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Abstract 

The multi-energy system has become a pivotal technology for achieving zero-carbon transition. To address the 

extreme events with increasing frequency, this paper proposes a novel service restoration (SR) strategy for the 

integrated electricity-heating system to effectively restore critical loads after such events. The novel SR strategy 

encompasses defensive microgrid reconfiguration, mobile emergency generators allocation, and reserve 

commitment. Besides, the virtual energy storage of the heating system is utilized as an emergency resource in the 

SR process. By modeling the uncertain failures with a combination of ambiguity sets and support sets, the 

proposed SR strategy can effectively manage secondary strikes from subsequent random events. A distributionally 

robust optimization (DRO) model is then presented to identify the worst-case probability distribution of these 

uncertainties, enabling robust restoration decisions. To solve the DRO model efficiently, this paper proposes a 

solution method that employs logical constraint relaxation to tackle the non-convex challenges posed by discrete 

decision variables. Additionally, an improved column and constraint generation algorithm is developed. Case 

studies on modified 6-bus and 6-node systems, as well as IEEE 33-bus and 32-node systems, demonstrate the 

effectiveness of the proposed model and solution methodology. 

 

1. Introduction 

Due to rapid environmental changes, high-impact and low-probability 

natural disasters, such as hurricanes, floods, wildfires, and extreme weather 

events, have caused significant power outages over recent decades. 

Statistics from 2003 to 2012 indicate that 58% of power outages in the 

United States were attributable to natural disasters, resulting in annual 

economic losses ranging from $18 billion to $33 billion [1]. Typhoon 

Lekima in 2019 significantly impacted southeastern China, causing 

extensive infrastructure damage and disruptions that persisted for several 

days [2]. Similarly, in 2020, ice storms in Jilin Province, northeastern 

China, led to the shutdown of major thermal power plants due to disruptions 

in lines and pipelines, affecting over 300 million people with shortages of 

electricity and heating [3]. In the United States, the severe cold wave in 

2021 resulted in nearly 10 million people losing access to natural gas and 

electricity during peak hours, with estimated economic losses up to $295 

billion [4]. These incidents underscore the vulnerabilities of the electrica 
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Nomenclature 

Abbreviations 

IEHS  Integrated electricity-heating system 

PDS  Power distribution system 
DHN  District heating network 

MG  Microgrid 
VES  Virtual energy storage 

SR  Service restoration 

CHP  Combined heat and power 
EH  Electric heater 

MEG  Mobile emergency generator 

SP  Stochastic programming 
RO  Robust optimization 

DRO  Distributionally robust optimization 

 
Indices and sets 

i,   Index, set of buses 

l,   Index, set of branches 

m,   Index, set of MGs 

n,   Index, set of nodes 

s,   Index, set of thermal sources 

e,   Index, set of thermal loads 

p,   Index, set of pipelines 

c,   Index, set of CHPs 

h,   Index, set of EHs 

g,   Index, set of MEGs 

w,   Index, set of wind turbines 

d,   Index, set of power loads 

 

Parameters 

q
K
, αK  the kth mass blocks 

τ1, τ2, τp  The weighted average of temperatures of mass blocks 

CP  Specific heat capacity of DHN heating medium 

Tt
A  Ambient temperature 

λp, Lp  Loss efficient and length of pipe p 

p
s
, Ns  Probability of scenario s and number of scenarios 

Ξ  Support set of random variables 

̂, ξ̂ Empirical distribution and historical fault obey the 

distribution 

cc
suc, cc

sdc, cc
onc  The Start-up/Shut-down/no-load cost of CHP c 

Tc
on, Tc

off  Minimum on/off time of CHP c 

Pc,max
CHP , Pc,min

CHP   Upper/lower power limit of CHP c 

Ph,max
EH , Ph,min

EH   Upper/lower power limit of EH h 

Pg,max
MEG , Pg,min

MEG   Upper/lower power limit of MEG g 

Cd
Loss, Cn

Loss  Penalty cost of load shedding at bus d and node n 

Aw,t
WT  Available wind power capacity 

 

Pd,t
L , Q

d,t

L , Hn,t
L  Active power/passive power/thermal load demand at 

bus d and node n at stage t 

Vi, Vi
  Upper/lower bound of voltage amplitude at bus i 

Pf
l
, Qf

l
  Active/passive power flow limit of branch l 

xl, rl  Reactance and resistance of branch l 

RUc
CHP, RDc

CHP Ramp up/down rate limit of CHP c 

RUh
EH, RDh

EH Ramp up/down rate limit of EH h 

RUg
MEG, RDg

MEG Ramp up/down rate limit of MEG g 

mp,t
s/r, mn,t Mass flow of supply/return network in pipe p and node 

n at stage t 

 

Variables 

xi,m, y
l,m

  Binary status of bus i and branch l in MG m 

Swl  Binary variables of switch status in branch l 

g
i
  Root bus i 

f
l
  The fictious flow in branch l 

, ξ Real distribution and random variables obey the 

distribution 

Π Joint distribution of ξ and ξ̂ on the support set of Ξ×Ξ 

whose marginal distributions is  and ̂. 

uc,t, vc,t, ic,t The Start-up, Shut-down and online indicator 

variables of CHP/MEG c/g at stage t 

Pc,t

CHP
, P

c,t

CHP Upper/lower active power bound of servers service on 

CHP c at stage t 

Ph,t

EH
, P

h,t

EH Upper/lower active power bound of servers service on 

EH h at stage t 

Pg,t

MEG
, P

g,t

MEG Upper/lower active power bound of servers service on 

MEG g at stage t 

Pc,t
CHP, Q

c,t

CHP Active power/passive power output of CHP c at stage t 

Ph,t
EH  Input of EH h at stage t 

Pg,t
MEG, Q

g,t

MEG Active power/passive power output of MEG g at stage 

t 

Pw,t
WT  Consumed wind power of WT w at stage t 

Pf
l,t

, Qf
l,t

 Active power flow/passive power flow of branch l at 

stage t 

zl,t  The status of branch l at stage t 

Vi,t  The voltage amplitude of bus i at stage t 

Hc,t
CHP  Thermal output of CHP c at stage t 

Hh,t
EH  Thermal output of EH h at stage t 

Tn,t
s/r, Tn,t

s/r,mix
 The (mix) temperature of node n in the supply/return 

network at stage t 

Tp,t
s/r,out

, Tp,t
s/r,in

 The inlet/outlet temperature of pipe p in the 

supply/return network at stage t 

Pd,t
Loss, Q

d,t

Loss, Hn,t
Loss The active power/passive power shedding of bus d and 

thermal load shedding of node n at stage t 

grid to extreme events, highlighting the need for proactive measures to 

enhance grid resilience, minimize forced load shedding, and expedite SR 

following such disruptions. 

The SR prioritizes the protection of critical loads and the repair of faulty 

components, which include MG reconfiguration/integration [5-10], 

operation of switches [11-12], dispatch of MEG [13-18], and routing of 

repair crews [19]. Among the above strategies, MG reconfiguration is 

notably significant, primarily because it prioritizes continuity of supply 

over immediate repair. Maintaining a radial topology within the MG is a 

fundamental requirement for reconfiguration [5]. The process of MG 

reconfiguration is not only constrained by the radial operation of the 

distribution systems but also requires components that control the 

frequency and voltage stability within the isolation area. Mobile sources, as 

a flexible component with voltage regulation capabilities, participate in the 

process of SR to extend the survival time of critical loads. Mobile sources 

including generators [14], storage systems [15] and electric vehicles [16] 

are managed and guided to ensure the continuous power supply of critical 

loads. Among them, the MEG can further participate in the SR strategy 

including black start due to its continuous and controllable supply 

capability [17]. 

While existing studies employ the coordination of MG configuration and 

MEG allocation to ensure the continuous supply of power distribution 

systems (PDS), they often ignore the impact of secondary strikes from 

subsequent random events. For instance, Hurricane Sandy disrupted New 

York State's power system on October, 2012, leaving more than 2 million 

customers without power at its peak and triggering a series of subsequent 
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incidents in the following days, including natural gas pipelines ruptures and 

damage to emergency power sources, ultimately leaving some areas 

without energy for over a week [20]. Similarly, Hurricane Harvey in 2017 

struck Texas, leaving over 338,000 electricity customers without power. 

Full restoration took a week, as flooding from secondary disasters 

significantly impeded recovery efforts [21]. In the 2019 typhoon in the 

Tokyo area, the extended duration of the storm led to secondary strikes, 

causing further disruptions [23]. Secondary strikes can cause load shedding 

through sudden interruption of the energized branch, disrupting the original 

SR strategy. Therefore, to further enhance the risk resistance of the SR 

strategy under prolonged extreme events, the secondary strikes should be 

considered. Moreover, it is worth noting that reserve commitment is 

maturely applied in normalized dispatch [24] and pre-extreme event unit 

commitment [25] to solve the uncertainty problem of renewable energy and 

extreme event. In the research of reserve participation in SR, significant 

attention is given to the economic evaluation and scheduling of reserve 

commitment in day-ahead frequency SR market [26-27]. However, the 

significance of reserve commitment to SR during subsequent random event 

is ignored, particularly when considering the integration of MG 

reconfiguration and MEG allocation. 

With the advent of smart grid technology, multi-energy systems are 

widely constructed for achieving efficient zero-carbon transition. The 

widespread adoption of coupled components, such as combined heat and 

power (CHP) units, has promoted the integration of PDS with the district 

heating network (DHN) into IEHS. While this integration enhances 

operation flexibility and brings economic benefits for power systems, it also 

introduces challenges to the SR process, such as limited energy conversion 

efficiency of CHP and load shedding propagation from PDS to DHN [3]. 

To address these challenges, the remote control of IEHS is used to adjust 

the topology of PDS and the configuration of DHN [28]. Similar studies of 

SR for IEHS are conducted in [29-30]. 

Although the above studies have investigated achieving a continuous 

supply of services through approaches such as reconfiguration and 

compensating for the lack of CHP flexibility, they have ignored the storage 

capacity provided by pipelines through the thermal inertia characteristics of 

DHN, also called virtual energy storage (VES), which offers a crucial 

flexibility resource for SR. Ref. [31] simulates the hysteresis phenomenon 

of the thermal network using the node method and describes the thermal 

storage characteristics of the pipeline. Ref. [32] recognized the role of 

pipeline storage in improving SR capacity but modeled it as centralized 

energy storage, ignoring the actual physical limitations of pipeline storage. 

The VES has also been used to reduce operating costs [33] but has not been 

applied in SR, indicating an area that needs improvement. 

The mentioned studies have adopted deterministic optimization methods 

for SR, but the occurrence of natural disasters and secondary strikes are 

hard to predict. Stochastic programming (SP) and robust optimization (RO) 

are employed to enhance the system's ability to handle uncertainty, thereby 

improving the reliability of SR strategies [14-16,34]. While SP can 

effectively model various uncertainties, it necessitates accurate probability 

distributions. Obtaining these distributions of independent events, such as 

branch outages, is challenging and can lead to a significant increase in 

problem dimensionality, thereby reducing solution efficiency [29]. In 

contrast, RO does not rely on modeling probability distributions or 

uncertainty-related information. Instead, it conceptualizes extreme events 

as adversaries to develop a robust SR strategy [35]. However, the resulting 

strategy may have lower cost efficiency. 

Distributionally robust optimization (DRO) is a novel decision-making 

approach that differs from RO, which only relies on the worst-scenario 

boundary values of uncertain variables, and from SP, which requires 

numerous samples to simulate potential distribution. The DRO model 

describes uncertainty by defining an ambiguity set that encompasses all 

potential distributions at a certain confidence level and combining it with a 

support set that specifies the possible range of values [36]. This approach 

allows the DRO model to overcome its reliance on precise distributions or 

extreme scenarios. It seeks the worst-case distribution within an ambiguity 

set containing a large number of possible distributions, while restricting 

specific events conformed to the distribution within the defined support set. 

However, most exiting DRO-based energy system optimization models use 

first-order and second-order moments to capture the high-dimensional 

trends of distribution [37-38]. Some studies employ divergence-based 

modeling, but its asymmetric nature leads to incomplete decisions [39]. 

Consequently, many studies focus on DRO under the Wasserstein metric, 

which has demonstrated advantages in various tasks ， including 

conventional scheduling of IEHS [40], resilience improvement [41], and 

pre-disaster preparation [42]. Unfortunately, there is no study applying the 

DRO model in SR strategy formulation in the context of secondary strikes, 

which are likely to occur and challenging to predict. We aim to develop a 

DRO-based SR strategy that utilizes the advantages of DRO model in 

addressing uncertainty, resulting in a high computational efficiency (ability 

to manage greater potential uncertainties with a low computational burden) 

and high solution quality (effective use of historical data sets and 

compatibility with multiple SR strategies) in SR strategy process. 

The main contributions of this paper are listed as follows and are 

compared with the existing studies in Table 1. 

1) We propose a novel SR strategy for IEHS, that comprehensively 

integrates defensive MG reconfiguration, MEG allocation and reserve 

commitment. This strategy aims to ensure the continuous supply of critical 

loads during SR. By incorporating the uncertainty of secondary strikes of 

subsequent random events, the proposed novel strategy enhances the 

survivability of critical loads throughout the SR implementation process. 

2) We model the thermal inertia of the DHN as VES and integrate it into 

the implementation process of SR strategy as an emergency resource, which 

can enhance the flexibility reserve before secondary strikes, thereby 

reducing the thermal load shedding in DHN after IEHS is impacted. 

3) An ambiguity set and support set combined DRO model is utilized to 

capture the uncertainty of secondary strikes in the IEHS. The ambiguity set 

describes the potential distributions, including the worst-case distribution 

of secondary strikes, while the support set defines the boundaries of the 

outage events. 

4) The DRO model is formulated by a two-stage tri-level problem, which 

is further decomposed into a SR implementation master problem and 

several subproblems screening out the worst-case uncertainty distribution. 

A customized convex relation technology is introduced to guarantee the 

tractability of proposed DRO model, and an improved column and 

constraint generation (C&CG) algorithm is developed to efficiently obtain 

optimal solutions. 
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Table 1 

Comparative features of relevant studies pertaining to SR strategies for IEHS 

Reference Secondary strikes VES MG reconfiguration MEG allocation Reserve commitment Uncertainty 

[14] ✓  ✓ ✓  ✓ 

[6,15-16]   ✓ ✓  ✓ 

[10,18]   ✓ ✓   

[9,11,19]   ✓    

[7,22] ✓  ✓ ✓  ✓ 

[12,25]   ✓  ✓ ✓ 

[3,17,28]    ✓  ✓ 

[30,32]  ✓     

This work ✓ ✓ ✓ ✓ ✓ ✓ 

2. Concept of SR Strategy for IEHS 

This section mainly introduces the concept of the proposed SR strategy 

and DRO model. Section 2.1 describes the SR framework, integrating 

multiple strategies and the method for capturing subsequent fault 

uncertainty. Then, section 2.2 introduces the VES formulation resulting 

from thermal inertia of the IEHS. Finally, section 2.3 explains the 

construction of the ambiguity set and support set for the DRO model. 

2.1 Framework of Proposed SR Strategy 

During extreme events, the electricity transmission system is initially 

impacted, causing the main grid to experience a decline in supply capacity. 

To ensure the stable operation of the main grid, it is necessary to reduce or 

cut off the power supply on the interconnection line in the fault area. This 

paper focuses on the IEHS in the fault area and develops a more robust and 

economical integrated SR strategy for such scenarios. This proposed 

strategy captures the uncertainty of secondary strikes of subsequent random 

events through the DRO model and improves the risk resistance of the SR 

strategy. 

Fig. 1 is taken as an example to illustrate the framework for formulating 

and implementing SR strategies for the IESH, which consists of the PDS, 

DHN, CHP units, and electric heater (EH) units. After an extreme event, 

the substation of the IEHS detects power attenuation and oscillation on the 

feeder connected to the main grid, indicating impending load shedding and 

supply interruption. At this point, it is necessary to immediately assess the 

risk of disconnection from the main grid and make the corresponding SR 

strategy, which consists of a set of tasks, including MEG allocation, 

defensive MG reconfiguration, and reserve commitment. It assumes that the 

power supply area of the main grid where the IEHS is located is interrupted 

due to a disaster. In the process of implementation, the MEG connects to 

the pre-positioned bus to supply power to the critical load, and the PDS is 

divided into multiple MGs, with all equipment operating according to the 

reserve plan. 

The IEHS remains in the fault area, and the continuous impact of extreme 

events can cause secondary strikes within the IEHS, introducing uncertainty 

into the implementation process of the formulated SR strategy. To address 

this problem, we propose a two-stages tri-level problem based on the DRO 

model, as shown in Eq.(1), to enhance the robustness of the SR strategy. In 

the first stage, we describe the outer layer problem, which determines 

multiple optimal SR strategies for IEHS. The second stage integrates 

middle layer and inner layer problem, exploring the worst-case distribution 

realization of secondary strikes by maximizing the optimal value of the 

inner layer problem. The probability distribution  of secondary strikes on 

the IEHS is assumed to be uncertain and operates within the ambiguity set 

(̂,Dw)  constructed using historical data. The worst-case probability 

distribution searched is added to the first stage through the expectation 

operator of the value function (x, i, ξ). The inner problem seeks the 

optimal SR implementation to minimize penalties from the unplanned 

power and thermal loads shedding and wind power curtailment in response 

to the uncertainty secondary strikes. The robustness of the two stages tri-

level problem solution is ensured by minimizing the total cost of the first 

stage under the worst-case probability distribution within the ambiguity set 

(̂,Dw), using “max-min” operators. 

 

( )
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E

+
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


 

 








x z
c x x i

Ax Bz b
Dz f

x z





 (1) 

In Eq.(1), x and z are continuous and binary variables of the SR strategy, 

which represent reserve, unit commitment and defensive MG 

reconfiguration respectively. ξ  are the binary uncertain variables of the 

worst-case scenario. The E is the expectation operator, A, B, D, b and f are 

constant matrices and their corresponding constraints. 

Formulate SR strategy

EHSubstationMain Grid
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     attenuation in the feeder

DHN

PDS

Load

Load
Load

Load

LoadLoad

EH

CHP

CHP

DHN
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Load

Load
Load
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LoadLoad

CHP

MEG MEGMG1

MG2
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the main grid
Implement SR strategy

MEG 

Allocation

Defensive 

Islanding

Reserve 

Commitment

CHP
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Fig. 1 Framework of SR strategy for IEHS
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In the inner layer problem, we consider the continuous implementation 

of SR decisions within a scheduling period. We measure the total penalty 

of load shedding under defensive MG reconfiguration and MEG allocation 

z, reserve decision 𝑥 and subsequent uncertain fault ξ  while SR is 

implemented. During the SR strategy operation, the IEHS can utilize the 

VES capacity in the DHN and the corrective dispatch within the reserve 

capacity to minimize the emergency load reduction, as shown in Eq.(2): 

 

( ) T, , min

                 . .

                         ,T T
s t

 

=

+ + 

 





y
x i d y

Ex Hy Ni r

y i



 (2) 

where, E, H, N and r are constant matrices and their corresponding 

constraints. The variable i realizes the coupling of defensive MG 

reconfiguration and secondary strikes through AND operation. y is the 

decision variable to achieve the minimum load shedding penalty. 

2.2 The VES of IEHS 

We analyze the demand for electricity and thermal by users in the IEHS 

during the formulation and implementation of the SR strategy. The 

electricity demand is met by MEG, wind turbines (WT), and CHP units, 

while the thermal demand is supplied by CHP units and EH units. The CHP 

units burn natural gas to supply electricity and thermal simultaneously in a 

fixed ratio, while the EH units consume electricity to convert into thermal. 

Electricity and thermal are distributed to consumers through the PDS and 

the DHN, respectively. 

In the heating distribution system, the DHN benefits from the presence 

of flexible energy storage capacity due to its inherent thermal inertia, 

thereby enhancing system flexibility on the IEHS. We introduce the 

concept of VES to describe the high-capacity energy storage characteristics 

exhibited by the DHN. Unlike traditional thermal energy storage systems, 

VES does not have device parameters such as state of charge, 

charge/discharge thermal energy, or charge/discharge thermal efficiency. 

Although some scholars model VES as a thermal energy storage device [32], 

this is only a mathematical equivalence and does not accurately reflect the 

actual characteristics of the DHN. 

We developed a model considering the transmission delay in the DHN 

based on its quasi-steady-state model [31]. In each scheduling interval Δt, 

we assume that a mass block flows through the pipeline p from the inlet to 

the outlet, with the time taken recorded as τp. This time may not necessarily 

be an integer multiple of the scheduling interval Δt. Therefore, we use the 

weighted average of the temperatures of the two mass blocks at the outlet, 

denoted as τ1=(K-1)Δt and τ2=KΔt. By calculation, the temperature at the 

pipeline outlet can be determined as: 

 
( ) ( )

( ) ( )

s/r,out s/r,out
2 1 1, , 1, ,s/r,out

,
2 1 1

s/r,out s/r,out
1 2, , 1, ,

,

K p K pK p t K p t
p t

K p K p

K p t K p t

q T q T
T

q q p t

C T C T

   
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+ +

+

+

− + −
=

− + −    

= +

  (3) 

where, C1 and C2 are the weighting coefficients of TK,p,t
s/r,out

 and TK+1,p,t
s/r,out

 

respectively. 

During the thermal transmission process in the DHN, thermal exchange 

with the external environment leads to a decrease in temperature at the 

pipeline outlet compared to the inlet. Incorporating this with the quasi-

steady-state Eq.(3) of the DHN, we can express the temporal coupling 

constraints of the temperatures at the pipeline inlet and outlet as: 

( )

( )
1 2

1

s/r,out s/r,in s/r,in A
1 3 2 4 1 3 2 4, , ,

P
3 4

1

,

, , /K p K p

tp t p t p t

a L a L
K p K

T C C T C C T C C C C T

p t

C e C e a k q c

 

+

− −

− −

 = + + − −


   
 = = =


 (4) 

In Eq.(4), we observe that under the mass flow control mode, the 

temperature at the pipe outlet can be represented as a linear combination of 

inlet temperatures at various scheduling times. Here, C3 and C4 serve as 

auxiliary coefficients in the linear formulation. 

2.3 Construction of Ambiguity Set and Support Set 

In this subsection, the uncertainties of secondary strikes to the branch are 

described by an ambiguity set that contains the true distribution function 

with a specified Wasserstein distance and a given discrete support set. 

2.3.1 Ambiguity set 

The ambiguity set is constructed using a data-driven approach that does 

not rely on a specific distribution. It characterizes the entire distribution 

within the probability space, centered on the empirical distribution and 

constrained by the Wasserstein distance metric. We utilize Dw represents 

the Wasserstein distance between the real distribution  and the empirical 

distribution ̂: 

 
( ) ( ) 
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ˆ ˆ                inf

w

p

P

E d

d d







  

 =  

= − 

 D

 
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 (5) 

where, ‖∙‖p  represent the p norm operations are used to calculate the 

distance between two random vectors. The empirical distribution is defined 

as an estimate of the distribution of historical data ̂ = ∑ p
s
δ(ξ̂

s
)s , where, 

δ() represents the Dirac measure of sth sample. 

It can be revealed from Eq.(5) that integrating the joint distributions 

results in an infinite optimization problem, making it difficult to tackle and 

requiring further processing. By leveraging the conditional distribution 

interpretation of Π= ∑ p
s
s

Ns
s=1 , the problem can be converted to utilize 

conditional distribution s  as variables. Thus Eq.(5) can be written as a 

semi-infinite optimization as shown in Eq.(6): 

 ( )
0

1

ˆ ˆ, inf
s

Ns
p

w s s

s

p d


=

= −
D


    (6) 

The ambiguity set (̂,θ) is defined by two parameters ̂ and θ: 

 ( ) ( ) ( ) ˆ ˆ, ,wP =     D  (7) 

The ambiguity set is centered on the empirical distribution ̂  and is 

defined within a radius θ measured by the Wasserstein distance. This set 

encompasses all probability measures supported by the random variables ξ 

on the corresponding support set Ξ. The conservatism of the solution can 

be controlled by adjusting the size of θ. As the number of selected samples 

Ns increases, the empirical distribution will eventually converge to the true 

distribution, causing θ to approach zero. At a given confidence level, the 

empirical distribution is typically chosen to converge to the true distribution 

at an exponential rate [43], as demonstrated in formulation Eq.(8): 

 ( )( )
2

2
ˆ, 1 expwP Ns

C




 
   − − 
 

D  (8) 

Therefore, θ can be represented by a given confidence level γ: 

 
1 1

ln
1

C
Ns




 
=  − 

 (9) 

In Eq.(9), C is a constant, which can be obtained by solving the following 

problem Eq.(10): 



6 

 

 

 ( )2

0

2 ˆmin 1 ln exps

s

C p


  


   = + −  
    

  (10) 

where, ξ is the mean of ξ̂. 

2.3.2 Support set 

A fundamental component of DRO is the support set, which defines the 

range of values for random variables. In this paper, the support set defines 

the binary status of branch l during the SR implementation process, where 

0 indicates that the branch was attacked by a secondary strike and has left 

the system, while 1 indicates that it remains in the system. The random 

variables are distributed within the Dw probability space and are 

constrained by the box support set Ξ, as shown in Eq.(11). 

 

, , ,

,

,l t l l t

l

l t

t l

k t   





  −   
 
 

 =  
  
 
 








  (11) 

In this support set, the first line of Eq.(11) specifies that N-k branches 

remain undamaged after secondary strikes, where k is limited by the 

maximum number of simultaneously faulty branches in the historical 

dataset ξ̂ . Additionally, the support set mandates that faulty branches 

remain disconnected until the end of the SR implementation process. The 

conservative parameter Γ, introduced in the second line of Eq.(11), limits 

the total disconnection time of the faulty branches to control the severity of 

secondary strikes. 

3. Mathematical Formulation 

3.1 MEG Allocation and Defensive MG Reconfiguration 

3.1.1 MEG allocation 

MEGs can control the access electricity bus to provide power and 

maintain voltage stability in the MG. We utilize MEGs as the root bus of 

the MG and perform defensive MG reconfiguration operations based on 

them. During the SR formulation process, MEGs are deployed on the 

appropriate bus of the PDS and maintain appropriate hot reserve or cold 

reserve status. After realizing that the IEHS is disconnected from the main 

grid, they are connected to the pre-positioned bus and maintain the voltage 

stability of the self-organizing MG. In the SR strategy formulation problem, 

the constraints on MEG allocation are as follows: 

 MEG
, 1,i g

g

A i



  


  (12) 

 MEG
, 1,i g

i

A g



=  


  (13) 

 MEG MEG
, , ,i g

i g

A N i g

 

    


  (14) 

Eq.(12) and (13) ensure that MEGs can only be assigned to a single bus, 

while Eq.(14) ensures that the total number of buses assigned to MEGs does 

not exceed the total number of MEG units available. 

3.1.2 Defensive MG reconfiguration logic constraints 

Eq.(15) and (16) ensure that buses are assigned to their respective MG, 

which must have a root bus to be operational. For a branch to be part of MG 

m, both bus i and bus j at its ends must belong to MG m, as captured by 

Eq.(17). If bus i and bus j belong to different MGs, Eq.(18) restricts that 

switch Swl disables branch l connecting them. 

 
, 1,i m

m

x i



=  


  (15) 

 , , , ,
mi m r mx x i m      (16) 

 , , , , , , ,l m i m j my x x i j l m=        (17) 

 
, , ,l m l

m

y Sw l m



=    


  (18) 

3.1.3 MG radial constraints 

PDS is typically constructed in a mesh structure but needs to operate in 

a radial configuration to coordinate the relay protection scheme, which is 

fundamental for defensive MG reconfiguration. The realization of a radial 

network within the MG relies on satisfying two conditions [44]. Condition 

1 is captured by Eq.(19), which mandates equality between bus-branch 

discrepancies and root bus quantities. Condition 2 emphasizes maintaining 

connectivity within MGs, elucidated further in the connectivity constraints. 

 
, , ,mi m l m r m

m i m l m

x y x

    

− =   


 (19) 

3.1.4 MG connectivity constraints 

Both single-commodity flow and multi-commodity flow can constrain 

the connectivity of MG. Here, commodity refers to products moving 

between sources and sinks, serving as a virtual representation of network 

connections, also known as fictitious flow [7]. The specifies commodity are 

exclusively generated at the root node, captured by Eq.(20), while Eq.(21) 

denotes that each connected node within MG m functions as a sink with a 

capacity of 1/||. Additionally, Eq.(22) restricts commodity flow to paths 

existing between buses within MG m and the root bus. 

 ,0 ,
m mr r mg x m     (20) 

 

( ) ( )

,
1 ,ji ik i i m

mi to ji ji i fr ji ik

f f g x i

   

− + =    





 (21) 

 
, , ,l m l l m

m m

y f y l

 

−     


  (22) 

3.2 Outer layer Problem 

The objective function of the SR strategy formulation outer layer 

problem is shown in Eq.(23), which aims to the minimum SR investment. 

This includes the total cost of providing energy reserve and configuring the 

start-shut state of units: 

 
( )

( ) ( )

CHP CHP CHP
, , , , ,

EH EH EH MEG MEG MEG
, , , ,

min

suc sdc onc
c c t c c t c c t c c t c t

c

h h t h t g g t g tt T

h g

c u c v c i P P

P P P P



 





 

 + + + − +
 
 
 

− + − 
 
 



 




 (23) 

In the specific formulation of the SR strategy, the minimum start-up/shut 

down requirements of CHP and MEG are expressed as follow: 

 , , , , 1, ,b t b t b t b tu v i i b t−− = −       (24) 

 , , 1, ,b t b tu v b t+        (25) 

( )

 
 

onmin ,

on on
, 1 , ,

2

max 1, 1 , ,

b
t T

b t b t b kb b

k t

i i T i T t b t

+

+

= +

− −  − + −     


  (26) 

 ( )

 offmin ,

off off
, , 1 ,

2

, ,

b
t T

b t b t b kb b

k t

i i T i T b t

+

+

= +

− −      


  (27) 

In the SR strategy formulation outer layer problem, we propose a reserve 

formulation. This reserve dispatch plan ensures that the unit has sufficient 

ramping ability in adjacent time intervals to achieve decoupling in 
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operating time. Additionally, the unit's output is covered in the reserve 

interval, which helps reduce the unit status indicator variables during the 

optimization problem-solving process, thereby avoiding the increase in 

computational complexity caused by processing these indicator variables 

[45]. The ramping limits for CHP reserve boundaries are as following: 

 ( )CHP CHP CHP CHP
, , 1 , 1 ,max , 11 , ,c t c t c c t c c tP P RU i P i c t− − −−   +  −      (28) 

 ( )CHP CHP CHP CHP
, 1 , , ,max ,1 , ,c t c t c c t c c tP P RD i P i c t− −   +  −      (29) 

 CHP CHP CHP CHP
, , , ,max ,,min

, ,c t c t c t c c tc
P i P P P i c t        (30) 

The ramping limits for EH reserve boundaries are as following: 

 EH EH EH
, , 1 , ,h t h t hP P RU h t−−       (31) 

 EH EH EH
, 1 , , ,h t h t hP P RD h t− −       (32) 

 EH EH EH EH
,min , , ,max , ,h h t h t hP P P P h t        (33) 

And same to the MEG: 

 MEG MEG MEG
, , 1 , ,g t g t gP P RU g t−−       (34) 

 MEG MEG MEG
, 1 , , ,g t g t gP P RU g t− −       (35) 

 MEG MEG MEG MEG
, , ,max,min

, ,g t g t gg
P P P P g t        (36) 

3.3 Inner layer Problem 

As shown in Eq.(37), the objective function of the SR strategy 

implemented inner layer problem aims to minimize the operation cost, 

which consists of the unplanned shedding penalty of the power and thermal 

loads, the penalty of wind power curtailment, and the units adjusting cost. 

The objective function can be expressed as follows: 

 
( ) ( )

( )

Loss Loss Loss Loss Loss cur WT WT
, , ,, ,

CHP CHP CHP MEG CHP EH EH
min

,

n n t w w t w td d t d t

d D n w

c c c g g h ht T

c g h

C P Q C H C A P

f P H C P C P

  



  

 + + + −
 
 
 

+ + 
 
 

  

  





 (37) 

where, f
c

 CHP
 is the fuel cost function of CHP units. 

3.3.1 Dispatch constraints 

During the process of SR strategy implementation, units can redistribute 

power according to the reserve intervals scheduled in the formulated plan, 

and WT can operate to obtain power within the available wind power 

capacity. The constraints are as follows: 

 CHP CHP CHP
, , , , ,c t c t c tP P P c t       (38) 

 EH EH EH
, , , , ,h t h t h tP P P h t       (39) 

 MEG MEG MEG
, , , , ,g t g t g tP P P g t       (40) 

 WT WT

, ,0 , ,w t w tP A w t       (41) 

3.3.2 PDS constraints 

Since the radial topology is guaranteed during the defensive MG 

reconfiguration process, the DistFlow branch model is utilized to describe 

power flow constraints. The active power and reactive power 

decomposition form combines the reactive power and voltage amplitude, 

which is more suitable for description in the PDS than the DC form due to 

its power balance and power flow equation, and transmission branch 

restrictions. 

 ( )

( )

( )

CHP MEG MEG WT
, , , , ,

EH L Loss
, , , ,

,

                               

c t i g g t w t ji t

c g w i to ji ji

ik t h t d t d t

h di fr ik ik

P A P P Pf

i t

Pf P P P

    

  

+ + + =

   

+ + −

   

  

 




 (42) 

 ( )

( )

( )

CHP MEG MEG
, , , ,

L Loss
, , ,

                               

c t i g g t ji t

c g i to ji ij

ik t d t d t

di fr ik ik

Q A Q Qf

t

Qf Q Q

   

 

+ + =

 

+ −

  

 

 




 (43) 

 
, , , , ,l t l t l tl lPf z Pf Pf z l t−          (44) 

 
, , , , ,l t l t l tl lQf z Qf Qf z l t−          (45) 

 ( ) ( ) ( ) ( ), , ,, , 1 , ,l t l l t l l tfr l t to l tV P r Q x V V M z l t− + −  −     (46) 

 ( ) ( ) ( ) ( ), , ,, , 1 , ,l t l l t l l tfr l t to l tV P r Q x V V M z l t− + −  −     (47) 

 
, , ,i i t iV V V i t       (48) 

The operation of the PDS is constrained by Eq.(42)-Eq.(48). Eq.(42) and 

(43) ensure the active and reactive power balance at each bus. Eq.(44) and 

(45) enforce that there is no active or reactive power flow on the damaged 

or open branch. Eq.(46) and (47) represent the relationship between voltage 

amplitude and branch flow, which are decoupled using the big-M method 

for the damaged or open branches. Eq.(48) limits the boundary conditions 

that the voltage amplitude on the connected bus needs to meet. 

3.3.3 DHN constraints 

We assume that the DHN operates in constant flow and variable 

temperature (CF-VT) control mode. This mode changes the temperature of 

the heating network working fluid while keeping the mass flow rate 

constant, taking thermal inertia into consideration. The following equations, 

together with Eq.(3) and (4), constitute the DHN supply and return water 

pipeline model under the CF-VT mode: 

 ( )CHP EH P s r
, , , , , , ,c t h t n t n t n t

c h

H H c m T T n t

 

+ = −    



 (49) 

 ( )L Loss P s r
, , , , , , ,n t n t n t n t n tH H c m T T n t− = −      (50) 

 ( )s/r s/r,out s/r,mix s/r
, ,, , , ,p t p tp t n t

p p

m T T m n t

 

=     


  (51) 

 s/r,mix s/r,in
, , , , ,n t p tT T n p t=        (52) 

Eq.(49) and (50) represent the exchange of thermal energy at the thermal 

source and thermal load, respectively. Eq.(51) and (52) represent the 

exchange of thermal energy in the DHN pipeline. Specifically, Eq.(51) 

represents the constraint of temperature mixing at the outlet of the pipeline, 

and Eq.(52) states that the temperature at the inlet of the pipeline is the same 

as the temperature at the mixing point of the pipeline. 

4. Solution Methodology 

4.1 Logical constraints convex relaxation  

4.1.1 AND logical constraints linearization 

In the SR strategy implemented inner layer problem, the branch 

operation status is simultaneously influenced by the SR strategy result z and 

the subsequent fault ξ  under the worst-case distribution, which is 

constrained by the AND operator. The multiplication of the two binary 

variables can be converted into the following constraints: 

 
1

s
s s
s s



 + −

i z
i
i z




 (53) 

4.1.2 If constraint linearization 

In the process of organizing the MG, the root node of the MG must first 

be determined, as shown in Eq.(20). Simultaneously, the deployment of the 

MEG as an optimization variable needs to be addressed during the MG 

defensive decision-making stage, thereby forming an If constraint problem, 

as shown in the following: 

 
1,   0

0,  

mr
if g

else

−


= 


  (54) 
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 ,1,   0

0,  

m mr m rif x g

else

+
− 

= 


  (55) 

By introducing auxiliary binary variables Δ-  and Δ+  we can indicate 

whether bus i is a potential feasible root bus. For the linearization of the If-

else conditional expression, a sufficiently small positive constant ϵ and a 

sufficiently large constant M are utilized. Taking constraint (55) as an 

example: 

 
( )

,

, 1
m m

m m

r m r

r m r

x g є M

x g M

+

+

 − + 


−  −




 (56) 

This formulation ensures that the potential root bus i is correctly 

identified and managed within the optimization framework, allowing the 

MEG unit to effectively serve as the root node of the MG under the 

specified conditions. Finally, the decision results of the auxiliary variables 

can be unified through the AND constraint, Δ=Δ-&Δ
+, The linearization 

process of this AND constraint is similar to that of Eq.(53). 

4.2 Reformulation of DRO Model 

The DRO model, represented by Eq.(1), is a mixed integer linear 

programming problem composed of the SR strategy formulation outer layer 

problem and the SR strategy implemented inner layer problem under 

infinite-dimensional support. Full support of the ambiguity set with infinite 

support is crucial for precise and robust decisions. However, there are 

infinite distributions within the empirical distribution Wasserstein metric 

Dw , leading to an infinite number of recourse problems to identify the 

worst-case distribution. This high complexity makes solving the original 

DRO model challenging. Therefore, we adopt the conditional distribution 

expressed in Eq.(6) and reconstruct the expected expressing of Eq.(1) into 

the following form by employing the duality theory of infinite-dimensional 

optimization problems: 

 

( )
( ) ( )

ˆ ,
1

1

max , , max , ,

     . . 1   :

ˆ                 :

s

Ns

s s

s

s s

Ns
p

s s

s

E p d

s t d

p d





 


=




=

  = 

=

− 

















x i x i






  



  

 (57) 

where, αs and β are dual variables. 

The second line of Eq.(57) indicates that the integral of s is 1, ensuring 

that s is a valid distribution. The third line ensures that all distributions 

within a Wasserstein distance of θ from the empirical distribution are 

included in the ambiguity set, measured by the Lp-norm Wasserstein metric. 

For problems described in Eq.(57), there exists at least one feasible 

solution, which is a relative interior point s = p
s
δ(ξ̂

s
). Therefore, Slater's 

condition and strong duality hold. We can consider a semi-infinite 

optimization similar to the standard Lagrange duality in convex 

optimization allowing the problem can be reformulated as the dual 

formulation: 

 

( )

0,
1

min

ˆ. . , , 0, , 1, ,

s

Ns

s s

s
p

s

p

s t s Ns

 
 

 


=

+

− − −     =



 x i    

 (58) 

According to the optimality condition, for the sth scenario, the optimal 

solution αs under the worst-case distribution is as following: 

 ( ) ˆmax , ,
p

s s
s 



 
= − − 

 
x i


    (59) 

The expectation of the worst-case maxE[(x, i, ξ)]  is equivalent to 

(60): 

 ( )
0

1

ˆmin max , ,

Ns
p

s s
s

s

p


 
 

=

 
  

+ − −   
  

 x i


    (60) 

Combined with the outer layer problem decisions, the DRO model, after 

reformulation, can be obtained. This combined model involves formulating 

SR strategy to adapt to a range of possible future scenarios under the worst-

case distribution. In the outer layer problem, the model allows for 

independent SR strategy decisions to be made in preparation for potential 

secondary strikes. In the inner layer problem, given these initial decisions, 

the focus shifts to solving key scenarios to identify the worst-case 

distribution, thus constraining the outer layer problem decisions through 

recourse. Therefore, the reformulation implements a two-step process: 1) 

Simplification: by concentrating on a limited number of scenarios, the 

problem's complexity is reduced, making the outer layer decisions more 

manageable. 2) Robustness: by addressing key scenarios in the inner layer 

problem, we ensure that the decisions remain robust against the worst-case 

distribution within the Wasserstein metric. 

The reconstructed DRO model resembles the classic two-stage RO. If the 

support set is convex and the Wasserstein distance is defined as L1-norm or 

L∞-norm, then problem Eq.(60) can be further expressed as a linear program. 

This linear program can be efficiently solved using decomposition 

algorithms, such as Benders and C&CG which alternate between two 

master-subproblems to guide the solution towards convergence. 

4.3 Improved C&CG approach 

The reformulated DRO model can be regarded as a variant of the 

conventional two-stage RO model. However, obtaining the worst-case 

probability distribution necessitates solving Ns subproblems. To avoid 

introducing norm expressions during the subproblem solving and the 

incorporation of cut hyperplanes involving norm operations into the master 

problem, thereby increasing the computational burden, the auxiliary 

variable κs  is introduced into the C&CG iteration process [41], with 

detailed derivation provided in the Appendix. After solving the master 

problem, the solutions of the subproblems are influenced not only by the 

first-stage decision variables but also by the dual variable β and the 

auxiliary variable κs . Furthermore, during the process of adding C&CG 

cutting hyperplanes, it is essential to introduce convex relaxed logical 

constraints to reduce the solution space. 

Step 1: Initialization. Set the convergence tolerance ε. Set the lower 

bound LB to -∞, the upper bound UB to +∞, and initialize the number of 

iterations c=1.  

Step 2: Solve the following master problem: 
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,

,

,

T

, , , 0, ,
1
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T T

,
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          . .

                  

ˆ                  ,

                  , ,

           

s s c s
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p
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s
s s
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k c s
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  
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 

 
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



+ +






 − −   
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
x z y

c x

Ax + Bz b
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d y

i z &



 



, ,      , ,k s k s k c s+ +    Ex Hy Ni r

 (61) 

Record the optimal solution x*, z*, κ* and objective value, and update 

LB as the objective value of master problem. 

Step 3: In each subproblem, the objective function is to minimize the 

emergency load shedding penalty under master problem's decisions and the 
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worst-case scenario. Since each subproblem is a linear programming 

problem, and the feasibility is always maintained through emergency load 

reduction, strong duality can be applied to transform it into the following 

dual problem: 

 

( ) ( )
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 (62) 

where, μ is the dual variable of the original subproblem, where the bilinear 

terms NTi
T
μ  are represented as the product of binary and continuous 

variables. These can be strictly converted into multiple linear constraints 

using McCormick's envelope method. Since this conversion process is 

rigorous [46], the resulting solutions are consistent with the original 

constraints. 

Record the optimal solution 𝝁* ,  ξ*  and the objective value Qs of 

subproblem s, and update the UB = min (UB, cTx*+ ∑ p
s
Q

ss +βθ) 

Step 4: If (UB-LB)/LB < ε, save present result and terminate the iterating 

process, otherwise, update ξ* and c=c+1, and return Step 1. 

5. Case Study 

5.1 Simulation setting 

We tested our approach on the modified 6-bus and 6-node system 

(M6B6N) and the modified IEEE 33-bus and 32-node system (M33B32N). 

The specific parameter settings of the system are described in Section 5.2 

and 5.3, respectively. In both M6B6N and M33B32N, we assume that the 

substation and feeder are disconnected from the main grid at 00:00 due to 

the first strike of the extreme event, and secondary strikes to the IEHS from 

subsequent random events are modeled as typical branch outage faults. The 

confidence level γ for the Wasserstein radius of the ambiguity set in DRO 

model is set to 95%. In the SR strategy, the time interval for each decision 

schedule is 1 hour. All test codes in this section are implemented and 

executed using the JuMP.jl toolkit in the Julia language and solved by 

Gurobi Optimizer 9.5.2. The allowable tolerance ε for the improved C&CG 

algorithm is set to 0.1%. All programs were executed on a personal 

computer with 5GHz 12th Gen Inter Core i5 CPU and 32GB RAM. 

5.2 Modified 6-bus and 6-node system 

Our proposed model was tested on M6B6N. The system consists of a WT, 

a CHP unit, and a EH unit. The detailed parameters of the M6B6N can be 

found in Table 2. Considering the scale of the test system and the sparsity 

of historical extreme events, the ambiguity set is constructed from 50 

groups of subsequent branch outage samples, recording N-1 unexpected 

events. The reserve cost is set to 30% of the power generation cost, and the 

unexpected load shedding penalties for the 3rd, 2nd, and 1st priority loads 

are 2 times, 3 times, and 5 times the power generation cost, respectively. 

Table 2 

Parameters of 6-bus and 6-node system 

Parameter Value Parameter Value 

RUg
MEG, RDg

MEG 0.3Pg,max
MEG  RUh

EH, RDh
EH 0.3Ph,max

EH  

Tg
on, Tg

off 0h, 1h Vi, Vi
 1.05, 0.95 

RUc
CHP, RDc

CHP 0.25Pc,max
CHP  Γ 20 

Tc
on, Tc

off 2h, 3h   

To verify the efficiency and stability of our proposed improved C&CG 

algorithm, we conducted convergence tests. The results, as shown in Fig. 2, 

demonstrate that the algorithm successfully converges within an acceptable 

number of iterations, ensuring the robustness and reliability of the SR 

strategy under the DRO model. 
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Fig. 2 The convergence of DRO model 

The allocation of MEGs and the resulting defensive MG configurations 

are depicted in Fig. 3. This figure shows how MEGs are strategically 

deployed to critical buses and how the PDS is reconfigured into MGs to 

ensure a continuous power supply during extreme events. 

1
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2 5

34 6

145

236
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Fig. 3 The MEG allocation and defensive MG reconfiguration in M6B6N 

MEGs can identify the load with the highest priority protection weight to 

ensure that load shedding occurs to the lowest extent during the SR 

implementation process. By utilizing the ability of MEGs to control bus 

voltage, ensuring stable voltage levels within the MG, which is crucial for 

maintaining the connectivity and allowing WT to be directly connected to 

the MG, we enhances the supply capacity of MG. Additionally, in the 

process of MEG allocation and defensive MG reconfiguration, the 

restriction that each bus in the MG is connected by a radial topology is 

observed. 

5.2.1 Effectiveness of the DRO Model 

To compare the performance of the DRO model proposed in this article, 

we first compare the results of the proposed DRO method with the results 

of three other model: the deterministic model, the SP model and the 

conventional two-stage RO model, which are marked as Case Ⅰ, Case Ⅱ, 

Case Ⅲ and Case Ⅳ, respectively. 

Case I: The basic model without considering specifical uncertainty, 

utilizing the mean of the historical data set as the boundary condition, 

overlooking the randomness of secondary strikes when formulating the SR 

strategy. In this scenario, the reserve commitment is set at 5% of the total 

load capacity. 

Case II: The SP model, which decides the corresponding SR strategy 

using SP approach and is verified with the secondary strikes set constructed 

by historical data to obtain a more suitable scheduling. 
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Case III: The Conventional two-stage RO model characterizes secondary 

strikes utilizing a box uncertainty set, where the uncertainty set parameter 

Γ is selected based on the worst N-k faults identified in the historical data 

set. 

Case IV: The proposed DRO model, which utilizes historical data set to 

construct the ambiguity set and support set to describe the uncertainty for 

secondary strikes in SR strategy formulation. (i.e., the proposed model) 

Before presenting the application performance in different cases, we aim 

to illustrate that the proposed DRO model can achieve higher economic 

benefits and robustness, particularly through a more accurate estimation of 

secondary strikes. During the implementation of the SR strategy, out-of-

sample tests are conducted to verify the performance of the proposed model 

and algorithm, which are sampled in 1000 possible secondary strikes 

scenarios by the Monte Carlo (MC) method to simulate a wide range of 

branch outage scenario. In the out-of-sample test, we compare the start/shut 

cost, reserve commitment cost, adjustment cost and average unexpected 

load shedding penalty cost across the four models (Case I-IV) in the MC 

simulating scenario, as shown in Table 3. 

Table 3 

Costs of Case I-IV under MC simulating scenario (104$) 

 Start/Shut Reserve Adjust Avg.penalty Total 

Case Ⅰ 2.5 0.84 1.90 25.52 30.76 

Case Ⅱ 2.5 1.15 2.36 9.33 15.34 

Case Ⅲ 3 1.22 2.82 8.75 15.79 

Case Ⅳ 3 1.30 3.03 6.43 13.76 

In terms of load shedding penalty costs, the performance order from best 

to worst is Case IV > Case II > Case III > Case I. The basic model in Case 

I formulates the SR solution purely from an economic perspective, aiming 

to minimize the formulation cost of the SR strategy. However, it incurs the 

highest unexpected load shedding penalty because MEG allocation, reserve 

commitment, and defensive MG reconfiguration ignore the uncertainty of 

secondary strikes, rendering the SR strategy ineffective under such 

circumstances. 

Considering the uncertainty of secondary strikes, the total costs in Case 

II and Case III are significantly reduced compared to Case I, but the SP 

model (Case II) performs better than the conventional two-stage RO model 

(Case III). The two-stage RO model focuses only on the worst-case scenario, 

but the probability of these extreme scenarios occurring is very low. As a 

result, the SR strategy formulated by the conventional two-stage RO model 

fails to protect critical loads in many non-worst scenarios, leading to higher 

load shedding penalty costs. 

Case II, using the SP model, considers multiple secondary strikes 

scenarios and adapts to various branch outage scenarios, resulting in better 

out-of-sample performance in most MC simulation samples. However, SP 

may lead to "overfitting," where the formulated SR strategy becomes 

ineffective if the actual strikes significantly deviate from the majority of 

scenarios considered. 

In contrast, the DRO model (Case IV) utilizes the confidence level γ to 

construct an ambiguity set centered on the empirical distribution, 

incorporating the true probability distribution of secondary strikes at a 

specific confidence level. This ambiguity set also includes various potential 

distributions of secondary strikes event. This approach allows for the 

consideration of both worst-case and various non-worst-case scenarios in 

the formulation process of SR strategies. The worst secondary strike 

distribution is obtained by searching within the ambiguity set. The specific 

branch interruption events that may occur in each case within this worst 

distribution are constrained by the support set control parameter Γ in the 

DRO model, ensuring that the searched worst distribution has practical 

physical significance. 

By combining ambiguity set with support set, the DRO-based SR 

strategy for IEHS achieves both economic efficiency (lower day-ahead SR 

strategy formulation cost) and robustness (lower unexpected load shedding 

penalty). Compared to the SP model, the DRO model emphasizes the 

probability information contained in the historical data set, searching for 

the worst-case distribution under the confidence level γ and the event 

combinations that conform to this distribution, resulting in a total operation 

cost reduction of 10.29%. In comparison to the RO model, the DRO model 

not only focuses on a single potential branch interruption scenario but also 

considers various non-worst-case scenarios as a basis for decision-making, 

leading to a total operation cost reduction of 12.85%. 

5.2.2 Sensitivity Analysis of Ambiguity Set and Support Set 

To further analyze the characteristics of the DRO model, we perform a 

sensitivity analysis by varying the confidence level γ of the ambiguity set 

and the control parameters Γ of the support set. The total cost in the out-of-

sample test is evaluated for different values of γ and Γ. The results are 

summarized in Table 4. 

Table 4 

Costs under different confidence level γ and control parameters Γ (104$) 

Γ 
γ 

Lower 
20% 

Lower 
10% 

Base 
Upper 
10% 

Upper 
20% 

95% 11.849 12.268 13.766 14.678 15.572 

90% 11.602 12.045 13.408 13.837 15.166 

80% 11.048 11.773 13.256 13.562 14.768 

70% 10.380 11.426 12.946 13.331 14.349 

Under the same confidence level γ, as the support set control parameter 

Γ increases, the severity of secondary strikes in the worst-case distribution 

becomes more pronounced, leading to higher SR strategy formulation costs 

and unexpected load shedding penalty costs. The total cost increases by 

13.11% or decreases by 13.92% when the base size of Γ increases or 

decreases by 20%, with the confidence level set at 95%. This indicates that 

the proposed DRO model develops better deployment strategies to cope 

with uncertainty. Higher Γ values make the model account for more severe 

scenarios, necessitating more robust and costlier strategies. Therefore, the 

proposed DRO model not only demonstrates economic benefits but also has 

a better ability to adapt to different fault scenarios, which explains its 

potential for application in actual scheduling under increasingly severe 

extreme events. 

Under the same support set control parameter Γ, as the confidence level 

γ increases, the total cost of the DRO model continues to increase. This is 

due to the fact that, with higher confidence level γ, the Wasserstein metric 

model considers a broader range of potential distribution, even though the 

true distribution is not necessarily included. The worst-case distribution 

identified becomes more serious, leading to the highest total cost. This 

results in more conservative and robust SR strategies, which are costlier. 

With the total cost at the 95% confidence level increases by 6.33% 

compared to the cost at 70% confidence level, which demonstrates that 

scheduling decision-makers can adjust the confidence level γ to control the 

robustness of the SR strategy, highlighting the flexibility and controllability 

of the DRO model in actual scheduling scenarios. 

5.3 Modified 33-bus and 32-node system 
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The case study in this section is conducted using the IEHS shown in Fig. 

4, which comprises a modified IEEE 33-bus PDN and a Barry Island 32-

node DHN, collectively referred to as the M33B32N system. In this setup, 

three CHP units are interconnected with buses 1, 22, and 33 in the PDN, 

and nodes 31, 1, and 32 in the DHN. Additionally, three EHs are connected 

to the same nodes as the CHP units. In this case study, the ambiguity set is 

constructed from 100 secondary strike samples. We observe that the 

maximum number of branch interruptions in the sample is 4, so N-4 

unexpected branch outage events are considered here, and the parameter Γ 

in the support set is determined by the mean of the total outage duration in 

the sample, which is set to 60. 
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Fig. 4 The topology of M33B32N system 

5.3.1 Effectiveness of VES in DHN 

To illustrate the impact of the VES of the DHN in the SR strategy 

formulation of the IEHS, including the start/shut of CHP unit and EH unit 

and the reserve capacity, two case studies are set up for comparative 

analysis. The results generated by the two cases are verified in the 1000 MC 

simulating scenario. 

Case V: Only the loss characteristics of the working fluid in the pipeline 

are considered, and the VES model is not included. The temperature change 

at the pipeline inlet is immediately reflected at the pipeline outlet, and the 

DHN does not exhibit the VES capacity. 

Case VI: The VES model of the DHN and its capacity described in this 

paper are considered (i.e., the proposed). 

The cost distribution of the two cases in the formulation and 

implementation process of the SR strategy is shown in Table 5. The thermal 

power balance of Case V and Case VI during the implement stage of the 

SR strategy is shown in Fig. 5. 

In the Case V, shown in Fig. 5(a), due to the need to meet real-time 

source-load balance, although the thermal power provided by the CHP and 

EH units before the DRO model confirms the secondary strikes is less than 

that in Case VI, the thermal power supplied during the secondary strikes 

period is higher than in Case VI. The thermal power supplied by the CHP 

and EH units need to keep up with the thermal load trends. In each SR 

strategy implement period, the thermal power loss of DHN and the thermal 

load power need to be balanced, resulting in less flexibility in the SR 

strategy. A higher reserve capacity is required, and the CHP and EH units 

need to maintain long-term operation, which is reflected in the higher 

specific equipment operating costs shown in Table 5. 

In Case VI, considering the thermal inertia of DHN and utilizing the VES 

capacity, during the period from 00:00 to 04:00, more CHP units and other 

heating equipment are invested in heating compared to Case V, shown in 

Fig. 5(b). This shows that the process of charging and discharging DHN as 

a large energy storage system in the SR strategy implement process, which 

can avoid the need for real-time source-load balance and extends this 

balance to a longer time scale. The flexible and adjustable characteristics of 

DHN are utilized to release its heating potential within the adjustable 

temperature range, ensuring that unexpected load shedding is minimized 

through long-term thermal power balance. 
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Fig. 5 The thermal power balance compared with Case Ⅴ and Case Ⅵ 

From the results in Table 5, considering the thermal inertia of DHN and 

utilizing the regulation capability of its VES, in the process of formulating 

the SR strategy, compared with Case V without considering, the 

deployment cost of CHP decreased by 4.86%, and the deployment cost of 

EH decreased by 7.66%. In the scenario considering VES capacity, the 

composite cross-time translation capability of VES ensures the 

synchronous change of electrical and thermal loads as much as possible, 

mitigating the issue of weak flexibility of CHP units. 

5.3.2 Effectiveness of proposed SR strategy 

To illustrate that the proposed SR strategy can overcome the limitations 

of a single SR strategy, three cases are set up in this section. The 

performance of these SR strategy based on the DRO model is tested using 

1000 MC sampling to evaluate the effectiveness of the proposed SR 

strategy. 

Case VII: In the SR formulation process, MEG is designated at a known 

bus, followed by the defensive MG reconfiguration deployment. 

Case VIII: In the SR formulation process, both MEG allocation and 

reserve commitment are considered, but without defensive MG 

reconfiguration. 

Case IX: The proposed strategy, which includes defensive MG 

reconfiguration in the PDN, along with MEG allocation and reserve 

commitment formulation. 
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Table 5 

Equipment operating costs of Case Ⅴ and Case Ⅵ under MC simulating scenario (104$) 

 CHP Start-Shut CHP Reserve EH Reserve CHP Adjusting EH Adjusting Thermal Shedding Total 

Case V 2 7.98 2.87 13.31 4.78 9.83 40.77 

Case VI 2 8.49 2.65 14.15 3.16 6.72 37.17 

Fig. 6 compares the results of the PDS subsystem in the IEHS for MEG 

allocation and defensive MG reconfiguration between Case VII and Case 

IX in the SR strategy. The simulation results in the MC sampling scenarios 

are shown in Table 6. 

Table 6 

Costs of Case Ⅶ-Ⅸ under MC simulating scenario (104$) 

 Start-Shut Reserve Adjusting Penalty Total 

Case VII 6 17.27 19.08 35.97 78.32 

Case VIII 4.5 15.46 24.15 27.9 72.01 

Case IX 4.5 14.68 22.32 27.89 69.39 

In Case VII, the position of the MEG is specified before the SR decision 

is formulated, and the MG reconfiguration decisions are made with the 

MEG as the root bus. Although the radial topology of each MG is 

guaranteed, the load distribution within each MG is not balanced, 

preventing the CHP unit from being fully utilized to maximize support for 

critical loads. The uneven output of the CHP unit leads to a decrease in 

thermal power output, causing branch outages in the PDN to propagate to 

the DHN through deep IEHS coupling. Consequently, the formulation of 

the SR strategy requires a higher cost of start-up and greater reserve 

capacity in Case VII, but it does not effectively reduce the unexpected load 

shedding penalty costs during the SR implementation process. 
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(a) Defensive MG reconfiguration of Case VII
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Fig. 6 The comparison of defensive MG reconfiguration 

In the SR strategy of Case IX, the allocation strategy of MEG is carried 

out simultaneously with defensive MG reconfiguration and reserve 

commitment. The MEG can identify buses with the highest priority and the 

heaviest load rates. Especially when combined with defensive MG 

reconfiguration, it ensures that the total load in each MG matches the supply 

capacity by adjusting the location of the MEG access bus and MG 

boundaries, maximizing the utilization of MEG capacity. The rational use 

of MEG allocation through the SR strategy, which incorporates the co-

optimization of defensive MG reconfiguration, MEG allocation, and 

reserve commitment, results in a more economical SR strategy formulation 

cost, reducing the unexpected load shedding by 1705MW compared to Case 

VII. This demonstrates the superiority of the proposed SR strategy, as it 

effectively allocates the limited emergency resources of the IEHS to the 

greatest extent. 

Fig. 7 illustrates the reserve commitment of the SR strategy for Case VIII 

and Case IX, along with the total generation power of the MEG in the MC 

simulation scenario. The worst-case probability distribution of future 

uncertain secondary strikes captured by the DRO model shows that the first 

branch outage occurs at 4:00. In Case IX, prior to this initial branch outage, 

no reserve capacity preparation is conducted, and the MEG maintains a 

stable output. During this period, the CHP unit generates substantial 

thermal power to maximize the temperature of the DHN, adjusting for load 

fluctuations. 
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Fig. 7 The comparison reserve commitment between Case VIII and IX 

After 4:00, when the first branch outage impact occurs, the MEG unit 

establishes a corresponding reserve capacity. As secondary strikes continue 

and load power increases, the MEG's reserve capacity gradually expands 

until it reaches the power output boundary, beyond which it cannot be 

increased further. In the MC simulation scenario, after multiple serious 

branch outages, the MEG sustains its maximum output within the reserve 

capacity during load peaks, thereby maximizing support for critical loads. 

Both Case VIII and Case IX include reserve commitments, but Case VIII 

does not involve defensive MG reconfiguration. While Case VIII utilizes 

the DRO model to obtain the worst distribution of subsequent branch 

outage scenarios, it relies on increasing the reserve capacity to manage 

these outages effectively. This approach is constrained by the ramping 

capabilities of the MEG unit and the need to balance the formulation cost 

of the SR strategy with the unexpected load shedding penalty cost. 
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Consequently, Case VIII requires a higher reserve capacity compared to 

Case IX.  

This increased reserve capacity in Case VIII arises from the absence of 

defensive MG reconfiguration. Maintaining the entire PDN in an integrated 

topology allows the MEG to maximize its supply capacity before secondary 

strikes occur, facilitating energy mutual aid within the network. However, 

in practical applications, the capacity of the MEG is significantly smaller 

than the total network load, as set up in this case study. Thus, integrating 

multiple MGs into a single topology provides only limited benefits. 

When secondary strikes occur, the sudden disconnection of lines results 

in all loads at the endpoints being detached. To maintain source-load 

balance and ensure voltage stability at both ends of the disconnected line, 

the MEG must quickly adjust its output. This necessitates substantial 

reserve capacity and rapid output fluctuations to coordinate with remaining 

units during such emergencies, which conflicts with the MEG units' goal of 

maximizing output in extreme branch outage scenarios to protect critical 

loads effectively. 

6. Conclusion 

This study proposes a novel DRO-based SR strategy for IEHS and 

constructs appropriate ambiguity set and support set to capture the 

uncertainty of branch outages caused by secondary strikes during SR 

implementation. The logical constraint convex relaxation, along with an 

improved C&CG algorithm, is integrated into the DRO model formulation 

to address the challenge of solving the SR problem. The effectiveness of 

the proposed SR strategy and DRO model for IEHS is verified using two 

test systems. Compared to existing SR strategies, the coordinated SR 

strategy for IEHS reduces the unexpected load shedding by up to 1705MW 

during secondary strikes. Additionally, the DRO model demonstrates lower 

operation costs under secondary strikes, outperforming other models by 

more than 10.29%. We selected 20 different parameter configurations for 

the proposed DRO model's sensitivity analysis. Compared to the rate of 

parameter changes, the rate of operating cost variation is lower, 

demonstrating that the DRO-based SR strategy for IEHS maintains stable 

performance across different confidence levels and control parameters, 

underscoring its potential for practical industrial applications. 

Further research is recommended in the following areas: 1) While this 

paper focuses on the uncertainty of subsequent unexpected events, 

uncertainties in renewable energy generation and load consumption during 

SR implementation process are also significant. Future work will consider 

incorporating these uncertainties into the model. 2) This paper assumes a 

three-phase balanced state for the PDS, yet addressing the three-phase 

imbalance problem during SR implementation is crucial in practice. 3) This 

current focuses on the operational scheduling in SR, but integrating 

emergency crew dispatch and fault components repair will be an essential 

direction for future research. 
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Appendix. DRO reformulation 

This section provides the derivation process from Eq.(60) to Eq.(61). 

Step 1. Reformulate Eq.(60) to a worst-case constrained optimization 

problem: 
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  (63) 

Step 2. According to transformation mentioned in Ref.[41], the norm 

operation in the right-hand side of Eq.(63) can be reformulated into a linear 

operation by introducing auxiliary variables κs: 
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According to the definition of dual norm: 
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Where, ‖·‖∗ represents the dual norm operation. For L1-norm, its dual 

norm is the L∞-norm. Conversely, for the L∞-norm, its dual norm is the L1-

norm. Additionally, the dual norm of the L2-norm is itself. 

Step 3. Converting the maximization operation to the minimization 

operation and removing the minus sign can keep the optimization direction 

unchanged. 
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Step 4. Based on the minimax theorem, the Eq.(66) can be written as: 
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