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Abstract The application of oriented external electric fields (OEEFs) to modulate chemical reactivity—termed
electric field catalysis—is emerging as a powerful strategy in synthetic chemistry. Inspired by nature’s use of internal
fields in enzymatic systems, this approach offers the potential to control reaction pathways, improve selectivity,
and reduce energy input. While the theoretical foundations are robust, practical implementation remains challeng-
ing, particularly due to difficulties in generating stable, precisely oriented fields at the molecular scale. Recent ad-
vances, however, are addressing these obstacles. Notably, the use of multiwalled carbon nanotubes (MWCNTs), ow-
ing to their nanoscale architecture, electrical conductivity, and chemical robustness, has enabled the creation of
electromicrofluidic devices capable of delivering localised electric fields with high spatial precision. Collaborative
efforts, including those by the Matile group and our own, demonstrate the viability of these platforms in catalysis.
These developments mark a significant step toward the broader adoption of electric-field-assisted synthesis in or-
ganic chemistry.

Key words catalysis, electromicrofluidic devices, molecular transformations, multiwalled carbon nanotubes, ori-
ented electric fields

The emerging concept of using oriented external electric fields (OEEFs) to accelerate and steer
the movement of electrons during chemical reactions is rapidly gaining traction as a transfor-
mative tool in synthetic chemistry. This approach, also referred to as electric field catalysis, is

now flow electro-
chemical reactors

first experiments
using STM - tip

graphite

grounded in strong theoretical foundations! and is inspired by nature’s own use of electric
fields in enzymatic catalysis.? The ability to modulate reaction pathways and enhance selectiv-
ity or efficiency by applying electric fields promises to redefine how chemists design and build
molecules, potentially reducing energy demands and enabling unprecedented control over
molecular transformations.

Despite its compelling potential, the practical implementation of electric field catalysis has re-
mained elusive. Mainly technical challenges, for example delivering stable and precisely orient-
ed fields at the molecular scale, and integrating such control into routine synthetic workflows,
have slowed development in this area. Nevertheless, several pioneering studies have laid im-
portant groundwork, demonstrating proof-of-concept systems and innovative strategies for
field-induced catalysis.? These early efforts have provided critical insights, though widespread
adoption has been hindered by limitations in materials, device architecture, and field stability
under the applied reaction conditions.

Control over the charge translocation during molecular transformations with oriented external
electric fields appears highly attractive for organic synthesis. Recently, several research groups
have identified a promising path forward by leveraging the unique properties of multiwalled
carbon nanotubes (MWCNTSs),* which offer high electrical conductivity, nanoscale dimensions,
and chemical stability. The group of Matile (Geneva) and our own have integrated such
MWCNTs into electromicrofluidic devices;® these structures present a viable platform for gen-
erating and controlling localised electric fields with the precision required for catalysis. This
realisation opens new avenues for addressing longstanding barriers and brings the prospect of
routine electric-field-assisted synthesis closer to reality.

Herein we show most of the recent developments in carrying out chemical reactions in electric
fields and the current developments of using electric fields for reaction control.

© 2025. Thieme. All rights reserved. SynOpen 2025, 9, 282-291
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Electrostatic preorganisation in enzymes as the origin of their catalytic power
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Key references: (6a) Warshel, J. Mol. Biol. 1976, 103, 227. (6b) Warshel, Chem. Rev. 2006, 106, 3210.

(6¢) Warshel, J. Biol. Chem. 1998, 273, 27035.

External electric fields on enzymatic-like bond activations
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Key references: (6f) Shaik, J. Am. Chem. Soc. 2004, 126, 11746. (1a) Shaik, ACS Phys. Chem. Au 2024, 4, 191.

Key Features:

- Electrostatic catalysis has its origin in biological systems.

Effect of OEEFs
on aryl halides

Oriented external electric fields (OEEFs) in organometallic chemistry
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Key references: (6d) Joy, J. Am. Chem. Soc. 2020, 142, 3836.
(6e) Shaik, J. Am. Chem. Soc. 2020, 142, 12551.

Field-switchable oxidative addition and reductive elimination
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Key reference: (6g) Long, J. Phys. Chem. Lett. 2025, 16, 2881.

- The effect of enzymatic catalysis has been attributed to an electrostatic preorganisation of substrates in the active site of enzymes, stabilising developing charges in the transition states.
- The effect of external electric fields on enzymatic-like bond activations have been investigated by DFT calculations, with the group of Shaik making incredible contributions to this field.

- Investigations of the oxidative addition of aryl halides and alkyl halides have been carried out.

- These investigations highlight a mechanistic crossover when electric fields are applied, or field-switchable oxidative addition or reductive elimination of HCI to a cobalt complex.

Figure 1 The influence of OEEFs in enzyme and organometallic catalysis®

© 2025. Thieme. All rights reserved. SynOpen 2025, 9, 282-291
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'Reaction-axis rule'
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Key references: (7a) Shaik, Chem. Soc. Rev. 2018, 47, 5125. (7b) Shaik, Nat. Chem. 2016, 8, 1091.

The effect of OEEF on Diels-Alder reactions
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Key reference: (7d) Shaik, ChemPhysChem 2010, 11, 301.

Key features:

Orientation of EF orthogonal to ‘reaction axis' results in mechanistic
crossover: endo products favoured at strong negative fields in y direction

Electric fields in frustrated Lewis acid base pairs
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Key reference: (7c) Grimme, Angew. Chem. Int. Ed. 2010, 49, 1402.

OEEFs as smart reagents

’

control over:
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Key references: (7b) Shaik, Nat. Chem. 2016, 8, 1091.
(1a) Shaik, ACS Phys. Chem. Au 2024, 4, 191.

- The 'reaction-axis rule' determines which orientation of the external electric field stabilises transition states most, and therefore results in the highest rate enhancement.

- With this rule, the effect of OEEFs on Diels—Alder reactions can be rationalised. Depending on the orientation of the field, not only a rate enhancment is anticipated, but also a change in the selectivity of this reaction.
- Apart from these external fields, FLPs create an electric field between the donor and acceptor atoms, resulting in the polarisation and cleavage of Ho.

- Lastly, OEEFs can be regarded as 'smart reagents'; depending on the direction and magnitude of the applied field, reaction rates can be accelerated or selectivities can be changed.

Figure 2 The ‘Reaction-Axis rule’, the influence of OEEFs on Diels—Alder reactions, and a highlight of internal electric fields in FLPs’
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Bond formation

Bond breaking
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Key references: (8a) Aragonés, Nature 2016, 531, 88.
(8b) Stone, Chem. Sci. 2022, 13, 10798.

Key references: (3f) Zhang, Chem. Sci. 2023, 14, 1769.
(8c) Huang, Sci. Adv. 2019, 5, 6.
(8d) Borca, ACS Nano 2017, 11, 4703.

Reviews: (1e) Ciampi, Chem. Soc. Rev. 2018, 47, 5146. (8k) Dief, Nat. Res. 2023, 56, 600. (8j) Chen, Nat. Res. 2023, 8, 165.

Key features:
- Reactions between STM (scanning tunneling microscopy) tips enables strong electric fields to be generated due to the small interelectrode distance.

- Electric fields between STM tips enable a broad range of reactions to take place: bond breaking, bond forming and isomerisation.
- The STM-based break junction (STM-BJ) technique enables quantification of bonds breaking, forming or isomerising.

Figure 3 Reactions in the electric field of an STM tip'e38
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Key references: (8e) Zang, Nat. Commun. 2019, 10, 4482.
(8f) Tang, Nat. Commun. 2023, 14, 3657.

(8g) Alemani, J. Am. Chem. Soc. 2006, 128, 14446.
(8h) Sreelakshmi, J. Am. Chem. Soc. 2024, 146, 35242.
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Key reference: (9a) Wang, Angew. Chem. Int. Ed. 2024, 63, e202402440. Key reference: (9b) Gorin, J. Am. Chem. Soc. 2012, 134, 186.

Key reference:
(9c) Gorin, J. Am. Chem. Soc. 2013, 135, 11257.

Cleaving C—F bonds in PFAS substances interfacial electrostatic field (IEF) : Improved selectivity of an epoxide rearrangement IEF ; Improved selectivity of carbene chemistry IEF
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Acoustic levitation for contactless microdroplet reactions
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Further references: (3g) Song, J. Am. Chem. Soc. 2023, 145, 26003. (9¢) Gu,
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Key features:

- The use of electric fields enables the ability to change and improve the selectivity of a reaction, as shown with the epoxide rearrangement and carbene chemistry.
- It can also be used to reduce the amount of additional reagents needed for a reaction to proceed.

- It has been shown to be applicable to a variety of organic reactions.

- Investigations into its ability to treat PFAS substances have also been carried out.

Figure 4 Organic reactions assisted by electric fields3<9

Sustainable click reactions (Huisgen cycloadditions) using a
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Key reference: (3c) Sevim, Nat. Commun. 2024, 15, 790.
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NP formation
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Key reference: (10b) Zhou, ACS Sustainable Chem. Eng. 2019, 7, 1271.

Synthesis of nanoparticles in nanopores using electric fields
Key reference: (10a) Morozov, J. Mater. Chem. 2012, 22, 11214.
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Key reference: (10c) Gonzalo-Juan, Green Chem. 2014, 16, 3286.

deposition

Key references: (10d) Venta, Nano Lett. 2013, 13, 423. (10e) Liu, Nanoscale 2011, 3, 3933.

Key features:

- Electric fields can be a valuable tool for nanoparticle synthesis by aiding nanoparticle formation and electrophoretic deposition of nanoparticles onto a surface.
- It can provide a cleaner route for the synthesis of nanoparticles.

Figure 5 Electric-field-assisted nanoparticle synthesis'®

© 2025. Thieme. All rights reserved. SynOpen 2025, 9, 282-291
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Electric-field-assisted anion-n catalysis
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Key reference: (5) Gutiérrez Lopez, Sci. Adv. 2023, 9, eadj5502.

Figure 6 Examples of electric-field-assisted anion-r catalysis on modified electrodes®'

© 2025. Thieme. All rights reserved. SynOpen 2025, 9, 282-291
Georg Thieme Verlag KG, Oswald-Hesse-StraRRe 50, 70469 Stuttgart, Germany



290
THIEME

SynOpen H. Chadwick et al.

Electric-field-assisted anion/cation-r catalysis of terpine cyclisations
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Key reference: Jozeliunaite, Angew. Chem. Int. Ed. 2024, 64, e202417333.

Key features:
- Electric fields enable polarisation of t-systems close to the electrode surface which create macrodipoles.
- These macrodipoles enable the stabilisation of anionic or cationic intermediates, depending on the polarisation of the electrode, catalysing the reaction.

Figure 7 Examples of electric-field-assisted anion- and cation-r catalysis in electrochemical microfluidic devices'
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