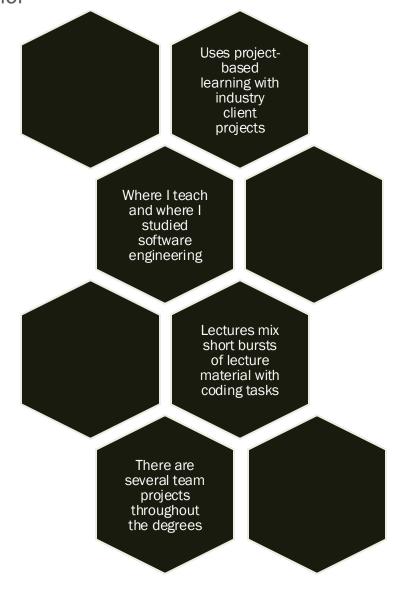
# CYBER PHYSICAL SYSTEM EDUCATION THROUGH PROJECTBASED LEARNING

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDY

Jenny Highfield & Alex Deverson Cardiff University

## Project-based learning

"Project-based learning (PBL) involves students designing, developing, and constructing hands-on solutions to a problem. The educational value of PBL is that it aims to build students' creative capacity to work through difficult or ill-structured problems, commonly in small teams."


- Boston University





#### National Software Academy

Academi Meddalwedd Genedlaethol



# Side note: National Software Academy



#### Cyber-physical systems

"Cyber-physical systems have physical inputs and/or outputs which are controlled by computers." - RITICS

These include the umbrella term of Operational Technology (OT) and industrial systems such as:

- Industrial Control Systems (ICS)
- Distributed Control Systems (DCS)
- Supervisory Control & Data Acquisition (SCADA) Systems
- The Industrial Internet of Things (IIoT)



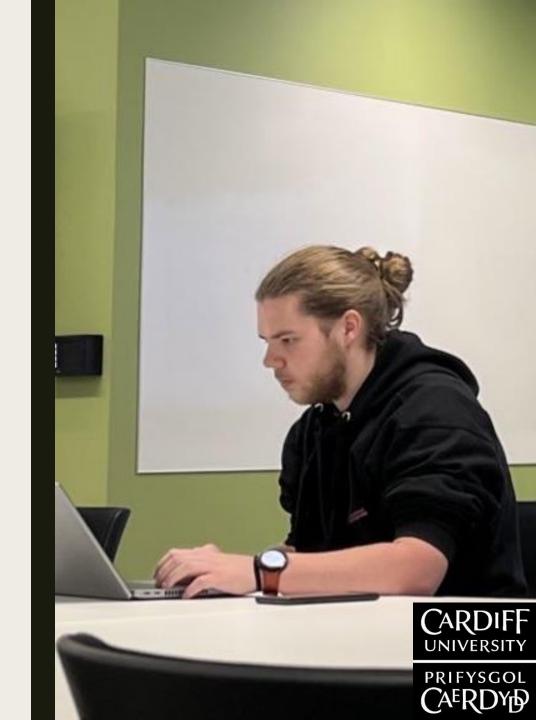
# Introducing Jenny Highfield

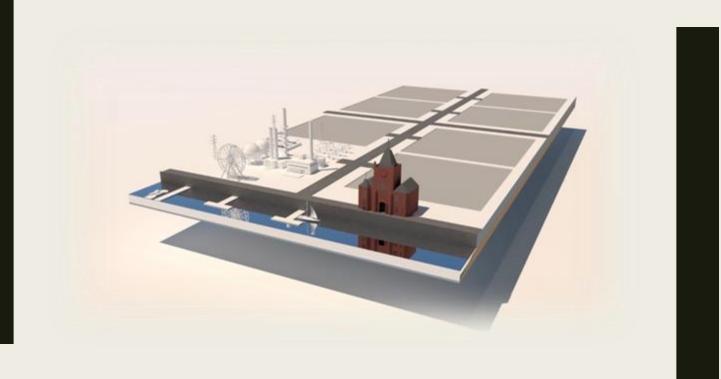
- PhD candidate in Cybersecurity (end 2030)
- T&S Teacher in Software Engineering
- Working towards becoming a Fellow of HEA
- BSc Information Security from Uni South Wales
- MSc Software Engineering from Cardiff Uni
- Worked in Cybersecurity start-ups and SMEs



#### Student research associates

Students can be hired through JobShop as research associates


We worked with a group of students through several projects


Funding included Alan Turing Institute & Cyber Innovation Hub



# Introducing Alex Deverson

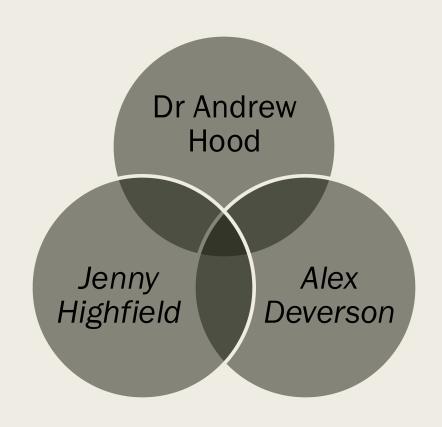
- Cybersecurity Research Engineer at CIH
- Research Associate in second and third year
- Involved in both Alan Turing & CIH projects
- ExtDip in Electrical and Electronics Engineering
- BSc Computer Science from Cardiff University
- Builds testbeds and codes simulations





# THE VISION

An interactive demonstrator



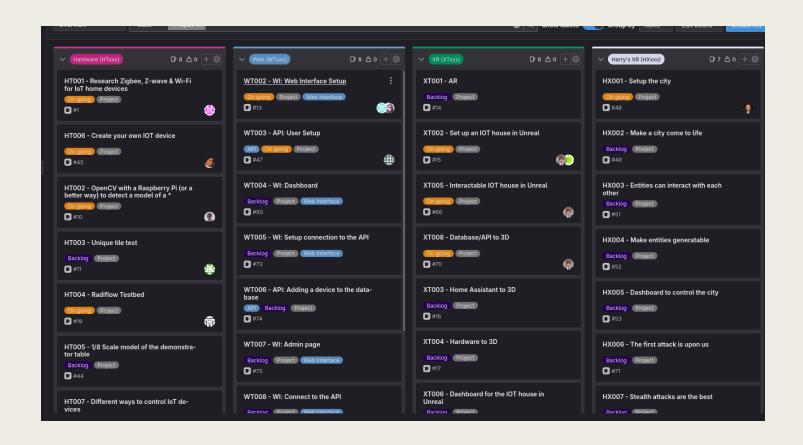

### The student team from April 2023





### Management team from April 2023






# Planning and requirements gathering

- Lots of brainstorming as a team whiteboard sessions
- Students involved in meetings with DUnit studios to understand the bigger picture
- All members of the team treated as equal and important
- Each task tailored to student abilities and upskilling desires
- Backlog created on GitLab NSA alumni worked on user stories







# Project management methodology

- Followed an agile methodology
- Tracked issues on a board on GitLab
- Weekly meetings to 'walk the board'
- Daily scrums were not needed
- Ticket kick offs done with Alex / Jenny



### The pastoral side

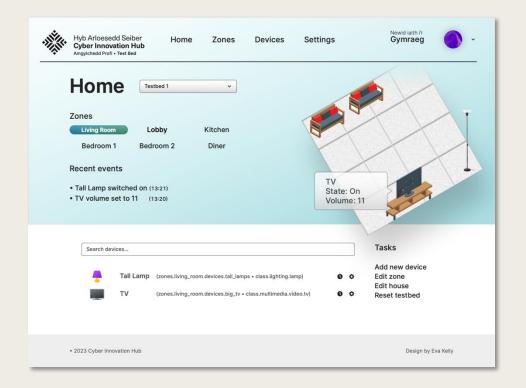
I (Jenny) provided some technical input but I'd like to highlight the following:

- Managed the meetings and sent out minutes
- Asked the right questions, rather than giving answers
- Provided support when API keys were pushed to GitLab
- Listened when they were overwhelmed and signposted

I'm in this job to guide and encourage my students do amazing things. We created a safe space for them to fail.



# The team was split into


- Hardware
- Extended reality
- Web

Mapping the tasks together



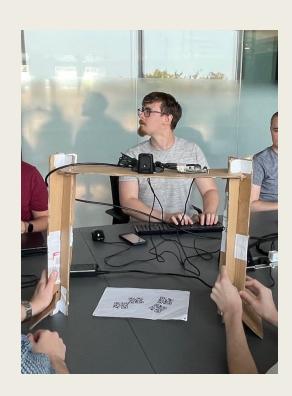
#### Web and research


- Sam Thacker Created an API that connected hardware, XR and web tasks.
- Eva Kelly design of a web interface for testbed status, configuration and management.
- Kendra Tyler Research into case studies of hacks on PLCs, malware known to target PLCs, with a focus on Stuxnet and Industroyer.



#### Simulations and XR

- Ben Bevan House built in Unity with utility levels and room that intergrates with Jake Samuel's IoT
- Harry Frankllin 3D City Simulation in Unity showing cars on roads with working traffic light junctions.
- Liban Ahmed Developed Realistic Virtual test Beds which synchronise over a network to deliver attack threat replication to vulnerable ICS environments.



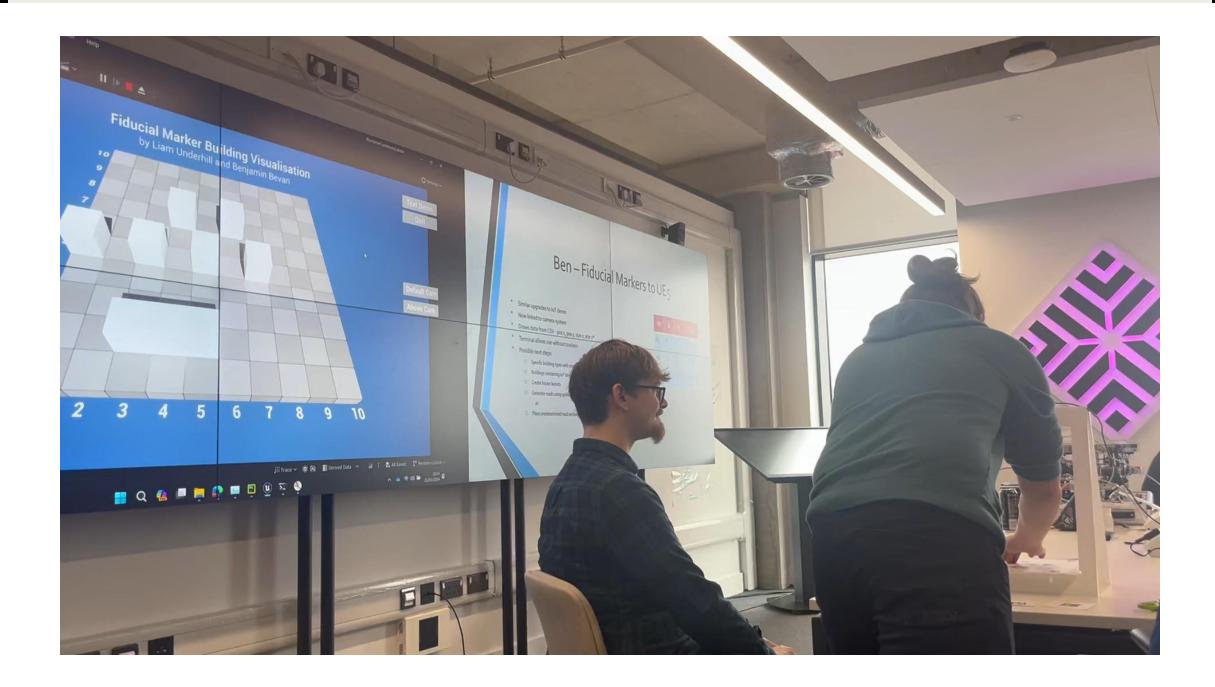



#### Hardware

- Marwa Omer working with microcontrollers and sensors that could be atteched to the demonstrator.
- lolo Jones working with microcontrollers and RFID sensors to align tiles on the table.
- Liam Underhill working with fiducial markers (initially QR codes) to track location on table.
- Jake Samuels Connected Home Assistant to Ben's digital room using Sam Thacker's API so that turning an IoT lamp on turned on digital lamp.






#### Integrations

- Ben Bevan's smart house and Jake Samuels' Home Assistant integration with IoT light turning on and off in real life and lamp turning on and of in Unity.
- Liam Underhill fiducial markers integrated with virtual mapping, initially basic grid, upgraded to Unity 3D grid with assets moving around built by Ben Bevan.









- 1. Specify and plan a computer science project
- 2. Undertake a substantial computer science project in a professional manner
- 3. Understand the elements of a successful computer science project
- 4. Show an appreciation of best practice in solving computer science problems
- 5. Exhibit a sound knowledge in the subject area related to the project
- 6. Demonstrate an in-depth understanding of the technology and methodology used in the project

## Final year project learning outcomes



- Summarise and evaluate background work and literature relevant to the project
- Use appropriate tools, techniques, experiments and validation methods in developing and evaluating solutions
- Critically evaluate solutions and findings resulting from the project
- Plan, organise and implement tasks within time constraints
- Work independently under the project supervisor's guidance
- Report, present and document the findings and deliverables resulting from the project
- Apply appropriate theory and technology to solving the specific problem
- Develop solutions rationally using a disciplined approach, and with regard to the social and legal context of the project

## Skills to be practiced & developed



#### First year of group supervision

- Liam Underhill used fiducial markers for tracking tabletop gaming
- Kendra Tyler created a database of OT cyberattack motivations
- lolo Jones created a fractal based stenography tool hosted in a web app
- Ben Bevan created a simulation of hydrological impact and treatment
- Jake Samuels developed a framework for assessing vulnerabilities in IoT devices
- Asad Islam used a HackRF to exploit vulnerabilities in TPMS

(Supervised by Jenny Highfield / Dr. Andrew Hood, supported by Alex Deverson)



#### **NSA Project with CIH**

And a limit of the limit of the

- In Autumn semester I teach Web Development at NSA
- Six agile teams working on a client project for CIH
- Building a dashboard for booking time on testbeds
- First year, first semester, so a wide range of skill level
- Access to an API for the more experienced developers







# My second year of group supervision

- Organised a visit to see the demonstrator and testbeds
- Shared proposals and met brand new students (new to me!)
- They all get along like a house on fire and love group supervision
- They will present their dissertations at the end to CIH employees
- Harry has been employed by CIH!





### The projects

#### Harry Franklin

- Digital cyber demonstrator to show cascading effects from the renewable energy sector to the other 14 sectors of CNI

#### Nathan Blundell

Digital cyber demonstrator to show cascading effects from the transport sector to the other 14 sectors of CNI

#### William Sims

- Creation of a prototype SCADA testbed with a focus on the newest sector of CNI – datacentres

#### David Gurr

Creation of a prototype SCADA testbed with a focus to be defined by background reading

#### Maame Darty

- Gamification of CPS education through creation of a third party role play game (RPG) where the user finds security vulnerabilities

#### Jacob Knapp

Exploration of security risks associated with the Remote Frame Buffer (RFB) protocol used for Virtual Network Computing (VNC)

#### Evie Jones

- Analysis of cyberattack case studies in a specific CNI sector (transport) to find common risks and patterns in data

#### Kai Hailstone

- Gamification of digital Abacws (our school's building) for new potential students, mapped to the DCF



#### Where are the OG students now?

- Alex Deverson is a Cybersecurity Research Engineer
- Eva Kelly is working as a Web Developer as she was during her degree
- Jake Samuels is now a PhD student funded by CIH
- Kendra Tyler is pursuing a MSc in Computational & Data Journalism
- Iolo Jones is pursuing a MSc in Cybersecurity & Technology









# A defined and improving method of supervision

- This journey for me, has allowed me to reflect and defined how I supervise final year projects
- There are very clear learning outcomes for the final year projects that need to be met
- This process is nothing new to academia, but it's good to map practices to teaching methods
- Teaching is an iterative, reflective process, and each year is a learning curve





#### PhD in pedagogical approaches for cyber physical system education

- Pivoted from industrial cybersecurity incident response to pedagogical approaches
- Looking at how digital and physical artefacts can be used for education:
  - Testbeds
  - Demonstrators
  - Simulations
- This will become part of a framework for the education of industrial cybersecurity
- For collaboration or to give advice on the topic, please get in touch!



#### With special thanks to:

#### Jenny's PhD supervision team:

- Dr Catherine Teehan
- Dr Yulia Cherdantseva
- Dr Amir Javed
- Dr Andrew Hood (previous supervisor)

#### Jenny's mentors:

- Dr Sandy Gould
- Dr Wendy Ivins
- Dr lan Cooper

& of course, all the students mentioned in this presentation.



Thank you for listening © Any questions?

To get in contact, please contact us at the following email addresses:

Jenny Highfield – highfieldjm@Cardiff.ac.uk

Alex Deverson – deversonaa@Cardiff.ac.uk



