (94.7%, 28,185/29,762) and CeD (71.2%, 2204/3094) groups. When participants following a gluten-free diet were excluded from the analysis, the proportions of participants following each special diet were significantly different between the CeD and control groups (X-squared = 23.303, df = 11, p = 0.01602). This was likely caused by having to exclude patients who followed multiple diets that included a gluten-free diet. Participants on a gluten-free diet were excluded from the control group.

When excluding a GFD from the analyses, the proportions of participants following the special diets within the control group were significantly different from the CeD group

Int. J. Mol. Sci. 2025, 26, 10697 43 of 64

(X-squared = 23.303, df = 11, p = 0.01602). The lactose-free-low-calorie, vegan, lactose-free-low-calorie-vegetarian, lactose-free-vegetarian, and lactose-free-low-calorie-vegan diets were only found in the control group after excluding CeD patients adhering to a GFD. This could be due to CeD patients following the aforementioned diets in addition to being on a GFD (Table A12).

**Table A12.** The significant difference between the special diets of controls (n = 29,762) and CeD participants not on a gluten-free diet (n = 2296) may stem from CeD patients following multiple diets in addition to following a gluten-free diet.

|                                        |                       |                    | Without GFD   |                                | With GFD      |                                |  |
|----------------------------------------|-----------------------|--------------------|---------------|--------------------------------|---------------|--------------------------------|--|
| Diet                                   | N Controls<br>on Diet | % Controls on Diet | N CeD on Diet | % CeD on Diet<br>(Out of 2296) | N CeD on Diet | % CeD on Diet<br>(Out of 3094) |  |
| Lactose-free-low calorie               | 20                    | 0.067              | 0             | 0                              | 5             | 0.162                          |  |
| Vegan                                  | 15                    | 0.050              | 0             | 0                              | 1             | 0.032                          |  |
| Lactose-free-low<br>calorie-vegetarian | 2                     | 0.007              | 0             | 0                              | 1             | 0.032                          |  |
| Lactose-free-vegetarian                | 2                     | 0.007              | 0             | 0                              | 1             | 0.032                          |  |
| Lactose-free–low<br>calorie–vegan      | 1                     | 0.003              | 0             | 0                              | 2             | 0.065                          |  |

## Appendix I. Supplementary Materials for Results Section 2.2

**Table A13.** CeD-associated *HLA* genotypes were found in 92.4% of CeD (n = 3094) and 57.6% of control (n = 29,762) participants from the UK Biobank's 500,000 genome-wide genotyping dataset. The *HLA* genotype of selected participants from the 500,000 genome-wide genotyping dataset was called using the HLA imputation values provided by the UK Biobank. CeD risk *HLA* genotypes were significantly more frequent in CeD patients compared to control participants (X-squared = 4062.5, df = 6,  $p < 2.2 \times 10^{-16}$ ).

| HLA Genotypes        | HLA-DQ2.5 | HLA-DQ8 | HLA-DQ2.2 | HLA-DQ2.5<br>and DQ8 | HLA-DQ2.5<br>and DQ2.2 | HLA-DQ8<br>and DQ2.2 | Other  |
|----------------------|-----------|---------|-----------|----------------------|------------------------|----------------------|--------|
| CeD participants     | 1652      | 171     | 199       | 606                  | 182                    | 50                   | 234    |
| Control participants | 6416      | 4203    | 4154      | 895                  | 886                    | 590                  | 12,618 |

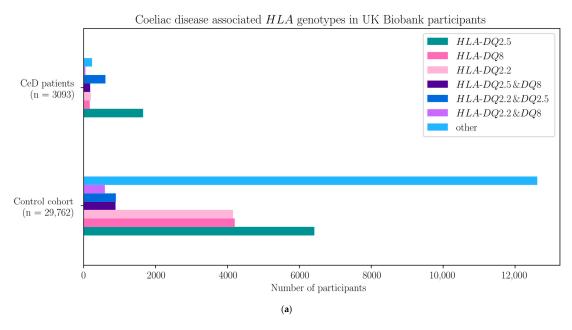
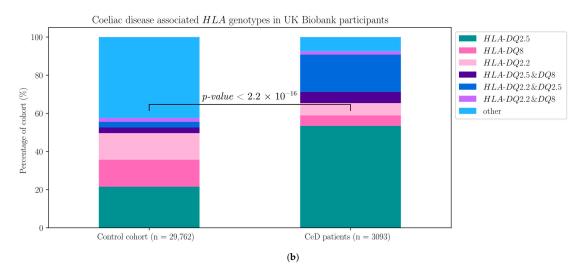




Figure A12. Cont.

Int. J. Mol. Sci. 2025, 26, 10697 44 of 64



**Figure A12.** CeD patients (n = 3094) had significantly higher proportions of CeD risk-associated HLA genotypes compared to controls (n = 29,762) in the UK Biobank's 500,000 genome-wide genotyping dataset. The (a) number and (b) percentage of participants with CeD risk HLA genotypes were significantly more frequent in CeD patients compared to control participants (X-squared = 4062.5, df = 6,  $p < 2.2 \times 10^{-16}$ ). All participants' HLA genotypes were called using the HLA imputation values provided by the UK Biobank.

**Table A14.** Coefficients of the binomial regression model investigating CeD risk *HLA* genotypes as a predictor variable for CeD status in the UK Biobank dataset. Results of the binomial generalised linear model testing the association between CeD status and CeD risk-associated HLA genotypes in the UK Biobank dataset. Abbreviations: NA: not applicable; ns: not significant.

| HLA Genotype         | <b>Coefficient Estimate</b> | Standard Error | z Value | <i>p-</i> Value       | CeD Risk |
|----------------------|-----------------------------|----------------|---------|-----------------------|----------|
| HLA-DQ2.2, HLA-DQ2.5 | 2.649                       | 0.090          | 29.550  | $<2 \times 10^{-16}$  | Increase |
| HLA-DQ2.2, HLA-DQ8   | 0.570                       | 0.164          | 3.474   | $5.13 \times 10^{-4}$ | Increase |
| HLA-DQ2.5            | 1.682                       | 0.078          | 21.662  | $<2 \times 10^{-16}$  | Increase |
| HLA-DQ2.5, HLA-DQ8   | 1.456                       | 0.109          | 13.352  | $<2 \times 10^{-16}$  | Increase |
| HLA-DQ8              | -0.163                      | 0.107          | -1.533  | 0.125                 | ns       |
| Other HLA genotype   | -0.949                      | 0.098          | -9.677  | $<2 \times 10^{-16}$  | Decrease |
| Constant             | -3.039                      | 0.073          | -41.872 | $<2 \times 10^{-16}$  | NA       |

**Table A15.** Single-variant analysis of butyrophilin SNPs and CeD status without taking the *HLA* loci into account using the UK Biobank dataset. SNPs significantly associated with CeD status are in bold. Bonferroni correction was applied due to multiple testing.

| <b>SNP Name</b> | Gene   | OR       | Upper    | Lower    | Adjusted <i>p</i> -Value | ln(OR)   |
|-----------------|--------|----------|----------|----------|--------------------------|----------|
| rs10484441_G    | BTN2A1 | 1.138386 | 1.249955 | 1.038835 | 0.60789                  | 0.129612 |
| rs12660069_C    | BTN2A1 | 1.106915 | 1.299592 | 0.948994 | 1                        | 0.101577 |
| rs13195402_G    | BTN2A1 | 0.397002 | 0.424644 | 0.371261 | $4.67 	imes 10^{-158}$   | -0.92381 |
| rs13195509_G    | BTN2A1 | 0.424358 | 0.45231  | 0.398239 | $1.61 \times 10^{-151}$  | -0.85718 |
| rs13437351_G    | BTN2A1 | 1.485538 | 1.91326  | 1.176198 | 0.14151                  | 0.395777 |
| rs1407045_A     | BTN2A1 | 1.314112 | 1.385827 | 1.246309 | $6.07 	imes 10^{-22}$    | 0.273161 |
| rs142951857_A   | BTN2A1 | 1.391065 | 3.107641 | 0.723169 | 1                        | 0.33007  |
| rs143104579_G   | BTN2A1 | 1.14068  | 1.405753 | 0.935552 | 1                        | 0.131625 |

Int. J. Mol. Sci. 2025, 26, 10697 45 of 64

Table A15. Cont.

| SNP Name      | Gene   | OR       | Upper    | Lower    | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|----------|--------------------------|----------|
| rs146399224_T | BTN2A1 | 10963.24 | NA       | 0.003938 | 1                        | 9.302303 |
| rs148111655_G | BTN2A1 | 1.130613 | 2.537072 | 0.583563 | 1                        | 0.12276  |
| rs2273558_A   | BTN2A1 | 0.673125 | 0.711994 | 0.636428 | $1.69 \times 10^{-41}$   | -0.39582 |
| rs2893856_T   | BTN2A1 | 0.839708 | 0.911101 | 0.772766 | 0.0032259                | -0.1747  |
| rs2893857_C   | BTN2A1 | 1.142895 | 1.255236 | 1.042695 | 0.48083                  | 0.133565 |
| rs3734539_C   | BTN2A1 | 4032.285 | NA       | 0.007    | 1                        | 8.302088 |
| rs3734542_G   | BTN2A1 | 0.425283 | 0.453292 | 0.39911  | $8.59 \times 10^{-151}$  | -0.855   |
| rs3734543_G   | BTN2A1 | 0.430012 | 0.458993 | 0.402974 | $1.59 	imes 10^{-140}$   | -0.84394 |
| rs3799380_T   | BTN2A1 | 0.577632 | 0.611726 | 0.545555 | $8.59 	imes 10^{-77}$    | -0.54882 |
| rs56296968_C  | BTN2A1 | 0.54644  | 0.579504 | 0.515375 | $9.70 	imes 10^{-89}$    | -0.60433 |
| rs6456724_T   | BTN2A1 | 0.838697 | 0.91004  | 0.771803 | 0.00287                  | -0.17591 |
| rs6907857_T   | BTN2A1 | 1.433106 | 1.834039 | 1.140956 | 0.29414                  | 0.359844 |
| rs6911470_C   | BTN2A1 | 1.472809 | 1.963726 | 1.132407 | 0.57829                  | 0.387171 |
| rs6929846_T   | BTN2A1 | 0.813898 | 0.875261 | 0.756001 | $3.60 \times 10^{-6}$    | -0.20592 |
| rs7773913_C   | BTN2A1 | 1.433061 | 1.833981 | 1.14092  | 0.29439                  | 0.359813 |
| rs7773938_C   | BTN2A1 | 0.548927 | 0.582092 | 0.517765 | $1.15 	imes 10^{-87}$    | -0.59979 |
| rs77870445_T  | BTN2A1 | 1.219723 | 1.609943 | 0.942473 | 1                        | 0.198624 |
| rs9348718_A   | BTN2A1 | 1.267016 | 1.454243 | 1.109411 | 0.06114                  | 0.236664 |
| rs9358943_C   | BTN2A1 | 1.768069 | 31.86429 | 0.363137 | 1                        | 0.569888 |
| rs9358944_A   | BTN2A1 | 0.546443 | 0.579355 | 0.515512 | $1.55 \times 10^{-89}$   | -0.60432 |
| rs9358945_A   | BTN2A1 | 0.54552  | 0.578367 | 0.514649 | $4.37 \times 10^{-90}$   | -0.60602 |
| rs9461254_G   | BTN2A1 | 1.464419 | 1.953756 | 1.125151 | 0.66799                  | 0.381458 |
| rs10456045_G  | BTN3A1 | 0.638826 | 0.674371 | 0.605202 | $2.97 \times 10^{-57}$   | -0.44812 |
| rs10807008_G  | BTN3A1 | 1.091584 | 1.192289 | 1.001092 | 1                        | 0.087629 |
| rs12200782_C  | BTN3A1 | 1.138999 | 1.250121 | 1.039809 | 0.56581                  | 0.13015  |
| rs12207930_C  | BTN3A1 | 1.147602 | 1.241418 | 1.062201 | 0.05418                  | 0.137674 |
| rs12208447_C  | BTN3A1 | 1.284779 | 1.624554 | 1.030908 | 1                        | 0.250586 |
| rs12214924_T  | BTN3A1 | 1.147514 | 1.241076 | 1.062324 | 0.05283                  | 0.137597 |
| rs143476765_A | BTN3A1 | 1.108868 | 4.616795 | 0.396888 | 1                        | 0.10334  |
| rs144114619_T | BTN3A1 | 1.212854 | 2.147941 | 0.740604 | 1                        | 0.192976 |
| rs145059723_A | BTN3A1 | 1.412767 | 4.034311 | 0.629895 | 1                        | 0.34555  |
| rs1741738_A   | BTN3A1 | 1.144367 | 1.242176 | 1.05573  | 0.11623                  | 0.134851 |
| rs17610161_G  | BTN3A1 | 1.097034 | 1.199223 | 1.005306 | 1                        | 0.09261  |
| rs1796520_C   | BTN3A1 | 0.758646 | 0.800004 | 0.719297 | $2.40 	imes 10^{-22}$    | -0.27622 |
| rs3799378_A   | BTN3A1 | 0.585559 | 0.61957  | 0.553499 | $2.92 \times 10^{-75}$   | -0.53519 |
| rs3857549_C   | BTN3A1 | 1.247408 | 1.401099 | 1.114594 | 0.01526                  | 0.221068 |
| rs3902051_A   | BTN3A1 | 1.090365 | 1.187959 | 1.002366 | 1                        | 0.086513 |
| rs41266839_G  | BTN3A1 | 0.396746 | 0.423498 | 0.37178  | $2.12 \times 10^{-168}$  | -0.92446 |
| rs4609015_T   | BTN3A1 | 1.151594 | 1.245578 | 1.066033 | 0.03817                  | 0.141147 |

Table A15. Cont.

| SNP Name      | Gene   | OR       | Upper    | Lower    | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|----------|--------------------------|----------|
| rs4712990_C   | BTN3A1 | 1.101764 | 1.203269 | 1.010539 | 1                        | 0.096912 |
| rs55676749_T  | BTN3A1 | 1.13993  | 1.38368  | 0.948273 | 1                        | 0.130967 |
| rs56161420_G  | BTN3A1 | 1.138909 | 1.230815 | 1.055142 | 0.09381                  | 0.130071 |
| rs6900725_T   | BTN3A1 | 1.149401 | 1.242804 | 1.064341 | 0.04333                  | 0.139241 |
| rs6912853_C   | BTN3A1 | 1.16488  | 1.257236 | 1.080577 | 0.00785                  | 0.152618 |
| rs6920986_C   | BTN3A1 | 1.148238 | 1.241884 | 1.062975 | 0.04995                  | 0.138228 |
| rs6921148_T   | BTN3A1 | 1.165176 | 1.411589 | 0.971033 | 1                        | 0.152872 |
| rs742090_A    | BTN3A1 | 0.759078 | 0.800536 | 0.719639 | $3.58 \times 10^{-22}$   | -0.27565 |
| rs7770214_G   | BTN3A1 | 1.145779 | 1.239155 | 1.060758 | 0.06048                  | 0.136085 |
| rs80153343_G  | BTN3A1 | 1.136899 | 1.439622 | 0.910733 | 1                        | 0.128305 |
| rs11758089_T  | BTN3A2 | 1.192878 | 1.288514 | 1.105674 | 0.00063                  | 0.176369 |
| rs12176317_A  | BTN3A2 | 0.445307 | 0.474099 | 0.41837  | $6.72 	imes 10^{-140}$   | -0.80899 |
| rs12194095_C  | BTN3A2 | 1.118798 | 1.235914 | 1.015164 | 1                        | 0.112255 |
| rs12199613_C  | BTN3A2 | 0.67037  | 0.706851 | 0.635751 | $1.76 	imes 10^{-47}$    | -0.39993 |
| rs12205731_G  | BTN3A2 | 1.114755 | 1.232063 | 1.011029 | 1                        | 0.108634 |
| rs144016445_G | BTN3A2 | 81101.36 | NA       | 217.0251 | 1                        | 11.30346 |
| rs1977_A      | BTN3A2 | 0.445697 | 0.474831 | 0.418455 | $1.17 \times 10^{-136}$  | -0.80811 |
| rs1979_G      | BTN3A2 | 0.44537  | 0.474171 | 0.418426 | $8.23 	imes 10^{-140}$   | -0.80885 |
| rs1985732_A   | BTN3A2 | 0.63289  | 0.668226 | 0.599467 | $2.87 	imes 10^{-59}$    | -0.45746 |
| rs2073526_G   | BTN3A2 | 0.74435  | 0.785579 | 0.705115 | $9.15 \times 10^{-25}$   | -0.29524 |
| rs35183513_G  | BTN3A2 | 1.102861 | 1.203659 | 1.012184 | 1                        | 0.097908 |
| rs58367598_T  | BTN3A2 | 1.234256 | 1.449383 | 1.057523 | 0.89091                  | 0.210469 |
| rs7765566_G   | BTN3A2 | 1.269787 | 1.499163 | 1.083157 | 0.39847                  | 0.23885  |
| rs9104_G      | BTN3A2 | 1.092904 | 1.187567 | 1.007255 | 1                        | 0.088838 |
| rs9358934_G   | BTN3A2 | 0.447824 | 0.476845 | 0.420678 | $2.34 \times 10^{-137}$  | -0.80335 |
| rs9379855_T   | BTN3A2 | 0.447682 | 0.47666  | 0.420575 | $8.85 	imes 10^{-138}$   | -0.80367 |
| rs9379858_T   | BTN3A2 | 0.448449 | 0.477474 | 0.421299 | $3.19 \times 10^{-137}$  | -0.80196 |
| rs9379859_C   | BTN3A2 | 0.447843 | 0.476903 | 0.420662 | $5.37 	imes 10^{-137}$   | -0.80331 |
| rs9379861_G   | BTN3A2 | 1.225507 | 1.619363 | 0.945713 | 1                        | 0.203355 |
| rs9393713_G   | BTN3A2 | 0.442958 | 0.471602 | 0.416159 | $1.07 	imes 10^{-141}$   | -0.81428 |
| rs9393714_G   | BTN3A2 | 0.443419 | 0.47214  | 0.416551 | $6.99 	imes 10^{-141}$   | -0.81324 |
| rs186813312_C | BTNL3  | 0.103966 | NA       | NA       | NA                       | -2.26369 |
| rs199970076_G | BTNL3  | 0.544013 | 10.42476 | 0.087697 | 1                        | -0.60878 |
| rs201534771_G | BTNL3  | 0.108957 | NA       | NA       | NA                       | -2.2168  |
| rs201813197_C | BTNL3  | 1.141842 | 4.74926  | 0.409599 | 1                        | 0.132642 |
| rs35157246_C  | BTNL3  | 1.069831 | 1.242264 | 0.926052 | 1                        | 0.067501 |
| rs4700774_G   | BTNL3  | 0.943446 | 0.999778 | 0.89061  | 1                        | -0.05822 |
| rs59220426_C  | BTNL3  | 1.006054 | 1.132599 | 0.896669 | 1                        | 0.006036 |
| rs73815153_G  | BTNL3  | 1.009988 | 1.138564 | 0.899028 | 1                        | 0.009938 |

Int. J. Mol. Sci. 2025, 26, 10697 47 of 64

Table A15. Cont.

| SNP Name      | Gene  | OR       | Upper    | Lower                 | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|-------|----------|----------|-----------------------|--------------------------|----------|
| rs7713324_A   | BTNL3 | 1.004294 | 1.130736 | 0.895001              | 1                        | 0.004284 |
| rs7726604_C   | BTNL3 | 1.004751 | 1.13121  | 0.895444              | 1                        | 0.00474  |
| rs112469887_G | BTNL8 | 1.084234 | 1.330225 | 0.893133              | 1                        | 0.080874 |
| rs113071395_G | BTNL8 | 0.867372 | 1.006007 | 0.751681              | 1                        | -0.14229 |
| rs113534626_A | BTNL8 | 1.019956 | 1.206531 | 0.868252              | 1                        | 0.019759 |
| rs141492316_T | BTNL8 | 0.891806 | 1.095588 | 0.733483              | 1                        | -0.11451 |
| rs145199317_A | BTNL8 | 0.907765 | 1.254932 | 0.673198              | 1                        | -0.09677 |
| rs151174174_C | BTNL8 | 0.770441 | 0.932722 | 0.641625              | 0.63031                  | -0.26079 |
| rs17704291_C  | BTNL8 | 0.940216 | 0.996283 | 0.88763               | 1                        | -0.06165 |
| rs200633883_C | BTNL8 | 0.311552 | 1.114968 | 0.108457              | 1                        | -1.16619 |
| rs201214790_T | BTNL8 | 4044.713 | NA       | $1.08 \times 10^{-7}$ | 1                        | 8.305166 |
| rs201891387_G | BTNL8 | 0.62355  | 2.663098 | 0.210953              | 1                        | -0.47233 |
| rs2276995_A   | BTNL8 | 0.983681 | 1.038422 | 0.931987              | 1                        | -0.01645 |
| rs2619739_C   | BTNL8 | 1.101246 | 1.212402 | 1.002386              | 1                        | 0.096442 |
| rs7724813_G   | BTNL8 | 1.078621 | 1.169543 | 0.996169              | 1                        | 0.075683 |

**Table A16.** SNP and allele count data for the significant SNPs from the non-HLA model. These SNPs were significantly associated with CeD status in single-variant testing of the UK Biobank dataset. The SNPs in bold remained significantly associated with CeD status in the binomial regression models that took the *HLA* genotype of individuals into account.

| SNP, Reference<br>Allele | Gene   | Number of<br>SNPs in<br>Control | Number of<br>SNPs in CeD | Total Allele<br>Count in<br>Control | Total allele<br>Count in<br>CeD | Total<br>Number of<br>SNPs in the<br>UK Biobank | Total Allele<br>Count in UK<br>Biobank |
|--------------------------|--------|---------------------------------|--------------------------|-------------------------------------|---------------------------------|-------------------------------------------------|----------------------------------------|
| rs13195402_G             | BTN2A1 | 52,060                          | 4631                     | 58,392                              | 6028                            | 56,691                                          | 64,420                                 |
| rs13195509_G             | BTN2A1 | 52,271                          | 4654                     | 59,474                              | 6176                            | 56,925                                          | 65,650                                 |
| rs1407045_A              | BTN2A1 | 30,596                          | 3603                     | 59,306                              | 6172                            | 34,199                                          | 65,478                                 |
| rs2273558_A              | BTN2A1 | 34,599                          | 3248                     | 51,134                              | 5570                            | 37,847                                          | 56,704                                 |
| rs2893856_T              | BTN2A1 | 7815                            | 697                      | 59,452                              | 6182                            | 8512                                            | 65,634                                 |
| rs3734542_G              | BTN2A1 | 52,209                          | 4656                     | 59,432                              | 6180                            | 56,865                                          | 65,612                                 |
| rs3734543_G              | BTN2A1 | 52,002                          | 4644                     | 59,146                              | 6114                            | 56,646                                          | 65,260                                 |
| rs3799380_T              | BTN2A1 | 46,887                          | 4213                     | 59,354                              | 6164                            | 51,100                                          | 65,518                                 |
| rs56296968_C             | BTN2A1 | 47,941                          | 4295                     | 59,422                              | 6170                            | 52,236                                          | 65,592                                 |
| rs6456724_T              | BTN2A1 | 7813                            | 696                      | 59,418                              | 6178                            | 8509                                            | 65,596                                 |
| rs6929846_T              | BTN2A1 | 10,355                          | 903                      | 59,460                              | 6180                            | 11,258                                          | 65,640                                 |
| rs7773938_C              | BTN2A1 | 47,953                          | 4289                     | 59,472                              | 6162                            | 52,242                                          | 65,634                                 |
| rs9358944_A              | BTN2A1 | 47,929                          | 4294                     | 59,462                              | 6182                            | 52,223                                          | 65,644                                 |
| rs9358945_A              | BTN2A1 | 47,944                          | 4292                     | 59,478                              | 6182                            | 52,236                                          | 65,660                                 |
| rs10456045_G             | BTN3A1 | 41,458                          | 3680                     | 59,434                              | 6174                            | 45,138                                          | 65,608                                 |
| rs1796520_C              | BTN3A1 | 28,075                          | 2504                     | 59,240                              | 6176                            | 30,579                                          | 65,416                                 |
| rs3799378_A              | BTN3A1 | 45,113                          | 4017                     | 59,206                              | 6152                            | 49,130                                          | 65,358                                 |
| rs3857549_C              | BTN3A1 | 55,572                          | 5848                     | 59,430                              | 6170                            | 61,420                                          | 65,600                                 |

Table A16. Cont.

| SNP, Reference<br>Allele | Gene   | Number of<br>SNPs in<br>Control | Number of<br>SNPs in CeD | Total Allele<br>Count in<br>Control | Total allele<br>Count in<br>CeD | Total<br>Number of<br>SNPs in the<br>UK Biobank | Total Allele<br>Count in UK<br>Biobank |
|--------------------------|--------|---------------------------------|--------------------------|-------------------------------------|---------------------------------|-------------------------------------------------|----------------------------------------|
| rs41266839_G             | BTN3A1 | 52,985                          | 4720                     | 59,430                              | 6178                            | 57,705                                          | 65,608                                 |
| rs4609015_T              | BTN3A1 | 50,759                          | 5371                     | 59,452                              | 6170                            | 56,130                                          | 65,622                                 |
| rs6900725_T              | BTN3A1 | 50,682                          | 5378                     | 59,392                              | 6182                            | 56,060                                          | 65,574                                 |
| rs6912853_C              | BTN3A1 | 50,145                          | 5329                     | 59,434                              | 6176                            | 55,474                                          | 65,610                                 |
| rs6920986_C              | BTN3A1 | 50,787                          | 5381                     | 59,464                              | 6182                            | 56,168                                          | 65,646                                 |
| rs742090_A               | BTN3A1 | 28,172                          | 2506                     | 59,438                              | 6174                            | 30,678                                          | 65,612                                 |
| rs11758089_T             | BTN3A2 | 50,176                          | 5354                     | 59,432                              | 6182                            | 55,530                                          | 65,614                                 |
| rs12176317_A             | BTN3A2 | 51,604                          | 4597                     | 59,488                              | 6182                            | 56,201                                          | 65,670                                 |
| rs12199613_C             | BTN3A2 | 36,321                          | 3178                     | 59,396                              | 6178                            | 39,499                                          | 65,574                                 |
| rs1977_A                 | BTN3A2 | 50,506                          | 4497                     | 58,436                              | 6074                            | 55,003                                          | 64,510                                 |
| rs1979_G                 | BTN3A2 | 51,551                          | 4590                     | 59,448                              | 6176                            | 56,141                                          | 65,624                                 |
| rs1985732_A              | BTN3A2 | 41,492                          | 3674                     | 59,442                              | 6174                            | 45,166                                          | 65,616                                 |
| rs2073526_G              | BTN3A2 | 26,272                          | 2288                     | 59,434                              | 6176                            | 28,560                                          | 65,610                                 |
| rs9358934_G              | BTN3A2 | 51,477                          | 4591                     | 59,412                              | 6174                            | 56,068                                          | 65,586                                 |
| rs9379855_T              | BTN3A2 | 51,458                          | 4579                     | 59,392                              | 6162                            | 56,037                                          | 65,554                                 |
| rs9379858_T              | BTN3A2 | 51,474                          | 4586                     | 59,422                              | 6170                            | 56,060                                          | 65,592                                 |
| rs9379859_C              | BTN3A2 | 51,530                          | 4595                     | 59,452                              | 6174                            | 56,125                                          | 65,626                                 |
| rs9393713_G              | BTN3A2 | 51,601                          | 4590                     | 59,472                              | 6178                            | 56,191                                          | 65,650                                 |
| rs9393714_G              | BTN3A2 | 51,581                          | 4594                     | 59,456                              | 6180                            | 56,175                                          | 65,636                                 |

**Table A17.** The genotypes and Hardy–Weinberg equilibrium of the significant SNPs in the control participants from the non-HLA model. The Hardy–Weinberg equilibrium of each SNP in the control group was assessed using the HardyWeinberg R package [94]. Bonferroni correction was applied due to multiple testing.

| SNP, Reference<br>Allele | Gene   | Number of<br>Controls<br>Homozygous for the<br>Reference Allele | Number of<br>Controls<br>Heterozygous for<br>the Reference Allele | Number of<br>Control Individuals<br>Without the<br>Reference Allele | Allele Freq<br>in Controls | HWE<br>Adjusted<br><i>p</i> -Value |
|--------------------------|--------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------------|
| rs13195402_G             | BTN2A1 | 23,188                                                          | 5684                                                              | 324                                                                 | 0.892                      | 1                                  |
| rs13195509_G             | BTN2A1 | 23,018                                                          | 6235                                                              | 484                                                                 | 0.879                      | 0.340                              |
| rs1407045_A              | BTN2A1 | 7951                                                            | 14,694                                                            | 7008                                                                | 0.516                      | 1                                  |
| rs2273558_A              | BTN2A1 | 11,804                                                          | 10,991                                                            | 2772                                                                | 0.677                      | 0.179                              |
| rs2893856_T              | BTN2A1 | 514                                                             | 6787                                                              | 22,425                                                              | 0.869                      | 1                                  |
| rs3734542_G              | BTN2A1 | 22,978                                                          | 6253                                                              | 485                                                                 | 0.878                      | 1                                  |
| rs3734543_G              | BTN2A1 | 22,866                                                          | 6270                                                              | 437                                                                 | 0.879                      | 1                                  |
| rs3799380_T              | BTN2A1 | 18,595                                                          | 9697                                                              | 1385                                                                | 0.790                      | 1                                  |
| rs56296968_C             | BTN2A1 | 19,326                                                          | 9289                                                              | 1096                                                                | 0.807                      | 1                                  |
| rs6456724_T              | BTN2A1 | 515                                                             | 6783                                                              | 22,411                                                              | 0.869                      | 1                                  |
| rs6929846_T              | BTN2A1 | 971                                                             | 8413                                                              | 20,346                                                              | 0.826                      | 1                                  |
| rs7773938_C              | BTN2A1 | 19,333                                                          | 9287                                                              | 1116                                                                | 0.806                      | 1                                  |
| rs9358944_A              | BTN2A1 | 19,319                                                          | 9291                                                              | 1121                                                                | 0.806                      | 1                                  |
| rs9358945_A              | BTN2A1 | 19,326                                                          | 9292                                                              | 1121                                                                | 0.806                      | 1                                  |
| rs10456045_G             | BTN3A1 | 14,460                                                          | 12,538                                                            | 2719                                                                | 0.698                      | 1                                  |

Table A17. Cont.

| SNP, Reference<br>Allele | Gene   | Number of<br>Controls<br>Homozygous for the<br>Reference Allele | Number of<br>Controls<br>Heterozygous for<br>the Reference Allele | Number of<br>Control Individuals<br>Without the<br>Reference Allele | Allele Freq<br>in Controls | HWE<br>Adjusted<br><i>p</i> -Value |
|--------------------------|--------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------------|
| rs1796520_C              | BTN3A1 | 6734                                                            | 14,607                                                            | 14,607 8279                                                         |                            | 1                                  |
| rs3799378_A              | BTN3A1 | 17,152                                                          | 10,809                                                            | 1642                                                                | 0.762                      | 1                                  |
| rs3857549_C              | BTN3A1 | 26,084                                                          | 3404                                                              | 227                                                                 | 0.935                      | 1                                  |
| rs41266839_G             | BTN3A1 | 23,662                                                          | 5661                                                              | 392                                                                 | 0.892                      | 1                                  |
| rs4609015_T              | BTN3A1 | 21,657                                                          | 7445                                                              | 624                                                                 | 0.854                      | 1                                  |
| rs6900725_T              | BTN3A1 | 21,625                                                          | 7432                                                              | 639                                                                 | 0.853                      | 1                                  |
| rs6912853_C              | BTN3A1 | 21,168                                                          | 7809                                                              | 740                                                                 | 0.844                      | 1                                  |
| rs6920986_C              | BTN3A1 | 21,672                                                          | 7443                                                              | 617                                                                 | 0.854                      | 1                                  |
| rs742090_A               | BTN3A1 | 6727                                                            | 14,718                                                            | 8274                                                                | 0.526                      | 1                                  |
| rs11758089_T             | BTN3A2 | 21,182                                                          | 7812                                                              | 722                                                                 | 0.844                      | 1                                  |
| rs12176317_A             | BTN3A2 | 22,420                                                          | 6764                                                              | 560                                                                 | 0.867                      | 1                                  |
| rs12199613_C             | BTN3A2 | 11,047                                                          | 14,227                                                            | 4424                                                                | 0.612                      | 1                                  |
| rs1977_A                 | BTN3A2 | 21,828                                                          | 6850                                                              | 540                                                                 | 0.864                      | 1                                  |
| rs1979_G                 | BTN3A2 | 22,388                                                          | 6775                                                              | 561                                                                 | 0.867                      | 1                                  |
| rs1985732_A              | BTN3A2 | 14,433                                                          | 12,626                                                            | 2662                                                                | 0.698                      | 1                                  |
| rs2073526_G              | BTN3A2 | 5874                                                            | 14,524                                                            | 9319                                                                | 0.558                      | 1                                  |
| rs9358934_G              | BTN3A2 | 22,330                                                          | 6817                                                              | 559                                                                 | 0.866                      | 1                                  |
| rs9379855_T              | BTN3A2 | 22,327                                                          | 6804                                                              | 565                                                                 | 0.866                      | 1                                  |
| rs9379858_T              | BTN3A2 | 22,329                                                          | 6816                                                              | 566                                                                 | 0.866                      | 1                                  |
| rs9379859_C              | BTN3A2 | 22,358                                                          | 6814                                                              | 554                                                                 | 0.867                      | 1                                  |
| rs9393713_G              | BTN3A2 | 22,422                                                          | 6757                                                              | 557                                                                 | 0.868                      | 1                                  |
| rs9393714_G              | BTN3A2 | 22,404                                                          | 6773                                                              | 551                                                                 | 0.868                      | 1                                  |

**Table A18.** Single-variant analysis of butyrophilin SNPs and CeD status in binomial regression models that took the *HLA* loci into account using the UK Biobank dataset. SNPs significantly associated with CeD status are in bold. Bonferroni correction was applied due to multiple testing.

| SNP Name      | Gene   | OR       | Upper    | Lower               | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|---------------------|--------------------------|----------|
| rs10484441_G  | BTN2A1 | 0.979307 | 1.082186 | 0.887707            | 1                        | -0.02091 |
| rs12660069_C  | BTN2A1 | 0.987937 | 1.171444 | 0.837975            | 1                        | -0.01214 |
| rs13195402_G  | BTN2A1 | 0.812801 | 0.876887 | 0.753657            | $8.15\times10^{-6}$      | -0.20727 |
| rs13195509_G  | BTN2A1 | 0.824983 | 0.886694 | 0.767819            | $1.62\times10^{-5}$      | -0.19239 |
| rs13437351_G  | BTN2A1 | 1.359939 | 1.781839 | 1.056236            | 1                        | 0.30744  |
| rs1407045_A   | BTN2A1 | 1.061681 | 1.125065 | 1.001972            | 1                        | 0.059854 |
| rs142951857_A | BTN2A1 | 1.189393 | 2.744421 | 0.589877            | 1                        | 0.173443 |
| rs143104579_G | BTN2A1 | 1.045598 | 1.306706 | 0.844534            | 1                        | 0.044589 |
| rs146399224_T | BTN2A1 | 2678.29  | NA       | 0.001107            | 1                        | 7.892934 |
| rs148111655_G | BTN2A1 | 1.06888  | 2.495456 | 0.522042            | 1                        | 0.066611 |
| rs2273558_A   | BTN2A1 | 0.924046 | 0.983637 | 0.868186            | 1                        | -0.07899 |
| rs2893856_T   | BTN2A1 | 0.978844 | 1.068109 | 0.895906            | 1                        | -0.02138 |
| rs2893857_C   | BTN2A1 | 0.983276 | 1.0868   | 0.891136            | 1                        | -0.01687 |
| rs3734539_C   | BTN2A1 | 12320.17 | NA       | $2.26\times10^{-5}$ | 1                        | 9.418993 |

Table A18. Cont.

| SNP Name      | Gene   | OR       | Upper    | Lower    | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|----------|--------------------------|----------|
| rs3734542_G   | BTN2A1 | 0.828358 | 0.890318 | 0.770964 | $2.94 \times 10^{-5}$    | -0.18831 |
| rs3734543_G   | BTN2A1 | 0.845824 | 0.910556 | 0.785966 | 0.000823                 | -0.16744 |
| rs3799380_T   | BTN2A1 | 0.906299 | 0.966317 | 0.850232 | 0.260718                 | -0.09839 |
| rs56296968_C  | BTN2A1 | 0.889118 | 0.949206 | 0.833053 | 0.042016                 | -0.11753 |
| rs6456724_T   | BTN2A1 | 0.975504 | 1.064451 | 0.892856 | 1                        | -0.0248  |
| rs6907857_T   | BTN2A1 | 1.296362 | 1.68837  | 1.012123 | 1                        | 0.259562 |
| rs6911470_C   | BTN2A1 | 1.225626 | 1.666065 | 0.92177  | 1                        | 0.203452 |
| rs6929846_T   | BTN2A1 | 0.956691 | 1.034347 | 0.884033 | 1                        | -0.04427 |
| rs7773913_C   | BTN2A1 | 1.29982  | 1.692843 | 1.014844 | 1                        | 0.262226 |
| rs7773938_C   | BTN2A1 | 0.892443 | 0.95269  | 0.83623  | 0.062934                 | -0.11379 |
| rs77870445_T  | BTN2A1 | 0.971098 | 1.300178 | 0.738108 | 1                        | -0.02933 |
| rs9348718_A   | BTN2A1 | 1.100624 | 1.274443 | 0.954703 | 1                        | 0.095877 |
| rs9358943_C   | BTN2A1 | 0.455962 | 8.266602 | 0.091903 | 1                        | -0.78535 |
| rs9358944_A   | BTN2A1 | 0.888825 | 0.948639 | 0.833001 | 0.038293                 | -0.11786 |
| rs9358945_A   | BTN2A1 | 0.886765 | 0.946407 | 0.831099 | 0.02906                  | -0.12018 |
| rs9461254_G   | BTN2A1 | 1.206876 | 1.642976 | 0.90642  | 1                        | 0.188035 |
| rs10456045_G  | BTN3A1 | 0.918688 | 0.975087 | 0.865666 | 0.527112                 | -0.08481 |
| rs10807008_G  | BTN3A1 | 0.94089  | 1.033981 | 0.857412 | 1                        | -0.06093 |
| rs12200782_C  | BTN3A1 | 0.987553 | 1.090084 | 0.896183 | 1                        | -0.01253 |
| rs12207930_C  | BTN3A1 | 0.994811 | 1.081946 | 0.91566  | 1                        | -0.0052  |
| rs12208447_C  | BTN3A1 | 0.971864 | 1.246094 | 0.767755 | 1                        | -0.02854 |
| rs12214924_T  | BTN3A1 | 0.997777 | 1.08479  | 0.918712 | 1                        | -0.00223 |
| rs143476765_A | BTN3A1 | 0.541997 | 2.391824 | 0.175983 | 1                        | -0.61249 |
| rs144114619_T | BTN3A1 | 0.937876 | 1.708275 | 0.552209 | 1                        | -0.06414 |
| rs145059723_A | BTN3A1 | 0.851224 | 2.534279 | 0.356178 | 1                        | -0.16108 |
| rs1741738_A   | BTN3A1 | 1.055187 | 1.152999 | 0.966854 | 1                        | 0.053718 |
| rs17610161_G  | BTN3A1 | 0.948685 | 1.04337  | 0.863865 | 1                        | -0.05268 |
| rs1796520_C   | BTN3A1 | 0.925332 | 0.980491 | 0.873166 | 0.877114                 | -0.0776  |
| rs3799378_A   | BTN3A1 | 0.866517 | 0.922476 | 0.814111 | 0.000704                 | -0.14327 |
| rs3857549_C   | BTN3A1 | 1.20727  | 1.366146 | 1.0703   | 0.249929                 | 0.188361 |
| rs3902051_A   | BTN3A1 | 0.947893 | 1.038919 | 0.865991 | 1                        | -0.05351 |
| rs41266839_G  | BTN3A1 | 0.806793 | 0.868508 | 0.749711 | $1.06 	imes 10^{-6}$     | -0.21469 |
| rs4609015_T   | BTN3A1 | 0.999771 | 1.087084 | 0.920447 | 1                        | -0.00023 |
| rs4712990_C   | BTN3A1 | 0.953022 | 1.047148 | 0.8686   | 1                        | -0.04812 |
| rs55676749_T  | BTN3A1 | 1.055136 | 1.295119 | 0.867029 | 1                        | 0.05367  |
| rs56161420_G  | BTN3A1 | 1.003319 | 1.090026 | 0.92446  | 1                        | 0.003313 |
| rs6900725_T   | BTN3A1 | 0.998519 | 1.085343 | 0.919613 | 1                        | -0.00148 |
| rs6912853_C   | BTN3A1 | 1.060948 | 1.150125 | 0.979684 | 1                        | 0.059162 |
| rs6920986_C   | BTN3A1 | 0.997232 | 1.08425  | 0.918167 | 1                        | -0.00277 |

Table A18. Cont.

| SNP Name      | Gene   | OR       | Upper    | Lower    | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|----------|--------------------------|----------|
| rs6921148_T   | BTN3A1 | 1.075901 | 1.317605 | 0.885986 | 1                        | 0.073159 |
| rs742090_A    | BTN3A1 | 0.927391 | 0.982792 | 0.875004 | 1                        | -0.07538 |
| rs7770214_G   | BTN3A1 | 0.992737 | 1.079363 | 0.914026 | 1                        | -0.00729 |
| rs80153343_G  | BTN3A1 | 1.144379 | 1.465945 | 0.904679 | 1                        | 0.134862 |
| rs11758089_T  | BTN3A2 | 1.093163 | 1.188249 | 1.00675  | 1                        | 0.089075 |
| rs12176317_A  | BTN3A2 | 0.820862 | 0.880647 | 0.765377 | $3.50 \times 10^{-6}$    | -0.1974  |
| rs12194095_C  | BTN3A2 | 0.971352 | 1.079478 | 0.875824 | 1                        | -0.02907 |
| rs12199613_C  | BTN3A2 | 0.884297 | 0.93714  | 0.834446 | 0.003312                 | -0.12296 |
| rs12205731_G  | BTN3A2 | 0.970415 | 1.079025 | 0.874528 | 1                        | -0.03003 |
| rs144016445_G | BTN3A2 | 38750.66 | NA       | 151.7424 | 1                        | 10.5649  |
| rs1977_A      | BTN3A2 | 0.816781 | 0.87678  | 0.761121 | $2.06 \times 10^{-6}$    | -0.20238 |
| rs1979_G      | BTN3A2 | 0.820729 | 0.880499 | 0.765255 | $3.40 \times 10^{-6}$    | -0.19756 |
| rs1985732_A   | BTN3A2 | 0.896055 | 0.951463 | 0.84398  | 0.033488                 | -0.10975 |
| rs2073526_G   | BTN3A2 | 0.925312 | 0.980986 | 0.872648 | 0.940603                 | -0.07762 |
| rs35183513_G  | BTN3A2 | 0.951537 | 1.044843 | 0.867784 | 1                        | -0.04968 |
| rs58367598_T  | BTN3A2 | 1.089293 | 1.290835 | 0.924221 | 1                        | 0.085529 |
| rs7765566_G   | BTN3A2 | 1.145085 | 1.363507 | 0.967785 | 1                        | 0.135479 |
| rs9104_G      | BTN3A2 | 0.945089 | 1.032973 | 0.86575  | 1                        | -0.05648 |
| rs9358934_G   | BTN3A2 | 0.824601 | 0.884767 | 0.76877  | $7.53 	imes 10^{-6}$     | -0.19286 |
| rs9379855_T   | BTN3A2 | 0.82361  | 0.883636 | 0.767905 | $6.04 	imes 10^{-6}$     | -0.19406 |
| rs9379858_T   | BTN3A2 | 0.825671 | 0.885867 | 0.769811 | $8.99 \times 10^{-6}$    | -0.19156 |
| rs9379859_C   | BTN3A2 | 0.824802 | 0.885058 | 0.768893 | $8.10 \times 10^{-6}$    | -0.19261 |
| rs9379861_G   | BTN3A2 | 1.039521 | 1.399242 | 0.785634 | 1                        | 0.03876  |
| rs9393713_G   | BTN3A2 | 0.814157 | 0.873453 | 0.759123 | $9.27 \times 10^{-7}$    | -0.2056  |
| rs9393714_G   | BTN3A2 | 0.818022 | 0.877663 | 0.762671 | $2.08 	imes 10^{-6}$     | -0.20087 |
| rs186813312_C | BTNL3  | 0.387143 | NA       | NA       | NA                       | -0.94896 |
| rs199970076_G | BTNL3  | 0.890096 | 19.02105 | 0.105649 | 1                        | -0.11643 |
| rs201534771_G | BTNL3  | 0.373628 | NA       | NA       | NA                       | -0.98449 |
| rs201813197_C | BTNL3  | 0.906025 | 3.98319  | 0.295074 | 1                        | -0.09869 |
| rs35157246_C  | BTNL3  | 1.061269 | 1.243749 | 0.909647 | 1                        | 0.059466 |
| rs4700774_G   | BTNL3  | 0.953121 | 1.014114 | 0.896074 | 1                        | -0.04801 |
| rs59220426_C  | BTNL3  | 0.964396 | 1.094724 | 0.852069 | 1                        | -0.03625 |
| rs73815153_G  | BTNL3  | 0.979858 | 1.113514 | 0.864825 | 1                        | -0.02035 |
| rs7713324_A   | BTNL3  | 0.962434 | 1.092563 | 0.850278 | 1                        | -0.03829 |
| rs7726604_C   | BTNL3  | 0.963325 | 1.093541 | 0.851096 | 1                        | -0.03736 |
| rs112469887_G | BTNL8  | 1.04641  | 1.299262 | 0.850631 | 1                        | 0.045365 |
| rs113071395_G | BTNL8  | 0.908391 | 1.065436 | 0.777899 | 1                        | -0.09608 |
| rs113534626_A | BTNL8  | 1.008072 | 1.204841 | 0.848563 | 1                        | 0.00804  |
|               |        |          |          |          |                          |          |

Table A18. Cont.

| SNP Name      | Gene  | OR       | Upper    | Lower                 | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|-------|----------|----------|-----------------------|--------------------------|----------|
| rs145199317_A | BTNL8 | 0.884686 | 1.250181 | 0.639686              | 1                        | -0.12252 |
| rs151174174_C | BTNL8 | 0.828069 | 1.016412 | 0.679378              | 1                        | -0.18866 |
| rs17704291_C  | BTNL8 | 0.952291 | 1.013025 | 0.895481              | 1                        | -0.04888 |
| rs200633883_C | BTNL8 | 0.419543 | 1.675223 | 0.123618              | 1                        | -0.86859 |
| rs201214790_T | BTNL8 | 740.6942 | NA       | $1.97 \times 10^{-8}$ | 1                        | 6.607588 |
| rs201891387_G | BTNL8 | 0.495896 | 2.269513 | 0.147322              | 1                        | -0.70139 |
| rs2276995_A   | BTNL8 | 0.984754 | 1.043162 | 0.929755              | 1                        | -0.01536 |
| rs2619739_C   | BTNL8 | 1.078254 | 1.194765 | 0.974928              | 1                        | 0.075343 |
| rs7724813_G   | BTNL8 | 1.054983 | 1.150319 | 0.968751              | 1                        | 0.053525 |

**Table A19.** The genotypes and Hardy–Weinberg equilibrium of the significant SNPs in the control participants from the binomial models that took the *HLA* loci into account. The Hardy–Weinberg equilibrium of each SNP in the control group was assessed using the HardyWeinberg R package [94]. Bonferroni correction was applied due to multiple testing.

| SNP, Reference<br>Allele | Gene   | Number of Controls<br>Homozygous<br>for the<br>Reference Allele | Number of Controls<br>Heterozygous<br>for the<br>Reference Allele | Number of Control<br>Individuals<br>Without the<br>Reference Allele | Allele Freq<br>in Controls | HWE<br>Adjusted<br><i>p</i> -Value |
|--------------------------|--------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|------------------------------------|
| rs13195402_G             | BTN2A1 | 23,188                                                          | 5684                                                              | 324                                                                 | 0.892                      | 1                                  |
| rs13195509_G             | BTN2A1 | 23,018                                                          | 6235                                                              | 484                                                                 | 0.879                      | 0.184                              |
| rs3734542_G              | BTN2A1 | 22,978                                                          | 6253                                                              | 485                                                                 | 0.878                      | 0.246                              |
| rs3734543_G              | BTN2A1 | 22,866                                                          | 6270                                                              | 437                                                                 | 0.879                      | 1                                  |
| rs56296968_C             | BTN2A1 | 19,326                                                          | 9289                                                              | 1096                                                                | 0.807                      | 1                                  |
| rs9358944_A              | BTN2A1 | 19,319                                                          | 9291                                                              | 1121                                                                | 0.806                      | 1                                  |
| rs9358945_A              | BTN2A1 | 19,326                                                          | 9292                                                              | 1121                                                                | 0.806                      | 1                                  |
| rs3799378_A              | BTN3A1 | 17,152                                                          | 10,809                                                            | 1642                                                                | 0.762                      | 1                                  |
| rs41266839_G             | BTN3A1 | 23,662                                                          | 5661                                                              | 392                                                                 | 0.892                      | 1                                  |
| rs12176317_A             | BTN3A2 | 22,420                                                          | 6764                                                              | 560                                                                 | 0.867                      | 1                                  |
| rs12199613_C             | BTN3A2 | 11,047                                                          | 14,227                                                            | 4424                                                                | 0.612                      | 1                                  |
| rs1977_A                 | BTN3A2 | 21,828                                                          | 6850                                                              | 540                                                                 | 0.864                      | 1                                  |
| rs1979_G                 | BTN3A2 | 22,388                                                          | 6775                                                              | 561                                                                 | 0.867                      | 1                                  |
| rs1985732_A              | BTN3A2 | 14,433                                                          | 12,626                                                            | 2662                                                                | 0.698                      | 1                                  |
| rs9358934_G              | BTN3A2 | 22,330                                                          | 6817                                                              | 559                                                                 | 0.866                      | 1                                  |
| rs9379855_T              | BTN3A2 | 22,327                                                          | 6804                                                              | 565                                                                 | 0.866                      | 1                                  |
| rs9379858_T              | BTN3A2 | 22,329                                                          | 6816                                                              | 566                                                                 | 0.866                      | 1                                  |
| rs9379859_C              | BTN3A2 | 22,358                                                          | 6814                                                              | 554                                                                 | 0.867                      | 1                                  |
| rs9393713_G              | BTN3A2 | 22,422                                                          | 6757                                                              | 557                                                                 | 0.868                      | 1                                  |
| rs9393714_G              | BTN3A2 | 22,404                                                          | 6773                                                              | 551                                                                 | 0.868                      | 1                                  |

**Table A20.** Single-variant analysis of butyrophilin SNPs and CeD status using binomial regression models on the HLA-DQ2.5-matched case-control cohort of the UK Biobank database. SNPs significantly associated with CeD status are in bold. Bonferroni correction was applied due to multiple testing.

| SNP Name      | Gene   | OR       | Upper    | Lower                  | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|------------------------|--------------------------|----------|
| rs10484441_G  | BTN2A1 | 1.026879 | 1.182655 | 0.894513               | 1                        | 0.026524 |
| rs12660069_C  | BTN2A1 | 0.954382 | 1.207579 | 0.761803               | 1                        | -0.04669 |
| rs13195402_G  | BTN2A1 | 0.757206 | 0.831328 | 0.689864               | $5.10 \times 10^{-7}$    | -0.27812 |
| rs13195509_G  | BTN2A1 | 0.77459  | 0.846648 | 0.708837               | $1.75 	imes 10^{-6}$     | -0.25542 |
| rs13437351_G  | BTN2A1 | 1.400742 | 2.090478 | 0.973921               | 1                        | 0.337002 |
| rs1407045_A   | BTN2A1 | 1.080193 | 1.170756 | 0.996977               | 1                        | 0.07714  |
| rs142951857_A | BTN2A1 | 1.287748 | 4.431929 | 0.486536               | 1                        | 0.252895 |
| rs143104579_G | BTN2A1 | 1.331616 | 1.885897 | 0.963027               | 1                        | 0.286393 |
| rs146399224_T | BTN2A1 | 0.25741  | NA       | NA                     | NA                       | -1.35708 |
| rs148111655_G | BTN2A1 | 0.944297 | 4.178925 | 0.294481               | 1                        | -0.05731 |
| rs2273558_A   | BTN2A1 | 0.892885 | 0.971388 | 0.820718               | 0.848901                 | -0.1133  |
| rs2893856_T   | BTN2A1 | 0.927404 | 1.048809 | 0.818043               | 1                        | -0.07537 |
| rs2893857_C   | BTN2A1 | 1.040565 | 1.199279 | 0.905854               | 1                        | 0.039764 |
| rs3734539_C   | BTN2A1 | 27166.76 | NA       | $9.99 \times 10^{-14}$ | 1                        | 10.20975 |
| rs3734542_G   | BTN2A1 | 0.77697  | 0.849181 | 0.711073               | $2.52 \times 10^{-6}$    | -0.25235 |
| rs3734543_G   | BTN2A1 | 0.792317 | 0.867952 | 0.723463               | $5.43 \times 10^{-5}$    | -0.23279 |
| rs3799380_T   | BTN2A1 | 0.869548 | 0.945573 | 0.799787               | 0.107572                 | -0.13978 |
| rs56296968_C  | BTN2A1 | 0.852755 | 0.928301 | 0.783513               | 0.02331                  | -0.15928 |
| rs6456724_T   | BTN2A1 | 0.924581 | 1.045479 | 0.815654               | 1                        | -0.07841 |
| rs6907857_T   | BTN2A1 | 1.401132 | 2.091061 | 0.974192               | 1                        | 0.33728  |
| rs6911470_C   | BTN2A1 | 1.565436 | 2.679723 | 0.978088               | 1                        | 0.448164 |
| rs6929846_T   | BTN2A1 | 0.870873 | 0.973832 | 0.777255               | 1                        | -0.13826 |
| rs7773913_C   | BTN2A1 | 1.408409 | 2.10183  | 0.979326               | 1                        | 0.34246  |
| rs7773938_C   | BTN2A1 | 0.854233 | 0.929778 | 0.784985               | 0.026611                 | -0.15755 |
| rs77870445_T  | BTN2A1 | 1.022451 | 1.530146 | 0.704151               | 1                        | 0.022203 |
| rs9348718_A   | BTN2A1 | 1.308813 | 1.636793 | 1.057849               | 1                        | 0.26912  |
| rs9358943_C   | BTN2A1 | 0.257602 | NA       | NA                     | NA                       | -1.35634 |
| rs9358944_A   | BTN2A1 | 0.850121 | 0.924966 | 0.781482               | 0.016059                 | -0.16238 |
| rs9358945_A   | BTN2A1 | 0.847905 | 0.922571 | 0.77943                | 0.012607                 | -0.16499 |
| rs9461254_G   | BTN2A1 | 1.565001 | 2.678973 | 0.977818               | 1                        | 0.447886 |
| rs10456045_G  | BTN3A1 | 0.872024 | 0.944198 | 0.805371               | 0.074344                 | -0.13694 |
| rs10807008_G  | BTN3A1 | 0.988264 | 1.128972 | 0.867514               | 1                        | -0.01181 |
| rs12200782_C  | BTN3A1 | 0.969241 | 1.112166 | 0.84719                | 1                        | -0.03124 |
| rs12207930_C  | BTN3A1 | 1.059407 | 1.19361  | 0.94228                | 1                        | 0.05771  |
| rs12208447_C  | BTN3A1 | 1.183033 | 1.71485  | 0.838562               | 1                        | 0.168081 |
| rs12214924_T  | BTN3A1 | 1.059617 | 1.192843 | 0.943249               | 1                        | 0.057908 |
| rs143476765_A | BTN3A1 | 0.385935 | 2.931895 | 0.063895               | 1                        | -0.95209 |

Table A20. Cont.

| SNP Name      | Gene   | OR       | Upper    | Lower                 | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|-----------------------|--------------------------|----------|
| rs144114619_T | BTN3A1 | 0.800306 | 1.80142  | 0.391948              | 1                        | -0.22276 |
| rs145059723_A | BTN3A1 | 1.546934 | 29.22579 | 0.264012              | 1                        | 0.436275 |
| rs1741738_A   | BTN3A1 | 1.126398 | 1.288465 | 0.987689              | 1                        | 0.119025 |
| rs17610161_G  | BTN3A1 | 0.999336 | 1.142965 | 0.876283              | 1                        | -0.00066 |
| rs1796520_C   | BTN3A1 | 0.901974 | 0.977599 | 0.831877              | 1                        | -0.10317 |
| rs3799378_A   | BTN3A1 | 0.829346 | 0.900397 | 0.763968              | 0.00081                  | -0.18712 |
| rs3857549_C   | BTN3A1 | 1.307821 | 1.557482 | 1.105147              | 0.217446                 | 0.268362 |
| rs3902051_A   | BTN3A1 | 0.979611 | 1.113404 | 0.864043              | 1                        | -0.0206  |
| rs41266839_G  | BTN3A1 | 0.753767 | 0.824792 | 0.68903               | $7.25 	imes 10^{-8}$     | -0.28267 |
| rs4609015_T   | BTN3A1 | 1.055122 | 1.187787 | 0.939241              | 1                        | 0.053657 |
| rs4712990_C   | BTN3A1 | 1.009758 | 1.153906 | 0.886126              | 1                        | 0.00971  |
| rs55676749_T  | BTN3A1 | 1.356015 | 1.867802 | 1.007293              | 1                        | 0.30455  |
| rs56161420_G  | BTN3A1 | 1.060354 | 1.193295 | 0.944184              | 1                        | 0.058603 |
| rs6900725_T   | BTN3A1 | 1.061349 | 1.194313 | 0.945175              | 1                        | 0.059541 |
| rs6912853_C   | BTN3A1 | 1.087423 | 1.216203 | 0.974151              | 1                        | 0.08381  |
| rs6920986_C   | BTN3A1 | 1.062734 | 1.196651 | 0.9458                | 1                        | 0.060845 |
| rs6921148_T   | BTN3A1 | 1.340282 | 1.834522 | 1.000858              | 1                        | 0.29288  |
| rs742090_A    | BTN3A1 | 0.903554 | 0.979423 | 0.833241              | 1                        | -0.10142 |
| rs7770214_G   | BTN3A1 | 1.053031 | 1.185369 | 0.937421              | 1                        | 0.051673 |
| rs80153343_G  | BTN3A1 | 0.979216 | 1.347528 | 0.724804              | 1                        | -0.021   |
| rs11758089_T  | BTN3A2 | 1.191327 | 1.352007 | 1.052499              | 0.618146                 | 0.175068 |
| rs12176317_A  | BTN3A2 | 0.766628 | 0.836949 | 0.702371              | $2.82 \times 10^{-7}$    | -0.26575 |
| rs12194095_C  | BTN3A2 | 0.943672 | 1.092386 | 0.818034              | 1                        | -0.05798 |
| rs12199613_C  | BTN3A2 | 0.842231 | 0.911373 | 0.77819               | 0.002057                 | -0.1717  |
| rs12205731_G  | BTN3A2 | 0.933998 | 1.081909 | 0.809117              | 1                        | -0.06828 |
| rs144016445_G | BTN3A2 | 73914.07 | NA       | $1.75 \times 10^{-6}$ | 1                        | 11.21066 |
| rs1977_A      | BTN3A2 | 0.764904 | 0.835801 | 0.700168              | $2.99 \times 10^{-7}$    | -0.268   |
| rs1979_G      | BTN3A2 | 0.76816  | 0.838582 | 0.70381               | $3.63 \times 10^{-7}$    | -0.26376 |
| rs1985732_A   | BTN3A2 | 0.860169 | 0.932012 | 0.793857              | 0.023502                 | -0.15063 |
| rs2073526_G   | BTN3A2 | 0.90252  | 0.979048 | 0.831612              | 1                        | -0.10256 |
| rs35183513_G  | BTN3A2 | 1.000653 | 1.140268 | 0.880486              | 1                        | 0.000652 |
| rs58367598_T  | BTN3A2 | 1.153984 | 1.470445 | 0.915197              | 1                        | 0.143221 |
| rs7765566_G   | BTN3A2 | 1.171754 | 1.497136 | 0.928192              | 1                        | 0.158502 |
| rs9104_G      | BTN3A2 | 1.010674 | 1.145196 | 0.894134              | 1                        | 0.010617 |
| rs9358934_G   | BTN3A2 | 0.772404 | 0.843549 | 0.707423              | $8.85 	imes 10^{-7}$     | -0.25825 |
| rs9379855_T   | BTN3A2 | 0.771306 | 0.842174 | 0.706564              | $6.76 \times 10^{-7}$    | -0.25967 |
| rs9379858_T   | BTN3A2 | 0.774407 | 0.845625 | 0.709352              | $1.18 \times 10^{-6}$    | -0.25566 |
| rs9379859_C   | BTN3A2 | 0.770242 | 0.841254 | 0.705384              | $6.31 \times 10^{-7}$    | -0.26105 |
| rs9379861_G   | BTN3A2 | 0.987622 | 1.586757 | 0.639198              | 1                        | -0.01246 |

Int. J. Mol. Sci. 2025, 26, 10697 55 of 64

Table A20. Cont.

| SNP Name      | Gene   | OR       | Upper    | Lower    | Adjusted <i>p</i> -Value | ln(OR)   |
|---------------|--------|----------|----------|----------|--------------------------|----------|
| rs9393713_G   | BTN3A2 | 0.760996 | 0.830868 | 0.697149 | $1.06 \times 10^{-7}$    | -0.27313 |
| rs9393714_G   | BTN3A2 | 0.765074 | 0.835356 | 0.700859 | $2.25\times10^{-7}$      | -0.26778 |
| rs186813312_C | BTNL3  | 0.257602 | NA       | NA       | NA                       | -1.35634 |
| rs199970076_G | BTNL3  | 0.272926 | 6.904492 | 0.010788 | 1                        | -1.29856 |
| rs201534771_G | BTNL3  | 0.273671 | NA       | NA       | NA                       | -1.29583 |
| rs201813197_C | BTNL3  | 0.514697 | 3.715301 | 0.100372 | 1                        | -0.66418 |
| rs35157246_C  | BTNL3  | 1.03751  | 1.287524 | 0.842551 | 1                        | 0.036824 |
| rs4700774_G   | BTNL3  | 0.978837 | 1.065525 | 0.899706 | 1                        | -0.02139 |
| rs59220426_C  | BTNL3  | 1.017762 | 1.216405 | 0.856252 | 1                        | 0.017606 |
| rs73815153_G  | BTNL3  | 1.02474  | 1.225825 | 0.861442 | 1                        | 0.024438 |
| rs7713324_A   | BTNL3  | 1.018119 | 1.216841 | 0.856546 | 1                        | 0.017957 |
| rs7726604_C   | BTNL3  | 1.020763 | 1.219953 | 0.85881  | 1                        | 0.02055  |
| rs112469887_G | BTNL8  | 1.002918 | 1.333287 | 0.765187 | 1                        | 0.002914 |
| rs113071395_G | BTNL8  | 0.93155  | 1.162634 | 0.752338 | 1                        | -0.07091 |
| rs113534626_A | BTNL8  | 0.9371   | 1.185234 | 0.747845 | 1                        | -0.06496 |
| rs141492316_T | BTNL8  | 0.963798 | 1.314391 | 0.718601 | 1                        | -0.03687 |
| rs145199317_A | BTNL8  | 1.12544  | 1.912393 | 0.697448 | 1                        | 0.118174 |
| rs151174174_C | BTNL8  | 0.729764 | 0.953457 | 0.564223 | 1                        | -0.31503 |
| rs17704291_C  | BTNL8  | 0.969451 | 1.055155 | 0.891212 | 1                        | -0.03103 |
| rs200633883_C | BTNL8  | 0.171372 | 1.035119 | 0.022558 | 1                        | -1.76392 |
| rs201214790_T | BTNL8  | 0.256248 | NA       | NA       | NA                       | -1.36161 |
| rs201891387_G | BTNL8  | 0.171476 | 1.035747 | 0.022572 | 1                        | -1.76331 |
| rs2276995_A   | BTNL8  | 1.002057 | 1.084332 | 0.926283 | 1                        | 0.002055 |
| rs2619739_C   | BTNL8  | 0.966968 | 1.107812 | 0.846435 | 1                        | -0.03359 |
| rs7724813_G   | BTNL8  | 1.041603 | 1.171988 | 0.927725 | 1                        | 0.040761 |

**Table A21.** SNP and allele count of the SNPs significantly associated with CeD in UK Biobank participants with the *HLA-DQ2.5* genotype. These SNPs were significantly associated with CeD status in the *HLA-DQ2.5*-matched single-variant testing of the UK Biobank dataset.

|                          | Participants with the HLA-DQ2.5 Genotype |                                                    |                                               |                                                       |                                                   |                                                       |                                                          |  |  |  |  |
|--------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| SNP, Reference<br>Allele | Gene                                     | Number of<br>SNPs in<br>Controls with<br>HLA-DQ2.5 | Number of<br>SNPs in<br>CeD with<br>HLA-DQ2.5 | Total Allele<br>count in<br>Control with<br>HLA-DQ2.5 | Total Allele<br>Count in<br>CeD with<br>HLA-DQ2.5 | Total Number of SNPs in the UK Biobank with HLA-DQ2.5 | Total Allele<br>Count in UK<br>Biobank with<br>HLA-DQ2.5 |  |  |  |  |
| rs13195402_G             | BTN2A1                                   | 9398                                               | 2256                                          | 12,514                                                | 3206                                              | 11,654                                                | 15,720                                                   |  |  |  |  |
| rs13195509_G             | BTN2A1                                   | 9408                                               | 2265                                          | 12,820                                                | 3296                                              | 11,673                                                | 16,116                                                   |  |  |  |  |
| rs3734542_G              | BTN2A1                                   | 9386                                               | 2266                                          | 12,808                                                | 3300                                              | 11,652                                                | 16,108                                                   |  |  |  |  |
| rs3734543_G              | BTN2A1                                   | 9366                                               | 2265                                          | 12,722                                                | 3258                                              | 11,631                                                | 15,980                                                   |  |  |  |  |
| rs56296968_C             | BTN2A1                                   | 8609                                               | 2107                                          | 12,798                                                | 3290                                              | 10,716                                                | 16,088                                                   |  |  |  |  |
| rs7773938_C              | BTN2A1                                   | 8606                                               | 2106                                          | 12,804                                                | 3290                                              | 10,712                                                | 16,094                                                   |  |  |  |  |
| rs9358944_A              | BTN2A1                                   | 8603                                               | 2108                                          | 12,818                                                | 3304                                              | 10,711                                                | 16,122                                                   |  |  |  |  |
| rs9358945_A              | BTN2A1                                   | 8607                                               | 2106                                          | 12,818                                                | 3302                                              | 10,713                                                | 16,120                                                   |  |  |  |  |

Table A21. Cont.

|                          | Participants with the HLA-DQ2.5 Genotype |                                                    |                                               |                                                       |                                                   |                                                       |                                                          |  |  |  |  |
|--------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| SNP, Reference<br>Allele | Gene                                     | Number of<br>SNPs in<br>Controls with<br>HLA-DQ2.5 | Number of<br>SNPs in<br>CeD with<br>HLA-DQ2.5 | Total Allele<br>count in<br>Control with<br>HLA-DQ2.5 | Total Allele<br>Count in<br>CeD with<br>HLA-DQ2.5 | Total Number of SNPs in the UK Biobank with HLA-DQ2.5 | Total Allele<br>Count in UK<br>Biobank with<br>HLA-DQ2.5 |  |  |  |  |
| rs3799378_A              | BTN3A1                                   | 8129                                               | 1959                                          | 12,768                                                | 3286                                              | 10,088                                                | 16,054                                                   |  |  |  |  |
| rs41266839_G             | BTN3A1                                   | 9577                                               | 2298                                          | 12,820                                                | 3298                                              | 11,875                                                | 16,118                                                   |  |  |  |  |
| rs12176317_A             | BTN3A2                                   | 9347                                               | 2242                                          | 12,826                                                | 3302                                              | 11,589                                                | 16,128                                                   |  |  |  |  |
| rs12199613_C             | BTN3A2                                   | 6396                                               | 1515                                          | 12,802                                                | 3300                                              | 7911                                                  | 16,102                                                   |  |  |  |  |
| rs1977_A                 | BTN3A2                                   | 9135                                               | 2197                                          | 12,574                                                | 3248                                              | 11,332                                                | 15,822                                                   |  |  |  |  |
| rs1979_G                 | BTN3A2                                   | 9330                                               | 2242                                          | 12,808                                                | 3302                                              | 11,572                                                | 16,110                                                   |  |  |  |  |
| rs1985732_A              | BTN3A2                                   | 7353                                               | 1777                                          | 12,816                                                | 3294                                              | 9130                                                  | 16,110                                                   |  |  |  |  |
| rs9358934_G              | BTN3A2                                   | 9333                                               | 2240                                          | 12,810                                                | 3292                                              | 11,573                                                | 16,102                                                   |  |  |  |  |
| rs9379855_T              | BTN3A2                                   | 9324                                               | 2239                                          | 12,802                                                | 3294                                              | 11,563                                                | 16,096                                                   |  |  |  |  |
| rs9379858_T              | BTN3A2                                   | 9321                                               | 2242                                          | 12,804                                                | 3296                                              | 11,563                                                | 16,100                                                   |  |  |  |  |
| rs9379859_C              | BTN3A2                                   | 9340                                               | 2244                                          | 12,806                                                | 3296                                              | 11,584                                                | 16,102                                                   |  |  |  |  |
| rs9393713_G              | BTN3A2                                   | 9345                                               | 2237                                          | 12,812                                                | 3298                                              | 11,582                                                | 16,110                                                   |  |  |  |  |
| rs9393714_G              | BTN3A2                                   | 9346                                               | 2241                                          | 12,818                                                | 3300                                              | 11,587                                                | 16,118                                                   |  |  |  |  |

**Table A22.** The genotypes and Hardy–Weinberg equilibrium of the significant SNPs in the control participants from the HLA-DQ2.5 matched case-control models. The frequency of all the examined SNPs significantly differed from the Hardy–Weinberg equilibrium. The Hardy–Weinberg equilibrium of each SNP in the control group was assessed using the Hardy-Weinberg R package [94]. Bonferroni correction was applied due to multiple testing.

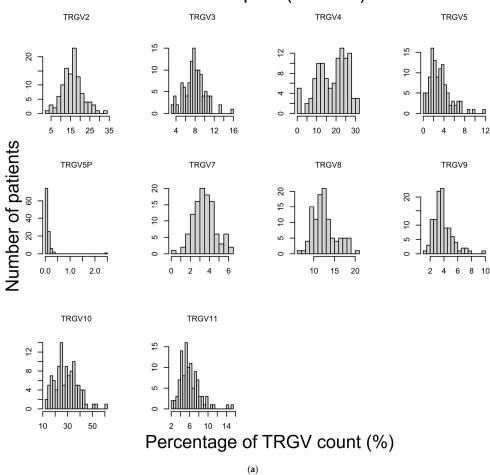
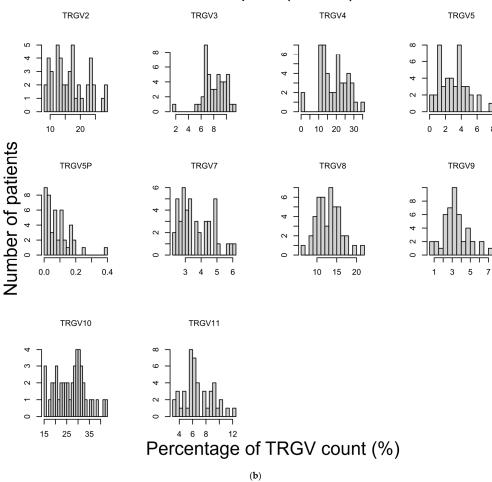
| SNP, Reference<br>Allele | Gene   | Number of Controls<br>Homozygous for the<br>Reference Allele | Number of Controls<br>Heterozygous for<br>the Reference Allele | Number of Control<br>Individuals Without<br>the Reference Allele | Allele Freq<br>in Controls | HWE Adjusted p-Value   |
|--------------------------|--------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------|------------------------|
| rs13195402_G             | BTN2A1 | 3353                                                         | 2692                                                           | 212                                                              | 0.751                      | $2.65 \times 10^{-31}$ |
| rs13195509_G             | BTN2A1 | 3303                                                         | 2802                                                           | 305                                                              | 0.734                      | $3.26 	imes 10^{-20}$  |
| rs3734542_G              | BTN2A1 | 3290                                                         | 2806                                                           | 308                                                              | 0.733                      | $3.69 \times 10^{-20}$ |
| rs3734543_G              | BTN2A1 | 3278                                                         | 2810                                                           | 273                                                              | 0.736                      | $1.35 	imes 10^{-26}$  |
| rs56296968_C             | BTN2A1 | 2737                                                         | 3135                                                           | 527                                                              | 0.673                      | $2.65 \times 10^{-31}$ |
| rs7773938_C              | BTN2A1 | 2737                                                         | 3132                                                           | 533                                                              | 0.672                      | $2.65 \times 10^{-31}$ |
| rs9358944_A              | BTN2A1 | 2734                                                         | 3135                                                           | 540                                                              | 0.671                      | $2.65 \times 10^{-31}$ |
| rs9358945_A              | BTN2A1 | 2737                                                         | 3133                                                           | 539                                                              | 0.671                      | $2.65 \times 10^{-31}$ |
| rs3799378_A              | BTN3A1 | 2446                                                         | 3237                                                           | 701                                                              | 0.637                      | $2.65 	imes 10^{-31}$  |
| rs41266839_G             | BTN3A1 | 3429                                                         | 2719                                                           | 262                                                              | 0.747                      | $2.65 \times 10^{-31}$ |
| rs12176317_A             | BTN3A2 | 3267                                                         | 2813                                                           | 333                                                              | 0.729                      | $2.65 \times 10^{-31}$ |
| rs12199613_C             | BTN3A2 | 1505                                                         | 3386                                                           | 1510                                                             | 0.500                      | $2.65 \times 10^{-31}$ |
| rs1977_A                 | BTN3A2 | 3172                                                         | 2791                                                           | 324                                                              | 0.726                      | $2.65 \times 10^{-31}$ |
| rs1979_G                 | BTN3A2 | 3260                                                         | 2810                                                           | 334                                                              | 0.728                      | $2.65 	imes 10^{-31}$  |
| rs1985732_A              | BTN3A2 | 1974                                                         | 3405                                                           | 1029                                                             | 0.574                      | $2.65 	imes 10^{-31}$  |
| rs9358934_G              | BTN3A2 | 3259                                                         | 2815                                                           | 331                                                              | 0.729                      | $2.65 \times 10^{-31}$ |
| rs9379855_T              | BTN3A2 | 3257                                                         | 2810                                                           | 334                                                              | 0.728                      | $2.65 \times 10^{-31}$ |
| rs9379858_T              | BTN3A2 | 3253                                                         | 2815                                                           | 334                                                              | 0.728                      | $2.65 	imes 10^{-31}$  |
| rs9379859_C              | BTN3A2 | 3263                                                         | 2814                                                           | 326                                                              | 0.729                      | $2.65 	imes 10^{-31}$  |
| rs9393713_G              | BTN3A2 | 3269                                                         | 2807                                                           | 330                                                              | 0.729                      | $2.65 \times 10^{-31}$ |
| rs9393714_G              | BTN3A2 | 3267                                                         | 2812                                                           | 330                                                              | 0.729                      | $2.65 \times 10^{-31}$ |

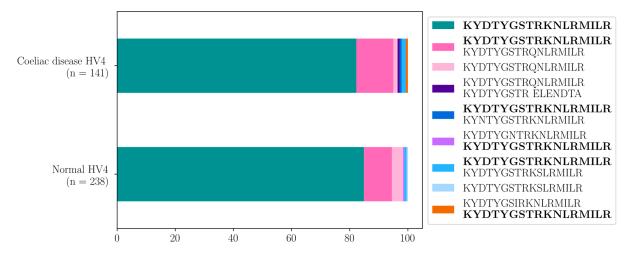
### Appendix J. Supplementary Materials for Results Section 2.3

**Table A23.** There were no significant differences in the TRGV usage of FFPE CeD (n = 45) and healthy control (n = 108) samples after Bonferroni correction was applied. Raw p-values from Mann–Whitney U (MWU) tests were adjusted using Bonferroni correction to account for false positives due to multiple testing.

|        | FFPE CeD (n = 45) vs. FFPE Healthy Control (n = 108) |                          |  |
|--------|------------------------------------------------------|--------------------------|--|
|        | Raw <i>p</i> -Value (MWU)                            | Adjusted <i>p-</i> Value |  |
| TRGV2  | 0.775                                                | 1                        |  |
| TRGV3  | 0.411                                                | 1                        |  |
| TRGV4  | 0.812                                                | 1                        |  |
| TRGV5  | 0.906                                                | 1                        |  |
| TRGV5P | 0.684                                                | 1                        |  |
| TRGV7  | 0.566                                                | 1                        |  |
| TRGV8  | 0.382                                                | 1                        |  |
| TRGV9  | 0.070                                                | 0.70                     |  |
| TRGV10 | 0.248                                                | 1                        |  |
| TRGV11 | 0.025                                                | 0.25                     |  |

# Distribution of TRGV usage in FFPE normal samples (n = 108)



Figure A13. Cont.

Int. J. Mol. Sci. 2025, 26, 10697 58 of 64

# Distribution of TRGV usage in FFPE CeD samples (n = 45)



**Figure A13.** The TRGV usage of (a) healthy control (n = 108) and (b) CeD FFPE duodenal samples (n = 45) was not normally distributed in the duodenal samples subjected to TRGV usage analysis.



**Figure A14.** More than 82% of both healthy control and CeD samples were homozygous for the reference HV4 amino acid sequence in the combined cohort. The HV4 analysis was carried out on a cohort of 238 healthy controls and 141 CeD samples. The homozygous reference HV4 sequence was the most common phenotype in both CeD and healthy control samples. Only 10 healthy control and 3 CeD samples did not have any WT HV4 sequences.

**Table A24.** There were no significant differences in the HV4 distribution between healthy controls (n = 238) and CeD patients (n = 141). The reference amino acid sequence KYDTYGSTRKNLRMILR is noted as WT in the table. Sequences with amino acid substitutions are provided in full. Pairwise Fisher's exact test with Bonferroni correction was applied on the different HV4 phenotypes in CeD and healthy control patients.

|                                                                   | 141 CeD vs. 238 Health | ny Control Samples        |
|-------------------------------------------------------------------|------------------------|---------------------------|
|                                                                   | Raw p-Values (Fisher)  | Adjusted <i>p</i> -Values |
| WT vs. WT, KYDTYGSTRQNLRMIL                                       | 0.3925                 | 1                         |
| WT vs. KYDTYGSTRQNLRMILR                                          | 0.3392                 | 1                         |
| WT vs. KYDTYGSTRQNLRMILR, KYDTYGSTR_ELENDTA                       | 0.3668                 | 1                         |
| WT vs. WT, KYNTYGSTRKNLRMILR                                      | 0.3668                 | 1                         |
| WT vs. KYDTYGNTRKNLRMILR, WT                                      | 1                      | 1                         |
| WT vs. WT, KYDTYGSTRKSLRMILR                                      | 0.6258                 | 1                         |
| WT vs. KYDTYGSTRKSLRMILR                                          | 1                      | 1                         |
| WT vs. WT, KYDTYGSIRKNLRMILR                                      | 0.3668                 | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. KYDTYGSTRQNLRMILR                       | 0.1697                 | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. KYDTYGSTRQNLRMILR,<br>KYDTYGSTR_ELENDTA | 0.4524                 | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. WT, KYNTYGSTRKNLRMILR                   | 0.4524                 | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. WT, KYDTYGNTRKNLRMILR                   | 1                      | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. WT, KYDTYGSTRKSLRMILR                   | 1                      | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. KYDTYGSTRKSLRMILR                       | 1                      | 1                         |
| WT, KYDTYGSTRQNLRMILR vs. WT, KYDTYGSIRKNLRMILR                   | 0.4524                 | 1                         |
| KYDTYGSTRQNLRMILR vs. KYDTYGSTRQNLRMILR,<br>KYDTYGSTR_ELENDTA     | 0.25                   | 1                         |
| KYDTYGSTRQNLRMILR vs. WT, KYNTYGSTRKNLRMILR                       | 0.25                   | 1                         |
| KYDTYGSTRQNLRMILR vs. WT, KYDTYGNTRKNLRMILR                       | 1                      | 1                         |
| KYDTYGSTRQNLRMILR vs. WT, KYDTYGSTRKSLRMILR                       | 0.5165                 | 1                         |
| KYDTYGSTRQNLRMILR vs. KYDTYGSTRKSLRMILR                           | 1                      | 1                         |
| KYDTYGSTRQNLRMILR vs. WT, KYDTYGSIRKNLRMILR                       | 0.25                   | 1                         |
| KYDTYGSTRQNLRMILR, KYDTYGSTR_ELENDTA vs. WT,<br>KYNTYGSTRKNLRMILR | 1                      | 1                         |
| KYDTYGSTRQNLRMILR, KYDTYGSTR_ELENDTA vs. WT,<br>KYDTYGNTRKNLRMILR | 1                      | 1                         |
| KYDTYGSTRQNLRMILR, KYDTYGSTR_ELENDTA vs. WT,<br>KYDTYGSTRKSLRMILR | 1                      | 1                         |
| KYDTYGSTRQNLRMILR, KYDTYGSTR_ELENDTA vs.<br>KYDTYGSTRKSLRMILR     | 1                      | 1                         |
| KYDTYGSTRQNLRMILR, KYDTYGSTR_ELENDTA vs. WT,<br>KYDTYGSIRKNLRMILR | 1                      | 1                         |
| WT, KYNTYGSTRKNLRMILR vs. WT, KYDTYGNTRKNLRMILR                   | 1                      | 1                         |
| WT, KYNTYGSTRKNLRMILR vs. WT, KYDTYGSTRKSLRMILR                   | 1                      | 1                         |
| WT, KYNTYGSTRKNLRMILR vs. KYDTYGSTRKSLRMILR                       | 1                      | 1                         |
| WT, KYNTYGSTRKNLRMILR vs. WT, KYDTYGSIRKNLRMILR                   | 1                      | 1                         |
| WT, KYDTYGNTRKNLRMILR vs. WT, KYDTYGSTRKSLRMILR                   | 1                      | 1                         |
| WT, KYDTYGNTRKNLRMILR vs. KYDTYGSTRKSLRMILR                       | 1                      | 1                         |
| WT, KYDTYGNTRKNLRMILR vs. WT, KYDTYGSIRKNLRMILR                   | 1                      | 1                         |
| WT, KYDTYGSTRKSLRMILR vs. KYDTYGSTRKSLRMILR                       | 1                      | 1                         |
| WT, KYDTYGSTRKSLRMILR vs. WT, KYDTYGSIRKNLRMILR                   | 1                      | 1                         |
| KYDTYGSTRKSLRMILR vs. WT, KYDTYGSIRKNLRMILR                       | 1                      | 1                         |

#### References

1. Abadie, V.; Sollid, L.M.; Barreiro, L.B.; Jabri, B. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. *Annu. Rev. Immunol.* **2011**, *29*, 493–525. [CrossRef]

- 2. Jabri, B.; Sollid, L.M. Tissue-mediated control of immunopathology in coeliac disease. *Nat. Rev. Immunol.* **2009**, *9*, 858–870. [CrossRef]
- 3. Trier, J.S. Diagnosis of celiac sprue. *Gastroenterology* 1998, 115, 211–216. [CrossRef] [PubMed]
- 4. NICE. Coeliac Disease: Recognition, Assessment and Management. Available online: https://www.nice.org.uk/guidance/ng20/chapter/Recommendations (accessed on 27 November 2020).
- 5. Al-Toma, A.; Goerres, M.S.; Meijer, J.W.; Pena, A.S.; Crusius, J.B.; Mulder, C.J. Human leukocyte antigen-DQ2 homozygosity and the development of refractory celiac disease and enteropathy-associated T-cell lymphoma. *Clin. Gastroenterol. Hepatol.* **2006**, 4,315–319. [CrossRef] [PubMed]
- 6. Ayesh, B.M.; Zaqout, E.K.; Yassin, M.M. HLA-DQ2 and -DQ8 haplotypes frequency and diagnostic utility in celiac disease patients of Gaza strip, Palestine. *Autoimmun Highlights* **2017**, *8*, 11. [CrossRef] [PubMed]
- 7. Björck, S.; Brundin, C.; Lörinc, E.; Lynch, K.F.; Agardh, D. Screening detects a high proportion of celiac disease in young HLA-genotyped children. *J. Pediatr. Gastroenterol. Nutr.* **2010**, *50*, 49–53. [CrossRef]
- 8. Karell, K.; Louka, A.S.; Moodie, S.J.; Ascher, H.; Clot, F.; Greco, L.; Ciclitira, P.J.; Sollid, L.M.; Partanen, J.; European Genetics Cluster on Celiac, D. HLA types in celiac disease patients not carrying the DQA1\*05-DQB1\*02 (DQ2) heterodimer: Results from the European Genetics Cluster on Celiac Disease. *Hum. Immunol.* 2003, 64, 469–477. [CrossRef]
- 9. Karhus, L.L.; Thuesen, B.H.; Skaaby, T.; Rumessen, J.J.; Linneberg, A. The distribution of HLA DQ2 and DQ8 haplotypes and their association with health indicators in a general Danish population. *United Eur. Gastroenterol.* **2018**, *6*, 866–878. [CrossRef]
- 10. Murad, H.; Jazairi, B.; Khansaa, I.; Olabi, D.; Khouri, L. HLA-DQ2 and -DQ8 genotype frequency in Syrian celiac disease children: HLA-DQ relative risks evaluation. *BMC Gastroenterol.* **2018**, *18*, 70. [CrossRef]
- 11. Sollid, L.M.; Thorsby, E. HLA susceptibility genes in celiac disease: Genetic mapping and role in pathogenesis. *Gastroenterology* **1993**, *105*, 910–922. [CrossRef]
- 12. Sollid, L.M. Molecular basis of celiac disease. Annu. Rev. Immunol. 2000, 18, 53–81. [CrossRef] [PubMed]
- 13. Sollid, L.M.; Markussen, G.; Ek, J.; Gjerde, H.; Vartdal, F.; Thorsby, E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. *J. Exp. Med.* **1989**, *169*, 345–350. [CrossRef] [PubMed]
- 14. Sollid, L.M.; Thorsby, E. The primary association of celiac disease to a given HLA-DQ alpha/beta heterodimer explains the divergent HLA-DR associations observed in various Caucasian populations. *Tissue Antigens* **1990**, *36*, 136–137. [CrossRef] [PubMed]
- 15. Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A.; American College of Gastroenterology. ACG clinical guidelines: Diagnosis and management of celiac disease. *Am. J. Gastroenterol.* **2013**, *108*, 656–676. [CrossRef]
- 16. Djilali-Saiah, I.; Caillat-Zucman, S.; Schmitz, J.; Chaves-Vieira, M.L.; Bach, J.F. Polymorphism of antigen processing (TAP, LMP) and HLA class II genes in celiac disease. *Hum. Immunol.* **1994**, 40, 8–16. [CrossRef]
- 17. Hunt, K.A.; Zhernakova, A.; Turner, G.; Heap, G.A.; Franke, L.; Bruinenberg, M.; Romanos, J.; Dinesen, L.C.; Ryan, A.W.; Panesar, D.; et al. Newly identified genetic risk variants for celiac disease related to the immune response. *Nat. Genet.* **2008**, 40, 395–402. [CrossRef]
- 18. Dubois, P.C.; van Heel, D.A. Translational mini-review series on the immunogenetics of gut disease: Immunogenetics of coeliac disease. *Clin. Exp. Immunol.* **2008**, *153*, 162–173. [CrossRef]
- 19. Goudey, B.; Abraham, G.; Kikianty, E.; Wang, Q.; Rawlinson, D.; Shi, F.; Haviv, I.; Stern, L.; Kowalczyk, A.; Inouye, M. Interactions within the MHC contribute to the genetic architecture of celiac disease. *PLoS ONE* **2017**, *12*, e0172826. [CrossRef]
- Pietz, G.; De, R.; Hedberg, M.; Sjoberg, V.; Sandstrom, O.; Hernell, O.; Hammarstrom, S.; Hammarstrom, M.L. Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells. *PLoS ONE* 2017, 12, e0185025. [CrossRef]
- 21. Mayassi, T.; Ladell, K.; Gudjonson, H.; McLaren, J.E.; Shaw, D.G.; Tran, M.T.; Rokicka, J.J.; Lawrence, I.; Grenier, J.C.; van Unen, V.; et al. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. *Cell* 2019, 176, 967–981. [CrossRef] [PubMed]
- 22. Rhodes, D.A.; Stammers, M.; Malcherek, G.; Beck, S.; Trowsdale, J. The cluster of *BTN* genes in the extended major histocompatibility complex. *Genomics* **2001**, *71*, 351–362. [CrossRef]
- 23. Arnett, H.A.; Viney, J.L. Immune modulation by butyrophilins. Nat. Rev. Immunol. 2014, 14, 559–569. [CrossRef] [PubMed]
- 24. Rhodes, D.A.; Reith, W.; Trowsdale, J. Regulation of immunity by butyrophilins. *Annu. Rev. Immunol.* **2016**, 34, 151–172. [CrossRef]
- 25. Malcherek, G.; Mayr, L.; Roda-Navarro, P.; Rhodes, D.; Miller, N.; Trowsdale, J. The B7 homolog butyrophilin BTN2A1 is a novel ligand for DC-SIGN. *J. Immunol.* **2007**, *179*, 3804–3811. [CrossRef]

26. Messal, N.; Mamessier, E.; Sylvain, A.; Celis-Gutierrez, J.; Thibult, M.L.; Chetaille, B.; Firaguay, G.; Pastor, S.; Guillaume, Y.; Wang, Q.; et al. Differential role for CD277 as a co-regulator of the immune signal in T and NK cells. *Eur. J. Immunol.* **2011**, *41*, 3443–3454. [CrossRef]

- 27. Di Marco Barros, R.; Roberts, N.A.; Dart, R.J.; Vantourout, P.; Jandke, A.; Nussbaumer, O.; Deban, L.; Cipolat, S.; Hart, R.; Iannitto, M.L.; et al. Epithelia use butyrophilin-like molecules to shape organ-specific gamma delta T cell compartments. *Cell* 2016, 167, 203–218. [CrossRef]
- 28. Jandke, A.; Melandri, D.; Monin, L.; Ushakov, D.S.; Laing, A.G.; Vantourout, P.; East, P.; Nitta, T.; Narita, T.; Takayanagi, H.; et al. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial gammadelta T cell compartments. *Nat. Commun.* 2020, 11, 3769. [CrossRef] [PubMed]
- 29. Melandri, D.; Zlatareva, I.; Chaleil, R.A.G.; Dart, R.J.; Chancellor, A.; Nussbaumer, O.; Polyakova, O.; Roberts, N.A.; Wesch, D.; Kabelitz, D.; et al. The γδ TCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. *Nat. Immunol.* **2018**, *19*, 1352–1365. [CrossRef]
- Vantourout, P.; Laing, A.; Woodward, M.J.; Zlatareva, I.; Apolonia, L.; Jones, A.W.; Snijders, A.P.; Malim, M.H.; Hayday, A.C. Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing gammadelta T cell biology. *Proc. Natl. Acad. Sci. USA* 2018, 115, 1039–1044. [CrossRef]
- 31. Willcox, C.R.; Vantourout, P.; Salim, M.; Zlatareva, I.; Melandri, D.; Zanardo, L.; George, R.; Kjaer, S.; Jeeves, M.; Mohammed, F.; et al. Butyrophilin-like 3 Directly Binds a Human Vγ4(+) T Cell Receptor Using a Modality Distinct from Clonally-Restricted Antigen. *Immunity* **2019**, *51*, 813–825 e814. [CrossRef] [PubMed]
- 32. Lewis, J.M.; Girardi, M.; Roberts, S.J.; Barbee, S.D.; Hayday, A.C.; Tigelaar, R.E. Selection of the cutaneous intraepithelial  $\gamma\delta^+$  T cell repertoire by a thymic stromal determinant. *Nat. Immunol.* **2006**, *7*, 843–850. [CrossRef]
- 33. Cano, C.E.; Pasero, C.; De Gassart, A.; Kerneur, C.; Gabriac, M.; Fullana, M.; Granarolo, E.; Hoet, R.; Scotet, E.; Rafia, C.; et al. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. *Cell Rep.* **2021**, *36*, 109359. [CrossRef] [PubMed]
- 34. Hayday, A.C.; Vantourout, P. The innate biologies of adaptive antigen receptors. Annu. Rev. Immunol. 2020, 38, 487–510. [CrossRef]
- 35. Karunakaran, M.M.; Gobel, T.W.; Starick, L.; Walter, L.; Herrmann, T. Vγ9 and Vδ2 T cell antigen receptor genes and butyrophilin 3 (BTN3) emerged with placental mammals and are concomitantly preserved in selected species like alpaca (*Vicugna pacos*). *Immunogenetics* **2014**, *66*, 243–254. [CrossRef]
- 36. Fichtner, A.S.; Karunakaran, M.M.; Gu, S.; Boughter, C.T.; Borowska, M.T.; Starick, L.; Nohren, A.; Gobel, T.W.; Adams, E.J.; Herrmann, T. Alpaca (*Vicugna pacos*), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. *Proc. Natl. Acad. Sci. USA* **2020**, *117*, 6697–6707. [CrossRef] [PubMed]
- 37. Rigau, M.; Ostrouska, S.; Fulford, T.S.; Johnson, D.N.; Woods, K.; Ruan, Z.; McWilliam, H.E.G.; Hudson, C.; Tutuka, C.; Wheatley, A.K.; et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by gammadelta T cells. *Science* **2020**, *367*, eaay5516. [CrossRef] [PubMed]
- 38. Sandstrom, A.; Peigne, C.M.; Leger, A.; Crooks, J.E.; Konczak, F.; Gesnel, M.C.; Breathnach, R.; Bonneville, M.; Scotet, E.; Adams, E.J. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. *Immunity* **2014**, 40, 490–500. [CrossRef] [PubMed]
- 39. Hu, W.; Shang, R.; Yang, J.; Chen, C.; Liu, Z.; Liang, G.; He, W.; Luo, G. Skin γδ T tells and their function in wound healing. *Front. Immunol.* **2022**, *13*, 875076. [CrossRef]
- 40. Han, A.; Newell, E.W.; Glanville, J.; Fernandez-Becker, N.; Khosla, C.; Chien, Y.H.; Davis, M.M. Dietary gluten triggers concomitant activation of CD4+ and CD8+ alphabeta T cells and gammadelta T cells in celiac disease. *Proc. Natl. Acad. Sci. USA* **2013**, *110*, 13073–13078. [CrossRef]
- 41. Aigner, J.; Villatoro, S.; Rabionet, R.; Roquer, J.; Jimenez-Conde, J.; Marti, E.; Estivill, X. A common 56-kilobase deletion in a primate-specific segmental duplication creates a novel butyrophilin-like protein. *BMC Genet.* **2013**, *14*, 61. [CrossRef]
- 42. Mitsunaga, S.; Hosomichi, K.; Okudaira, Y.; Nakaoka, H.; Kunii, N.; Suzuki, Y.; Kuwana, M.; Sato, S.; Kaneko, Y.; Homma, Y.; et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the *BTNL2*. *J. Hum. Genet.* **2013**, *58*, 210–215. [CrossRef] [PubMed]
- 43. Sirota, M.; Schaub, M.A.; Batzoglou, S.; Robinson, W.H.; Butte, A.J. Autoimmune disease classification by inverse association with SNP alleles. *PLoS Genet.* **2009**, *5*, e1000792. [CrossRef]
- 44. Orozco, G.; Eerligh, P.; Sanchez, E.; Zhernakova, S.; Roep, B.O.; Gonzalez-Gay, M.A.; Lopez-Nevot, M.A.; Callejas, J.L.; Hidalgo, C.; Pascual-Salcedo, D.; et al. Analysis of a functional *BTNL2* polymorphism in type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. *Hum. Immunol.* 2005, 66, 1235–1241. [CrossRef]

45. Traherne, J.A.; Barcellos, L.F.; Sawcer, S.J.; Compston, A.; Ramsay, P.P.; Hauser, S.L.; Oksenberg, J.R.; Trowsdale, J. Association of the truncating splice site mutation in *BTNL2* with multiple sclerosis is secondary to *HLA-DRB1\*15*. *Hum. Mol. Genet.* **2006**, 15, 155–161. [CrossRef]

- 46. Hippich, M.; Beyerlein, A.; Hagopian, W.A.; Krischer, J.P.; Vehik, K.; Knoop, J.; Winker, C.; Toppari, J.; Lernmark, A.; Rewers, M.J.; et al. Genetic contribution to the divergence in type 1 diabetes risk between children from the general population and children from affected families. *Diabetes* 2019, 68, 847–857. [CrossRef] [PubMed]
- 47. He, C.; Hamon, S.; Li, D.; Barral-Rodriguez, S.; Ott, J.; Diabetes Genetics Consortium. *MHC* fine mapping of human type 1 diabetes using the T1DGC data. *Diabetes Obes. Metab.* **2009**, *11* (Suppl. 1), 53–59. [CrossRef]
- 48. Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. *Genome Res.* **2012**, 22, 1790–1797. [CrossRef] [PubMed]
- 49. Dong, S.; Zhao, N.; Spragins, E.; Kagda, M.S.; Li, M.; Assis, P.; Jolanki, O.; Luo, Y.; Cherry, J.M.; Boyle, A.P.; et al. Annotating and prioritizing human non-coding variants with RegulomeDB. *bioRxiv* 2022. [CrossRef]
- 50. Spurkland, A.; Sollid, L.M.; Polanco, I.; Vartdal, F.; Thorsby, E. HLA-DR and -DQ genotypes of celiac disease patients serologically typed to be non-DR3 or non-DR5/7. *Hum. Immunol.* **1992**, 35, 188–192. [CrossRef]
- 51. Dart, R.J.; Zlatareva, I.; Vantourout, P.; Theodoridis, E.; Amar, A.; Kannambath, S.; East, P.; Recaldin, T.; Mansfield, J.C.; Lamb, C.A.; et al. Conserved gammadelta T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. *Science* 2023, 381, eadh0301. [CrossRef]
- 52. Guo, M.H.; Plummer, L.; Chan, Y.M.; Hirschhorn, J.N.; Lippincott, M.F. Burden Testing of Rare Variants Identified through Exome Sequencing via Publicly Available Control Data. *Am. J. Hum. Genet.* **2018**, *103*, 522–534. [CrossRef] [PubMed]
- 53. Guo, M.H. Burden Testing Against Public Controls. Available online: https://github.com/mhguo1/TRAPD (accessed on 24 April 2023).
- 54. Viken, M.K.; Blomhoff, A.; Olsson, M.; Akselsen, H.E.; Pociot, F.; Nerup, J.; Kockum, I.; Cambon-Thomsen, A.; Thorsby, E.; Undlien, D.E.; et al. Reproducible association with type 1 diabetes in the extended class I region of the major histocompatibility complex. *Genes Immun.* **2009**, *10*, 323–333. [CrossRef]
- 55. Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C., Jr.; Wright, M.W.; et al. Gene map of the extended human MHC. *Nat. Rev. Genet.* **2004**, *5*, 889–899. [CrossRef]
- 56. Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O'Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. *Nature* **2018**, *562*, 203–209. [CrossRef]
- 57. Foers, A.D.; Shoukat, M.S.; Welsh, O.E.; Donovan, K.; Petry, R.; Evans, S.C.; FitzPatrick, M.E.; Collins, N.; Klenerman, P.; Fowler, A.; et al. Classification of intestinal T-cell receptor repertoires using machine learning methods can identify patients with coeliac disease regardless of dietary gluten status. *J. Pathol.* **2021**, 253, 279–291. [CrossRef]
- 58. Falchuk, Z.M.; Rogentine, G.N.; Strober, W. Predominance of histocompatibility antigen HL-A8 in patients with gluten-sensitive enteropathy. *J. Clin. Investig.* **1972**, *51*, 1602–1605. [CrossRef] [PubMed]
- 59. Stokes, P.L.; Asquith, P.; Holmes, G.K.; Mackintosh, P.; Cooke, W.T. Histocompatibility antigens associated with adult coeliac disease. *Lancet* **1972**, 2, 162–164. [CrossRef] [PubMed]
- 60. Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.A.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac disease. *Nat. Rev. Dis. Primers* **2019**, *5*, 3. [CrossRef]
- 61. Karunakaran, M.M.; Willcox, C.R.; Salim, M.; Paletta, D.; Fichtner, A.S.; Noll, A.; Starick, L.; Nohren, A.; Begley, C.R.; Berwick, K.A.; et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing. *Immunity* 2020, 52, 487–498 e486. [CrossRef]
- 62. Rhodes, D.A.; Chen, H.C.; Price, A.J.; Keeble, A.H.; Davey, M.S.; James, L.C.; Eberl, M.; Trowsdale, J. Activation of human gammadelta T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. *J. Immunol.* 2015, 194, 2390–2398. [CrossRef]
- 63. Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med.* 2015, 12, e1001779. [CrossRef]
- 64. Human Protein Atlas, P. Human Protein Atlas. Available online: http://www.proteinatlas.org (accessed on 20 April 2021).
- 65. Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.* **2022**, *50*, D20–D26. [CrossRef]
- 66. Nonacus. Nonacus Probe Design Tool. Available online: https://mynonacus.nonacus.com/view-panel-designs (accessed on 8 February 2021).

67. Simms, V. 5 Tips for Using the Nonacus Panel Design Tool. Available online: https://nonacus.com/blog-get-great-coverage-for-the-genes-you-care-about/ (accessed on 27 September 2024).

- 68. Nonacus. Custom NGS Panel Design Tool. Available online: https://nonacus.com/panel-design/ (accessed on 2 October 2024).
- 69. Andrews, S. FastQC: A Quality Control Analysis Tool for High Throughput Sequencing Data. Available online <a href="https://www.bioinformatics.babraham.ac.uk/projects/fastqc/">https://www.bioinformatics.babraham.ac.uk/projects/fastqc/</a> (accessed on 2 October 2024).
- 70. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* **2014**, *30*, 2114–2120. [CrossRef]
- 71. Van der Auwera, G.A.; O'Connor, B.D. *Genomics in the Cloud: Using Docker, GATK, and WDL in Terra*, 1st ed.; O'Reilly Media: Sebastopol, CA, USA, 2020.
- 72. Zhao, S.; Agafonov, O.; Azab, A.; Stokowy, T.; Hovig, E. Accuracy and efficiency of germline variant calling pipelines for human genome data. *Sci. Rep.* **2020**, *10*, 20222. [CrossRef]
- 73. Cucco, F.; Barrans, S.; Sha, C.; Clipson, A.; Crouch, S.; Dobson, R.; Chen, Z.; Thompson, J.S.; Care, M.A.; Cummin, T.; et al. Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. *Leukemia* 2020, 34, 1329–1341. [CrossRef]
- 74. Cucco, F.; Clipson, A.; Kennedy, H.; Sneath Thompson, J.; Wang, M.; Barrans, S.; van Hoppe, M.; Ochoa Ruiz, E.; Caddy, J.; Hamid, D.; et al. Mutation screening using formalin-fixed paraffin-embedded tissues: A stratified approach according to DNA quality. *Lab Investig.* **2018**, *98*, 1084–1092. [CrossRef] [PubMed]
- 75. Matthews, J. A Snakemake Pipeline for Analysing (Cancer) DNA Sequencing Data. Available online: https://gitlab.com/jdm204/dnaseq\_snakemake (accessed on 21 October 2022).
- 76. Kawaguchi, S. HLA-HD. Available online: https://w3.genome.med.kyoto-u.ac.jp/HLA-HD/ (accessed on 17 March 2023).
- 77. Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. *Gigascience* **2021**, *10*, giab008. [CrossRef] [PubMed]
- 78. McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. *Genome Biol.* **2016**, 17, 122. [CrossRef] [PubMed]
- 79. Yu, Y.; Fedele, G.; Celardo, I.; Loh, S.H.Y.; Martins, L.M. Parp mutations protect from mitochondrial toxicity in Alzheimer's disease. *Cell Death Dis.* **2021**, *12*, 651; Erratum in *Cell Death Dis.* **2021**, *12*, 720. [CrossRef] [PubMed]
- 80. Grueneberg, A.; de Los Campos, G. BGData—A Suite of R Packages for Genomic Analysis with Big Data. *G3* **2019**, *9*, 1377–1383. [CrossRef]
- 81. NCBI. SNP. Available online: https://www.ncbi.nlm.nih.gov/snp (accessed on 25 June 2024).
- 82. Lefranc, M.P.; Giudicelli, V.; Duroux, P.; Jabado-Michaloud, J.; Folch, G.; Aouinti, S.; Carillon, E.; Duvergey, H.; Houles, A.; Paysan-Lafosse, T.; et al. IMGT(R), the international ImMunoGeneTics information system(R) 25 years on. *Nucleic Acids Res.* **2015**, 43, D413–D422. [CrossRef]
- 83. Bolotin, D.A.; Poslavsky, S.; Mitrophanov, I.; Shugay, M.; Mamedov, I.Z.; Putintseva, E.V.; Chudakov, D.M. MiXCR: Software for comprehensive adaptive immunity profiling. *Nat. Methods* **2015**, *12*, 380–381. [CrossRef]
- 84. Bolotin, D.A.; Poslavsky, S.; Davydov, A.N.; Frenkel, F.E.; Fanchi, L.; Zolotareva, O.I.; Hemmers, S.; Putintseva, E.V.; Obraztsova, A.S.; Shugay, M.; et al. Antigen receptor repertoire profiling from RNA-seq data. *Nat. Biotechnol.* **2017**, *35*, 908–911. [CrossRef] [PubMed]
- 85. McDonald, J.H. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MD, USA, 2014.
- 86. Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. *Science* 2015, 347, 1260419. [CrossRef] [PubMed]
- 87. Mölder, F.; Jablonski, K.; Letcher, B.; Hall, M.; Tomkins-Tinch, C.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.; Kanitz, A.; et al. Sustainable data analysis with Snakemake [version 1; peer review: 1 approved, 1 approved with reservations]. *F1000Research* **2021**, *10*, 33. [CrossRef]
- 88. Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. *Genome Res.* 2017, 27, 849–864. [CrossRef]
- 89. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013. [CrossRef]
- 90. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. *Bioinformatics* **2011**, *27*, 2156–2158. [CrossRef]
- 91. Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* **2010**, *38*, e164. [CrossRef]
- 92. Dilthey, A.; Leslie, S.; Moutsianas, L.; Shen, J.; Cox, C.; Nelson, M.R.; McVean, G. Multi-population classical HLA type imputation. *PLoS Comput. Biol.* **2013**, *9*, e1002877. [CrossRef]
- 93. Gustavsen, J.; Rüeger, S.; Chamberlain, S.; Ushey, K.; Zhu, H. rsnps: Get 'SNP' ('Single-Nucleotide' 'Polymorphism') Data on the Web. 2024. Available online: https://github.com/ropensci/rsnps/ (accessed on 21 July 2024).

- 94. Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. J. Stat. Softw. 2015, 64, 1–23. [CrossRef]
- 95. Kawaguchi, S.; Higasa, K.; Shimizu, M.; Yamada, R.; Matsuda, F. HLA-HD: An accurate HLA typing algorithm for next-generation sequencing data. *Hum. Mutat.* **2017**, *38*, 788–797. [CrossRef] [PubMed]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.