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Abstract: As power systems grow more complex and integrate intermittent renewable energy sources, assessing 38 

system reliability has become increasingly time-consuming. A significant challenge arises from the repetitive 39 

calculations of optimal power flow (OPF), which minimizes load curtailment. To address this, a state-similarity-40 

based method is proposed to accelerate the OPF calculations for reliability assessment. It is based on the observation 41 

that many states in reliability assessment exhibit similar OPF solutions with identical active constraints. This 42 

similarity allows system states to be grouped into categories, with each category containing states sharing the same 43 

active constraints. For states within the same category, the optimal load curtailment can be calculated by solving 44 

linear equations instead of optimization algorithms. Furthermore, optimality conditions are employed to ensure that 45 

states are accurately matched to their respective similarity categories. Also, this method can be conveniently 46 

integrated with the impact increment and cross-entropy methods for further efficiency improvements. Case studies 47 

conducted on the RTS-79, RTS-96, and Brazilian systems demonstrate that the proposed method significantly 48 

improves computational efficiency without sacrificing accuracy, when compared with traditional methods. 49 

 50 

Keywords: Reliability Assessment, Power System, Renewable Energy, State Similarity, Active Constraints, 51 

Optimal Load Curtailment.  52 



Nomenclature 

Abbreviation   

OPF optimal power flow AC alternating current 

REG renewable energy generation  DC direct current 

WT wind turbines EENS expected energy not supplied 

PV photovoltaics LP linear programming 

SE state enumeration CR category rank 

MCS Monte Carlo simulation CEMCS CE-based MCS method 

IISE impact-increment-based SE SSMCS SS-based MCS method 

CE cross-entropy SSCEMCS SS-based CEMCS method 

SA sensitivity analysis SSSE SS-based SE method 

POA post optimal analysis SSIISE SS-based IISE method 

MPLP multi-parametric linear programming LR load and renewable generation 

LM Lagrange multipliers TL transmission line 

SS state similarity approach G generation 

Indices and Sets   

Ωs the set of system state k the index of state 

ΩCS the set of component state  l the index of branch 

ΩLG the set of load and generation state iss the index of similarity category 

Ωss the set of state similarity  i / j the index of buses 

Parameters and Constants   

s system state 
Yt branch admittance matrices for the to ends 

sl branch state 

sg generation state Fmax the limit of branch power flow 

Pd load level vector for buses nl the number of branches 

Pgmax maximum output vector for generators 
ng the number of traditional generators 

nb the number of buses 

nRE 
The number of renewable energy 

generators 
Nssmax 

maximum allowable number of similarity 

categories 

nw the number of WTs 
Ntri 

threshold for triggering the sorting 

operation np the number of PVs 

nt the number of load and generation states 
ΔPgmax 

fluctuations in renewable generation 

outputs Ybus bus admittance matrix 

Cg generator connection matrix ΔPd fluctuations in load levels 

Yf 
branch admittance matrices for the from 

ends 
cLC cost of load curtailment 

  
Variables   

fLC objective function yg slack variables of generation output 

 bus angle 
yf 

slack variables of branch power flow for 

the from ends Pg generation output 

PLC load curtailment 
yt 

slack variables of branch power flow for 

the to ends ’/’’ non-negative variables of bus angle 

yLC slack variables of load curtailment   

1. Introduction 53 

Renewable energy generation (REG), such as wind turbines (WT) and photovoltaics (PV), has been increasingly 54 

integrated into power systems [1]-[4]. However, the intermittency of REG can pose significant challenges to the 55 

stability and reliability of power systems[5]-[7]. Therefore, it is essential to evaluate the reliability of power systems 56 



with REG for guiding their expansion in planning and operation.  57 

Reliability assessment is a critical factor in determining the quality of power supply to users, and it typically 58 

involves three key processes [8]: system state selection, system state analysis, and reliability indices computation. 59 

The reliability indices are calculated based on the probability and impact (e.g., load curtailment) of system states 60 

over a specified period [9]. The number of system states will increase exponentially when considering REG 61 

fluctuations, component outages, and load variations, which can impose a significant computational burden on 62 

reliability assessment. As a result, improving computational efficiency of reliability assessment methods is crucial. 63 

There are two elementary reliability assessment methods [10]: State Enumeration (SE) and Monte Carlo 64 

Simulation (MCS). SE can provide accurate reliability indices by explicitly or implicitly enumerating all possible 65 

system states. This method is attractive because it can mathematically reflect the relationship between reliability 66 

and system states. However, the SE method becomes inefficient in large-scale systems due to the exponential 67 

growth of system states [11]. To improve the computational efficiency of SE, various techniques have been 68 

proposed in recent years to reduce system states, such as the fast sorting algorithm [12], fast contingency screening 69 

technique [13], and impact-increment-based SE (IISE) method [14].  70 

The MCS method selects system states according to their probability distribution and then estimates the 71 

reliability indices. Compared with SE, MCS is widely used in large-size systems [15]-[17]. Nevertheless, a large 72 

number of samples still lead to an extremely large computational effort, especially in power systems with low 73 

failure probabilities [18]. To this end, several variance reduction techniques have been employed to re-duce the 74 

samples of MCS, including importance sampling [19], Latin hypercube sampling [20], continuous-time Markov 75 

chain model [21], subset simulation [22], and cross-entropy (CE) method [23], etc. 76 

The aforementioned methods primarily aim to reduce the number of system states to be analyzed. However, 77 

computational efforts in state analysis depend not only on the number of system states but also on the complexity 78 

of their analysis. Consequently, many scholars have investigated accelerating system state analysis by employing 79 

alternatives to OPF, such as deep learning methods [24], [25]. For example, Van et al. [26] proposed a reliability 80 

assessment method based on a graph convolutional neural network, in which a graph isomorphism network is 81 

introduced to capture the features of system edges and nodes. This method achieves a computational speed up to 82 

1000 times faster than conventional model-driven approaches. Furthermore, to address the issue of topological 83 



changes in reliability assessment, a multi-core collaborative GCN was proposed and integrated with a self-attention 84 

mechanism, enhancing its robustness in adapting to changing topologies [27]. However, the enhanced performance 85 

of these methods has only been validated on specific test sets and lacks proven accuracy, posing a significant 86 

challenge in safety-critical fields such as reliability assessments [28]. 87 

For numerous OPF computations in reliability assessment, further advancement in optimization-based methods 88 

remain crucial. Many studies in reliability assessment have demonstrated that optimal load curtailment across 89 

system states exhibits significant similarity, primarily due to limited variations in component outages, load levels, 90 

and REG outputs [29]. This similarity is leveraged to enhance the efficiency of OPF calculations. In many cases, 91 

it allows for directly obtaining the optimal solution, thereby replacing traditional optimization methods, as shown 92 

in Table I. The Sensitivity Analysis (SA) method is used to quantify the change in optimal load curtailment resulting 93 

from load variations [30]. Fotuhi-Firuzabad et al. [31] used the Post Optimal Analysis (POA) to exploit the 94 

similarity among different states and accelerate the evaluations of similar states. Kang et al. [32] proposed a multi-95 

parametric linear programming (MPLP) method to reduce OPF computations. Generator outages and load 96 

variations are treated as MPLP parameters. This enables efficient analysis of massive system states by grouping 97 

them according to their identical optimal basis matrices. Qu et al. [33] extended this algorithm to the mixed-integer 98 

programming. By establishing a hierarchical solving mechanism and grouping integer variables, they achieved 99 

effective grouping of massive operation states. 100 

However, transmission line outages remain a significant challenge. To address this, Liu et al. [34] introduced 101 

Lagrange multipliers to establish the relationship between optimal load curtailment and topological changes. By 102 

matching topological states with Lagrange multipliers based on similarity, they significantly improved the 103 

computational speed of reliability assessments. Luo et al. [35] proposed a reliability assessment method based on 104 

an improved failure effect occurrence matrix, enabling rapid optimal load shedding analysis by constructing failure 105 

components of topological and load states. For the numerous nonlinear OPF computations in reliability assessments, 106 

a nonlinear solution method based on KKT conditions and active constraints has been proposed [36]. This approach 107 

transforms the nonlinear OPF problem into an underdetermined system of equations, solving it iteratively to  108 

improve computational efficiency. Since the KKT conditions are necessary but not sufficient, this method cannot 109 

guarantee a globally optimal solution. Our previous work [37] used Lagrange Multipliers (LM) to derive the linear 110 



relationship between the optimal load curtailment and the variations of load and REG. However, these methods are 111 

not applicable in cases of transmission line outages, where the system topology and state similarities may change. 112 

Since all line outage states must be analyzed by optimization methods, this remains a considerable computational 113 

burden, especially for large-scale systems [34]. Moreover, the matching processes of state similarity require 114 

significant computational resources, and the efficiency of these processes needs further enhancement. 115 

Table. Ⅰ Previous studies on state similarity 116 

Methods 
State Similarity 

Features 

Accelerated State 

Speedup* Component Outages Variations 

TL G Load REG 

SA [30] Optimal basis - - √ - ≈2.33 

POA [31] Original solution - √ √ - 1~7 

MPLP [32] Optimal basis - √ √ - 23~30 
LM [37] Lagrange multipliers - - √ √ >20 

* Speedup represents the multiple for efficiency improvement. 117 

This paper proposes a state-similarity (SS) approach to accelerate system state analysis in reliability assessment. 118 

In this approach, the active constraints of optimal power flow (OPF) problems are employed as distinctive features 119 

to characterize the similarities among different system states. Two system states are regarded as state-similar if 120 

they share identical sets of active constraints. Based on this property, the proposed method enables the optimal load 121 

curtailment to be directly derived by solving a set of linear equations, without invoking iterative optimization 122 

algorithms. Consequently, the proposed method can significantly improve the computational efficiency for 123 

reliability assessment. The main contributions are as follows: 124 

⚫ This paper proposes a state-similarity-based method to enhance the efficiency of reliability assessments in 125 

power systems. By identifying similarities among numerous system states, the OPF optimization problem 126 

is transformed into a task of solving linear equations. For OPF problems within the same state similarity 127 

category, only one optimization is required, while the optimal load curtailment for other states can be 128 

efficiently derived by solving linear equations. 129 

⚫ A unified acceleration framework is developed to cover all types of system states. By leveraging active 130 

constraints as similarity features, this framework in-corporates line outage states with diverse topologies 131 

into the matching scope of state similarity. 132 

⚫ Optimality conditions ensure accurate matching of each state to its corresponding similarity category. 133 

Additionally, a dynamic sorting technique enhances the efficiency of the matching process. 134 

The rest is organized as follows: Section 2 gives the problem statement and solution framework. Section 3 135 



introduces the proposed SS method. Case studies are performed in Section 4 and conclusions are drawn in Section 136 

5. 137 

2. Problem Statement and Solution Framework 138 

2.1. Reliability Assessment of Power Systems 139 

Reliability assessment evaluates not only the likelihood of failure events but also the severity of their 140 

consequences. It generally involves three steps, as shown in Fig. 1. 141 

Step 1: System state selection.  142 

The first step is the selection of system states and the calculation of their probabilities. Two fundamental 143 

methods are commonly used for state selection: state enumeration (SE) and Monte Carlo simulation (MCS).  144 

The system states are associated with component states, load levels, and REG outputs, which can be expressed 145 

as follows, 146 

 
maxl g d g

 =  s s s P P  (1) 147 

where s is a system state; sl denotes the branch state, composed of state variables for nl branches; sg denotes the 148 

generation state, composed of state variables for ng generators. The ng generators comprise both traditional 149 

generators and nRE renewable energy generators, where nRE units consists of nw WTs and np PVs. In Fig. 1, sk 150 

represents the k-th system state in the system state set Ωs, [sl sg]k represents the k-th component state in the 151 

component state set ΩCS, and [Pd Pgmax]k represents the k-th load and generation state in the load and generation 152 

state set ΩLG. The number of load and generation states is denoted as nt, which generally corresponds to 8760 for a 153 

one-year time frame. 154 



 155 
Fig. 1 Framework of the proposed state-similarity-based reliability assessment method. 156 

Step 2: System state analysis.  157 

In the second step, OPF is performed to analyze each system state and assess its consequence. OPF is used to 158 

reschedule generators and alleviate the violation of constraints, while minimizing the total load curtailment if 159 

unavoidable. Both alternating current (AC) and direct current (DC) power flow models can be embedded in OPF. 160 

The AC model can provide highly accurate results that closely align with real-world scenarios, but requires 161 

significant computational resources and may encounter severe convergence issues [38]. On the other hand, the DC 162 

model linearizes power flow equations, making it suitable for large-scale simulations and analysis of various failure 163 

states [39]. Although its accuracy is lower, it is generally acceptable for planning purposes. As a result, the DC 164 

OPF model is commonly adopted in the reliability assessment of power systems [18], [32], [40], [41]. It can be 165 

formulated as follows, 166 
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Step 3: Reliability indices computation. 168 

The reliability indices are usually determined based on the load curtailments of system states and their occurrent 169 

probabilities. In this study, expected energy not supplied (EENS) is adopted as the reliability index. 170 

2.2. Challenges and Proposed Solution Framework  171 

During the state selection process, some improved SE or MCS techniques have been applied to reduce the 172 

number of system states. However, the OPF problem (2) should be calculated for each system state, posing great 173 

computational challenges for large-scale power systems with large numbers of system states. Therefore, analyzing 174 

enormous numbers of states is still a time-consuming impediment to reliability assessment. 175 

Generally, the OPF problem (2) associated with many states may share the same active constraints. This shared 176 

characteristic can be exploited as a state similarity to solve a set of similar OPF problems with minimal effort. 177 

Instead of applying optimization algorithms to solve each similar problem, active constraints can be used to 178 

transform the original OPF problem into a linear equations problem, significantly accelerating the state analysis 179 

process. 180 

Consequently, the active-constraints-based linear equations is constructed as an alternative approach to solving 181 

OPF problems. As shown in Fig. 1, a few states are solved using traditional optimization algorithms, and their 182 

respective active constraints are stored in the state similarity set. Each of these states represent a specific state 183 

similarity category. For the remaining states, their state similarity categories are identified based on their active 184 

constraints, allowing their solutions to be efficiently computed by solving linear equations, thereby enhancing the 185 

efficiency of reliability assessment. 186 

3. Proposed State-Similarity Approach 187 

3.1. State Similarity in the LP Problem 188 

The DC OPF problem (2) is a typical linear programming (LP) problem. An LP problem can be expressed in a 189 

standard form, 190 

 

min        

. .

f

s t

=

=



cx

Ax b

x 0

 (3) 191 



where m nA  , mb   and nc   are given, and nx   is a vector of variables to minimize the objective 192 

: nf → . A feasible solution is a non-negative vector of the variables x that satisfies the constraints of (3). 193 

Among feasible solutions, the one that minimizes the f is the optimal solution.  194 

Theorem 1 [42]: An optimal solution of LP problem lies at the intersection point of n constraints. In this study, 195 

these constraints are referred to as the active constraints, which can be represented as follows, 196 

 
( )a

m    constraints

n - m   constraints

=


=

Ax b 

x 0
 (4) 197 

where xa represent the active variables, which are specifically composed of n-m variables. 198 

For example, Fig. 2(a) presents an LP problem that has 6 active constraints at the optimal solution. The active 199 

constraints are as follows, 200 
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 (5) 201 

Based on the simplex method [42], the active variables xa correspond to the non-basic variables xN, while the 202 

remaining variables classified as the basic variables xB. This allows us to partition A and c into (B, N) and (cB, cN), 203 

respectively. As a result, the LP problem (3) can be simplified into the system of linear equations (6), denoted as 204 

F(x), 205 

 ( ) B

a a

F
= =   

= =   
= =   

Ax b Bx b
x

x x0 0
 (6) 206 

where B is a basis matrix. The solution of LP is, 207 

   1

1 ( )

TT

B a n m

−

 −
 = =  x x x B b 0  (7) 208 

Theorem 2 [42] (optimality conditions): The solution (7) is an optimal solution to the LP problem (3) if: 209 

 1− B b 0  (8) 210 

 1−− 
N B

c c B N 0  (9) 211 

Equations (8) and (9) are the optimality conditions that the basis matrix B must satisfy to ensure an optimal 212 

solution. In addition, according to the definition of state similarity, these equations can also be employed as criteria 213 

for determining whether two optimization problems are state-similar. Specifically, if the basis matrix B obtained 214 



from the original problem also satisfies the optimality conditions defined by Eqs. (8) and (9) in the new problem, 215 

the two problems are regarded as state-similar. In such cases, the optimal solution of the new problem can be 216 

directly derived from Eq. (7) without re-solving the optimization problem. Otherwise, the problems are not 217 

considered state-similar. 218 

 219 
(a)  the original LP problem  220 

 221 
(b)  the new LP problem 222 

Fig. 2. An example of state similarity between LP problems. (a) represents the original optimization problem, and (b) represents a new 223 
optimization problem formed by altering the right-hand side vector b and the coefficient matrix A of the original problem. These two problems 224 
have entirely different feasible regions. The relationship between them is that they share the same active constraints, despite the change in A 225 
and b. As defined in Eq.(4), l1, l2, l3, l4, x3=0, and x4=0 are active constraints. Furthermore, x3 and x4 are also the active variables. When the 226 
problem is represented in the two-dimensional plane of x1 and x2, only two active constraints emerge, and the optimal solution is located precisely 227 
at their intersection. In the new LP problem (b), the active constraints l1, l2, l3, l4, along with x3=0, and x4=0, are maintained. Therefore, even 228 
when A and b change, the new LP problem shares the same active constraints as the original problem, and can be efficiently solved by the 229 
active-constraints-based linear equations. 230 

As shown in Fig. 2, despite differences in the constraints between the original and new LP problem, they share 231 

identical active variables (i.e., x3 = 0 and x4 = 0). Therefore, the new LP problem can be transformed into a system 232 

of linear equations based on these active constraints. Using the active constraints provided by original states, the 233 

optimal solution to the new LP problem can be directly obtained through (10), eliminating the need for optimization 234 

algorithms. 235 
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Consequently, state similarity is defined as a condition in which LP problems share the same active constraints 237 

at their respective solutions, regardless of variations in the parameters of LP problems. In many practical scenarios, 238 

many new LP problems are only slightly different from the original LP problem, and are likely to share the same 239 

active constraints. While optimization algorithms are the most straightforward method for solving new LP problems, 240 

solving them using the active-constraints-based linear equations (6) is more efficient, as long as the optimality 241 

conditions (8) and (9) are satisfied. 242 

3.2. State Similarity in the DC OPF Problem 243 

In the reliability assessment, the evaluation process requires repeatedly solving DC OPF problems for different 244 

states. The DC OPF problem (2) can be expressed in the standard form (3), 245 
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Following the standard form of LP problem, the c, A, x, and b are, 247 
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where I is the identity matrix. 252 

The active variables in the DC OPF problem are, 253 

 
T

, ,= =a a a LC a g a a
   x P P y  0  (16) 254 

where 
a
 , 

a
 , PLC,a, Pg,a, and ya are the active variables in x, and these variables are equal to 0. 255 

During the state analysis process, variations in component states, load levels, and renewable generation outputs 256 

lead to different constraints. The b for diverse states is represented as, 257 

 
T

max max max maxd d d d g g
 = +  +  +  b P P P P P P F F  (17) 258 

The branch outages can alter the system topology. If the l-th branch between the buses i and j fails, the A  in 259 

the new DC OPF problem is, 260 
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Therefore, in reliability assessment, the discrepancies between different system states are reflected in changes 262 

to the coefficient matrix A due to topological variations, as well as in alterations to the right-hand side vector b 263 

caused by fluctuations in generation and load. As illustrated in Fig. 2, assuming that the active constraints remain 264 



unchanged, the DC OPF problem for a new state can be transformed into the following linear equations, 265 
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Clearly, solving this system of linear equations involves matrix inversion. Equation (18) demonstrates that only 267 

a slight perturbation occurs in the basis B , while most of the elements remain unchanged. Therefore, the original 268 

basis B from similar states can be reused to improve the efficiency of matrix inversion. 269 

Theorem 3 [43] (Sherman-Morrison-Woodbury Formula): Consider a perturbation UV, where U and V are 270 

matrices of size m × p and p × m, respectively. If both B and I + VB-1U are nonsingular, then B + UV is nonsingular, 271 

and the inverse of B  is, 272 

 1 1 1 1 1 1 1( ) ( )− − − − − − −= + = − +B B UV B B U I VB U VB  (20) 273 

According to (20), U and V are, 274 
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As shown in (21), this fast matrix inversion technique allows us to efficiently invert B  in O(m2 + p3) flops, as 276 

opposed to the conventional matrix inversion, which requires O(m3) flops.  277 

In reliability assessment, when a new system state is encountered, its corresponding similarity category is 278 

initially unknown. To address this, the new state must be matched with an existing category in the state similarity 279 

set. This process follows a “hypothesize-and-verify” strategy: first, the new state is assumed to belong to a specific 280 

similarity category within the set. The relevant active constraints are then used to transform the DC OPF problem 281 

into a system of linear equations for efficient solution. Finally, optimality conditions (8) and (9) are applied to 282 

verify the solution. If the conditions are satisfied, the hypothesis is confirmed, and the new state is classified into 283 

the hypothesized similarity category, with the solution representing the optimal solution for the new state. If the 284 

optimality conditions are not met, the new state is then matched with other categories in the state similarity set, and 285 

this process continues until a successful match is found. If no category matches, it indicates that the new state does 286 



not belong to any of the known similarity categories in the state similarity set, and optimization algorithms are 287 

employed to solve the OPF problem directly. The new state is then added to the state similarity set as a new category. 288 

In summary, the proposed state-similarity-based approach is formulated in Algorithm 1. 289 

Algorithm 1：State Similarity Approach for Solving DC OPF 

Inputs: a new state s and the state similarity set Ωss 

             flag := 0, the similarity category order is := 1. 

while flag = 0 and is <= count (similarity categories) do 

Choose the is-th similarity category from the state similarity set 
Ωss and obtain its active constraints. 

Calculate a solution x of s by linear equations (19). 

if the optimality conditions (8) and (9) are true then 

flag ← 1 

The optimal solution x* = x. 

end 

is = is + 1. 

end 

if flag is false then 

The optimal solution x* of the new state s is calculated by 

optimization algorithms. 
The new state s is stored as a new category in Ωss. 

end 

Outputs: The optimal solution x*of the new state s 

 290 

3.3. The State Similarity Set 291 

The state similarity set, denoted as Ωss, consists of state similarity categories, each representing a group of states 292 

that share the same active constraints. Any given system state should match one of the categories in the set, meaning 293 

it belongs to the same similarity category and shares the same active constraints. There are four basic operations 294 

on Ωss:  295 

1) Matching: Each state similarity category is sequentially traversed, and the active constraints of the 296 

representative state in the category are used to solve the DC OPF problem for the new state until the optimality 297 

conditions (8) and (9) are satisfied. If the new state does not match any existing categories, it will be analyzed using 298 

optimization algorithms, followed by an insertion operation described below.  299 

2) Insertion: The new state, representing a new similarity category, is added to the beginning of Ωss. Its active 300 

constraints are then used to match subsequent new states in reliability assessment. 301 

3) Deletion: When the number of state similarity categories in Ωss exceeds Nssmax, the last state similarity category 302 

is removed. Nssmax is the maximum allowable number of similarity categories in the set. 303 

4) Sorting: A dynamic sorting technique is developed to reorder the state similarity categories based on their 304 

Category Rank (CR), which will be explained later. The sorting operation is triggered only when a matched 305 



category ranks higher than Ntri. 306 

To enhance the matching efficiency, the state similarity categories that are more likely to match with the new 307 

states should be placed at the head of the set. In this study, CR is a numeric value that indicates the likelihood of a 308 

category matching a new state. In general, as more new states match with a category, the corresponding CR assigned 309 

to the category increases. The CR is calculated by, 310 
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 (22) 311 

where C is a state similarity category in the set; t represents time, quantified by the number of analyzed states in 312 

the reliability assessment; Nu is the number of states that match this similarity category; Numax is a large constant; 313 

tins is the time when the state similarity category is inserted into Ωss; tlast is the last matching time of the state 314 

similarity category; t1 is the duration of the early-time region; t2 is the maximum time after tlast. The CR of a state 315 

similarity category over time is shown in Fig. 3. 316 

 317 
Fig. 3.  An example of the state similairty between LP problems. 318 

3.4. Proposed Reliability Assessment Method 319 

The overall reliability assessment process using the proposed SS approach is outlined in Fig. 4 and explained as 320 

follows: 321 

Step 1: Input system data, annual curves of loads and REGs, and preset parameters. 322 

Step 2: Create the system state set Ωs by MCS or SE. 323 

Step 3: Select a system state s from Ωs. 324 

Step 4: Establish the DC OPF problem for the selected system state s as the standard form (11) - (15). 325 

Step 5: Set the similarity category order iss = 1. 326 

Step 6: Choose the iss-th similarity category from the state similarity set Ωss . 327 

Step 7: Obtain the active variables xa from the iss-th similarity category. 328 
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 329 
Fig. 4.  The overall process of reliability assessment using the SS approach. 330 

Step 8: Calculate a solution x of state s by solving the active-constraints-based linear equations instead of the 331 

DC OPF optimization. 332 

Step 9: Check the optimality conditions of (8) and (9) to determine whether the solution x is the optimal solution. 333 
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If not, go to Step 12. 334 

Step 10: The solution x is the optimal solution x*. 335 

Step 11: Check if the trigger event iss > Ntri occurs. If so, apply the dynamic sorting technique to reorder the 336 

state similarity set Ωss. Then, go to Step 16. 337 

Step 12: Check if all state similarity categories in the state similarity set Ωss have been matched, i.e., iss = Nssmax. 338 

If not, iss = iss + 1, go back to Step 6. 339 

Step 13: Obtain the optimal solution x* of state s by optimization algorithms. 340 

Step 14: Treat state s as a new similarity category and insert it at the beginning of Ωss.  341 

Step 15: Remove the last state similarity category from Ωss when the number of categories exceeds Nssmax. 342 

Step 16: Check if all states in Ωs have been evaluated. If so, next Step, otherwise, go back to Step 3. 343 

Step 17: Calculate reliability indices. 344 

4. Numerical Results 345 

The proposed SS approach is employed to evaluate the reliability of the RTS-79 [44], RTS-96 [45], and Brazilian 346 

systems [46]. The transmission limitations are considered. The cases utilize 17 actual annual load curves from 347 

Alberta [47], and 33 actual annual output curves for PV and WT from NREL [48], [49]. The maximum fluctuation 348 

range for both load data and renewable energy data is from 0 to 1.0. Moreover, different renewable generation 349 

penetrations are applied to analyze their impact on the system reliability. ζre is the renewable generation penetration, 350 

which is defined as, 351 

 re

re

cg re

P

P P
 =

+
 (23) 352 

where Pcg and Pre represents the capacity of conventional generators and renewable generators, respectively; Pcg + 353 

Pre is the total generation capacity. 354 

MOSEK 9.3 is used as the optimization solver. The experiments are carried out on a standard PC equipped with 355 

Intel® Core® i5-10600KF CPU 4.10 GHz and 128 GB RAM using MATLAB® R2022a. 356 

4.1. Case I: Results on the RTS-79 System 357 

RTS-79 system [44] is a composite power system with 24 buses, 33 generator units, and 38 branches. The total 358 



generation capacity is 3405 MW and the peak load is 2850 MW. The proposed method is verified by four cases 359 

with renewable generation penetrations of 0%, 5%, 10%, and 15%. 360 

Two conventional methods, MCS and SE are utilized for comparisons. Moreover, the CE-based MCS (CEMCS) 361 

method and IISE method are also used for comparisons. The baseline of reliability assessment results is calculated 362 

by the MCS with 1×108 sampled states. The preset parameters are given as follows: NT (maximum contingency 363 

order for SE) = 5, and β (the coefficient of variation for MCS) = 1%. In the SE method, the system states above 364 

second-order are only generation contingencies, which can cover 98.778 % of system states. In addition, the number 365 

of load and generation states in SE is reduced to 100 through the clustering technique. 366 

The SSMCS, SSCEMCS, SSSE, and SSIISE methods are combinations of the proposed SS approach and MCS, 367 

CEMCS, SE, and IISE methods, respectively. The reliability assessment results of these methods are presented in 368 

Table II and Fig. 5.  369 

In addition, the reliability level gradually declines owing to the intermittent nature of renewable energy. As 370 

shown in Table II, the efficiency of the SS method slightly decreases at higher renewable generation penetrations 371 

compared to lower penetrations. This is because the inherent variability of renewable energy causes changes in 372 

active constraints, making it more challenging to match a new state with the state similarity category. Although the 373 

OPF number increases with renewable generation penetration, SS method still significantly improves the efficiency. 374 

4.1.1 Efficiency and Accuracy 375 

First, the reliability indices obtained by SS methods exhibit the same precision while significantly improving 376 

computational efficiency. Compared with the SE and IISE methods, the proposed SS methods can increase the 377 

computational speed by 100~200 times. SE and IISE methods require over 20000 seconds to evaluate the RTS-79 378 

system, while SSSE and SSIISE methods only take 100~200 seconds. Fig. 5 presents a comparative visualization 379 

of computational time and accuracy for eight methods. Methods positioned towards the bottom left corner are 380 

indicative of greater computational efficiency. The impact-increment and SS methods can improve the accuracy 381 

and computational speed, respectively. Therefore, combining the SS and impact-increment methods allows SSIISE 382 

to outperform the conventional SE method in both computational time and accuracy. The MCS method, a 383 

conventional technique for power system reliability assessment, is also included for comparison. As shown in Fig. 384 



5, the computational speed of SSMCS is approximately 100 times faster than that of the MCS method. Moreover, 385 

the CEMCS method is a popular advanced method that can reduce samples and increase the convergence speed of 386 

MCS. By integrating the SS method with CEMCS, further improvements in computational efficiency are achieved. 387 

As demonstrated in Table II, the SSCEMCS method takes only about 10s to evaluate the reliability of the RTS-79 388 

system. 389 

Table. Ⅱ Reliability assessment results of eight methods (RTS-79) 390 

ζre (%) Method 

EENS(MWh/y) 
OPF 

Number* 
CPU Time(s) 

Value 
Relative 

Error (%) 

0 

Baseline 531.36 - - - 

MCS 527.56 0.72 31290000 34814 

SSMCS 527.56 0.72 9646 329 
CEMCS 527.42 0.74 298000 326 

SSCEMCS 527.42 0.74 874 13 

SE 308.41 41.96 24478200 24354 

SSSE 308.41 41.96 161 119 
IISE 484.81 8.76 24478200 24373 

SSIISE 484.81 8.76 161 142 

5 

Baseline 1061.14 - - - 

MCS 1060.62 0.05 16110000 17868 

SSMCS 1060.62 0.05 3313 122 

CEMCS 1076.60 1.46 185300 206 
SSCEMCS 1076.60 1.46 951 10 

SE 673.10 36.57 24478200 24419 

SSSE 673.10 36.57 196 126 

IISE 976.15 8.01 24478200 24435 

SSIISE 976.15 8.01 196 147 

10 

Baseline 2217.43 - - - 

MCS 2185.37 1.45 7970000 8815 

SSMCS 2185.37 1.45 1318 114 
CEMCS 2236.44 0.86 160200 179 

SSCEMCS 2236.44 0.86 1000 10 

SE 1505.18 32.12 24478200 24414 
SSSE 1505.18 32.12 350 146 

IISE 2011.97 9.27 24478200 24440 

SSIISE 2011.97 9.27 350 169 

15 

Baseline 4757.97 - - - 

MCS 4718.36 0.83 3760000 4158 

SSMCS 4718.36 0.83 1947 46 

CEMCS 4783.93 0.55 116500 126 

SSCEMCS 4783.93 0.55 1291 10 

SE 3410.00 28.33 24478200 24431 

SSSE 3410.00 28.33 505 170 

IISE 4241.58 10.85 24478200 24434 

SSIISE 4241.58 10.85 505 194 

*OPF number is the number of using optimization algorithms to solve the DC OPF problem, and it is also the number of state similarity 391 

categories. 392 

As shown in Table II, the computational efficiency of the SS method slightly decreases with higher renewable 393 

penetration. Specifically, at 0% renewable penetration, the numbers of OPF calculations per 10,000 scenarios are 394 

3.08 for SSMCS and 29.32 for SSCEMCS, whereas at 15% penetration, they increase to 5.18 and 110.82, 395 



respectively. A similar increasing trend is observed for both the SE and IISE methods. This behavior occurs because 396 

the inherent variability of renewable generation alters the set of active constraints, making it more difficult to match 397 

new states to existing state-similarity categories. Nevertheless, despite the increase in OPF calculations at higher 398 

renewable levels, the proposed SS method continues to provide substantial improvements in computational 399 

efficiency. 400 

  401 

 

  
(a) ζre = 0 % (b) ζre = 5 % 

Fig. 5.  Computational efficiencies of eight methods (RTS-79). 402 

4.1.2 Comparison Results Analysis 403 

Compared with other advanced methods, the proposed SS method can incorporate all types of system states into 404 

the accelerating calculation process. Based on the previous study [37], the calculation speed is increased by 39.12 405 

times by accelerating the evaluations of load and renewable generation states. Furthermore, large numbers of OPF 406 

computations of transmission line (TL) and generation (G) states are replaced with the active-constraints-based 407 

equations for the proposed SSIISE and SSCEMCS methods. In this way, SSIISE can reduce the OPF number from 408 

299919 to 22157, thereby improving the efficiency by 3.33 times. As shown in Table III, the improvement with 409 

SSCEMCS is less than that of SSIISE. This is because the cross-entropy method filters out a large number of states 410 

that have minimal impact on system reliability, and the sampled states of SSCEMCS exhibit more state similarities. 411 

However, over 97% of OPF computations are still avoided, leading to a significant efficiency improvement in the 412 

CEMCS due to the SS method. 413 

Table III demonstrates the benefits of dynamic sorting and fast matrix inversion techniques. In this case, t1 = 2, 414 

t2 = 50, and Ntri = 1. Take SSIISE as an example, the dynamic sorting technique reduces the computing time from 415 

187s to 142s. However, the fast matrix inversion technique has little impact on the SSIISE method. It only takes 416 

SSMCS

SE IISEMCS

Baseline SSSE SSIISE

CEMCS

SSCEMCS



0.45s to invert the matrix for the SSIISE, thus the saved time can be ignored. On the other hand, SSCEMCS requires 417 

more time to invert the matrix due to the frequently changing topology in the sample states. Therefore, the speedup 418 

of SSCEMCS is increased from 19.18 to 25.08 by using the fast matrix inversion technique. 419 

Table. Ⅲ Performance comparisons of the proposed methods (RTS-79) 420 

State Method EENS (MWh/y) OPF Number CPU Time(s) Speedup 

- IISE 484.81 24478200 24373 1.0 

LR SSIISE [37] 484.81 299919 623 39.12 

LR, G SSIISE 484.81 24706 192 126.84 
LR, G, TL SSIISE 484.81 22157 187 130.24 

LR, G, TL SSIISE & Sort 484.81 161 142 171.51 

LR, G, TL SSIISE & Sort & Inv 484.81 161 142 171.51 

- CEMCS 527.42 298000 326 1.0 

LR SSCEMCS 527.42 57867 84 3.88 

LR, G SSCEMCS 527.42 29769 47 6.94 
LR, G, TL SSCEMCS 527.42 8868 39 8.36 

LR, G, TL SSCEMCS & Sort 527.42 874 17 19.18 

LR, G, TL SSCEMCS & Sort & Inv 527.42 874 13 25.08 

*LR: Load and Renewable Generation states. Sort: Dynamic sorting technique. Inv: Fast matrix inversion technique. 421 

Fig. 6 shows the computational time of each process in three methods. M1, M2, and M3 represent the methods 422 

of SSCEMCS, SSCEMCS & Sort, and SSCEMCS & Sort & Inv, respectively. The matching process is used to 423 

match the system state with a similarity category in the state similarity set. Matched states are calculated using 424 

active-constraints-based equations, while unmatched states are evaluated using optimization algorithms. Compared 425 

to M1, the number of matching processes in M2 decreases from 1.63×106 to 4.26×105, and the OPF number 426 

decreases from 8868 to 874. Therefore, the dynamic sorting technique can significantly reduce the time of matching, 427 

inversing, and OPF processes. For M2 and M3, the fast matrix inversion technique can nearly double the calculation 428 

speed of the matrix inversion process. The other processes, which include OPF modeling and state selection, take 429 

a similar amount of time across M1, M2, and M3, as the number of system states is consistent. 430 

 431 
Fig. 6.  Computational time of three methods (RTS-79). 432 

4.1.3 Results of One Load Curve Case 433 

To verify the accuracy of the proposed method, it is applied to the one load curve case [44], the results of which 434 



have been reported in various studies. As shown in Table IV, the reliability results of the proposed SS method are 435 

nearly identical to those provided in [32], with a negligible discrepancy of only 0.48%. This minor variance can be 436 

attributed to the inherent randomness associated with MCS sampling. Therefore, the reliability results of the 437 

proposed method are considered acceptable. 438 

Table. IV Reliability assessment results of one load curve case (RTS-79) 439 

Method EENS(MWh/y) OPF Number CPU Time(s) 

CEMCS [32] 1293 - - 

MCS 1299.23 15560000 16528 
SSMCS 1299.23 6370 275 

CEMCS 1282.65 325000 353 

SSCEMCS 1282.65 1248 19 

SE 1056.56 24478200 24161 
SSSE 1056.56 886 136 

IISE 1298.92 24478200 24184 

SSIISE 1298.92 886 158 

4.2. Case II: Results on the RTS-96 System 440 

RTS-96 system [45] consists of 73 buses, 99 generation units, and 120 branches. The total generation capacity 441 

is 10 215 MW and the peak load is 8550 MW. This system utilizes the same load and renewable energy curves as 442 

the RTS-79 system, but to enhance the MCS sampling efficiency, the load curves values are increased by 15%. 443 

When ζre = 0, the results of 2×108 sampled states are used as the baseline, with NT = 7. If ζre > 0, the results of 1×108 444 

sampled states serve as the benchmark, with NT = 6. The other parameters remain the same as in Case I. The 445 

reliability assessment results for the RTS-96 system are presented in Table V to demonstrate the scalability of the 446 

proposed SS method. 447 

4.2.1 Accuracy and Efficiency 448 

In the RTS-96 system, the SS method can still significantly improve the computational efficiency of MCS, 449 

CEMCS, SE, and IISE methods. Less than 1% of the states require calculation through optimization algorithms, 450 

resulting in a speedup of more than 10 times without sacrificing accuracy. As shown in the ζre = 0 of Table V, the 451 

computational time can be reduced from 3.85×105s to 5617s by SSMCS, and further reduced to 371s by SSCEMCS. 452 

4.2.2 Comparison Results Analysis 453 

The performance comparisons of the proposed SSCEMCS method for the RTS-96 system are presented in Table 454 

VI. By utilizing all types of states to match a state similarity category, the SS method achieves a speedup of 6.05 455 

times, reducing the OPF count from 2,765,000 to 90,672. When the accelerated states are the load and renewable 456 



generation (LR) states, the speedup of SSCEMCS in Table III is 3.88, while it is only 1.13 in the RTS-96 system. 457 

This is because the sampled states in the RTS-96 system are usually different in component states, and only a few 458 

sampled states can be analyzed quickly based on LR variations. 459 

Table. V Reliability assessment results of eight methods (RTS-96) 460 

ζre (%) Method 
EENS(MWh/y) OPF 

Number 
CPU Time(s) 

Value Relative Error (%) 

0 

Baseline 201.94 - - - 

MCS 200.21 0.86 143430000 385225 

SSMCS 200.21 0.86 22999 5617 
CEMCS 201.44 0.25 2765000 7903 

SSCEMCS 201.44 0.25 7673 371 

SE 6.98 96.54 742650100 1880728 

SSSE 6.98 96.54 1191 15146 
IISE 132.89 34.19 742650100 1881465 

SSIISE 132.89 34.19 1191 15879 

5 

Baseline 1035.34 - - - 

MCS 1031.70 0.35 30400000 80269 
SSMCS 1031.70 0.35 5642 1534 

CEMCS 1033.82 0.15 1230000 3446 

SSCEMCS 1033.82 0.15 11101 263 

SE 37.88 96.34 663982400 1676673 

SSSE 37.88 96.34 577 16331 

IISE 652.45 36.98 663982400 1676974 
SSIISE 652.45 36.98 577 16537 

10 

Baseline 5187.40 - - - 

MCS 5262.79 1.45 6620000 17557 

SSMCS 5262.79 1.45 4681 436 
CEMCS 5204.23 0.32 915000 2559 

SSCEMCS 5204.23 0.32 8586 173 

SE 501.63 90.33 663982400 1701297 
SSSE 501.63 90.33 988 17589 

IISE 3505.95 32.41 663982400 1701599 

SSIISE 3505.95 32.41 988 17889 

15 

Baseline 24043.43 - - - 

MCS 24520.65 1.98 1600000 4395 

SSMCS 24520.65 1.98 2549 168 

CEMCS 23975.39 0.28 579000 1579 

SSCEMCS 23975.39 0.28 3888 102 

SE 4245.93 82.34 663982400 1702145 

SSSE 4245.93 82.34 1751 18121 

IISE 16669.44 30.67 663982400 1702440 

SSIISE 16669.44 30.67 1751 18408 

When considering the TL states, the OPF number is reduced from 92129 to 90672, but the computing time 461 

increases from 1147s to 1306s. This is due to the high computational cost associated with matrix inversion 462 

during the matching process. This highlights the importance of dynamic sorting and fast matrix inversion 463 

techniques in the proposed SS methods, especially for large-scale systems. Table VI illustrates the impact of 464 

these enhanced techniques on the SSCEMCS method for the RTS-96 system. The dynamic sorting technique 465 

reduces the computing time to 494s, while the fast matrix inversion technique further decreases it to 371s. 466 



 

  
(a) ζre = 0 % (b) ζre = 5 % 

Fig. 7.  Computational efficiencies of eight methods (RTS-96). 467 

Table. VI Performance comparisons of the proposed methods (RTS-96) 468 

State Method 
EENS 

(MWh/y) 

OPF 

Number 

CPU 

Time(s) 
Speedup 

- CEMCS 201.44 2765000 7903 1.0 
LR SSCEMCS 201.44 2551620 6979 1.13 

LR + G SSCEMCS 201.44 92129 1147 6.89 

LR + G + TL SSCEMCS 201.44 90672 1306 6.05 
LR + G + TL SSCEMCS & Sort 201.44 7673 494 15.99 

LR + G + TL SSCEMCS & Sort & Inv 201.44 7673 371 21.28 

4.3. Case III: Results on the Brazilian System 469 

Brazilian system [46], an equivalent network of the southern region of Brazil, consists of 242 buses, 53 470 

generation units, and 489 branches. The total generation capacity is 208 388 MW and the peak load is 185 471 

276 MW. The results of 5×107 sampled states are used as the baseline, ζre = 15%, and NT = 4. The other 472 

parameters are consistent with Case I. 473 

Table. VII Reliability assessment results of eight methods (BRAZILIAN) 474 

Method 

EENS(MWh/y) 
OPF 

Number 
CPU Time(s) 

Value 
Relative 

Error (%) 

Baseline 2165.56  - - - 

MCS 2193.60  1.29 30880000 385099 

SSMCS 2193.60  1.29 11522 15035 
CEMCS 2178.92  0.62 2263000 29962 

SSCEMCS 2178.92  0.62 22404 2229 

SE 614.21  71.64 46340500 527245 
SSSE 614.21  71.64 27448 10554 

IISE 1760.31  18.71 46340500 527249 

SSIISE 1760.31  18.71 27448 10558 

 475 

As shown in Table VII, compared with traditional MCS and SE methods, the proposed SS method 476 

remarkably improves the computational efficiency by over 26 times. Also, the proposed SSCEMCS method 477 

can further decrease the computation time to 2229s. 478 

Moreover, the impact of system size on the number of state similarity categories is analyzed. The number 479 

SSMCS

SE IISEMCS

Baseline SSSE SSIISE

CEMCS

SSCEMCS



of state similarity categories serves as an indicator of the acceleration performance of the proposed method. 480 

A smaller number of categories implies a higher degree of similarity among multiple system states, enabling 481 

their optimal solutions to be rapidly obtained through solving equations. Conversely, a larger number of state 482 

similarity categories indicates lower similarity, thereby limiting the acceleration potential of the SS method. 483 

The OPF number can be adopted as a proxy for the number of state similarity categories. In general, this 484 

number increases with system size. As shown in Tables II, V, and VII, for instance, under the SSMCS method, 485 

the numbers of state similarity categories for the RTS-79, RTS-96, and Brazilian systems are 1,318, 4,681, 486 

and 11,522, respectively. 487 

5. Conclusion 488 

This paper proposes a state-similarity-based method for efficient reliability assessment in power systems. 489 

The active constraints can be used as the state similarity features to calculate optimal load curtailment by 490 

solving linear equations, rather than the time-consuming OPF optimizations. The method accounts for all 491 

types of system states, including transmission line outages and renewable energy variations, in its accelerated 492 

calculation processes. The results demonstrate that the proposed SS method is 20 to 200 times faster than 493 

traditional MCS and SE methods, eliminating the need for OPF optimizations in more than 99% of system 494 

states. Additionally, the dynamic sorting and fast matrix inversion techniques improve the matching efficiency 495 

by 2~3 times. The SS method can also be integrated with other advanced methods, such as the CE method, to 496 

further improve overall efficiency, as it focuses primarily on system state analysis. However, the current SS 497 

method is limited to linear optimization formulations and cannot yet be directly applied to nonlinear problems. 498 

In future work, we plan to extend the SS framework to handle more complex OPF models that incorporate 499 

time-coupling constraints of flexible resources, thereby enabling a more comprehensive analysis of the 500 

evolving challenges in modern power systems. 501 

The source code and data are available at: https:// github.com/tjuZeyuLiu/OA-Reliability-Assessment.  502 
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