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Abstract

Multimodal Model Editing (MMED) aims to correct erro-
neous knowledge in multimodal models. Existing evaluation
methods, adapted from textual model editing, overstate suc-
cess by relying on low-similarity or random inputs, obscure
overfitting. We propose a comprehensive locality evaluation
framework, covering three key dimensions: random-image
locality, no-image locality, and consistent-image locality, op-
erationalized through seven distinct data types, enabling a de-
tailed and structured analysis of multimodal edits. We intro-
duce De-VQA, a dynamic evaluation for visual question an-
swering, uncovering a phenomenon we term transient blind-
ness, overfitting to edit-similar text while ignoring visuals.
Token analysis shows edits disproportionately affect textual
tokens. We propose locality-aware adversarial losses to bal-
ance cross-modal representations. Empirical results demon-
strate that our approach consistently outperforms existing
baselines, reducing transient blindness and improving local-
ity by 17% on average.

Code and Appedix with Additional Results —
https://github.com/sev777/DE-VQA

1 Introduction
The rapid advancement of large language models (LLMs),
such as ChatGPT and Deepseek (Vaswani et al. 2017; Ope-
nAI et al. 2024), has driven their widespread adoption
as sources of factual knowledge (Huang et al. 2025; Yan
et al. 2025a; Zheng, Lapata, and Pan 2025) for downstream
tasks (Pan et al. 2023), and multimodal LLMs have further
extended these capabilities to vision-language tasks, with
strong performance in cross-modal understanding (OpenAI
et al. 2024; Li et al. 2023; Zhu et al. 2023). However, a
critical challenge for multimodal LLMs is knowledge ob-
solescence, making regular updates essential to maintain ac-
curacy. To address this, model editing (Sinitsin et al. 2019;
De Cao, Aziz, and Titov 2021; Mitchell et al. 2022a; Han
et al. 2023a,b, 2024) has emerged as an efficient solution to
correct factual inaccuracies without costly retraining.

Multimodal model editing (MMED) specifically targets
updating a multimodal model’s predictions for specific
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Figure 1: Current locality evaluation focuses only on low-
similarity data (a), while the edited model fail on high-
similarity cases (b).

image-text pairs while preserving performance on unrelated
inputs. Recent works by Cheng et al. (2023) have introduced
dedicated datasets and adapted evaluation metrics for this
task. These metrics address two core aspects: (1) Factual
updating, assessed through dimensions like reliability, gen-
eralization to comprehensively measure an edit’s effective-
ness; (2) Side-effect evaluation, referred to as locality, where
current methods simply sample random text or image-text
questions (see Figure 1 (a)). Building on this foundation,
recent methods (Huang et al. 2024; Ma et al. 2025b; Du
et al. 2025) have proposed more challenging factual eval-
uation protocols to better assess an editor’s editing capac-
ity. However, they largely overlook the locality aspect, an
essential factor in multimodal editing. By directly adopting
locality metrics from text-only settings, these methods fail
to account for the unique challenges of multimodal inputs,
where such simplistic extensions are often inadequate.

Specifically, existing locality evaluation focuses only on
whether the final output stays the same, without examining
whether the model’s inference process or modality usage has
changed. As shown in Figure 1, after we update the output
for question-image pair, the model cannot output the correct



answer “Black” instead of “Green”. Even when presented
with a rephrased question “What color are the shoes of this
boy?” alongside an image of yellow shoes (cf. Figure 1 (b)),
the edited model still outputs “Black”, disregarding the con-
tradictory visual evidence. More critically, when given only
the edited text (with no accompanying image), the model
still incorrectly responds with “Black”, indicating that the
post-edit model tends to overfit to the edited fact and ig-
nore visual evidence when faced with semantically similar
inputs. This issue is particularly problematic in multimodal
models, where both image and text are jointly used for pre-
diction. An edit that targets only the textual representation
can lead the model to over-rely on language and disregard
visual cues, even when the output appears correct. Such be-
havior reflects a breakdown in cross-modal balance, a key
aspect of model fidelity in multimodal settings.

To address this issue, we propose a novel evaluation
framework for analyzing the locality of multimodal model
editing (MMED). We introduce De-VQA, a Dynamic Eval-
uation framework for visual question answering (VQA),
which automatically selects adversarial samples that are
similar (but not identical) to the editing data in either the
text or image modality. To assess a post-edit model’s mul-
timodal ability, we define three locality metrics: Random-
Image Locality (RI-Loc), No-Image Locality (NI-Loc), and
Consistent-Image Locality (CI-Loc). These are quantified
using seven distinct data types designed to probe different
aspects of locality. Using De-VQA, we uncover the phe-
nomenon of transient blindness, a degradation in multi-
modal locality where edits to a model’s textual knowledge
cause it to temporarily “ignore” or under-utilize visual in-
puts during inference. To investigate the root causes of tran-
sient blindness, we employ token attribution tracing and
find that current editing methods disproportionately alter
textual representations while leaving visual representations
largely unaffected. This imbalance in hidden state updates
causes edited models to over-rely on textual cues, giving
rise to transient blindness. We introduce an adversarial loss
that amplifies the influence of visual inputs during editing,
thereby reducing this effect. Experiments on two datasets
and across two multimodal models demonstrate that our
method effectively mitigates transient blindness, improving
both the robustness and reliability of the edited models.

In summary, our main contributions are as follows:

(1) We propose De-VQA, a dynamic evaluation framework
designed to detect breakdowns in locality during multi-
modal model editing (MMED). It introduces three evalu-
ation dimensions operationalized through seven carefully
constructed data types. Together, these components form the
first comprehensive benchmark for assessing locality preser-
vation in MMED.

(2) We characterize locality failures as transient blindness:
a phenomenon in which post-edit models overfit to textual
inputs resembling the edit, while neglecting visual informa-
tion. Our analysis reveals that transient blindness stems from
imbalanced updates between the textual and visual modali-
ties during the editing process.

(3) We propose a locality loss that balances cross-modal up-

dates. Extensive experiments show that our approach con-
sistently mitigates transient blindness and improves locality
preservation by 17% on average across multiple models and
datasets, while maintaining edit accuracy.

2 Multimodal Model Editing
Task Definition. Multimodal model editing (MMED) aims
to correct the output of a multimodal model f(·; θ) with
parameters θ without full retraining or fine-tuning, while
preserving the model’s original outputs for unrelated in-
puts. MMED employs an editing function g(·) to achieve
g(f(xe)) = a, where xe is the input for the edits and a is
the desired output. For inputs xo unrelated to xe, the goal is
to maintain their outputs unchanged, i.e. g(f(xo)) = y =
f(x0). Note: x∗ is composed of the input image xi

∗ and the
input text xt

∗.

Evaluation Metrics. To evaluate the performance of an
editing method g(·), prior work uses the following datasets:
the editing dataset De composed of tuples ⟨xi

e, x
t
e, ye, a⟩,

the semantically equivalent dataset Dg composed of tuples
⟨xi

g, x
t
g, yg, a⟩ and the locality dataset Do composed of tu-

ples ⟨xi
o, x

t
o, yo⟩. They use the following metrics:

• Reliability measures how effectively g(·) updates the
output of model to a instead of ye, for each data element
in De. This is calculated as:

Rel = E⟨xi
e,x

t
e,ye,a⟩∈De

[1g(f(xi
e,x

t
e),ye)=a]. (1)

• Generality assesses the consistency of predictions from
the post-edit model g(f(·)) when presented with seman-
tically equivalent inputs from Dg . This includes modi-
fied text and images, known as text-generality (T-Gen)
and image-generality (I-Gen), respectively:

T-Gen = E⟨xi
e,x

t
g,ye,a⟩∈Dg

[1g(f(xi
e,x

t
g),ye)=a]. (2)

I-Gen = E⟨xi
g,x

t
e,ye,a⟩∈Dg

[1g(f(xi
g,x

t
e),ye)=a]. (3)

• Locality evaluates how well g(f(·)) maintains the orig-
inal predictions of f(·) for each data in Do. Local-
ity is measured using Text-Locality (T-Loc) and Image-
Locality (I-Loc), which are expressed as follows:

T-Loc = E⟨xt
o,yo⟩∈Do

[1g(f(xt
o),yo)=f(xt

o)
]. (4)

I-Loc = E⟨xi
o,x

t
o,yo⟩∈Do

[1g(f(xi
o,x

t
o),yo)=f(xi

o,x
t
o)
]. (5)

These metrics primarily assess whether the model’s outputs
remain unchanged on inputs unrelated to the edit, without
probing shifts in inference or modality usage. However, in
multimodal models, we find that edits targeting textual in-
puts can induce an over-reliance on language, causing the
model to overlook visual cues, even when the outputs appear
correct. Therefore, beyond output preservation, it is crucial
to evaluate whether the model continues to appropriately in-
tegrate both visual and textual modalities after editing.
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Figure 2: Overview of De-VQA: dynamic sampling of re-
lated and unrelated image-text pairs (Ti, Ij), i, j ∈ {2, 3, 4},
for the edited pair (T1I1). Consistent-Image indicates that
either the image or textual input are related to the edited
data. Random-Image represents cases of image-text mis-
match. No-Image denotes text-only inputs without any ac-
companying image.

3 Dynamic Evaluation Framework
To overcome these limitations, we propose three new local-
ity metrics that provide a more rigorous evaluation of modal-
ity utilization and the robustness of edited models. To sup-
port these metrics, we introduce De-VQA, a novel frame-
work that automatically generates test cases tailored to spe-
cific model edits. The details are as follows.
Dynamic Data Sampling. We construct evaluation sam-
ples by selecting image-text pairs with varying similarity to
edited data, covering related and unrelated content in both
modality, to allow a comprehensive locality assessment. For
example, in Fig. 2, suppose the edit is: The boy is wearing
black shoes. applied to image I1. We label the corresponding
image and text as I1 and T1, respectively. Through dynamic
sampling, we retrieve a semantically similar text T2, along
with irrelevant texts T3 and T4, and group them into a text
set: T = {T1, T2, T3, T4}.

Correspondingly, we obtain images I2, I3, and I4 (the
image sources for T2, T3, and T4) forming the image set
I = {I1, I2, I3, I4}. Note that both T3 and T4 are unrelated
to the edit, with a key distinction: T3 is paired with an im-
age I3 (capturing I-Loc), while T4 is a standalone text query
without an associated image (capturing T-Loc). We use the
retriever from IKE (Zheng et al. 2023) to identify similar
data pair to the T1 as the related sample T2 and image I2.
Data Construction Evaluation. We compute the Cartesian
product ζ of the text set T and image set I to obtain all
possible combinations of inputs:

T × I = ζ = {(Ti, Ij) | Ti ∈ T, Ij ∈ I}, (6)

where × denotes the Cartesian product. As illustrated in
Fig 2, this results in a total of 16 unique text-image pairs.

We exclude the pair (T1, I1) (Rel) because it is used to eval-
uate reliability. Thus, for locality evaluation, we define the
set:

Locs = ζ \ {(T1, I1)}. (7)
Among the remaining pairs, existing locality evaluations
typically focus only on two cases: (T3, I3) (I-Loc) and
(T4, I4) (T-Loc), which represent fully unrelated inputs in
the image and text modalities, respectively. While these
evaluations verify that the edit does not affect unrelated in-
puts, they are limited in scope and fail to assess how the edit
generalizes to semantically related yet distinct multimodal
combinations.
Evaluation Metrics. To provide a more comprehensive as-
sessment of locality in the multimodal setting, we split the
the remaining 13 combinations in Locs into three classes
based on their relationship to the edits: random-image lo-
cality, no-image locality, and consistent-image locality.
Random-Image Locality (RI-Loc) refers to input pairs in
which the image and text are mismatched and mutually ir-
relevant (e.g., T1I3, T2I3, T3I1, T4I1). As shown in the RI
region of Fig 2, this category includes a total of seven such
combinations. RI-Loc evaluates whether the post-edit model
disproportionately relies on the text input when the accom-
panying image offers no relevant information. In De-VQA,
rather than exhaustively evaluating all RI combinations, we
focus on two representative cases: the random-image re-
placement (T1I3) and the random-text replacement (T3I1),
where either the edited image or text is replaced with random
inputs. These scenarios serve as effective probes for measur-
ing overreliance on a single modality. We define RI-Loc as:

RI-Loc = E⟨xi,xt,a⟩∈{T1I3,T3I1}[1g(f(xi,xt),y)̸=a].

No-Image Locality (NI-Loc) refers to image-free inputs,
text-only queries paired with a missing or null image input.
This category includes three combinations: T1I4, T2I4, and
T3I4. NI-Loc evaluates whether the model can avoid pro-
ducing incorrect outputs in the absence of visual context,
thereby ensuring it does not over-rely on textual cues alone.
In De-VQA, we focus on two critical scenarios where the
image input is entirely removed: Edited Text without Image
(T1I4) and Similar Text without Image (T2I4). These cases
are designed to assess the model’s robustness under image-
free conditions and are computed as follows:

NI-Loc = E⟨xt,y,a⟩∈{T1I4,T2I4}[1g(f(xt),y)̸=a].

Consistent-Image Locality (CI-Loc) captures input pairs
where the image, the text, or both are semantically similar to
the edited data. This includes three key combinations: T1I2,
T2I1, and T2I2. To construct CI-Loc samples, we first re-
trieve semantically similar textual questions (T2) using the
IKE retriever. Then, we obtain their corresponding paired
images (I2) from the dataset. CI-Loc assesses whether the
edit has unintentionally impaired the model’s ability to accu-
rately process visual information when presented with vari-
ations of the original textual input. In De-VQA, due to the
strong semantic relevance of these samples to the edited in-
put, we evaluate all combinations formed by T1, T2 and I1,
I2, expressed as:

CI-Loc = E⟨xi,xt,y,a⟩∈{T1I2,T2I1,T2I2}[1g(f(xi
e,x

t
r),y)̸=a].
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Figure 3: Causal information flow in multimodal models.
The red paths highlight the causal trace originating from im-
age tokens. After editing high layer (gray area), the causal
influence from image tokens is blocked (indicated by the
black paths), while the flow from text tokens remains un-
affected.

Testing with De-VQA reveals that while existing editing
methods excel on original metrics, they perform poorly on
the above metrics. As shown in Fig 1 (a), edited models ex-
hibit transient blindness, an overfitting to textually similar
queries while ignoring accompanying images.

4 Alleviating Transient Blindness in MMED
Through our evaluation framework, we found the existence
of transient blindness in post-edit multimodal models. This
section analyzes its causes and proposes mitigation strate-
gies. We first examine the relative influence of text and im-
age tokens on model outputs both before and after editing.
Our analysis reveals that post-edit models exhibit an in-
creased reliance on textual information, consequently dimin-
ishing the impact of visual inputs. Based on this observation,
we propose an adversarial loss to balance the model’s atten-
tion to textual and visual knowledge after editing.

4.1 Token Attribution in Multimodal Models
To assess modality contributions in Large Multimodal Mod-
els (LMMs), we trace token-level influence on the output by
analyzing which tokens most affect the final hidden state.
Given input tokens x = {ti0, . . . , tim, tw0 , . . . , t

w
n }, where

tij , j ∈ [0,m] are image tokens and twk , k ∈ [0, n] are text
tokens, the hidden state at layer ℓ is:

hℓ = MLP(hℓ−1) +Attn(hℓ−1) + hℓ−1 = mℓ + aℓ + hℓ−1.

We focus on the output token hL
N (N = m + n) and back-

track important contributors using a queue-based token trac-
ing. For each token hℓ

i in the queue Q, we extract compo-
nents via: Hook(hℓ

i) = {hℓ−1
i ,mℓ

i , a
ℓ
i}, and compute each

component’s contribution score:

Distance(hℓ
i , a) =

L2(h
ℓ
i − a)∑

j∈{h,m,a} L2(hℓ
i − j)

+ cos⟨hℓ
i , a⟩,

(8)

which combines geometric distance and representational
alignment. Tokens with high scores are recursively added to
Q, forming a critical influence path. We compute the image-
to-text ratio among influential tokens across layers. We find
editing reduces the contribution of image tokens, shifting the
model’s reliance toward textual input (see Figure 3).

4.2 Adversarial Enhancement for Mitigating
Transient Blindness

Token attribution analysis reveals that post-editing, the
model over-relies on textual input while neglecting visual
cues. To restore cross-modal balance, we propose an adver-
sarial sample augmentation strategy inspired by recent mul-
timodal regularization methods (Pi et al. 2025; Chen et al.
2024a; Wu et al. 2024). We build on MEND (Mitchell et al.
2022a), a hypernetwork-based editing method (Fig. 8 in Ap-
pendix), which computes low-rank parameter updates from
the edit loss Le = − log pθ′(ye | xi

e, x
t
e). To preserve un-

related behaviors, MEND introduces a locality constraint:
Lloc = KL(pθ(· | xi

o, x
t
o) || pθ′(· | xi

o, x
t
o)) + KL(pθ(· |

xt
o) || pθ′(· | xt

o)). To balance the contribution between im-
age and text modalities in the locality constraint, we use a
KL divergence loss to ensure that the model’s output distri-
bution remains consistent before and after editing:

LM
loc = KL (pθ(· | x)||pθ′(· | x)) , (9)

where θ and θ′ are the model parameters before and after
editing, and x = (xt

∗, x
i
∗) denotes a multimodal input com-

posed of the edited textual question xt
∗ and an unaltered im-

age xi
∗. To provide diverse locality constraints, we select

representative samples of x from three different types: (i)
RI, e.g., T1I3, (ii) CI, e.g., T2I2 and (iii) NI, e.g., T1I4. We
combine the KL losses computed from these three types of
inputs as the final locality constraint LM

loc. Analysis of com-
binations is provided in Section 5.5. The final objective is:

Loss = λ1Le + λ2Lloc + λ3LM
loc, (10)

where we set λ1 to 0.1 and λ2, λ3 to 1. This regularization
encourages the model to rely more on image features when
text is ambiguous or mismatched, mitigating transient blind-
ness and reinforcing visual grounding after edits.

5 Experiments
To evaluate the effectiveness of De-VQA, we aim to explore
the following research questions:

• RQ1: What limitations of existing locality evaluation
methods can De-VQA reveal?

• RQ2: How does our method perform under the De-VQA
framework compared to prior editing approaches?

• RQ3: Why does model editing lead to transient blind-
ness, and how does our method mitigate this issue?

5.1 Experimental Setup
Dataset. To reassess existing editing methods and quantify
the transient blindness induced by model editing. We apply
De-VQA based on VQA (Cheng et al. 2023), which contains
6,346 training data entries and 2,093 test data entries, and



����

���

���

���

���

����

���

���

���

���

���

���

���

���

���

���

���

���

I - L o c

T - L o c

I - G e n

T - G e n
R e l

 F T
 F T - V
 S E R A C
 L T E
 T P
 L e m o e
 L i v e E d i t
 H I C E
 R E C I P E
 M E N D
 O u r s

N I - L o c

R I - L o c

C I - L o c

V Q A V L K E B

B l i p 2 O P T M i n i G P T 4

I - L o c

T - L o c

I - G e n

T - G e n
R e l

N I - L o c

R I - L o c

C I - L o c

V Q A V L K E B
I - L o c

T - L o c

I - G e n

T - G e n
R e l

N I - L o c

R I - L o c

C I - L o c

I - L o c

T - L o c

I - G e n

T - G e n
R e l

N I - L o c

R I - L o c

C I - L o c

Figure 4: Main experiment results on Blip2OPT and MiniGPT4. The lower performance of existing editing methods on {CI
(T2I2), RI (T1I3), NI (T1I4)}-Loc compared to the better performance on {T,I}-Loc reflects the inadequacies of the original
locality evaluation. Our method (black node) can achieve more comprehensive performance in terms of locality.

VLKEB (Huang et al. 2024), which includes 5,000 training
data and 3,174 test data. And the VQA is prioritized as it
need strict cross-modal collaboration, but captioning/OCR
rely less on balanced text-image use.
Baselines. Our evaluation includes two multimodal mod-
els: Blip2OPT (Li et al. 2023) and MiniGPT4 (Zhu et al.
2023) and Qwen-2.5-VL (Bai et al. 2023) which are pop-
ular models in multimodal model editing settings. We use
all-MiniLM-L6-v2 (Reimers and Gurevych 2019) to select
the evaluation samples based on cosine similarity. We use
the editing methods FT (Zhu et al. 2020), MEND (Mitchell
et al. 2022a), TP (Huang et al. 2023), LTE (Jiang et al.
2024), RECIPE (Chen et al. 2024b), Lemoe (Wang and Li
2024), LiveEdit (Chen et al. 2025), HICE (Ma et al. 2025b)
and SERAC (Mitchell et al. 2022b). We edit a single in-
stance at a time. All experiments were conducted on a single
NVIDIA A100 (40GB) GPU. Hyperparameters and imple-
mentation details are kept consistent with these baselines to
ensure fair comparison1. Additional implementation details
are provided in the Appendix.

5.2 Main Results
To address RQ1, we conduct experiments on the VQA and
VLKEB. Main results demonstrate that De-VQA uncovers
critical limitations of existing evaluation metrics, and our
method outperforms baselines in mitigating transient blind-
ness while maintaining edit accuracy. As shown in Figure 4,
while most editing methods demonstrate promising perfor-
mance on traditional metrics such as Rel, T-Gen, and I-Gen,
these metrics fail to fully capture the nuanced impacts of
model editing on locality. The limitations become evident
when we evaluate methods using De-VQA, which identifies
transient blindness.

For instance, MEND and SERAC achieves high scores
of 0.99 on most metrics. Similarly, LTE and Lemoe main-
tain relatively balanced performance across these metrics,
with scores above 0.9. However, these methods generally
show poor locality preservation under De-VQA. For exam-

1DeVQA is a plug-and-play framework, so we evaluate each
methods using their original settings under a single-edit setup.

ple, most methods only get a score lower than 0.5, SERAC,
LiveEdit, Lemoe obtain very low scores on NI-Loc (< 0.3),
RI-Loc (< 0.1), and CI-Loc (< 0.2), indicating that they
fail to consistently preserve unrelated knowledge in vary-
ing contexts. This exposes a significant limitation in exist-
ing evaluation protocols, which DeVQA explicitly uncov-
ers. NI-Loc for FT-V is special, because updating the visual
module alone does not affect the model’s output when given
only text inputs, resulting in a perfect NI-Loc score of 1.

Our approach demonstrates superior performance in De-
VQA metrics, effectively alleviating the problem of transient
blindness. Unlike existing methods, our strategy balances
the contributions of both textual and visual information dur-
ing editing, improving locality robustness with scores of
0.7 on NI-Loc and CI-Loc, 0.6 on RI-Loc. As a result, our
method maintains high editing success rates and preserves
the model’s multimodal capabilities, as evidenced by con-
sistently strong performance across all De-VQA metrics.

5.3 Analyzing Locality with De-VQA
To address RQ2, We conduct a comprehensive evaluation of
different locality metrics, as summarized in Figure 5.

MEND, RECIPE and LiveEdit exhibit poor performance
across several metrics (e.g., T2I1, T1I3), with scores falling
below 0.5, and consistently underperform on CI-Loc with a
score close to 0.3. This indicates severe overfitting, as these
methods consistently produce the edited answer even when
given inputs only marginally similar to the original edited
prompt. TP achieves strong performance across all metrics,
obtained a mean of around 0.5 on all metrics. We attribute
this to its strategy of updating only a small subset of neurons
for each individual data point, resulting in minimal perturba-
tion to the model parameters. As a result, it is better able to
preserve the original capabilities of the model compared to
other methods. HICE extends ICE (Zheng et al. 2023) by
introducing a binary classifier to determine whether contex-
tual information should be incorporated. However, we ob-
serve that its prediction scores are often centered around
0.5, suggesting that the model fails to truly understand the
multimodal content. Compared to editing methods such as
MEND, RECIPE, and LTE, our method achieves higher CI-
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Figure 5: Locality metric performance comparison on
MiniGPT4. Different colors denote metric types.

Loc scores (T1I2 and T2I2), achieve average 15% improve-
ment, indicating improved cross-modal consistency. How-
ever, performance on T2I1 remains limited, which we at-
tribute to the difficulty of fine-grained entity understanding
when queries involve visually similar entities.

Overall, our method outperforms all baselines by address-
ing the multimodal inconsistency problem. By incorpo-
rating cross-modal locality modeling and consistency-aware
loss functions, it avoids overfitting to the edited prompt and
maintains both visual and textual fidelity. This makes it more
robust and reliable across a diverse set of locality scenarios.
See Appendix for more results and discussions.

5.4 Analysis of Transient Blindness
To address RQ3, we employ token contribution analysis to
measure the impact of each modality on model’s output be-
fore and after editing.

We first verify the effectiveness of our token attribution
method introduced in Section 4.1. By masking non-critical
tokens in specific layers and measuring the resulting per-
formance drop (Table 1), we observe that masking only the
top four layers retains approximately 87% of the original
performance, while masking more layers leads to a gradual
decline. This indicates that the identified tokens in higher
layers are indeed critical to the model’s predictions and that
our attribution method accurately captures influential inputs
at the editing-relevant layers.

Building on this, we further investigate these critical to-
kens by analyzing attribution scores for visual and textual
tokens (particularly in the upper layers) measured by the ra-
tio of image to text token attributions. As shown in Figure 6,
both our method and the original (pre-edit) model maintain
strong contributions from image tokens in layers beyond 29,
evidenced by higher scores for visual tokens (squares and
triangles) compared to textual ones (circles). In contrast,
MEND significantly reduces the contribution of visual to-
kens post-editing, leading to a text-dominated output, and
make the transient blindness. More results across all layers
are provided in Appendix.

5.5 Ablation Study
Editing Different Modules. We independently update the
visual encoder (V), text encoder (T), and their combina-

Layer 29-32 25-32 20-32 15-32 10-32 5-32 0-32

Model Blip2OPT

VQA 0.9506 0.5629 0.2382 0.2079 0.1773 0.0169 0.0017
VLKEB 0.8704 0.8065 0.6517 0.5218 0.3559 0.0473 0.0060

Model MiniGPT4

VQA 0.8966 0.8733 0.8233 0.7353 0.6453 0.5927 0.5820
VLKEB 0.8866 0.7740 0.6920 0.4707 0.2913 0.2267 0.1467

Table 1: Performance Change After Masking Unimportant
Tokens. The results indicate that utilizing only the tokens
we have pinpointed for prediction can maintain over 87% of
the performance at higher layers.

tion (DV) using MEND, following the same setup as Cheng
et al. (2023). As shown in Figure 7, updating V or DV sig-
nificantly improves locality metrics, indicating the impor-
tance of aligning multimodal components. However, such
updates lead to a drop of over 20% in relevance and gen-
erality, suggesting degraded model consistency. In contrast,
editing LLM only with appropriate loss constraints yields a
better balance between editing effectiveness and model re-
tention. Note that when only the image encoder is updated,
T1I4 and T2I4 reach 1 due to unchanged LLM parameters.
Effect of Loss Functions. We investigate the impact of in-
corporating RI, NI, and CI losses individually and in com-
bination (cf. Figure 7). The training data we use for each
type of locality is: RI (T1I3), CI (T2I2), and NI (T1I4).
Incorporating all three losses yields the best and most sta-
ble performance, achieving the highest scores in three out
of four settings and ranking third on the Blip2OPT model
with VQA. While using only RI+NI produces comparable
results, it introduces instability on metrics such as T1I2 and
T1I3, and performs well only on MiniGPT-4 with VLKEB.
This instability arises from challenges in distinguishing edits
involving the same image but differing attributions, for in-
stance, identifying ‘black shoes’ versus ‘yellow shoes’ with
the edits The boy is wearing black shoes. In such cases, more
fine-grained constraints are necessary, which are effectively
addressed by incorporating the CI loss. These results un-
derscore the importance of jointly optimizing across diverse
data types. By combining RI, NI, and CI losses, we enforce
stronger consistency and robustness in editing performance
across multimodal contexts. Thus we employ the CI-RI-NI
as our loss combination.
Retrieval Consistency Analysis We also evaluate the con-
sistency between text-based and image-based retrieval in
multimodal model editing. We found that the average simi-
larity between samples retrieved via image-based similarity
and those retrieved via text-based encoding, as computed by
CLIP, is 0.89. This result demonstrates a high degree of se-
mantic consistency between the two retrieval methods, con-
firming that both text-based and image-based retrieval can
yield comparably relevant samples.

6 Related Work
Model Editing. Model Editing has emerged as a viable
strategy for precisely updating LLMs without the expen-
sive resources (Wang et al. 2023; Zhang et al. 2024). A key
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Figure 6: Contribution of image tokens in Blip2OPT and MiniGPT4, with evaluation across RI-Loc, CI-Loc, and T-Gen metrics.
Squares, circles, and triangles denote results from the original model, MEND, and our method, respectively.
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Figure 7: Ablation study results: (left) module updating comparison, where D refers to the last three layers of the LLM, V refers
to the last three layers of the visual encoder, and DV is their combination; (right) loss function comparison.

challenge in model editing is how to update information
without affecting unrelated data and without compromis-
ing the model’s performance. (Hoelscher-Obermaier et al.
2023; Gupta, Rao, and Anumanchipalli 2024). Cheng et al.
(2023) extend text-based editing methods to multimodal
model editing and preliminarily verify its feasibility. How-
ever, the edited model only retains the predictions of the
pre-edited model for randomly selected data. Compared to
evaluating the success rate of updates, assessing the local-
ity of editing models is more important for developing ro-
bust model editing methods. In this paper, we reveal tran-
sient blindness in MMED, as current evaluations overlook
changes in multimodal abilities, resulting in inaccurate pre-
dictions for inputs that are related but differ from the edits,
highlighting the important of Locality in MMED.

Editing in Multimodal Language Models. The develop-
ment of large language models (LLMs) has spurred notable
advances in multimodal LLMs (MLLMs) (Xu, Zhu, and
Clifton 2023; Qi, Lv, and Ma 2025). These models typically
leverage an LLM decoder to interpret fused image-text in-
puts, making the preservation of multimodal capabilities a
central concern during model editing. Promising future so-
lutions to this challenge include retrieval-augmented gener-
ation (Yan et al. 2025b,c) and memory-based mechanisms
(Ma et al. 2025a; Wang et al. 2024).

7 Discussion & Conclusion
Our research uncovers critical limitations in current MMED
evaluations, highlighting that existing metrics overlook
cross-modal balance degradation and fail to detect transient
blindness, a phenomenon where edited models over-rely on
textual cues and disregard visual information. To address
this, we propose De-VQA, a plug-and-play dynamic evalua-
tion framework that introduces three comprehensive locality
metrics and seven data types to assess multimodal editing ef-
fects. Through token attribution analysis, we trace transient
blindness to imbalanced updates between textual and visual
modalities, and our proposed locality-aware adversarial loss
effectively balances cross-modal contributions. Experimen-
tal results demonstrate that our method outperforms existing
baselines, improving locality preservation by 17% on aver-
age while maintaining high edit accuracy.

Our work not only revolutionises the evaluation of mul-
timodal model editing by exposing transient blindness and
refining locality assessment, but also offers a foundation for
robust solutions to balance cross-modal updates, enabling
more reliable knowledge correction in real-world vision-
language applications, such as correcting misunderstandings
in social media image-text posts (e.g., revising a satirical
caption to prevent misinformation) and personalized content
generation (e.g., learning a new corporate logo and its mean-
ing for consistent marketing creation).
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