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Abstract
The NOD mouse is the best-known, although by no means the only, murine model of type 1 diabetes. In this review, we 
provide a historical perspective, particularly highlighting areas of progress in understanding aspects of aetiology and immune 
pathogenesis, and utility in helping to shape the immunotherapeutic landscape. We introduce points of interest where the 
NOD mouse, a much-studied model, has signposted discovery and knowledge. We discuss genetics, pancreatic islet beta cell 
stress, innate and adaptive immunity and autoantigens, and also focus on immunotherapeutic agents that have been tested 
in NOD mice and in humans. Some therapies, particularly those that are non-antigen-specific, have been more effectively 
signposted, while others, which include antigen-specific therapies, have not. There is an inevitable divergence between mice 
and humans that illustrates the need to use models appropriately. We suggest how to make use of this and other models 
effectively in order to maximise information and knowledge, and suggest not dismissing this important resource because of 
inappropriate comparisons or unrealistic expectations.
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Abbreviations
BB	� BioBreeding
CPI	� Checkpoint inhibitor
ER	� Endoplasmic reticulum
IGRP	� Islet-specific glucose 6-phosphatase related 

protein
LPS	� Lipopolysaccharide
PD1	� Programmed death 1
SCFA	� Short-chain fatty acid

Introduction

Type 1 diabetes is an autoimmune condition, clearly dif-
ferent from type 2 diabetes. Until the 1970s, it was known 
that people living with type 1 diabetes had much greater 
insulin deficiency, although the basis for this was not clear, 

despite pancreatic sections showing immune cell infiltrates 
[1]. Genetic association studies demonstrated that particular 
HLA class I complexes, A8 and B15 (earlier designated 
W15), were associated with the development of type 1 dia-
betes [2, 3]. A very large body of work followed that identi-
fied the HLA region (the human designation of the MHC) as 
containing the most important genetic susceptibility genes 
for the development of type 1 diabetes, particularly HLA 
class II genes. However, this is a polygenic condition, and 
more than 70 gene regions have been reported to contribute 
to susceptibility [4], although most of these have a relatively 
small influence on type 1 diabetes development compared 
with the HLA. Of note, many of the contributory suscep-
tibility regions encode proteins involved in immune func-
tion [4]. In addition, more recent studies have highlighted 
genes involved in other biological functions. These include 
the following: (1) beta cell function and fragility (includ-
ing PTPN2), affecting beta cell responses to cytokines; (2) 
GLIS3, regulating beta cell development; (3) CLEC16A, 
linked to beta cell function and survival [5]; (4) BACH2, 
expressed in islets where it regulates apoptosis in pancre-
atic beta cells and in the immune system, and expression 
is influenced by cytokines [6]; and (5) exocrine function 
(cathepsin H [CTSH], a lysosomal cysteine protease) [7].

The HLA is central to T cell function, as antigenic pep-
tides are recognised together with specific HLA molecules 
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by T cells (CD8+ cytotoxic T cells recognising peptide anti-
gens, 8–10 amino acids in length, together with HLA class 
I and CD4+ helper T cells recognising peptide antigens of 
longer length, together with HLA class II). Thus, the HLA, 
as a major genetic susceptibility region, links to the impor-
tance of T cells in the pathogenesis of type 1 diabetes.

The major site of immune action in type 1 diabetes is in 
the pancreatic islets of Langerhans, which are made up of 
glucagon-producing alpha cells, insulin-producing beta cells, 
somatostatin-producing delta cells, pancreatic polypeptide-
producing gamma cells and ghrelin-producing epsilon cells. 
However, it is the beta cells that are specifically targeted by 
the autoimmune response. From the 1980s, enormous strides 
were made to advance T cell biology including knowledge 
of T cell development in the thymus, T cell differentiation 
into different subsets, how each T cell subset functions and 
their roles in immune responses. T cells are major players 
in direct beta cell damage, although other immune cells are 
also indispensable, and together with soluble mediators form 
an inter-dependent network.

There were other important developments in 
understanding that human type 1 diabetes had an immune 
component. Autoantibodies to insulin [8], the 64K protein 
which was identified as GAD [9], insulinoma antigen 2 
(I-A2) [10], ZnT8 [11] and more recently tetraspanin 7 [12], 
are now known to be present before clinical onset of the 
condition. High levels of two or more of the autoantibodies 
predict clinical type 1 diabetes onset to a large degree [13].

The NOD mouse was developed in Japan during the 
1970s [14, 15] and became available for investigators in the 
USA in the 1980s, with the establishment of NOD mouse 
colonies at UCLA, Harvard University and the Jackson 
Laboratory in the USA, and also in Australia [15, 16]. The 
NOD mouse originated from the Cataract Shionogi (CTS) 
strain to study cataracts, in the Shionogi laboratories in 
Japan [15]. Researchers noticed the insulitis lesions, defined 
as inflammatory cells infiltrating into the pancreatic islets, 
which indicated that this was a model in which immune cells 
were likely to play an important role in damage to islet beta 
cells. Along with this, the mice developed hyperglycaemia. 
At the time, the NOD mouse was not the only model for the 
study of type 1 diabetes autoimmunity, as the BioBreeding 
(BB) rat had also been discovered [17]. However, BB rats 
have been less well studied as there are fewer reagents 
available for study and rats are more difficult to modify 
genetically. Moreover, the BB rat has marked lymphopenia. 
Although BB rats have a place as an important alternative 
animal model (reviewed in [18]), they will not be discussed 
further here.

Concurrent with these discoveries relating to NOD mice, 
there were important developments in our understanding of 
human type 1 diabetes. As mentioned, certain HLA alleles 
are the most important risk factor for human type 1 diabetes 

and the discovery that the NOD MHC class II I-Ag7 (also 
known as I-ag7) was very similar to the high risk HLA allele 
DQ8 in human type 1 diabetes [19] enhanced the importance 
of the NOD mouse as a good murine model for type 1 
diabetes studies.

The NOD mouse develops spontaneous autoimmune dia-
betes. Female mice have a high incidence of between 60% and 
90%, starting from age 12 weeks onwards; male mice have a 
lower incidence, ranging from 10% to <50%, and develop dia-
betes at a later age (Fig. 1a). The time course of disease devel-
opment takes place over weeks, compared with the human 
time course that may take weeks, months or years (Fig. 1b). 
Immune cells infiltrate into islets, including T cells, B cells 
and antigen-presenting cells (APCs) such as dendritic cells 
(DCs) and macrophages. Although autoantibodies in NOD 
mice are a less prominent feature than in humans with type 
1 diabetes, the mice develop autoantibodies to insulin before 
disease onset, with the suggestion that early production of 
autoantibodies may predict earlier onset of diabetes [20].

In addition to autoimmune diabetes, NOD mice have age-
related hearing loss, although this is not unique to NOD 
mice [21], as well as autoimmunity affecting other organs. 
Thyroiditis is commonly found, with infiltration occurring 
earlier than insulitis [22]. Sialitis (inflammation in the 
salivary glands) is also a pathological feature [23] and NOD 
mice have been used as a model of Sjögren’s syndrome [24]. 
Thus, as in humans, the occurrence of other autoimmunity 
is clearly found in the NOD mouse.

The development of diabetes in NOD mice is highly 
dependent on the environment, and these mice require 
housing in specific pathogen-free conditions, where known 
pathogenic micro-organisms are not present. Some (although 
not all) pathogenic viruses and bacteria, as well as relatively 
‘harmless’ infections or infestations (e.g. pinworm infection) 
common in conventional mouse housing, can considerably 
reduce diabetes incidence.

Although NOD mice without any genetic modifications 
have been studied for spontaneous development of type 
1 diabetes, highly useful transgenic NOD mice can be 
generated to add particular immunological traits, or 
genes may be knocked out to provide gene deficiencies. 
More advanced and sophisticated mice may have knockin 
mutations in which specific genes are replaced (e.g. human 
HLA class I can be introduced in this way, further discussed 
below). Moreover, tissue-specific transgenes or knockouts 
have gene deletions or insertions in specific tissue types or 
cells; in timed gene knockouts drugs such as tetracycline are 
used to turn genes on or off. Furthermore, scientists can tag 
particular genes (e.g. with fluorescence markers) and carry 
out lineage tracing in vivo.

With this increasing sophistication, it is however impor-
tant to note that NOD mice (and indeed many mouse mod-
els) are not simply tools that can be picked off a shelf. 
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They have very specific requirements and, at all times, it 
is important for this mouse as a model of autoimmunity in 
general and type 1 diabetes in particular that the disease 
develops spontaneously, otherwise the important require-
ment of being a disease model is not fulfilled. Research 

into protection from diabetes cannot be carried out in a 
model that does not develop diabetes because of factors 
that include environmental interference.

In this review, discussion is centred on how the NOD 
mouse has been a ‘signpost’ towards areas of interest in, 
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Fig. 1   (a) Incidence of autoimmune diabetes in NOD mice. Sponta-
neous diabetes in the NOD mouse colony at Cardiff University over 
2 periods of 35 weeks is shown for female mice (circles, n=37) and 
male mice (triangles, n=45). (b) Current staging of type 1 diabetes in 

humans based on autoantibodies and glucose abnormalities (adapted 
from [104] under the terms of a Creative Commons CC BY licence). 
This figure is available as part of a downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-025-06579-0/MediaObjects/125_2025_6579_MOESM1_ESM.pptx
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and importance for, human type 1 diabetes. This means that 
a discovery made in the NOD mouse may also be impor-
tant to consider in human disease. It is vital not to equate 
‘this is what happens in the mouse’ to ‘therefore it is so in 
the human’, as this will lead to disappointment and, poten-
tially, rejection of a model that has important resemblance 
to, but is not a replica of, a human. The discoveries in NOD 
mice allow for looking in certain directions and design-
ing experimental conditions that may open new avenues 
of thinking that may not have been hitherto considered in 
humans. Finally, NOD mice can be useful for investigat-
ing the effects of therapeutic agents with defined conditions 
of testing and consideration of appropriate comparison, as 
further discussed below.

Pathogenesis

Genetics  HLA class II molecules that are strongly linked 
to susceptibility to type 1 diabetes, particularly HLA-DQ8 
[25] (DQA1*0301-DQB1*0302), express a non-aspartate 
residue at position 57 of the β-chain. The discovery that the 
single MHC class II chain of the NOD mouse I-Ag7 also had 
a non-aspartate residue, whereas other mouse MHC class 
II molecules expressed an aspartate residue at this position 
[26], gave strong support for the use of the NOD mouse as 
a model for human type 1 diabetes. A number of structural 
and functional studies showed that many peptides, including 
altered peptides, could bind to these MHC class II molecules 
in both humans and mice [19]. In addition, T cells recognise 
a number of possible ligands that bind with different affini-
ties and are also present in diabetes [27]; post-translational 
modifications of autoantigenic peptides are also major T cell 
targets in type 1 diabetes [28–30]. This is important, as the 
impact on T cell antigen recognition and ability to evade 
tolerance mechanisms can be significant, as discussed later.

Histology  Histological studies of the pancreas in individu-
als who had developed clinical type 1 diabetes demonstrated 
marked upregulation of HLA class I in the pancreatic islets 
[31, 32], with the islets infiltrated mainly by CD8+ T cells 
[33–36]. HLA class I upregulation is a sign of inflamma-
tion in stressed cells, one cause of which may be production 
of IFNs, often induced by viral infection [32] (but also by 
endogenous dsRNA, bacteria and mycoplasma). It is associ-
ated with upregulation of signal transducer and activator of 
transcription 1 (STAT1), a transcription factor involved in 
mediating antiviral responses to IFNs [32]. This MHC class I 
upregulation was clearly seen in the NOD mouse, and occurs 
very early, even before much cellular infiltration occurs 
[37]. The NOD mouse has visible progression of consider-
able immune cell infiltration in the natural history (Fig. 2a), 
whereas immune cell infiltration had initially been shown 

to be relatively low in deceased individuals who had type 
1 diabetes, based mainly on the earlier available pancreatic 
samples. In past years, the available pancreatic samples were 
mostly from individuals who had died years after diagnosis. 
However, more recent study shows that the level of immune 
infiltration in the pancreas in young individuals, diagnosed 
below the age of 7 years, may be similar to that seen in the 
NOD mouse (Fig. 2b) [36]. Understanding these similarities 
and differences is of paramount importance.

Immunology  Autoimmune diabetes can be adoptively trans-
ferred by spleen cells containing both CD4+ and CD8+ T cells 
[38] from diabetic NOD mice into immunodeficient NOD 
mice (such as irradiated NOD mice or NOD.scid or NOD.
RAG knockout mice). T cells can be isolated from the infiltrate 
into the pancreatic islets and cloned in in vitro culture. The ear-
liest of these isolated T cells was a CD4+ T cell clone named 
BDC2.5 [39], the first of a series of BDC clones [40] contribut-
ing to the study of pathogenic CD4+ T cells in diabetes in the 
NOD mouse. After years of research, the elusive autoantigenic 
target of BDC2.5 was identified with the discovery that the 
autoantigen was not a single GAD or chromogranin A peptide 
alone, as had been previously suggested, but a hybrid peptide 
of insulin and chromogranin A [28]. This paved the way to 
understanding that hybrid peptides of insulin, together with 
another beta cell protein, could generate many potentially anti-
genic peptides within the beta cells. Study of hybrid peptides 
in humans [41, 42], as well as exploration of the mechanism 
of the generation of hybrid peptides in the NOD mouse [29, 
43], followed. The T cells that respond to these hybrid peptides 
would not have encountered these antigens in the thymus and 
therefore central tolerance would not be induced.

Insulin and its larger precursor proinsulin were identi-
fied as targets for autoantibodies decades ago [20, 44] and 
have been much studied as targets for CD4+ T cells. Work 
in the NOD mouse suggested that insulin is a prime antigen 
and that the peptide B chain amino acids 9–23 region is a 
major epitope [45]. This region of the insulin B chain can 
be processed and presented to different sets of T cells [46], 
and the B chain is also an important part of hybrid insulin 
peptides, mentioned above [47]. Investigation into hybrid 
insulin peptides in humans have uncovered other peptides of 
the proinsulin molecule that form part of the hybrid insulin 
peptides that stimulate human CD4+ T cells [48, 49].

Although the upregulation of HLA class I was most 
prominent in human islets, relatively little attention was ini-
tially given to MHC class I-reactive CD8+ T cells, compared 
with the CD4+ T cells. β-2 microglobulin-deficient NOD 
mice, which expressed highly reduced levels of MHC class 
I, and consequently few CD8+ T cells, did not develop auto-
immune diabetes [50, 51]. This finding coincided with the 
cloning of a CD8+ T cell (NY8.3) from the islets of a NOD  
mouse that was found to be highly pathogenic [52], followed 
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by cloning of a diabetogenic CD8+ T cell (G9C8) from the 
islets of young NOD mice long before the onset of clinical 
diabetes [53]. The autoantigens recognised by the cloned 
CD8+ T cells were identified as a peptide of insulin B chain 
amino acids 15–23 [54] for the G9C8 clone from the young 
NOD mouse and as islet-specific glucose 6-phosphatase 
related protein (IGRP) [55] for the NY8.3 clone from the 
diabetic mice. Subsequently, both insulin [56] and IGRP 
[57] were identified as targets for CD8+ T cells in humans 
and, thus, the demonstration of highly pathogenic CD8+ T 
cells in NOD mice gave a direction to the examination of 
these autoantigens in humans.

Transgenic NOD mice have also been used to express 
human HLA class I transgenes [58, 59], among others, the 
common HLA A2 that has been associated with type 1 dia-
betes, and HLA A3 and B7 [60]. These have facilitated the 
discovery of further autoantigenic epitopes, including dif-
ferent peptides of insulin and IGRP in humans [59, 60]. The 
spotlight on post-translational modifications of autoantigens 
in the form of hybrid insulin peptides also applies to autoan-
tigens for CD8+ T cells in humans. Peptides of islet beta 
cell granule proteins are autoantigenic for CD8+ T cells in 

humans, presented by HLA-A3; in the NOD mouse these 
autoantigenic peptides would be presented by MHC class 
I H-2Kd (also known as H2-K1) [61]. Moreover, CD8+ T 
cells reactive to these beta cell granule protein peptides in 
the NOD mouse were found in the islets and caused diabe-
tes upon adoptive transfer into immunodeficient NOD.scid 
mice [61]. Details of these peptides and many others may be 
found in a recent comprehensive resource [62].

Beta cell stress  Beta cells are highly active metabolic cells 
and are subject to stress, with clear parallels in the NOD 
mouse and humans. Prediabetic NOD mice display evidence 
of endoplasmic reticulum stress (ER) in the beta cells, dem-
onstrated by alterations in the ER structure in isolated islets, 
suggested to be related to activation of NF-κB [63]. Islet 
cells from NOD mice subjected to chemical ER stresses 
express peptides with calcium-induced post-translational 
modifications and these islets become more antigenic for 
diabetogenic BDC2.5 CD4+ T cells [64]. In human type 1 
diabetes, ER stress in beta cells leads to generation of anti-
genic epitopes due to enzymatically induced protein modi-
fications. CD4+ T cells reactive to these modified proteins 

Fig. 2   (a) Natural history of 
insulitis in NOD mice. H&E 
staining of histological sections 
showing stages of development 
of insulitis in NOD mice. When 
mice are weaned at 3 weeks of 
age, islets are normal. This is 
followed by insulitis starting 
from 4 weeks of age, when 
a mononuclear cell infiltrate 
begins to surround the islet 
(peri-insulitis), with increasing 
penetration into the islet (insu-
litis). From 12 weeks of age 
onwards, there is increasing islet 
infiltration and diabetes occurs. 
Scale bar, 100 μm. Image from 
the late Irene Visintin, Yale 
University. (b) Insulitis in 
human type 1 diabetes, demon-
strated by immunofluorescence 
staining of an islet (red, insulin; 
yellow CD45) from an adult 
donor recently diagnosed with 
type 1 diabetes. Scale bar, 50 
μm. Image courtesy of Pia 
Leete, Exeter University. This 
figure is available as part of a 
downl​oadab​le slide​set
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have been found in peripheral blood and in the draining pan-
creatic lymph nodes of post-mortem pancreatic donors who 
had type 1 diabetes [65]. Beta cell ER stress also activates 
inflammatory pathways, with increased expression of pro-
inflammatory genes and MHC molecules in the mouse and 
HLA in humans. These stresses cause metabolic abnormali-
ties, impairing insulin production and secretion, resulting in 
hyperglycaemia, which is toxic to the beta cells. ER stress 
also induces apoptosis. All of these contributory factors may 
be found in the NOD mouse and are mirrored in human 
type 1 diabetes (recently reviewed in [66]). These stresses, 
and the interplay with the immune system, have suggested 
potential therapeutic strategies that will be further discussed 
later in this review.

Environment  The environment affects the development of 
diabetes in the NOD mouse [67] and a variety of infectious 
agents can influence diabetes in this model. Viruses were 
investigated as causative agents for development of diabe-
tes. Molecular mimicry between the enterovirus coxsacki-
evirus P2-C (Cox P2-C) protein and GAD could contribute 
to damage to the pancreatic beta cells [68]. Coxsackie B4 
virus causes pancreatitis and exocrine damage, and acceler-
ates ongoing islet beta cell damage in NOD mice [69]. Viral 
infection induces inflammation and diabetes can occur as a 
result of virus-induced inflammation and bystander activa-
tion of autoreactive T cells [70]. However, these observations 
suggest that the virus is not causative in the NOD mouse 
but could contribute to acceleration of immune reactivity. In 
human type 1 diabetes, advances in histological techniques 
and increased availability of post-mortem pancreatic samples 
from donors who had lived with type 1 diabetes have shown 
indices of low-grade chronic enterovirus infection. These 
include the presence of enteroviral capsid protein VP1, found 
in pancreas samples from autoantibody-positive individuals, 
together with HLA class I hyperexpression, before clinical 
onset of type 1 diabetes [71, 72].

Conversely, viral infections [73, 74], bacterial infections 
[75], parasitic infections (with Schistosoma mansoni [76]) 
and infections with pinworms [77, 78] have been reported 
to reduce diabetes in NOD mice. The various infections 
stimulated regulatory pathways that regulated inflamma-
tion, reducing development of diabetes. However, it is clear 
that only some agents have these effects, suggesting possible 
therapeutic strategies based on infection or infectious agents.

Other advances occurred in understanding the interplay of 
the innate immune system (the immediate immune responses 
as the first line of immune defence) and the internal environ-
ment [79]. Commensal bacteria shape the immune system by 
engaging with innate immune receptors that include, among 
others, the Toll-like receptors (TLRs), signalling through the 
myeloid differentiation primary response 88 (MyD88) path-
way, in dendritic cells and macrophages [80]. An increase in 

the development of clinical type 1 diabetes was observed in 
children born by Caesarean section compared with vaginal 
delivery (meta-analysis of earlier studies [81]), suggesting 
an association with commensal bacteria. Gut bacteria were 
highlighted as the innate immune system link with devel-
opment of autoimmune diabetes in the NOD mouse [82]. 
Alterations in sensing the intestinal microbes via innate 
immune interactions are a critical non-genetically encoded 
factor modifying type 1 diabetes susceptibility in the NOD 
mouse. Manipulation of gut environment in NOD mice, by 
long-term treatment with antibiotics prenatally or at an early 
age, to alter the commensal composition, led to changes in 
the incidence of diabetes [83, 84]. Note, however, that these 
observations relating to the prenatal environment and early 
neonatal environment in which the immune system develops 
neither suggest that nor provide any evidence for taking anti-
biotics to treat infections in humans affects type 1 diabetes 
development.

In the Finnish DIABIMMUNE study including infants 
from Russia, Finland and Estonia, studied from birth until 
3 years of age, many more children from Finland and Esto-
nia developed type 1 diabetes compared with children from 
Russia, in spite of similar genetic background [85]. The 
endotoxin lipopolysaccharide (LPS) from Escherichia coli 
stimulated endotoxin tolerance and reduced innate immune 
activity, and was found more in the gut microbiota of infants 
from Russia. However, this tolerance was inhibited by LPS 
from Bacteroides dorei, with more B. dorei found in the gut 
microbiota of infants from Finland and Estonia [85]. Inter-
estingly, i.p. injection of LPS from E. coli reduced diabetes 
in NOD mice, whereas the LPS from B. dorei did not [85].

Many autoimmune diseases have a female preponderance, 
although more males develop type 1 diabetes in humans 
[86]. In NOD mice, more female mice develop diabetes and 
earlier, and there is a clear hormonal influence. Gut bacteria 
also influence this increase in the spontaneous diabetes in 
female NOD mice [87–90], a finding relevant for the female 
bias in other autoimmune diseases.

Manipulation of gut bacteria, using a diet that enriches 
the concentration of short-chain fatty acids (SCFAs), could 
be used therapeutically [91]. The SCFAs butyrate and pro-
pionate protect against autoimmune diabetes in NOD mice, 
in part by enhancing the function of T regulatory cells. In 
one of the largest studies from seven centres in Europe and 
the USA, the Environmental Determinants of Diabetes in the 
Young (TEDDY) study, examined stool samples from 783 
children (aged 3 months to 5 years). Investigators found an 
increase in the genes involved in the biosynthesis of SCFAs 
in the healthy control children [92]. Specific alteration in the 
gut bacteria demonstrated therapeutic success in NOD mice, 
and it remains an attractive (but difficult to achieve) potential 
future therapeutic option in humans.
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A novel therapeutic approach has used Lactococcus lac-
tis bacteria as a delivery vehicle, incorporating the immu-
noregulatory cytokine IL-10 and proinsulin, given to NOD 
mice orally to induce oral tolerance. While this treatment 
alone provided modest, non-statistically significant protec-
tion against autoimmune diabetes, its efficacy was enhanced 
when combined with anti-CD3 treatment, leading to sus-
tained reversal of hyperglycaemia [93]. This treatment been 
studied in a small human trial, in combination with anti-CD3 
therapy. It was found to be safe and showed a potential reduc-
tion in proinsulin-specific CD8+ T cell frequency, suggesting 
promise for future clinical applications [94].

Finally, molecular mimicry has been proposed as a pos-
sible mechanism for the activation of autoreactive T cells. 
In NOD mice, a peptide of the gut bacterium, Leptotrichia 
goodfellowii from the phylum fusobacteria, has similarity 
to the IGRP peptide 206–214, which stimulates pathogenic 
CD8+ T cells. The peptide from these fusobacteria activates 
pathogenic IGRP-specific CD8+T cells in NOD mice [95], 
accelerating diabetes in the NOD-mouse-derived NY8.3 
CD8+ T cell receptor transgenic mouse, which expresses a 
large number of CD8+ T cells that react to the IGRP pep-
tide. More recently, a peptide of a human gut commensal 
bacterium, Parabacteroides distasonis, with homology to 
the insulin B9–23 peptide, accelerated diabetes in the NOD 
mouse. T cells from individuals with type 1 diabetes recog-
nise this peptide [96] and it is possible that activation of the 
insulin-reactive cells could be stimulated by interaction with 
this bacterium. Another recent study of individuals with the 
HLA A*2402, which has considerable homology with MHC 
class I H-2Kd of the NOD mouse, indicated molecular mim-
icry with a Klebsiella bacterial sequence that could activate 
pre-proinsulin reactive CD8+ T cells [97]. Thus, studies of 
the gut commensal flora of the NOD mouse have signposted 
a possible mechanism for activation of autoreactive T cells 
in humans.

Therapy

A mouse model that develops a disease resembling some 
aspects of the human condition is an obvious tool for testing 
potential therapies. However, it is vital to acknowledge 
differences in physiology and that responses to therapeutic 
agents may be different in a mouse compared with a human. 
While the course of diabetes that develops in the NOD 
mouse has similarities to both childhood and adult-onset 
autoimmune diabetes, essentially clinical diabetes occurs 
only in adult mice (mice are sexually mature at 6 weeks 
but diabetes occurs from around 12 weeks onwards). It 
is also very important to recognise that, in NOD mice, 
therapeutic agents can be tested in both the preclinical stages 

(after weaning in early life, from 3 weeks of age) until the 
development of clinical diabetes (in adult life, from the age 
of 12−14 weeks onward). As in humans, even with insulitis 
present in all NOD mice, it is difficult to reliably predict 
hyperglycaemia onset (median onset in female mice is 20–24 
weeks of age) or whether it is very unlikely that clinical 
diabetes will occur (after 35 weeks of age). Thus, when 
considering testing therapy in NOD mice, several questions 
should be asked:

•	 Stage of disease: it is likely to be much easier to halt an 
autoimmune response early; once there is a ‘full-scale’ 
immune response, are strategies that may be useful at 
earlier stages likely to be much less effective, especially 
as there has already been loss of considerable numbers 
of beta cells?

•	 Route of administration: as in humans, oral, s.c., i.v. and 
nasal routes can be used in mouse models; however, in 
animal studies the i.p. route is often used, which is not/
cannot be used in humans – is there an equivalent?

•	 Dose and frequency of administration: considering that 
adult NOD mice weigh 20–30 g and that adult humans 
may weigh >2000 times more, should body weight be 
taken into account, considering its important effects on 
pharmacokinetics and pharmacodynamics?

•	 How many mice are required to achieve sufficient power? 
Relative homogeneity of mouse response compared with 
the heterogeneity of humans may influence this, and 
one of many power calculation tools for clinical studies 
should be used

•	 How do we determine ‘success’?

Until recently, immunological treatments in humans were 
given at stage 3 type 1 diabetes (i.e. after clinical manifes-
tation, when many islet beta cells have been damaged or 
destroyed). At best, this allowed the remaining beta cells to 
recover from glucose toxicity and prevented further loss of 
C-peptide, the measure of endogenous insulin production. 
In contrast, in the NOD mouse, we can give treatments at 
much earlier stages, in early insulitis, long before the onset 
of hyperglycaemia, or nearer to the onset of clinical disease 
at a time when a few mice in the colony begin to develop 
diabetes, and beyond. Carrying out preclinical studies in the 
NOD mouse also provides the opportunity to investigate 
the mechanism(s) that may explain any successful disease 
reduction.

There has been considerable criticism of the NOD 
mouse model when the outcomes of therapies in humans 
were not as expected, compared with the model, even if 
the conditions and/or the protocols were not comparable. 
For example, if a tested treatment is given to mice at 4–8 
weeks of age, this is the equivalent of treating a person at 
the first signs of development of autoantibodies at stage 1 
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disease (Fig. 1b), or even earlier, whereas few treatments 
have been tested in humans at this stage, and this phase 
of the disease is much longer in humans than the equiva-
lent period in mice. Thus, when a treatment may not have 
shown the anticipated benefit in a human treated at stage 
3, when compared with the efficacy of early treatment in 
NOD mouse, this will be akin to comparing ‘apples with 
oranges’ and, inevitably, it will be ‘disappointing’. In 
addition, many treatments in the NOD mouse have been 
given at a young age, whereas there have been relatively 
few clinical trials in children, and children and adults may 
have different responses. Reed and Herold gave some very 
good comparisons of earlier studies in a perspective com-
mentary [98], and here we highlight studies in NOD mice 
showing ‘successful’ human translation in Table 1, and 
selected examples of agents not demonstrating successful 
human translation (but also not necessarily successful in 
NOD mice either) in Table 2.

There has been much focus on therapies that have not 
translated from protection of NOD mice against development 
of spontaneous diabetes to alteration of diabetes in humans 
(Table 2). Antigen-specific therapy has been an area of 
therapy particularly difficult to translate, possibly related to 
use of an adjuvant combined with whole antigen or peptides, 
route of administration or timing of therapy, as many 
examples of antigen-specific therapy in NOD mice have been 
commenced early in the preclinical phase. Furthermore, 
although there are clear similarities, immunological features 
of NOD mouse diabetes can be closely studied, whereas the 
immunology prior to diagnosis of human type 1 diabetes 
is relatively unknown. In addition, within the last 10 years, 
the knowledge that many autoantigenic peptides are post-
translationally modified, particularly those produced within 
the beta cells, may make it difficult to use linear peptides or 
whole antigens for tolerogenic strategies.

Other areas of non-translation have included therapy 
targeting the innate arm of immunity, such as anti-IL1, 
although it should be noted that anti-IL1 treatment alone 
did not have an effect in NOD mice [99] but human studies 
were still conducted [100]. Therapy related to use of the 
prominent autoantigens proinsulin and GAD are outlined 
in Table 2.

It should also be noted that therapeutic agents tested 
across different laboratories have yielded variable results in 
some studies. It is likely that the reasons are multiple, and 
include the following:

•	 environment relating to diet, types of housing and gen-
eral mouse colony management; these may all influence 
gut microbiota, which in turn interacts with immune 
responses

•	 environmental and genetic interactions, which may not 
be similar between humans and mice

•	 genetic drift causing selection of some gene variants, 
which may influence development of diabetes

•	 timing of administration of therapeutic agents related to 
disease development

Rather than blaming the mouse, or suggesting that it is 
not useful, mouse and human differences in physiology as 
well as immunology should be taken into account. Mice used 
for preclinical studies are mostly inbred, with much less 
heterogeneity between the mice. Understanding differences 
in the pathology and pathogenesis of autoimmune diabetes 
is important and should also be considered. Appropriate 
validation of experimental outcomes in preclinical studies 
in NOD mice is recommended, and the first published study 
should be carefully replicated. In this regard, there are calls 
for harmonisation of protocols and replication, prior to 
development of clinical trials [101].

Beyond testing potential human therapies for diabetes 
prevention or treatment, NOD mice can also serve as an 
early warning system for detecting adverse effects or even 
acceleration of diabetes that may signal risks for clinical 
translation. Early in the investigation into the role of 
the programmed death 1 (PD1) molecule as a negative 
co-stimulator, very important for peripheral tolerance, 
inhibition of the PD1–programmed death ligand 1 (PDL1) 
pathway accelerated autoimmune diabetes in NOD mice 
[102]. Many years later, as checkpoint inhibitor (CPI) 
treatment is now used for various cancers, particularly the 
anti-PD1 monoclonal antibody, nivolumab, about 1% of 
individuals receiving this treatment develop an autoimmune 
form of diabetes. A majority of these individuals express 
diabetes HLA susceptibility alleles, including HLA-DR4 
[103], and they may develop autoantibodies. New guidelines 
for pre-testing individuals relating to the precipitation of 
autoimmune diseases by these CPIs may be required.

In using NOD mice in preclinical testing of therapy, there 
are also other considerations, based on NOD mouse biology, 
as mentioned earlier, and these suggestions are shown in 
Table 3.

Conclusions

It has not been possible to discuss all the myriad NOD 
mouse studies in this review, with apologies to individuals 
whose work has not been included. Instead, we discuss 
particular areas where NOD mice have been useful. We 
have highlighted the fact that animal models should be used 
judiciously and are a signpost to give direction for new areas 
of investigation and not a direct ‘this is so in the mouse and 
therefore in humans’. Many reagents and tools are available 
for immunological study in mice. It is crucially important to 
use the information as a pointer for understanding biology 
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and potential usefulness of therapy but not for a statement 
of equivalence. Understanding the conditions under which 
NOD mice should be maintained and that they are not simply 
tools to be bought ‘off the shelf’ is vital. When designing 
experiments, consulting investigators with expert knowledge 
of using NOD mice may be helpful. Equally, when using 
the NOD mouse as a preclinical model for therapy, more 
attention should be given to designing studies in a manner 
that will allow for critical assessment of translatability. 
This is important, as planning for clinical trials generally 
requires some benefit to be shown in preclinical models, and 
the NOD model has been of importance in some of these.

We conclude that this is a useful model, when carefully 
and judiciously used, for furthering our understanding of 
pathophysiology and immunological processes. NOD mice 
may also assist in the development of therapy, based on rational 
scientific principles but also acknowledging the limitations 
of this model. Results must be further tested, aiming in the 
future to advance us further towards ‘prevention’, or ‘cure’, 
to enhance quality of life in individuals living with type 1 
diabetes.
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