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Figure 1: Considering the spatial relationships between objects is crucial for robotic tasks. In this work, we present a custom
dataset of robot-acquired images annotated with spatial relationships, positions and object attributes, and evaluate the
performance of six SOTA scene-graph generation models on this dataset. While our findings reveal significant differences in
inference speed and relational accuracy of different models on our dataset, we find that integrating spatial relationships into
foundation models such as ChatGPT 4o can significantly improve their performance on robotic task planning. Note numbers in
e, f, and g can be replaced by attributes. The dataset is available at https://github.com/PengPaulWang/SpatialAwareRobotDataset

Abstract
Robotic task planning in real-world environments requires not only
object recognition but also a nuanced understanding of spatial rela-
tionships between objects. We present a spatial-relationship-aware
dataset of nearly 1,000 robot-acquired indoor images, annotated
with object attributes, positions, and detailed spatial relationships.
Captured using a Boston Dynamics Spot robot and labelled with a
custom annotation tool, the dataset reflects complex scenarios with
similar or identical objects and intricate spatial arrangements. We
benchmark six state-of-the-art scene-graph generation models on
this dataset, analysing their inference speed and relational accuracy.
Our results highlight significant differences in model performance
and demonstrate that integrating explicit spatial relationships into
foundation models, such as ChatGPT 4o, substantially improves
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their ability to generate executable, spatially-aware plans for ro-
botics. The dataset and annotation tool are publicly available at
https://github.com/PengPaulWang/SpatialAwareRobotDataset, sup-
porting further research in spatial reasoning for robotics.
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1 Introduction
Robotic task planning in real-world environments requires not only
object recognition but also a deep understanding of spatial relation-
ships between objects. While recent advances in Large Language
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Models (LLMs) [9] and Vision-Language Models (VLMs) [5] have
enabled embodied agents like robots to interpret natural language
instructions and generate action plans [11, 13], these models often
overlook the critical role of spatial reasoning. This limitation is
especially pronounced in robotics, where the physical arrangement
of objects can determine the success or failure of a task.

For example, as illustrated in Figure 1, the state-of-the-art VLM
model, ChatGPT 4o, was presented with an image (Figure 1e, with-
out annotations) and prompted with the instruction "I (as in robot)
want to move the book" (Figure 1a). The intended book is the white
book under a black sponge cube in the background. ChatGPT 4o
is expected to understand the image and instruction, then plan a
series of rational actions for the robot to complete the task. The
challenges are twofold: (1) There are several books in the image, so
ChatGPT 4o must identify the correct one; (2) The intended book is
under a sponge cube, so the robot needs to remove the cube before
moving the book. This type of spatial relationship awareness is
essential in real life, as some objects (e.g., dishes) are fragile and
must be removed before moving items beneath them. As shown
in Figure 1a–d, despite ChatGPT 4o’s strengths in commonsense
reasoning, it requires explicit spatial details to generate executable,
spatially-aware plans for robots. For instance, neither Figure 1a nor
b meets the requirements. Figure 1c provides a proper plan, but a
slight change in the instruction (adding "onto the floor") reverts
it to an unexecutable plan. This reveals how sensitive LLMs and
VLMs are to instruction details, and how easily they can generate
unexecutable plans, even for SOTA models like ChatGPT 4o.

Recent works have addressed the challenge of spatial understand-
ing in robotics by leveraging VLMs and large-scale spatial datasets.
Cai et al. [1] introduced SpatialBot, which enhances spatial reason-
ing by incorporating both RGB and depth images. However, reliance
on depth images limits applicability in scenarios where such data
is unavailable. Similarly, Song et al. [6] presented ROBOSPATIAL,
a large-scale dataset of real indoor and tabletop scenes annotated
with rich spatial information, enabling improved spatial reasoning
and manipulation tasks in robotics. This dataset, however, depends
on 3D scans for spatial annotations.

In contrast, our approach focuses on a dataset acquired directly
by robots using only RGB images, capturing scenes with identical or
similar objects and intricate spatial relationships (e.g., one object on
top of another). Spatial reasoning is achieved through scene-graph
generation (SGG), rather than relying on depth or 3D scans. Notably,
Neau et al. [4] have also explored the impact of spatial relationships
in robotic tasks, but their work primarily uses the Genome dataset,
which is not tailored for robotics. The proposed dataset is annotated
with object attributes, positions, and spatial relationships. It reflects
the complexities of real-world robotic scenarios, including scenes
with similar or identical objects and intricate spatial arrangements.
Images were collected using a Boston Dynamics Spot robot and
annotated with a purpose-built tool that streamlines the labelling
of spatial relationships, positions, and object attributes. The anno-
tated dataset was used to train and evaluate six SOTA SGG models,
assessing their inference speed and relational accuracy, and ulti-
mately integrating spatial relationship information into foundation
models such as ChatGPT 4o to enhance their effectiveness in robotic

task planning. For instance, as shown in Figure 1f, providing SGG-
derived spatial relationships to ChatGPT 4o enables it to generate
executable, spatially-aware plans.

The main contributions of this work are: (1) the creation of a
spatial-relationship-aware dataset to enable robotic task planning
in scenes with complex spatial relationships and identical objects;
(2) a comprehensive evaluation of leading SGG models on this
dataset; and (3) evidence that integrating spatial relationships into
LLM/VLM-based planning improves real-world task execution.

2 Related Work
SGG has emerged as a pivotal technique in robotic perception, en-
abling structured understanding of environments by modelling
both objects and their spatial relationships. This structured repre-
sentation is essential for robotic tasks such as object manipulation,
navigation, and task planning, where spatial reasoning is critical
for success [4].

Traditional SGG research has focused on large-scale, diverse
datasets such as Visual Genome [3], which emphasise general scene
understanding. However, these datasets often lack the complexity
and specificity required for real-world robotic applications, where
scenes may contain multiple similar or identical objects and intri-
cate spatial arrangements. Recent advances in LLMs/VLMs [5, 9,
10, 12] have improved the ability of embodied agents to interpret
instructions, but spatial reasoning remains a significant challenge,
as highlighted in our introduction.

SGG typically comprises several sub-tasks, including Predicate
Classification (PredCls), Scene Graph Classification (SGCls), and
Scene Graph Detection (SGDet) [2, 4]. Our work focuses on SGDet,
which involves detecting objects and predicting the predicates that
connect each ordered pair of detected objects. This is particularly
relevant for robotics, where accurate detection and relational rea-
soning directly impact task execution.

To address the limitations of existing datasets and evaluate SGG
models in realistic robotic contexts, we introduce a custom dataset
of robot-acquired indoor images, annotated with position, object
attributes and spatial relationships. Our evaluation pipeline consists
of a two-stage approach: first, we employ a YOLOv10m backbone
for efficient and accurate object detection; second, we attach one
of six SOTA relation-prediction heads, including Prototype-based
Embedding Network (PE-NET) [16], VCTree Predictor [8], REACT
Predictor [4], Motif Predictor (StackedMotif Networks) [14], Causal
Analysis Predictor (Unbiased Causal Total Direct Effect) [7], and
Transformer Predictor [15].

We benchmark each model’s inference speed and relational ac-
curacy using standard Recall@K (R@20, R@50, R@100) and mean
Recall@K (mR@20, mR@50, mR@100) metrics. R@K measures the
fraction of ground-truth relations recovered among the model’s
top-K predictions, while mR@K averages per-predicate recall to ac-
count for class imbalance. Object detection performance is reported
via mAP@50.

By evaluating these models on our spatial-relationship-aware
dataset, we provide insights into their strengths and limitations in
robotic task planning scenarios and demonstrate the importance of
explicit spatial reasoning for improving the effectiveness of foun-
dation models in robotics.
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3 Dataset and Annotation Tool
3.1 Data Collection
Our dataset currently consists of nearly 1,000 images featuring
bottles, remotes, cubes, and other objects arranged in diverse con-
figurations within a laboratory environment. We plan to continue
expanding the dataset by adding images captured under varying
conditions. All images were collected using a Boston Dynamics
Spot robot, providing realistic perspectives and object arrangements
relevant to robotics applications.

3.2 Annotation Process
To provide a benchmark for evaluating SGG models in robotics con-
texts, we annotated each image with both object attributes and spa-
tial relationships, rather than relying on off-the-shelf scene-graph
tools, which often assume large, diverse corpora and pixel-level
segmentation. We developed a lightweight bounding-box annota-
tion tool tailored for our needs. Annotators loaded each 640x480
robot-captured image, drew axis-aligned bounding boxes around
every object, and assigned object classes and predicates by clicking
from "subject" to "object" to specify the relationship.

The annotation tool exported labels directly to YOLOv10m-style
.txt files for object detection training, and all subject-predicate-
object triplets were saved in Visual Genome format for seamless
integration with relation prediction models.

3.3 Object and Relationship Vocabulary
Within our laboratory environment, we established a fixed vocabu-
lary of object categories: various books, plastic and metal bottles,
foam cubes, remote controls, and humans. The initial relationship
list consisted of eighteen spatial predicates (e.g., "above," "behind,"
"part of," "mounted on," "far away from," "near," "on," "under," "to the
left of," "to the right of"). However, pilot annotation revealed severe
class imbalance and overlap between similar terms. To address this,
we consolidated the predicate list to seven well-defined relations:
behind, in front of, on, to the left of, to the right of, under, and
near, ensuring each appeared in sufficient quantity and could be
unambiguously interpreted.

3.4 Annotation Workflow and Quality Control
Nine trained annotators worked independently in batches of 100
images, drawing bounding boxes and specifying subject-predicate-
object triplets. Annotators received training on the tool and were
provided with precise definitions for each predicate to ensure con-
sistency. However, during annotation, we still observed inconsis-
tencies, particularly with the "near" predicate, and identified some
images containing fewer than two objects, which cannot form valid
relations. To address these issues, we conducted a centralised clean-
ing pass: under-annotated images were discarded, and conflicting
labels were resolved by majority vote among annotators.

Figures 4a and 4b show the predicate distributions before and
after cleaning. In addition to removing rare predicates such as ‘hold-
ing’, we merged similar predicates (e.g., ‘above’, ‘over’, and ‘on’)
into a single category (‘on’). While subtle differences exist among
these terms, annotators often interpreted them inconsistently, mak-
ing them difficult to distinguish in practice. There could be hidden

insights around the different interpretations of similar predicates,
despite of a precise description, which will be explored in our future
works.

The resulting validation set comprises approximately 900 robot-
acquired images, each depicting 5–10 objects and annotated with an
average of ten spatial relationships. Figure 2 presents four represen-
tative scenes with final bounding-box and relationship annotations.
Figure 4c and Figure 4d show the final label and predicates distribu-
tion. Although some imbalance remains, the dataset were proven
to work in the SGG processes. Future work will focus on expanding
the dataset with more diverse scenes and refining the annotation
process to further improve quality and consistency.

3.5 Annotation Tool
To facilitate efficient and consistent annotation, we developed a
custom tool, SGDET-Annotate, specifically tailored for spatial rela-
tionship labelling in robotics datasets. The tool provides an intuitive
interface for annotators to load image sets, define object classes,
spatial predicates, and attributes, and perform all annotation tasks
within a unified workflow. Users can create and adjust axis-aligned
bounding boxes, assign object categories, specify subject-predicate-
object relationships through guided selection, and annotate object
attributes. The interface enforces annotation integrity by prevent-
ing duplicate triplets and limiting attribute assignments per ob-
ject. Upon completion, annotations are exported simultaneously
in Visual Genome JSON format (with bounding boxes scaled to
multiple resolutions and all relationships/attributes included) and
YOLO-style text files for object detection training. This streamlined
process ensures high-quality, standardised data and accelerates the
benchmarking of scene-graph generation models.

4 Evaluation of SGDet Predictors
In this section, we evaluate the performance of several SOTA SGDet
predictor models on our custom dataset of robot-acquired labora-
tory images. Our analysis focuses on inference speed, relational
recall (both overall and per-predicate), and training convergence.
By systematically comparing six leading architectures, we highlight
their respective strengths, limitations, and the impact of dataset
characteristics on their performance.

4.1 Object Detection Backbone
There are mainly two types of backbones to choose from, i.e., Faster-
RCNN and YOLO series. Following work from [4], we’ve chosen
YOLOv10m due to its balance between accuracy and efficiency. Fig-
ures 5a and Figures 5b show the evolution of the three main loss
components: box loss, classification loss, and distribution-focal-
loss (dfl), on both the training and validation sets over 60 epochs.
All losses decrease steadily, with the classification loss dropping
sharply in the first 10 epochs and then tapering, while the box
and dfl losses decline more gradually. The close tracking between
training and validation losses indicates stable learning without
overfitting.

Figure 5c presents key detection metrics. By epoch 10, preci-
sion@50, recall@50, and mAP@50 all exceed 0.80, and continue
to improve, reaching approximately 0.92 (precision), 0.90 (recall),
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Figure 2: Illustrative examples of a spatial aware dataset for robotics (Please zoom in for the annotations). The dataset features
multiple similar/identical objects in the scene with intricate spatial relationships. The data were annotated with bounding
boxes, attributes, and spatial relationships. The annotations include relationships such as "on", "in front of", "behind", "to the
left of", "to the right of", "under", and "near", etc. These images are used to evaluate the performance of SGG models in robotic
contexts. The data were annotated using a custom-built annotation tool, which allows annotators to draw bounding boxes
around objects and assign attributes to the objects and spatial relationships between them. The annotations are saved in Visual
Genome format, which can be directly used for training and evaluation of SGG models. The interface of the annotation tool is
shown in Figure 3.

Figure 3: SGDET-Annotate (Please zoom in for the anno-
tations): Our custom annotation tool for spatial relation-
ship labelling. The left panel displays the robot-acquired
image with editable bounding boxes; the right panel lists
detected objects and available predicates. Annotators can
select objects and predicates to efficiently create subject-
predicate-object triplets. The tool exports annotations in
both Visual Genome and YOLO formats for seamless model
training and evaluation. SGDET-Annotate is open-sourced at
https://github.com/harvey-ph/SGDET-Annotate.

and 0.93 (mAP@50) by epoch 60. The mAP@50—95 metric, follow-
ing the COCO evaluation protocol, averages the Average Precision
computed at IoU thresholds from 0.50 to 0.95 in increments of 0.05.
This peaks around 0.68, reflecting the challenge of precise local-
isation at higher IoU. These results confirm that our YOLOv10m
backbone converges quickly and provides a robust foundation for
downstream relation-prediction evaluation.

4.2 Inference Performance
4.2.1 Overall Latency and Aggregate Recall. Table 1 summarises
the average and standard deviation of per-image inference latency

for each model, along with retrieval metrics at K = 20, 50, 100 (R@K)
and their macro-averaged counterparts (mR@K).

Transformer Predictor and Motif Predictor achieve real-time
performance (less than 30 ms per image) while maintaining com-
petitive aggregate recall (R@100: 0.4543–0.4856). VCTree Predictor
achieves the highest recall (R@100 = 0.4840; mR@100 = 0.4909) but
at the cost of significantly higher latency. PE-NET offers moderate
recall with higher latency, while Causal Analysis Predictor and
REACT Predictor underperform in both speed and accuracy.

4.2.2 Predicate-Wise Recall. Figure 7 shows Recall@100 per pred-
icate for each predictor across the seven spatial relations in our
dataset. All models achieve high recall on frequent relations such
as "on" (0.7604–0.9025) and "in front of" (0.4957–0.5725), re-
flecting abundant training examples and strong visual cues. PE-
NET performs best on "under" (0.7812). Lateral relations ("to the
left of" and "to the right of") show lower performance
(0.1601–0.2931), and the "near" predicate remains challenging for
all models (0.2247–0.2494). Causal Analysis Predictor and REACT
Predictor fail to retrieve ground-truth instances for most relations.
These results highlight the impact of label scarcity and annotation
ambiguity on per-predicate performance.

4.2.3 Training Convergence. Despite a 50-epoch training schedule,
all predictors reached their peak mR@100 well before the final
epoch. Causal Analysis Predictor plateaued by epoch 5, REACT
Predictor by epoch 2, and PE-NET by epoch 6. In contrast, Motif
Predictor, VCTree Predictor, and Transformer Predictor required
approximately 23–24 epochs to converge. This rapid saturation
suggests that the dataset’s limited diversity exhausts relational
learning capacity early, making extended training less beneficial
without additional data or curriculum strategies.

4.3 Implications
Our analysis demonstrates that dataset imbalance and annotation
noise significantly affect per-predicate performance. Models with
sophisticated context modelling (VCTree, Motif) achieve balanced
recall across frequent predicates but still struggle with rare classes.
PE-NET excels in vertical relations but underperforms on lateral
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(a) Before predicates cleaning (b) After predicates cleaning

(c) Final label distribution (d) Final attributes distribution

Figure 4: Distributions of relationships and labels in our custom dataset. (a) and (b) show the predicate distributions before and
after cleaning, respectively. The cleaning process removed rare predicates and merged similar ones into a single category. (c)
shows the distribution of object labels, while (d) shows the distribution of attributes assigned to objects in the final dataset.

(a) Training losses over epochs (b) Validation losses over epochs (c) Detection metrics over epochs

Figure 5: Training results of YOLOv10m backbone over 60 epochs: (a) training losses, (b) validation losses, and (c) detection met-
rics. The box loss, classification loss, and distribution-focal-loss decrease steadily, indicating stable learning. The precision@50,
recall@50, and mAP@50 metrics exceed 0.80 by epoch 10 and improve to approximately 0.92, 0.90, and 0.93, respectively,
by epoch 60. The mAP@50-95 peaks around 0.68, reflecting the challenge of precise localisation at higher IoU thresholds.
These results confirm that our YOLOv10m backbone converges quickly and provides a robust foundation for downstream
relation-prediction evaluation.

ones, while causal modules are less effective in visually-defined
tasks. To achieve robust scene-graph generation, futurework should

combine global attention and positional cues, employ early stop-
ping based on predicate-wise mR plateaus, and augment under-
represented relations while enforcing clear annotation guidelines
(e.g., spatial thresholds for "near").
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Figure 6: More examples of integrating SGDet results into ChatGPT 4o.

Table 1: Inference Latency and Retrieval Performance (R@K, mR@K) of Predictors

Predictor Avg Latency (ms) Std Latency (ms) R@20 R@50 R@100 mR@20 mR@50 mR@100
Transformer Predictor 27.5 18.6 0.3854 0.4415 0.4543 0.3956 0.4432 0.4556
VCTree Predictor 92.5 21.4 0.4494 0.4792 0.4840 0.4576 0.4869 0.4909
Motif Predictor 24.9 16.0 0.4277 0.4757 0.4856 0.4325 0.4736 0.4826
PE-NET Predictor 36.5 21.9 0.3100 0.3294 0.3299 0.3065 0.3322 0.3327
Causal Analysis Predictor 32.8 16.9 0.1414 0.1575 0.1575 0.1154 0.1289 0.1289
REACT Predictor 45.4 18.1 0.1423 0.1561 0.1575 0.1165 0.128 0.1289

Figure 7: Per-predicate Recall@100 across predictors.

Additionally, across all experiments, the YOLOv10m backbone
maintained a consistent object-detection performance (mAP= 0.9086)
on the validation set. This high and stable detection accuracy con-
firms that variations in relational recall and latency are primarily
due to the design of the predicate-prediction heads, ensuring a fair
comparison of downstream SGDet architectures.

5 Integration to Foundation Models
To further enhance the effectiveness of foundationmodels in robotic
task planning, we integrated the spatial relationship information
from our SGG models into ChatGPT 4o. This integration allows the
model to leverage explicit spatial reasoning, improving its ability
to generate executable plans for robotic tasks. Figure 1f illustrates
the process: the spatial relationships predicted by the SGG mod-
els are provided to ChatGPT 4o, which then generates a plan that

incorporates this spatial reasoning. More results are given in Fig-
ure 6, where we can see SGG models plus attributes will enhance
VLM’s performance in spatial awareness for robotic task planning.
Further demonstrates the potential of combining SGG models with
foundation models to improve task execution in robotics.

6 Conclusion
In this work, we introduced a custom dataset of robot-acquired
indoor images annotated with spatial relationships and object at-
tributes, designed to benchmark the performance of SGG models
in robotics contexts. Our dataset captures the complexities of real-
world scenarios, including similar or identical objects and intricate
spatial arrangements, reflecting the demands of robotic task plan-
ning.

We evaluated six SOTA SGG models, revealing significant differ-
ences in inference speed and relational accuracy. Our findings indi-
cate that while some models excel in recall for frequent predicates,
they struggle with rare classes, highlighting the impact of dataset
characteristics on performance. Additionally, we demonstrated that
integrating explicit spatial relationships into foundation models,
such as ChatGPT 4o, significantly enhances their effectiveness in
robotic task planning.
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