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Multifactorisations and divisor functions

A. D. Law, M. C. Lettington and K. M. Schmidt*

abstract

We consider a joint ordered multifactorisation for a given positive integer n ≥ 2 into

m parts, where n = n1 × . . . × nm, and each part nj is split into one or more

component factors. Our central result gives an enumeration formula for all such joint

ordered multifactorisations Nm(n). As an illustrative application, we show how each

such factorisation can be used to uniquely construct and so count the number of distinct

additive set systems (historically referred to as complementing set systems). These set

systems under set addition generate the �rst n non-negative consecutive integers uniquely

and, when each component set is centred about 0, exhibit algebraic invariances. For

�xed integers n and m, invariance properties for Nm(n) are established. The formula for

Nm(n) is comprised of sums over associated divisor functions and the Stirling numbers of

the second kind, and we conclude by deducing sum over divisor relations for our counting

function Nm(n). Some related integer sequences are also considered.

Keywords: multifactorisations, joint ordered factorisations, divisor functions, additive

systems, algebraic invariances

2020 Mathematics Subject Classi�cation: 11B13, 11E25, 11B25, 11B30, 11A51.

1. Introduction

We begin by outlining two of the three main areas under consideration, multifactorisa-

tions and divisor functions, before stating our main results. These relate to the counting

function Nm(n), which counts the number of joint ordered factorisations of the positive

integer n into m parts.

In 1893 P. A. MacMahon discussed in his Memoir on the Composition of Numbers [11]

the arithmetic function (our notation) c(n), which gives the number of ordered factorisa-
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tions of n into factors greater than 1.

Example 1.1. When n = 12 the number of ordered factorisations c(12) is given by

counting

12 = 12 = 2× 6 = 6× 2 = 3× 4 = 4× 3 = 2× 2× 3 = 2× 3× 2 = 3× 2× 2,

⇒ c(12) = 1 + 4 + 3 = 8.

In [5, 6] concise notation for the concept of an m-part joint ordered factorisation was

introduced, as de�ned below, where we use the notation N≥2 = N+ {1} = {2, 3, 4, . . .}.

De�nition 1.2 (joint ordered factorisation). Let m ∈ N, a = (n1, . . . , nm) ∈ Nm
≥2, with

n = n1 × . . .× nm. Then we call(
(j1, f1), (j2, f2), . . . , (jL, fL)

)
∈ ({1, 2, . . . ,m} × (N≥2))

L,

where L ∈ N, an m-part joint ordered factorisation of n if jℓ ̸= jℓ−1 (ℓ ∈ {2, . . . , L}) and∏
jℓ=j

fℓ = nj, for all (j ∈ {1, . . . ,m}),

where, ℓ indexes the positions of the tuples in the joint ordered factorisation that corre-

spond to factors of nj.

Furthermore we de�ne the partial products of all factors before the ℓ-th in the joint

ordered factorisation, as

F (ℓ) =
ℓ−1∏
s=1

fs, so that n =
m∏
j=1

nj = F (L+ 1),

where for ℓ = 1 we use the usual convention for the empty product F (1) = 1.

In other words, a joint ordered factorisation of an n-tuple of natural numbers a =

(n1, . . . , nm) arises from writing each of these numbers as a product of non-trivial factors,

i.e., factors ≥ 2, and then arranging all factors in a linear chain such that no two adjacent

factors arise from the factorisation of the same number. Denoting by Ω(n) the total

number of prime factors of n including repeats, it follows from the above de�nition that

the maximum length L (number of tuples) in the joint ordered factorisations for n into

m parts satis�es L ≤ Ω(n).

In [12] Ollerenshaw and Brée considered the two-part joint ordered factorisations as

divisor paths.

Example 1.3. When n = 12, and the number of parts in the factorisation is m = 2, we

have n = 12 = n1 × n2. Working through each possibility, we �nd 14 2-part joint ordered

factorisations, 7 of which are given below with the partial product progressions for the

a = (n1, n2) tuples.
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Ordered Factorisation a=(n1, n2) Partial Products F

((1,2)(2,6) ) (2,6) 1,2,12

((1,6)(2,2) ) (6,2) 1,6,12

((1,3)(2,4) ) (3,4) 1,3,12

((1,4)(2,3) ) (4,3) 1,4,12

((1,2)(2,3)(1,2) ) (4,3) 1,2,6,12

((1,3)(2,2)(1,2) ) (6,2) 1,3,6,12

((1,2)(2,2)(1,3) ) (6,2) 1,2,4,12

The remaining 7 possibilities are then obtained by starting the joint ordered factorisa-

tions from n2 rather than n1, so that ((1,2)(2,2)(1,3)) becomes ((2,2)(1,2)(2,3)) etc.

Repeating the above constructions when there are m = 1 and m = 3 parts, we �nd

that there are respectively 1× 1!= 1 and 3× 3!= 18 distinct joint ordered factorisations,

so in total 1 + 14 + 18 = 33 factorisations for 12. As Ω(12) = 3, no factorisations exist

for m ≥ 4.

MacMahon considered the prime factor exponents of the positive integer

n = pa11 pa22 · · · paνν ≥ 2, where p1, p2, . . . , pν are distinct prime numbers. He obtained the

formula for c(n),

c(n) =

Ω(n)∑
j=1

cj(n) =

Ω(n)∑
j=1

j∑
k=0

(−1)k
(
j

k

) ν∏
ℓ=1

(
aℓ + j − k − 1

aℓ

)
, (1)

(see [11, �10, p.843], [7, eq.(4)]), where cj(n) is the number of ways of writing n as an

ordered product of j non-trivial factors.

We call cj(n) the j-th non-trivial divisor function. Eq. (1) was rediscovered (see Lemmas

1 and 4 of [5]) through the theory of j-th divisor functions [9], obtaining in the process

the associated divisor function c
(r)
j (n), de�ned for j ∈ N0, r ∈ Z, such that

c
(r)
j (n) =

j∑
k=0

(−1)k
(
j

k

) ν∏
ℓ=1

(
aℓ + r + j − k − 1

aℓ

)
, (2)

where we take c
(0)
j = cj with c0(n) = 1 if n = 1 and c0(n) = 0 if n ≥ 2. The di�erence

between the two formulae in (2) and the inner sum in (1) is subtle, with j replaced with

j+ r in the inner binomial coe�cient in (1), whilst the outer binomial coe�cient remains

unchanged.

Results in [9] show that |c(r)j (n)| counts the number of factorisations of n into j + r

factors, the �rst j being non-trivial (i.e. factors ≥ 2) if r ≥ 0, and into −r factors, of

which the �rst j factors are non-trivial and all factors must be square-free if r < 0 and

j < |r|. If r < 0 and j > |r|, then cancellations occur in the formula for c
(r)
j (n) and a

combinatorial interpretation cannot be inferred.

The special case j = −r turns out to be of particular importance (cf. [9] Theorem

4), as the value of c
(−j)
j (n) can be interpreted as (−1)Ω(n)+j times the number of ordered

factorisations of n into j non-trivial, square-free factors. For more information about

these functions, see Section 2 below.



46 Law, lettington and schmidt

For a �xed m-tuple a = (n1, . . . , nm), with n = n1 × . . . × nm, using the associated

divisor function c
(−j)
j (n), it was proven ([9] Theorem 4) that the total number of di�erent

m-part joint ordered factorisations for n over the m-tuple a is given by

Ma(n) =
∑
ℓ∈Nm

(
|ℓ|
ℓ

) m∏
j=1

c
(−ℓj)
ℓj

(nj), (3)

where in the usual notation
(|ℓ|
ℓ

)
denotes the multinomial coe�cient for ℓ = (ℓ1, . . . , ℓm),

with |ℓ|= ℓ1 + . . .+ ℓm.

Although concisely notated, the above counting formula is in practice lengthy to use

for large values of m and Ω(n), as it requires that the sum and product runs over all

m-tuples ℓ with 1 ≤ ℓj ≤ Ω(nj).

However, the formula (3) partially motivates this paper, being central to deriving our

main result for

Nm(n) =
∑

a∈Nm
≥2∏

nj=n

Ma(n),

which counts the number of all m-part joint ordered factorisations of n. It employs the

modi�ed Möbius function, de�ned below.

De�nition 1.4 (modi�ed Möbius function). Denote by µ(n) the Möbius function, re-

turning (−1)Ω(n) if n is square free, 0 otherwise, and by e(n) the convolution identity,

returning 1 if n = 1 and 0 if n ≥ 2. Then the modi�ed Möbius function (µ − e)(n) is

de�ned by

(µ− e)(n) =

{
(−1)Ω(n) if n is square-free

0 otherwise (including the case n = 1)
(n ∈ N).

Theorem 1.5 (factorisation enumeration theorem). Denote by S(L,m) the Stirling num-

bers of the second kind, by (µ−e)∗L the L-th convolution of the modi�ed Möbius function,

and by c
(−L)
L (n) the special case of the associated divisor function.

Then for natural numbers m,n ∈ N, the number of m-part joint ordered factorisations

of n is equal to

Nm(n) =

Ω(n)∑
L=0

(−1)Lm! S(L,m) (µ− e)∗L(n) =

Ω(n)∑
L=0

m! S(L,m) c
(−L)
L (n).

Here the well known Stirling numbers of the second kind S(L,m) [14] count the number

of ways to partition a set of L objects into m nonempty subsets.

We will prove Theorem 1.5 in Section 3. For m = 2 we also have the next result.

Theorem 1.6. For n ∈ N

N2(n) = 2

Ω(n)∑
L=2

cL(n). (4)
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Proof. For m = 2, any joint ordered factorisation of n arises from taking f1, . . . , fL to be

the factors in an ordered factorisation of n into at least 2 non-trivial factors and j1, . . . , jL
to alternate between 1 and 2, starting either with j1 = 1 or with j1 = 2. Therefore the

total number of joint ordered factorisations is twice the number of ordered factorisations

into L non-trivial factors, where L ranges between 2 and Ω(n), and hence the result

(4).

The counting function Nm(n) satis�es the following sum over divisors relations.

Theorem 1.7 (sum over divisors theorem). Let m ∈ N, and n ∈ N≥2 with µ(n) the

Möbius function, Nm(n) the counting function introduced in Theorem 1.5 for the number

of m-part joint ordered factorisations of n. Then Nm(n) obeys the sum over divisors

relations

Nm(n) =
∑
d|n
d<n

((m− 1)Nm(d) +mNm−1(d)) (5)

= −m
∑
d|n
d<n

µ
(n
d

)
(Nm(d) +Nm−1(d)) . (6)

For m = 2, Eq. (5) can be written as

N2(n) = 2d2(n)− 4 +
∑
d|n
d<n

N2(d) = 2c2(n) +
∑
d|n
d<n

N2(d). (7)

Example 1.8. When n = 12, we �nd that N2(12) = 14, whereas 2d2(12)− 4 = 8, and∑
d|12
d<12

N2(12) = 0 + 0 + 0 + 2 + 4 = 6,

so that as given by the formula in (7), 14 = 8 + 6.

The remainder of the paper is structured as follows. In Section 2 we prove Theorems

1.5 and 1.7. As an application of our enumeration function Nm(n), we consider in Section

3 the related topic of sum systems, deducing using a bijection that Nm(n) also counts

the number of m-part sum systems for n. A sum system under set addition generates

the �rst n non-negative integers uniquely (without repeats) and our new results here give

algebraic invariance properties for �xed values of n and m whilst varying the joint ordered

factorisation constructions. In Section 4 we summarise our �ndings and consider future

areas for exploration.

2. Divisor functions, Dirichlet convolutions and proofs

To prove Theorem 1.7, we �rst need to understand the associated divisor function in terms

of Dirichlet convolutions. Our starting point is the commutative Dirichlet convolution
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algebra of arithmetic functions, where the convolution of arithmetic functions f1, f2, . . . , fj
is given by

(f1 ∗ f2 ∗ · · · ∗ fj)(n) =
∑

n1n2···nj=n

f1(n1)f2(n2) · · · fj(nj), (8)

summing over all ordered factorisations of n ∈ N into j factors. We denote the jth

convolution power as follows, f ∗j := f ∗ f ∗ · · · ∗ f, where the right-hand side has j

repetitions of f ; by the usual convention, f ∗0 = e. The function e(n) = δn,1 (n ∈ N) is
the neutral element of the Dirichlet convolution product, and the convolution inverse of

the constant function 1 is the well-known Möbius function µ, both being introduced in

De�nition 1.4.

The jth convolution of the constant function 1 is more generally known as the classical

jth divisor function dj = 1∗j (cf. [15, p. 9]), which counts the ordered factorisations of its

argument into j positive integer factors. It can be shown (see �2 of [5]) that dj satis�es

the sum-over-divisors recurrence relation

dj+1(n) = (dj ∗ 1)(n) =
∑
m|n

dj(m) = 1∗j+1(n), (n, j ∈ N) (9)

and has the Dirichlet series [16]

∞∑
n=1

dj(n)

ns
= ζ(s)j, where ζ(s) =

∞∑
n=1

1

ns
, ℜs > 1.

In contrast, the jth non-trivial divisor function cj only counts ordered factorisations in

which all factors are greater than 1. It can be expressed as the j-fold Dirichlet convolution

cj = (1− e)∗j, and so satis�es the slightly di�erent sum-over-divisors recurrence relation

cj+1(n) = (cj ∗ (1− e))(n) =
∑
m|n

cj(m) (1− e)
( n

m

)
=
∑
m|n
m<n

cj(m), (n, j ∈ N).

As the Dirichlet series for 1 − e is ζ(s) − 1, the non-trivial divisor function cj has the

Dirichlet series
∞∑
n=1

cj(n)

ns
= (ζ(s)− 1)j .

These formulae extend to j = 0 when we set c0 = e = d0. It is important to note that

cj, unlike dj, is not a multiplicative arithmetic function.

Combining these two functions yields the associated (j, r)-divisor function, de�ned for

non-negative integers r, j as c
(r)
j = (1 − e)∗j ∗ 1∗r. It was demonstrated in [9] that this

arithmetic function counts the ordered factorisations of its argument into j+ r factors, of

which the �rst j must be non-trivial.

Moreover, as the constant function 1 has a convolution inverse, this de�nition extends

naturally to negative upper indices, giving the associated (j,−r)-divisor function c
(−r)
j =

(1− e)∗j ∗µ∗r. We note that (1− e) does not have a convolution inverse, as (1− e)(1) = 0,

so there is no analogous extension to negative lower indices.
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Popovici [13] studied the functions c
(−r)
0 = µ∗r. In the associated (j,−r)-divisor func-

tions, the modi�ed Möbius function of De�nition 1.4 appears naturally. It was also shown

in [9] that if j ≥ r, then the Dirichlet convolutions have the forms

c
(−r)
j = (1− e)∗j−r ∗ ((1− e) ∗ µ)∗r = (−1)r(1− e)∗j−r ∗ (µ− e)∗r;

if j < r, then

c
(−r)
j = ((1− e) ∗ µ)∗j ∗ µ∗r−j = (−1)j(µ− e)∗j ∗ µ∗r−j,

with the special case j = −r,

c
(−j)
j (n) = (−1)j

∑
n1n2···nj=n

(µ− e)(n1) (µ− e)(n2) · · · (µ− e)(nj)

=
∑

n1n2···nj=n

(e− µ)(n1) (e− µ)(n2) · · · (e− µ)(nj)

= (e− µ)∗j(n) (n ∈ N), (10)

having the interpretation as (−1)Ω(n)+j times the number of ordered factorisations of n

into j non-trivial, square-free factors.

With the Dirichlet convolution notation established for the associated divisor function

c
(r)
j (n), we next require a lemma.

Lemma 2.1. Let (aj)j∈N0 and (bj)j∈N0 be number sequences. If

aj =

j∑
i=0

(
j

i

)
bi (j ∈ N0),

then

bj =

j∑
i=0

(−1)j−i

(
j

i

)
ai (j ∈ N0),

and vice versa.

Proof. For any j ∈ N0, we have

j∑
i=0

(−1)j−i

(
j

i

) i∑
ℓ=0

(
i

ℓ

)
bℓ =

j∑
ℓ=0

(
j∑

i=ℓ

(−1)j−i

(
j

i

)(
i

ℓ

))
bℓ

=

j∑
ℓ=0

(
j−ℓ∑
k=0

(−1)k
(

j

j − k

)(
j − k

ℓ

))
bℓ,

after the change of variables k = j − i. The claimed formula now follows by observing

that

j−ℓ∑
k=0

(−1)k
(

j

j − k

)(
j − ℓ

ℓ

)
=

j−ℓ∑
k=0

(−1)k
j! (j − k)!

k! (j − k)! l! (j − k − ℓ)!
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=

(
j

ℓ

) j−ℓ∑
k=0

(−1)k
(
j − ℓ

k

)

=

(
j

ℓ

)
(1− 1)j−ℓ = δj,ℓ =

{
0 if j ̸= ℓ,

1 if j = ℓ.

The converse follows by an almost identical calculation.

Example 2.2. As a sample application, using the above lemma on Lemma 4 of [5], which

states that

c
(r)
j =

r∑
i=0

(
r

i

)
cj+i (r ∈ N0; j ∈ N),

we obtain the following expression of the non-trivial divisor function in terms of associated

divisor functions

cj+i =
i∑

r=0

(−i)i−r

(
i

r

)
c
(r)
j (j ∈ N).

Proof of Theorem 1.5. We bear in mind the de�nition of the Dirichlet convolution

given in (8), and sum over all possible m-tuples

a = (n1, . . . , nm) ∈ Nm
≥2, with n = n1 × . . .× nm ∈ N, and ℓ = (ℓ1, . . . , ℓm) ∈ Nm,

where |ℓ|= ℓ1 + . . .+ ℓm. Applying the formula given in (3), which counts the number of

m-part joint ordered factorisations of n, for each individual m-tuple a, we have that

Nm(n) =
∑

a∈Nm
≥2∏

nj=n

Ma(n)

=
∑

a∈Nm
≥2∏

nj=n

∑
ℓ ∈Nm

(
|ℓ|
ℓ

) m∏
j=1

(e− µ)∗ℓj(nj)

=
∑
ℓ ∈Nm

(
|ℓ|
ℓ

) ∑
a∈Nm

≥2∏
nj=n

m∏
j=1

(e− µ)∗ℓj(nj)

=
∑
ℓ ∈Nm

(
|ℓ|
ℓ

)(
m∗
j=1

(e− µ)∗ℓj
)
(n)

=
∑
ℓ ∈Nm

(
|ℓ|
ℓ

)
(e− µ)∗|ℓ|(n)

=
∑
ℓ ∈Nm

(
|ℓ|
ℓ

)
c
−|ℓ|
|ℓ| (n), (11)

where we have used Eq. (10) in the �nal step. For the integer n, we then have the integer

sequence (Nm(n))m∈N, which takes non-zero values for 1 ≤ m ≤ Ω(n).
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Additionally, for m ∈ N we de�ne the function Ñm(n), similarly to (11), but with the

m-tuple ℓ running over Nm
0 , so that

Ñm(n) =
∑
ℓ∈Nm

0

(
|ℓ|
ℓ

)
c
−|ℓ|
|ℓ| (n) =

Ω(N)∑
L=0

(
c−L
L (n)

∑
ℓ∈Nm

0
|ℓ|=L

(
L

ℓ

)
1ℓ1 . . . 1ℓm

)
=

Ω(n)∑
L=0

mLc−L
L (n), (12)

where in the last equality we have used c−L
L (n) = 0 for L > Ω(n), and also∑

ℓ∈Nm
0

|ℓ|=L

(
L

ℓ

)
1ℓ1 . . . 1ℓm = (1 + 1 + . . .+ 1)L︸ ︷︷ ︸

m times

= mL.

The expression for Ñm(n) in (12) can be expanded over ℓ ∈ Nm−r
0 , by counting the

number of choices for r entries to be 0 in the m-tuple for ℓ. Thus we obtain

Ñm(n) =

(
m

0

) ∑
ℓ∈Nm

(
|ℓ|
ℓ

)
c
−|ℓ|
|ℓ| (n) +

(
m

1

) ∑
ℓ∈Nm−1

(
|ℓ|
ℓ

)
c
−|ℓ|
|ℓ| (n)

+

(
m

2

) ∑
ℓ ∈Nm−2

(
|ℓ|
ℓ

)
c
−|ℓ|
|ℓ| (n) + · · ·+

(
m

m

)∑
ℓ∈N0

(
|ℓ|
ℓ

)
c
−|ℓ|
|ℓ| (n)

=
m∑
k=0

(
m

m− k

)
Nk(n) =

m∑
k=0

(
m

k

)
Nk(n),

by Eq. (11).

Now 0L = 0 for L ≥ 1 and c−0
0 (n) = 0 for all n ∈ N≥2, so we have that Ñ0(n) = 0 for

all n ∈ N≥2. Hence we need only consider the sum from k = 1, and applying Lemma 2.1

gives us

Nm(n) =
m∑
k=1

(−1)m−k

(
m

k

)
Ñk(n) =

Ω(n)∑
L=0

(
m∑
k=1

(−1)m−kkL

(
m

k

))
c−L
L (n).

Using the the identity for the Stirling numbers of the second kind (cf. [1] Theorem

5.1.A)

S(L,m) =
m∑
k=1

(−1)m−kkL−1 1

(k − 1)! (m− k)!
,

we can write

Nm(n) =

Ω(n)∑
L=0

(
m∑
k=1

(−1)m−kkL

(
m

k

))
c−L
L (n)

=

Ω(n)∑
L=0

(
m∑
k=1

(−1)m−kkL m!

k! (m− k)!

)
c−L
L (n)

=m!

Ω(n)∑
L=0

(
m∑
k=1

(−1)m−kkL−1 1

(k − 1)! (m− k)!

)
c−L
L (n)



52 Law, lettington and schmidt

=

Ω(n)∑
L=0

m! S(L,m) (e− µ)∗L(n)

=

Ω(n)∑
L=0

m! S(L,m) c
(−L)
L (n).

Proof of Theorem 1.7. We begin with Theorem 1(a) of [9], which gives a three term

recurrence relation for the associated divisor function, stated here as

c
(r)
k+1 = c

(r+1)
k − c

(r)
k ,

and setting r = −L and k = L− 1, we obtain

c
(−L)
L = c

(−(L−1))
L−1 − c

(−L)
L−1 .

Substituting in the formula for Nm(n) given in Theorem 1.5, where the upper index of

summation Ω(n) is formally replaced by ∞ as c
(−L)
L (n) = 0 for n ≥ Ω(n), we have that

Nm(n) =
∞∑

L=0

m! S(L,m) c
(−L)
L (n) =

∞∑
L=0

m! S(L,m)
(
c
(−(L−1))
L−1 (n)− c

(−L)
L−1 (n)

)
.

We now substitute for the well known three-term recurrence relation for the Stirling

numbers of the second kind [14] S(L,m) = mS(L− 1,m) + S(L− 1,m− 1), along with

the fact that S(0,m) = 0 for m ≥ 1 to obtain

Nm(n) =
∞∑

L=1

m! (mS(L− 1,m) + S(L− 1,m− 1))
(
c
(−(L−1))
L−1 (n)− c

(−L))
L−1 (n)

)
.

Lowering the index of summation to start at L = 0 gives us

Nm(n) =
∞∑

L=0

m! (mS(L,m) + S(L,m− 1))
(
c
(−L)
L (n)− c

(−L−1)
L (n)

)
.

Expanding out the brackets and rearranging, we have four summation terms which by

Theorem 1.5 can be written as

Nm(n) = m (Nm(n) +Nm−1(n))−
∞∑

L=0

m! (mS(L,m) + S(L,m− 1)) c
(−L−1)
L (n).

In the �nal step we sum each side over the divisors d of n, noting from (9) that

(c
(r)
j ∗1)(n) = c

(r+1)
j (n), to obtain

∑
d|n

Nm(d) =

m
∑
d|n

(Nm(d) +Nm−1(d))

−
∞∑

L=0

m! (mS(L,m) + S(L,m− 1)) c
(−L)
L (n)
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=

m
∑
d|n

(Nm(d) +Nm−1(d))

−m (Nm(n) +Nm−1(n))

= m
∑
d|n

d<n

(Nm(d) +Nm−1(d)) ,

where we have again used Theorem 1.5. Rearranging then gives the desired result

Nm(n) =
∑
d|n
d<n

((m− 1)Nm(d) +mNm−1(d)) .

For the second identity (6), we consider the sum over all divisors of n, written as

m (Nm(n) +Nm−1(n)) =
∑
d|n

((m− 1)Nm(d) +mNm−1(d)) ,

and then apply Möbius inversion to obtain

(m− 1)Nm(n) +mNm−1(n) = m
∑
d|n

µ
(n
d

)
(Nm(d) +Nm−1(d)) .

Noting that µ(n/n) = µ(1) = 1, and rearranging, we obtain the statement (6)

Nm(n) = −m
∑
d|n
d<n

µ
(n
d

)
(Nm(d) +Nm−1(d)) .

To see (7), Eq. (5) with m = 2 yields

N2(n) =
∑
d|n
d<n

(N2(d) + 2N1(d)) .

Here N1(1) = 0 and N1(d) = 1 for d > 1, with d2(n) the well known divisor function,

which counts the number of ways of writing n = n1 × n2, with n1, n2 ≥ 1. Removing

the two cases n1 = 1 and n2 = 1, we obtain the non-trivial divisor function c2(n) =

d2(n)− 2.

Remark 2.3. The sum over divisors formula (7) of Theorem 1.6 for the 2-part joint

ordered factorisation case N2(n) was also stated by MacMahon [11] using alternative

notation. In [10] C. T. Long made the connection between the number of two-dimensional

additive (complementing) set systems and N2(n) (referred to as C(n) in [10]). However,

as stated by Knopfmacher [7], MacMahon's sum over divisors formula was the correct

version, as the formula given by Long omitted (in our notation) the term 2c2(n).

The ideas of Long can be extended to m parts, where the joint ordered factorisations

underpin the additive set system constructions. As an illustration for the use of joint

ordered factorisations, we show in the following section how the counting functions Nm(n)

can be used to count the number of di�erent m part sum systems for a given positive

integer n ≥ 2.
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3. Sum systems

Sum systems are the third key topic under consideration here, which we now describe

before stating our results which include algebraic invariance properties for centred sum

systems.

In what follows, for a ∈ N, we use the notation ⟨a⟩ = {0, 1, . . . , a − 1} so the a-term

arithmetic progression with start value r, step size s can be expressed as s⟨a⟩ + r =

{r, r + s, . . . , r + (a− 1)s}.
Anm-dimensional additive set system for a given target set of integers, T , is a collection

of m sets of integers, A1, A2, . . . Am, each with cardinality |Aj|, for j ∈ {1, . . . ,m}, such
that their sumset satis�es

T =
m∑
j=1

Aj =

{ m∑
j=1

aj | aj ∈ Aj

}
.

The cardinality of these sets satisfy the equation |T |= |A1||A2|. . . |Am| if and only if

each element t ∈ T is represented by a unique sum in this set sum, and we then call the

additive set system a basis for T .

The study of additive systems dates back to de Bruijn's paper [3] on (possibly in�nite)

sets of non-negative integers Ak, with |Ak|̸= 0 and 0 ∈ Ak, for T = N0. He referred to

such an additive system as a number system.

Subsequently such systems became known as complementing set systems [17, 10], the

latter paper focusing on systems that uniquely represents the �rst n consecutive integers,

T = {0, 1, 2, . . . , n− 1}, and enumerating the systems when m = 2.

A question posed by de Bruijn in the closing remarks of [3] refers to an earlier pub-

lication of his [2], concerning the analogous problem for number systems representing

uniquely all integers in T = Z. Of this de Bruijn says �That problem is much more di�-

cult that the one dealt with above, and it is still far from a complete solution.� It is this

more general consideration of de Bruijn that also partially motivates the results in this

section, building on the related concepts of sum-and-distance systems, established in [5,

4, 6, 8].

We now formally de�ne sum systems, which restrict the target set to be the �rst n

non-negative integers ⟨n⟩, and require uniqueness of the representation of each number.

De�nition 3.1. Let m ∈ N, Aj ⊂ N0 (j ∈ {1, . . . ,m}), with cardinality |Aj| = nj, and∏m
j=1|Aj|= n = n1 ×n2 × . . .×nm. Then we call A1, A2, . . . , Am an m-part sum system if

m∑
j=1

Aj = ⟨n⟩ . (13)

Lemma 3.2. Let m ∈ N, and suppose the sets A1, A2, . . . , Am ⊂ N0 form an m-part sum

system for the �rst n non-negative integers. Then the centred sum system C1, C2, . . . , Cm,

de�ned such that

Cj = Aj −
(maxAj)

2
,
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generates under set addition

m∑
j=1

Cj =

{
−n− 1

2
,−n− 3

2
, . . . . . . ,

n− 3

2
,
n− 1

2

}
,

i.e. either n consecutive integers centred about 0 or n consecutive half-integers centred

about 0, depending on whether n is an odd or an even integer.

Proof. From Lemma 3.2 and Theorem 3.3 of [6], every sum system component set is

palindromic, satisfying Aj = (maxAj)− Aj. As sum system component sets Aj, contain

non-negative integers and always include 0, it follows from the above de�nition that each

centred sum system component set is centred about the origin, has cardinality |Cj|= |Aj|,
with maxCj = (maxAj)/2, and so we have

m∑
j=1

maxCj =
1

2

m∑
j=1

maxAj =
n− 1

2
.

Hence when n is an odd integer, (n−1)/2 is also an integer and C1+ . . .+Cm generates

the set of consecutive integers between −(n − 1)/2 and (n − 1)/2. Conversely, when n

is an even integer we �nd that our centred sum system under set addition generates the

consecutive half-integers in this interval.

An explicit construction method for all sum systems was proven in [6, Theorem 6.7],

whereby a bijection between the set of joint ordered factorisations for an m-tuple of

natural numbers a = (n1, . . . , nm), and the set of all sum systems for the corresponding

m-part sum system was established, as stated below in Proposition 3.3.

Proposition 3.3. Let m ∈ N. Suppose the sets A1, A2, . . . , Am ⊂ N0 form a sum system.

Let nj := |Aj| (j ∈ {1, . . . ,m}).
Then there is a joint ordered factorisation ((j1, f1), . . . , (jL, fL)) of (n1, . . . , nm) such

that

Aj =
∑
jℓ=j

(
ℓ−1∏
s=1

fs

)
⟨fℓ⟩ =

∑
jℓ=j

F (ℓ)⟨fℓ⟩ (j ∈ {1, . . . ,m}). (14)

Conversely, given any joint ordered factorisation of n over the m-tuple a = (n1, . . . , nm),

the construction (14) generates uniquely an m-part sum system.

Corollary 3.4. The number of m part sum systems and centred sum systems for the

positive integer n ≥ 2, is given by Nm(n), the counting function for the number of m part

joint ordered factorisations for n.

Example 3.5. Let n = 270, and consider the corresponding 3-part sum system for 270

over the 3-tuple a = (n1, n2, n3) = (9, 5, 6), with joint ordered factorisation

((1, 3), (3, 3), (1, 3), (3, 2), (2, 5)). Applying Proposition 3.3 we obtain

A1 = {0, 1, 2, 9, 10, 11, 18, 19, 20}, A2 = {0, 54, 108, 162, 216}, A3 = {0, 3, 6, 27, 30, 33},
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so that |A1|= 9, |A2|= 5, and |A3|= 6, and A1 + A2 + A3 = {0, 1, 2, . . . 269}, where
269 = (9× 5× 6)− 1. The corresponding centred sum system components are therefore

C1 = {−10,−9,−8,−1, 0, 1, 8, 9, 10}, C2 = {−108,−54, 0, 54, 108},

and

C3 =
1

2
{−33,−27,−21, 21, 27, 33}.

Hence we have

C1 + C2 + C3 =
1

2
{−269,−267, . . .− 1, 1, . . . 267, 269}.

The �rst n = 270 (odd) half integers centred about the origin.

Remark 3.6. In [6] sum-and-distance systems were classi�ed into two types; inclusive

and non-inclusive, where inclusive sum-and-distance systems generate central-symmetric

sets around zero of consecutive integers, and non-inclusive systems generated a central-

symmetric set around zero of consecutive odd integers. The terminology of non-inclusive

or inclusive, corresponds respectively to whether the target set is generated solely by the

sums and di�erences of elements between the di�erent sets or whether the elements of the

individual sets themselves are also required.

Here we work with the single concept of centred sum systems, removing the need to

distinguish between inclusive and non-inclusive sum and distance systems. This approach

leads to our main (invariance) result for centred sum systems with �xed values of n and

m, but allowing distinct joint ordered factorisation constructions in Proposition 3.3, the

numerical invariance properties stated below.

Theorem 3.7. Let n ∈ N with corresponding m-tuple a = (n1, n2, . . . , nm), and let

A1, . . . Am be a an m-part sum system for n, so that
∏m

j=1|Aj|=
∏m

j=1 nj = n, and
m∑
j=1

Aj = ⟨n⟩. Furthermore let C1, C2, . . . Cm be the centred sum system derived from the

Aj by subtracting 1
2
max (Aj) from each component set Aj. Finally, for the sum systems

and centred sum systems as given above, de�ne the respective sums of elements σA(n),

and sums of squares of elements τC(n), such that

σA(n) =
m∑
j=1

n

nj

∑
a∈Aj

a , and τC(n) =
m∑
j=1

n

nj

∑
c∈Cj

c2. (15)

Then we have

σA(n) =
n(n− 1)

2
=

n−1∑
k=1

k =

(
n

2

)
, and τC(n) =

n(n2 − 1)

12
=

1

2

(
n+ 1

3

)
.

Remark 3.8. Any vector composed of the elements from all component sets of a centred

sum system can therefore be thought of as an integer or half-integer lattice point on

an ellipsoid in n-dimensional Euclidean space. Here the normalisation factors n/nj in
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Theorem 3.7 transform the points on the ellipsoid into points on an n-dimensional sphere

with radius
√

τC(n). This sphere only depends on n and all di�erent multifactorisations

of n correspond to integer or half-integer points on it.

Example 3.9. For the 3-part sum system given in Example 3.5, we have that n = 270 =

9× 5× 6, and we �nd that

σA(270) = 36 315 =
270× 269

2
, and τC(270) =

3 280 455

2
=

271× 270× 269

12
,

as shown in Theorem 3.7. Similarly, for n = 270 and a = (n1, n2, n3) = (9, 5, 6), but

using instead the joint ordered factorisation ((1, 3), (2, 5), (3, 3), (1, 3), (3, 2)) to obtain the

distinct centred sum system

C1 = {−46,−45,−44,−1, 0, 1, 44, 45, 46}, C2 = {−6,−3, 0, 3, 6}

and

C3 =
1

2
{−165,−135,−105, 105, 135, 165},

we again �nd that

τC(270) =
3 280 455

2
,

though the sums of squares over the individual component sets are di�erent.

To prove Theorem 3.7 we �rst require a lemma.

Lemma 3.10. Let A and B be two disjoint sets of numbers. Furthermore let B be

symmetric around the origin, i.e. B = −B. Then we have∑
c∈(A+B)

c = |B|
∑
a∈A

a, and
∑

c∈(A+B)

c2 = |B|
∑
a∈A

a2 + |A|
∑
b∈B

b2.

Proof. Writing A = {a1, a2, . . . , a|A|}, we have A + B = {a1 + B, a2 + B, . . . , a|A| + B},
and taking the sum over all elements in A+B, in conjunction with

∑
b∈B

b = 0, gives us

∑
c∈(A+B)

c = (a1 +B) + · · ·+ (a|A| +B) =

|A|∑
i=1

|B|∑
j=1

(ai + bj)

= |B|
|A|∑
i=1

ai + |A|
|B|∑
j=1

bj = |B|
∑
a∈A

a,

and for the sum of elements squared, writing B = {b1, b2, . . . , b|B|}, we have

∑
c∈(A+B)

c2 =(a1 +B)2 + · · ·+ (a|A| +B)2 =

|A|∑
i=1

|B|∑
j=1

(a2i + aibj + b2j)

=|B|
|A|∑
i=1

a2i +

 |A|∑
i=1

ai

 |B|∑
j=1

bj

+ |A|
|B|∑
j=1

b2j = |B|
∑
a∈A

a2 + |A|
∑
b∈B

b2,
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as the sum of the cross-terms is zero.

Proof of Theorem 3.7.

Regarding σA(n), we know from Theorem 3.2 of [6] that each component set Aj of a

sum system is palindromic, centred about (maxAj)/2, so on average each element is of

this magnitude. The sum of the elements of each component set is therefore given by

∑
a∈Aj

a =
|Aj|(maxAj)

2
=

nj(maxAj)

2
.

Hence
1

nj

∑
a∈Aj

a =
(maxAj)

2
,

and as the sum over the maximal element of each component set Aj is n− 1, multiplying

through by n and taking the sum over all component sets of the sum system gives us

n
m∑
j=1

1

nj

∑
a∈Aj

a =
n

2

m∑
j=1

(maxAj) =
n(n− 1)

2
.

For the sum of squares function τC(n), by repeated application of Lemma 3.10 we obtain

m∑
j=1

∑
c∈Cj

c2 =
m∑
j=1

 m∏
k=1
k ̸=j

|Ck|

∑
c∈Cj

c2 =
m∑
j=1

n

nj

∑
c∈Cj

c2.

When at least one of the centred sum component sets has even cardinality, the sum

of squares on the left-hand-side is simply twice the sum of squares of all the consecutive

half-integers between 1
2
and n−1

2
, and so we have

2

n
2∑

j=1

(
1

2
(2j − 1)

)2

=
1

12

(
n3 − n

)
=

1

12
(n− 1)n(n+ 1).

If all of the centred sum component sets have odd cardinality, then n = n1n2 . . . nm is

odd and the sum of squares on the left-hand-side is simply twice the sum of squares of all

the integers between 1 and (n− 1)/2, and we �nd that

2

n−1
2∑

j=1

j2 =
1

12
(n− 1)n(n+ 1) =

1

2

(
n+ 1

3

)
.
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4. Conclusion and further areas for consideration

We have established here the formula in Theorem 1.5 for the functionNm(n), which counts

allm-part joint ordered factorisations for an integer n. This function arises naturally when

counting either m part joint ordered factorisations or m part sum systems. The implicit

sum over divisor relations for Nm(n), given in Theorem 1.7, has an inherent symmetry

which indicates that the number theoretic function Nm(n) might be worthy of further

investigation in its own right.

For sum systems we have demonstrated that for a �xed target integer n, the sum system

components exhibit an invariance in the sum of their elements, and for the centralised

sum systems this translates into a sum of squares invariance.

In consideration of de Bruijn's question regarding complementing set systems (sum

systems) for Z rather than N, the results detailed in this paper, combined with those of [5,

6, 9] give methods for constructing centro-symmetric sets of integers or half integers about

the origin, via joint ordered factorisations. For target sets which are not symmetric about

the origin this is a much harder question and could form the focus of future investigations.
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