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Abstract

The NOD mouse is the best-known, although by no means the only, murine model of type 1 diabetes. In this review, we
provide a historical perspective, particularly highlighting areas of progress in understanding aspects of aetiology and immune
pathogenesis, and utility in helping to shape the immunotherapeutic landscape. We introduce points of interest where the
NOD mouse, a much-studied model, has signposted discovery and knowledge. We discuss genetics, pancreatic islet beta cell
stress, innate and adaptive immunity and autoantigens, and also focus on immunotherapeutic agents that have been tested
in NOD mice and in humans. Some therapies, particularly those that are non-antigen-specific, have been more effectively
signposted, while others, which include antigen-specific therapies, have not. There is an inevitable divergence between mice
and humans that illustrates the need to use models appropriately. We suggest how to make use of this and other models
effectively in order to maximise information and knowledge, and suggest not dismissing this important resource because of
inappropriate comparisons or unrealistic expectations.
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despite pancreatic sections showing immune cell infiltrates
[1]. Genetic association studies demonstrated that particular
HLA class I complexes, A8 and B15 (earlier designated

ER Endoplasmic reticulum W15), were associated with the development of type 1 dia-
IGRP Islet-specific glucose 6-phosphatase related betes [2, 3]. A very large body of work followed that identi-
protein fied the HLA region (the human designation of the MHC) as

LPS Lipopolysaccharide
PD1 Programmed death 1

containing the most important genetic susceptibility genes
for the development of type 1 diabetes, particularly HLA

SCFA  Short-chain fatty acid class II genes. However, this is a polygenic condition, and
more than 70 gene regions have been reported to contribute
to susceptibility [4], although most of these have a relatively

Introduction small influence on type 1 diabetes development compared

with the HLA. Of note, many of the contributory suscep-

Type 1 diabetes is an autoimmune condition, clearly dif-
ferent from type 2 diabetes. Until the 1970s, it was known
that people living with type 1 diabetes had much greater
insulin deficiency, although the basis for this was not clear,
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tibility regions encode proteins involved in immune func-
tion [4]. In addition, more recent studies have highlighted
genes involved in other biological functions. These include
the following: (1) beta cell function and fragility (includ-
ing PTPN?2), affecting beta cell responses to cytokines; (2)
GLIS3, regulating beta cell development; (3) CLECI6A,
linked to beta cell function and survival [5]; (4) BACH2,
expressed in islets where it regulates apoptosis in pancre-
atic beta cells and in the immune system, and expression
is influenced by cytokines [6]; and (5) exocrine function
(cathepsin H [CTSH], a lysosomal cysteine protease) [7].
The HLA is central to T cell function, as antigenic pep-
tides are recognised together with specific HLA molecules
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by T cells (CD8" cytotoxic T cells recognising peptide anti-
gens, 8—10 amino acids in length, together with HLA class
I and CD4" helper T cells recognising peptide antigens of
longer length, together with HLA class II). Thus, the HLA,
as a major genetic susceptibility region, links to the impor-
tance of T cells in the pathogenesis of type 1 diabetes.

The major site of immune action in type 1 diabetes is in
the pancreatic islets of Langerhans, which are made up of
glucagon-producing alpha cells, insulin-producing beta cells,
somatostatin-producing delta cells, pancreatic polypeptide-
producing gamma cells and ghrelin-producing epsilon cells.
However, it is the beta cells that are specifically targeted by
the autoimmune response. From the 1980s, enormous strides
were made to advance T cell biology including knowledge
of T cell development in the thymus, T cell differentiation
into different subsets, how each T cell subset functions and
their roles in immune responses. T cells are major players
in direct beta cell damage, although other immune cells are
also indispensable, and together with soluble mediators form
an inter-dependent network.

There were other important developments in
understanding that human type 1 diabetes had an immune
component. Autoantibodies to insulin [8], the 64K protein
which was identified as GAD [9], insulinoma antigen 2
(I-A2) [10], ZnT8 [11] and more recently tetraspanin 7 [12],
are now known to be present before clinical onset of the
condition. High levels of two or more of the autoantibodies
predict clinical type 1 diabetes onset to a large degree [13].

The NOD mouse was developed in Japan during the
1970s [14, 15] and became available for investigators in the
USA in the 1980s, with the establishment of NOD mouse
colonies at UCLA, Harvard University and the Jackson
Laboratory in the USA, and also in Australia [15, 16]. The
NOD mouse originated from the Cataract Shionogi (CTS)
strain to study cataracts, in the Shionogi laboratories in
Japan [15]. Researchers noticed the insulitis lesions, defined
as inflammatory cells infiltrating into the pancreatic islets,
which indicated that this was a model in which immune cells
were likely to play an important role in damage to islet beta
cells. Along with this, the mice developed hyperglycaemia.
At the time, the NOD mouse was not the only model for the
study of type 1 diabetes autoimmunity, as the BioBreeding
(BB) rat had also been discovered [17]. However, BB rats
have been less well studied as there are fewer reagents
available for study and rats are more difficult to modify
genetically. Moreover, the BB rat has marked lymphopenia.
Although BB rats have a place as an important alternative
animal model (reviewed in [18]), they will not be discussed
further here.

Concurrent with these discoveries relating to NOD mice,
there were important developments in our understanding of
human type 1 diabetes. As mentioned, certain HLA alleles
are the most important risk factor for human type 1 diabetes
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and the discovery that the NOD MHC class II I-A%” (also
known as I-a®”) was very similar to the high risk HLA allele
DQS in human type 1 diabetes [19] enhanced the importance
of the NOD mouse as a good murine model for type 1
diabetes studies.

The NOD mouse develops spontaneous autoimmune dia-
betes. Female mice have a high incidence of between 60% and
90%, starting from age 12 weeks onwards; male mice have a
lower incidence, ranging from 10% to <50%, and develop dia-
betes at a later age (Fig. 1a). The time course of disease devel-
opment takes place over weeks, compared with the human
time course that may take weeks, months or years (Fig. 1b).
Immune cells infiltrate into islets, including T cells, B cells
and antigen-presenting cells (APCs) such as dendritic cells
(DCs) and macrophages. Although autoantibodies in NOD
mice are a less prominent feature than in humans with type
1 diabetes, the mice develop autoantibodies to insulin before
disease onset, with the suggestion that early production of
autoantibodies may predict earlier onset of diabetes [20].

In addition to autoimmune diabetes, NOD mice have age-
related hearing loss, although this is not unique to NOD
mice [21], as well as autoimmunity affecting other organs.
Thyroiditis is commonly found, with infiltration occurring
earlier than insulitis [22]. Sialitis (inflammation in the
salivary glands) is also a pathological feature [23] and NOD
mice have been used as a model of Sjogren’s syndrome [24].
Thus, as in humans, the occurrence of other autoimmunity
is clearly found in the NOD mouse.

The development of diabetes in NOD mice is highly
dependent on the environment, and these mice require
housing in specific pathogen-free conditions, where known
pathogenic micro-organisms are not present. Some (although
not all) pathogenic viruses and bacteria, as well as relatively
‘harmless’ infections or infestations (e.g. pinworm infection)
common in conventional mouse housing, can considerably
reduce diabetes incidence.

Although NOD mice without any genetic modifications
have been studied for spontaneous development of type
1 diabetes, highly useful transgenic NOD mice can be
generated to add particular immunological traits, or
genes may be knocked out to provide gene deficiencies.
More advanced and sophisticated mice may have knockin
mutations in which specific genes are replaced (e.g. human
HLA class I can be introduced in this way, further discussed
below). Moreover, tissue-specific transgenes or knockouts
have gene deletions or insertions in specific tissue types or
cells; in timed gene knockouts drugs such as tetracycline are
used to turn genes on or off. Furthermore, scientists can tag
particular genes (e.g. with fluorescence markers) and carry
out lineage tracing in vivo.

With this increasing sophistication, it is however impor-
tant to note that NOD mice (and indeed many mouse mod-
els) are not simply tools that can be picked off a shelf.
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Fig. 1 (a) Incidence of autoimmune diabetes in NOD mice. Sponta-
neous diabetes in the NOD mouse colony at Cardiff University over
2 periods of 35 weeks is shown for female mice (circles, n=37) and
male mice (triangles, n=45). (b) Current staging of type 1 diabetes in

They have very specific requirements and, at all times, it
is important for this mouse as a model of autoimmunity in
general and type 1 diabetes in particular that the disease
develops spontaneously, otherwise the important require-
ment of being a disease model is not fulfilled. Research

humans based on autoantibodies and glucose abnormalities (adapted
from [104] under the terms of a Creative Commons CC BY licence).
This figure is available as part of a downloadable slideset

into protection from diabetes cannot be carried out in a
model that does not develop diabetes because of factors
that include environmental interference.

In this review, discussion is centred on how the NOD
mouse has been a ‘signpost’ towards areas of interest in,
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and importance for, human type 1 diabetes. This means that
a discovery made in the NOD mouse may also be impor-
tant to consider in human disease. It is vital not to equate
‘this is what happens in the mouse’ to ‘therefore it is so in
the human’, as this will lead to disappointment and, poten-
tially, rejection of a model that has important resemblance
to, but is not a replica of, a human. The discoveries in NOD
mice allow for looking in certain directions and design-
ing experimental conditions that may open new avenues
of thinking that may not have been hitherto considered in
humans. Finally, NOD mice can be useful for investigat-
ing the effects of therapeutic agents with defined conditions
of testing and consideration of appropriate comparison, as
further discussed below.

Pathogenesis

Genetics HLA class II molecules that are strongly linked
to susceptibility to type 1 diabetes, particularly HLA-DQS8
[25] (DQA1#0301-DQB1*0302), express a non-aspartate
residue at position 57 of the B-chain. The discovery that the
single MHC class II chain of the NOD mouse I-A#’ also had
a non-aspartate residue, whereas other mouse MHC class
IT molecules expressed an aspartate residue at this position
[26], gave strong support for the use of the NOD mouse as
a model for human type 1 diabetes. A number of structural
and functional studies showed that many peptides, including
altered peptides, could bind to these MHC class II molecules
in both humans and mice [19]. In addition, T cells recognise
a number of possible ligands that bind with different affini-
ties and are also present in diabetes [27]; post-translational
modifications of autoantigenic peptides are also major T cell
targets in type 1 diabetes [28—30]. This is important, as the
impact on T cell antigen recognition and ability to evade
tolerance mechanisms can be significant, as discussed later.

Histology Histological studies of the pancreas in individu-
als who had developed clinical type 1 diabetes demonstrated
marked upregulation of HLA class I in the pancreatic islets
[31, 32], with the islets infiltrated mainly by CD8* T cells
[33-36]. HLA class I upregulation is a sign of inflamma-
tion in stressed cells, one cause of which may be production
of IFNs, often induced by viral infection [32] (but also by
endogenous dsRNA, bacteria and mycoplasma). It is associ-
ated with upregulation of signal transducer and activator of
transcription 1 (STAT1), a transcription factor involved in
mediating antiviral responses to IFNs [32]. This MHC class I
upregulation was clearly seen in the NOD mouse, and occurs
very early, even before much cellular infiltration occurs
[37]. The NOD mouse has visible progression of consider-
able immune cell infiltration in the natural history (Fig. 2a),
whereas immune cell infiltration had initially been shown
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to be relatively low in deceased individuals who had type
1 diabetes, based mainly on the earlier available pancreatic
samples. In past years, the available pancreatic samples were
mostly from individuals who had died years after diagnosis.
However, more recent study shows that the level of immune
infiltration in the pancreas in young individuals, diagnosed
below the age of 7 years, may be similar to that seen in the
NOD mouse (Fig. 2b) [36]. Understanding these similarities
and differences is of paramount importance.

Immunology Autoimmune diabetes can be adoptively trans-
ferred by spleen cells containing both CD4* and CD8™ T cells
[38] from diabetic NOD mice into immunodeficient NOD
mice (such as irradiated NOD mice or NOD.scid or NOD.
RAG knockout mice). T cells can be isolated from the infiltrate
into the pancreatic islets and cloned in in vitro culture. The ear-
liest of these isolated T cells was a CD4* T cell clone named
BDC2.5 [39], the first of a series of BDC clones [40] contribut-
ing to the study of pathogenic CD4™" T cells in diabetes in the
NOD mouse. After years of research, the elusive autoantigenic
target of BDC2.5 was identified with the discovery that the
autoantigen was not a single GAD or chromogranin A peptide
alone, as had been previously suggested, but a hybrid peptide
of insulin and chromogranin A [28]. This paved the way to
understanding that hybrid peptides of insulin, together with
another beta cell protein, could generate many potentially anti-
genic peptides within the beta cells. Study of hybrid peptides
in humans [41, 42], as well as exploration of the mechanism
of the generation of hybrid peptides in the NOD mouse [29,
43], followed. The T cells that respond to these hybrid peptides
would not have encountered these antigens in the thymus and
therefore central tolerance would not be induced.

Insulin and its larger precursor proinsulin were identi-
fied as targets for autoantibodies decades ago [20, 44] and
have been much studied as targets for CD4" T cells. Work
in the NOD mouse suggested that insulin is a prime antigen
and that the peptide B chain amino acids 9-23 region is a
major epitope [45]. This region of the insulin B chain can
be processed and presented to different sets of T cells [46],
and the B chain is also an important part of hybrid insulin
peptides, mentioned above [47]. Investigation into hybrid
insulin peptides in humans have uncovered other peptides of
the proinsulin molecule that form part of the hybrid insulin
peptides that stimulate human CD4" T cells [48, 49].

Although the upregulation of HLA class I was most
prominent in human islets, relatively little attention was ini-
tially given to MHC class I-reactive CD8* T cells, compared
with the CD4" T cells. B-2 microglobulin-deficient NOD
mice, which expressed highly reduced levels of MHC class
I, and consequently few CD8™ T cells, did not develop auto-
immune diabetes [50, 51]. This finding coincided with the
cloning of a CD8" T cell (NY8.3) from the islets of a NOD
mouse that was found to be highly pathogenic [52], followed
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Fig.2 (a) Natural history of
insulitis in NOD mice. H&E
staining of histological sections
showing stages of development
of insulitis in NOD mice. When
mice are weaned at 3 weeks of
age, islets are normal. This is
followed by insulitis starting
from 4 weeks of age, when

a mononuclear cell infiltrate
begins to surround the islet
(peri-insulitis), with increasing
penetration into the islet (insu-
litis). From 12 weeks of age
onwards, there is increasing islet
infiltration and diabetes occurs.
Scale bar, 100 pm. Image from
the late Irene Visintin, Yale
University. (b) Insulitis in
human type 1 diabetes, demon-
strated by immunofluorescence
staining of an islet (red, insulin;
yellow CD45) from an adult
donor recently diagnosed with
type 1 diabetes. Scale bar, 50
pm. Image courtesy of Pia
Leete, Exeter University. This
figure is available as part of a
downloadable slideset

by cloning of a diabetogenic CD8* T cell (GI9C8) from the
islets of young NOD mice long before the onset of clinical
diabetes [53]. The autoantigens recognised by the cloned
CD8* T cells were identified as a peptide of insulin B chain
amino acids 15-23 [54] for the GI9CS clone from the young
NOD mouse and as islet-specific glucose 6-phosphatase
related protein (IGRP) [55] for the NY8.3 clone from the
diabetic mice. Subsequently, both insulin [56] and IGRP
[57] were identified as targets for CD8" T cells in humans
and, thus, the demonstration of highly pathogenic CD8* T
cells in NOD mice gave a direction to the examination of
these autoantigens in humans.

Transgenic NOD mice have also been used to express
human HLA class I transgenes [58, 59], among others, the
common HLA A2 that has been associated with type 1 dia-
betes, and HLA A3 and B7 [60]. These have facilitated the
discovery of further autoantigenic epitopes, including dif-
ferent peptides of insulin and IGRP in humans [59, 60]. The
spotlight on post-translational modifications of autoantigens
in the form of hybrid insulin peptides also applies to autoan-
tigens for CD8* T cells in humans. Peptides of islet beta
cell granule proteins are autoantigenic for CD8' T cells in

Peri- Insulitis Diabetes

insulitis
4weekS —0 o
12 weeks —p

CD45+
immune cells

humans, presented by HLA-A3; in the NOD mouse these
autoantigenic peptides would be presented by MHC class
I H-2K? (also known as H2-K1) [61]. Moreover, CD8* T
cells reactive to these beta cell granule protein peptides in
the NOD mouse were found in the islets and caused diabe-
tes upon adoptive transfer into immunodeficient NOD.scid
mice [61]. Details of these peptides and many others may be
found in a recent comprehensive resource [62].

Beta cell stress Beta cells are highly active metabolic cells
and are subject to stress, with clear parallels in the NOD
mouse and humans. Prediabetic NOD mice display evidence
of endoplasmic reticulum stress (ER) in the beta cells, dem-
onstrated by alterations in the ER structure in isolated islets,
suggested to be related to activation of NF-kB [63]. Islet
cells from NOD mice subjected to chemical ER stresses
express peptides with calcium-induced post-translational
modifications and these islets become more antigenic for
diabetogenic BDC2.5 CD4* T cells [64]. In human type 1
diabetes, ER stress in beta cells leads to generation of anti-
genic epitopes due to enzymatically induced protein modi-
fications. CD4" T cells reactive to these modified proteins
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have been found in peripheral blood and in the draining pan-
creatic lymph nodes of post-mortem pancreatic donors who
had type 1 diabetes [65]. Beta cell ER stress also activates
inflammatory pathways, with increased expression of pro-
inflammatory genes and MHC molecules in the mouse and
HLA in humans. These stresses cause metabolic abnormali-
ties, impairing insulin production and secretion, resulting in
hyperglycaemia, which is toxic to the beta cells. ER stress
also induces apoptosis. All of these contributory factors may
be found in the NOD mouse and are mirrored in human
type 1 diabetes (recently reviewed in [66]). These stresses,
and the interplay with the immune system, have suggested
potential therapeutic strategies that will be further discussed
later in this review.

Environment The environment affects the development of
diabetes in the NOD mouse [67] and a variety of infectious
agents can influence diabetes in this model. Viruses were
investigated as causative agents for development of diabe-
tes. Molecular mimicry between the enterovirus coxsacki-
evirus P2-C (Cox P2-C) protein and GAD could contribute
to damage to the pancreatic beta cells [68]. Coxsackie B4
virus causes pancreatitis and exocrine damage, and acceler-
ates ongoing islet beta cell damage in NOD mice [69]. Viral
infection induces inflammation and diabetes can occur as a
result of virus-induced inflammation and bystander activa-
tion of autoreactive T cells [70]. However, these observations
suggest that the virus is not causative in the NOD mouse
but could contribute to acceleration of immune reactivity. In
human type 1 diabetes, advances in histological techniques
and increased availability of post-mortem pancreatic samples
from donors who had lived with type 1 diabetes have shown
indices of low-grade chronic enterovirus infection. These
include the presence of enteroviral capsid protein VP1, found
in pancreas samples from autoantibody-positive individuals,
together with HLA class I hyperexpression, before clinical
onset of type 1 diabetes [71, 72].

Conversely, viral infections [73, 74], bacterial infections
[75], parasitic infections (with Schistosoma mansoni [76])
and infections with pinworms [77, 78] have been reported
to reduce diabetes in NOD mice. The various infections
stimulated regulatory pathways that regulated inflamma-
tion, reducing development of diabetes. However, it is clear
that only some agents have these effects, suggesting possible
therapeutic strategies based on infection or infectious agents.

Other advances occurred in understanding the interplay of
the innate immune system (the immediate immune responses
as the first line of immune defence) and the internal environ-
ment [79]. Commensal bacteria shape the immune system by
engaging with innate immune receptors that include, among
others, the Toll-like receptors (TLRs), signalling through the
myeloid differentiation primary response 88 (MyD88) path-
way, in dendritic cells and macrophages [80]. An increase in
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the development of clinical type 1 diabetes was observed in
children born by Caesarean section compared with vaginal
delivery (meta-analysis of earlier studies [81]), suggesting
an association with commensal bacteria. Gut bacteria were
highlighted as the innate immune system link with devel-
opment of autoimmune diabetes in the NOD mouse [82].
Alterations in sensing the intestinal microbes via innate
immune interactions are a critical non-genetically encoded
factor modifying type 1 diabetes susceptibility in the NOD
mouse. Manipulation of gut environment in NOD mice, by
long-term treatment with antibiotics prenatally or at an early
age, to alter the commensal composition, led to changes in
the incidence of diabetes [83, 84]. Note, however, that these
observations relating to the prenatal environment and early
neonatal environment in which the immune system develops
neither suggest that nor provide any evidence for taking anti-
biotics to treat infections in humans affects type 1 diabetes
development.

In the Finnish DIABIMMUNE study including infants
from Russia, Finland and Estonia, studied from birth until
3 years of age, many more children from Finland and Esto-
nia developed type 1 diabetes compared with children from
Russia, in spite of similar genetic background [85]. The
endotoxin lipopolysaccharide (LPS) from Escherichia coli
stimulated endotoxin tolerance and reduced innate immune
activity, and was found more in the gut microbiota of infants
from Russia. However, this tolerance was inhibited by LPS
from Bacteroides dorei, with more B. dorei found in the gut
microbiota of infants from Finland and Estonia [85]. Inter-
estingly, i.p. injection of LPS from E. coli reduced diabetes
in NOD mice, whereas the LPS from B. dorei did not [85].

Many autoimmune diseases have a female preponderance,
although more males develop type 1 diabetes in humans
[86]. In NOD mice, more female mice develop diabetes and
earlier, and there is a clear hormonal influence. Gut bacteria
also influence this increase in the spontaneous diabetes in
female NOD mice [§7-90], a finding relevant for the female
bias in other autoimmune diseases.

Manipulation of gut bacteria, using a diet that enriches
the concentration of short-chain fatty acids (SCFAs), could
be used therapeutically [91]. The SCFAs butyrate and pro-
pionate protect against autoimmune diabetes in NOD mice,
in part by enhancing the function of T regulatory cells. In
one of the largest studies from seven centres in Europe and
the USA, the Environmental Determinants of Diabetes in the
Young (TEDDY) study, examined stool samples from 783
children (aged 3 months to 5 years). Investigators found an
increase in the genes involved in the biosynthesis of SCFAs
in the healthy control children [92]. Specific alteration in the
gut bacteria demonstrated therapeutic success in NOD mice,
and it remains an attractive (but difficult to achieve) potential
future therapeutic option in humans.
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A novel therapeutic approach has used Lactococcus lac-
tis bacteria as a delivery vehicle, incorporating the immu-
noregulatory cytokine IL-10 and proinsulin, given to NOD
mice orally to induce oral tolerance. While this treatment
alone provided modest, non-statistically significant protec-
tion against autoimmune diabetes, its efficacy was enhanced
when combined with anti-CD3 treatment, leading to sus-
tained reversal of hyperglycaemia [93]. This treatment been
studied in a small human trial, in combination with anti-CD3
therapy. It was found to be safe and showed a potential reduc-
tion in proinsulin-specific CD8* T cell frequency, suggesting
promise for future clinical applications [94].

Finally, molecular mimicry has been proposed as a pos-
sible mechanism for the activation of autoreactive T cells.
In NOD mice, a peptide of the gut bacterium, Leptotrichia
goodfellowii from the phylum fusobacteria, has similarity
to the IGRP peptide 206-214, which stimulates pathogenic
CD8* T cells. The peptide from these fusobacteria activates
pathogenic IGRP-specific CD8*T cells in NOD mice [95],
accelerating diabetes in the NOD-mouse-derived NY8.3
CD8™* T cell receptor transgenic mouse, which expresses a
large number of CD8* T cells that react to the IGRP pep-
tide. More recently, a peptide of a human gut commensal
bacterium, Parabacteroides distasonis, with homology to
the insulin B9-23 peptide, accelerated diabetes in the NOD
mouse. T cells from individuals with type 1 diabetes recog-
nise this peptide [96] and it is possible that activation of the
insulin-reactive cells could be stimulated by interaction with
this bacterium. Another recent study of individuals with the
HLA A*2402, which has considerable homology with MHC
class I H-2K¢ of the NOD mouse, indicated molecular mim-
icry with a Klebsiella bacterial sequence that could activate
pre-proinsulin reactive CD8" T cells [97]. Thus, studies of
the gut commensal flora of the NOD mouse have signposted
a possible mechanism for activation of autoreactive T cells
in humans.

Therapy

A mouse model that develops a disease resembling some
aspects of the human condition is an obvious tool for testing
potential therapies. However, it is vital to acknowledge
differences in physiology and that responses to therapeutic
agents may be different in a mouse compared with a human.
While the course of diabetes that develops in the NOD
mouse has similarities to both childhood and adult-onset
autoimmune diabetes, essentially clinical diabetes occurs
only in adult mice (mice are sexually mature at 6 weeks
but diabetes occurs from around 12 weeks onwards). It
is also very important to recognise that, in NOD mice,
therapeutic agents can be tested in both the preclinical stages

(after weaning in early life, from 3 weeks of age) until the
development of clinical diabetes (in adult life, from the age
of 12—14 weeks onward). As in humans, even with insulitis
present in all NOD mice, it is difficult to reliably predict
hyperglycaemia onset (median onset in female mice is 2024
weeks of age) or whether it is very unlikely that clinical
diabetes will occur (after 35 weeks of age). Thus, when
considering testing therapy in NOD mice, several questions
should be asked:

e Stage of disease: it is likely to be much easier to halt an
autoimmune response early; once there is a ‘full-scale’
immune response, are strategies that may be useful at
earlier stages likely to be much less effective, especially
as there has already been loss of considerable numbers
of beta cells?

e Route of administration: as in humans, oral, s.c., i.v. and
nasal routes can be used in mouse models; however, in
animal studies the i.p. route is often used, which is not/
cannot be used in humans — is there an equivalent?

e Dose and frequency of administration: considering that
adult NOD mice weigh 20-30 g and that adult humans
may weigh >2000 times more, should body weight be
taken into account, considering its important effects on
pharmacokinetics and pharmacodynamics?

e How many mice are required to achieve sufficient power?
Relative homogeneity of mouse response compared with
the heterogeneity of humans may influence this, and
one of many power calculation tools for clinical studies
should be used

¢ How do we determine ‘success’?

Until recently, immunological treatments in humans were
given at stage 3 type 1 diabetes (i.e. after clinical manifes-
tation, when many islet beta cells have been damaged or
destroyed). At best, this allowed the remaining beta cells to
recover from glucose toxicity and prevented further loss of
C-peptide, the measure of endogenous insulin production.
In contrast, in the NOD mouse, we can give treatments at
much earlier stages, in early insulitis, long before the onset
of hyperglycaemia, or nearer to the onset of clinical disease
at a time when a few mice in the colony begin to develop
diabetes, and beyond. Carrying out preclinical studies in the
NOD mouse also provides the opportunity to investigate
the mechanism(s) that may explain any successful disease
reduction.

There has been considerable criticism of the NOD
mouse model when the outcomes of therapies in humans
were not as expected, compared with the model, even if
the conditions and/or the protocols were not comparable.
For example, if a tested treatment is given to mice at 4-8
weeks of age, this is the equivalent of treating a person at
the first signs of development of autoantibodies at stage 1
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disease (Fig. 1b), or even earlier, whereas few treatments
have been tested in humans at this stage, and this phase
of the disease is much longer in humans than the equiva-
lent period in mice. Thus, when a treatment may not have
shown the anticipated benefit in a human treated at stage
3, when compared with the efficacy of early treatment in
NOD mouse, this will be akin to comparing ‘apples with
oranges’ and, inevitably, it will be ‘disappointing’. In
addition, many treatments in the NOD mouse have been
given at a young age, whereas there have been relatively
few clinical trials in children, and children and adults may
have different responses. Reed and Herold gave some very
good comparisons of earlier studies in a perspective com-
mentary [98], and here we highlight studies in NOD mice
showing ‘successful’ human translation in Table 1, and
selected examples of agents not demonstrating successful
human translation (but also not necessarily successful in
NOD mice either) in Table 2.

There has been much focus on therapies that have not
translated from protection of NOD mice against development
of spontaneous diabetes to alteration of diabetes in humans
(Table 2). Antigen-specific therapy has been an area of
therapy particularly difficult to translate, possibly related to
use of an adjuvant combined with whole antigen or peptides,
route of administration or timing of therapy, as many
examples of antigen-specific therapy in NOD mice have been
commenced early in the preclinical phase. Furthermore,
although there are clear similarities, immunological features
of NOD mouse diabetes can be closely studied, whereas the
immunology prior to diagnosis of human type 1 diabetes
is relatively unknown. In addition, within the last 10 years,
the knowledge that many autoantigenic peptides are post-
translationally modified, particularly those produced within
the beta cells, may make it difficult to use linear peptides or
whole antigens for tolerogenic strategies.

Other areas of non-translation have included therapy
targeting the innate arm of immunity, such as anti-IL1,
although it should be noted that anti-IL1 treatment alone
did not have an effect in NOD mice [99] but human studies
were still conducted [100]. Therapy related to use of the
prominent autoantigens proinsulin and GAD are outlined
in Table 2.

It should also be noted that therapeutic agents tested
across different laboratories have yielded variable results in
some studies. It is likely that the reasons are multiple, and
include the following:

e environment relating to diet, types of housing and gen-
eral mouse colony management; these may all influence
gut microbiota, which in turn interacts with immune
responses

e environmental and genetic interactions, which may not
be similar between humans and mice

e genetic drift causing selection of some gene variants,
which may influence development of diabetes

e timing of administration of therapeutic agents related to
disease development

Rather than blaming the mouse, or suggesting that it is
not useful, mouse and human differences in physiology as
well as immunology should be taken into account. Mice used
for preclinical studies are mostly inbred, with much less
heterogeneity between the mice. Understanding differences
in the pathology and pathogenesis of autoimmune diabetes
is important and should also be considered. Appropriate
validation of experimental outcomes in preclinical studies
in NOD mice is recommended, and the first published study
should be carefully replicated. In this regard, there are calls
for harmonisation of protocols and replication, prior to
development of clinical trials [101].

Beyond testing potential human therapies for diabetes
prevention or treatment, NOD mice can also serve as an
early warning system for detecting adverse effects or even
acceleration of diabetes that may signal risks for clinical
translation. Early in the investigation into the role of
the programmed death 1 (PD1) molecule as a negative
co-stimulator, very important for peripheral tolerance,
inhibition of the PD1-programmed death ligand 1 (PDL1)
pathway accelerated autoimmune diabetes in NOD mice
[102]. Many years later, as checkpoint inhibitor (CPI)
treatment is now used for various cancers, particularly the
anti-PD1 monoclonal antibody, nivolumab, about 1% of
individuals receiving this treatment develop an autoimmune
form of diabetes. A majority of these individuals express
diabetes HLA susceptibility alleles, including HLA-DR4
[103], and they may develop autoantibodies. New guidelines
for pre-testing individuals relating to the precipitation of
autoimmune diseases by these CPIs may be required.

In using NOD mice in preclinical testing of therapy, there
are also other considerations, based on NOD mouse biology,
as mentioned earlier, and these suggestions are shown in
Table 3.

Conclusions

It has not been possible to discuss all the myriad NOD
mouse studies in this review, with apologies to individuals
whose work has not been included. Instead, we discuss
particular areas where NOD mice have been useful. We
have highlighted the fact that animal models should be used
judiciously and are a signpost to give direction for new areas
of investigation and not a direct ‘this is so in the mouse and
therefore in humans’. Many reagents and tools are available
for immunological study in mice. It is crucially important to
use the information as a pointer for understanding biology

@ Springer
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and potential usefulness of therapy but not for a statement
of equivalence. Understanding the conditions under which
NOD mice should be maintained and that they are not simply
tools to be bought ‘off the shelf’ is vital. When designing
experiments, consulting investigators with expert knowledge
of using NOD mice may be helpful. Equally, when using
the NOD mouse as a preclinical model for therapy, more
attention should be given to designing studies in a manner
that will allow for critical assessment of translatability.
This is important, as planning for clinical trials generally
requires some benefit to be shown in preclinical models, and
the NOD model has been of importance in some of these.

We conclude that this is a useful model, when carefully
and judiciously used, for furthering our understanding of
pathophysiology and immunological processes. NOD mice
may also assist in the development of therapy, based on rational
scientific principles but also acknowledging the limitations
of this model. Results must be further tested, aiming in the
future to advance us further towards ‘prevention’, or ‘cure’,
to enhance quality of life in individuals living with type 1
diabetes.

Supplementary Information The online version contains a slide-
set of the figures for download available at https://doi.org/10.1007/
s00125-025-06579-0.
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