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Smartphone-based prediction of
dopaminergic deficit in prodromal and
manifest Parkinson’s disease
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Dopamine transporter (DaT) SPECT can confirm dopaminergic deficiency in Parkinson’s disease (PD)
but remains costly and inaccessible. We investigated whether brief smartphone-based motor
assessments could predict DaT scan results as a scalable alternative. Data from Oxford and Genoa
cohorts included individuals with iRBD, PD, and controls. Machine learning models trained on
smartphone-derived features classified DaT scan status and predicted striatal binding ratios,
compared with MDS-UPDRS-III benchmarks. Among 100 DaT scans, the smartphone-only XGBoost
model achieved AUC = 0.80, improving to 0.82 when combined with MDS-UPDRS-III (AUC’s gender-
corrected). A simpler logistic regression model performed better with MDS-UPDRS-III alone
(AUC = 0.83) versus smartphone features, with slightly higher performance when combined
(AUC = 0.85). Regressionmodels predicted binding ratios with modest error (RMSE = 0.49, R² = 0.56).
Gait, tremor, and dexterity features were most predictive. These findings support smartphone-based
assessments complementing clinical evaluations, though larger independent validation remains
essential.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder pri-
marily characterised by the loss of dopaminergic neurons in thenigrostriatal
pathway, leading to hallmark motor symptoms such as tremor, bradyki-
nesia, and rigidity. Dopamine transporter (DaT) single-photon emission
computed tomography (SPECT) imaging is commonlyused to visualise and
quantify dopaminergic function in the striatum. It plays an important role in
clinical diagnostics by distinguishing PD from non-degenerative mimics
such as essential tremor and is increasingly used as an inclusion criterion in
disease-modifying clinical trials1.

A key metric derived fromDaT SPECT imaging is the striatal binding
ratio (SBR)—a semi-quantitative measure of dopamine transporter avail-
ability in key regions of interest (ROIs), including the caudate and putamen.
This quantitative measure has been shown to correlate with and predict

various aspects of disease progression, including motor dysfunction1,2.
Several studies havedemonstrated a significant inverse relationship between
contralateral SBR values and Movement Disorder Society–Unified PD
Rating ScalePart III (MDS-UPDRS-III)motor scores inPD,with lowerSBR
values indicating greater dopaminergic loss andworsemotor function.Over
a four-year period, Yang et al. reported a significant association (p = 0.037)
between the SBR and MDS-UPDRS-III scores3. Similarly, Kerstens et al.
identified a significant (p < 0.04) negative correlation between the MDS-
UPDRS-III and striatal binding in PD patients who were off levodopa4.
Interestingly, strongest inverse correlations between contralateral striatal
bindingwere foundwithmotor symptomsof bradykinesia, posture, gait and
other midline symptoms including, speech and facial expression, rather
than rigidity5. Despite this clinical utility, DaT imaging remains costly,
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requires specialised equipment and incurs exposure to ionising radiation,
limiting frequent use.

The current lack of any disease modifying treatment for PD has led to
increasing interest in prodromal forms that might offer the opportunity to
intervene earlier in the disease course. iRBD represents one of themostwell-
characterised prodromal markers of alpha-synucleinopathies converting to
PDandDementiawithLewyBodies (DLB). It is associatedwith a 6%annual
risk of phenoconversion to PD/DLB6, with post-mortem neuropathology
showing that alpha-synuclein was the predominant driving pathology in all
20 cases7. One study has shown that over 60% of individuals with iRBD
exhibit early nigrostriatal dysfunction on DaT SPECT or transcranial
ultrasound imaging8. 30% of these subjects went on to develop an alpha-
synucleopathy after a period of 2.5 years. Furthermore, the Parkinson’s At
Risk Study showed that patients with anosmia and other prodromal PD
symptoms including iRBD exhibit alterations in DaT SPECT9. Identifying
dopaminergic deficits in iRBDcould therefore support targeted recruitment
and trial enrichment strategies for prodromal PD.However, while literature
suggests that DaT SPECT – if properly semi-quantified – can be used at a
single subject level in prodromal PD10, clear cut-off values to stage patients
across the whole prodromal to overt PD stage continuum are still missing.
These constraints motivate scalable digital assessments.

Digital health tools offer a practical route to wider screening. Previous
studies have demonstrated that the 8-minute Oxford Parkinson’s Disease
Centre (OPDC) smartphone application can differentiate between healthy
controls (HCs), individuals with isolated REM sleep behaviour disorder
(iRBD), and PD participants, achieving pairwise sensitivities and specifi-
cities between 84.6 and 91.9%11. The application has also shown some
promise in predicting the MDS-UPDRS-III motor scores—a standardised
clinical scale used to quantify motor symptom severity in PD, where higher
scores indicate greater impairment12. Individualswith iRBDarenot typically
evaluated using the MDS-UPDRS-III in clinical practice, despite evidence
indicating the presence of motor symptoms prior to phenoconversion13.
However, several longitudinal iRBD cohort studies have shown that gra-
dually increasing MDS-UPDRS III scores approaching those seen in overt
PD occur in the 5 years prior to phenoconversion6,14. Furthermore, we have
demonstrated that a single smartphone test can accurately predict mean-
ingful clinical transition points for people with Parkinson’s including the
onset of gait freezing, falls and cognitive impairment 18 months prior to
onset15.

However, few studies have focused on predicting DaT scan results,
which are inherently resource-intensive assessments, anddonot address the
limitations of cost and availability16. Based on the established relationship
between motor impairment and DaT binding, this study investigates
whether smartphone-derived motor features can predict DaT scan
abnormalities and striatal binding ratios. Importantly, in this work,

“prediction” refers to the ability to characterise current dopaminergic status
—specifically, whether a participant has a normal or abnormal scan, and the
extent of dopaminergic loss as measured by striatal binding ratio—rather
than forecasting future clinical progression.

Such a digital framework could significantly reduce costs, expand
accessibility, and facilitate screening in larger prodromal and early PD
populations—including those with iRBD—who could benefit from early
detection of dopaminergic deficits. This study investigates whether
smartphone-derived motor features can predict DaT scan abnormalities
and SBR. Leveraging smartphone-based tools to stratify individuals by their
likelihood (or probability) of abnormal DaT scans may help quantify
individual phenoconversion risk in clinical and research settings, particu-
larly when combinedwith easy tomeasure clinical predictors. By predicting
DaT binding ratios, we aim to objectively measure the extent of dopami-
nergic impairment, laying the groundwork for adigital biomarker that could
be used in disease-modifying trials.

Results
Participant data
Of the participants who completed both smartphone assessments and DaT
scans, 93 (5 HCs, 49 iRBD, and 39 PD) had assessments that fell within ±1
year of the corresponding scan. This one-year interval was chosen by
consensus among three imaging neuroscientists, assuming no substantial
change in SBR would occur within that timeframe. Sixty-eight of these
participantswere from theOPDCDiscovery cohort, while 25were from the
Genoa cohort. Six participants had longitudinal DaT scans matched to
longitudinal smartphone assessments, yielding a total of 100 unique DaT
scans. Of these, 52 were classified as normal and 48 as abnormal. Table 1
summarises the demographics of this sample, and a flowdiagram is given in
Fig. 1. The MDS-UPDRS-III was significantly different between the two
groups (p = <0.00001).Althoughbothgroupswerepredominantlymale, the
sex distribution differed significantly between normal and abnormal DaT
scan groups, with females showing a higher proportion of abnormal scans
(p = 0.00001).

Table 2 presents the binding ratio statistics for the four striatal ROIs
overall and by diagnosis group, with further details provided in Supple-
mentary Tables 1 and 2. In the right caudate, PD participants had a sig-
nificantly lower SBR thanHCs (mean difference =−1.11; 95%CI,−1.24 to
−0.99; p < 0.001) and RBD (mean difference = 0.80; 95% CI, 0.72 to 0.87;
p < 0.001), while RBD also showed a lower SBR than HCs (mean differ-
ence =−0.32; 95% CI, −0.43 to −0.20; p < 0.001). Similar significant dif-
ferences were observed in the left caudate and both putamen. In RBD, the
left caudate was significantly lower than both putamen regions, with addi-
tional significant differences noted between the left putamen and right
caudate, as well as between the right caudate and right putamen. No

Table 1 | Demographic and clinical characteristics of participants with normal vs abnormal DaT Scans

Normal DaT Scan Abnormal DaT Scan P-value

N participantsa 45 48 -

N DaT Scans 48 52 -

N DaT Scans PD/RBD/HC 3/44/5 36/12/0 -

N smartphone recordings/participant (μ ± SD) 12.08 ± 14.67 6.75 ± 8.69 -

Sex (male %) 84.14 72.22 0.00001

Age (μ ± SD) 67.56 ± 8.02 68.32 ± 8.72 0.20

MDS-UPDRS-III (μ ± SD) 5.52 ± 6.24 25.69 ± 11.82 <0.00001

Interval between recording and scan (absolute days) 191 ± 147 183 ± 137 0.41

Interval (recording pre scan) 194 ± 165 165 ± 145 0.04

Interval (recording post scan) 189 ± 129 206 ± 121 0.06

Values are presented as mean ± standard deviation or percentages, with p-values indicating differences between the two groups. The interval values represent the time (in days) between smartphone
recording and DaT scan. Bold values indicates statistical significant P values (p < 0.05).
aFor participants with longitudinal scans, abnormal versus normal classification was based on the status at their first available DaT scan.
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differenceswere found between the left and right caudate or between the left
and right putamen. A comparable pattern was observed in PD, except for
the lack of differences between the left vs. right caudate and putamen.
Among HCs, there were no significant pairwise differences, indicating
uniform binding across regions.

Predicting abnormal DaT scans
We next evaluated whether smartphone features, alone or combined with
MDS-UPDRS-III, could classify DaT status across this two-centre sample.
Table 3 and Table 4 show the performance of XGBoost and logistic
regression (LR)models for predicting normal vs abnormalDaT scans using:
(1) only the MDS-UPDRS-III, (2) only the smartphone features, and (3)
bothMDS-UPDRS-III and smartphone features. ThemeanAUCacross the
5-folds with the 95% CIs for the smartphone-only models using varying

number of features are shown in Fig. 2. The best performing XGBoost
smartphone model (500 features) achieved an AUC comparable to the
model using the in-clinicMDS-UPDRS-III score only (AUC: 0.82 and 0.81,
respectively). When combining theMDS-UPDRS-III with the top 500 (out
of a total of 1057) smartphone features, the model achieved the best per-
formance,withanAUCof 0.84 (95%CI: 0.75 to 0.92) andbalanced accuracy
of 0.84. The best performing LR smartphone model (500 features) did not
achieve as high anAUCasusing the LRMDS-UPDRS-III onlymodel (AUC
0.76 and 0.88, respectively).However, the combined smartphone andMDS-
UPDRS-III LRmodel achieved anAUC of 0.88with an elevated confidence
interval range compared to theMDS-UPDRS-III only model. To assess the
robustness of the classification models, we performed repeated cross-
validation acrossmultiple random splits of the data. Themeanperformance
metrics along with their standard deviations are reported in Supplementary

Fig. 1 | Flow diagram of participant and DaT
SPECT inclusion. Parkinson’s disease (PD), iso-
lated REM-sleep-behaviour disorder (RBD), and
healthy controls (HC).

Table 2 | Mean and standard deviation of binding ratios in each region of interest

Right
Putamen (μ ± SD)

Left
Putamen (μ ± SD)

Right
Caudate (μ ± SD)

Left
Caudate (μ ± SD)

Putamen
Asyma (μ ± SD)

Caudate Asyma (μ ± SD)

All Ratio 3.10 ± 0.74 3.21 ± 0.79 3.57 ± 0.61 3.56 ± 0.63 −0.11 ± 0.40 0.01 ± 0.37

HC Ratio 3.88 ± 0.36 3.89 ± 0.37 4.11 ± 0.57 4.06 ± 0.40 −0.01 ± 0.25 0.06 ± 0.30

RBD Ratio 3.44 ± 0.47 3.54 ± 0.57 3.79 ± 0.46 3.75 ± 0.47 −0.10 ± 0.32 0.04 ± 0.30

PD Ratio 2.24 ± 0.35 2.38 ± 0.54 3.00 ± 0.39 3.07 ± 0.64 −0.15 ± 0.54 −0.07 ± 0.48

Overall and within each diagnosis group; healthy control (HC), REM-sleep-behaviour disorder (RBD), and Parkinson’s disease (PD).
aAsymmetry given as right - left hemisphere.

Table 3 | Performance of each of the three XGBoost classification models

AUC ± SD (95% CI) AUC adjusted ± SD
(95% CI)

Sensitivity ± SD Specificity ± SD Balanced accuracy ± SD
(Sensitivity+ Specificity)/2

MDS-UPDRS-III 0.85 ± 0.04(0.72–0.90) 0.79 ± 0.05(0.68-0.88) 0.68 ± 0.23 0.89 ± 0.10 0.79 ± 0.13

Smartphone features
(XGBoost)

0.84 ± 0.11 (0.74–0.90) 0.80 ± 0.05 (0.72–0.88) 0.68 ± 0.11 0.80 ± 0.19 0.74 ± 0.11

Smartphone features+MDS-
UPDRS-III (XGBoost)

0.88 ± 0.05 (0.75-0.92) 0.82 ± 0.05 (0.72–0.90) 0.76 ± 0.10 0.91 ± 0.11 0.84 ± 0.07

The AUC adjusted for the effect of sex is also reported (AUC adjusted). Balanced accuracy is the average of sensitivity and specificity. SD: standard deviation of the error metric.
Reported using the Area-Under-the-Curve (AUC) with 95% confidence intervals (CI), sensitivity, and specificity.
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Table 3 and 4 for the XGBoost and LR models, respectively. Confusion
matrices show the aggregated classifications for each of the diagnosis sub-
groups in Supplementary Fig. 1 (combined smartphone features + MDS-
UPDRS-III models). The LR model achieved a higher classification per-
formance in RBD participants, whereas the XGBoost performed better in
patients with PD.

A multiple linear regression model was applied to the output of the
classification models to explore the effects of age and sex. Sex was a sig-
nificant variable, with a coefficient of 0.16 (p = <0.00001) in the best per-
forming XGBoost model (Supplementary Table 5) and 0.14 (p = <0.00001)
for the best performing LR model. The probability outputs from the model
were adjusted for sex, and the resulting adjusted AUC for the best per-
forming XGBoost and LRmodels were 0.82 (95% CI: 0.72 to 0.90) and 0.85
(95% CI: 0.77 to 0.93), respectively (Table 3 and Table 4). The combined
smartphone and MDS-UPDRS-III models outperformed the MDS-
UPDRS-III only models with respect to the adjusted AUC.

SHapley Additive exPlanations (SHAP17) values were aggregated
across all 5 CV folds to give an overall view of feature importance. Here we
present the SHAP values for the XGBoost smartphone model, which out-
performed its LR counterpart. The aggregated SHAP values for all obser-
vations are shown inSupplementary Fig. 2.Gait, rest-tremor, and voicewere
in the top 5 ranked smartphone features of significance in the model. The
mean absolute SHAP values with standard deviation across the 5-folds are
shown in Supplementary Fig. 3.

Pre-screening sensitivity analysis
Because a practical use is triaging who to image, we tested performance in a
milder cohort. To simulate this pre-screening use case, we retrained and
evaluated the LR models after excluding participants with moderate to
advancedPD, definedas having anMDS-UPDRS-III score of 33 or higher18.
This led to the exclusion of six PD DaT scans. Following this adjustment,
overall performance of all LR models declined, with the MDS-UPDRS-
III–only model outperforming the others (see Table 5). Notably, the com-
bined smartphone and MDS-UPDRS-III model showed a slightly lower
standard deviation in AUC across folds.

Predicting striatal binding ratios
Finally, to test whether digital signals relate to quantitative dopaminergic
loss,wemodelled SBRsby regionof interest (ROI). The performanceof each
ROI XGBoost regressor model is shown in Table 6. The best performing
smartphone model used the top 300 smartphone features. The difference
from the naïve benchmark was greatest in the right putamen. For most
regions, the smartphone model had a slightly higher error than MDS-
UPDRS-III alone but combining both resulted in the lowest error
(RMSE = 0.49). The agreement between the actual and predicted right
putamen values is shown in Supplementary Fig. 4 (R² = 0.56). A Bland-
Altman plot demonstrated that the smartphone-only XGBoost model
tended to under-predict higher striatal binding ratios, suggesting it was
better at estimating values near the median. This bias may be partly attri-
butable to the dataset’s limited size and imbalance, which could constrain
the model’s ability to capture the full range of dopaminergic variability.
However, the prediction plot for the combined XGBoost model showed the
narrowest limits of agreement and no systematic error across the range
(Supplementary Fig. 5). The decision tree regressor combining the smart-
phone features and the MDS-UPDRS-III did not perform as well as the
XGBoost regressor. However, using the MDS-UPDRS-III alone in this
model architecture achieved a lower RMSE compared to the XGBoost
MDS-UPDRS-III model. The results for the decision tree models are
summarised in Supplementary Table 6. For the right putamen, right cau-
date, and left caudate, combining the predictions from theMDS-UPDRS-III
model and the smartphone model resulted in a lower RMSE compared to
combining all features in the decision tree. This was not the case for the
XGBoost model. To further examine the value of the addition of smart-
phone features, the smartphone featureswere fed into anXGBoostmodel to
predict the residuals from the MDS-UPDRS-III DT model. The XGBoostT
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model outperformed a naïve benchmark using the mean of the in-sample
residuals as the prediction, with RMSE values of 0.50 and 0.56, respectively.
The summary of these results can be found in Supplementary Table 7.

Correlation results
The correlation between the MDS-UPDRS-III and the ROI was analysed
(Supplementary Fig. 6). In the right putamen, we observed a Spearman’s
coefficient of−0.64 and an R2 of 0.54 with a quadratic fit (Fig. 3A). The top
smartphone features for ratio prediction (as determined by SHAP) from a
random CV fold were also examined (Supplementary Fig. 7), with rest
tremor features comprisingmost of the top 10.Oneof these features showed
a Spearman’s coefficient of−0.50 and an R2 of 0.32 with the right putamen
binding ratio (Fig. 3B).

Discussion
Our previous work demonstrated that smartphone-based assessments can
distinguish between disease groups and predict clinicalmotor scores such as
the MDS-UPDRS-III11. This study demonstrates the feasibility of using
smartphone-based motor assessments in combination with the MDS-

UPDRS-III to predictDaT scan abnormalities in individuals with iRBD and
PD.While the smartphone assessment is designed to approximate in-clinic
motor evaluations, it captures features that differ from those a clinicianmay
directly observe, offering finer resolution. We hypothesised that this added
granularity, in addition to the gold-standard clinical motor measure, would
be especially valuable for addressing the adjacent task of predicting dopa-
minergic deficit.

The main finding is that smartphone-only models performed
comparably to MDS-UPDRS-III, and that combining the two
improved discrimination. For classification, the combined XGBoost
model reached AUC = 0.88, and results were robust after sex adjust-
ment, indicating that motor features alone are strong predictors of
dopaminergic deficiency. After post-hoc adjustments, the combined
LR model also had a slightly higher performance compared to the
MDS-UPDRS-III alone, with an AUC of 0.85 and 0.83, respectively.
The simpler LR model outperformed the more complex XGBoost
model when using only the MDS-UPDRS-III, with an AUC of 0.83
compared to 0.80 – reflecting the linear structure and low dimen-
sionality of the clinical measure. This underscores the added value of

Fig. 2 |MeanArea-Under-the-Curve (AUC) for varying number of smartphone features.MeanAUCwith 95% confidence intervals (CI) across 5-fold cross-validation for
varying number of smartphone features using a the XGBoost model, and b the logistic regression model.
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integrating digital assessments while highlighting the importance of
model selection based on data complexity and dimensionality.

We examined a pre-screening scenario by excluding moderate-
advanced PD and re-evaluating the LR model. Following this adjust-
ment, overall performance of all LR models declined, with the MDS-
UPDRS-III–only model outperforming the others (see Table 5), while
the combinedmodel showed slightly lower variance across folds. These
results suggest that the predictive value of motor assessments—parti-
cularly those derived from smartphone data—may be more limited in
individuals with only subtle or early-stage motor signs. In this lower-
severity cohort, clinical assessments appeared to retain stronger dis-
criminative power, though the slightly reduced variance observed in
the combined model may point to improved robustness. However, it is
important to note that this analysis involved the removal of samples

from an already small dataset, which may limit the reliability and
generalisability of the observed trends.

Moving from a binary decision to quantification we explored whether
the same signals track age-adjusted SBRs. While the smartphone-based
XGBoost regressor showed slightly higher error than the MDS-UPDRS-III
model for most regions, combining both data sources consistently reduced
RMSE, particularly in the right putamen (RMSE = 0.49), where agreement
between predicted and actual values was strongest (R² = 0.56; Supplemen-
tary Fig. 4). These results suggest that smartphone-based assessments can
capture complementary motor information relevant to dopaminergic
function. However, these gains were modest, and performance remained
below what might be considered clinically actionable thresholds. Simpler
models, such as decision trees, performed worse overall, and combining all
features in a single decision treeoftendilutedperformance. Interestingly, the

Fig. 3 | Scatter plots showing quadratic fits for right putamen binding ratio
against two predictors. A MDS-UPDRS-III, and B a representative rest tremor
feature (Entropy Z-axis), whereby a higher feature value corresponds to worse

tremor symptoms. Each subplot includes data points from healthy controls (HC),
RBD, and PD participants, along with the overall coefficient of determination (R2)
and Spearman’s correlation coefficient, ρ.

Table 5 | Performance of each of the three logistic regression (LR) classification models after removal of participants with
moderate to severe Parkinson’s disease as defined by an MDS-UPDRS-III score of 33 or more

AUC ± SD (95% CI) Sensitivity ± SD Specificity ± SD Balanced accuracy ± SD
(Sensitivity+ Specificity)/2

MDS-UPDRS-III (LR) 0.83 ± 0.12 (0.74–0.92) 0.79 ± 0.10 0.84 ± 0.15 0.82 ± 0.09

Smartphone features (LR) 0.70 ± 0.08 (0.61–0.82) 0.60 ± 0.13 0.67 ± 0.09 0.64 ± 0.08

Smartphone features+MDS-UPDRS-
III (LR)

0.80 ± 0.08 (0.72–0.90) 0.79 ± 0.08 0.89 ± 0.10 0.84 ± 0.06

Reported using the Area-Under-the-Curve (AUC)with 95%confidence intervals (CI), sensitivity, and specificity. The AUCadjusted for the effect of sex is also reported (AUCadjusted). Balanced accuracy is
the average of sensitivity and specificity.
SD standard deviation of the error metric.

Table6 |Regression results forpredicting theDaT ratioscorresponding to the four regionsof interest using theXGBoostmodels

Model Right Putamen Left Putamen Right Caudate Left Caudate

Naïve Benchmark RMSE: 0.74 ± 0.42 RMSE: 0.79 ± 0.47 RMSE: 0.60 ± 0.37 RMSE: 0.65 ± 0.43

MDS-UPDRS-III RMSE: 0.57 ± 0.38 RMSE: 0.66 ± 0.39 RMSE: 0.55 ± 0.33 RMSE: 0.61 ± 0.39

Smartphone features RMSE: 0.63 ± 0.33 RMSE: 0.67 ± 0.38 RMSE: 0.63 ± 0.37 RMSE: 0.59 ± 0.36

Smartphone features+MDS-UPDRS-III RMSE: 0.49 ± 0.30 RMSE: 0.57 ± 0.34 RMSE: 0.52 ± 0.31 RMSE: 0.55 ± 0.37

Combination prediction (mean) RMSE: 0.64 ± 0.37 RMSE: 0.69 ± 0.39 RMSE: 0.57 ± 0.34 RMSE: 0.60 ± 0.35

RMSE: root mean squared error, presented as mean ± standard deviation.
Thenaïvebenchmark issues themeanof the trainingdataasaprediction for theentire test data. Thisbenchmarkservesasa referencepoint againstwhichmore sophisticatedmachine learningmethodscan
be compared. Note: lower RMSE values are better. The best performing model is highlighted in bold.
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MDS-UPDRS-III–only model performed better in the decision tree archi-
tecture than in XGBoost, which is expected, given that in low-dimensional
settings, more complex models may not always offer advantages.

These quantitative findings align with prior imaging literature on
motor function and dopaminergic loss. Earlier studies show that motor
function correlates with striatal dopaminergic deficits in PD19–21. In one
investigation, a significant negative correlation was found between UPDRS
III and putamen binding in 27 PD participants22. Additional research has
associated dopamine deficiency in the putamen with motor dysfunction,
while caudate loss appearsmore closely tied to cognitive impairment in later
disease stages23,24. Moreover, dopaminergic reduction in the putamen has
also been observed in iRBD patients compared to controls24–26. Another
study reported that adding DaT measures to clinical variables significantly
improved the prediction of phenoconversion in iRBD27, underscoring the
potential for digital assessments to be combined with other markers for
identifying at-risk prodromal populations. Taken together with previous
findings, our results reinforce the association between motor function and
striatal dopaminergic loss, particularly in the putamen.

Finally, although smartphone features improved residual prediction
over a naïve benchmark, the improvements were incremental. Plotting the
predictions versus the actual values indicated that the smartphone only
XGBoost model had bias towards under prediction for higher striatal
binding ratios, potentially caused by the imbalance in the dataset (Supple-
mentary Figs. 4 and 5). Thesefindings point to the potential of smartphone-
based assessments in supplementing clinical assessments for this task but
also emphasise theneed for further validation in larger, independent cohorts
and the importance of understanding when and how different modelling
approaches extract meaningful signal from noisy, real-world data.

Feature interpretation alignedwith knownmotor–dopamine links. For
DaT status classification, themost influential smartphone featureswere gait,
rest tremor, voice, and dexterity; for SBR regression, balance also emerged.
Prior work has revealed a significant inverse relationship between brady-
kinesia and striatal binding ratios22,28, which may be captured by the
smartphone-based dexterity task metrics. One study examining UPDRS III
and DaT binding ratios found inverse correlations between the normalised
ratio and speech (r =−0.61), rigidity (r =−0.42), bradykinesia (r =−0.52),
andposture/gait (r =−0.63) in59PDpatients (p < 0.01)29, butno significant
correlation with rest or action tremor—consistent withmore recent work30.
By contrast, our results indicate that smartphone-derived rest tremor fea-
tures show a correlation with the right putamen at levels comparable to the
correlation between MDS-UPDRS-III and the same region.

Compared to previous approaches, the high-frequency sampling and
multiple dimensions ofmeasurement (3-axis accelerometery) likely provide
greater sensitivity to subclinical tremor manifestations that correlate with
earlydopaminergicdeficiency.Thesefindingshighlighthowgranulardigital
features can rival a composite clinical score and may be sensitive to more
subtle tremormanifestations.Given this, other sensors, includingwearables,
may also offer promising results for this task. Lonini et al. found that a single
hand-worn sensor was sufficient to reliably detect bradykinesia and tremor
in PD31. However, a systematic review of digital monitoring devices in PD,
found that only 9 out of 73 devices were “recommended”, having strong
correlation with established clinical metrics of motor function32. Notably,
these were branded devices, such as Axivity, which require dedicated
hardware. In contrast, our approach leverages consumer-grade smart-
phones – devices already widely owned by users – to perform active tasks
like tapping and voice recording, enabling multimodal motor assessment
without additional equipment. While current performance may vary
slightly depending on smartphone model, future work will focus on cross-
device validation to improve generalisability and scalability.

A key strength of this study is the rigorous evaluation of DaT scan
abnormality by consensus among three independent experts. Including
HCs, iRBD, and PD (100 unique DaT scans) broadens generalisability
across dopaminergic deficiency. However, the small sample size may limit
applicability to larger, more diverse populations. The use of only the MDS-
UPDRS-III may also have constrained the models’ predictive performance.

Since prodromal patients may not exhibit significant motor impairment,
further work could focus on including other clinical metrics of motor
function and non-motor function. Additionally, due to the presence of
multiple versions of the smartphone app, only dominant hand featureswere
used for bilateral tasks. Using features from the hand contralateral to the
most affected side may offer more informative signals and could enhance
model performance. With access to a larger dataset, we aim to explore the
impact of additional factors—such as genetic information—by stratifying
participants based on these variables to assess their influence on dopami-
nergic status and model performance.

In conclusion, this study demonstrates that motor features—captured
through both clinical assessments and a smartphone-based application—
can predict striatal dopaminergic deficits with accuracy comparable to in-
clinic evaluation alone. By detecting subtle motor abnormalities remotely,
the smartphone assessment offers a scalable and accessible complement to
traditional clinical tools. When combined, the two approaches improved
model performance, highlighting the value of integrating digital and clinical
measures. Future approaches could combine simple home-based quanti-
tativemotor testing, for example the threemetre timeup andgo (TUG)with
the smartphone app to to identify prodromal and overt PD individuals with
a higher likelihood of dopaminergic deficits. This would (i) aid triage of new
referral pathways for suspected PD, improving the likelihood of earlier
diagnosis and (ii) aid clinical trial selection, which increasingly stipulates
dopaminergic deficit for study inclusion.

These findings carry important implications for early detection and
ongoing monitoring in both prodromal and manifest PD. However, it is
important to note that currently smartphone-based assessments may serve
as a complementary, though not yet standalone, tool for detecting dopa-
minergic changes in both PD and at-risk populations. Further validation in
larger and more diverse cohorts is needed to assess generalisability, clinical
utility, and the relevance of the smartphone features to biological dopami-
nergic deficit beyond that offered by theMDS-UPDRS-III. If confirmed, this
combined clinical and digital framework could provide a cost-effective and
widely accessible pre-screening tool for DaT imaging – bringing the
potential for earlier intervention and more frequent monitoring into the
hands of patients and clinicians alike.

Methods
Study design
The dataset used in this work is derived from a subset of participants
taking part in the OPDC Discovery Cohort using a previously devel-
oped smartphone application11,12,15. The study involves human parti-
cipants and was approved by the South Central – Oxford A Research
Ethics Committee (IRAS number 188167). An additional set of RBD
and PD participants from Genoa were included in the analysis, for
which ethics approval was obtained from the local institutional board
(CET Liguria - 184REG2017). There was no patient or public invol-
vement in the design or conduct of this study.

During each study visit, participants underwent clinical and digital
assessments (PDparticipants were assessedONdopaminergicmedication),
imaging, and biological sampling. The protocol, including longitudinal
clinical assessments, e.g MDS-UPDRS-III, performed as part of the Dis-
covery cohort are detailed elsewhere and in the PD sample they were per-
formed on existing medication33,34. Participants were excluded from the
study if they had parkinsonism secondary to any other disorder than
idiopathic PD or dementia preceding PD by one year. Controls were
excluded on the basis of any known first- or second-degree family history of
PD, history of stroke, alcohol, or drug abuse.

All participants in the Discovery cohort were given the opportunity to
consent to digital smartphone motor assessments in clinic and/or at home
using theOPDC smartphone app11. Smartphone assessmentwas performed
in clinic, followed by at-home assessments over 1 week. Longitudinal
assessmentswere performed at approximately 18-month intervals inwilling
participants. For the participants from the Genoa group, only in-clinic
smartphone assessments were performed, at one time-point.
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DaT brain scans were performed in a subgroup of willing participants,
with numbers limited by overall funding available. Dopaminergic deficit
was measured by 123I-ioflupane single photon emission computed
tomography.

For the OPDC cohort, the DaT SPECT scan was performed at the
OxfordUniversity Hospitals NHS Foundation Trust, under the supervision
of a consultant radiologist. Subjects were injectedwith 185MBq+/-10\% of
123I-ioflupane (provided as DaTscanTM injection, GE Healthcare).
Potassium iodide120mgwasadministeredonehourprior to, and24 hafter,
injection of 123I-ioflupane to block thyroid uptake. SPECT/CT imageswere
acquired three hours post injection on a dual-headed gamma camera
(Discovery 670 gamma camera, GEHealthcare, Haifa). SPECT parameters:
120 projections, 30 s per projection, 128 × 128 matrix. CT parameters:
16 slice, helical acquisition, 120 KV, 40mA, noise index 30. The SPECT/CT
data was reconstructed using HERMES Hybrid Recon (HERMES Medical
Solutions, AB Stockholm) OSEM, 15 iterations, 4 subsets with attenuation
correction from CT, collimator resolution recovery, and Monte Carlo
scatter correction. The isotropic voxel size of reconstructed images was
2.21mm3.

For the Genoa cohort, brain [123I]FP-CIT SPECT was acquired
according to EANM guidelines35.

Data were acquired by means of a dual-headed Millennium VG
camera (G.E. Healthcare). Acquisition started between 180 and 240min
after injection of [123I]FP-CIT and lasted 40min. A “step-and-shoot” pro-
tocol was applied with a radius of rotation <15 cm, and 120 projections
evenly spaced over 360° were generated. Total counts ranged between 2.0
and 2.5million. The pixel size of the acquisitionmatrix was 2.4 mm, thanks
to an electronic zoom (zoom factor ¼ 1.8) applied in the data collection
phase. In the reconstruction phase, also a digital zoom was used and the
resulting images were sampled by isotropic voxels with 2.33mm sides.
Projections were processed by means of the ordered subsets expectation
maximisation (OSEM) algorithm (8 iterations, 10 subsets) followed by post
filtering (3D Gaussian filter with full width-half maximum ¼ 8mm). The
OSEM algorithm included a proback pair accounting for collimator blur
and photon attenuation. No compensation for scatter was performed. The
2Dþ1 approximation was applied in the simulation of the space-variant
collimator blur, whereas photon attenuation was modelled with the
approximation of a linear coefficient uniform inside the skull and equal to
0.11 cm−1.

The reconstructed [123I]FP-CIT SPECT images were processed using
the BasGan software version 2 based on a high definition, 3D striatal tem-
plate, derived from Talairach’s atlas36. Partial volume effect (PVE) correc-
tion is included in the process of uptake computation of caudate, putamen,
and the occipital region background. The partial volume effect correction
performed by the method consists of an activity assignment in a Talairach-
Tornoux atlas-based 3-compartment model of basal ganglia. Background
uptake was subtracted by putamen and caudate uptake as follows: (caudate
or putamen uptake–background uptake)/background uptake, to generate
specific to non-displaceable binding ratio (SBR) values. Partial volume
correction, a feature included in the BasGan pipeline36, allows to reduce the
impact of the limited SPECT spatial resolution of the assessment of midline
structures.

Data preprocessing
All smartphone data were collected from 2014 to 2024 using consumer-
grade smartphones (Motorola, predominantly Motorola G model). Inclu-
sion criteria: (1) all 7 taskswere completed, (2) the voice taskwas considered
complete if the sustained phonation was ≥2 s long. The smartphone pro-
tocol is extensively detailed elsewhere11. Participants were asked to perform
7 short tasks (~8min) to assess: (1) voice, (2) balance, (3) gait, (4) finger
tapping, (5) reaction time, (6) rest tremor and (7) postural tremor, in order
to emulate motor assessments commonly performed in the clinic by a
trained clinician. The data were encrypted and timestamped. Smartphone
assessments were included if they were within +/- one year of the DaT
scan date.

The voice task in this work comprised of a sustained phonation of
“aaah” (international phonetic alphabet /a:/), fromwhich 339 features were
extracted that quantify roughness in voice, monotonicity, variation in
amplitude and frequency, etc. From the remaining 6 tasks, a total of 719
featureswere extracted, and for bimanual tasks, featureswere extracted from
the dominant hand. For the reaction time task, featureswere extracted based
on the time elapsed between stimulus (button on screen) and response
(pressing/release of button). Spatial and temporal tapping task features were
derived from the pixel coordinates and timing of the screen touch. For the
accelerometer tasks, features were designed to quantify body motion. A
comprehensive overview of the features has been reported in our previous
study11, and an overview of the application is given in Supplementary Fig. 8.

DaT scans were annotated as normal or abnormal by a trained radi-
ologist to the clinical diagnosis. A consensus panel of 3 imaging neu-
roscientists and co-authors (JK, MH and KG) reviewed the radiological
report alongside the striatal binding ratio’s (SBRs) and Z-scores (uncor-
rected and corrected for age) using the BRASS (HermesMedical Solutions)
software and categorised each DaT scan as normal or abnormal37. BRASS
software fits individual DaT SPECT data onto a template with pre-defined
ROI, four striatal (left and right caudate andputamen) and twoextra-striatal
control regions. SBR and Z-scoring calculations are described below. This
consensus diagnosis was used as the gold standard for the model.

The BRASS (HermesMedical Solutions) calculations, as defined in the
Hermes Medical Solutions BRASSTM Handbook version 6, are given as:

SBR ¼ R � 1

UncorrectedZ� score ¼ Measured ratioþ 1�Mean ratio

SD ratio

Age corrected Z� score ¼ Measured ratio�Mean ratioþ Age correction factor

SD ratioþ 1

Where SBR is the Striatal (specific) binding ratio, R is the ratio (average
counts in region/average counts in reference region). The Age correction
factor is (Meanage -Measured age) × Slope*, where themeanage is 58 years
(as per BRASS reference cohort). The reference region for DaT SPECT in
BRASS is the cerebellum and will always be 1.

*Slopes 1 or 2 are used in this segmented regression model. Slope 1 if
measured age <mean age and slope 2 if measured age >mean age.

Models
For our classification task, we utilised both a logistic regression (LR) model
and an XGBoost classifier to compare performance across linear and
ensemble-based approaches. The classifiers were trained to classify normal
versus abnormal, DaT scans across the cohort (PD, iRBD, and HC), using
both in-clinic and at-home smartphone assessments when available.
XGBoost is a commonly used machine learning model which has been
shown to be competitive with other techniques38. The models were eval-
uated using 5-fold cross-validation (CV), stratified by participant. Thus, all
recordings from a given participant were used either for training or testing,
but not both, over a CV fold. To investigate the stability of the classifiers, the
CV was also repeated (5x repeated 5-fold CV) across different splits. The
smartphone feature set includes 1058 features in total. To identify the most
salient features in the modelling, feature selection was performed using
SHapley Additive exPlanations SHAP17 values. The models were evaluated
with the top 10, 30, 50, 100, 300, and500 features. The featureswere scaled to
have amean of 0 and unit variance, andmissing values were imputed using
the median of the in-sample data. We also report the performance of the
modelwhen adding clinical variables to themost salient feature set. “Clinical
variable only” models were trained and evaluated using the same splits.
Within each fold, 3-fold nested CV was used to optimise the hyperpara-
meters of the XGBoost model. A random grid search was performed to

https://doi.org/10.1038/s41746-025-02148-2 Article

npj Digital Medicine |           (2025) 8:783 8

www.nature.com/npjdigitalmed


determine the optimal number of estimators (number of trees), the learning
rate, and the number of features used to build each tree. When using only
one clinical variable to predict the output, one estimator was used.

The binary classification models were evaluated using the mean AUC
over folds with the standard deviation. As there were multiple smartphone
assessments matched to a given DaT scan label, the model output prob-
abilities were averaged to give one classification for each DaT scan. Boot-
strapping was conducted to calculate 95% confidence intervals (CIs) for the
AUC values. The sensitivity and specificity were also calculated.

Predicting striatal DaT binding ratios. For each hemisphere, age-
corrected binding ratios were predicted in four ROI: the right and left
caudate and putamen. We then trained and evaluated both a simple
decision tree regressor and an XGBoost regressor for each of these four
ROIs, using both in-clinic and at-home assessments. As with the classi-
fier, we averaged the outputs across all available smartphone assessments
corresponding to each DaT scan. Model hyperparameters were opti-
mised via a randomgrid searchwith 3-fold cross-validation, as previously
described. We compared the performance of the smartphone-based
model to both the naïve benchmark (mean in-sample prediction) and a
clinical benchmark model using only the MDS-UPDRS-III. Regression
performance was assessed using the root mean squared error (RMSE).

Descriptive statistics for groups: normal vs. abnormal, and pair-wise
for HCs, RBD, and PD diagnostic groups with regards to the SBRs, were
analysed. Significance for binary variables was given using the
Mann–Whitney U-test. Two-sided Welch’s t-test was conducted for con-
tinuous variables. A one-way ANOVA with Tukey’s honestly significant
difference (HSD) was conducted to test for differences between disease
groups for each region.To assess differences in binding ratios across the four
ROIs within each disease group, a repeated-measures ANOVA was per-
formed, followed by pairwise (paired) t-tests with Bonferroni correction. All
analysis was performed using Python version 3.10.4. Code is available
through contacting the corresponding author.

Data availability
Access to the Oxford Parkinson’s Disease Centre (OPDC) dataset used in
this study is available through a formal submission to the Data Access
Committee who will review this and either support, decline, or request
further information. See https://www.dpag.ox.ac.uk/opdc/research/
external-collaborations for more information.

Code availability
The model training and evaluation code can be made available by emailing
the corresponding author of the manuscript.
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