GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/182968/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Lin, Yumian, Xiong, Houbo, Zhou, Yue , Wang, Tianjing, Lin, Yujie and Guo, Chuangxin 2025.
Distributionally robust service restoration for integrated electricity-heating systems considering secondary
strikes of subsequent random events. Applied Energy 380, 125038. 10.1016/j.apenergy.2024.125038
Publishers page: https://doi.org/10.1016/j.apenergy.2024.125038
Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may

not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.




Distributionally Robust Service Restoration for Integrated Electricity-
heating Systems Considering Secondary Strikes of Subsequent Random
Events

Yumian Lin®, Houbo Xiong?, Yue Zhou®, Tianjing Wang®, Yujie Lin?, Chuangxin Guo®

“College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
bSchool of Engineering, Cardiff Universit, Cardiff CF24 344, UK
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Highlights
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Abstract

The multi-energy system has become a pivotal technology for achieving zero-carbon transition. To address the
extreme events with increasing frequency, this paper proposes a novel service restoration (SR) strategy for the
integrated electricity-heating system to effectively restore critical loads after such events. The novel SR strategy
encompasses defensive microgrid reconfiguration, mobile emergency generators allocation, and reserve
commitment. Besides, the virtual energy storage of the heating system is utilized as an emergency resource in the
SR process. By modeling the uncertain failures with a combination of ambiguity sets and support sets, the
proposed SR strategy can effectively manage secondary strikes from subsequent random events. A distributionally
robust optimization (DRO) model is then presented to identify the worst-case probability distribution of these
uncertainties, enabling robust restoration decisions. To solve the DRO model efficiently, this paper proposes a
solution method that employs logical constraint relaxation to tackle the non-convex challenges posed by discrete
decision variables. Additionally, an improved column and constraint generation algorithm is developed. Case
studies on modified 6-bus and 6-node systems, as well as IEEE 33-bus and 32-node systems, demonstrate the
effectiveness of the proposed model and solution methodology.

Lekima in 2019 significantly impacted southeastern China, causing
1. Introduction extensive infrastructure damage and disruptions that persisted for several

days [2]. Similarly, in 2020, ice storms in Jilin Province, northeastern

Due to rapid environmental changes, high-impact and low-probability
natural disasters, such as hurricanes, floods, wildfires, and extreme weather
events, have caused significant power outages over recent decades.
Statistics from 2003 to 2012 indicate that 58% of power outages in the
United States were attributable to natural disasters, resulting in annual

economic losses ranging from $18 billion to $33 billion [1]. Typhoon
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China, led to the shutdown of major thermal power plants due to disruptions
in lines and pipelines, affecting over 300 million people with shortages of
electricity and heating [3]. In the United States, the severe cold wave in
2021 resulted in nearly 10 million people losing access to natural gas and
electricity during peak hours, with estimated economic losses up to $295
billion [4]. These incidents underscore the vulnerabilities of the electrica
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grid to extreme events, highlighting the need for proactive measures to
enhance grid resilience, minimize forced load shedding, and expedite SR
following such disruptions.

The SR prioritizes the protection of critical loads and the repair of faulty
components, which include MG reconfiguration/integration [5-10],
operation of switches [11-12], dispatch of MEG [13-18], and routing of
repair crews [19]. Among the above strategies, MG reconfiguration is
notably significant, primarily because it prioritizes continuity of supply
over immediate repair. Maintaining a radial topology within the MG is a
fundamental requirement for reconfiguration [5]. The process of MG
reconfiguration is not only constrained by the radial operation of the
distribution systems but also requires components that control the
frequency and voltage stability within the isolation area. Mobile sources, as

a flexible component with voltage regulation capabilities, participate in the
process of SR to extend the survival time of critical loads. Mobile sources
including generators [14], storage systems [15] and electric vehicles [16]
are managed and guided to ensure the continuous power supply of critical
loads. Among them, the MEG can further participate in the SR strategy
including black start due to its continuous and controllable supply
capability [17].

While existing studies employ the coordination of MG configuration and
MEG allocation to ensure the continuous supply of power distribution
systems (PDS), they often ignore the impact of secondary strikes from
subsequent random events. For instance, Hurricane Sandy disrupted New
York State's power system on October, 2012, leaving more than 2 million
customers without power at its peak and triggering a series of subsequent




incidents in the following days, including natural gas pipelines ruptures and
damage to emergency power sources, ultimately leaving some areas
without energy for over a week [20]. Similarly, Hurricane Harvey in 2017
struck Texas, leaving over 338,000 electricity customers without power.
Full restoration took a week, as flooding from secondary disasters
significantly impeded recovery efforts [21]. In the 2019 typhoon in the
Tokyo area, the extended duration of the storm led to secondary strikes,
causing further disruptions [23]. Secondary strikes can cause load shedding
through sudden interruption of the energized branch, disrupting the original
SR strategy. Therefore, to further enhance the risk resistance of the SR
strategy under prolonged extreme events, the secondary strikes should be
considered. Moreover, it is worth noting that reserve commitment is
maturely applied in normalized dispatch [24] and pre-extreme event unit
commitment [25] to solve the uncertainty problem of renewable energy and
extreme event. In the research of reserve participation in SR, significant
attention is given to the economic evaluation and scheduling of reserve
commitment in day-ahead frequency SR market [26-27]. However, the
significance of reserve commitment to SR during subsequent random event
is ignored, particularly when considering the integration of MG
reconfiguration and MEG allocation.

With the advent of smart grid technology, multi-energy systems are
widely constructed for achieving efficient zero-carbon transition. The
widespread adoption of coupled components, such as combined heat and
power (CHP) units, has promoted the integration of PDS with the district
heating network (DHN) into IEHS. While this integration enhances
operation flexibility and brings economic benefits for power systems, it also
introduces challenges to the SR process, such as limited energy conversion
efficiency of CHP and load shedding propagation from PDS to DHN [3].
To address these challenges, the remote control of IEHS is used to adjust
the topology of PDS and the configuration of DHN [28]. Similar studies of
SR for IEHS are conducted in [29-30].

Although the above studies have investigated achieving a continuous
supply of services through approaches such as reconfiguration and
compensating for the lack of CHP flexibility, they have ignored the storage
capacity provided by pipelines through the thermal inertia characteristics of
DHN, also called virtual energy storage (VES), which offers a crucial
flexibility resource for SR. Ref. [31] simulates the hysteresis phenomenon
of the thermal network using the node method and describes the thermal
storage characteristics of the pipeline. Ref. [32] recognized the role of
pipeline storage in improving SR capacity but modeled it as centralized
energy storage, ignoring the actual physical limitations of pipeline storage.
The VES has also been used to reduce operating costs [33] but has not been
applied in SR, indicating an area that needs improvement.

The mentioned studies have adopted deterministic optimization methods
for SR, but the occurrence of natural disasters and secondary strikes are
hard to predict. Stochastic programming (SP) and robust optimization (RO)
are employed to enhance the system's ability to handle uncertainty, thereby
improving the reliability of SR strategies [14-16,34]. While SP can
effectively model various uncertainties, it necessitates accurate probability
distributions. Obtaining these distributions of independent events, such as
branch outages, is challenging and can lead to a significant increase in
problem dimensionality, thereby reducing solution efficiency [29]. In
contrast, RO does not rely on modeling probability distributions or

uncertainty-related information. Instead, it conceptualizes extreme events
as adversaries to develop a robust SR strategy [35]. However, the resulting
strategy may have lower cost efficiency.

Distributionally robust optimization (DRO) is a novel decision-making
approach that differs from RO, which only relies on the worst-scenario
boundary values of uncertain variables, and from SP, which requires
numerous samples to simulate potential distribution. The DRO model
describes uncertainty by defining an ambiguity set that encompasses all
potential distributions at a certain confidence level and combining it with a
support set that specifies the possible range of values [36]. This approach
allows the DRO model to overcome its reliance on precise distributions or
extreme scenarios. It seeks the worst-case distribution within an ambiguity
set containing a large number of possible distributions, while restricting
specific events conformed to the distribution within the defined support set.
However, most exiting DRO-based energy system optimization models use
first-order and second-order moments to capture the high-dimensional
trends of distribution [37-38]. Some studies employ divergence-based
modeling, but its asymmetric nature leads to incomplete decisions [39].
Consequently, many studies focus on DRO under the Wasserstein metric,
which has demonstrated advantages in various tasks , including
conventional scheduling of IEHS [40], resilience improvement [41], and
pre-disaster preparation [42]. Unfortunately, there is no study applying the
DRO model in SR strategy formulation in the context of secondary strikes,
which are likely to occur and challenging to predict. We aim to develop a
DRO-based SR strategy that utilizes the advantages of DRO model in
addressing uncertainty, resulting in a high computational efficiency (ability
to manage greater potential uncertainties with a low computational burden)
and high solution quality (effective use of historical data sets and
compatibility with multiple SR strategies) in SR strategy process.

The main contributions of this paper are listed as follows and are
compared with the existing studies in Table 1.

1) We propose a novel SR strategy for IEHS, that comprehensively
integrates defensive MG reconfiguration, MEG allocation and reserve
commitment. This strategy aims to ensure the continuous supply of critical
loads during SR. By incorporating the uncertainty of secondary strikes of
subsequent random events, the proposed novel strategy enhances the
survivability of critical loads throughout the SR implementation process.

2) We model the thermal inertia of the DHN as VES and integrate it into
the implementation process of SR strategy as an emergency resource, which
can enhance the flexibility reserve before secondary strikes, thereby
reducing the thermal load shedding in DHN after IEHS is impacted.

3) An ambiguity set and support set combined DRO model is utilized to
capture the uncertainty of secondary strikes in the IEHS. The ambiguity set
describes the potential distributions, including the worst-case distribution
of secondary strikes, while the support set defines the boundaries of the
outage events.

4) The DRO model is formulated by a two-stage tri-level problem, which
is further decomposed into a SR implementation master problem and
several subproblems screening out the worst-case uncertainty distribution.
A customized convex relation technology is introduced to guarantee the
tractability of proposed DRO model, and an improved column and
constraint generation (C&CG) algorithm is developed to efficiently obtain

optimal solutions.



Table 1

Comparative features of relevant studies pertaining to SR strategies for [EHS
Reference Secondary strikes VES MG reconfiguration MEG allocation Reserve commitment  Uncertainty
[14] v x v v x v
[6,15-16] x x v v x v
[10,18] x x v v x x
[9,11,19] x x v x x x
[7,22] 4 x v v x v
[12,25] x x v x v v
[3,17,28] x x x v x v
[30,32] x v x x x x
This work v v v v v v

2. Concept of SR Strategy for IEHS

This section mainly introduces the concept of the proposed SR strategy
and DRO model. Section 2.1 describes the SR framework, integrating
multiple strategies and the method for capturing subsequent fault
uncertainty. Then, section 2.2 introduces the VES formulation resulting
from thermal inertia of the IEHS. Finally, section 2.3 explains the
construction of the ambiguity set and support set for the DRO model.

2.1 Framework of Proposed SR Strategy

During extreme events, the electricity transmission system is initially
impacted, causing the main grid to experience a decline in supply capacity.
To ensure the stable operation of the main grid, it is necessary to reduce or
cut off the power supply on the interconnection line in the fault area. This
paper focuses on the IEHS in the fault area and develops a more robust and
economical integrated SR strategy for such scenarios. This proposed
strategy captures the uncertainty of secondary strikes of subsequent random
events through the DRO model and improves the risk resistance of the SR
strategy.

Fig. 1 is taken as an example to illustrate the framework for formulating
and implementing SR strategies for the IESH, which consists of the PDS,
DHN, CHP units, and electric heater (EH) units. After an extreme event,
the substation of the IEHS detects power attenuation and oscillation on the
feeder connected to the main grid, indicating impending load shedding and
supply interruption. At this point, it is necessary to immediately assess the
risk of disconnection from the main grid and make the corresponding SR
strategy, which consists of a set of tasks, including MEG allocation,
defensive MG reconfiguration, and reserve commitment. It assumes that the
power supply area of the main grid where the IEHS is located is interrupted
due to a disaster. In the process of implementation, the MEG connects to
the pre-positioned bus to supply power to the critical load, and the PDS is

Assess the risk of being disconnected from
the main grid

-AI‘- Substation detects power
—— attenuation in the feeder

Feeder

Main Grid

Formulate SR strategy

divided into multiple MGs, with all equipment operating according to the
reserve plan.

The IEHS remains in the fault area, and the continuous impact of extreme
events can cause secondary strikes within the IEHS, introducing uncertainty
into the implementation process of the formulated SR strategy. To address
this problem, we propose a two-stages tri-level problem based on the DRO
model, as shown in Eq.(1), to enhance the robustness of the SR strategy. In
the first stage, we describe the outer layer problem, which determines
multiple optimal SR strategies for IEHS. The second stage integrates
middle layer and inner layer problem, exploring the worst-case distribution
realization of secondary strikes by maximizing the optimal value of the
inner layer problem. The probability distribution IP of secondary strikes on
the IEHS is assumed to be uncertain and operates within the ambiguity set
W(P,D,) constructed using historical data. The worst-case probability
distribution searched is added to the first stage through the expectation
operator of the value function Qx, i, &). The inner problem seeks the
optimal SR implementation to minimize penalties from the unplanned
power and thermal loads shedding and wind power curtailment in response
to the uncertainty secondary strikes. The robustness of the two stages tri-
level problem solution is ensured by minimizing the total cost of the first
stage under the worst-case probability distribution within the ambiguity set
W(P,D,), using “max-min” operators.

min ¢Tx+ max Ep [Q(x.i,¢)]
xelXz ]PeW(_]P’,B
ie; 1)

X\X\T\’z < BT

st. Ax+Bz<

xeR

In Eq.(1), x and z are continuous and binary variables of the SR strategy,
which and defensive MG
reconfiguration respectively. & are the binary uncertain variables of the

represent reserve, unit commitment

worst-case scenario. The E is the expectation operator, A, B, D, b and fare
constant matrices and their corresponding constraints.

Implement SR strategy

MEG
Allocation

Defensive
Islanding

Reserve
Commitment

Fig. | Framework of SR strategy for IEHS



In the inner layer problem, we consider the continuous implementation
of SR decisions within a scheduling period. We measure the total penalty
of load shedding under defensive MG reconfiguration and MEG allocation
z, reserve decision x and subsequent uncertain fault & while SR is
implemented. During the SR strategy operation, the IEHS can utilize the
VES capacity in the DHN and the corrective dispatch within the reserve
capacity to minimize the emergency load reduction, as shown in Eq.(2):

Q(x,if):mind—ry
s.t.y Ex+Hy+Ni<r 2)
ye RD}MT\’I- < BlEKT!
where, E, H, N and r are constant matrices and their corresponding
constraints. The variable i realizes the coupling of defensive MG
reconfiguration and secondary strikes through AND operation. y is the
decision variable to achieve the minimum load shedding penalty.

2.2 The VES of IEHS

We analyze the demand for electricity and thermal by users in the [EHS
during the formulation and implementation of the SR strategy. The
electricity demand is met by MEG, wind turbines (WT), and CHP units,
while the thermal demand is supplied by CHP units and EH units. The CHP
units burn natural gas to supply electricity and thermal simultaneously in a
fixed ratio, while the EH units consume electricity to convert into thermal.
Electricity and thermal are distributed to consumers through the PDS and
the DHN, respectively.

In the heating distribution system, the DHN benefits from the presence
of flexible energy storage capacity due to its inherent thermal inertia,
thereby enhancing system flexibility on the IEHS. We introduce the
concept of VES to describe the high-capacity energy storage characteristics
exhibited by the DHN. Unlike traditional thermal energy storage systems,
VES does not have device parameters such as state of charge,
charge/discharge thermal energy, or charge/discharge thermal efficiency.
Although some scholars model VES as a thermal energy storage device [32],
this is only a mathematical equivalence and does not accurately reflect the
actual characteristics of the DHN.

We developed a model considering the transmission delay in the DHN
based on its quasi-steady-state model [31]. In each scheduling interval Az,
we assume that a mass block flows through the pipeline p from the inlet to
the outlet, with the time taken recorded as 7,. This time may not necessarily
be an integer multiple of the scheduling interval Az. Therefore, we use the
weighted average of the temperatures of the two mass blocks at the outlet,
denoted as 7;=(K-1)At and 7,=KAt. By calculation, the temperature at the
pipeline outlet can be determined as:
ax (z_2 _r )le/rpotut +aga ( »- )T[s(/ilo;t’

qK(Tz T )+4K+1( p Tl)

s/r out s/r oul
=C T +CoTy Lo

Ts/ rout _

VpeP,VteT 3

where, C, and Cz are the weighting coefficients of T%r;';“ and T%i?"l';,
respectively.

During the thermal transmission process in the DHN, thermal exchange
with the external environment leads to a decrease in temperature at the
pipeline outlet compared to the inlet. Incorporating this with the quasi-
steady-state Eq.(3) of the DHN, we can express the temporal coupling
constraints of the temperatures at the pipeline inlet and outlet as:

s/t,0ut / /
T CCT“;‘;‘ +CrCy Tg v.in +(1—C1C3—C2C4)Tt

L L VpeP,NteT *
Cy=e oK P,Cy =e 7K+l ?ag :kp /(ch )

In Eq.(4), we observe that under the mass flow control mode, the
temperature at the pipe outlet can be represented as a linear combination of
inlet temperatures at various scheduling times. Here, C; and C, serve as

auxiliary coefficients in the linear formulation.
2.3 Construction of Ambiguity Set and Support Set

In this subsection, the uncertainties of secondary strikes to the branch are
described by an ambiguity set that contains the true distribution function
with a specified Wasserstein distance and a given discrete support set.

2.3.1 Ambiguity set

The ambiguity set is constructed using a data-driven approach that does
not rely on a specific distribution. It characterizes the entire distribution
within the probability space, centered on the empirical distribution and
constrained by the Wasserstein distance metric. We utilize D, represents
the Wasserstein distance between the real distribution [P and the empirical
distribution P:

2,(p,P)= inf{En [a(e.8)]:6~-pé~ Ii»}
J,.);.le-&l mada

where, ||||” represent the p norm operations are used to calculate the

)

ﬂeP(—'xa)

distance between two random vectors. The empirical distribution is defined
as an estimate of the distribution of historical data P = > pﬁ(?), where,
d() represents the Dirac measure of sth sample.

It can be revealed from Eq.(5) that integrating the joint distributions
results in an infinite optimization problem, making it difficult to tackle and
requiring further processing. By leveraging the conditional distribution
interpretation of I7= 3™, PPy, the problem can be converted to utilize
conditional distribution PP, as variables. Thus Eq.(5) can be written as a
semi-infinite optimization as shown in Eq.(6):

Ns
9,(p8)= it [, e~ Bz ©

The ambiguity set W(@,H) is defined by two parameters P and 6:
w(b,0)={pepr@)2,(r,P)<0] )
The ambiguity set is centered on the empirical distribution P and is
defined within a radius § measured by the Wasserstein distance. This set
encompasses all probability measures supported by the random variables &
on the corresponding support set Z. The conservatism of the solution can
be controlled by adjusting the size of 6. As the number of selected samples
Ns increases, the empirical distribution will eventually converge to the true
distribution, causing f to approach zero. At a given confidence level, the
empirical distribution is typically chosen to converge to the true distribution
at an exponential rate [43], as demonstrated in formulation Eq.(8):

. o2
P(2,(P,P)<6)>1-exp| -Ns & ®)
CZ
Therefore, 6 can be represented by a given confidence level y:

, 1 1
6=C Eln(ﬁj ©)

In Eq.(9), Cis a constant, which can be obtained by solving the following
problem Eq.(10):
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where, & is the mean of &

2.3.2 Support set

A fundamental component of DRO is the support set, which defines the
range of values for random variables. In this paper, the support set defines
the binary status of branch / during the SR implementation process, where
0 indicates that the branch was attacked by a secondary strike and has left
the system, while 1 indicates that it remains in the system. The random
variables are distributed within the 2, probability space and are
constrained by the box support set Z, as shown in Eq.(11).

Z":/,t 2|l kg <&y VTt
=) g eplewTl| T (11)

ZZ@J <r
t I

In this support set, the first line of Eq.(11) specifies that N-k branches
remain undamaged after secondary strikes, where & is limited by the
maximum number of simultaneously faulty branches in the historical
dataset &. Additionally, the support set mandates that faulty branches
remain disconnected until the end of the SR implementation process. The
conservative parameter I', introduced in the second line of Eq.(11), limits
the total disconnection time of the faulty branches to control the severity of
secondary strikes.

3. Mathematical Formulation
3.1 MEG Allocation and Defensive MG Reconfiguration

3.1.1 MEG allocation

MEGs can control the access electricity bus to provide power and
maintain voltage stability in the MG. We utilize MEGs as the root bus of
the MG and perform defensive MG reconfiguration operations based on
them. During the SR formulation process, MEGs are deployed on the
appropriate bus of the PDS and maintain appropriate hot reserve or cold
reserve status. After realizing that the IEHS is disconnected from the main
grid, they are connected to the pre-positioned bus and maintain the voltage
stability of the self-organizing MG. In the SR strategy formulation problem,
the constraints on MEG allocation are as follows:

ZA%EGSL VieB (12)
geg
Z“%EG:L vgeg (13)
ieB

ZZA%EGSNMEG, VieB,VgeG (14)

ieB geG

Eq.(12) and (13) ensure that MEGs can only be assigned to a single bus,
while Eq.(14) ensures that the total number of buses assigned to MEGs does
not exceed the total number of MEG units available.

3.1.2 Defensive MG reconfiguration logic constraints

Eq.(15) and (16) ensure that buses are assigned to their respective MG,
which must have a root bus to be operational. For a branch to be part of MG
m, both bus 7 and bus j at its ends must belong to MG m, as captured by
Eq.(17). If bus 7 and bus j belong to different MGs, Eq.(18) restricts that

switch Sw, disables branch / connecting them.

> v =1, vies (15)

meM
Xim SXp m» Vi€B,YmeM (16)
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meM

3.1.3 MG radial constraints

PDS is typically constructed in a mesh structure but needs to operate in
a radial configuration to coordinate the relay protection scheme, which is
fundamental for defensive MG reconfiguration. The realization of a radial
network within the MG relies on satisfying two conditions [44]. Condition
1 is captured by Eq.(19), which mandates equality between bus-branch
discrepancies and root bus quantities. Condition 2 emphasizes maintaining
connectivity within MGs, elucidated further in the connectivity constraints.

DIDIETEDIDITEDIE (19
meMieN meMlel meM

3.1.4 MG connectivity constraints

Both single-commodity flow and multi-commodity flow can constrain
the connectivity of MG. Here, commodity refers to products moving
between sources and sinks, serving as a virtual representation of network
connections, also known as fictitious flow [7]. The specifies commodity are
exclusively generated at the root node, captured by Eq.(20), while Eq.(21)
denotes that each connected node within MG m functions as a sink with a
capacity of 1/|N]. Additionally, Eq.(22) restricts commodity flow to paths
existing between buses within MG m and the root bus.

0<g, <x. p YmeM (20)
fii— Z fi'k+gi=%M in,ma vieN (2D
ieto( i) jieL ie fir(ji\ikeL meM
- Z Yim <fi< Z Vimo Viel (22)
meM meM

3.2 Outer layer Problem

The objective function of the SR strategy formulation outer layer
problem is shown in Eq.(23), which aims to the minimum SR investment.
This includes the total cost of providing energy reserve and configuring the
start-shut state of units:

suc sdc. onc; CHP ( 5,CHP CHP
ch UeyptCo VeytCe eyt pe (Pc,z -Ey )*’

mmz < EH ( 5EH EH MEG ( sMEG MEG
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heH Y

23

In the specific formulation of the SR strategy, the minimum start-up/shut
down requirements of CHP and MEG are expressed as follow:

Up = Vpy = ib,t *[b’t,l, VbeCugvteT (24)
Up; +Vb,t <1, VbECUg,V[ET (25)
min{t+7}]°“,\T\}

(it 51 i ) T - ipg <max{LTO {71411}, vbecuGwieT (20)
k=t+2

min{Hle‘ff,\T‘}
(ib,t _l-b,t+l)TbOft - Z

k=t+2

i <™, wbecugvier (27

In the SR strategy formulation outer layer problem, we propose a reserve
formulation. This reserve dispatch plan ensures that the unit has sufficient
ramping ability in adjacent time intervals to achieve decoupling in



operating time. Additionally, the unit's output is covered in the reserve
interval, which helps reduce the unit status indicator variables during the
optimization problem-solving process, thereby avoiding the increase in
computational complexity caused by processing these indicator variables
[45]. The ramping limits for CHP reserve boundaries are as following:

PP G < RUSHP i+ PCHD (1-ip,). VeeCwvieT (28)

B} - PSP < RDEVP i, f;C}n*dx (1-igy). VeecvieT (29)
CHP CHP _ CHP _ pCHP

P icy BT < BT < PRy VeeCvieT (30)

The ramping limits for EH reserve boundaries are as following:

BEF - pE <RUPM, vhemvieT 3D
Pty -Biy <RDM, VheHvieT (32)
R <PP<PEN<BEL . VheMvieT (33)

And same to the MEG:
BYEG - pYEG <RUYES, vgegvieT (34)
PMEG PMEG <RUMEG’ VgeQ.vieT (35)
P;4£$<PWG<PMEG<Pg[Eg‘, VgeGVieT (36)

3.3 Inner layer Problem

As shown in Eq.(37), the objective function of the SR strategy
implemented inner layer problem aims to minimize the operation cost,
which consists of the unplanned shedding penalty of the power and thermal
loads, the penalty of wind power curtailment, and the units adjusting cost.
The objective function can be expressed as follows:

z cLoss (PLoss +QLo>s) ZCLossHan Z Cuur(AWT PM\/X;T)
minz deD ne€ wew (37
L Z cnp ( pCHP HEHP) . Z CMEG pCHP Z CEHpEH
ceC g€ heH

CHP i< the fuel cost function of CHP units.

where, f,
3.3.1 Dispatch constraints
During the process of SR strategy implementation, units can redistribute
power according to the reserve intervals scheduled in the formulated plan,
and WT can operate to obtain power within the available wind power

capacity. The constraints are as follows:

P < pCHP < BCHP veec,vieT (38)
PER<pP<BEH. vhemvieT (39
PYFG < pMFG <PMEG veegvieT (40)
0<PY <AV, YweW,VieT 41)

3.3.2 PDS constraints

Since the radial topology is guaranteed during the defensive MG
reconfiguration process, the DistFlow branch model is utilized to describe
power flow constraints. The active power and reactive power
decomposition form combines the reactive power and voltage amplitude,
which is more suitable for description in the PDS than the DC form due to
its power balance and power flow equation, and transmission branch

restrictions.

z PCHP z AMI:GPMI:G Z o T, Z Pfjiy= )

ceC 2eG wew icto( ji)|jiel
y VieBNVteT
St ot ek
ie filik)|ikel heM deD
CHP MEG HMEG
D0 Y AT D i

ceC g€G ieto(ji)[ijeL VieT (43)
[S
O+ S (o, -0)
ie fi(ik)|ikel deD

~Pf |z <Pf <Pfyozy, VIeLVteT (44)

-Of 7, <0, <0f )z, VIeLVteT (45)
Vit =(Ban + 0 )V =V, SM(1=z14), VieLieT (46)
Vit =B + 0 )V =V, M (1=214), VieLieT 47)

Vi<V, <V, VieBvteT (48)

The operation of the PDS is constrained by Eq.(42)-Eq.(48). Eq.(42) and
(43) ensure the active and reactive power balance at each bus. Eq.(44) and
(45) enforce that there is no active or reactive power flow on the damaged
or open branch. Eq.(46) and (47) represent the relationship between voltage
amplitude and branch flow, which are decoupled using the big-M method
for the damaged or open branches. Eq.(48) limits the boundary conditions
that the voltage amplitude on the connected bus needs to meet.

3.3.3 DHN constraints

We assume that the DHN operates in constant flow and variable
temperature (CF-VT) control mode. This mode changes the temperature of
the heating network working fluid while keeping the mass flow rate
constant, taking thermal inertia into consideration. The following equations,
together with Eq.(3) and (4), constitute the DHN supply and return water
pipeline model under the CF-VT mode:

ZHE}“’ + z HE = Py (15, -15,). VneSieT 49)
ceC heH
HL HLoss _ P S T 50
o~ HS =Py (T3, -T8, ), Wne&VieT (50)
D (st ) =Ty Y st e N vieT Gh
peP peP

7Snmix _ T;{;’in , VneN,VpePVteT (52)

Eq.(49) and (50) represent the exchange of thermal energy at the thermal
source and thermal load, respectively. Eq.(51) and (52) represent the
exchange of thermal energy in the DHN pipeline. Specifically, Eq.(51)
represents the constraint of temperature mixing at the outlet of the pipeline,
and Eq.(52) states that the temperature at the inlet of the pipeline is the same
as the temperature at the mixing point of the pipeline.

4. Solution Methodology
4.1 Logical constraints convex relaxation

4.1.1 AND logical constraints linearization

In the SR strategy implemented inner layer problem, the branch
operation status is simultaneously influenced by the SR strategy result z and
the subsequent fault ¢ under the worst-case distribution, which is
constrained by the AND operator. The multiplication of the two binary
variables can be converted into the following constraints:

ig <& 53
ig>2z+& -1 (53)
4.1.2 If constraint linearization
In the process of organizing the MG, the root node of the MG must first
be determined, as shown in Eq.(20). Simultaneously, the deployment of the
MEG as an optimization variable needs to be addressed during the MG
defensive decision-making stage, thereby forming an /f constraint problem,
as shown in the following:
Lifg. 20
_ ={ g, (54)

0, else



- {1, if X5~ &1, 20 (55)
0, else
By introducing auxiliary binary variables 4" and 4™ we can indicate
whether bus i/ is a potential feasible root bus. For the linearization of the If-
else conditional expression, a sufficiently small positive constant ¢ and a
sufficiently large constant M are utilized. Taking constraint (55) as an
example:

Xy, m = 8r, re<MA* (56)
X m = &, 2M(A+ —l)

This formulation ensures that the potential root bus i is correctly
identified and managed within the optimization framework, allowing the
MEG unit to effectively serve as the root node of the MG under the
specified conditions. Finally, the decision results of the auxiliary variables
can be unified through the AND constraint, 4=4"&4", The linearization

process of this AND constraint is similar to that of Eq.(53).
4.2 Reformulation of DRO Model

The DRO model, represented by Eq.(1), is a mixed integer linear
programming problem composed of the SR strategy formulation outer layer
problem and the SR strategy implemented inner layer problem under
infinite-dimensional support. Full support of the ambiguity set with infinite
support is crucial for precise and robust decisions. However, there are
infinite distributions within the empirical distribution Wasserstein metric
D, leading to an infinite number of recourse problems to identify the
worst-case distribution. This high complexity makes solving the original
DRO model challenging. Therefore, we adopt the conditional distribution
expressed in Eq.(6) and reconstruct the expected expressing of Eq.(1) into
the following form by employing the duality theory of infinite-dimensional
optimization problems:

Ns
pomms P [Q(xid)] :r'jpixszzllfgezp&(xi,é)ﬂdé‘

s.t. I _Pdé=1 :a (57)

EX _Ps le-&lf pac<o :p
J.gen
s=1 =

where, o, and f are dual variables.

The second line of Eq.(57) indicates that the integral of IP, is 1, ensuring
that P, is a valid distribution. The third line ensures that all distributions
within a Wasserstein distance of 6 from the empirical distribution are
included in the ambiguity set, measured by the L,-norm Wasserstein metric.

For problems described in Eq.(57), there exists at least one feasible
solution, which is a relative interior point P, = psé(?). Therefore, Slater's
condition and strong duality hold. We can consider a semi-infinite
optimization similar to the standard Lagrange duality in convex
optimization allowing the problem can be reformulated as the dual

formulation:

i 0
ﬂg&_ Zpsas +p (58)
s

st. Q(x.i&)—ay-ple-E" <0, VEem Vs=1,... Ns
According to the optimality condition, for the sth scenario, the optimal

solution a, under the worst-case distribution is as following:

a = fg:g{@(x,i,:s)—ﬁHé—é‘“H"} (59)

The expectation of the worst-case maxEp[Q(x, i, &)] is equivalent to
(60):

Ns
miny A0+ p, max| 0(x.1.£) - ple—£[" ] (60)
20 i

Combined with the outer layer problem decisions, the DRO model, after
reformulation, can be obtained. This combined model involves formulating
SR strategy to adapt to a range of possible future scenarios under the worst-
case distribution. In the outer layer problem, the model allows for
independent SR strategy decisions to be made in preparation for potential
secondary strikes. In the inner layer problem, given these initial decisions,
the focus shifts to solving key scenarios to identify the worst-case
distribution, thus constraining the outer layer problem decisions through
recourse. Therefore, the reformulation implements a two-step process: 1)
Simplification: by concentrating on a limited number of scenarios, the
problem's complexity is reduced, making the outer layer decisions more
manageable. 2) Robustness: by addressing key scenarios in the inner layer
problem, we ensure that the decisions remain robust against the worst-case
distribution within the Wasserstein metric.

The reconstructed DRO model resembles the classic two-stage RO. If the
support set is convex and the Wasserstein distance is defined as L;-norm or
L,-norm, then problem Eq.(60) can be further expressed as a linear program.
This linear program can be efficiently solved using decomposition
algorithms, such as Benders and C&CG which alternate between two
master-subproblems to guide the solution towards convergence.

4.3 Improved C&CG approach

The reformulated DRO model can be regarded as a variant of the
conventional two-stage RO model. However, obtaining the worst-case
probability distribution necessitates solving Ns subproblems. To avoid
introducing norm expressions during the subproblem solving and the
incorporation of cut hyperplanes involving norm operations into the master
problem, thereby increasing the computational burden, the auxiliary
variable x, is introduced into the C&CG iteration process [41], with
detailed derivation provided in the Appendix. After solving the master
problem, the solutions of the subproblems are influenced not only by the
first-stage decision variables but also by the dual variable S and the
auxiliary variable x;. Furthermore, during the process of adding C&CG
cutting hyperplanes, it is essential to introduce convex relaxed logical
constraints to reduce the solution space.

Step 1: Initialization. Set the convergence tolerance ¢. Set the lower
bound LB to -0, the upper bound UB to +oo, and initialize the number of
iterations c=1.

Step 2: Solve the following master problem:

Ns
min eTx+ Zpsax + B0

xeX,z,ay, 20K, ¥

st. Ax+Bz<b
Dz<f

lwsll” < 8
aSZdTy—K;r(.f:s—/,‘s) Vk<e,Vs
ik’S:z&.f;:A_, Vk <c,Vs

Ex+ Hyy ¢ +’Nik“\. <r, Vk<e,Vs

s=1

(61)

Record the optimal solution x*, z*, x* and objective value, and update
LB as the objective value of master problem.
Step 3: In each subproblem, the objective function is to minimize the

emergency load shedding penalty under master problem's decisions and the



worst-case scenario. Since each subproblem is a linear programming
problem, and the feasibility is always maintained through emergency load
reduction, strong duality can be applied to transform it into the following
dual problem:
max (r - Ex* 7Ni)T,u7K:T (1575125)
B (62)
st i=z &€&
8 u=d
fe=
where, g is the dual variable of the original subproblem, where the bilinear
terms N'i'u are represented as the product of binary and continuous
variables. These can be strictly converted into multiple linear constraints
using McCormick's envelope method. Since this conversion process is
rigorous [46], the resulting solutions are consistent with the original
constraints.
Record the optimal solution u*, & and the objective value Q, of
subproblem s, and update the UB = min (UB, c'x"+ 3, p,0,+B0)
Step 4: If (UB-LB)/LB < &, save present result and terminate the iterating
process, otherwise, update &* and c=c+1, and return Step 1.

5. Case Study
5.1 Simulation setting

We tested our approach on the modified 6-bus and 6-node system
(M6B6N) and the modified IEEE 33-bus and 32-node system (M33B32N).
The specific parameter settings of the system are described in Section 5.2
and 5.3, respectively. In both M6B6N and M33B32N, we assume that the
substation and feeder are disconnected from the main grid at 00:00 due to
the first strike of the extreme event, and secondary strikes to the IEHS from
subsequent random events are modeled as typical branch outage faults. The
confidence level y for the Wasserstein radius of the ambiguity set in DRO
model is set to 95%. In the SR strategy, the time interval for each decision
schedule is 1 hour. All test codes in this section are implemented and
executed using the JuMP.jl toolkit in the Julia language and solved by
Gurobi Optimizer 9.5.2. The allowable tolerance ¢ for the improved C&CG
algorithm is set to 0.1%. All programs were executed on a personal
computer with SGHz 12th Gen Inter Core i5 CPU and 32GB RAM.

5.2 Modified 6-bus and 6-node system

Our proposed model was tested on M6B6N. The system consists of a WT,
a CHP unit, and a EH unit. The detailed parameters of the M6BON can be
found in Table 2. Considering the scale of the test system and the sparsity
of historical extreme events, the ambiguity set is constructed from 50
groups of subsequent branch outage samples, recording N-1 unexpected
events. The reserve cost is set to 30% of the power generation cost, and the
unexpected load shedding penalties for the 3rd, 2nd, and 1st priority loads
are 2 times, 3 times, and 5 times the power generation cost, respectively.

Table 2

Parameters of 6-bus and 6-node system
Parameter Value Parameter Value
RUMEG, RDMFG 0 3PMEG RUSM RDEM 03pPH
7, 7o Oh, 1h v,V 1.05,0.95
RUS™, RDEMP 0.25PCTP r 20
7o, 7ot 2h, 3h

To verify the efficiency and stability of our proposed improved C&CG
algorithm, we conducted convergence tests. The results, as shown in Fig. 2,
demonstrate that the algorithm successfully converges within an acceptable
number of iterations, ensuring the robustness and reliability of the SR
strategy under the DRO model.
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Fig. 2 The convergence of DRO model
The allocation of MEGs and the resulting defensive MG configurations
are depicted in Fig. 3. This figure shows how MEGs are strategically
deployed to critical buses and how the PDS is reconfigured into MGs to
ensure a continuous power supply during extreme events.

Substation
eeder

1 2 5=

—y S
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i e )
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@ 3rd Load 1@ 2nd Load @ 1st Load == = Open Branch

Fig. 3 The MEG allocation and defensive MG reconfiguration in M6B6N

MEGs can identify the load with the highest priority protection weight to
ensure that load shedding occurs to the lowest extent during the SR
implementation process. By utilizing the ability of MEGs to control bus
voltage, ensuring stable voltage levels within the MG, which is crucial for
maintaining the connectivity and allowing WT to be directly connected to
the MG, we enhances the supply capacity of MG. Additionally, in the
process of MEG allocation and defensive MG reconfiguration, the
restriction that each bus in the MG is connected by a radial topology is
observed.

5.2.1 Effectiveness of the DRO Model

To compare the performance of the DRO model proposed in this article,
we first compare the results of the proposed DRO method with the results
of three other model: the deterministic model, the SP model and the
conventional two-stage RO model, which are marked as Case I, Case II,
Case III and Case IV, respectively.

Case I: The basic model without considering specifical uncertainty,
utilizing the mean of the historical data set as the boundary condition,
overlooking the randomness of secondary strikes when formulating the SR
strategy. In this scenario, the reserve commitment is set at 5% of the total
load capacity.

Case II: The SP model, which decides the corresponding SR strategy
using SP approach and is verified with the secondary strikes set constructed
by historical data to obtain a more suitable scheduling.
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Case III: The Conventional two-stage RO model characterizes secondary
strikes utilizing a box uncertainty set, where the uncertainty set parameter
I is selected based on the worst N-k faults identified in the historical data
set.

Case IV: The proposed DRO model, which utilizes historical data set to
construct the ambiguity set and support set to describe the uncertainty for
secondary strikes in SR strategy formulation. (i.e., the proposed model)

Before presenting the application performance in different cases, we aim
to illustrate that the proposed DRO model can achieve higher economic
benefits and robustness, particularly through a more accurate estimation of
secondary strikes. During the implementation of the SR strategy, out-of-
sample tests are conducted to verify the performance of the proposed model
and algorithm, which are sampled in 1000 possible secondary strikes
scenarios by the Monte Carlo (MC) method to simulate a wide range of
branch outage scenario. In the out-of-sample test, we compare the start/shut
cost, reserve commitment cost, adjustment cost and average unexpected
load shedding penalty cost across the four models (Case I-IV) in the MC
simulating scenario, as shown in Table 3.

Table 3
Costs of Case I-IV under MC simulating scenario (10*$)
Start/Shut  Reserve  Adjust  Avg.penalty Total
Casel 2.5 0.84 1.90 25.52 30.76
Casell 25 1.15 2.36 9.33 15.34
Caselll 3 1.22 2.82 8.75 15.79
CaseIV 3 1.30 3.03 6.43 13.76

In terms of load shedding penalty costs, the performance order from best
to worst is Case IV > Case II > Case III > Case 1. The basic model in Case
I formulates the SR solution purely from an economic perspective, aiming
to minimize the formulation cost of the SR strategy. However, it incurs the
highest unexpected load shedding penalty because MEG allocation, reserve
commitment, and defensive MG reconfiguration ignore the uncertainty of
secondary strikes, rendering the SR strategy ineffective under such
circumstances.

Considering the uncertainty of secondary strikes, the total costs in Case
II and Case III are significantly reduced compared to Case I, but the SP
model (Case II) performs better than the conventional two-stage RO model
(Case III). The two-stage RO model focuses only on the worst-case scenario,
but the probability of these extreme scenarios occurring is very low. As a
result, the SR strategy formulated by the conventional two-stage RO model
fails to protect critical loads in many non-worst scenarios, leading to higher
load shedding penalty costs.

Case II, using the SP model, considers multiple secondary strikes
scenarios and adapts to various branch outage scenarios, resulting in better
out-of-sample performance in most MC simulation samples. However, SP
may lead to "overfitting," where the formulated SR strategy becomes
ineffective if the actual strikes significantly deviate from the majority of
scenarios considered.

In contrast, the DRO model (Case IV) utilizes the confidence level y to
construct an ambiguity set centered on the empirical distribution,
incorporating the true probability distribution of secondary strikes at a
specific confidence level. This ambiguity set also includes various potential
distributions of secondary strikes event. This approach allows for the
consideration of both worst-case and various non-worst-case scenarios in
the formulation process of SR strategies. The worst secondary strike
distribution is obtained by searching within the ambiguity set. The specific

branch interruption events that may occur in each case within this worst
distribution are constrained by the support set control parameter I' in the
DRO model, ensuring that the searched worst distribution has practical
physical significance.

By combining ambiguity set with support set, the DRO-based SR
strategy for IEHS achieves both economic efficiency (lower day-ahead SR
strategy formulation cost) and robustness (lower unexpected load shedding
penalty). Compared to the SP model, the DRO model emphasizes the
probability information contained in the historical data set, searching for
the worst-case distribution under the confidence level y and the event
combinations that conform to this distribution, resulting in a total operation
cost reduction of 10.29%. In comparison to the RO model, the DRO model
not only focuses on a single potential branch interruption scenario but also
considers various non-worst-case scenarios as a basis for decision-making,
leading to a total operation cost reduction of 12.85%.

5.2.2 Sensitivity Analysis of Ambiguity Set and Support Set

To further analyze the characteristics of the DRO model, we perform a
sensitivity analysis by varying the confidence level y of the ambiguity set
and the control parameters I of the support set. The total cost in the out-of-
sample test is evaluated for different values of y and I'. The results are
summarized in Table 4.

Table 4
Costs under different confidence level y and control parameters I" (10%$)
I'  Lower Lower Base Upper Upper

y 20% 10% 10% 20%
95% 11.849 12.268  13.766 14.678 15.572
90% 11.602 12.045  13.408 13.837 15.166
80% 11.048 11.773  13.256 13.562 14.768
70% 10.380 11426 12.946 13.331 14.349

Under the same confidence level y, as the support set control parameter
I increases, the severity of secondary strikes in the worst-case distribution
becomes more pronounced, leading to higher SR strategy formulation costs
and unexpected load shedding penalty costs. The total cost increases by
13.11% or decreases by 13.92% when the base size of I' increases or
decreases by 20%, with the confidence level set at 95%. This indicates that
the proposed DRO model develops better deployment strategies to cope
with uncertainty. Higher I" values make the model account for more severe
scenarios, necessitating more robust and costlier strategies. Therefore, the
proposed DRO model not only demonstrates economic benefits but also has
a better ability to adapt to different fault scenarios, which explains its
potential for application in actual scheduling under increasingly severe
extreme events.

Under the same support set control parameter I, as the confidence level
y increases, the total cost of the DRO model continues to increase. This is
due to the fact that, with higher confidence level y, the Wasserstein metric
model considers a broader range of potential distribution, even though the
true distribution is not necessarily included. The worst-case distribution
identified becomes more serious, leading to the highest total cost. This
results in more conservative and robust SR strategies, which are costlier.
With the total cost at the 95% confidence level increases by 6.33%
compared to the cost at 70% confidence level, which demonstrates that
scheduling decision-makers can adjust the confidence level y to control the
robustness of the SR strategy, highlighting the flexibility and controllability
of the DRO model in actual scheduling scenarios.

5.3 Modified 33-bus and 32-node system
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The case study in this section is conducted using the IEHS shown in Fig.
4, which comprises a modified IEEE 33-bus PDN and a Barry Island 32-
node DHN, collectively referred to as the M33B32N system. In this setup,
three CHP units are interconnected with buses 1, 22, and 33 in the PDN,
and nodes 31, 1, and 32 in the DHN. Additionally, three EHs are connected
to the same nodes as the CHP units. In this case study, the ambiguity set is
constructed from 100 secondary strike samples. We observe that the
maximum number of branch interruptions in the sample is 4, so N-4
unexpected branch outage events are considered here, and the parameter I'
in the support set is determined by the mean of the total outage duration in
the sample, which is set to 60.
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Fig. 4 The topology of M33B32N system
5.3.1 Effectiveness of VES in DHN

To illustrate the impact of the VES of the DHN in the SR strategy
formulation of the IEHS, including the start/shut of CHP unit and EH unit
and the reserve capacity, two case studies are set up for comparative
analysis. The results generated by the two cases are verified in the 1000 MC
simulating scenario.

Case V: Only the loss characteristics of the working fluid in the pipeline
are considered, and the VES model is not included. The temperature change
at the pipeline inlet is immediately reflected at the pipeline outlet, and the
DHN does not exhibit the VES capacity.

Case VI: The VES model of the DHN and its capacity described in this
paper are considered (i.e., the proposed).

The cost distribution of the two cases in the formulation and
implementation process of the SR strategy is shown in Table 5. The thermal
power balance of Case V and Case VI during the implement stage of the
SR strategy is shown in Fig. 5.

In the Case V, shown in Fig. 5(a), due to the need to meet real-time
source-load balance, although the thermal power provided by the CHP and
EH units before the DRO model confirms the secondary strikes is less than
that in Case VI, the thermal power supplied during the secondary strikes
period is higher than in Case VI. The thermal power supplied by the CHP
and EH units need to keep up with the thermal load trends. In each SR
strategy implement period, the thermal power loss of DHN and the thermal
load power need to be balanced, resulting in less flexibility in the SR
strategy. A higher reserve capacity is required, and the CHP and EH units
need to maintain long-term operation, which is reflected in the higher
specific equipment operating costs shown in Table 5.

In Case VI, considering the thermal inertia of DHN and utilizing the VES
capacity, during the period from 00:00 to 04:00, more CHP units and other

heating equipment are invested in heating compared to Case V, shown in
Fig. 5(b). This shows that the process of charging and discharging DHN as
a large energy storage system in the SR strategy implement process, which
can avoid the need for real-time source-load balance and extends this
balance to a longer time scale. The flexible and adjustable characteristics of
DHN are utilized to release its heating potential within the adjustable
temperature range, ensuring that unexpected load shedding is minimized
through long-term thermal power balance.
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(b) The thermal balance in Case VI
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Fig. 5 The thermal power balance compared with Case V and Case VI

From the results in Table 5, considering the thermal inertia of DHN and
utilizing the regulation capability of its VES, in the process of formulating
the SR strategy, compared with Case V without considering, the
deployment cost of CHP decreased by 4.86%, and the deployment cost of
EH decreased by 7.66%. In the scenario considering VES capacity, the
composite cross-time translation capability of VES ensures the
synchronous change of electrical and thermal loads as much as possible,
mitigating the issue of weak flexibility of CHP units.

5.3.2 Effectiveness of proposed SR strategy

To illustrate that the proposed SR strategy can overcome the limitations
of a single SR strategy, three cases are set up in this section. The
performance of these SR strategy based on the DRO model is tested using
1000 MC sampling to evaluate the effectiveness of the proposed SR
strategy.

Case VII: In the SR formulation process, MEG is designated at a known
bus, followed by the defensive MG reconfiguration deployment.

Case VIII: In the SR formulation process, both MEG allocation and
reserve commitment are considered, but without defensive MG
reconfiguration.

Case IX: The proposed strategy, which includes defensive MG
reconfiguration in the PDN, along with MEG allocation and reserve
commitment formulation.
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Table 5

Equipment operating costs of Case V and Case VI under MC simulating scenario (10*$)

CHP Start-Shut CHP Reserve EH Reserve CHP Adjusting EH Adjusting Thermal Shedding  Total
CaseV 2 7.98 2.87 13.31 4.78 9.83 40.77
Case VI 2 8.49 2.65 14.15 3.16 6.72 37.17

Fig. 6 compares the results of the PDS subsystem in the IEHS for MEG
allocation and defensive MG reconfiguration between Case VII and Case
IX in the SR strategy. The simulation results in the MC sampling scenarios
are shown in Table 6.

Table 6
Costs of Case VII-IX under MC simulating scenario (10*$)
Start-Shut  Reserve  Adjusting  Penalty Total
Case VI 6 17.27 19.08 35.97 78.32
Case VIII 4.5 15.46 24.15 279 72.01
Case IX 4.5 14.68 22.32 27.89 69.39

In Case VII, the position of the MEG is specified before the SR decision
is formulated, and the MG reconfiguration decisions are made with the
MEG as the root bus. Although the radial topology of each MG is
guaranteed, the load distribution within each MG is not balanced,
preventing the CHP unit from being fully utilized to maximize support for
critical loads. The uneven output of the CHP unit leads to a decrease in
thermal power output, causing branch outages in the PDN to propagate to
the DHN through deep IEHS coupling. Consequently, the formulation of
the SR strategy requires a higher cost of start-up and greater reserve
capacity in Case VII, but it does not effectively reduce the unexpected load
shedding penalty costs during the SR implementation process.

Substation

Substation

~ Il
(b)Defensive MG reconfiguration of Case IX
G MEG AU CHP llll EH - WT O 1 —— Closed Branch
@ 3rd Load (@ 2nd Load (@ 1st Load == = Open Branch

Fig. 6 The comparison of defensive MG reconfiguration

In the SR strategy of Case IX, the allocation strategy of MEG is carried
out simultaneously with defensive MG reconfiguration and reserve
commitment. The MEG can identify buses with the highest priority and the
heaviest load rates. Especially when combined with defensive MG
reconfiguration, it ensures that the total load in each MG matches the supply
capacity by adjusting the location of the MEG access bus and MG
boundaries, maximizing the utilization of MEG capacity. The rational use
of MEG allocation through the SR strategy, which incorporates the co-

optimization of defensive MG reconfiguration, MEG allocation, and
reserve commitment, results in a more economical SR strategy formulation
cost, reducing the unexpected load shedding by 1705MW compared to Case
VII. This demonstrates the superiority of the proposed SR strategy, as it
effectively allocates the limited emergency resources of the IEHS to the
greatest extent.

Fig. 7 illustrates the reserve commitment of the SR strategy for Case VIII
and Case IX, along with the total generation power of the MEG in the MC
simulation scenario. The worst-case probability distribution of future
uncertain secondary strikes captured by the DRO model shows that the first
branch outage occurs at 4:00. In Case IX, prior to this initial branch outage,
no reserve capacity preparation is conducted, and the MEG maintains a
stable output. During this period, the CHP unit generates substantial
thermal power to maximize the temperature of the DHN, adjusting for load
fluctuations.
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(b) The reserve capacity with defensive MG reconfiguration
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Fig. 7 The comparison reserve commitment between Case VIII and IX

After 4:00, when the first branch outage impact occurs, the MEG unit
establishes a corresponding reserve capacity. As secondary strikes continue
and load power increases, the MEG's reserve capacity gradually expands
until it reaches the power output boundary, beyond which it cannot be
increased further. In the MC simulation scenario, after multiple serious
branch outages, the MEG sustains its maximum output within the reserve
capacity during load peaks, thereby maximizing support for critical loads.

Both Case VIII and Case IX include reserve commitments, but Case VIII
does not involve defensive MG reconfiguration. While Case VIII utilizes
the DRO model to obtain the worst distribution of subsequent branch
outage scenarios, it relies on increasing the reserve capacity to manage
these outages effectively. This approach is constrained by the ramping
capabilities of the MEG unit and the need to balance the formulation cost
of the SR strategy with the unexpected load shedding penalty cost.



13

Consequently, Case VIII requires a higher reserve capacity compared to
Case IX.

This increased reserve capacity in Case VIII arises from the absence of
defensive MG reconfiguration. Maintaining the entire PDN in an integrated
topology allows the MEG to maximize its supply capacity before secondary
strikes occur, facilitating energy mutual aid within the network. However,
in practical applications, the capacity of the MEG is significantly smaller
than the total network load, as set up in this case study. Thus, integrating
multiple MGs into a single topology provides only limited benefits.

When secondary strikes occur, the sudden disconnection of lines results
in all loads at the endpoints being detached. To maintain source-load
balance and ensure voltage stability at both ends of the disconnected line,
the MEG must quickly adjust its output. This necessitates substantial
reserve capacity and rapid output fluctuations to coordinate with remaining
units during such emergencies, which conflicts with the MEG units' goal of
maximizing output in extreme branch outage scenarios to protect critical
loads effectively.

6. Conclusion

This study proposes a novel DRO-based SR strategy for IEHS and
constructs appropriate ambiguity set and support set to capture the
uncertainty of branch outages caused by secondary strikes during SR
implementation. The logical constraint convex relaxation, along with an
improved C&CG algorithm, is integrated into the DRO model formulation
to address the challenge of solving the SR problem. The effectiveness of
the proposed SR strategy and DRO model for IEHS is verified using two
test systems. Compared to existing SR strategies, the coordinated SR
strategy for IEHS reduces the unexpected load shedding by up to 1705MW
during secondary strikes. Additionally, the DRO model demonstrates lower
operation costs under secondary strikes, outperforming other models by
more than 10.29%. We selected 20 different parameter configurations for
the proposed DRO model's sensitivity analysis. Compared to the rate of
parameter changes, the rate of operating cost variation is lower,
demonstrating that the DRO-based SR strategy for IEHS maintains stable
performance across different confidence levels and control parameters,
underscoring its potential for practical industrial applications.

Further research is recommended in the following areas: 1) While this
paper focuses on the uncertainty of subsequent unexpected events,
uncertainties in renewable energy generation and load consumption during
SR implementation process are also significant. Future work will consider
incorporating these uncertainties into the model. 2) This paper assumes a
three-phase balanced state for the PDS, yet addressing the three-phase
imbalance problem during SR implementation is crucial in practice. 3) This
current focuses on the operational scheduling in SR, but integrating
emergency crew dispatch and fault components repair will be an essential
direction for future research.
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Appendix. DRO reformulation

This section provides the derivation process from Eq.(60) to Eq.(61).

Step 1. Reformulate Eq.(60) to a worst-case constrained optimization
problem:

(63)

}, VEeE,Vs=1,...,Ns

Step 2. According to transformation mentioned in Ref.[41], the norm
operation in the right-hand side of Eq.(63) can be reformulated into a linear

operation by introducing auxiliary variables x:

max| Q(x.i.§)~ max x!(£-&) (64)
e sl <
According to the definition of dual norm:
o8l mo (o8 ©5)
Jisf <t

Where, ||-||. represents the dual norm operation. For L;-norm, its dual
norm is the L,-norm. Conversely, for the L, -norm, its dual norm is the ;-
norm. Additionally, the dual norm of the L,-norm is itself.

Step 3. Converting the maximization operation to the minimization
operation and removing the minus sign can keep the optimization direction
unchanged.

max  min ‘:Q(x,i,f)—lr;r (f—év)} (66)
|0 <p

Step 4. Based on the minimax theorem, the Eq.(66) can be written as:

min max[Q(x,i,f)—qu(f—é'Y)} (67)

s <p & <E
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