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ABSTRACT

We consider a joint ordered multifactorisation for a given positive integer n > 2 into
m parts, where n = n;y X ... X n,, and each part n; is split into one or more
component factors. Our central result gives an enumeration formula for all such joint
ordered multifactorisations N, (n). As an illustrative application, we show how each
such factorisation can be used to uniquely construct and so count the number of distinct
additive set systems (historically referred to as complementing set systems). These set
systems under set addition generate the first n non-negative consecutive integers uniquely
and, when each component set is centred about 0, exhibit algebraic invariances. For
fixed integers n and m, invariance properties for N,,(n) are established. The formula for
Nn(n) is comprised of sums over associated divisor functions and the Stirling numbers of
the second kind, and we conclude by deducing sum over divisor relations for our counting
function AV,,(n). Some related integer sequences are also considered.

Keywords: multifactorisations, joint ordered factorisations, divisor functions, additive
systems, algebraic invariances
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1. Introduction

We begin by outlining two of the three main areas under consideration, multifactorisa-
tions and divisor functions, before stating our main results. These relate to the counting
function N,,(n), which counts the number of joint ordered factorisations of the positive
integer n into m parts.

In 1893 P. A. MacMahon discussed in his Memoir on the Composition of Numbers [11]
the arithmetic function (our notation) ¢(n), which gives the number of ordered factorisa-
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tions of n into factors greater than 1.

Example 1.1. When n = 12 the number of ordered factorisations ¢(12) is given by
counting

12=12=2X6=0%x2=3X4=4X3=2X2Xx3=2X3%x2=3X2xX2,
=c(12)=1+4+3=8.

In [5, 6] concise notation for the concept of an m-part joint ordered factorisation was
introduced, as defined below, where we use the notation N>y = N+ {1} ={2,3,4,...}.

Definition 1.2 (joint ordered factorisation). Let m € N, a = (ny,...,n,) € NI, with
n=mny X...Xn,,. Then we call

(G2, G ) G f1) ) € ({12, om x (Naa)),

where L € N, an m-part joint ordered factorisation of n if j, # j,1 (€ € {2,...,L}) and

Hfg:nj, for all (5 €{1,...,m}),

Je=J

where, ¢ indexes the positions of the tuples in the joint ordered factorisation that corre-
spond to factors of n;.

Furthermore we define the partial products of all factors before the /-th in the joint
ordered factorisation, as

/-1 m
F(ty=]]#f. sothat n=]]n;=F(L+1),
s=1 J=1

where for £ = 1 we use the usual convention for the empty product F(1) = 1.

In other words, a joint ordered factorisation of an n-tuple of natural numbers a =
(n1,...,ny) arises from writing each of these numbers as a product of non-trivial factors,
i.e., factors > 2, and then arranging all factors in a linear chain such that no two adjacent
factors arise from the factorisation of the same number. Denoting by Q(n) the total
number of prime factors of n including repeats, it follows from the above definition that
the maximum length L (number of tuples) in the joint ordered factorisations for n into
m parts satisfies L < Q(n).

In [12] Ollerenshaw and Brée considered the two-part joint ordered factorisations as
divisor paths.

Example 1.3. When n = 12, and the number of parts in the factorisation is m = 2, we
have n = 12 = n; X ny. Working through each possibility, we find 14 2-part joint ordered
factorisations, 7 of which are given below with the partial product progressions for the
a = (ny1,ny) tuples.
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Ordered Factorisation | a=(nj,ny) | Partial Products F
((1,2)(2,6) ) (2,6) 1,2,12

((1,6)(2,2) ) (6,2) 1,6,12

((1,3)(2,4) ) (3,4) 1,3,12

((1,4)(2,3) ) (4,3) 1,4,12
((1,2)(2,3)(1,2) ) (4,3) 1,2,6,12
((1,3)(2,2)(1,2) ) (6,2) 1,3,6,12
((1,2)(2,2)(1,3) ) (6,2) 1,2,4,12

The remaining 7 possibilities are then obtained by starting the joint ordered factorisa-
tions from ny rather than ny, so that ((1,2)(2,2)(1,3)) becomes ((2,2)(1,2)(2,3)) etc.

Repeating the above constructions when there are m = 1 and m = 3 parts, we find
that there are respectively 1 x 1!=1 and 3 x 3! = 18 distinct joint ordered factorisations,
so in total 1 + 14 + 18 = 33 factorisations for 12. As (12) = 3, no factorisations exist
for m > 4.

MacMahon considered the prime factor exponents of the positive integer
n = pi'py?---p% > 2, where p1,po,...,p, are distinct prime numbers. He obtained the
formula for ¢(n),

o(n) ) N fart i — k-1
et = Y- estm = 3 S04 ()T ) )
j=1 =1 k=0 =1 e
(see |11, §10, p.843|, |7, eq.(4)]), where ¢;(n) is the number of ways of writing n as an
ordered product of j non-trivial factors.
We call ¢j(n) the j-th non-trivial divisor function. Eq. (1) was rediscovered (see Lemmas
1 and 4 of [5]) through the theory of j-th divisor functions [9], obtaining in the process
the associated divisor function cgv') (n), defined for j € Ny, r € Z, such that

o (n) = i(—w’“(i) I ( T 1), )

k=0 (=1

where we take C§0) = ¢; with ¢p(n) = 1if n =1 and ¢o(n) = 0 if n > 2. The difference
between the two formulae in (2) and the inner sum in (1) is subtle, with j replaced with
J+7 in the inner binomial coefficient in (1), whilst the outer binomial coefficient remains
unchanged.

Results in [9] show that |c§-r)(n)] counts the number of factorisations of n into j + r
factors, the first j being non-trivial (i.e. factors > 2) if r > 0, and into —r factors, of
which the first j factors are non-trivial and all factors must be square-free if » < 0 and

J < |r]. Ifr <0 and j > |r|, then cancellations occur in the formula for cy) (n) and a
combinatorial interpretation cannot be inferred.
The special case j = —r turns out to be of particular importance (cf. [9] Theorem

4), as the value of cyj ) (n) can be interpreted as (—1)*™*7 times the number of ordered
factorisations of n into j non-trivial, square-free factors. For more information about
these functions, see Section 2 below.
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For a fixed m-tuple a = (ny,...,ny), with n = n; X ... X n,,, using the associated
divisor function cgfj )(n), it was proven (|9] Theorem 4) that the total number of different
m-part joint ordered factorisations for n over the m-tuple a is given by

vt = 3 () T2 ®)

feN™ 7j=1

where in the usual notation (lg‘) denotes the multinomial coefficient for ¢ = (¢4,...,4,,),
with [{|= 0+ ...+ L.

Although concisely notated, the above counting formula is in practice lengthy to use
for large values of m and €(n), as it requires that the sum and product runs over all
m-tuples ¢ with 1 < ¢; < Q(n;).

However, the formula (3) partially motivates this paper, being central to deriving our
main result for

Nin(n) = >~ My(n),
aeNT,
[Inj=n
which counts the number of all m-part joint ordered factorisations of n. It employs the
modified Mo6bius function, defined below.

Definition 1.4 (modified M6bius function). Denote by p(n) the Mobius function, re-
turning (—1)%™ if n is square free, 0 otherwise, and by e(n) the convolution identity,
returning 1 if n = 1 and 0 if n > 2. Then the modified Mobius function (u — e)(n) is

defined by

—1)%M™ if n is square-free
- e (n€N).
0 otherwise (including the case n = 1)

(n—e)(n) = {
Theorem 1.5 (factorisation enumeration theorem). Denote by S(L, m) the Stirling num-
bers of the second kind, by (1 —e)*F the L-th convolution of the modified Mibius function,
and by cS:_L)(n) the special case of the associated divisor function.

Then for natural numbers m,n € N, the number of m-part joint ordered factorisations
of n 1s equal to

Now(n) =D (1) ml S(L,m) (n— €)™ (n) =Y m! S(L,m)c} " (n).

Here the well known Stirling numbers of the second kind S(L, m) [14] count the number
of ways to partition a set of L objects into m nonempty subsets.
We will prove Theorem 1.5 in Section 3. For m = 2 we also have the next result.

Theorem 1.6. Forn € N
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Proof. For m = 2, any joint ordered factorisation of n arises from taking fi,..., f; to be
the factors in an ordered factorisation of n into at least 2 non-trivial factors and jy,..., jr
to alternate between 1 and 2, starting either with j; = 1 or with j; = 2. Therefore the
total number of joint ordered factorisations is twice the number of ordered factorisations
into L non-trivial factors, where L ranges between 2 and {2(n), and hence the result
(4). O

The counting function N, (n) satisfies the following sum over divisors relations.

Theorem 1.7 (sum over divisors theorem). Let m € N, and n € Nso with u(n) the
Mdébius function, Ny, (n) the counting function introduced in Theorem 1.5 for the number
of m-part joint ordered factorisations of n. Then N,,(n) obeys the sum over divisors

relations
Non(n) = ((m = DN (d) + mN;u_1(d)) (5)
din
= —m Y (%) Noald) + N (@) (6)
din
d<n

Form =2, Eq. (5) can be written as

Na(n) = 2dy(n) — 4+ " No(d) = 2c5(n) + > Na(d). (7)
d|n d|n

Example 1.8. When n = 12, we find that N5(12) = 14, whereas 2dy(12) — 4 = 8, and

D> N(12) =0+0+0+2+4 =6,
d|12
d<12

so that as given by the formula in (7), 14 = 8 4 6.

The remainder of the paper is structured as follows. In Section 2 we prove Theorems
1.5 and 1.7. As an application of our enumeration function N,,(n), we consider in Section
3 the related topic of sum systems, deducing using a bijection that N,(n) also counts
the number of m-part sum systems for n. A sum system under set addition generates
the first n non-negative integers uniquely (without repeats) and our new results here give
algebraic invariance properties for fixed values of n and m whilst varying the joint ordered
factorisation constructions. In Section 4 we summarise our findings and consider future
areas for exploration.

2. Divisor functions, Dirichlet convolutions and proofs

To prove Theorem 1.7, we first need to understand the associated divisor function in terms
of Dirichlet convolutions. Our starting point is the commutative Dirichlet convolution
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algebra of arithmetic functions, where the convolution of arithmetic functions fi, fa,..., f;
is given by

(fixfox-xf)m) = Y film)fa(ne) - fi(ny), (8)

ning--n;=n

summing over all ordered factorisations of n € N into j factors. We denote the jth
convolution power as follows, f* := f * f % --- x f, where the right-hand side has j
repetitions of f; by the usual convention, f*® = e. The function e(n) = 6,1 (n € N) is
the neutral element of the Dirichlet convolution product, and the convolution inverse of
the constant function 1 is the well-known Mobius function p, both being introduced in
Definition 1.4.

The jth convolution of the constant function 1 is more generally known as the classical
jth divisor function d; = 1% (cf. [15, p. 9]), which counts the ordered factorisations of its
argument into j positive integer factors. It can be shown (see §2 of [5]) that d; satisfies
the sum-over-divisors recurrence relation

djpa(n) = (djx1)(n) = > _dj(m) =17 (n),  (n,j €N) (9)

m|n

and has the Dirichlet series [10]

o0

idﬁ?)zas)ﬂ; where C(s) =3 — B> 1

n=1

In contrast, the jth non-trivial divisor function ¢; only counts ordered factorisations in
which all factors are greater than 1. It can be expressed as the j-fold Dirichlet convolution
¢; = (1 —e)¥, and so satisfies the slightly different sum-over-divisors recurrence relation

can) = (e x (L=)(m) = Y esm) (1—=e) (=) = Y e(m),  (mjeN).

As the Dirichlet series for 1 — e is ((s) — 1, the non-trivial divisor function ¢; has the

Dirichlet series .
> 90— (s -1y
n=1

nS

These formulae extend to j = 0 when we set ¢g = e = dy. It is important to note that
¢;, unlike d;, is not a multiplicative arithmetic function.

Combining these two functions yields the associated (j,r)-divisor function, defined for
non-negative integers r,j as c§~r) = (1 —e)* % 1*". Tt was demonstrated in [9] that this
arithmetic function counts the ordered factorisations of its argument into j +r factors, of
which the first 7 must be non-trivial.

Moreover, as the constant function 1 has a convolution inverse, this definition extends
naturally to negative upper indices, giving the associated (j, —r)-divisor function cgfr) =
(1—e)* % p*". We note that (1 —e) does not have a convolution inverse, as (1—¢)(1) = 0,

so there is no analogous extension to negative lower indices.
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(=)

Popovici [13] studied the functions ¢y’ = p*". In the associated (j, —r)-divisor func-

tions, the modified M&bius function of Definition 1.4 appears naturally. It was also shown
in [9] that if j > r, then the Dirichlet convolutions have the forms

A = (1—e)" s ((1—e)xp) =(=1)"(1—e) " *(un—re);

J
if 7 <r, then
T = (L= e)w ) p T = (1) (=€)

with the special case 7 = —r,

)= (=17 3 (p—e)(m) (u—e)(na) - (u—e)(ny)

ning--n;=n

= Y (o= mm) (e~ pn) (e~ pw)(ny)

ning--n;=n

=(e—p7(n) (neN), (10)

having the interpretation as (—1)*™*J times the number of ordered factorisations of n
into j non-trivial, square-free factors.

With the Dirichlet convolution notation established for the associated divisor function

(r) : 1
c;’(n), we next require a lemma.

Lemma 2.1. Let (a;)jen, and (b;);en, be number sequences. If

a; = i (‘Z) bi (j € No),

then

and vice versa.

Proof. For any j € Ny, we have

S ()5 05 (B (0)-

=0
¢

(S )

after the change of variables £ = j —i. The claimed formula now follows by observing

that
o 7 \[(i-0 & (G = k)!
(=1) (j_k)( ¢ )— =D G— R (G —k—0)

0

~
~

<.

B
Il
B
Il

0
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-()gr ()
~(o-v=n= 07

The converse follows by an almost identical calculation. O

Example 2.2. As asample application, using the above lemma on Lemma 4 of [5], which

states that .
r Z r .
Cg) — (Z>C]+,L (’I" ENO,] < N),

=0

we obtain the following expression of the non-trivial divisor function in terms of associated

=30 (e Gem.

r=0

divisor functions

Proof of Theorem 1.5. We bear in mind the definition of the Dirichlet convolution
given in (8), and sum over all possible m-tuples

a=(ny,...,nm) €Ny, with n=mn; x...xn, €N, and (= ({,...,0,) € N",

where |(|= ¢, + ... + {,,. Applying the formula given in (3), which counts the number of
m-part joint ordered factorisations of n, for each individual m-tuple a, we have that

aeNT,
[Inj=n
g m
=3 > () et
aeNT, £{eN™ j=1
[Inj=n

-5 (|§|)C£||e|<n)’ (11)

where we have used Eq. (10) in the final step. For the integer n, we then have the integer
sequence (N, (n))men, which takes non-zero values for 1 < m < Q(n).
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Additionally, for m € N we define the function N, (n), similarly to (11), but with the
m-tuple ¢ running over N{*, so that

Non(n) = z§n ('ﬁ')caw(n) = 3 (cLL(n) > (?) 14 1fm> = Sin)m%f(n), (12)
; =0 ey =0

where in the last equality we have used ¢;“(n) = 0 for L > Q(n), and also

> (?)151...1% —(1+1+...+DF=ml

LeNy e
t|=L

m times

The expression for A;,(n) in (12) can be expanded over ¢ € N~ by counting the
number of choices for r entries to be 0 in the m-tuple for ¢. Thus we obtain

o= (3) £ (£ () T (e

+ (2) Z %2 (’?)Cem(n) +EET(IZ) E%) (lil) )
=S, i =3 (e,

by Eq. (11).

Now 0 = 0 for L > 1 and ¢;°(n) = 0 for all n € Nxy, so we have that Ny(n) = 0 for
all n € N>,. Hence we need only consider the sum from k£ = 1, and applying Lemma 2.1
gives us

Nn(n) = Zm:(—l)m’“ (Z)/\Yk(n) = jz(n:) (Zm:(—l)mkkL (Z)) 7L (n).

k=1 =0 k=1

Using the the identity for the Stirling numbers of the second kind (cf. [I] Theorem
5.1.A)

we can write

I
/@\h
/N
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]
Proof of Theorem 1.7. We begin with Theorem 1(a) of [9], which gives a three term
recurrence relation for the associated divisor function, stated here as

(r)y _ (D) (r)
Cryr1 = Cg —C s

and setting r = —L and kK = L — 1, we obtain

—L —(L—-1 —L
= )

Substituting in the formula for A,,(n) given in Theorem 1.5, where the upper index of
summation Q(n) is formally replaced by oo as c(_L)(n) =0 for n > Q(n), we have that

Non(n) = Somb S(Lm) e (n) = > mt S(Lm) (4 (0) = e ).

We now substitute for the well known three-term recurrence relation for the Stirling
numbers of the second kind [14] S(L,m) =mS(L —1,m)+ S(L —1,m — 1), along with
the fact that S(0,m) = 0 for m > 1 to obtain

No(n) = 3" ml (mS(L —1,m) + S(L - 1,m — 1)) <C<L—_<f—1>><n) - c(L__Ll))(n)) .
L=1
Lowering the index of summation to start at L = 0 gives us
Nn(n) = Zm! (mS(L,m)+ S(L,m — 1)) (C(L_L)(n) - cg_L_l)(n)> :

L=0

Expanding out the brackets and rearranging, we have four summation terms which by
Theorem 1.5 can be written as

Now(n) = m (Now(n) + N1 (n)) = Y ml (m S(L,m) + S(L,m — 1)) e “ "V (n).

L=0

In the final step we sum each side over the divisors d of n, noting from (9) that
(751)(n) = "V (n), to obtain

S Nu(d) = | mD " (N(d) + Nopoa(d) | = m! (mS(L,m) + S(L,m — 1)) i (n)
din

din L=0
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= | md_ (Nau(d) + Nowoa(d) | = m (Nn(n) + Nyoi(n))
din

—mz +Nm 1( ))
din

where we have again used Theorem 1.5. Rearranging then gives the desired result

Non(n) =Y~ ((m = DN (d) + mNop_1(d))
din
d<n

For the second identity (6), we consider the sum over all divisors of n, written as

m Nn(n) + N1 (n) = D~ ((m = DN (d) + mNop— (d))

dln

and then apply Md&bius inversion to obtain

(m = )N () + MmN mZ,u( ) Ninld) + N1 ()

Noting that u(n/n) = pu(1) = 1, and rearranging, we obtain the statement (6)

() = =m0~ g1 () (Nin(d) + N1 ().

dln
d<n

To see (7), Eq. (5) with m = 2 yields
Na(n) =)~ (Na(d) + 2Ni(d)) .

din

d<n
Here N1(1) = 0 and N(d) = 1 for d > 1, with dy(n) the well known divisor function,
which counts the number of ways of writing n = ny X ng, with ny,no > 1. Removing
the two cases n; = 1 and ny = 1, we obtain the non-trivial divisor function cy(n) =

dg(n) — 2. ]

Remark 2.3. The sum over divisors formula (7) of Theorem 1.6 for the 2-part joint
ordered factorisation case N3(n) was also stated by MacMahon [11] using alternative
notation. In [10] C. T. Long made the connection between the number of two-dimensional
additive (complementing) set systems and N5(n) (referred to as C'(n) in [10]). However,
as stated by Knopfmacher [7], MacMahon’s sum over divisors formula was the correct
version, as the formula given by Long omitted (in our notation) the term 2cy(n).

The ideas of Long can be extended to m parts, where the joint ordered factorisations
underpin the additive set system constructions. As an illustration for the use of joint
ordered factorisations, we show in the following section how the counting functions N, (n)
can be used to count the number of different m part sum systems for a given positive
integer n > 2.
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3. Sum systems

Sum systems are the third key topic under consideration here, which we now describe
before stating our results which include algebraic invariance properties for centred sum
systems.

In what follows, for a € N, we use the notation (a) = {0,1,...,a — 1} so the a-term
arithmetic progression with start value r, step size s can be expressed as s{a) +r =
{r,r+s,....,7+ (a—1)s}.

An m-dimensional additive set system for a given target set of integers, 7', is a collection
of m sets of integers, Ay, A, ... A, each with cardinality |A,|, for j € {1,...,m}, such
that their sumset satisfies

m

T:ZA]: {Zaj |CZj€Aj}.
- =1

j=1

The cardinality of these sets satisfy the equation |T'|= |A;||As|...|A.| if and only if
each element ¢ € T is represented by a unique sum in this set sum, and we then call the
additive set system a basis for T'.

The study of additive systems dates back to de Bruijn’s paper 3] on (possibly infinite)
sets of non-negative integers Ay, with |Agx|# 0 and 0 € Ay, for T = Ny. He referred to
such an additive system as a number system.

Subsequently such systems became known as complementing set systems [17, 10], the
latter paper focusing on systems that uniquely represents the first n consecutive integers,
T =1{0,1,2,...,n — 1}, and enumerating the systems when m = 2.

A question posed by de Bruijn in the closing remarks of [3]| refers to an earlier pub-
lication of his [2], concerning the analogous problem for number systems representing
uniquely all integers in 7" = Z. Of this de Bruijn says “That problem is much more diffi-
cult that the one dealt with above, and it is still far from a complete solution.” It is this
more general consideration of de Bruijn that also partially motivates the results in this
section, building on the related concepts of sum-and-distance systems, established in [5,
4, 6, §].

We now formally define sum systems, which restrict the target set to be the first n
non-negative integers (n), and require uniqueness of the representation of each number.

Definition 3.1. Let m € N, A; C Ny (5 € {1,...,m}), with cardinality |A;| = n;, and
[[5,1Ajl=n=mn1 xny x ... X ny,. Then we call Ay, Ay, ..., Ay, an m-part sum system if

>4, = (). (13)

J=1

Lemma 3.2. Let m € N, and suppose the sets Ay, As, ..., A,, C Ny form an m-part sum
system for the first n non-negative integers. Then the centred sum system C1,Cs, ..., C,,,

defined such that
(max A;)

Ci=Ai———%
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generates under set addition
“ n—1 n-—3 n—3 n—1
C;=4q— —_——
So-{- -t e
7=1

i.e. either n consecutive integers centred about 0 or n consecutive half-integers centred

about 0, depending on whether n is an odd or an even integer.

Proof. From Lemma 3.2 and Theorem 3.3 of [(], every sum system component set is
palindromic, satisfying A; = (max A;) — A;. As sum system component sets A;, contain
non-negative integers and always include 0, it follows from the above definition that each
centred sum system component set is centred about the origin, has cardinality |C;|= |A4,],
with max C; = (max A;)/2, and so we have

" 1 & n—1
Y maxCj=-) maxA; = .
- max j 2 < max j 2

Hence when n is an odd integer, (n—1)/2 is also an integer and Cy +. ..+ C,, generates
the set of consecutive integers between —(n — 1)/2 and (n — 1)/2. Conversely, when n

is an even integer we find that our centred sum system under set addition generates the
consecutive half-integers in this interval. O

An explicit construction method for all sum systems was proven in [6, Theorem 6.7],
whereby a bijection between the set of joint ordered factorisations for an m-tuple of
natural numbers a = (ny,...,n,,), and the set of all sum systems for the corresponding
m-part sum system was established, as stated below in Proposition 3.3.

Proposition 3.3. Let m € N. Suppose the sets Ay, As, ..., A, C Ny form a sum system.
Let n; = |4;] (j € {1,...,m}).

Then there is a joint ordered factorisation ((j1, f1),.--,(Jr, fr)) of (n1,...,ny) such
that

A= (1:[ f.s) (foy =D FO{f) (G e{l,....m}). (14)

Je=j \s=1 Je=j
Conversely, given any joint ordered factorisation of n over the m-tuple a = (nq, ..., ny),
the construction (14) generates uniquely an m-part sum system.

Corollary 3.4. The number of m part sum systems and centred sum systems for the
positive integer n > 2, is given by Ny, (n), the counting function for the number of m part
joint ordered factorisations for n.

Example 3.5. Let n = 270, and consider the corresponding 3-part sum system for 270
over the 3-tuple a = (ny1,nq,n3) = (9,5,6), with joint ordered factorisation
((1,3),(3,3),(1,3),(3,2),(2,5)). Applying Proposition 3.3 we obtain

Ay ={0,1,2,9,10,11,18,19,20}, A, = {0,54,108,162,216}, A; = {0,3,6,27,30,33},
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so that |A;|= 9, |As]= 5, and |As|]= 6, and A; + A + A3 = {0,1,2,...269}, where
269 = (9 x 5 x 6) — 1. The corresponding centred sum system components are therefore

= {-10,-9,-8,-1,0,1,8,9,10}, C, = {—108, 54,0, 54, 108},

and ]
C5 = 5{—33, —27,—-21,21,27,33}.

Hence we have
1
The first n = 270 (odd) half integers centred about the origin.

Remark 3.6. In [6] sum-and-distance systems were classified into two types; inclusive
and non-inclusive, where inclusive sum-and-distance systems generate central-symmetric
sets around zero of consecutive integers, and non-inclusive systems generated a central-
symmetric set around zero of consecutive odd integers. The terminology of non-inclusive
or inclusive, corresponds respectively to whether the target set is generated solely by the
sums and differences of elements between the different sets or whether the elements of the
individual sets themselves are also required.

Here we work with the single concept of centred sum systems, removing the need to
distinguish between inclusive and non-inclusive sum and distance systems. This approach
leads to our main (invariance) result for centred sum systems with fixed values of n and
m, but allowing distinct joint ordered factorisation constructions in Proposition 3.3, the
numerical invariance properties stated below.

Theorem 3.7. Let n € N with corresponding m-tuple a = (ny,na,...,ny), and let
Ay, Ay be a an me-part sum system for n, so that [[;_,|A;l= [[j-,n; = n, and
> A; = (n). Furthermore let C1,Cs,...Cy, be the centred sum system derived from the
=1

A; by subtracting %max (A;) from each component set A;. Finally, for the sum systems
and centred sum systems as given above, define the respective sums of elements o4(n),
and sums of squares of elements T¢(n), such that

Z Z and T1c(n Z Z (15)
aeA CEC’
Then we have

o(n) = ”_1 N <) and Tc(n)zwzé(ngl).

k=1

M

Remark 3.8. Any vector composed of the elements from all component sets of a centred
sum system can therefore be thought of as an integer or half-integer lattice point on
an ellipsoid in n-dimensional Euclidean space. Here the normalisation factors n/n; in
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Theorem 3.7 transform the points on the ellipsoid into points on an n-dimensional sphere
with radius y/7¢(n). This sphere only depends on n and all different multifactorisations
of n correspond to integer or half-integer points on it.

Example 3.9. For the 3-part sum system given in Example 3.5, we have that n = 270 =

9 x 5 x 6, and we find that
270 x 269 3980455 271 x 270 x 269
0.4(270) = 36315 = + and  70(270) = === = . = ki

as shown in Theorem 3.7. Similarly, for n = 270 and a = (ny,n2,n3) = (9,5,6), but
using instead the joint ordered factorisation ((1,3),(2,5),(3,3),(1,3),(3,2)) to obtain the
distinct centred sum system

Cy = {—46,—45,—44,-1,0,1,44,45,46}, C, = {—6,-3,0,3,6}

and
1
Cs = 5{—165, —135,—-105,105, 135,165},
we again find that
3280455
2 )
though the sums of squares over the individual component sets are different.

70(270) =

To prove Theorem 3.7 we first require a lemma.

Lemma 3.10. Let A and B be two disjoint sets of numbers. Furthermore let B be

symmetric around the origin, i.e. B = —B. Then we have
Z c= |B|Za, and Z = ]B|Za2+\A|ZbQ.
ce(A+B) acA c€(A+B) acA beB

Proof. Writing A = {a1,as,...,aa)}, we have A+ B = {a1 + B,as + B, ..., a4 + B},
and taking the sum over all elements in A + B, in conjunction with Y b = 0, gives us

beB
|Al |B
Z c=(am+B)+--+(aa +B) = ZZaﬁ—b
c€(A+B) i=1 j=1
|A| |B|
IB!Zaz |A|Zb = [B|) a,
acA
and for the sum of elements squared, writing B = {b1, s, ..., b5/}, we have
|4l |B]
> =+ B+ 4 (qa+ B’ =D (af +aib; +17)
ce(A+B) i=1 j=1
A 14| |B| |B|

=B ai+ | D ai | | D ob | +IAD 8 =|BI> a+[A]D v
i=1 i=1 j=1 j=1

acA beB
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as the sum of the cross-terms is zero. OJ

Proof of Theorem 3.7.

Regarding o4(n), we know from Theorem 3.2 of [6] that each component set A; of a
sum system is palindromic, centred about (max A;)/2, so on average each element is of
this magnitude. The sum of the elements of each component set is therefore given by

Z - |A;|(maxA,) _ nj(maXAj)‘
2 2

aEAj

Hence

—Za_ maXA

aEA

and as the sum over the maximal element of each component set A; is n — 1, multiplying
through by n and taking the sum over all component sets of the sum system gives us

nz Za— ZmaXA (n—l).

aEA

For the sum of squares function 7¢(n), by repeated application of Lemma 3.10 we obtain

>3-y el | Y-y rye

Jj=1 ceCj j=1 \ k=1 ceCj j=1 CEC
k#j

When at least one of the centred sum component sets has even cardinality, the sum
of squares on the left-hand-side is simply twice the sum of squares of all the consecutive

half-integers between % and ”T’l, and so we have

22( 2]—1) = 112 (n® —n) :%(n—l)n(n%-l).

If all of the centred sum component sets have odd cardinality, then n = ninsy...n,, is
odd and the sum of squares on the left-hand-side is simply twice the sum of squares of all
the integers between 1 and (n — 1)/2, and we find that

22:] n—l) (n—i—l):%(n;’_l).
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4. Conclusion and further areas for consideration

We have established here the formula in Theorem 1.5 for the function N,,(n), which counts
all m-part joint ordered factorisations for an integer n. This function arises naturally when
counting either m part joint ordered factorisations or m part sum systems. The implicit
sum over divisor relations for N,,(n), given in Theorem 1.7, has an inherent symmetry
which indicates that the number theoretic function A, (n) might be worthy of further
investigation in its own right.

For sum systems we have demonstrated that for a fixed target integer n, the sum system
components exhibit an invariance in the sum of their elements, and for the centralised
sum systems this translates into a sum of squares invariance.

In consideration of de Bruijn’s question regarding complementing set systems (sum
systems) for Z rather than N, the results detailed in this paper, combined with those of [5,
6, 9] give methods for constructing centro-symmetric sets of integers or half integers about
the origin, via joint ordered factorisations. For target sets which are not symmetric about
the origin this is a much harder question and could form the focus of future investigations.
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