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Highlights:

1) A state-similarity method transforms repeated DC OPF into linear equation solving.
2) A criterion is established to ensure the optimality of the equation solving.
3) A unified acceleration framework matches all system states.

4) A dynamic sorting strategy is proposed to further accelerate the assessment process.
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Abstract: As power systems grow more complex and integrate intermittent renewable energy sources, assessing
system reliability has become increasingly time-consuming. A significant challenge arises from the repetitive
calculations of optimal power flow (OPF), which minimizes load curtailment. To address this, a state-similarity-
based method is proposed to accelerate the OPF calculations for reliability assessment. It is based on the observation
that many states in reliability assessment exhibit similar OPF solutions with identical active constraints. This
similarity allows system states to be grouped into categories, with each category containing states sharing the same
active constraints. For states within the same category, the optimal load curtailment can be calculated by solving
linear equations instead of optimization algorithms. Furthermore, optimality conditions are employed to ensure that
states are accurately matched to their respective similarity categories. Also, this method can be conveniently
integrated with the impact increment and cross-entropy methods for further efficiency improvements. Case studies

conducted on the RTS-79, RTS-96, and Brazilian systems demonstrate that the proposed method significantly

improves computational efficiency without sacrificing accuracy, when compared with traditional methods.

Keywords: Reliability Assessment, Power System, Renewable Energy, State Similarity, Active Constraints,

Optimal Load Curtailment.
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Nomenclature
Abbreviation
OPF optimal power flow
REG renewable energy generation
WT wind turbines
PV photovoltaics
SE state enumeration
MCS Monte Carlo simulation
IISE impact-increment-based SE
CE cross-entropy
SA sensitivity analysis
POA post optimal analysis
MPLP  multi-parametric linear programming
LM Lagrange multipliers
SS state similarity approach
Indices and Sets
Q, the set of system state
Qcs the set of component state
Qe the set of load and generation state
Qs the set of state similarity
Parameters and Constants
s system state
S branch state
Sg generation state
P,y load level vector for buses
Pgrax maximum output vector for generators
_— The number of renewable energy
generators
Py the number of WTs
ny the number of PVs
ny the number of load and generation states
Yhous bus admittance matrix
C, generator connection matrix
v, branch admittance matrices for the from
/ ends
Variables
fic objective function
(7 bus angle
P, generation output
Pic load curtailment
9/6” non-negative variables of bus angle
yic slack variables of load curtailment

AC

DC
EENS
LP

CR
CEMCS
SSMCS
SSCEMCS
SSSE
SSIISE
LR

TL

G

k
/

iSS
i/
Y,

Fmax
ny
Ng
np

NS'S max
N, tri

APgmax

AP,
CLC

Ve
yr

Vi

alternating current

direct current

expected energy not supplied
linear programming

category rank

CE-based MCS method
SS-based MCS method
SS-based CEMCS method
SS-based SE method
SS-based IISE method

load and renewable generation
transmission line

generation

the index of state

the index of branch

the index of similarity category
the index of buses

branch admittance matrices for the to ends

the limit of branch power flow

the number of branches

the number of traditional generators

the number of buses

maximum allowable number of similarity

categories
threshold for triggering the sorting
operation
fluctuations in renewable generation
outputs

fluctuations in load levels
cost of load curtailment

slack variables of generation output

slack variables of branch power flow for
the from ends

slack variables of branch power flow for
the to ends

1. Introduction

Renewable energy generation (REG), such as wind turbines (WT) and photovoltaics (PV), has been increasingly

integrated into power systems [1]-[4]. However, the intermittency of REG can pose significant challenges to the

stability and reliability of power systems[5]-[7]. Therefore, it is essential to evaluate the reliability of power systems
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with REG for guiding their expansion in planning and operation.

Reliability assessment is a critical factor in determining the quality of power supply to users, and it typically
involves three key processes [8]: system state selection, system state analysis, and reliability indices computation.
The reliability indices are calculated based on the probability and impact (e.g., load curtailment) of system states
over a specified period [9]. The number of system states will increase exponentially when considering REG
fluctuations, component outages, and load variations, which can impose a significant computational burden on
reliability assessment. As a result, improving computational efficiency of reliability assessment methods is crucial.

There are two elementary reliability assessment methods [10]: State Enumeration (SE) and Monte Carlo
Simulation (MCS). SE can provide accurate reliability indices by explicitly or implicitly enumerating all possible
system states. This method is attractive because it can mathematically reflect the relationship between reliability
and system states. However, the SE method becomes inefficient in large-scale systems due to the exponential
growth of system states [11]. To improve the computational efficiency of SE, various techniques have been
proposed in recent years to reduce system states, such as the fast sorting algorithm [12], fast contingency screening
technique [13], and impact-increment-based SE (IISE) method [14].

The MCS method selects system states according to their probability distribution and then estimates the
reliability indices. Compared with SE, MCS is widely used in large-size systems [15]-[17]. Nevertheless, a large
number of samples still lead to an extremely large computational effort, especially in power systems with low
failure probabilities [18]. To this end, several variance reduction techniques have been employed to re-duce the
samples of MCS, including importance sampling [19], Latin hypercube sampling [20], continuous-time Markov
chain model [21], subset simulation [22], and cross-entropy (CE) method [23], etc.

The aforementioned methods primarily aim to reduce the number of system states to be analyzed. However,
computational efforts in state analysis depend not only on the number of system states but also on the complexity
of their analysis. Consequently, many scholars have investigated accelerating system state analysis by employing
alternatives to OPF, such as deep learning methods [24], [25]. For example, Van et al. [26] proposed a reliability
assessment method based on a graph convolutional neural network, in which a graph isomorphism network is
introduced to capture the features of system edges and nodes. This method achieves a computational speed up to

1000 times faster than conventional model-driven approaches. Furthermore, to address the issue of topological
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changes in reliability assessment, a multi-core collaborative GCN was proposed and integrated with a self-attention
mechanism, enhancing its robustness in adapting to changing topologies [27]. However, the enhanced performance
of these methods has only been validated on specific test sets and lacks proven accuracy, posing a significant
challenge in safety-critical fields such as reliability assessments [28].

For numerous OPF computations in reliability assessment, further advancement in optimization-based methods
remain crucial. Many studies in reliability assessment have demonstrated that optimal load curtailment across
system states exhibits significant similarity, primarily due to limited variations in component outages, load levels,
and REG outputs [29]. This similarity is leveraged to enhance the efficiency of OPF calculations. In many cases,
it allows for directly obtaining the optimal solution, thereby replacing traditional optimization methods, as shown
in Table I. The Sensitivity Analysis (SA) method is used to quantify the change in optimal load curtailment resulting
from load variations [30]. Fotuhi-Firuzabad et al. [31] used the Post Optimal Analysis (POA) to exploit the
similarity among different states and accelerate the evaluations of similar states. Kang et al. [32] proposed a multi-
parametric linear programming (MPLP) method to reduce OPF computations. Generator outages and load
variations are treated as MPLP parameters. This enables efficient analysis of massive system states by grouping
them according to their identical optimal basis matrices. Qu et al. [33] extended this algorithm to the mixed-integer
programming. By establishing a hierarchical solving mechanism and grouping integer variables, they achieved
effective grouping of massive operation states.

However, transmission line outages remain a significant challenge. To address this, Liu et al. [34] introduced
Lagrange multipliers to establish the relationship between optimal load curtailment and topological changes. By
matching topological states with Lagrange multipliers based on similarity, they significantly improved the
computational speed of reliability assessments. Luo et al. [35] proposed a reliability assessment method based on
an improved failure effect occurrence matrix, enabling rapid optimal load shedding analysis by constructing failure
components of topological and load states. For the numerous nonlinear OPF computations in reliability assessments,
anonlinear solution method based on KKT conditions and active constraints has been proposed [36]. This approach
transforms the nonlinear OPF problem into an underdetermined system of equations, solving it iteratively to
improve computational efficiency. Since the KKT conditions are necessary but not sufficient, this method cannot

guarantee a globally optimal solution. Our previous work [37] used Lagrange Multipliers (LM) to derive the linear
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relationship between the optimal load curtailment and the variations of load and REG. However, these methods are
not applicable in cases of transmission line outages, where the system topology and state similarities may change.
Since all line outage states must be analyzed by optimization methods, this remains a considerable computational
burden, especially for large-scale systems [34]. Moreover, the matching processes of state similarity require

significant computational resources, and the efficiency of these processes needs further enhancement.

Table. I Previous studies on state similarity

Accelerated State

State Similarity

Methods Component Outages Variations Speedup”
Features L G Load REG
SA [30] Optimal basis - - N - ~2.33
POA [31] Original solution - v v - 1~7
MPLP [32] Optimal basis - \ \ - 23~30
LM [37] Lagrange multipliers - - \ \ >20)

* Speedup represents the multiple for efficiency improvement.

This paper proposes a state-similarity (SS) approach to accelerate system state analysis in reliability assessment.
In this approach, the active constraints of optimal power flow (OPF) problems are employed as distinctive features
to characterize the similarities among different system states. Two system states are regarded as state-similar if
they share identical sets of active constraints. Based on this property, the proposed method enables the optimal load
curtailment to be directly derived by solving a set of linear equations, without invoking iterative optimization
algorithms. Consequently, the proposed method can significantly improve the computational efficiency for
reliability assessment. The main contributions are as follows:
®  This paper proposes a state-similarity-based method to enhance the efficiency of reliability assessments in
power systems. By identifying similarities among numerous system states, the OPF optimization problem
is transformed into a task of solving linear equations. For OPF problems within the same state similarity
category, only one optimization is required, while the optimal load curtailment for other states can be
efficiently derived by solving linear equations.
® A unified acceleration framework is developed to cover all types of system states. By leveraging active
constraints as similarity features, this framework in-corporates line outage states with diverse topologies
into the matching scope of state similarity.
®  Optimality conditions ensure accurate matching of each state to its corresponding similarity category.
Additionally, a dynamic sorting technique enhances the efficiency of the matching process.

The rest is organized as follows: Section 2 gives the problem statement and solution framework. Section 3
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introduces the proposed SS method. Case studies are performed in Section 4 and conclusions are drawn in Section

5.

2. Problem Statement and Solution Framework
2.1. Reliability Assessment of Power Systems

Reliability assessment evaluates not only the likelihood of failure events but also the severity of their
consequences. It generally involves three steps, as shown in Fig. 1.

Step 1: System state selection.

The first step is the selection of system states and the calculation of their probabilities. Two fundamental
methods are commonly used for state selection: state enumeration (SE) and Monte Carlo simulation (MCS).

The system states are associated with component states, load levels, and REG outputs, which can be expressed

as follows,

s:[slsgPdP ] (M

gmax

where s is a system state; s; denotes the branch state, composed of state variables for n; branches; s, denotes the
generation state, composed of state variables for n, generators. The n, generators comprise both traditional
generators and ngz renewable energy generators, where ngg units consists of n, WTs and n, PVs. In Fig. 1, s;
represents the k-th system state in the system state set €, [s; Sq|s represents the A-th component state in the
component state set Qcs, and [Py Pemax ]k represents the k-th load and generation state in the load and generation
state set Qz¢. The number of load and generation states is denoted as 7,, which generally corresponds to 8760 for a

one-year time frame.
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Fig. 1 Framework of the proposed state-similarity-based reliability assessment method.

Step 2: System state analysis.

In the second step, OPF is performed to analyze each system state and assess its consequence. OPF is used to

reschedule generators and alleviate the violation of constraints, while minimizing the total load curtailment if

unavoidable. Both alternating current (AC) and direct current (DC) power flow models can be embedded in OPF.

The AC model can provide highly accurate results that closely align with real-world scenarios, but requires

significant computational resources and may encounter severe convergence issues [38]. On the other hand, the DC

model linearizes power flow equations, making it suitable for large-scale simulations and analysis of various failure

states [39]. Although its accuracy is lower, it is generally acceptable for planning purposes. As a result, the DC

OPF model is commonly adopted in the reliability assessment of power systems [18], [32], [40], [41]. It can be

formulated as follows,

min Jic = Z P

S.t.

Y, 0+C,P,+P, =P,
PLC S I)d
Pg - 7 gmax
v, <F,,

6]
P,P.cR".0eR

max

2
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Step 3: Reliability indices computation.
The reliability indices are usually determined based on the load curtailments of system states and their occurrent

probabilities. In this study, expected energy not supplied (EENS) is adopted as the reliability index.

2.2. Challenges and Proposed Solution Framework

During the state selection process, some improved SE or MCS techniques have been applied to reduce the
number of system states. However, the OPF problem (2) should be calculated for each system state, posing great
computational challenges for large-scale power systems with large numbers of system states. Therefore, analyzing
enormous numbers of states is still a time-consuming impediment to reliability assessment.

Generally, the OPF problem (2) associated with many states may share the same active constraints. This shared
characteristic can be exploited as a state similarity to solve a set of similar OPF problems with minimal effort.
Instead of applying optimization algorithms to solve each similar problem, active constraints can be used to
transform the original OPF problem into a linear equations problem, significantly accelerating the state analysis
process.

Consequently, the active-constraints-based linear equations is constructed as an alternative approach to solving
OPF problems. As shown in Fig. 1, a few states are solved using traditional optimization algorithms, and their
respective active constraints are stored in the state similarity set. Each of these states represent a specific state
similarity category. For the remaining states, their state similarity categories are identified based on their active
constraints, allowing their solutions to be efficiently computed by solving linear equations, thereby enhancing the

efficiency of reliability assessment.

3. Proposed State-Similarity Approach
3.1. State Similarity in the LP Problem
The DC OPF problem (2) is a typical linear programming (LP) problem. An LP problem can be expressed in a
standard form,

min  f=cx
s.t. Ax=b (3)
x>0
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where A€ R™", beR” and ¢ € R" are given, and x € R” is a vector of variables to minimize the objective
f:R" > R. A feasible solution is a non-negative vector of the variables x that satisfies the constraints of (3).

Among feasible solutions, the one that minimizes the f'is the optimal solution.
Theorem 1 [42]: An optimal solution of LP problem lies at the intersection point of # constraints. In this study,
these constraints are referred to as the active constraints, which can be represented as follows,

constraints

{Ax=b m @)

x, =0 (n-m) constraints
where x, represent the active variables, which are specifically composed of n-m variables.

For example, Fig. 2(a) presents an LP problem that has 6 active constraints at the optimal solution. The active

constraints are as follows,

1 1. 1 0 0 O 4
1 -1 0 -1 0 O -1
X =
1 1 0 0 -1 0 2 )
1 -1 0 0 0 1
x, =[x, x] =0

Based on the simplex method [42], the active variables x, correspond to the non-basic variables xy, while the
remaining variables classified as the basic variables xp. This allows us to partition 4 and ¢ into (B, N) and (¢s, ¢cn),
respectively. As a result, the LP problem (3) can be simplified into the system of linear equations (6), denoted as

Fx),

F(x)z[szb}z{BxB =b} ©

x,=0 x,=0

where B is a basis matrix. The solution of LP is,

X = [xB xa ]T = |:Bilb le(n—m) :|T (7)

Theorem 2 [42] (optimality conditions): The solution (7) is an optimal solution to the LP problem (3) if:
B'b>0 (®)
cy—Cc,B'N>0 ©)

Equations (8) and (9) are the optimality conditions that the basis matrix B must satisfy to ensure an optimal
solution. In addition, according to the definition of state similarity, these equations can also be employed as criteria

for determining whether two optimization problems are state-similar. Specifically, if the basis matrix B obtained
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from the original problem also satisfies the optimality conditions defined by Egs. (8) and (9) in the new problem,
the two problems are regarded as state-similar. In such cases, the optimal solution of the new problem can be
directly derived from Eq. (7) without re-solving the optimization problem. Otherwise, the problems are not
considered state-similar.

——active constraints —inactive constraints ----original constraints active variables
Original LP Problem

min f=[-1 -2 0 0 0 0]x

1 11 0 0 0 4
LIT =10 -1 0 0 -1
st X =
L1 1.0 0 -10 2
LIt -10o o0 o 1 1

J|c=[xI x, BN . x5]720

Optimal Solution
x=[15250 0 2 27

(a) the original LP problem

New LP Problem
min f=[—1 -2 0 0 0 O]x

X2

M1 1 1.0 00 3 4 bixi-x2 0
o bt -ro-rool o frox-20

Lo o0 0 10 2

L1 =10 0 01 1

4
x=[x x, % x| x x6]720
Optimal Solution

X=[5150 0 2 1]

(b) the new LP problem

Fig. 2. An example of state similarity between LP problems. (a) represents the original optimization problem, and (b) represents a new
optimization problem formed by altering the right-hand side vector b and the coefficient matrix 4 of the original problem. These two problems
have entirely different feasible regions. The relationship between them is that they share the same active constraints, despite the change in 4
and b. As defined in Eq.(4), /,, b, 5, s, x3=0, and x4=0 are active constraints. Furthermore, x3; and x, are also the active variables. When the
problem is represented in the two-dimensional plane of x; and x,, only two active constraints emerge, and the optimal solution is located precisely
at their intersection. In the new LP problem (b), the active constraints /;, /», /5, s, along with x;=0, and x,=0, are maintained. Therefore, even
when A4 and b change, the new LP problem shares the same active constraints as the original problem, and can be efficiently solved by the
active-constraints-based linear equations.

As shown in Fig. 2, despite differences in the constraints between the original and new LP problem, they share
identical active variables (i.e., x3 = 0 and x4 = 0). Therefore, the new LP problem can be transformed into a system
of linear equations based on these active constraints. Using the active constraints provided by original states, the
optimal solution to the new LP problem can be directly obtained through (10), eliminating the need for optimization

algorithms.
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Consequently, state similarity is defined as a condition in which LP problems share the same active constraints
at their respective solutions, regardless of variations in the parameters of LP problems. In many practical scenarios,
many new LP problems are only slightly different from the original LP problem, and are likely to share the same
active constraints. While optimization algorithms are the most straightforward method for solving new LP problems,

solving them using the active-constraints-based linear equations (6) is more efficient, as long as the optimality

conditions (8) and (9) are satisfied.

3.2. State Similarity in the DC OPF Problem
In the reliability assessment, the evaluation process requires repeatedly solving DC OPF problems for different

states. The DC OPF problem (2) can be expressed in the standard form (3),

min  f;. :cLCZPLC

st. Y,0+C,P +P, =P,
P+y,=P,
P, +V, =Py (11)
|Y/0| +y, =F,,
v,6| +y, =F,,

’ 14 T +
[0 g P P. y. v, ¥, ytJ eR

Following the standard form of LP problem, the ¢, 4, x, and b are,

c= cLC |:01><nh len,, 01><ng 01><(ng +n,+2n;) :| (12)
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Vi 0 0 1 X1
Yt nxn
T
x=[ 06 Pe P ¥ P P D | (14)
b :|:})d Pd Pgmax Fmax Fmax]T (15)
where 1 is the identity matrix.
The active variables in the DC OPF problem are,
x,-[6 6 P, P, y]-0 (16)

where 8., 8", Pca, Pe, and y, are the active variables in x, and these variables are equal to 0.
During the state analysis process, variations in component states, load levels, and renewable generation outputs

lead to different constraints. The b for diverse states is represented as,

b=[P,+AP, P,+AP, P +AP_ F. F,] (17)

g max g max max m:

The branch outages can alter the system topology. If the /-th branch between the buses i and j fails, the A4 in

the new DC OPF problem is,

i J
_ 1 L
i ity i
. Y. —L Y. +L ...
a=" o v (18)
1 1
/ Yli_; YZ/.+Z
n+1 1 1
L Bty hes

Therefore, in reliability assessment, the discrepancies between different system states are reflected in changes
to the coefficient matrix 4 due to topological variations, as well as in alterations to the right-hand side vector b

caused by fluctuations in generation and load. As illustrated in Fig. 2, assuming that the active constraints remain
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unchanged, the DC OPF problem for a new state can be transformed into the following linear equations,

M
x, 0

Clearly, solving this system of linear equations involves matrix inversion. Equation (18) demonstrates that only

F(x.x, :o){

f]lei}

x, =0

a slight perturbation occurs in the basis B, while most of the elements remain unchanged. Therefore, the original
basis B from similar states can be reused to improve the efficiency of matrix inversion.

Theorem 3 [43] (Sherman-Morrison-Woodbury Formula): Consider a perturbation UV, where U and V are
matrices of size m x p and p x m, respectively. If both B and I + VB'U are nonsingular, then B + UV is nonsingular,
and the inverse of B is,

B'=B+UV)'=B'-B'UUI+VB'U)'VB"" (20)

According to (20), U and V are,

o i J
i 1 - N T
J Pl AN
H H 1
U= . V= 0] 1)
/ 1
n +1 S | I N T
: : , L K K pxm
L Ly

As shown in (21), this fast matrix inversion technique allows us to efficiently invert B in O(m? + p*) flops, as
opposed to the conventional matrix inversion, which requires O(m>) flops.

In reliability assessment, when a new system state is encountered, its corresponding similarity category is
initially unknown. To address this, the new state must be matched with an existing category in the state similarity
set. This process follows a “hypothesize-and-verify” strategy: first, the new state is assumed to belong to a specific
similarity category within the set. The relevant active constraints are then used to transform the DC OPF problem
into a system of linear equations for efficient solution. Finally, optimality conditions (8) and (9) are applied to
verify the solution. If the conditions are satisfied, the hypothesis is confirmed, and the new state is classified into
the hypothesized similarity category, with the solution representing the optimal solution for the new state. If the
optimality conditions are not met, the new state is then matched with other categories in the state similarity set, and

this process continues until a successful match is found. If no category matches, it indicates that the new state does
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not belong to any of the known similarity categories in the state similarity set, and optimization algorithms are
employed to solve the OPF problem directly. The new state is then added to the state similarity set as a new category.

In summary, the proposed state-similarity-based approach is formulated in Algorithm 1.

Algorithm 1: State Similarity Approach for Solving DC OPF

Inputs: a new state s and the state similarity set Qs
flag := 0, the similarity category order i, := 1.
while flag = 0 and i; <= count (similarity categories) do
Choose the is-th similarity category from the state similarity set
Q,, and obtain its active constraints.
Calculate a solution x of s by linear equations (19).
if the optimality conditions (8) and (9) are true then

flag < 1
J The optimal solution x* = x.
end

is=is+ 1.

epnd

if flag is false then

The optimal solution x* of the new state s is calculated by
optimization algorithms.

The new state s is stored as a new category in Q.

end

Outputs: The optimal solution x “of the new state s

3.3. The State Similarity Set

The state similarity set, denoted as €y, consists of state similarity categories, each representing a group of states
that share the same active constraints. Any given system state should match one of the categories in the set, meaning
it belongs to the same similarity category and shares the same active constraints. There are four basic operations
on Qg

1) Matching: Each state similarity category is sequentially traversed, and the active constraints of the
representative state in the category are used to solve the DC OPF problem for the new state until the optimality
conditions (8) and (9) are satisfied. If the new state does not match any existing categories, it will be analyzed using
optimization algorithms, followed by an insertion operation described below.

2) Insertion: The new state, representing a new similarity category, is added to the beginning of Q. Its active
constraints are then used to match subsequent new states in reliability assessment.

3) Deletion: When the number of state similarity categories in Q, exceeds Nysmax, the last state similarity category
is removed. Nymax 1S the maximum allowable number of similarity categories in the set.

4) Sorting: A dynamic sorting technique is developed to reorder the state similarity categories based on their

Category Rank (CR), which will be explained later. The sorting operation is triggered only when a matched
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category ranks higher than N;.

To enhance the matching efficiency, the state similarity categories that are more likely to match with the new
states should be placed at the head of the set. In this study, CR is a numeric value that indicates the likelihood of a
category matching a new state. In general, as more new states match with a category, the corresponding CR assigned

to the category increases. The CR is calculated by,

N, umax - tin.s' < tl
CR(C)=<N,  t—t, >t t—t,, <t (22)
0 t—t,, >t

where C is a state similarity category in the set; ¢ represents time, quantified by the number of analyzed states in
the reliability assessment; &, is the number of states that match this similarity category; N.max is a large constant;
tms 1s the time when the state similarity category is inserted into Qg; ti is the last matching time of the state
similarity category; ¢ is the duration of the early-time region; #, is the maximum time after #,,. The CR of a state

similarity category over time is shown in Fig. 3.

Early-time Middle-time Last-time
Region | Region i Region
Numax | i
CR ; N, .
k—1 5 2
—>

tins Yast t

Fig. 3. An example of the state similairty between LP problems.
3.4. Proposed Reliability Assessment Method
The overall reliability assessment process using the proposed SS approach is outlined in Fig. 4 and explained as
follows:
Step 1: Input system data, annual curves of loads and REGs, and preset parameters.
Step 2: Create the system state set € by MCS or SE.
Step 3: Select a system state s from Q.
Step 4: Establish the DC OPF problem for the selected system state s as the standard form (11) - (15).
Step 5: Set the similarity category order ig = 1.
Step 6: Choose the is-th similarity category from the state similarity set Q.

Step 7: Obtain the active variables x, from the is-th similarity category.
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—>I Step 3: Choose a new system state s from £, I

System State Analysis

| Step 4: Establish the DC OPF model of s |

v
| Step 5: Set the similarity category order i;, = 1 |
v :
| Step 6: Choose the i -th similarity category from 2, |<— :
v ;
| Step 7: Obtain the active variables x, of the i,-th similarity category |
v
Step 8: Calculate x by solving the active-constraints equations
v, \1ic o]0 .
REEINNIERD x =[x x]
A=[ 0 3130 P
o I v =0
¥, 10 001 L l

Step 9: The optimality conditions are satisfied ?

Step 12:

Step 10: x"=x.
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329
330 Fig. 4. The overall process of reliability assessment using the SS approach.
331 Step 8: Calculate a solution x of state s by solving the active-constraints-based linear equations instead of the

332 DC OPF optimization.

333 Step 9: Check the optimality conditions of (8) and (9) to determine whether the solution x is the optimal solution.
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If not, go to Step 12.

Step 10: The solution x is the optimal solution x".

Step 11: Check if the trigger event iy, > N, occurs. If so, apply the dynamic sorting technique to reorder the
state similarity set Q. Then, go to Step 16.

Step 12: Check if all state similarity categories in the state similarity set Q have been matched, i.e., iy = Nysmax-
If not, i = is + 1, go back to Step 6.

Step 13: Obtain the optimal solution x” of state s by optimization algorithms.

Step 14: Treat state s as a new similarity category and insert it at the beginning of Q.

Step 15: Remove the last state similarity category from Qg when the number of categories exceeds Nysmax.

Step 16: Check if all states in Q, have been evaluated. If so, next Step, otherwise, go back to Step 3.

Step 17: Calculate reliability indices.

4. Numerical Results

The proposed SS approach is employed to evaluate the reliability of the RTS-79 [44], RTS-96 [45], and Brazilian
systems [46]. The transmission limitations are considered. The cases utilize 17 actual annual load curves from
Alberta [47], and 33 actual annual output curves for PV and WT from NREL [48], [49]. The maximum fluctuation
range for both load data and renewable energy data is from 0 to 1.0. Moreover, different renewable generation
penetrations are applied to analyze their impact on the system reliability. . is the renewable generation penetration,
which is defined as,

b,
S TS (23)
P, +P,
where P, and P, represents the capacity of conventional generators and renewable generators, respectively; P, +
P,. is the total generation capacity.

MOSEK 9.3 is used as the optimization solver. The experiments are carried out on a standard PC equipped with

Intel® Core® i5-10600KF CPU 4.10 GHz and 128 GB RAM using MATLAB® R2022a.

4.1. Case I: Results on the RTS-79 System

RTS-79 system [44] is a composite power system with 24 buses, 33 generator units, and 38 branches. The total
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generation capacity is 3405 MW and the peak load is 2850 MW. The proposed method is verified by four cases
with renewable generation penetrations of 0%, 5%, 10%, and 15%.

Two conventional methods, MCS and SE are utilized for comparisons. Moreover, the CE-based MCS (CEMCS)
method and IISE method are also used for comparisons. The baseline of reliability assessment results is calculated
by the MCS with 1x108 sampled states. The preset parameters are given as follows: Ny (maximum contingency
order for SE) =5, and S (the coefficient of variation for MCS) = 1%. In the SE method, the system states above
second-order are only generation contingencies, which can cover 98.778 % of system states. In addition, the number
of load and generation states in SE is reduced to 100 through the clustering technique.

The SSMCS, SSCEMCS, SSSE, and SSIISE methods are combinations of the proposed SS approach and MCS,
CEMCS, SE, and IISE methods, respectively. The reliability assessment results of these methods are presented in
Table IT and Fig. 5.

In addition, the reliability level gradually declines owing to the intermittent nature of renewable energy. As
shown in Table II, the efficiency of the SS method slightly decreases at higher renewable generation penetrations
compared to lower penetrations. This is because the inherent variability of renewable energy causes changes in
active constraints, making it more challenging to match a new state with the state similarity category. Although the

OPF number increases with renewable generation penetration, SS method still significantly improves the efficiency.

4.1.1 Efficiency and Accuracy

First, the reliability indices obtained by SS methods exhibit the same precision while significantly improving
computational efficiency. Compared with the SE and IISE methods, the proposed SS methods can increase the
computational speed by 100~200 times. SE and IISE methods require over 20000 seconds to evaluate the RTS-79
system, while SSSE and SSIISE methods only take 100~200 seconds. Fig. 5 presents a comparative visualization
of computational time and accuracy for eight methods. Methods positioned towards the bottom left corner are
indicative of greater computational efficiency. The impact-increment and SS methods can improve the accuracy
and computational speed, respectively. Therefore, combining the SS and impact-increment methods allows SSIISE
to outperform the conventional SE method in both computational time and accuracy. The MCS method, a

conventional technique for power system reliability assessment, is also included for comparison. As shown in Fig.
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5, the computational speed of SSMCS is approximately 100 times faster than that of the MCS method. Moreover,
the CEMCS method is a popular advanced method that can reduce samples and increase the convergence speed of
MCS. By integrating the SS method with CEMCS, further improvements in computational efficiency are achieved.

As demonstrated in Table II, the SSCEMCS method takes only about 10s to evaluate the reliability of the RTS-79

system.
Table. II Reliability assessment results of eight methods (RTS-79)
EENS(MWh/y) OPF
Gre (%) Method Relative . CPU Time(s)
Value Number
Error (%)
Baseline 531.36 - - -
MCS 527.56 0.72 31290000 34814
SSMCS 527.56 0.72 9646 329
CEMCS 527.42 0.74 298000 326
0 SSCEMCS 527.42 0.74 874 13
SE 308.41 41.96 24478200 24354
SSSE 308.41 41.96 161 119
IISE 484.81 8.76 24478200 24373
SSIISE 484.81 8.76 161 142
Baseline 1061.14 - - -
MCS 1060.62 0.05 16110000 17868
SSMCS 1060.62 0.05 3313 122
CEMCS 1076.60 1.46 185300 206
5 SSCEMCS 1076.60 1.46 951 10
SE 673.10 36.57 24478200 24419
SSSE 673.10 36.57 196 126
IISE 976.15 8.01 24478200 24435
SSIISE 976.15 8.01 196 147
Baseline 2217.43 - - -
MCS 2185.37 1.45 7970000 8815
SSMCS 2185.37 1.45 1318 114
CEMCS 2236.44 0.86 160200 179
10 SSCEMCS 2236.44 0.86 1000 10
SE 1505.18 32.12 24478200 24414
SSSE 1505.18 32.12 350 146
IISE 2011.97 9.27 24478200 24440
SSIISE 2011.97 9.27 350 169
Baseline 4757.97 - - -
MCS 4718.36 0.83 3760000 4158
SSMCS 4718.36 0.83 1947 46
CEMCS 4783.93 0.55 116500 126
15 SSCEMCS 4783.93 0.55 1291 10
SE 3410.00 28.33 24478200 24431
SSSE 3410.00 28.33 505 170
IISE 4241.58 10.85 24478200 24434
SSIISE 4241.58 10.85 505 194

*OPF number is the number of using optimization algorithms to solve the DC OPF problem, and it is also the number of state similarity
categories.

As shown in Table II, the computational efficiency of the SS method slightly decreases with higher renewable
penetration. Specifically, at 0% renewable penetration, the numbers of OPF calculations per 10,000 scenarios are

3.08 for SSMCS and 29.32 for SSCEMCS, whereas at 15% penetration, they increase to 5.18 and 110.82,



396

397

398

399

400
401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

respectively. A similar increasing trend is observed for both the SE and IISE methods. This behavior occurs because
the inherent variability of renewable generation alters the set of active constraints, making it more difficult to match
new states to existing state-similarity categories. Nevertheless, despite the increase in OPF calculations at higher

renewable levels, the proposed SS method continues to provide substantial improvements in computational

efficiency.
Baseline A SSMCS ® SSCEMCS [ ) SSSE @ SSIISE
MCS CEMCS SE IISE
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Fig. 5. Computational efficiencies of eight methods (RTS-79).

4.1.2 Comparison Results Analysis

Compared with other advanced methods, the proposed SS method can incorporate all types of system states into
the accelerating calculation process. Based on the previous study [37], the calculation speed is increased by 39.12
times by accelerating the evaluations of load and renewable generation states. Furthermore, large numbers of OPF
computations of transmission line (TL) and generation (G) states are replaced with the active-constraints-based
equations for the proposed SSIISE and SSCEMCS methods. In this way, SSIISE can reduce the OPF number from
299919 to 22157, thereby improving the efficiency by 3.33 times. As shown in Table III, the improvement with
SSCEMCS is less than that of SSIISE. This is because the cross-entropy method filters out a large number of states
that have minimal impact on system reliability, and the sampled states of SSCEMCS exhibit more state similarities.
However, over 97% of OPF computations are still avoided, leading to a significant efficiency improvement in the
CEMCS due to the SS method.

Table IIT demonstrates the benefits of dynamic sorting and fast matrix inversion techniques. In this case, #; = 2,
t» =50, and N;; = 1. Take SSIISE as an example, the dynamic sorting technique reduces the computing time from

187s to 142s. However, the fast matrix inversion technique has little impact on the SSIISE method. It only takes
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0.45s to invert the matrix for the SSIISE, thus the saved time can be ignored. On the other hand, SSCEMCS requires

more time to invert the matrix due to the frequently changing topology in the sample states. Therefore, the speedup

of SSCEMCS is increased from 19.18 to 25.08 by using the fast matrix inversion technique.

Table. III Performance comparisons of the proposed methods (RTS-79)

State Method EENS (MWh/y) OPF Number  CPU Time(s) Speedup
- IISE 484.81 24478200 24373 1.0
LR SSIISE [37] 484.81 299919 623 39.12
LR, G SSIISE 484.81 24706 192 126.84
LR, G, TL SSIISE 484.81 22157 187 130.24
LR,G, TL SSIISE & Sort 484.81 161 142 171.51
LR,G, TL SSIISE & Sort & Inv 484.81 161 142 171.51
- CEMCS 527.42 298000 326 1.0
LR SSCEMCS 527.42 57867 84 3.88
LR, G SSCEMCS 527.42 29769 47 6.94
LR, G, TL SSCEMCS 527.42 8868 39 8.36
LR, G, TL SSCEMCS & Sort 527.42 874 17 19.18
LR, G, TL SSCEMCS & Sort & Inv 527.42 874 13 25.08

*LR: Load and Renewable Generation states. Sort: Dynamic sorting technique. Inv: Fast matrix inversion technique.

Fig. 6 shows the computational time of each process in three methods. M1, M2, and M3 represent the methods

of SSCEMCS, SSCEMCS & Sort, and SSCEMCS & Sort & Inv, respectively. The matching process is used to

match the system state with a similarity category in the state similarity set. Matched states are calculated using

active-constraints-based equations, while unmatched states are evaluated using optimization algorithms. Compared

to M1, the number of matching processes in M2 decreases from 1.63x10° to 4.26x10°, and the OPF number

decreases from 8868 to 874. Therefore, the dynamic sorting technique can significantly reduce the time of matching,

inversing, and OPF processes. For M2 and M3, the fast matrix inversion technique can nearly double the calculation

speed of the matrix inversion process. The other processes, which include OPF modeling and state selection, take

a similar amount of time across M1, M2, and M3, as the number of system states is consistent.

20

W

[
M2
[ M3

L

Matching

Inversing OPF Equation
Computational Process

Other

Fig. 6. Computational time of three methods (RTS-79).

4.1.3 Results of One Load Curve Case

To verify the accuracy of the proposed method, it is applied to the one load curve case [44], the results of which
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have been reported in various studies. As shown in Table IV, the reliability results of the proposed SS method are
nearly identical to those provided in [32], with a negligible discrepancy of only 0.48%. This minor variance can be
attributed to the inherent randomness associated with MCS sampling. Therefore, the reliability results of the
proposed method are considered acceptable.

Table. IV Reliability assessment results of one load curve case (RTS-79)

Method EENS(MWh/y) OPF Number CPU Time(s)
CEMCS [32] 1293 - -

MCS 1299.23 15560000 16528
SSMCS 1299.23 6370 275
CEMCS 1282.65 325000 353

SSCEMCS 1282.65 1248 19
SE 1056.56 24478200 24161

SSSE 1056.56 886 136

IISE 1298.92 24478200 24184
SSIISE 1298.92 886 158

4.2. Case II: Results on the RTS-96 System
RTS-96 system [45] consists of 73 buses, 99 generation units, and 120 branches. The total generation capacity
is 10 215 MW and the peak load is 8550 MW. This system utilizes the same load and renewable energy curves as
the RTS-79 system, but to enhance the MCS sampling efficiency, the load curves values are increased by 15%.
When . = 0, the results of 2x108 sampled states are used as the baseline, with Ny = 7. If (. > 0, the results of 1x108
sampled states serve as the benchmark, with Ny = 6. The other parameters remain the same as in Case 1. The
reliability assessment results for the RTS-96 system are presented in Table V to demonstrate the scalability of the

proposed SS method.

4.2.1 Accuracy and Efficiency

In the RTS-96 system, the SS method can still significantly improve the computational efficiency of MCS,
CEMCS, SE, and IISE methods. Less than 1% of the states require calculation through optimization algorithms,
resulting in a speedup of more than 10 times without sacrificing accuracy. As shown in the (.. = 0 of Table V, the

computational time can be reduced from 3.85x10°s to 5617s by SSMCS, and further reduced to 371s by SSCEMCS.

4.2.2 Comparison Results Analysis
The performance comparisons of the proposed SSCEMCS method for the RTS-96 system are presented in Table
VI. By utilizing all types of states to match a state similarity category, the SS method achieves a speedup of 6.05

times, reducing the OPF count from 2,765,000 to 90,672. When the accelerated states are the load and renewable
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generation (LR) states, the speedup of SSCEMCS in Table III is 3.88, while it is only 1.13 in the RTS-96 system.

This is because the sampled states in the RTS-96 system are usually different in component states, and only a few

sampled states can be analyzed quickly based on LR variations.

Table. V Reliability assessment results of eight methods (RTS-96)

EENS(MWh/y)

OPF

Ce (%) Method Value Relative Error (%) Number CPU Time(s)
Baseline 201.94 - - -
MCS 200.21 0.86 143430000 385225
SSMCS 200.21 0.86 22999 5617
CEMCS 201.44 0.25 2765000 7903
0 SSCEMCS 201.44 0.25 7673 371
SE 6.98 96.54 742650100 1880728
SSSE 6.98 96.54 1191 15146
IISE 132.89 34.19 742650100 1881465
SSIISE 132.89 34.19 1191 15879
Baseline 1035.34 - - -
MCS 1031.70 0.35 30400000 80269
SSMCS 1031.70 0.35 5642 1534
CEMCS 1033.82 0.15 1230000 3446
5 SSCEMCS 1033.82 0.15 11101 263
SE 37.88 96.34 663982400 1676673
SSSE 37.88 96.34 577 16331
IISE 652.45 36.98 663982400 1676974
SSIISE 652.45 36.98 577 16537
Baseline 5187.40 - - -
MCS 5262.79 1.45 6620000 17557
SSMCS 5262.79 1.45 4681 436
CEMCS 5204.23 0.32 915000 2559
10 SSCEMCS 5204.23 0.32 8586 173
SE 501.63 90.33 663982400 1701297
SSSE 501.63 90.33 988 17589
IISE 3505.95 3241 663982400 1701599
SSIISE 3505.95 3241 988 17889
Baseline 24043.43 - - -
MCS 24520.65 1.98 1600000 4395
SSMCS 24520.65 1.98 2549 168
CEMCS 23975.39 0.28 579000 1579
15 SSCEMCS 23975.39 0.28 3888 102
SE 424593 82.34 663982400 1702145
SSSE 4245.93 82.34 1751 18121
IISE 16669.44 30.67 663982400 1702440
SSIISE 16669.44 30.67 1751 18408

When considering the TL states, the OPF number is reduced from 92129 to 90672, but the computing time

increases from 1147s to 1306s. This is due to the high computational cost associated with matrix inversion

during the matching process. This highlights the importance of dynamic sorting and fast matrix inversion

techniques in the proposed SS methods, especially for large-scale systems. Table VI illustrates the impact of

these enhanced techniques on the SSCEMCS method for the RTS-96 system. The dynamic sorting technique

reduces the computing time to 494s, while the fast matrix inversion technique further decreases it to 371s.
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Fig. 7. Computational efficiencies of eight methods (RTS-96).
Table. VI Performance comparisons of the proposed methods (RTS-96)
EENS OPF CPU
State Method (MWh/y) Number Time(s) Speedup
- CEMCS 201.44 2765000 7903 1.0
LR SSCEMCS 201.44 2551620 6979 1.13
LR+ G SSCEMCS 201.44 92129 1147 6.89

LR+G+TL SSCEMCS 201.44 90672 1306 6.05

LR+G+TL SSCEMCS & Sort 201.44 7673 494 15.99

LR+G+TL SSCEMCS & Sort & Inv 201.44 7673 371 21.28

4.3. Case III: Results on the Brazilian System

Brazilian system [46], an equivalent network of the southern region of Brazil, consists of 242 buses, 53
generation units, and 489 branches. The total generation capacity is 208 388 MW and the peak load is 185
276 MW. The results of 5x107 sampled states are used as the baseline, . = 15%, and Ny = 4. The other

parameters are consistent with Case 1.

Table. VII Reliability assessment results of eight methods (BRAZILIAN)

EENS(MWh/y) OPF
Method Relative CPU Time(s)
Value Number
Error (%)
Baseline 2165.56 - - -
MCS 2193.60 1.29 30880000 385099
SSMCS 2193.60 1.29 11522 15035
CEMCS 2178.92 0.62 2263000 29962
SSCEMCS 2178.92 0.62 22404 2229
SE 614.21 71.64 46340500 527245
SSSE 614.21 71.64 27448 10554
IISE 1760.31 18.71 46340500 527249
SSIISE 1760.31 18.71 27448 10558

As shown in Table VII, compared with traditional MCS and SE methods, the proposed SS method
remarkably improves the computational efficiency by over 26 times. Also, the proposed SSCEMCS method
can further decrease the computation time to 2229s.

Moreover, the impact of system size on the number of state similarity categories is analyzed. The number
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of state similarity categories serves as an indicator of the acceleration performance of the proposed method.
A smaller number of categories implies a higher degree of similarity among multiple system states, enabling
their optimal solutions to be rapidly obtained through solving equations. Conversely, a larger number of state
similarity categories indicates lower similarity, thereby limiting the acceleration potential of the SS method.
The OPF number can be adopted as a proxy for the number of state similarity categories. In general, this
number increases with system size. As shown in Tables II, V, and VII, for instance, under the SSMCS method,
the numbers of state similarity categories for the RTS-79, RTS-96, and Brazilian systems are 1,318, 4,681,

and 11,522, respectively.

5. Conclusion

This paper proposes a state-similarity-based method for efficient reliability assessment in power systems.
The active constraints can be used as the state similarity features to calculate optimal load curtailment by
solving linear equations, rather than the time-consuming OPF optimizations. The method accounts for all
types of system states, including transmission line outages and renewable energy variations, in its accelerated
calculation processes. The results demonstrate that the proposed SS method is 20 to 200 times faster than
traditional MCS and SE methods, eliminating the need for OPF optimizations in more than 99% of system
states. Additionally, the dynamic sorting and fast matrix inversion techniques improve the matching efficiency
by 2~3 times. The SS method can also be integrated with other advanced methods, such as the CE method, to
further improve overall efficiency, as it focuses primarily on system state analysis. However, the current SS
method is limited to linear optimization formulations and cannot yet be directly applied to nonlinear problems.
In future work, we plan to extend the SS framework to handle more complex OPF models that incorporate
time-coupling constraints of flexible resources, thereby enabling a more comprehensive analysis of the
evolving challenges in modern power systems.

The source code and data are available at: https:// github.com/tjuZeyuLiu/OA-Reliability-Assessment.
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