
J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Received: July 9, 2025
Revised: September 17, 2025

Accepted: October 2, 2025
Published: November 13, 2025

A simulation framework for the LiteBIRD instruments

The LiteBIRD collaboration
M. Tomasi ,1,2,∗ L. Pagano ,3,4,5 A. Anand ,6 C. Baccigalupi,7,8,9 A.J. Banday ,10

M. Bortolami ,3,4 G. Galloni ,3,6 M. Galloway ,11 T. Ghigna ,12,13 S. Giardiello ,14

M. Gomes ,15 E. Hivon ,15 N. Krachmalnicoff,7,8,9 S. Micheli ,16 M. Monelli ,13

Y. Nagano ,17 A. Novelli ,16 G. Patanchon,18,19,13 D. Poletti ,20,21 G. Puglisi,22,23,24

N. Raffuzzi ,3 M. Reinecke,25 Y. Takase ,17 G. Weymann-Despres,26,27 D. Adak,28

E. Allys,29 J. Aumont,10 R. Aurvik,11 M. Ballardini,3,4,30 R.B. Barreiro,31

N. Bartolo,32,33,34 S. Basak,35 M. Bersanelli,1,2 A. Besnard,5 T. Brinckmann,3
E. Calabrese,14 P. Campeti,4,25,36 E. Carinos,10 A. Carones,7,8 F.J. Casas,31

K. Cheung,37,38,39,40 M. Citran,41 L. Clermont,42 F. Columbro,16,43 G. Coppi,20

A. Coppolecchia,16,43 F. Cuttaia,30 P. Dal Bo,44 P. de Bernardis,16,43 E. de la Hoz,45

M. De Lucia,44 S. Della Torre,21 P. Diego-Palazuelos,25 H.K. Eriksen,11

T. Essinger-Hileman,46 C. Franceschet,1,2 U. Fuskeland,11 M. Gerbino,4 M. Gervasi,20,21

C. Gimeno-Amo,31 E. Gjerløw,11 A. Gruppuso,30,47 M. Hazumi,48,49,13,50

S. Henrot-Versillé,27 L.T. Hergt,51,27 B. Jost,13 K. Kohri,48 L. Lamagna,16,43 T. Lari,44

M. Lattanzi,4 C. Leloup,13 F. Levrier,29 A.I. Lonappan,52 M. López-Caniego,53,54

G. Luzzi,55 J. Macias-Perez,56 B. Maffei,5 E. Martínez-González,31 S. Masi,16,43

S. Matarrese,32,33,34,57 T. Matsumura,13 L. Montier,10 G. Morgante,30 L. Mousset,29,10

R. Nagata,49 F. Noviello,14 I. Obata,48 A. Occhiuzzi,16 A. Paiella,16,43 D. Paoletti,30,47

G. Pascual-Cisneros,13,31 F. Piacentini,16,43 M. Pinchera,44 G. Polenta,55 L. Porcelli,58

M. Remazeilles,31 A. Ritacco,56 A. Rizzieri,26,41 J.A. Rubiño-Martín,28,59

M. Ruiz-Granda,31,60 J. Sanghavi,61,62 V. Sauvage,5 M. Shiraishi,63 G. Signorelli,64,44

S.L. Stever,5,17,13 R.M. Sullivan,11 K. Tassis,65,66 L. Terenzi,30 L. Vacher,7 B. van Tent,27

P. Vielva,31 I.K. Wehus,11 M. Zannoni20,21 and Y. Zhou12

1Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16 - 20133, Milano, Italy
2INFN Sezione di Milano, Via Celoria 16 - 20133, Milano, Italy
3Dipartimento di Fisica e Scienze della Terra, Università di Ferrara,
Via Saragat 1, 44122 Ferrara, Italy
∗Corresponding author.

© 2025 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2025/11/040

https://orcid.org/0000-0002-1448-6131
https://orcid.org/0000-0003-1820-5998
https://orcid.org/0009-0005-2969-7125
https://orcid.org/0000-0002-3358-0289
https://orcid.org/0000-0001-6384-142X
https://orcid.org/0000-0002-2412-8311
https://orcid.org/0000-0001-9279-137X
https://orcid.org/0000-0003-4175-7010
https://orcid.org/0000-0002-8340-3715
https://orcid.org/0009-0005-2239-093X
https://orcid.org/0000-0003-1880-2733
https://orcid.org/0000-0003-3608-9898
https://orcid.org/0000-0002-8335-9523
https://orcid.org/0009-0003-7744-8962
https://orcid.org/0009-0005-8619-2377
https://orcid.org/0000-0001-9807-3758
https://orcid.org/0009-0006-8977-0547
https://orcid.org/0009-0002-5635-6009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2025/11/040

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

4INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
5Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405, Orsay, France
6Dipartimento di Fisica, Università di Roma Tor Vergata,
Via della Ricerca Scientifica, 1, 00133, Roma, Italy

7International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
8INFN Sezione di Trieste, via Valerio 2, 34127 Trieste, Italy
9IFPU, Via Beirut, 2, 34151 Grignano, Trieste, Italy

10IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
11Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
12International Center for Quantum-field Measurement Systems for Studies of the Universe and

Particles (QUP), High Energy Accelerator Research Organization (KEK),
Tsukuba, Ibaraki 305-0801, Japan

13Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS,
The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

14School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, U.K.
15Institut d’Astrophysique de Paris, CNRS/Sorbonne Université, Paris, France
16Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma, Italy
17Okayama University, Department of Physics, Okayama 700-8530, Japan
18ILANCE, CNRS – University of Tokyo International Research Laboratory,

Kashiwa, Chiba 277-8582, Japan
19Université Paris Cité, F-75006 Paris, France
20University of Milano Bicocca, Physics Department, p.zza della Scienza, 3, 20126 Milan, Italy
21INFN Sezione Milano Bicocca, Piazza della Scienza, 3, 20126 Milano, Italy
22Dipartimento di Fisica e Astronomia, Universitá degli Studi di Catania,

Via S. Sofia,64, 95123, Catania, Italy
23INAF, Osservatorio Astrofisico di Catania, via S.Sofia 78, I-95123 Catania, Italy
24INFN, Sezione di Catania, via S.Sofia 64, I-95123, Catania, Italy
25Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
26Department of Physics, University of Oxford, Denys Wilkinson Building,

Keble Road, Oxford OX1 3RH, U.K.
27Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
28Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
29Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS,

Sorbonne Université, Université de Paris, 75005 Paris, France
30INAF - OAS Bologna, via Piero Gobetti, 93/3, 40129 Bologna, Italy
31Instituto de Fisica de Cantabria (IFCA, CSIC-UC),

Avenida los Castros SN, 39005, Santander, Spain
32Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova,

via Marzolo 8, I-35131 Padova, Italy
33INFN Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy
34INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy
35School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram,

Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
36Excellence Cluster ORIGINS, Boltzmannstr. 2, 85748 Garching, Germany

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

37Jodrell Bank Centre for Astrophysics, Alan Turing Building,
Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester,
Oxford Road, Manchester M13 9PL, U.K.

38University of California, Berkeley, Department of Physics, Berkeley, CA 94720, U.S.A.
39University of California, Berkeley, Space Sciences Laboratory, Berkeley, CA 94720, U.S.A.
40Lawrence Berkeley National Laboratory (LBNL), Computational Cosmology Center,

Berkeley, CA 94720, U.S.A.
41Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
42Centre Spatial de Liège, Université de Liège, Avenue du Pré-Aily, 4031 Angleur, Belgium
43INFN Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy
44INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
45CNRS-UCB International Research Laboratory, Centre Pierre Binétruy, UMI2007,

Berkeley, CA 94720, U.S.A.
46NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
47INFN Sezione di Bologna, Viale C. Berti Pichat, 6/2 - 40127, Bologna, Italy
48Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization

(KEK), Tsukuba, Ibaraki 305-0801, Japan
49Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS),

Sagamihara, Kanagawa 252-5210, Japan
50The Graduate University for Advanced Studies (SOKENDAI),

Miura District, Kanagawa 240-0115, Hayama, Japan
51Department of Physics and Astronomy, University of British Columbia,

6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada
52University of California, San Diego, Department of Physics, San Diego, CA 92093-0424, U.S.A.
53Aurora Technology for the European Space Agency, Camino bajo del Castillo,

s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain
54Universidad Europea de Madrid, 28670, Madrid, Spain
55Space Science Data Center, Italian Space Agency, via del Politecnico, 00133, Roma, Italy
56Université Grenoble Alpes, CNRS, LPSC-IN2P3, 53, avenue des Martyrs, 38000 Grenoble, France
57Gran Sasso Science Institute (GSSI), Viale F. Crispi 7, I-67100, L’Aquila, Italy
58Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali di Frascati (INFN–LNF),

Via E. Fermi 40, 00044, Frascati, Italy
59Departamento de Astrofísica, Universidad de La Laguna (ULL),

E-38206, La Laguna, Tenerife, Spain
60Dpto. de Física Moderna, Universidad de Cantabria,

Avda. los Castros s/n, E-39005 Santander, Spain
61Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München,

Scheinerstr.1, 81679 München, Germany
62GRAPPA, Institute for Theoretical Physics Amsterdam, University of Amsterdam,

Science Park 904, 1098 XH Amsterdam, The Netherlands
63Suwa University of Science, Chino, Nagano 391-0292, Japan
64Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
65Institute of Astrophysics, Foundation for Research and Technology – Hellas,

Vasilika Vouton, GR-70013 Heraklion, Greece
66Department of Physics and ITCP, University of Crete, GR-70013, Heraklion, Greece

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

E-mail: maurizio.tomasi@unimi.it

Abstract: LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and
Inflation from cosmic background Radiation Detection, is a space mission focused on primordial
cosmology and fundamental physics.

In this paper, we present the LiteBIRD Simulation Framework (LBS), a Python package
designed for the implementation of pipelines that model the outputs of the data acquisi-
tion process from the three instruments on the LiteBIRD spacecraft: LFT (Low-Frequency
Telescope), MFT (Mid-Frequency Telescope), and HFT (High-Frequency Telescope). LBS
provides several modules to simulate the scanning strategy of the telescopes, the measure-
ment of realistic polarized radiation coming from the sky (including the Cosmic Microwave
Background itself, the Solar and Kinematic dipole, and the diffuse foregrounds emitted by
the Galaxy), the generation of instrumental noise and the effect of systematic errors, like
pointing wobbling, non-idealities in the Half-Wave Plate, et cetera.

Additionally, we present the implementation of a simple but complete pipeline that
showcases the main features of LBS. We also discuss how we ensured that LBS lets people
develop pipelines whose results are accurate and reproducible.

A full end-to-end pipeline has been developed using LBS to characterize the scientific
performance of the LiteBIRD experiment. This pipeline and the results of the first simulation
run are presented in Puglisi et al. (2025).

Keywords: CMBR experiments, CMBR detectors, CMBR polarisation
ArXiv ePrint: 2507.04918

mailto:maurizio.tomasi@unimi.it
https://doi.org/10.48550/arXiv.2507.04918

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

Contents

1 Introduction 1

2 Requirements 3

3 Overall design 4
3.1 Supported platforms 4
3.2 Memory layout 6
3.3 Provenance tracking 10

4 Modules implemented in LBS 11
4.1 Simulation modules 13
4.2 Data-reduction modules 16

5 Validation 16
5.1 Accuracy 16
5.2 Reliability 18
5.3 Reproducibility 19
5.4 Performance 20

6 A full example 21
6.1 Setting up the simulation 21
6.2 Accessing the IMo 22
6.3 Instantiating observations 26
6.4 Simulation of input maps 27
6.5 Scanning strategy 27
6.6 An HWP 28
6.7 Map scanning 28
6.8 CMB dipole 29
6.9 Noise generation 29
6.10 Map-making 30
6.11 TOD and map saving 30

7 Conclusions 31

A Using Numba to optimize intensive computations 31

1 Introduction

LiteBIRD — the Lite (Light) satellite fo the study of B-mode polarization and Inflation from
cosmic background Radiation Detection — is a large-class satellite mission proposed by the
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency
(JAXA), whose launch is planned for the 2030s. It will observe the full sky in 15 frequency
bands from 34 to 448 GHz for 3 years, with effective polarization sensitivity of 2.2 µK · arcmin

– 1 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

and angular resolution of 31 arcmin (at 140 GHz), employing 4508 detectors sampling at
19.1 Hz [3]. Its main goal is to observe the polarization of the Cosmic Microwave Background
(CMB) radiation, with the aim of testing the validity of the inflationary paradigm. The target
sensitivity of LiteBIRD is δr ≤ 10−3, where δr is the uncertainty of the tensor-to-scalar ratio,
r. This sensitivity will let us test major single-field inflation models.

LiteBIRD will host three instruments onboard the spacecraft: the Low-Frequency Tele-
scope (LFT), the Mid-Frequency Telescope (MFT), and the High-Frequency Telescope (HFT).
All the instruments employ Transition-Edge Sensor (TES) bolometers to measure the intensity
and the polarization of the radiation from the sky, which will be focused on the focal planes
of each instrument employing refractive and reflective telescopes.

To validate the design of the instruments onboard the spacecraft, the LiteBIRD collabo-
ration has identified the need for a framework, called LBS, that provides a set of modules to
model several aspects of the data acquisition process of the instruments, including the most
relevant systematic effects. This framework is a Python library the collaboration has used to
develop an end-to-end (E2E) simulation pipeline that is described in [2]; the purpose of the
pipeline is to simulate the production of the time-ordered data that will be acquired by the
actual instrument once deployed in space, to determine whether the design of the experiment
can achieve its scientific objectives. Another important purpose of this pipeline is to produce
output data that can be used as input by data-reduction pipelines; this is the case of the
work described in [4], where the authors process the output of the E2E simulations using
Commander3 to estimate the amount of resources needed to perform a Bayesian end-to-end
analysis of the LiteBIRD data. In this work, we describe the framework itself.

We decided to base the simulation pipeline on a framework instead of coding the whole
E2E pipeline directly because this ensures a few advantages:

• The design phase of LiteBIRD needs several pipelines: apart from the E2E pipeline,
the team requires specific pipelines to simulate targeted effects like Half-Wave Plate
(HWP) systematics or the observation of transient sources, as well as simpler pipelines
that produce approximated results in a fraction of the time needed by full simulations.
Implementing a common framework speeds up the development, because each pipeline
can be built by joining several ready-made building blocks.

• Reusing the same framework for many pipelines ensures consistency between them,
particularly concerning the mathematical models used to describe the hardware and
the file formats used to load input data and to save the results of the simulations.

The structure of this work is the following. In section 2 we describe the requirements
that have driven the implementation of LBS, including the memory layout and the need to
properly track the provenance of the inputs to ensure that the results produced using LBS
are reproducible. In section 3 we show how LBS was implemented and what are its main
characteristics. Section 4 provides a description of the most important modules that are
available in LBS 0.11.0, the version used to run the E2E tests described in [2]. We explain how
we validated the implementation of LBS in section 5. The last part of the paper, section 6,
provides the full implementation of a simple pipeline and showcases the main features of
LBS that have been presented in the previous sections.

– 2 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

2 Requirements

The LiteBIRD Simulation Team was established in 2019 to develop a simulation framework
for the collaboration. The following core requirements were established since the beginning:

• Development of pipelines. The framework must facilitate the development of simulation
pipelines that can generate realistic timelines and maps. These outputs are crucial for
validating the design of the scientific instruments and the overall mission architecture.

• Computational efficiency. Due to the limited computational resources available on high-
performance computing (HPC) clusters, the framework must exhibit high performance
in terms of memory utilization and execution time.

• Availability of fundamental simulation components. The framework must provide a
comprehensive set of building blocks that can be assembled to build the simulation
pipelines needed by the LiteBIRD collaboration.

• Language Familiarity. The framework must be implemented in a programming language
that is widely adopted within the collaboration, as this minimizes the barrier to entry
for new developers.

• Ease of contribution. The architecture of the framework and the development practices
must be structured to enable reasonably straightforward contributions from collaboration
members.

• Comprehensive documentation. This ensures maintainability and enables users to utilize
the framework’s capabilities fully.

• Reproducibility of results. The framework must incorporate tools and mechanisms that
enhance the ability to reproduce simulation results.

• Integration with an Instrument Model database (IMo). The framework must use a well-
established way to retrieve its inputs from a common database containing a description of
the instrument, which is handled by the LiteBIRD Instrument MOdel team (IMo team).

We now define the meaning of an end-to-end (E2E) pipeline, because it helps to understand
the design of our framework better and puts this work in the context of what is described in [2].

The main scientific goal of LiteBIRD is to set an upper limit to the value δr, the
uncertainty on the scalar-to-ratio parameter r, under the assumption of a fiducial model with
r = 0 [3]. Thus, E2E simulations should go through the following steps:

1. Start from a reasonable estimate of the sky signal;

2. Model the data acquisition process of the detectors, considering the way the instruments
are built and mounted within the optical system, the movements of the spacecraft, and
other details of the mission;

3. The result of the simulation of data acquisition is a set of timelines, which are used to
produce sky maps at different frequencies in the range 34–448 GHz;

– 3 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

4. Combine and process the sky maps using component-separation codes to produce
estimates of the CMB as well as other signals (dust, synchrotron emission, etc.);

5. Compute power spectra from the CMB map;

6. Estimate r from the timelines, maps, and power spectra.

This list prompts us to make two crucial remarks. First, the data acquisition process
is modeled only in the first two steps of the procedure: technically speaking, steps 3–6 are
data reduction tasks, which are the same for simulated and real data. However, to ensure
that the results of E2E simulations can be accurately interpreted and fed into the next
stages of the analysis, we had to include a few data-reduction modules (map-makers) in
our simulation framework, as explained in section 4.2. The second remark is that a certain
number N of Monte Carlo realizations is required to estimate error bars for the scientific
parameters produced by E2E simulations. This increases the processing power required to
run the simulations, necessitating the framework to be optimized for both speed and memory.

E2E simulations are not the only kind of simulations needed for an experiment of the scale
of LiteBIRD. For instance, to characterize the ability to perform in-flight calibrations, the
LiteBIRD collaboration has developed dedicated pipelines to simulate the observation of bright
objects (planets). Thus, the list of modules to be included in the framework is not exhausted
once all the modules needed in a E2E pipeline simulating nominal operations are implemented.

3 Overall design

Now that we have listed the requirements, in this section we present the architectural design
of LBS and describe the elements that enable the simulation of the three instruments onboard
the LiteBIRD spacecraft. The features listed in this section are used by all the simulation
modules provided by LBS (see section 4).

3.1 Supported platforms

LBS is implemented in Python and can be used on 64-bit Unix machines1 like Linux and
Mac OS X. In each release, we support Python versions whose End of Life (EoL) is more
than one year in the future and that are supported by NumPy [5] and Numba [6]. We must
support a range of versions, as the LiteBIRD collaboration runs simulations on many HPC
clusters, and each of them might support different versions of the Python interpreter. Table 1
shows the list of versions that have been officially released at the time of writing. When
selecting version numbers, we follow the rules of semantic versioning. Until version 1.0 is
released, we increment the second number whenever changes in the codebase introduce new
features, and we increment the third number if the new release only contains bug fixes. (This
has been the case with versions 0.2.1 and 0.15.1.)

In this paper, we describe version 0.11.0, which is the version used to implement the
E2E script described in [2].

1We are not able to support Windows systems natively because our code relies on Healpy, which is currently
not available under this operating system (see https://github.com/healpy/healpy/issues/25). One can
however install LBS within the Windows Subsystem for Linux (WSL).

– 4 –

https://github.com/healpy/healpy/issues/25

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

Version Release date Supported Python versions

0.15.1 June 2025 3.10–3.13
0.15.0 June 2025 3.10–3.13
0.14.0 February 2025 3.9–3.13
0.13.0 June 2024 3.9–3.12
0.12.0 March 2024 3.9–3.12
0.11.0 November 2023 3.9–3.12
0.10.0 June 2023 3.9–3.12
0.9.0 February 2023 3.7.1–3.9
0.8.0 October 2022 3.7.1–3.9
0.7.0 September 2022 3.7.1–3.9
0.6.0 July 2022 3.7.1–3.9
0.5.0 June 2022 3.7.1–3.9
0.4.0 December 2021 3.7.1–3.9
0.3.0 September 2021 3.6.1–3.8
0.2.1 March 2022 3.6–3.8
0.2.0 February 2022 3.6–3.8
0.1.0 September 2020 3.6–3.8

Table 1. List of LBS versions that have been officially released.

We develop LBS on a public GitHub repository2 and release it under an open-source
license (GPL33); we chose open-source solutions due to their advantages in terms of acces-
sibility and cost. The documentation is hosted publicly,4 and the manual is complete: the
policy of the development team is to merge contributions only if they contain appropriate
additions/modifications to the User’s manual and all the public functions and classes have
their own docstrings. Moreover, the directory notebooks5 contains several Jupyter notebooks
that show how to use the library to develop realistic pipelines.

We implemented LBS in Python, striking a balance between development efficiency
and performance, as it offered a familiar and widely used language within the LiteBIRD
collaboration. While other choices, such as C++, Fortran, or Julia, might offer some
performance advantages, Python has so far enabled faster prototyping and broader accessibility
across the team, while providing adequate performance. Our code heavily uses NumPy [5], to
handle arrays and matrices, and employs Numba [6] for those most CPU-intensive tasks where
we measured a distinct advantage over NumPy. Numba has proven crucial in maximizing the
performance while keeping the amount of memory allocated by modules like the pointing
simulator reasonable, as explained in section A. Moreover, Numba makes code deployment
straightforward, as one does not need to ensure the availability of a C/C++/Fortran compiler

2https://github.com/litebird/litebird_sim.
3https://www.gnu.org/licenses/gpl-3.0.en.html.
4https://litebird-sim.readthedocs.io/en/master/index.html.
5https://github.com/litebird/litebird_sim/tree/master/notebooks.

– 5 –

https://github.com/litebird/litebird_sim
https://www.gnu.org/licenses/gpl-3.0.en.html
https://litebird-sim.readthedocs.io/en/master/index.html
https://github.com/litebird/litebird_sim/tree/master/notebooks

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

on the host system. We use AstroPy [7–9] to track time and perform coordinate conversions
and Healpy [10] to handle sky maps in HEALPix format [11].

Since LBS is a library and not an executable, the user willing to run a simulation must first
write a script that uses the library to perform the computations. Importing the library is easy,
as it is listed on the Python Package Index;6 thus, LBS can be installed using the command

pip install litebird_sim==0.11.0

where we specified version 0.11.0 because it is the subject of this paper. (Avoiding the version
specification will install the most recent, which is 0.15.1 at the time of writing.)

3.2 Memory layout

LBS is designed to model the continuous data output of LiteBIRD’s onboard instruments over
its nominal three-year duration. LBS does not simulate low-level hardware functionalities
such as the response of the optical system to its components (mirrors, struts, etc.) or the
propagation of thermal instabilities within the mechanical structures. By focusing on the
timelines of scientific samples rather than hardware-level operations, LBS tries to achieve a
balance between simulation fidelity and computational feasibility.

The most significant feat in simulating the output of a three-year space mission with
thousands of detectors is to allocate sufficient RAM for all the data structures. In this section,
we describe the way the framework manages data.

3.2.1 Scientific samples

A key functionality provided by LBS is the allocation of the so-called Time-Ordered Data7

(TOD). A TOD is stored as a matrix where each row represents the simulated output timeline
of a single detector. Storing this matrix requires substantial memory, potentially exceeding
the capacity of typical computer systems when simulating multiple detectors at once: each
detector samples the input signal from the telescope at a frequency of 19 Hz using 32-bit
floating-point numbers, thus requiring more than 6 GB per detector.

To overcome potential memory limitations and accelerate calculations, LBS fully supports
MPI for distributing the TODs across multiple processes. Considering a TOD matrix of
shape N ×M , where N is the number of detectors and M the number of samples, there
are several ways to split it among k MPI processes:

• Splitting along the time axis results in each process holding a matrix of shape N×(M/k).
This layout is optimal when the simulation needs to work on the timelines of multiple
detectors at once. For instance, noise correlations among detectors on the same wafer
can be simulated efficiently using a correlation matrix and Cholesky decomposition.
This data layout avoids inter-process communication overhead if no wafer hosts more
than M/k processes.

6https://pypi.org/project/litebird_sim.
7LBS can also be used to run map-based simulations that do not need to simulate timelines. In fact, it has

been used to develop map-based pipelines used internally by the LiteBIRD collaboration. These simulations
are orders of magnitude faster to run but produce less realistic results.

– 6 –

https://pypi.org/project/litebird_sim

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

• Splitting along the detector axis leads to a TOD matrix with a (N/k)×M shape. This
layout is typically employed when the simulation pipeline needs to compute Fourier
transforms of the timelines.

• More generally, one might want to split the number of detectors N and the number of
time samples M simultaneously.

LBS lets the user to specify two parameters:8 n_blocks_det and n_blocks_time, which
define the number of splits for detectors and time samples, respectively. The default setting
for both is 1, the only possible choice for serial applications where MPI is not employed.
A visual depiction of the behavior of these two parameters is shown in figure 1, which is
taken from the LBS User’s Manual.

Providing the ability to specify the split layout during the initial allocation of the TODs
might not be enough for complex simulations that require running modules in sequence
with different requirements. For instance, users might want to simulate the presence of
correlations between detectors and time correlations (1/f noise) in the same script: in this
case, there is no optimal split layout that can work with both simulation modules. To
accommodate these cases, LBS lets the user change the data splits after the TODs have been
allocated; this is done through the method Observation.set_n_blocks(), which accepts
new values for n_blocks_det and n_blocks_time and reshuffles the samples in every TOD
matrix across different MPI processes.

Another feature provided by LBS is the ability to work with multiple TOD matrices at
once. When modeling data acquisition, it is often advisable to keep different signal components
separate, such as the scientific signal and various noise contributions. Moreover, the sky signal
itself typically consists of multiple astrophysical components, including the CMB, thermal
emission from interstellar dust, and synchrotron emission from charged particles, among others.
To track each component, LBS can create multiple 2D matrices per MPI process, ensuring that
distinct contributions are represented individually, at the expense of increased memory usage.

Apart from the samples in a TOD, simulation modules often need additional information
about the detectors being simulated. LBS can store an arbitrary number of attributes in
memory; examples include the name of the wafer hosting the detector, the white noise level,
the slope and knee frequency of the 1/f noise. When the user configures LBS to distribute the
N detectors across separate MPI processes, the framework ensures that the relevant attributes
for each detector are also distributed to their corresponding process, enabling each process to
have the necessary data for simulations and calculations available without duplication or the
need for inter-process communication. For instance, if two processes #1 and #2 simulate
four detectors A, B, C, and D, setting n_blocks_det=2 and n_blocks_time=1 will make the
parameters for detectors A and B available only on process #1. In contrast, the parameters for
C and D will be present on process #2. The method Observation.set_n_blocks(), which
we described above and lets to change the split layout of the TOD matrices, automatically
redistributes the attributes too.

8Starting from version 0.14.0, LBS offers more sophisticated grouping options for N , enabling detectors to
be grouped based on their hosting wafer or other attributes. However, this feature was not used in [2] and will
not be discussed further here.

– 7 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

Figure 1. The way LBS can split a 2D matrix containing a TOD, as well as any other attribute
associated with each detector, like the noise level, the FWHM of the beam, etc. The first row
illustrates how splits are made when the code is run in serial mode, i.e., without MPI. The parameters
n_blocks_det and n_blocks_time specify the number of splits between the detectors and along the
time axis, respectively. The bottom right panel shows how TODs are split when there are four MPI
processes. Attributes can be copied over many MPI processes if these processes handle the same
detectors. (The latter is the case of the two panels on the right.)

3.2.2 Pointing information and Half-Wave Plate angles

Beyond TODs, the collection of pointing information also requires consistent memory alloca-
tions. Pointing information specifies the direction and orientation of each detector’s beam
axis at the time when each sample was measured, and it is typically expressed through three
angles: colatitude, longitude, and orientation (tilt). Consequently, the pointing matrix for
N detectors and M time samples is a N ×M × 3 array. For MPI applications, LBS stores9

these matrices using the same distribution strategy as the TOD matrices.

9As it is the case for CMB space surveys, the nominal scanning strategy is a composition of rotations with
constant angular speed. In simulation codes, the typical approach is to encode these rotations as lowly-sampled
quaternions, e.g., one per second or even less, depending on the angular speeds, and then use spherical linear
operations (“slerp”) to compute pointing angles at the same sampling frequency as scientific data. Since
version 0.13.0, LBS can compute pointings for each detector on the fly from quaternions, thus avoiding the
need to store the pointing matrices and significantly reducing memory usage.

– 8 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

In LBS 0.11.0, we used a simple scheme to encode the direction and orientation of the
main beam of each detector as well as the angle of the HWP:

• The direction of the main beam was encoded by two angles (colatitude and longitude);

• The orientation and the Half-Wave Plate angle were summed together and saved as an
angle, called the “polarization angle”.

The polarization angle is enough to simulate the behavior of a pencil beam and an ideal
HWP, as under these assumptions, the map-maker has enough information to solve for I, Q,
and U in each pixel. However, this approach provides insufficient information to simulate
the systematic effects of non-ideal, asymmetric beams and realistic HWPs. For this reason,
after version 0.11.0, we progressively implemented a more realistic model for pointings and
HWP angles, which will be used in future simulation runs:

• Since version 0.12.0, LBS stores the HWP angle and the orientation as two distinct
angles;

• As the previous change increased the memory occupation, since version 0.13.0, pointings
can be computed on-the-fly;

• Starting from version 0.14.0, the polarization angle is no longer considered to be part
of the orientation of the beam. This change prepared the integration of the 4π beam
convolution code provided by the Ducc10 library (see section 6.7), as 4π beams produced
using electromagnetic simulation codes already encode the orientation of the polarization
plane. (If no beam convolution is used in the code, it is still possible to tell LBS to add
the polarization angle to the orientation angle when doing map-making, as it was the
case before.)

3.2.3 I/O

One of the purposes of LBS is to produce simulated data to be fed into data reduction
pipelines, thereby validating the latter. To enable this interaction, LBS provides tools that
save the timelines and the pointing information in HDF5 files. In version 0.11.0, LBS ensures
that every MPI process saves its TODs and pointings in separate files; thus, a program
running on N MPI processes will save 2N files. To save disk space, the user can use a flag to
instruct LBS to store the low-sampled quaternions used for computing the pointings instead
of the full N ×M × 3 pointing matrix.

HDF5 metadata are used extensively to save ancillary information; examples include
the list of names of the simulated detectors and their nominal sampling rates, their angular
resolution, and a human-readable description of the simulation, among others.

Saving of HDF5 files has been crucial to interface LBS with the Commander pipeline,
as explained in [4].

10https://gitlab.mpcdf.mpg.de/mtr/ducc.

– 9 –

https://gitlab.mpcdf.mpg.de/mtr/ducc

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

3.2.4 Other data

Simulation modules often need to create new objects in memory, like sky maps or Fourier-
transformed timelines. For MPI applications, modules usually allocate only those objects
relevant to the data chunk hosted by their TOD matrix. A notable exception is the map-
making module: as the maps are typically created from the samples acquired by several
detectors and the resolution11 of LiteBIRD’s beams is not as high as for other CMB ground
experiments, each MPI process receives a full copy of the final map.

3.3 Provenance tracking

Any simulation of a real scientific instrument needs several inputs that describe how the
instrument is made and how it operates: what is the sampling frequency of the detectors,
what are the characteristics of the noise profile, how many bits are used to measure one
sample, what are the parts of the celestial sphere that are observed by the instruments
during the nominal data acquisition, etc. This description is typically stored in a so-called
Instrument Model (IMo), which is a database containing the details of each detector, optical
system, hardware component, and so on. The LiteBIRD collaboration has implemented the
IMo in a versioned database, where each quantity is referred through a path and a version
number. The implementation of the database is provided by InstrumentDB [12],12 a Python
program that manages information via a SQLite [1] database. InstrumentDB is more than a
plain database, as it provides a programmatic interface over the web that can be accessed
by software written in any language. InstrumentDB is kept on a remote server hosted at
the ASI–SSDC13 (Agenzia Spaziale Italiana Space Science Data Center), whose access is
restricted both for its web interface, which LiteBIRD members commonly access, and for
its RESTful HTTP interface, which is usually used by scripts.

LBS can use the web interface to retrieve information from the database. However, as
calls to a remote server can easily be a bottleneck for large-scale simulations that need a
large number of inputs, InstrumentDB permits exporting the database to a folder, which
can be copied to another computer and accessed locally by LBS itself. The latter is the
preferred method for the LBS modules to fetch their inputs; in fact, this is the only way14

the E2E scripts described in [2] can operate.
The LiteBIRD collaboration maintains a comprehensive description of the design of the

spacecraft and of the instruments in the SSDC database server, which is restricted to members
of the LiteBIRD collaboration. However, the source code of LBS includes a reduced version
of the database containing the basic design parameters that have already been published
in [3]. This allows users outside the collaboration to use LBS to run simulations, with the
caveat that these may not represent the most up-to-date design of the experiment. For

11The highest angular resolution of LiteBIRD channels is 17.9 arcmin at 402 GHz, and the typical resolution
of Healpix maps used in the LiteBIRD collaboration is NSIDE=512, which leads to 36 MB of storage space for
a collection of three maps (I/Q/U).

12https://github.com/ziotom78/instrumentdb.
13https://www.ssdc.asi.it/.
14We purposefully prevented E2E scripts from querying the remote database to avoid saturating the network

bandwidth at SSDC. Scripts based on LBS can access the remote database only if they send few requests per
minute, otherwise the SSDC webserver will throttle the connection.

– 10 –

https://github.com/ziotom78/instrumentdb
https://www.ssdc.asi.it/

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

instance, the reference to the table containing general facts about the LFT instrument might
be stored in the object whose path is

/releases/v10.3/satellite/LFT/instrument_info

(assuming a hypothetical version 10.3 of the IMo), while the corresponding information taken
from [3] is stored in the publicly available object with path

/releases/vPTEP/satellite/LFT/instrument_info

A simplified view of the public PTEP IMo bundled with LBS 0.11.0 is illustrated in
figure 2. The relevant information is stored in the so-called “quantities”, which are represented
as oval nodes with a gray background; all the quantities shown in the figure are JSON records
containing several parameters that describe the “entity” to which they refer:

• A scanning_parameters quantity contains the parameters of the nominal scanning
strategy: spinning speed, angles of the rotation axes, etc.

• A instrument_info quantity contains general information about the instrument, such
as the number of frequency channels or the angle between the boresight of the focal
plane and the spin axis of the spacecraft.

• A detector_info quantity contains several synthetic parameters that describe the
performance of a single detector, such as the NET and 1/f noise characteristics.

• A channel_info quantity contains the average values of several quantities associated
with detectors operating at the same nominal frequency. They are the same as those
found in the detector_info objects, and are used for rough simulations where the
detailed behavior of every single detector is not relevant.

As explained before, information is retrieved from the IMo through paths, which are
plain Python strings. Thus, to retrieve the JSON dictionary associated with detector
000_000_003_QA_040_T, the path to be passed to LBS is

satellite/LFT/L1-040/000_000_003_QA_040_T

Note that, as LBS refers to objects through their full path, it can handle any topol-
ogy of the IMo. The official IMo database, which is not publicly available, uses a more
complicated layout.

4 Modules implemented in LBS

To simulate complex instruments like those onboard the LiteBIRD spacecraft, multiple
modules are required. Considering the task of simulating the nominal acquisition of the
instruments, the following components are needed at a minimum:

• A flight simulator that models the way the spacecraft moves in space as time passes;

• An optical simulator that considers the way photons propagate from celestial sources
(CMB, ISM, point sources, . . .) to the telescope;

– 11 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

scanning_parameters

instrument_info

instrument_info

instrument_info

channel_info

channel_info

channel_info

channel_info

channel_info

channel_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

detector_info

satellite

LFT

MFT

HFT

L1-040

L2-050

000_000_003_QA_040_T

000_000_003_QA_040_B

000_000_003_QA_050_T

000_000_003_QA_050_B

M1-100

M2-119

001_002_030_00A_100_T

001_002_030_00A_100_B

001_000_030_00A_119_T

001_000_030_00A_119_B

H1-195

H2-235

002_000_063_U_195_T

002_000_063_U_195_B

002_001_063_U_235_T

002_001_063_U_235_B

Figure 2. Simplified view of the PTEP IMo bundled with LBS 0.11.0. Boxes represent “entities”, i.e.,
the nodes that provide the structure (topology) of the tree, while gray ovals represent the “quantities”
that contain actual data. (A third level is represented by “data files”, which are different versions
of a quantity and are similar to commits in a Git repository.) The image only shows a few entities
and quantities of the whole tree: for each instrument (LFT, MFT, HFT), only two channels are
represented, and each channel shows only two detectors.

– 12 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

• An electronic simulator that simulates the way the signal captured by the optical system
is measured and digitized by detectors;

• A noise simulator that injects realistic instrumental noise in the samples measured by
the detectors;

• Etc.

We are not going to provide an exhaustive list of the modules implemented by LBS,
as this list is still growing; the interested reader can refer to the User’s manual available
at https://litebird-sim.readthedocs.io, which includes the documentation of all the
modules15 implemented in LBS.

In this section we will describe some of the modules implemented in LBS 0.11.0; we will
then use these modules in section 6 to implement a simple pipeline.

For the sake of clarity, we group the modules in two sets: simulation modules and
data-reduction modules. The formers have the task to simulate a process or the behaviour of
some hardware, while the latters will be eventually replaced by the code that will be used
to process the data acquired by the real instrument.

4.1 Simulation modules

4.1.1 Simulation of input maps

LBS provides the tools necessary to produce synthetic maps of the CMB and foreground sky
at a specific observation frequency. These maps can then be observed through a simulation
of the way the spacecraft spins, as discussed in more detail in section 6.5. The production of
synthetic sky maps is performed through the PySM3 [13, 14] library, which is conveniently
wrapped by the Mbs module, whose acronym stands for Map-Based Simulation. Therefore,
LBS supports all the models provided by PySM3.

4.1.2 Scanning strategy

LBS can simulate the orbit of the spacecraft and compute the directions where each detector
is looking at the sky as a function of time, i.e., the pointing information. The LiteBIRD
spacecraft will scan the sky spinning around its spin axis while precessing around the Sun-
Earth direction and orbiting around the Second Lagrangian point of the Sun-Earth system.
The details of the scanning strategy are described in [3]. Here, we provide some basic facts
that help to understand how LBS produces the pointing information.

The most important thing to stress is that LiteBIRD will perform a survey of the sky,
which means that the spacecraft will perform a set of periodic, continuous movements instead
of pointing the telescope at several targets in sequence. The movements simulated by LBS
are the composition of a set of rotations:

• The spacecraft rotates around its spin axis at a constant angular speed;
15As stated in section 3, the development team has the rule that no new module is integrated in the codebase

if it is not fully documented in the User’s Manual.

– 13 –

https://litebird-sim.readthedocs.io

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

• The spin axis of the spacecraft rotates around the Sun-Earth axis at a constant angular
speed;

• The Sun-Earth axis rotates around the Sun with a period of 365 days.

Of the three rotations, only the last one is not performed at a constant angular speed;
instead, LBS uses AstroPy [9] to model the true revolution of the Earth around the Sun
accurately.16 To accelerate pointing generation, the code encodes rotations using quaternions
sampled at a tunable frequency that is typically lower than the detectors’ sampling frequency,
and then it employs a slerp operation to compute the timelines of pointings at the nominal
sampling rate.

4.1.3 Instrumental noise

A realistic simulation of any instrument must include a noise component. Currently, LBS
permits simulations of white noise and correlated noise with a 1/f shape. There is no facility
yet to introduce correlations in the noise between different detectors; however, this can be
quickly implemented by multiplying the matrix containing the noise timelines by a proper
correlation matrix. The power P (f) of the noise for each detector as a function of the
frequency f is modeled by the following equation:

P (f) = σ2
(

1 +
(

fk

f + fmin

)α)
, (4.1)

where σ2 is the power associated with white noise, fk is the so-called knee frequency of the
correlated noise, α is the slope of the 1/f component, and fmin ≪ fsamp is a parameter that
avoids the singularity at f = 0. The noise simulation module provided by LBS requires the
values of the three parameters σ2, fk, and α to be provided for each detector.

Creating realistic 1/f noise is technically challenging, as the amount of power associated
with this component increases with the inverse of the frequency, and this means that there
are correlations between samples separated by long time intervals. However, this prevents
MPI-based simulations from splitting TODs along the time axis, unless some compromises
are made on the correlation of the simulated noise timelines. There are noise generators
that can produce noise with long correlations. Still, LBS 0.11.0 uses a simpler approach
where white noise goes through a high-pass filter before being added to each N ×M matrix
containing the scientific signal. This means that the noise coherence is not preserved across
MPI processes. This approach has been employed by other CMB-oriented frameworks, such
as [15], and has been shown to be sufficient for many applications, as the slowest noise terms
are typically suppressed17 as part of the pre-processing. The problem of simulating 1/f noise

16LBS can simulate a constant-speed revolution of the Earth around the Sun, for those simulations where
accuracy is not as important as the speed of execution of the code. Moreover, the module can compute the
expected velocity of the spacecraft with respect to the Sun. This can be used to simulate the kinetic dipole
resulting from the spacecraft’s motion with respect to the Sun. For this purpose, LBS implements an orbit
simulator that simulates a Lissajous orbit, similar to the one followed by other spacecrafts orbiting L2 like
WMAP and Planck.

17Several techniques can be used to reduce low-frequency correlated noise, including relative gain calibration
and map-making algorithms.

– 14 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

is a telling example of the difference between a mathematical model and a numerical model:
even though the model expressed by (4.1) is simple, a precise numerical implementation is
not. We foresee that in the future we will probably need to implement a more sophisticated
noise generator that avoids this problem.

4.1.4 Solar dipole

LBS provides tools to simulate the signal associated with the relative velocity of the Solar
System with respect to the CMB, i.e., the solar dipole.18 The CMB dipole is caused by a
Doppler shift of the frequencies observed while looking at the CMB blackbody spectrum,
according to the formula

T (β⃗, n̂) = T0

γ
(
1− β⃗ · n̂

) , (4.2)

where T0 is the temperature in the rest frame of the CMB, β⃗ = v⃗/c is the dimensionless
velocity vector, n̂ is the direction of the line of sight, and γ =

(
1 − β⃗ · β⃗

)2.
CMB experiments usually employ the linear thermodynamic temperature definition,

where temperature differences ∆1T are related to the actual temperature difference ∆T

by the relation

∆1T = T0
f(x)

(BB(T0 + ∆T)
BB(T0) − 1

)
= T0

f(x)

 exp x− 1
exp

(
x T0

T0+∆T

)
− 1
− 1

 , (4.3)

where x = hν/kBT0,

f(x) = xex

ex − 1 , (4.4)

and BB(ν, T) is the spectral radiance of a black-body according to Planck’s law:

BB(ν, T) = 2hν3

c2
1

ehν/kBT − 1
= 2hν3

c2
1

ex − 1 . (4.5)

LBS implements several simplifications of eq. (4.2) that we call “dipole models”; they are
reported19 in the User’s manual.

4.1.5 Ideal HWPs

LiteBIRD implements Half-Wave Plates (HWPs) for each of its three instruments to rotate
the polarization angle of the radiation entering the optical systems. In version 0.11.0, LBS
simulates an ideal HWP, whose only effect is to alter the orientation angle of the detector, as
described in section 3.2.2. (More accurate simulators have been implemented in LBS 0.15.0.)

18LBS is able to simulate the kinematic dipole too. We leave the interested reader to the relevant chapter in
the User’s Manual: https://litebird-sim.readthedocs.io/en/latest/dipole.html.

19https://litebird-sim.readthedocs.io/en/latest/dipole.html.

– 15 –

https://litebird-sim.readthedocs.io/en/latest/dipole.html
https://litebird-sim.readthedocs.io/en/latest/dipole.html

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

4.2 Data-reduction modules

Being a simulation framework, LBS should not include data-reduction modules. Nevertheless,
we implemented a few map-makers in LBS, as there are cases where maps are often more
straightforward to analyze than timelines: their most significant advantage is that they take
significantly less space and are easier to visualize.

The LBS map-makers save maps in FITS files using the Healpix20 [10, 11] pixelization
scheme. The following map-makers can be used with LBS:

• An internal binner, i.e., a simple map-maker that assumes that only uncorrelated noise
is present in the timelines.

• An internal destriper, i.e., a more advanced map-maker that can remove the effect of
correlated instrumental noise from the timelines before producing a map.

• A wrapper around the TOAST2 destriper [15], which is an optional dependency: this
map-maker is available only if the user installed TOAST2 alongside LBS.

• A function that exports the TOD to FITS files whose format is compatible with the
Madam mapmaker [16].

5 Validation

We describe here the problem of validation, i.e., how to ensure that the pipeline produces
correct outputs.

To validate a simulation software, it is necessary to ensure that the following requirements
are met:

• The software must be accurate, i.e., the results must match the expected within some
reasonable threshold;

• The software should be reliable: if the input parameters are wrong, it should signal it,
and in any case it should warn the user about unexpected features in the simulated
data.

• The results produced by the software should be reproducible, i.e., anybody who has
access to the source code and to the input parameters should be able to get the same
outputs.

• The code should be performant, both in terms of speed and resource occupation (memory,
disk space, etc.).

5.1 Accuracy

LBS is not a simulation software but a framework. Thus, it is hard to determine whether its
implementation is accurate enough or not, as an accuracy target is typically set for a specific
pipeline. However, the modules in LBS can be validated so that their expected accuracy

20http://healpix.sourceforge.net.

– 16 –

http://healpix.sourceforge.net

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

is enough for the kind of applications the framework is currently used in the collaboration.
There are cases where we have implemented more than one algorithm for the same task:
(1) we have two pointing generators that trade between speed and accuracy, and (2) we
implemented several ways to produce a map from a set of timelines.

In LBS, we ensure that algorithms are accurate by means of several sets of automatic tests:

• Unit tests, which test the correct behaviour and accuracy of single functions;

• Integration tests, which test the correctness and accuracy of single modules;

• E2E tests, which exercise multiple modules at once.

We discuss E2E tests in the companion paper [2], so in this section we will describe
only the unit tests and integration tests.

Unit tests ensure that single functions work correctly. They typically call the function to
test with some easy-to-understand parameters and check that the result is what is expected.
(These tests are good for documentation purposes as well.) The following example shows
the tests for the function compute_pointing_and_polangle (in tests/test_scanning.py),
used to compute the pointing direction and the polarization angle out of a quaternion
representing the orientation of the boresight of a detector:

def test_compute_pointing_and_polangle():
quat = np.array(lbs.quat_rotation_y(np.pi / 2))
result = np.empty(3)
lbs.compute_pointing_and_polangle(result, quat)
assert np.allclose(result, [np.pi / 2, 0.0, -np.pi / 2])

We stay along the same pointing, but we're rotating the detector
by 90°, so the polarization angle is the only number that
changes
lbs.quat_left_multiply(quat, *lbs.quat_rotation_x(np.pi / 4))
lbs.compute_pointing_and_polangle(result, quat)
assert np.allclose(result, [np.pi / 2, 0.0, -np.pi / 4])

One of the limitations of unit tests is that the set of test inputs is necessarily far
smaller than the overall set of possible inputs. Therefore, singularities and catastrophic
cancellations that appear for non-trivial inputs can go undetected. A notable example in
literature is [17], which discovered that in specific cases, the geometric algorithm implemented
in [18] produced incorrect results due to catastrophic cancellation; this error went undetected
because, on average, this cancellation produced detectably wrong results only occasionally,
and this is the reason why the problem went unnoticed in the original paper. An effective
way to detect this kind of errors is to implement random testing, which calls the same
function repeatedly over many random inputs; these tests are effective when verifying result
correctness is straightforward (as in the case explained by [18]). In LBS, an example is found in
tests/test_mapmaking.py, where the function test_cholesky_and_solve_random() tests
that the function solve_cholesky returns the solution of an equation of the form Ax = v,

– 17 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

where A is a 3× 3 Cholesky matrix21 stored in a custom format used by the map-makers.
The test compares the result with the solution of numpy.linalg.solve for a large number
(1000 for LBS 0.11.0) of random Cholesky matrices.

Of course, unit tests are not enough to ensure that a simulation code is accurate and
reliable, because errors can occur when combining several low-level functions into larger
blocks. Integration tests verify that the simulation modules implemented in LBS work as
expected by comparing the results expected by the analytical model with the actual results of
the code. An example is found in test/test_destriper.py, which tests that the results of
the destriping map-maker are accurate. The destriper implements the model presented in [19],
where the destriping operation is represented through a linear operator that can be written
in matrix form; however, the actual code avoids to build these matrices as they get huge in
typical computations, so the numerical implementation of these equations must rely on more
compact data structures. The tests implemented for the LBS destriper consider a minimal
dataset consisting of only seven samples and observing a sky map of just 2 pixels; this case can
be written in full matrix notation, and the test code checks that the results of the destriper
with these inputs match the result obtained by simply inverting the destriping matrix. The
test code is pretty long, as it amounts to roughly 1000 lines of code, because it includes unit
tests, integration tests, and the code that builds the theoretical matrices and invert them.

5.2 Reliability

We have implemented several tests to ensure that the framework’s foundations behave as
expected in various situations. Dedicated tests for MPI processes are implemented in a
separate script (test/test_mpi.py), which checks the consistency of TOD/pointing matrices
and attributes when different split layouts are used (see section 3.2). These tests also verify
the correct behavior of MPI-aware modules, such as the binner and the destriper.

In addition to tests, we have adopted a defensive approach in coding LBS and implemented
several asserts in the code. These checks ensure the consistency of the parameters at each
stage of the processing.

We list here only a few checks22 that the LBS modules perform:

• Incorrect splitting of the 2D matrix of samples across the MPI processes;

• Incorrect correspondence between the components of a TOD and the components to be
assembled by the map-maker;

• Wrong order in the calls to modules (for instance, the removal of baselines from a TOD
is called before destriping);

21Cholesky matrices are used by the internal destriper to solve for the three Stokes components I, Q, and U

of each pixel. Cholesky-based algorithms are advantageous in this context due to their low memory storage
requirements, robustness, and high performance. We implemented a dedicated Cholesky solver tailored for
3 × 3 matrices, rather than using existing libraries, because we store the coefficients of the symmetric matrix
in a custom data type that keeps the six nontrivial matrix coefficients in a single vector. Numba unrolls most
of the loops in our code, and the performance of this routine is roughly 30 % more efficient than SciPy’s
cholesky function.

22At the time of writing, there are 128 assertions in the code, plus 63 raise statements that provide detailed
messages when LBS detects problems in the input.

– 18 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

• The caller requests a frequency outside the range of a detector bandpass;

• Inconsistent inputs to the module that simulates the scanning strategy.

5.3 Reproducibility

Apart from accuracy and reliability, simulation codes must ensure that their results are
reproducible. There are several reasons why a software code called more than once produces
different outputs:

• The input parameters might be different23 between different runs;

• The person who ran the code might have been unaware that the source code was
modified between two runs;

• The code might depend on some hidden internal state, e.g., the presence of a file that
has been updated between two runs, or the seed for the random number generator
being initialized using the computer’s clock.

It is generally impossible to ensure that none of these conditions occur, but LBS tries
to minimize the likelihood of their happening.

First, when LBS is used in a script, it always generates a report in Markdown/HTML
format in the output directory. This report includes several information that are useful
for archival purposes:

• The date when the simulation was run;

• The version number of LBS;

• The hash of the most recent Git commit and the output of git diff (see below);

• Other information.

The fact that the report is saved together with the simulation outputs (raw timelines,
maps, plots, etc.) ensures that these outputs are easy to reproduce for several reasons
that we detail here.

LBS encourages people implementing pipelines to provide the input parameters of their
simulation scripts as parameter files in TOML format. (See section 3.3.) These files are
always copied to the output directory, and thus they can be passed as inputs to a new
run of the simulation scripts.

Of course, ensuring that input files are the same is not enough, because the code of
the simulation program must be the same. It is often the case that people modify the code
on the fly once they discover a bug but do not bump the version number! LBS provides a
way to check source code consistency was not changed by assuming that the source code
of the script that calls LBS is kept in a Git repository. LBS automatically saves the hash
of the latest Git commit in the report saved in the output directory, allowing the user to

23This happens typically when the program asks the user to type input parameters using an interactive
prompt. LBS does not provide any facility to input data in this way.

– 19 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

verify whether two simulations were executed using the same commit or not. Unfortunately,
it is often the case that programmers test the code before saving it in a commit; for this
reason, if LBS detects that there are unsaved modifications in the code, it saves the output
of git diff in the report as well.

Finally, there is the possibility that the code has some state that is not preserved across
separate runs. There is no reliable solution that can work 100% of the time to prevent hidden
state24 from altering the results of a computation. However, a common source of confusion
is the seed used to generate pseudo-random numbers, as it is often initialized to a value
derived from the system clock. LBS requires that the parameter random_seed accepted by
the constructor of the class Simulation be always provided. The seed can be None or an
integer number; setting it to None uses the internal clock and thus prevents the reproducibility
of the results; however, we feel the fact that random_seed=None must be spelled explicitly
in the source code to enable this behaviour is a good-enough “red flag”. Instead, by setting
random_seed to an int, the results of separate runs of a script will produce the same sequence
of pseudo-random numbers. The seed can be changed by using sim.init_random, i.e., the
same function used at the end of the Simulation constructor to set up the RNG:

sim.init_random(
random_seed=6789,

)

When running a parallel script, the Simulation constructor will take care of providing
each process with a (different) dedicated RNG that produces uncorrelated sequences. The
results will be reproducible when running the same script using the same random_seed
and the same number of MPI processes. If the user uses the same seed but a different
number of processes, the results will be different; however, LBS will include a warning in
the output report.

5.4 Performance

In the development of LBS, we have verified that existing codebases like TOAST2, the
simulation pipelines used for Planck, and other map-makers have performance similar to
pipelines developed in our implementation. We also monitored the memory usage and speed
of the E2E script described in [2] and collaborated closely with its development team to
optimize memory usage and reduce CPU time.

As Python is notoriously slow when implementing loops, we have utilized NumPy and
Numba to accelerate execution. Numba is particularly well-suited for loops that iterate over
large arrays. It can easily beat NumPy, as the broadcast operation implemented by the latter
requires multiple loops. We show an example in section A.

24In principle, using functional languages like Haskell or Clojure and purely functional data structures might
prevent this kind of error. However, no language is perfectly functional and thus the problem would still
be unsolved.

– 20 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

6 A full example

So far, the description of the LBS framework has been only theoretical. To better highlight
the features of the code, in this section we implement a simple E2E pipeline step-by-step.
The reader can test all the code snippets in this section, provided that LBS 0.11.0 has
been installed25 using pip and that the commands are executed in the same sequence they
appear in this paper.

This example pipeline is not as polished as the official one described in the companion
paper [2]. Here, our aim is to demonstrate the features of LBS and how its modules work
together. The example will be split into several fragments that are meant to be read in the
same order as they are presented in the paper. The interested reader can test the code on
their computer, as the example was designed to be runnable on personal computers. We
print the source code using colors to highlight the syntax, and if there is some output, we
report it in black color under the code, like in the following example:

import litebird_sim as lbs
print(

f"litebird_sim {lbs.__version__}"
)

litebird_sim 0.11.0

The code imports the LBS Python package, which is published on the Python Package
Index under the name litebird_sim, and it prints the version number. In the code fragments
we are going to present in the next sections, we always assume that the Python package
has been imported under the name lbs.

6.1 Setting up the simulation

The center point of LBS is the Simulation class, which should be instantiated in any pipeline
built using this framework. The class serves as a container for several analysis modules
available to the user, and it tracks both the inputs provided by the user and the output data
generated by the simulation itself. Several pieces of information about the simulations need
to be shared among different modules: for instance, the launch date and the duration of the
simulation impact both the code that allocates the TOD, because it needs to know how many
samples to allocate in memory, and the code that simulates the presence of moving sources
in the sky, because it is required to compute the ephemerides of the planets.

Here, we show how to set up a simulation that lasts one day and starts on January 1st,
2024. We provide both a name and a description, which will be included in the report that
is generated automatically at the end of any simulation:

import astropy

sim = lbs.Simulation(
25The reader is advised to create a virtual environment before installing the litebird_sim package and

trying the commands listed in this work.

– 21 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

base_path="./example",
start_time=astropy.time.Time(

"2024-01-01T00:00:00",
),
duration_s=86_400.0,
name="My simulation",
description="My description",
random_seed=12345,
imo=lbs.Imo(

flatfile_location=lbs.PTEP_IMO_LOCATION,
),

)

The exact meaning of each keyword is explained in the User’s Manual;26 here we highlight
a few points:

• Times are tracked using AstroPy.27

• The parameter duration_s, which takes the length of the simulation, shows a feature
that is used extensively in the code: each quantity associated with a measurement unit
reports the unit itself as part of the name. (In this case, the time must be expressed in
seconds, hence the trailing “_s”.) This makes the code easy to read and reduces the
chance of making conversion errors.

• The random_seed parameter initializes an internal pseudo-random number generator
based on PCG-64.28 If the program is distributed using MPI, the Simulation class
properly creates independent pseudo-random generators for each MPI process starting
from this seed.

• The imo parameter specifies where to look for the characteristics of the instrument. The
constant PTEP_IMO_LOCATION refers to the data file containing a synthetic description
of the instruments as provided in [3]. This is not the official IMo for LiteBIRD, but it
has the advantage that it can be used freely, even by people who are not part of the
collaboration.

The imo parameter is related to the way LBS tracks the provenance of the inputs for
simulations, and its meaning will be explained in the next section.

6.2 Accessing the IMo

The constant lbs.PTEP_IMO_LOCATION in the code fragment shown in the previous section
tells LBS that we will use the reduced IMo database in this example; in this way, any reader
can run the code fragments in this paper, even if they do not have access to the (restricted)
full LiteBIRD IMo database.

26https://litebird-sim.readthedocs.io/en/latest/.
27https://www.astropy.org/.
28https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html.

– 22 –

https://litebird-sim.readthedocs.io/en/latest/
https://www.astropy.org/
https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

Here is the code needed to access information about LFT, one of its frequency channels
(40 GHz), and two of its detectors:

Get a general description of the LFT instrument
(use the specification from the PTEP 2022 paper)
lft_file = sim.imo.query("/releases/vPTEP/satellite/LFT/instrument_info")
print(

"The instrument {name} has {num} channels.".format(
name=lft_file.metadata["name"],
num=lft_file.metadata["number_of_channels"],

)
)

The instrument LFT has 12 channels.

This short code fragment shows the simplest way to access information in the IMo.
The sim.imo object is an instance of the Imo class, which represents either a connection
to a remote database or a link to a local copy of the IMo, as it is the case here. The
query method accepts a path to a resource in the database; here, the odd-looking string
/releases/vPTEP/satellite/LFT/instrument_info uniquely indicates the kind of infor-
mation we are accessing in the database. Specifically, the part /releases/vPTEP refers to the
fact that we want a specific version of the quantity: the one that was described in the so-called
“PTEP paper”, i.e., [3]. (InstrumentDB can keep different versions of the same quantity, and
in fact the restricted database used by the LiteBIRD collaboration contains a more updated
version of this quantity.) The remainder of the path-like string indicates that we are looking
for a quantity named instrument_info, which is stored within a pseudo-folder named LFT.
The result is an object that provides several fields through its metadatata component; in the
code fragment, we print the name of the instrument, “LFT” (kept under the key name) and
the number of detector channels, 12 (kept under the key number_of_channels).

Importing quantities from the metadata field requires knowing their names, such as name
or number_of_channels in the example above, which can make programming with LBS more
challenging. For this reason, LBS provided a number of data classes like InstrumentInfo,
FreqChannelInfo, DetectorInfo, etc., that allow writing more readable code. For instance,
the code above can be rewritten using the class InstrumentInfo in the following way:

Ask the InstrumentInfo class to decode the "metadata"
of the quantity for us
lft_instrument = lbs.InstrumentInfo.from_imo(

imo=sim.imo, url="/releases/vPTEP/satellite/LFT/instrument_info"
)

Accessing the fields of "lft_instrument" is done through
object fields, not Python dictionaries
print(

– 23 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

"The instrument {name} has {num} channels (again).".format(
name=lft_instrument.name,
num=lft_instrument.number_of_channels,

)
)

The instrument LFT has 12 channels (again).

We have found that using these classes instead of directly accessing keys in the metadata
dictionary has significantly improved our productivity, as modern IDEs and editors can suggest
completions for field names. For example, when typing name=lft_instrument.[...], editors
can trigger an auto-completion widget once the dot . has been typed and prompt for the
available choices: name, number_of_channels, etc.

Every time we access the IMo, the Simulation object keeps track of our requests and
stores them in a list that is saved alongside the output of the simulation. For instance, after
the requests in the two code fragments above, the sim object contains the information that
(1) we requested the instrument_info quantity for LFT, and (2) we used the value of the
quantity associated with the version named vPTEP, i.e., the description of the object that
was presented in [3]. This type of information is advantageous when archiving simulation
outputs, as it clarifies what the inputs were and whether the results remain updated with
the instrument’s current design.

We are now going to fetch information about two LFT detectors that will be used in
the simulation we are developing. As these detectors belong to LFT, we must first inform
LBS that this is the instrument we will be simulating. In this way, LBS will know the proper
orientation of the focal plane, as the orientations of the focal planes of LFT and MHFT
are separated by 180° around the spin axis of the spacecraft. Setting the instrument is a
matter of calling the method Simulation.set_instrument:

sim.set_instrument(lft_instrument)

The next step is to load information about the detectors. This task is similar to what
we have done above for the instrument, but this time we fill a DetectorInfo object instead
of InstrumentInfo, and the pathlike string referring to the detector obviously changes.
For the sake of simplicity and to keep the amount of calculations reasonable, we only load
two detectors:

Get information about two 40 GHz detectors
det1 = lbs.DetectorInfo.from_imo(

imo=sim.imo,
url="/releases/vPTEP/satellite/LFT/"

"L1-040/000_000_003_QA_040_T/detector_info",
)
print(

"The NET of detector {det1_name} is {det1_net} µK·sqrt(s)".format(
det1_name=det1.name,

– 24 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

det1_net=det1.net_ukrts,
)

)

det2 = lbs.DetectorInfo.from_imo(
imo=sim.imo,
url="/releases/vPTEP/satellite/LFT/"

"LFT/L1-040/000_000_003_QA_040_B/detector_info",
)

The NET of detector 000_000_003_QA_040_T is 114.63 µK·sqrt(s)

In the examples shown so far, we have hard-coded the paths to detectors and objects in
the Python code. However, in real-world applications, it is advisable to separate the code
from the specification of the input data. LBS permits specifying the detectors to simulate
using external parameter files saved in TOML.29 The following TOML file contains the same
information that we provided in the code fragments presented so far:

[simulation]
base_path = "./example"
start_time = "2030-01-01T00:00:00"
duration_s = 86400.0
name = "My simulation"
description = "My description"
random_seed = 12345

[[detectors]]
detector_info_obj = "/releases/vPTEP/satellite/LFT/←↩

L1-040/000_000_003_QA_040_T/detector_info"

[[detectors]]
detector_info_obj = "/releases/vPTEP/satellite/LFT/←↩

L1-040/000_000_003_QA_040_B/detector_info"

This file can be passed to the constructor of the Simulation class instead of the pa-
rameters we used. This approach has a few advantages:

• All the parameters are kept in one file, and thus modifying the inputs is easier;

• LBS copies the TOML file in the folder where the output of the simulation is saved,
which can thus be run again, passing the same TOML file.

So far, we have loaded the descriptions of two detectors into memory; the next step is to
instantiate the memory to store the samples measured by the simulated instruments. These
are kept in “observations”, which are the data structures that hold the timelines.

29https://toml.io/.

– 25 –

https://toml.io/

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

6.3 Instantiating observations

LBS creates a set of Observation objects, which are basically wrappers around the 2D
matrices containing the scientific samples see section 3.2, and spreads them among the
processes according to a scheme that can be tuned by the caller. Any Observation object
can handle several 2D matrices at once; each of them is represented by a TodDescription
object, where the acronym TOD stands for Time-Ordered Data, and it is common jargon
in the CMB world for denoting these 2D matrices.

The way we allocate Observation objects is through the method create_observations
of the Simulation class. In the following example, we allocate two 2D matrices per each
Observation object, where the first will contain the actual signal (the TOD), and the second
will contain noise:

import numpy as np
sim.create_observations(

We are going to simulate the two detectors
we fetched before
detectors=[det1, det2],
For the sake of simplicity, here we just
keep track of the sky signal and the noise;
more realistic simulations would split "tod"
into its components (CMB, dust, ...)
tods=[

lbs.TodDescription(
name="tod",
description="TOD",
dtype=np.float64,

),
lbs.TodDescription(

name="noise",
description="1/f+white noise",
dtype=np.float32

),
],

)

(We use different datatypes for tod (64-bit floating point) and noise (32-bit floating point)
for demonstration purpose.)

As we said above, if we ran our example using MPI, we could take advantage of the
many processes by passing further arguments to sim.create_observation; these arguments
specify how the timelines should be split among the MPI processes. For the sake of simplicity,
we assume that this example is ran serially using just one computer. However, more realistic
codes can take advantage of several data split layouts, where the global 2D matrix is either
split along rows (different MPI processes handle different detectors), along columns (different
MPI processes simulate different time chunks), or both.

– 26 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

6.4 Simulation of input maps

Here we use Mbs to produce synthetic sky maps:

params = lbs.MbsParameters(
Resolution of the maps to create
nside=32,
Include the CMB
make_cmb=True,
Include the foregrounds
make_fg=True,
List of foregrounds: synchrotron (model #0) and free--free (model #1)
fg_models=["pysm_synch_0", "pysm_freefree_1"],

)

We will simulate the sky as observed by the 40 GHz channels
channel = lbs.FreqChannelInfo.from_imo(

imo=sim.imo,
url="/releases/vPTEP/satellite/LFT/L1-040/channel_info",

)

mbs = lbs.Mbs(
simulation=sim,
parameters=params,
channel_list=[channel],

)
input_maps = mbs.run_all()[0]

The input maps are stored using the Healpix pixelization scheme [11].
In the next section, we will describe how LBS simulates the scanning strategy and produces

a simulation of the signal measurement from the synthetic sky stored in input_maps.

6.5 Scanning strategy

The scanning strategy is encoded in the IMo via a set of angles and angular speeds, and
thus it can be quickly retrieved using the IMo API. The following code loads the nominal
scanning strategy described in [3], computes the quaternions, and produces the pointing
information, which is stored in the same Observation objects that were allocated by the
call to sim.create_observations (see above).

sim.set_scanning_strategy(
lbs.SpinningScanningStrategy.from_imo(

imo=sim.imo, url="/releases/vPTEP/satellite/scanning_parameters"
)

)

sim.compute_pointings()

– 27 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

Each pointing is encoded as a set of three angles: the colatitude and longitude in Ecliptic
coordinates (in radians), and the orientation angle of the detector projected in the same
coordinate system; the latter is used to determine which linear polarization component
is measured by the detector, thereby enabling the reconstruction of the Stokes Q and U

parameters. It is possible to compute other parameters related to the spacecraft’s motion,
but we will discuss them in section 6.8, where we will describe how LBS simulates the
CMB dipole signal.

6.6 An HWP

We include an ideal HWP using IdealHWP, which is a descendant of the class HWP:

sim.set_hwp(
The number is arbitrary
lbs.IdealHWP(ang_speed_radpsec=1.2345),

)

6.7 Map scanning

Once realistic sky maps have been produced (section 4.1.1) and a scanning strategy is set
(section 6.5), it is possible to simulate the actual observation of the signal coming from the
celestial sphere and detected by the bolometers once it has been focused by the optical system.
At the moment, LBS is not able to simulate a convolution of the beam pattern of the optical
system with the sky map, so the code assumes that the optical system is represented by
perfect pencil beams30 with a Full Width Half Maximum close to zero and no sidelobes; the
axis of the pencil beam is aligned with the main axis of each beam.

Under the assumption of a pencil beam, scanning a map is just a matter of projecting the
boresight direction of each detector on the celestial map simulated by PySM (section 4.1.1)
and storing the value of the corresponding pixel on the map in each sample in the timeline:

lbs.scan_map_in_observations(
sim.observations[0],
input_maps,
input_map_in_galactic=False,
component="tod", # Save the measurements in the "tod" 2D matrix
interpolation="", # Do not interpolate pixels

)

The method scan_map_in_observation can optionally perform a linear interpolation
on the value of the pixels on the map through the function pixelfunc.get_interp_val,
implemented by Healpy.

30In LBS 0.15.0, we used a module in the Ducc library, called totalconvolve, that implements a high-speed
algorithm for convolutions of functions over the sphere. With LBS 0.15.0, we can properly simulate the optical
response of full 4π beam patterns.

– 28 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

6.8 CMB dipole

To calculate the dipole signal, LBS must simulate an additional piece of information: the
spacecraft’s orbit, position, and velocity. The implementation of this calculation takes into
account both the revolution of the Earth around the Sun and the orbit of the spacecraft
around the Second Lagrangean point of the Sun-Earth system; the latter can optionally
simulate a Lissajous orbit, as it was the case for the WMAP and Planck spacecraft, but
in this example we will not turn on this option.

The code that implements the calculation of the velocity of the spacecraft is the following:

orbit = lbs.SpacecraftOrbit(
sim.observations[0].start_time,

)
pos_vel = lbs.spacecraft_pos_and_vel(

orbit,
sim.observations,
delta_time_s=60.0,

)

The variable orbit contains all the details about the motion of the Earth with respect
to the Sun and about the orbit of the spacecraft, while pos_vel is a matrix that contains the
position and velocity of the spacecraft computed every minute (the parameter delta_time_s)
for the whole period covered by the observations in sim.observations.

Once the variable pos_vel is ready, we can inject the dipole signal into the timelines
with a few lines of code:

dipole_type = lbs.DipoleType.TOTAL_FROM_LIN_T
lbs.add_dipole_to_observations(

sim.observations,
pos_vel,
dipole_type=dipole_type,
component="tod",

)

The dipole signal is added to the timeline named tod, so the result of the scanning of
the synthetic maps described in section 6.7 that was added in tod too is not overwritten.
We use the model TOTAL_FROM_LIN_T that is described in section 4.1.4.

6.9 Noise generation

For the sake of simplicity, we will include white noise in our example, and we will save it
into the matrix called noise:

lbs.noise.add_noise_to_observations(
sim.observations,
noise_type="white",

– 29 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

component="noise",
random=sim.random,

)

We did not specify the value of the noise parameters σ2, fk, and α used in (4.1), as these
are available to the module through the DetectorInfo class, which was already provided to
the Observation objects instanced by sim.create_observations; see section 6.3.

6.10 Map-making

In our example, we will use the internal destriper provided by LBS:

result = lbs.make_destriped_map(
nside=32,
obs=sim.observations,
params=lbs.DestriperParameters(),
components=["tod", "noise"],

)

[2025-04-11 20:30:09,554 INFO MPI#0000] Destriper CG iteration 1/100, ←↩

stopping factor: 7.028e-08
[2025-04-11 20:30:09,714 INFO MPI#0000] Destriper CG iteration 2/100, ←↩

stopping factor: 1.870e-08

The variable result is an instance of the class DestriperResults, and it includes the
following quantities:

• The estimates of all the baselines of the 1/f noise component;

• The destriped I/Q/U maps;

• The hit map, where each pixel contains an integer number corresponding to the number
of samples in the TOD that have been projected onto that pixel;

• The binned I/Q/U maps, computed under the assumption that all the 1/f baselines
were zero (this is mostly useful to see the effect of the destriper);

• Details about the convergence of the conjugated gradient algorithm and the overall
time spent to produce the maps.

6.11 TOD and map saving

The last part of our example saves the data produced by the simulation to disk. We have
adopted the HDF5 format to save the timelines to disk, and the API to save the data is
straightforward to call:

Save the timelines to HDF5 files
lbs.io.write_observations(sim)

– 30 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

The HDF5 files contain both the timelines of samples and the complete pointing infor-
mation, as well as other details about how the computation was split among MPI processes
and other ancillary information that are useful for archival purposes.

As the maps produced by the destriper (section 4.2) have been produced using the Healpix
pixelization scheme, LBS employs the FITS format to save them; this ensures maximum
compatibility with other codes and experiments:

sim.write_healpix_map("hit_map.fits", result.hit_map)
sim.write_healpix_map("binned_map.fits", result.binned_map)
sim.write_healpix_map("destriped_map.fits", result.destriped_map)

PosixPath("example/destriped_map.fits")

The LBS repository at https://github.com/litebird/litebird_sim contains a
folder named notebooks, which includes several Jupyter notebooks that showcase various
characteristics of the framework.

7 Conclusions

In this paper, we have presented the LiteBIRD Simulation Framework (LBS), a Python
library used for simulating the operations of the three instruments (LFT, MFT, and HFT)
onboard the LiteBIRD spacecraft.

LBS has been developed to provide a user-friendly yet robust framework. It implements
several features to enhance the accuracy, reliability, and reproducibility of the results. These
include the integration of fast Python libraries like NumPy and Numba, automated report
generation, source code tracking, and versioned access to the instrument model.

LBS has successfully been used to conduct E2E simulations of the nominal data acquisition,
with detailed results outlined in the companion paper [2].

A Using Numba to optimize intensive computations

In section 3, we explained that LBS utilizes NumPy for most of the code, but employs
Numba for the most CPU-intensive tasks. We have chosen to use Numba on a case-by-case
basis, depending on whether the E2E scripts required excessive memory or CPU time to
run. Numba provided significant performance boosts in modules like the scanning strategy
simulator and the generation of dipole timelines.

To illustrate how Numba can accelerate numerical codes that operate on long vectors, we
consider a simple example. We have three arrays a, b, and c, each containing 106 elements,
and we want to compute the value 2ai + sin bi/3 cos ci. The following code implements both
calculations, which lead to equally correct results, as the printed numbers are the same:

import numpy as np
from numba import njit, prange

def numpy_calculation(a, b, c, result):

– 31 –

https://github.com/litebird/litebird_sim

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

result[:] = 2 * a + np.sin(b) / (3 * np.cos(c))

@njit(parallel=True)
def numba_calculation(a, b, c, result):

for i in prange(len(result)):
result[i] = 2 * a[i] + np.sin(b[i]) / (3 * np.cos(c[i]))

N = 1_000_000
a = np.random.rand(N)
b = np.random.rand(N)
c = np.random.rand(N)
result = np.empty(N)

numpy_calculation(a, b, c, result)
print("First items calculated by NumPy: ", result[0:3])
numba_calculation(a, b, c, result)
print("First items calculated by Numba: ", result[0:3])

First items calculated by NumPy: [1.19619723 1.30527138 0.2299876]
First items calculated by Numba: [1.19619723 1.30527138 0.2299876]

However, if we measure the time spent in the two functions numpy_calculation() and
numba_calculation(), the latter is significantly faster:

from timeit import timeit

print("""NumPy: {:.4f} s
Numba: {:.4f} s
""".format(

timeit(lambda: numpy_calculation(a, b, c, result), number=5),
timeit(lambda: numba_calculation(a, b, c, result), number=5)))

NumPy: 0.0712 s
Numba: 0.0101 s

This result shows that Numba is roughly 7 times faster than NumPy. A critical detail
that led to this result is that before calling timeit we called once numba_calculation: this
triggered the Numba compiler, which compiled a machine-code version of the routine. This
time is spent only once but it can affect benchmarks: if we avoided using print() in the
example before, the result of timeit on numba_calculation() would have included the
compilation time, and thus the difference would have been smaller. To fully exploit Numba’s
advantages, we only used it for code that is called repeatedly or where the amount of time
spent in processing is significantly larger than the time needed for Numba to compile the
function. Examples include pointing generation and estimation of the dipole signal on all
samples of a TOD, among others.

– 32 –

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

Acknowledgments

This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration
program of JAXA research and development directorate, by the World Premier Interna-
tional Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of
A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891,
JP17H01115, and JP17H01125. The Canadian contribution is supported by the Canadian
Space Agency. The French LiteBIRD phase A contribution is supported by the Centre
National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique
(CNRS), and by the Commissariat à l’Energie Atomique (CEA). The German participation
in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy (Grant No. EXC-2094 - 390783311). The Italian LiteBIRD phase A
contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-
24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute
for Astrophysics (INAF). Norwegian participation in LiteBIRD is supported by the Research
Council of Norway (Grant No. 263011 and 351037) and has received funding from the European
Research Council (ERC) under the Horizon 2020 Research and Innovation Programme (Grant
agreement No. 772253, 819478, and 101141621). The Spanish LiteBIRD phase A contribution
is supported by MCIN/AEI/10.13039/501100011033, project refs. PID2019-110610RB-C21,
PID2020-120514GB-I00, PID2022-139223OB-C21, PID2023-150398NB-I00 (funded also by
European Union NextGenerationEU/PRTR), and by MCIN/CDTI ICTP20210008 (funded
also by EU FEDER funds). Funds that support contributions from Sweden come from the
Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council
(Reg. no. 2019-03959). The UK LiteBIRD contribution is supported by the UK Space Agency
under grant reference ST/Y006003/1 - “LiteBIRD UK: A major UK contribution to the
LiteBIRD mission - Phase1 (March 25)”. The US contribution is supported by NASA grant
no. 80NSSC18K0132. This work has also received funding by the European Union’s Horizon
2020 research and innovation program under grant agreement no. 101007633 CMB-Inflate.

We acknowledge the use of CINECA HPC resources from the LiteBIRD INFN project
and the computing facilities provided by NERSC.

We acknowledge the use of Google Gemini 2.0 and Grammarly to generate suggestions
for improving writing style and proofreading. No content generated by AI technologies has
been presented as our own work.

References

[1] R.D. Hipp, SQLite, version 3.31.1, https://www.sqlite.org/ (2020).

[2] LiteBIRD collaboration, First release of LiteBIRD simulations from an end-to-end pipeline,
JCAP 11 (2025) 042 [arXiv:2507.07122] [INSPIRE].

[3] LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave
Background Polarization Survey, PTEP 2023 (2023) 042F01 [arXiv:2202.02773] [INSPIRE].

[4] LiteBIRD collaboration, On the computational feasibility of Bayesian end-to-end analysis of
LiteBIRD simulations within Cosmoglobe, JCAP 11 (2025) 041 [arXiv:2507.05324] [INSPIRE].

– 33 –

https://www.sqlite.org/
https://doi.org/10.1088/1475-7516/2025/11/042
https://doi.org/10.48550/arXiv.2507.07122
https://inspirehep.net/literature/2944651
https://doi.org/10.1093/ptep/ptac150
https://doi.org/10.48550/arXiv.2202.02773
https://inspirehep.net/literature/2029403
https://doi.org/10.1088/1475-7516/2025/11/041
https://doi.org/10.48550/arXiv.2507.05324
https://inspirehep.net/literature/2943533

J
C
A
P
1
1
(
2
0
2
5
)
0
4
0

[5] C.R. Harris et al., Array programming with NumPy, Nature 585 (2020) 357 [arXiv:2006.10256]
[INSPIRE].

[6] S.K. Lam, A. Pitrou and S. Seibert, Numba: a LLVM-based Python JIT compiler, in the
proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis: HPC Transforms, Austin, U.S.A., 15–20 November 2015
[DOI:10.1145/2833157.2833162] [INSPIRE].

[7] Astropy collaboration, Astropy: A Community Python Package for Astronomy, Astron.
Astrophys. 558 (2013) A33 [arXiv:1307.6212] [INSPIRE].

[8] Astropy collaboration, The Astropy Project: Building an Open-science Project and Status of
the v2.0 Core Package, Astron. J. 156 (2018) 123 [arXiv:1801.02634] [INSPIRE].

[9] Astropy collaboration, The Astropy Project: Sustaining and Growing a Community-oriented
Open-source Project and the Latest Major Release (v5.0) of the Core Package, Astrophys. J. 935
(2022) 167 [arXiv:2206.14220] [INSPIRE].

[10] A. Zonca et al., healpy: equal area pixelization and spherical harmonics transforms for data on
the sphere in Python, J. Open Source Softw. 4 (2019) 1298 [INSPIRE].

[11] K.M. Górski et al., HEALPix — A Framework for high resolution discretization, and fast analysis
of data distributed on the sphere, Astrophys. J. 622 (2005) 759 [astro-ph/0409513] [INSPIRE].

[12] M. Tomasi, G. Luzzi and F. Fabri, InstrumentDB: A scientific database application and
companion Python library,
https://joss.theoj.org/papers/bc39ae4664fe6b4f3d8161105229bf84 (2025).

[13] B. Thorne, J. Dunkley, D. Alonso and S. Naess, The Python Sky Model: software for simulating
the Galactic microwave sky, Mon. Not. Roy. Astron. Soc. 469 (2017) 2821 [arXiv:1608.02841]
[INSPIRE].

[14] A. Zonca, B. Thorne, N. Krachmalnicoff and J. Borrill, The Python Sky Model 3 software,
J. Open Source Softw. 6 (2021) 3783 [arXiv:2108.01444] [INSPIRE].

[15] T. Kisner et al., Toast, DOI:10.5281/zenodo.5559597 (2021).

[16] E. Keihänen, H. Kurki-Suonio and T. Poutanen, Madam — A Map-making method for CMB
experiments, Mon. Not. Roy. Astron. Soc. 360 (2005) 390 [astro-ph/0412517] [INSPIRE].

[17] T. Duff et al., Building an orthonormal basis, revisited, J. Comput. Graph. Tech. 6 (2017) 1.

[18] J.R. Frisvad, Building an Orthonormal Basis from a 3D Unit Vector Without Normalization,
J. Graph. Tool. 16 (2012) 151.

[19] H. Kurki-Suonio et al., Destriping CMB temperature and polarization maps, Astron. Astrophys.
506 (2009) 1511 [arXiv:0904.3623] [INSPIRE].

– 34 –

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/arXiv.2006.10256
https://inspirehep.net/literature/1818116
https://doi.org/10.1145/2833157.2833162
https://inspirehep.net/literature/1930000
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.48550/arXiv.1307.6212
https://inspirehep.net/literature/1244242
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.48550/arXiv.1801.02634
https://inspirehep.net/literature/1695708
https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/10.48550/arXiv.2206.14220
https://inspirehep.net/literature/2141591
https://doi.org/10.21105/joss.01298
https://inspirehep.net/literature/1807163
https://doi.org/10.1086/427976
https://doi.org/10.48550/arXiv.astro-ph/0409513
https://inspirehep.net/literature/659804
https://joss.theoj.org/papers/bc39ae4664fe6b4f3d8161105229bf84
https://doi.org/10.1093/mnras/stx949
https://doi.org/10.48550/arXiv.1608.02841
https://inspirehep.net/literature/1480170
https://doi.org/10.21105/joss.03783
https://doi.org/10.48550/arXiv.2108.01444
https://inspirehep.net/literature/1898506
https://doi.org/10.5281/zenodo.5559597
https://doi.org/10.1111/j.1365-2966.2005.09055.x
https://doi.org/10.48550/arXiv.astro-ph/0412517
https://inspirehep.net/literature/667514
https://doi.org/10.1080/2165347x.2012.689606
https://doi.org/10.1051/0004-6361/200912361
https://doi.org/10.1051/0004-6361/200912361
https://doi.org/10.48550/arXiv.0904.3623
https://inspirehep.net/literature/818586

	Introduction
	Requirements
	Overall design
	Supported platforms
	Memory layout
	Provenance tracking

	Modules implemented in LBS
	Simulation modules
	Data-reduction modules

	Validation
	Accuracy
	Reliability
	Reproducibility
	Performance

	A full example
	Setting up the simulation
	Accessing the IMo
	Instantiating observations
	Simulation of input maps
	Scanning strategy
	An HWP
	Map scanning
	CMB dipole
	Noise generation
	Map-making
	TOD and map saving

	Conclusions
	Using Numba to optimize intensive computations

