

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/182990/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Su, Tengxiang, Ren, Guoqian, Li, Haijiang and Zhu, Xiaofeng 2025. Toward explainable and scalable property valuation via BIM and GA-enhanced ensemble learning. *Engineering, Construction and Architectural Management* 10.1108/ecam-07-2025-1112

Publishers page: <https://doi.org/10.1108/ecam-07-2025-1112>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 Towards Explainable and Scalable 2 Property Valuation via BIM and GA- 3 Enhanced Ensemble Learning 4

5 Abstract

6 **Purpose** – This study proposes a novel BIM-integrated, explainable and scalable framework for property
7 valuation. It aims to enhance predictive accuracy and transparency by combining IFC-based feature
8 extraction with a Genetic Algorithm enhanced Ensemble Learning, addressing key limitations of traditional
9 and opaque AI models in the built environment.

10 **Design/methodology/approach** – An IFC-based pipeline converts BIM geometry and semantics into
11 machine-readable features. A Genetic Algorithm-enhanced Gradient Boosting Regressor (GA-GBR) is
12 trained and tested on 152k transactions from China, and then further tested from building type perspective
13 at smaller scales. Hyperparameter optimization is performed using a genetic algorithm, and model
14 interpretability is enabled through SHAP.

15 **Findings** – The GA-GBR model outperforms 11 benchmark models, achieving a 3-4.6% gain on MAPE
16 over recent state-of-the-art methods. SHAP analysis identifies key predictors - local price level, transaction
17 timing and floor area - while submarket results highlight context-specific drivers such as elevator presence
18 in high-rise buildings. GA-based optimization enhances both predictive performance and feature relevance.

19 **Practical implications** – The framework supports automated, explainable and scalable valuation using
20 BIM-derived features, enabling end-to-end deployment and informed decision-making. It offers valuers,
21 designers and policymakers a transparent tool for assessing property value at multiple scales.

22 **Originality/value** – This is the first study to integrate GA-optimized ensemble learning, IFC-derived
23 features and xAI techniques into a unified BIM-valuation workflow validated against real world data. It
24 contributes to methodological advancement while facilitating industry adoption of explainable AI
25 applications in the built environment.

26 **Keywords:** Artificial Intelligence; Building Information Modeling; Property Valuation; SHAP (Shapley
27 Additive Explanations); Ensemble Learning.

29 1. Introduction

30 The integration of Artificial Intelligence (AI) and Building Information Modeling (BIM) is reshaping the
31 landscape of the building sector by enabling data-driven approaches to design optimization, risk analysis
32 and decision-making. In particular, property valuation, critical to project feasibility, investment planning
33 and cost-benefit analysis, is increasingly informed by AI models that can process large volumes of real
34 estate and design-related data. However, a significant challenge persists - while AI models may offer high
35 predictive accuracy, they often function as ‘black boxes’, providing little insight into how a decision is

1 reached. This lack of explainability poses concrete problems in several practical contexts. For instance, in
2 public-sector land valuation, a lack of transparency can lead to legal disputes or resistance to tax
3 assessments. In private property valuation, opaque models make it difficult for investors or lenders to justify
4 financial decisions or adapt designs to market signals. This undermines stakeholder trust, reduces model
5 adoption in practice and limits the potential for AI-generated insights to support upstream design or project
6 planning decisions within BIM workflows. Traditional approaches to property valuation, whether through
7 human appraisers or even machine learning models like regression and neural networks (Burgess *et al.*,
8 2018; McCluskey *et al.*, 2013; Valier, 2020), have limitations as follows:

- 9 (1) They fail to integrate tightly with BIM-based design data, missing opportunities to create a
10 feedback loop between valuation insights and design decisions.
- 11 (2) They often provide predictions without transparent justifications or interpretable reasoning.

12 This research addresses the urgent need to bridge that gap by exploring how Explainable AI (xAI) can be
13 integrated into BIM workflow to provide automated and interpretable valuation insights. Specifically, it
14 investigates how BIM-based workflow can enhance feedback loops within building design and inform
15 decision making, and whether a Genetic Algorithm optimized Gradient Boosting Ensemble model (GA-
16 GBR) outperforms traditional AI models in predictive performance and model interpretation. The main
17 research questions guiding this study are: (1) how can xAI be effectively embedded within BIM workflows
18 to improve interpretability in property valuation, (2) what actionable insights can xAI (SHAP) uncover at
19 both global and individual property levels on feature importance and interaction effects to support design
20 and investment decisions, and (3) how the proposed GA-GBR model performs compared to conventional
21 AI models in delivering meaningful property valuation outputs.

22 The proposed xAI-BIM integration advances property valuation through three main innovations. First,
23 explainable AI methods such as Shapley values and feature selection comparison are applied to improve
24 interpretability and reveal relationships between property features and market value. Second, a Genetic
25 Algorithm optimized Gradient Boosting Regressor (GA-GBR) is developed to enhance predictive
26 performance and provide explainable outputs, evaluated at both large scale (national dataset) and finer
27 submarket levels. Third, an Industry Foundation Classes (IFC)-based information extraction pipeline is
28 implemented to standardize and integrate BIM-derived design parameters into valuation workflows.
29 Collectively, these components establish a framework that strengthens feedback loops between valuation
30 and design, supporting transparency and trust in AI-driven decision systems.

31

32 2. Related Work

33 Property valuation plays a pivotal role in construction, investment, taxation and lending. An accurate market
34 price analysis should reflect property attributes, market culture fundamentals and geographical locations
35 (Pagourtzi *et al.*, 2003). The dynamics of subjective factors and the real estate market's opacity make it
36 hard for an accurate and objective property valuation. Typical information required for property valuation
37 involves regional, city and neighborhood data, site data, building data, sales and cost data, income and
38 expense data. The impact of macroeconomic variables on property value is beyond this research.

1 2.1 AI and BIM in Property Valuation

2 AI applications in property valuation have advanced from traditional regression models to neural networks
3 and ensemble methods. While early research highlighted the superior performance of neural networks in
4 capturing non-linear patterns (Lewis *et al.*, 1997; Liu *et al.*, 2011), limitations such as high computational
5 demand and poor scalability remain, particularly for large-scale or real-time valuation (Rafiei and Adeli,
6 2016). To address these issues, genetic algorithms (GA) have been used for feature selection and model
7 tuning, improving predictive accuracy in hybrid models (Ahn *et al.*, 2012; Sun, 2019). Rafiei and Adeli
8 (2016) demonstrated the value of integrating GA with deep learning for early-stage valuation, though
9 challenges with interpretability and generalization persist.

10 As a response, explainable AI (xAI) has emerged to improve model transparency and stakeholder trust.
11 Shapley Additive Explanations (SHAP), a widely adopted xAI method, quantifies feature contributions and
12 enhances the interpretability of tree-based models like XGBoost and Random Forests (Iban, 2022; Tchuente,
13 2024). These techniques help valuers understand how attributes such as location or building age influence
14 predictions. However, xAI applications remain narrow. Most models rely on structured data, neglecting
15 behavioral or contextual variables. Recent studies have integrated natural language processing (NLP)
16 techniques and applied explainable AI (xAI) methodologies to address sustainability-related valuation
17 challenges including regional generalizability constraints and limited model interpretability. This
18 underscores the critical need for developing multi-scale explainable frameworks in contemporary valuation
19 practice (Baur *et al.*, 2023; Doan *et al.*, 2024; Konhäuser and Werner, 2024; Tarasov and Dessoulaevy-
20 Śliwiński, 2024).

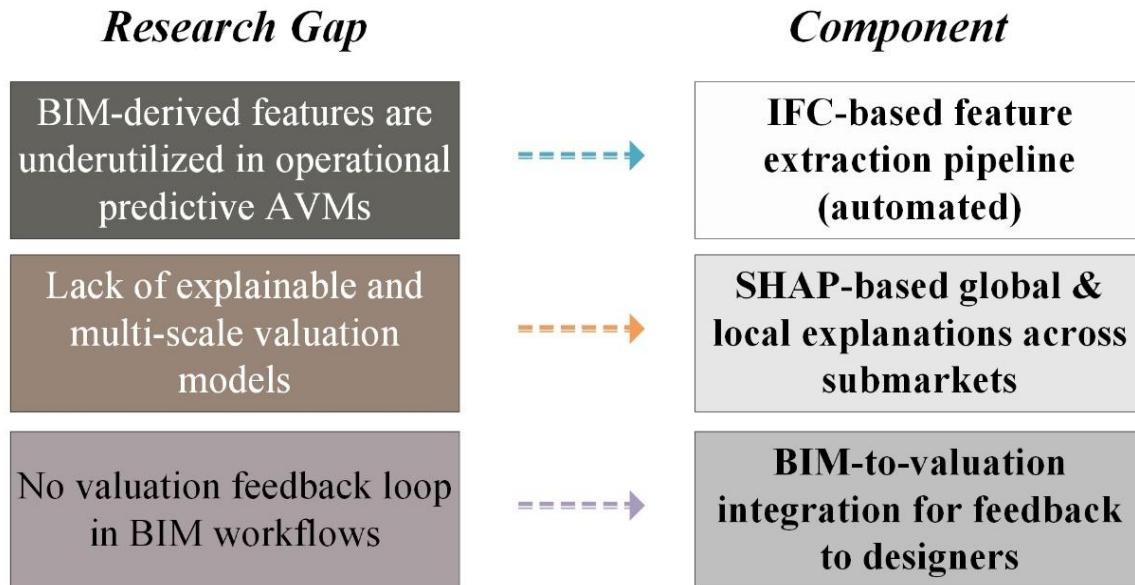
21 While several studies have examined BIM's technical capabilities, its integration into real-world valuation
22 practice remains limited. Isikdag *et al.* (2015) and Wilkinson and Jupp (2016) proposed using 3D models
23 and contextual data to support property professionals, yet their frameworks remain largely conceptual and
24 detached from live valuation workflows. Practical efforts to link BIM and valuation include El Yamani *et*
25 *al.* (2019), who applied hedonic pricing using IFC-derived variables. However, external market factors were
26 excluded and limited case validation restricts generalizability. Arcuri *et al.* (2020) proposed a BIM-GIS
27 framework based on the cost approach, while data-rich, lacks sensitivity to market dynamics. Other studies,
28 such as RICS (2017) envisions broader BIM adoption, its practical use for market valuation requires an
29 explainable AI layer to bridge BIM data and valuation outcomes.

30 Notably, Su *et al.*, (2021) presented an early framework combining IFC data with machine learning-based
31 valuation, but it lacked end-to-end automation, explainability and rigorous validation across submarket
32 contexts. This study extends that prior work by embedding SHAP-based explanations, optimizing both
33 features and hyperparameters via a GA mechanism, and conducting multi-scale empirical experiments.

34 Recent research from 2025 further pays attention to cloud-based BIM analytics and real-time valuation with
35 automated valuation models (Hong and Guo, 2025; Muccio and Cannatella, 2026), underscoring the need
36 for a scalable, explainable and automated framework for property valuation.

1 **2.2 Research Gaps**

2 Despite significant progress in integrating Artificial Intelligence (AI) and Building Information Modeling
3 (BIM) into property valuation, several critical research gaps remain. Figure 1 provides a structured
4 summary of these research gaps alongside the corresponding components of the proposed framework.



5 Figure 1: Linking research gaps to framework components

6 The first gap pertains to the limited use of semantically rich and BIM-derived variables within automated
7 valuation models (AVMs). Although several studies have extracted IFC attributes, these features are rarely
8 integrated into end-to-end predictive workflows. This study addresses the gap by implementing an IFC-
9 based feature extraction pipeline that converts BIM elements into structured data for AI-driven valuation.

10 The second gap highlights the absence of explainable models capable of operating across multiple markets
11 or building contexts. Many current models provide global insights but lack localized interpretation, which
12 limits their utility for diverse stakeholders. The proposed framework incorporates SHAP-based global and
13 local explanations, enabling transparency at both the aggregate and individual property levels, and is
14 validated across different building types to ensure adaptability.

15 The last reflects the lack of bidirectional feedback between BIM design workflows and valuation insights.
16 Existing models typically operate in isolation, providing limited guidance to designers or planners. This
17 study contributes a BIM-integrated valuation pipeline that supports real-time feedback by linking predictive
18 insights to BIM parameters.

19 By systematically aligning each identified gap with a specific component, this research contributes to both
20 methodological rigor and practical applicability, thereby supporting the broader adoption of explainable
21 and scalable AI for property valuation in BIM-enabled environments.

1 3. Research Methodology

2 Following Design Science Research (DSR) methodology, this research systematically develops and
3 evaluates a novel BIM-integrated property valuation framework leveraging Genetic Algorithm (GA)-
4 enhanced ensemble learning to achieve automation, transparency and scalability.

5 3.1 Problem statement

6 Prior research on AI-BIM property valuation integration remains either conceptual or employs opaque
7 models, limiting practical adoption. The systematic integration of BIM-derived data into a valuation
8 framework remains underexplored beyond isolated applications. This study addresses these gaps by
9 proposing a transparent and automated valuation framework integrating BIM data via IFC into a GA-
10 optimized Gradient Boosting Regressor (GA-GBR), enhanced with explainable AI techniques including
11 Shapley values.

12 3.2 Requirement analysis

13 The framework development requires establishing functional, technical and data requirements. Functional
14 requirements include automated IFC-based information extraction for BIM-derived features (floor area,
15 room numbers), xAI methods (SHAP) for interpretability, multi-scale adaptability, and feedback-driven
16 decision support for design optimization.

17 Technical requirements involve implementing the GA-GBR model for optimal predictive performance
18 through automated hyperparameter tuning and feature selection. The framework integrates model-agnostic
19 xAI techniques (SHAP) enabling global and local interpretability, which is vital for stakeholder trust. The
20 IFC data extraction must ensure reliability and efficiency with prevalent BIM software.

21 Data requirements emphasize high-quality IFC-encoded BIM models containing standardized structural,
22 spatial and semantic data. Transaction datasets should include historical prices, property characteristics,
23 transaction timelines and geographic attributes to capture valuation drivers and enhance interpretability
24 through diverse scenarios.

25 Together, these technical and data requirements provide the foundation for building an integrated,
26 explainable and scalable BIM-xAI valuation framework that can support predictive accuracy and design
27 feedback.

28 3.3 System design and development

29 The system architecture integrates BIM data, machine learning and xAI methods through modular
30 components as shown in Figure 2:

- 31 • **IFC-Based Information Extraction:** BIM parser automatically extracts spatial and semantic
32 features from IFC models, including geometric attributes (floor area, volume) and structural
33 characteristics.

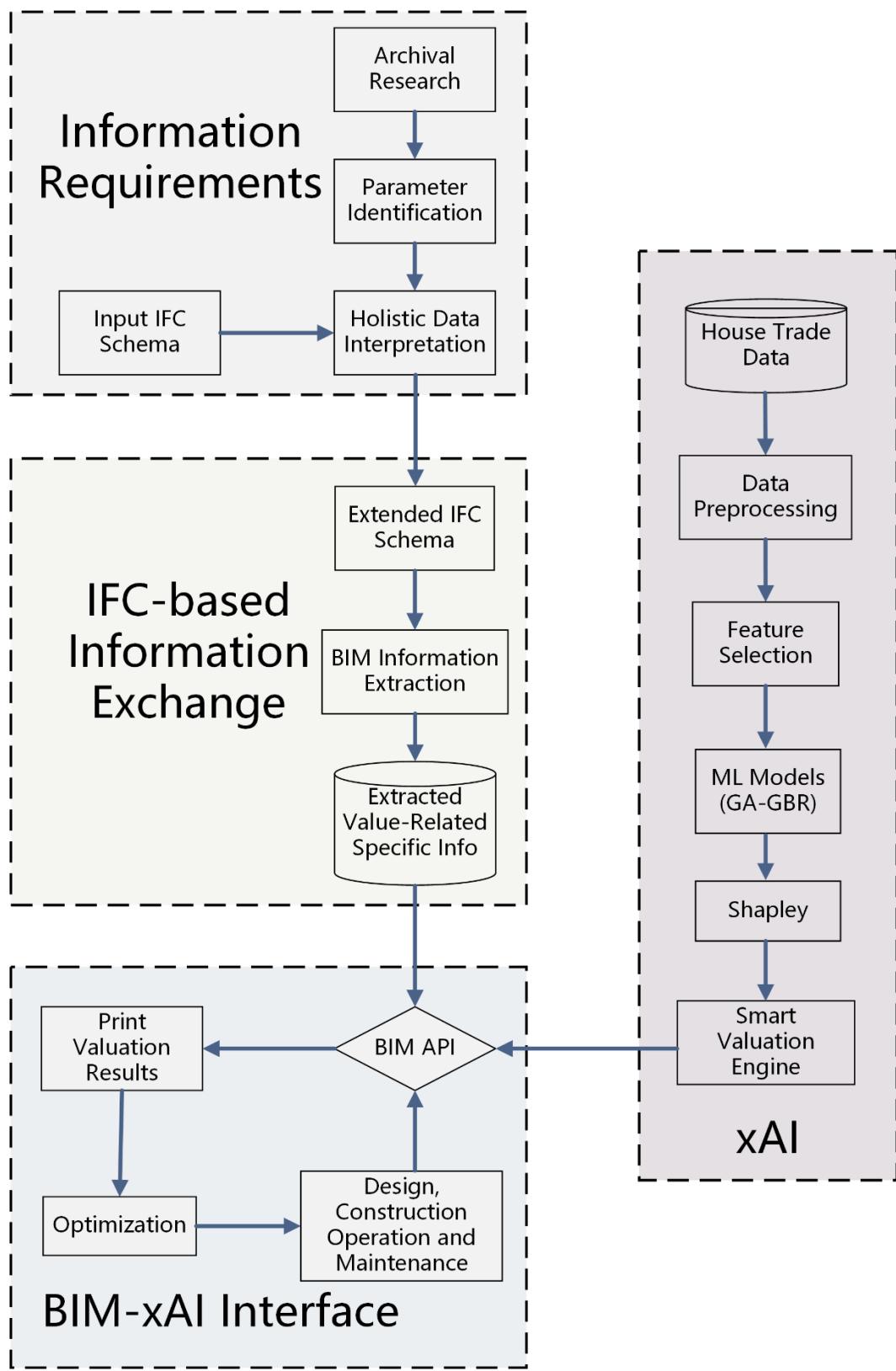
- **GA-GBR Modeling Pipeline:** Core module performing automated feature selection and hyperparameter tuning to optimize prediction accuracy and efficiency.
- **xAI Visualization Engine:** Incorporates SHAP and feature selection comparisons for global and local model interpretability, enabling stakeholders to trace feature influence on valuations.
- **Design Feedback Interface:** Generates valuation feedback supporting early-stage design optimization by mapping design element influence on predicted market value.

This architecture facilitates comprehensive property valuation by systematically integrating BIM and AI, fulfilling industry needs and research innovation requirements.

3.4 System validation

A multi-phase validation strategy ensures robustness, explainability and practical applicability: (1) comparative evaluation of GA-GBR against eleven machine learning models using transaction datasets across multiple scales, demonstrating improved predictive accuracy; (2) SHAP application to verify feature importance, supplemented by comparative analysis against conventional GBR; and (3) practical case study implementation using a Chinese BIM model, demonstrating IFC-based feature extraction feasibility and industry data integration.

This comprehensive validation ensures analytical robustness and practical applicability, advancing scalable, explainable and BIM-integrated property valuation.



1 **4. System development**

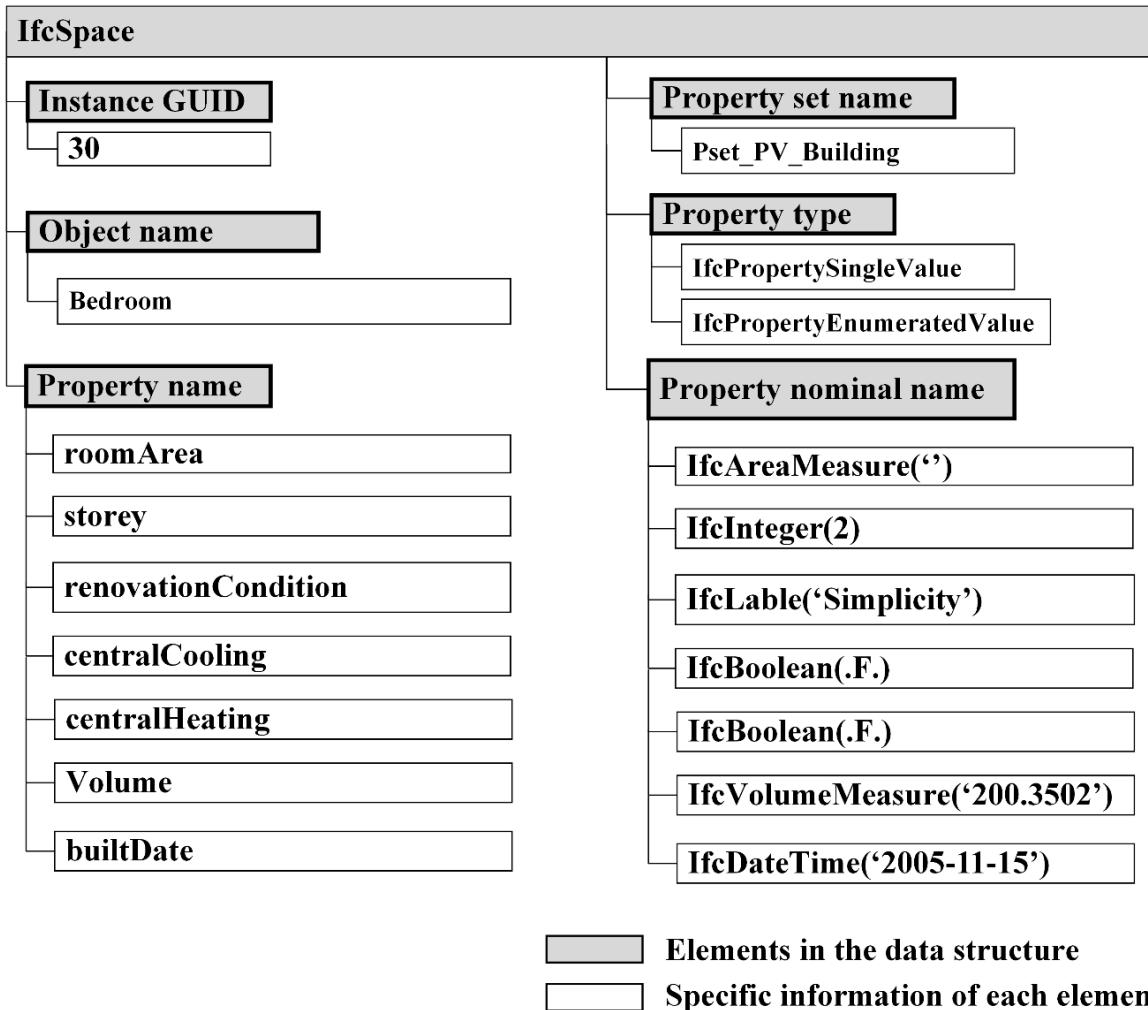
2 With the conceptual architecture and validation roadmap established, section 4 moves into the
3 implementation phase. It details the development of the two core modules: (1) the IFC-based information
4 extraction pipeline, which transforms spatial and semantic data from BIM models into machine-readable
5 features; and (2) the Genetic Algorithm optimized Gradient Boosting Regressor (GA-GBR), which
6 performs predictive modeling enhanced by feature selection and interpretability. This section explains how
7 these components are developed, integrated and prepared for empirical validation, forming the operational
8 backbone of the proposed BIM-xAI valuation system.

9 **4.1 IFC-based information extraction for property valuation**

10 Partial data model retrieval in BIM can be categorized into schema-based and instance-based approaches.
11 Schema-based methods rely on predefined structures like IFC to extract data, while instance-based
12 approaches focus on retrieving specific object-level information directly from the model. Building on the
13 no-schema algorithm by Won et al. (2013), this study adopts an instance-based method using the open-
14 source *IfcOpenShell* library. This integration enables efficient extraction of common physical elements
15 while offering flexibility to meet user-defined information needs. The extraction process involves three
16 steps as follows:

17 **(1) Target information identification in IFC instances**

18 This step aims to identify the target information in an IFC instance model and define the representation of
19 its data structure. The target information within an IFC instance model contains the current value-related
20 design information in building objects (*IfcSpace*) and their value-specific properties (total area, built date
21 and renovation condition). Therefore, the representation of the target information includes several key
22 elements in an IFC data model: (1) the globally unique identifier number (GUID) of an IFC instance model,
23 (2) the attributes of building objects including building object names, and (3) the attributes of required
24 *IfcProperty* instances that contain the property set names, property names, property types, and their nominal
25 values. Figure 3 gives an example of the representation of the target information based on IFC schema.



1

2

Figure 3: An example of an item in the data structure representation

3

(2) Information extraction algorithm development

4
5
6
7
8
9

To extract value-related information elements about building objects and their attributes for property valuation, information exchange between construction projects and property valuation is delivered through an IFC-based information extraction algorithm. The context of how to develop an IFC-based extraction algorithm is described in Figure A and Figure B in the Appendix. After analyzing the information elements and their relationships between *IfcObject* and *IfcProperty*, the IFC-based extraction algorithm was developed on Python using *IfcOpenShell-python* module on *Pycharm* software.

The algorithm initiates by identifying the relevant IFC entities associated with the specified building elements. It then recursively traverses all linked data instances until the complete set of associated properties is extracted. As illustrated in Figure C (Appendix), the flowchart outlines the logic of the developed IFC-based information extraction procedure. This approach retrieves building element attributes both directly via the *IfcRelDefinesByProperties* relationship and indirectly via the *IfcRelDefinesByType*

relationship. The operational implementation of the algorithm, detailing both direct and indirect extraction paths, is presented in Table 1 with an example of the extracted data.

Table 1: An example of an extracted information item

Instance GUID	Object name	Property set	Property name	Property nominal value
30	Bedroom	Pset_PV_Building	renovationCondition	IFCLabel('simplicity')

1

2

(3) IFC Data cleaning and standardization

3 Next, IFC-derived data was preprocessed through four steps: (1) handling missing attributes by assigning
4 default values or imputing with dataset-level medians; (2) standardizing heterogeneous property naming
5 conventions by mapping synonyms (e.g. 'GrossFloorArea' and 'TotalArea') to unified categories; (3)
6 resolving unit inconsistencies (e.g. converting square feet to square meters based on IFC unit assignments);
7 and (4) detecting and removing outlier values such as negative areas or unrealistic floor counts. These steps
8 ensure data consistency and improve the robustness of the GA-GBR valuation model.

9 4.2 Genetic algorithm optimized gradient boosting ensemble model (GA-GBR)

10 The rationale behind the model selection begins with a proof of concept, testing the 11 typical regression
11 models including linear regressions, K-Nearest Neighbors (KNN), Supporter Vector Machine (SVM),
12 decision tree-based models such as Classification and Regression Trees (CART), random forest and
13 gradient boosting regression (GBR), and Artificial Neural Network (ANN) on the UCI Machine Learning
14 repository - Boston housing dataset (Harrison and Rubinfeld, 1978). Typical performance metrics for
15 regression analysis involve the mean absolute error (MAE), mean absolute percentage error (MAPE), mean
16 squared error (MSE), root mean squared error (RMSE), and coefficient of determination (R^2) etc. To get a
17 comprehensive understanding of eleven automated valuation models (AVMs) performances, all the above-
18 mentioned metrics were selected. It was found that the GBR model had the highest prediction accuracy and
19 lowest error among all the five metrics (results shown in Table B in the Appendix). In addition, from
20 literature, it is concluded that compared to neural networks, ensemble learning has advantages in terms of
21 model interpretability and flexibility, which is more suitable for knowledge mining and system development
22 for property valuation.

23 The architecture of the proposed GA-GBR model consists of three key stages: base learner generation,
24 problem encoding and genetic search, which has been provided in our previous study (Su *et al.*, 2021).
25 While the GA-GBR model has demonstrated improved predictive accuracy, this subsection highlights how
26 it enhances model interpretability in property valuation tasks.

27 To address current challenges within GBR including overfitting and the trade-off between independent and
28 diverse of base learners, GA-GBR integrates a Genetic Algorithm (GA) with the traditional Gradient
29 Boosting Regressor (GBR). The GA operates as an evolutionary feature selection engine, optimizing both
30 the feature subset and model hyperparameters. This approach improves not only predictive accuracy but
31 also interpretability by identifying and isolating the most relevant input variables.

32 The implementation of the proposed GA-GBR model focusing on enhanced model interpretability are
33 provided as follows:

1 **Base learner generation**

2 The first step involves generating a pool of base learners using the input domain dataset. There are three
3 common base-learner models: linear models, smooth models and decision trees. In this research, decision
4 trees of uniform size are utilized as base learners, which are effective at handling mixed data types and
5 modeling complex functions. The GBR ensemble combines multiple base learners $f_m(x_i)$ to generate a
6 strong model $\hat{f}(x)$, which is displayed below.

7
$$\hat{f}(x) = \sum_{m=1}^M f_m(x_i) \quad (1)$$

8 The objective function for the base learner is to learn a mapping $f(x)$ between the input feature vector and
9 the output (house price). Typical loss functions for regression models include Gaussian L_2 loss function,
10 Laplace L_1 loss function, Huber loss function, and Quantile loss function (Natekin and Knoll, 2013). Initial
11 testing on the GBR model indicated that it achieved the best prediction accuracy with Huber loss function.

12 **Problem encoding**

13 The problem encoding task is conducted in the next. This research employs binary encoding to represent
14 solutions, focusing on exploring the relationship between input features and the target price. In the training
15 of the GA-GBR model, each chromosome within the population corresponds to an individual that possesses
16 N input features from the training data, as illustrated in Figure 4. For example, parameter A might represent
17 house size, while parameter B could indicate the presence of central heating. A binary value (one or zero)
18 denotes whether a feature is selected or not. The objective of using binary encoding for feature selection is
19 to identify the near-optimal chromosome, where each bit corresponds to a feature, in order to discover the
20 smallest subset of features that yields the highest predictive performance (Kanan *et al.*, 2007). The size of
21 each chromosome is determined by the number of input features (N). For instance, in the experiments of
22 the GA-GBR modeling, described in Section 5.1, N amounts to 56.

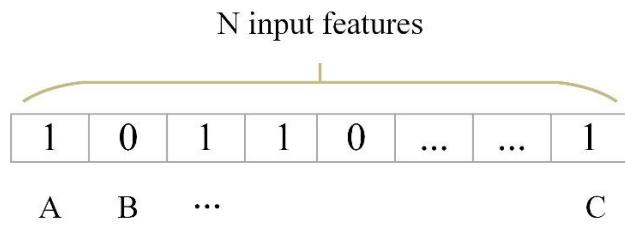


Figure 4: Binary chromosome encoding for feature selection in the GA-GBR

24 **Genetic search**

25 Through the operations of selection, crossover and mutation, the genetic algorithm (GA) iteratively evolves
26 a population of candidate feature subsets toward near-optimal solutions. The fitness function that guides
27 this evolutionary search is primarily defined by the coefficient of determination (R^2), with an added
28 emphasis on model sparsity and generalization. This dual-objective design serves to mitigate overfitting
29 while enhancing the interpretability of the resulting model.

5. Empirical studies

The preliminary construction of the proposed GA-GBR model involved three main steps: data collection, verification and data preprocessing. The dataset is collected from Kaggle, uploaded by Qiu, which comprises 152186 traded house data for properties registered in China from 2009 to 2018. Variables are classified as continuous (e.g., house price, total area), binary (e.g., elevator presence, property rights) and categorical (e.g., building structure).

Before model training, categorical variables are systematically encoded using appropriate techniques based on their characteristics:

- Binary variables (elevator, fiveYearsProperty, subway): retained as 0/1 binary indicators
- Ordinal variables (renovationCondition: 1-4 scale): preserved ordinal encoding reflecting quality hierarchy
- Nominal variables (buildingType, buildingStructure, district): one-hot encoded creating dummy variables.

To validate encoding robustness, we conducted systematic sensitivity testing:

- Compared one-hot and target encoding for nominal variables: R^2 difference $< 0.5\%$
- Tested ordinal and one-hot for renovationCondition: ordinal preserved 2.1% better performance.

The GBR and GA-GBR models are developed and tested in Python using scikit-learn. Both models are trained and tuned using genetic search to optimize key hyperparameters, including the number of estimators, learning rate, tree depth, and loss function. Each dataset is split into 70% training and 30% testing sets, and further segmented by building categories to analyze feature-price relationships.

The GA parameters are systematically determined through preliminary experiments and sensitivity analysis to balance exploration and exploitation trade-offs:

(1) Population parameters

- Population size: 600 individuals (optimized through convergence analysis)
- Generations: 32 (with early stopping criteria)
- Chromosome length: 56 bits (corresponding to feature count)

(2) Evolutionary operators

- Selection: Tournament selection ($k = 3$)
- Crossover: Single-point crossover, probability = 0.8
- Mutation: Bit-flip mutation, probability = 0.1/chromosome length

(3) Validation and overfitting control

- Train-Test split: 70% training, 30% testing with stratified sampling preserving price distribution
- Cross validation: 5-fold CV for hyperparameter tuning and stability assessment
- Regularization: Huber loss, learning rate of 0.2, maximum tree depth of 7, and at least 50 samples per leaf
- Overfitting check: Training and testing R^2 gap $< 1\%$, confirming genuine generalization across building types and time periods.

1 After trial-and-error testing, for full datasets, GA-GBR performs best with 200 estimators, learning rate
2 (0.2), and Huber loss; for smaller 1,000-sample groups, optimal settings included 100 estimators and
3 learning rate (0.1). The GA-GBR model performs best with a genetic algorithm with 600 individuals, 32
4 generations, and standard crossover and mutation rates. Model fitness is evaluated using R^2 , and
5 chromosomes outperforming the baseline GBR are selected, demonstrating improved accuracy and
6 generalizability across scales.

7 **5.1 Model performance**

8 The performance of the trained GA-GBR model is initially evaluated on the big dataset, comparing the
9 model performances with the other 11 different machine learning models. Table 2 provides a comparative
10 analysis of five typical metrics for regression models. The metrics include Mean Absolute Error (MAE),
11 Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)
12 for error measurement, and R-squared (R^2) for prediction accuracy.

13 Table 2: Predictive accuracy of the 12 different automated valuation models

Accuracy metrics	MAE	MAPE	MSE	RMSE	R^2
Linear regression	76.79	26.0%	13042	114	80.3%
Ridge regression	76.75	26.0%	13033	113.9	80.3%
Lasso regression	77.11	26.1%	13265	114.9	80.0%
Elastic Net regression	77.89	26.3%	13602	116.4	79.5%
KNN	129.19	35.5%	40468	200.7	39.0%
SVM	171.28	51.4%	69810	263.7	5.3%
ANN	156.73	52.9%	51625	227.2	22.2%
CART	54.28	15.7%	8610	90.4	86.9%
AdaBoost	52.89	18.5%	6119	77.9	90.8%
Random forest	38.65	12.0%	4545	66.7	93.2%
GBR	36.87	11.8%	3832	61.9	93.9%
GA-GBR (proposed)	32.76	10.55%	3026	55.01	95.2%

14
15 Table 2 shows that linear and regularized regression models performed poorly, with high error rates and
16 low model fit. KNN and SVM showed even weaker results, with R^2 below 0.40. In contrast, tree-based
17 models delivered significantly better performance. CART reduced the MAE to 54.3 and increased R^2 to
18 86.9%, while ensemble methods like Random Forest and GBR further improved R^2 to 93.2% and 93.9%
19. The proposed GA-GBR model outperformed all others, achieving the lowest MAE (32.76), lowest MAPE
20 (10.55%) and highest R^2 (95.2%). Notably, all 32 GA-generated models exceeded the predictive accuracy
21 of the baseline GBR, demonstrating the effectiveness and generalization capability of the GA-optimized
22 approach in large-scale valuation tasks.

1 To ensure the robustness of GA-GBR's superior performance, we conducted bootstrap analysis to establish
2 95% confidence intervals for GA-GBR and GBR. It shows that R^2 for GA-GBR at 0.952 [0.949-0.955] and
3 R^2 for GBR at 0.939 [0.936-0.942]. This confirms that GA-GBR's 1.3% performance improvement is
4 statistically significant ($p < 0.001$), demonstrating the effectiveness of genetic algorithm optimization.

5 **5.2 Model explainability analysis**

6 This section presented the explainability analysis of the proposed GA-GBR model using SHAP in the big
7 dataset. First, feature importance was assessed using SHAP, enabling both global and local interpretability
8 of feature contributions in a non-linear context. These insights were used to explain model behavior and
9 identify influential variables beyond what correlation alone could reveal. Second, the performance and
10 interpretability of the GA-GBR model were compared with a baseline GBR to highlight the advantages of
11 GA-based optimization in enhancing both prediction accuracy and feature relevance. Together, these
12 explainability techniques enhanced the transparency, interpretability and decision-support capabilities of
13 the proposed BIM-xAI valuation framework.

14 **1) SHAP feature importance analysis**

15 Improving model performance and interpretability requires understanding the relationships between input
16 features and property prices. SHAP values quantify each feature's contribution to a prediction by computing
17 its marginal effects across all possible feature combinations. This provides both global interpretability
18 (across the entire model) and local interpretability (specific to individual predictions), enabling more
19 transparent and accountable decision-making in property valuation. Two types of SHAP summary plots are
20 generated below to illustrate both global and local model behavior.

21 Figure 5 shows that the three most impactful features are: (1) *communityAverage*, which dominates as the
22 strongest driver by capturing neighborhood price levels; (2) *tradeTime*, reflecting temporal market
23 conditions and seasonality; and (3) *square* (floor area), which remains a major physical determinant of price.
24 Among the next tier, *DOM* (active days on market) has the largest additional impact, followed by *bathRoom*
25 and *livingRoom*. Geographic coordinates (Lat, Lng) contribute to a lesser extent. A long tail of variables -
26 *constructionTime*, *ladderRatio*, *district*, *renovationCondition*, *drawingRoom*, *followers*, *buildingStructure*,
27 *elevator*, *subway*, *fiveYearsProperty*, *floor*, and *buildingType* - exhibits minimal average contributions,
28 indicating weaker or context-specific effects.

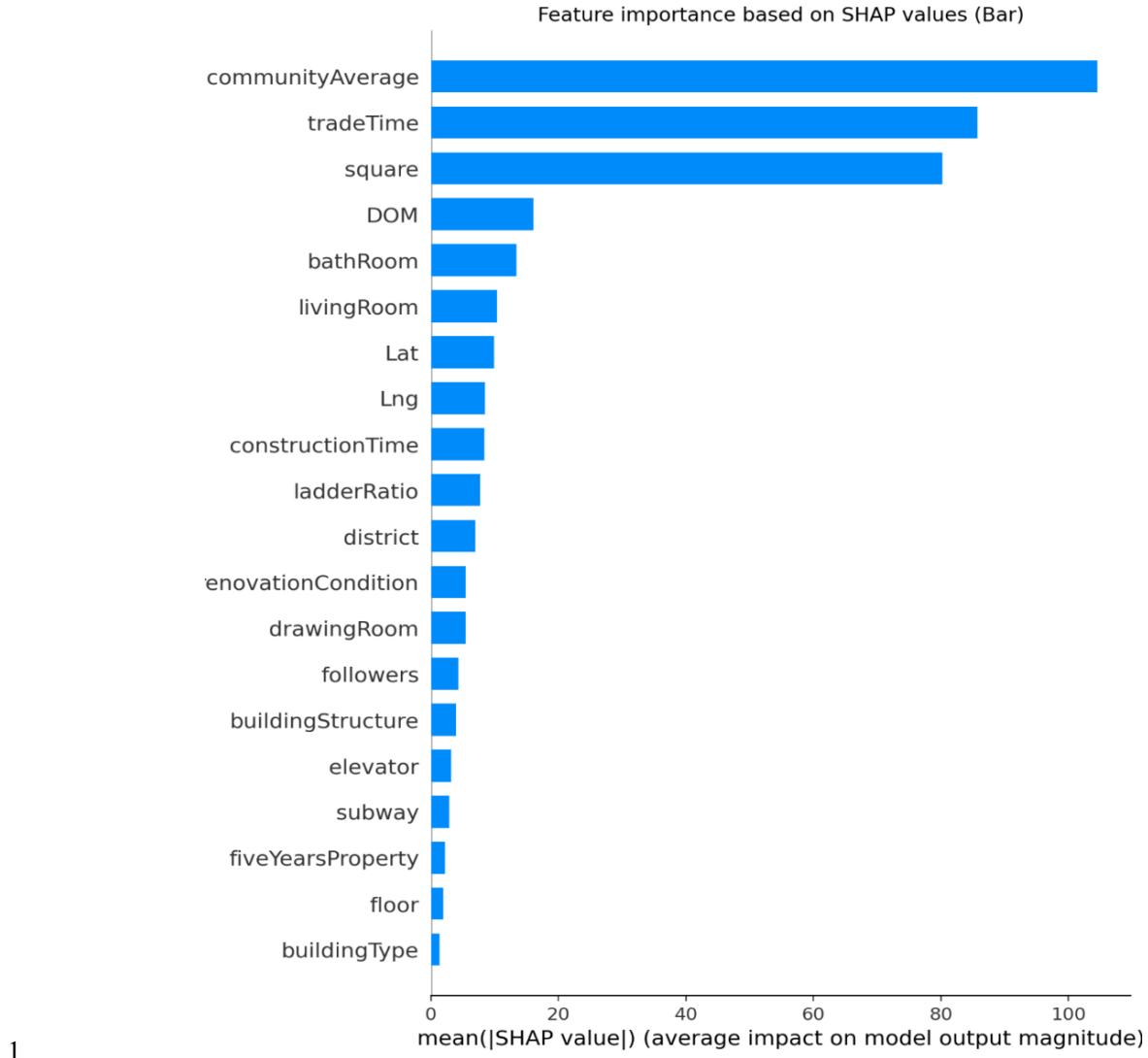
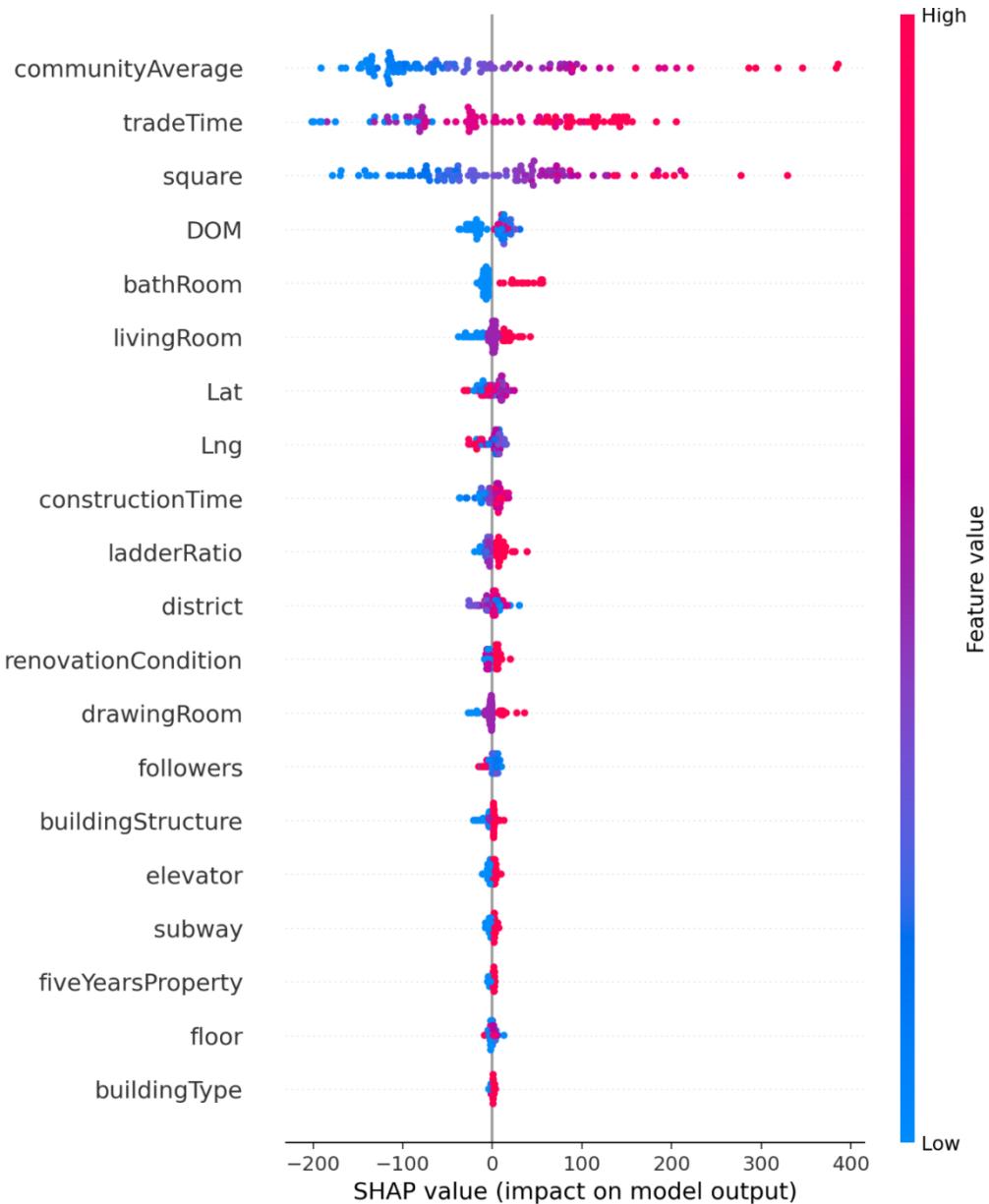


Figure 5: Global feature importance based on mean SHAP values

2 To complement the global feature rankings, SHAP summary plot in Figure 6 is generated to illustrate how
 3 individual feature values influence model predictions at the local level. Each point represents a single
 4 prediction, with the SHAP value reflecting the marginal contribution of a feature to the predicted sale price.
 5 Color denotes feature magnitude - red indicates higher values and blue indicates lower values.

6 Several key interpretations from Figure 6: (1) *communityAverage*: higher neighborhood averages (red)
 7 strongly push SHAP values to the right, raising predicted prices; lower values (blue) pull them down. (2)
 8 *tradeTime*: later transactions (red) increase predictions, while earlier dates (blue) depress them - consistent
 9 with market appreciation over time. (3) *square*: larger floor area (red) consistently lifts prices; smaller area
 10 (blue) reduces them. (4) *DOM* (active days on market): *DOM* (red) are associated with negative SHAP
 11 values, indicating a discount for stale listings. (5) *bathRoom* and *livingRoom*: higher counts (red) generally
 12 contribute positively, though with smaller magnitude than the top three drivers. (6) *Lat/Lng* and remaining
 13 attributes (*constructionTime*, *ladderRatio*, *district*, *renovationCondition*, *drawingRoom*, *followers*,
 14 *buildingStructure*, *elevator*, *subway*, *fiveYearsProperty*, *floor*, *buildingType*) show mixed, mostly modest
 15 effects - suggesting context-specific or second-order influences.



1

Figure 6: Local feature importance using SHAP values for individual predictions

2 To ensure robustness of SHAP-based insights, we performed bootstrap analysis (1,000 iterations) to
3 establish 95% confidence intervals for mean absolute SHAP values of the top six features:

- 4 • Square: 96.01 [95% CI: 86.03–106.91]
- 5 • CommunityAverage: 90.21 [95% CI: 80.05–99.96]
- 6 • TradeTime: 84.95 [95% CI: 78.74–91.16]
- 7 • DOM: 15.60 [95% CI: 14.42–16.85]
- 8 • BathRoom: 14.48 [95% CI: 12.03–17.45]
- 9 • Lat: 11.86 [95% CI: 10.83–12.94]

1 Non-overlapping confidence intervals confirm statistically significant differences in feature importance
2 rankings. This statistical validation confirms that the identified feature hierarchy is robust and not due to
3 sampling variation.

4 Furthermore, a representative property transaction with its complete SHAP value breakdown is provided
5 below, to demonstrate the GA-GBR model's interpretability at the individual instance level. A high-rise
6 tower property case:

- 7 • Property profile: Tower building, 199m², 27th floor, 3Bedrooms/2Baths, 1 Elevator, District 7
- 8 • Transaction date: 2016-09-11
- 9 • Actual price: ¥14,300,000 (¥71,860/m²)
- 10 • Predicted price: ¥14,118,822 (¥70,951/m²)
- 11 • Prediction error: 1.27% (MAPE)

12 Key SHAP Contributions to property features:

- 13 • CommunityAverage: SHAP (+0.18 to +0.22) - Neighborhood pricing levels represent the dominant
14 value driver, contributing 18-22% price premium, reflecting the strong influence of location and
15 local market dynamics
- 16 • Square: SHAP (+0.14 to +0.17) - The 199m² floor area, approximately 2.2 times the market median,
17 adds 14-17% to valuation as the primary physical characteristic
- 18 • TradeTime: SHAP (-0.03 to -0.04) - The 2016 transaction date applies a 3-4% discount relative to
19 more recent market conditions
- 20 • Floor: SHAP (+0.002 to +0.003) - The 27th floor location adds minimal value (0.2-0.3%),
21 indicating floor level has negligible impact in this specific case despite being a high floor
- 22 • Elevator: SHAP (+0.001 to +0.002) - Elevator access contributes marginally (0.1-0.2%), as it's a
23 standard expectation for high-rise properties.

24 This case illustrates how structural features (elevator, floor) dominate valuation in high-rise properties,
25 aligning with market expectations for vertical developments.

27 2) Further interpretation from the perspective of three building categories

28 To test the model performance at small scales, the dataset was subdivided into groups of 1000 property
29 transactions, stratified by building categories. This approach enabled consistent comparative analysis across
30 different property types while ensuring statistical robustness at the subgroup level. The predicted prices by
31 the GBR and GA-GBR models were first compared with the actual prices using three building category-
32 related datasets: (1) the tower group, (2) the combination of plate and tower group, and (3) the plate group.
33 As shown in Figure 7, the GA-GBR model's predicted prices were closer to the actual prices than those
34 predicted by the GBR model, with smaller MAPE values of 0.6%, 1.6%, and 1.02% for the three groups
35 respectively. This demonstrated the higher prediction accuracy of the proposed GA-GBR model compared
36 to the traditional GBR.

Figure 7: Comparison of the actual price and predicted price by the two models in the three divided building-category-related datasets

To demonstrate the model interpretability at small scales, Table 3 compared the top three features identified by the GA-GBR and GBR models across three building types: tower, mixed (tower and plate) and plate. Feature importance was measured using mean absolute SHAP values for consistency.

1 Table 3: Feature importance ranking (SHAP) in the three building categories

Tower		Plate and tower		Plate	
GBR feature	Rank	GBR feature	Rank	GBR feature	Rank
<i>Square</i>	15.08%	<i>CommunityAverage</i>	13.79%	<i>CommunityAverage</i>	13.89%
<i>TradeTime</i>	12.64%	<i>Square</i>	13.72%	<i>TradeTime</i>	12.50%
<i>CommunityAvera</i>	12.44%	<i>TradeTime</i>	12.70%	<i>Square</i>	11.31%
GA-GBR feature	Rank	GA-GBR feature	Rank	GA-GBR feature	Rank
<i>Elevator</i>	14.58%	<i>Kitchen</i>	17.06%	<i>Square</i>	24.34%
<i>TradeTime</i>	13.94%	<i>Floor</i>	16.04%	<i>DOM</i>	14.22%
<i>Floor</i>	13.47%	<i>DOM</i>	14.39%	<i>ConstructionTime</i>	14.08%

2

3 In the tower group, GA-GBR ranked *Elevator* highest (14.58%), replacing *CommunityAverage* (13.79%)
4 in GBR. The importance of *Square* slightly declined (from 15.08% to 14.58%), while *TradeTime* gained
5 relevance (13.94% vs. 12.64%). For mixed buildings, GA-GBR emphasized *Kitchen* (17.06%) and *Floor*
6 (16.04%), features absent in GBR's top rankings, highlighting GA-GBR's ability to capture more detailed
7 spatial and interior characteristics. In the plate group, GA-GBR prioritized active days on market - *DOM*
8 (14.22%) and *ConstructionTime* (14.08%), replacing GBR's focus on *CommunityAverage* and *TradeTime*.
9 This shift suggests GA-GBR better identifies property-specific temporal and lifecycle features.

10 In addition, *TradeTime* remained a consistently important feature across both models and all subgroups,
11 confirming its general impact on price. Overall, GA-GBR demonstrated stronger adaptability to context-
12 specific factors, thanks to its genetic optimization of feature selection and model tuning.

13

14 5.3 Practical implementation of the BIM-AI framework from a building 15 perspective

16 In this section, the practical implementation of the BIM-AI framework from a building perspective is
17 demonstrated using an IFC-based BIM model from Revit and the GA-GBR model integrated on PyCharm
18 platform. The implementation follows a two-stage process: (1) extracting the value-related information
19 from the IFC property valuation extension, and (2) calculating the property values using the GA-GBR
20 model. The case study utilized a real residential building project from Beijing, with the BIM model
21 originally created in Revit for construction documentation. We selected a representative property
22 transaction from our dataset and manually integrated its 22 distinct features into the BIM model's IFC
23 schema, due to limited time and resources. Subsequently, the necessary value-related information for
24 property valuation was incorporated into the spaces and zones defined in the Revit models which were
25 illustrated in Figure 8, in accordance with the proposed property sets and properties in the extended IFC
26 schema and the input features from the testing dataset.

27 The syntactic and semantic validation of the IFC models was conducted using the *Solibri* Model Checker,
28 in reference to ISO 10303-11 (ISO, 2014), confirming that there were no missing mandatory entities or
29 incorrect data structures. Lastly, the required value-relevant information was automatically extracted using
30 the developed IFC-based information extraction algorithm.

31

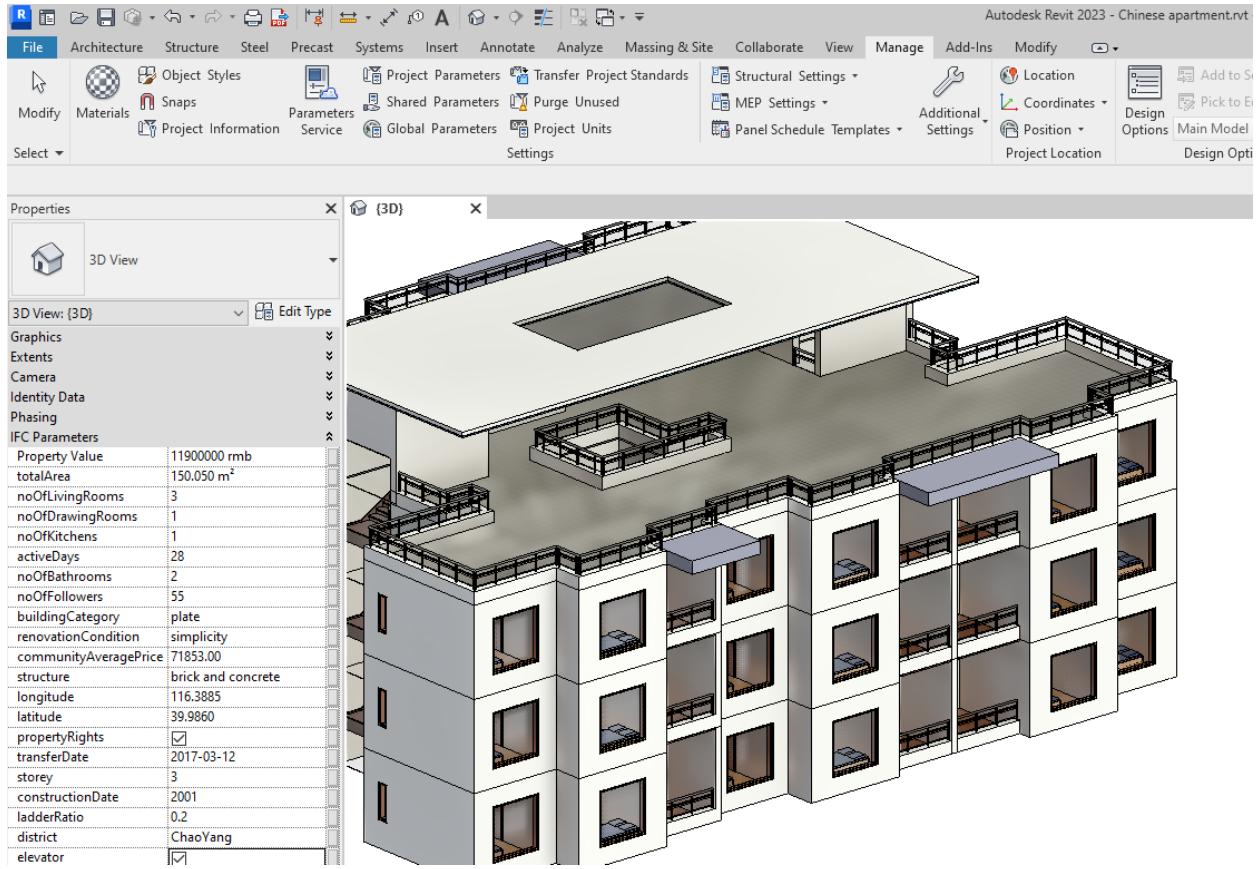


Figure 8: An IFC-based BIM model of the duplex house with required value-related information added according to the 22 input features in the experiment dataset

The integration of value-relevant information from the *Lianjia* Company into the Revit model involved embedding data from 22 distinct input features based on the Chinese dataset. This process utilized shared parameters in the Manage tab's settings panel, guided by the expanded IFC schema. For example, the model incorporated 'brick and concrete' as the *IfcLabel* in the Structure property of the *Pset_PV_Building* set, '50' as the *IfcInteger* in the *activeDays* attribute of the *Pset_PV_Transaction* set, and '11,900,000' as the *IfcReal* in the Property Value facet of the *Pset_PV_Valuation* set. These details extracted using the information extraction algorithm were listed in Table 4 below.

Table 4: The extracted value-related information from the BIM model

Property set name	Property name	Data type	Adapted nominal value
Pset PV Building	totalArea	IfcAreaMeasure (150.05)	150.05 m ²
Pset PV Building	noOfLivingRooms	IfcInteger (3)	3
Pset PV Building	noOfDrawingRooms	IfcInteger (1)	1
Pset PV Building	noOfKitchens	IfcInteger (1)	1
Pset PV Transaction	transferDate	IfcDateTime (2017-03-12)	2017-03-12
Pset PV Transaction	activeDays	IfcInteger (28)	28
Pset PV Building	noOfBathrooms	IfcInteger (2)	2
Pset PV Transaction	noOfFollowers	IfcInteger (55)	55
Pset PV Building	buildingCategory	IfcLabel ('plate')	plate
Pset PV Building	renovationCondition	IfcLabel ('simplicity')	simplicity

Pset_PV_Transaction	communityAveragePrice	IfcReal (71853)	71853 RMB
Pset_PV_Building	structure	IfcLabel ('brick and concrete')	brick and concrete
Pset_PV_Building	elevator	IfcBoolean(.F.)	False
Pset_PV_Parcel	longitude	IfcLabel ('116.3885')	116.3885
Pset_PV_Parcel	latitude	IfcLabel ('39.9860')	39.986
Pset_PV_Transaction	propertyRights	IfcBoolean(.T.)	True
Pset_PV_Building	storey	IfcInteger (3)	3
Pset_PV_Building	constructionDate	IfcDateTime (2001)	2001
Pset_PV_Building	ladderRatio	IfcReal (0.2)	0.2
Pset_PV_Parcel	district	IfcLabel ('ChaoYang')	ChaoYang
Pset_PV_Valuation	Property Value	IfcReal (11900000)	11900000 RMB

1

2 Next, the BIM-AI system was further implemented on PyCharm. Based on the extracted information from
 3 the Chinese BIM model, the house values predicted by the GBR and GA-GBR models are 10,819,100 RMB
 4 and 11,022,905 RMB respectively. With the actual value at 11,900,000 RMB, the prediction by the GA-
 5 GBR model is more accurate than that by the GBR.

6

7 5.4 Experiment findings

8 The main findings from the empirical experiments of the proposed BIM-xAI system are presented as
 9 follows:

10 **1) Predictive performance:** The GA-GBR outperformed 11 benchmark AVMs, improving R^2 by 1.3% over
 11 the baseline GBR and reducing MAPE to 10.6%. The MAPE improvement represents a 3-4.6% gain over
 12 recent state-of-the-art methods (Baur *et al.*, 2023; Konhäuser and Werner, 2024; Tchuente, 2024). The
 13 model also preserved its advantage at finer market levels, achieving lower MAPEs across three building-
 14 specific categories.

15 **2) Explainability results:** Global SHAP analysis revealed *CommunityAverage* as the dominant predictor,
 16 followed by *TradeTime* and *Square*. Secondary factors include *DOM* (showing discounts for stale listings),
 17 *BathRoom*, and *LivingRoom*. Geographic coordinates provide moderate influence while structural attributes
 18 show minimal impact. Local interpretability confirmed expected relationships: prestigious neighborhoods,
 19 recent transactions, and larger properties command premiums, while extended market exposure reduces
 20 values. When analyzed by different building types (Tower, Mixed, Plate), the model adaptively prioritized
 21 context-specific features like *elevator*, *kitchen*, and *stories* over generic predictors, demonstrating its ability
 22 to capture market-specific valuation effects. The enhanced accuracy with improved interpretability
 23 validates that genetic optimization not only boosts predictive performance but also produces more
 24 transparent and market-aligned feature selection across multiple scales.

25

26

1 6. Discussion

2 This study developed and validated a Genetic Algorithm optimized Gradient Boosting Regressor (GA-GBR)
3 integrated with BIM workflows for property valuation, achieving superior predictive performance
4 compared to 11 benchmark models. By synthesizing evolutionary optimization, ensemble learning and
5 explainable AI, the framework transcends traditional "black box" limitations while adapting to diverse
6 market contexts. The novel framework's impact extends well beyond technical innovation, offering
7 transformative potential across multiple domains.

8 **Research Implications:** This work establishes a reproducible methodological framework that advances
9 several research frontiers. It demonstrates how evolutionary algorithms can optimize feature selection in
10 high-dimensional property datasets while maintaining interpretability - a balance rarely achieved in
11 complex AI systems. The framework opens new research avenues including: (1) transfer learning
12 applications to adapt models across geographic markets with minimal retraining; (2) temporal market
13 evolution studies tracking how feature importance shifts over economic cycles; (3) integration with
14 emerging data sources such as IoT sensors for real-time occupancy data, satellite imagery for neighborhood
15 analysis, and social media for sentiment analysis; and (4) extension to related domains like commercial real
16 estate, infrastructure valuation and urban resilience assessment. The open-source nature of the approach
17 encourages reproducibility and collaborative improvement within the research community.

18 **Practice and Industry Applications:** The framework transforms professional practice across the real estate
19 value chain. Architects and designers are able to receive immediate feedback on how design choices affect
20 property values, enabling value for investment adjustment during conceptual design rather than costly post-
21 construction modifications. Property appraisers can leverage the tool to augment traditional valuation
22 methods, reducing assessment time significantly while providing defensible and transparent valuations.
23 Banks and mortgage lenders can deploy the system for automated underwriting, reducing loan processing
24 time and improving risk pricing accuracy. Insurance companies benefit from more precise property
25 replacement cost estimates. The standardized IFC-based approach ensures compatibility with existing BIM
26 workflows, requiring minimal disruption to current practices.

27 **Societal and Economic Impact:** The framework delivers both substantial economic value and critical
28 societal benefits. Economically, the 1.3% R^2 improvement represents substantial value in high-volume
29 markets. Given that even minor valuation improvements can affect lending decisions on properties worth
30 hundreds of thousands of dollars, this accuracy gain has meaningful implications for risk management and
31 capital allocation. Beyond these commercial benefits, the framework addresses critical societal challenges
32 by democratizing property valuation knowledge and reducing information asymmetry that historically
33 disadvantages first-time homebuyers and minority communities. The transparent SHAP explanations
34 promote fair lending practices and help urban planners understand how public investments (transit, schools,
35 parks) affect property values, enabling more equitable resource allocation. The system's ability to identify
36 gentrification patterns early allows proactive affordable housing interventions, while real-time market
37 monitoring helps policymakers detect speculative bubbles or distressed areas requiring targeted support.
38 This dual impact - improving both market efficiency and social equity - demonstrates how advanced AI can
39 serve both commercial interests and public good, creating value that extends from individual transactions
40 to community-wide benefits.

1 7. Limitation and future work

2 Although the GA-GBR framework shows high accuracy and interpretability, several limitations remain.
3 First, the scarcity of BIM-price datasets forced reliance on proxy inputs, potentially reducing real-world
4 fidelity. Second, the generalizability of results remains untested beyond the studied urban datasets. Markets
5 with different regulatory systems, cultural contexts, or rural transaction norms may yield varying
6 performance, highlighting the risk of geographic bias. Third, the framework is inherently dependent on the
7 quality and completeness of BIM data. Inconsistent IFC modelling practices, missing attributes, or
8 heterogeneous data standards could reduce reliability and hinder cross-project comparability. Last,
9 integrating BIM with transaction data raises privacy concerns, as detailed spatial layouts linked to prices
10 could identify individual owners. Future deployments must implement anonymization protocols and bias
11 audits to ensure equitable valuations across diverse communities.
12 From a methodological perspective, the use of genetic algorithms introduces additional computational cost,
13 which may restrict real-time or large-scale deployment without optimization. Moreover, while SHAP
14 analysis enhances interpretability, it cannot fully capture higher-order feature interactions or eliminate
15 potential model bias arising from skewed training data.
16 Future research should prioritize developing comprehensive IFC-linked transaction datasets with robust
17 privacy protections. The GA-GBR framework requires enhancement through multi-objective or Bayesian
18 optimization to reduce computational costs. Cloud-based and lightweight deployments could enable real-
19 time design feedback integration with existing BIM platforms. Transfer learning methodologies could
20 facilitate cross-regional model adaptation without extensive retraining. Additionally, user-centered
21 explainable AI interfaces must be developed to effectively communicate valuation insights to diverse
22 stakeholders. These tools should provide transparent, interpretable outputs for architects, developers and
23 policymakers, thereby supporting data-driven decision making in the built environment.

24

25 8. Conclusion

26 This study proposed and validated a transparent, explainable and scalable property valuation framework by
27 integrating BIM with a Genetic Algorithm optimized Gradient Boosting Regressor (GA-GBR). The
28 framework addresses critical challenges in traditional automated valuation models, including overfitting,
29 feature redundancy and limited interpretability. By incorporating GA for feature selection and
30 hyperparameter tuning, the GA-GBR model demonstrated superior performance compared to 11 benchmark
31 machine learning models across datasets at multiple scales. In particular, the model achieved consistent
32 improvements in regression accuracy metrics, including MAE, MAPE, MSE and R^2 , while enhancing
33 interpretability through SHAP based xAI techniques.
34 Empirical results revealed that GA-GBR effectively promotes feature independence, capturing localized
35 market dynamics and structural characteristics overlooked by traditional models. Through systematic
36 experimentation on large-scale datasets and stratified building-type subgroups, the proposed model
37 exhibited robust adaptability to varying analytical scales. Furthermore, the integration of xAI methods
38 provided both global and local explanations of predictions, supporting its use in decision-making processes
39 for developers, planners and policymakers.

1 The proposed BIM-xAI system lays a foundation for scalable, transparent and design-responsive valuation
2 tools in the building sector. As the digital transformation of the built environment continues, the framework
3 holds promises to improve valuation accuracy, design feedback and stakeholder trust.

4 The research makes contributions as follows:

5 • **Novel Optimization Approach:**

6 A genetic algorithm approach that simultaneously optimizes feature selection and hyperparameters in
7 gradient boosting for property valuation, demonstrating measurable improvements over traditional
8 approaches.

9 • **Hierarchical Explainability Framework for Property Valuation:**

10 Combines global (dataset-level) and local (building-type-specific) SHAP analysis to reveal both
11 universal and context-specific valuation drivers. The systematic application across different building
12 typologies, not just SHAP usage.

13 • **IFC-to-Valuation Pipeline Integration:**

14 A specific technical framework for extracting valuation-relevant features from IFC-based BIM data
15 and feeding them directly into ML models.

16 Overall, this research contributes a replicable, scalable and explainable valuation framework that can inform
17 both academic inquiry and industry application, supporting more transparent and intelligent property market
18 assessments.

22 **Reference**

23 Ahn, J.J., Byun, H.W., Oh, K.J. and Kim, T.Y. (2012), “Using ridge regression with genetic algorithm to
24 enhance real estate appraisal forecasting”, *Expert Systems with Applications*, Vol. 39 No. 9, pp. 8369–
25 8379, doi: <https://doi.org/10.1016/j.eswa.2012.01.183>.

26 Arcuri, N., De Ruggiero, M., Salvo, F. and Zinno, R. (2020), “Automated Valuation Methods through the
27 Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals”, *Sustainability*,
28 Vol. 12 No. 18, p. 7546, doi: <https://doi.org/10.3390/su12187546>.

29 Baur, K., Rosenfelder, M. and Lutz, B. (2023), “Automated real estate valuation with machine learning
30 models using property descriptions”, *Expert Systems with Applications*, Vol. 213, p. 119147, doi:
31 <https://doi.org/10.1016/j.eswa.2022.119147>.

32 Burgess, G., Jones, M. and Muir, K. (2018), “BIM in the UK house building industry: opportunities and
33 barriers to adoption”, *University of Cambridge*, Cambridge, available at:
34 <https://www.cdbb.cam.ac.uk/>.

35 Doan, Q.C., Chen, C., He, S. and Zhang, X. (2024), “How urban air quality affects land values: Exploring
36 non-linear and threshold mechanism using explainable artificial intelligence”, *Journal of Cleaner*

1 *Production*, Vol. 434, p. 140340, doi: <https://doi.org/10.1016/j.jclepro.2023.140340>.

2 Harrison, D. and Rubinfeld, D. (1978), “The Boston Housing Dataset”, available at:
3 <https://www.kaggle.com/datasets/schirmerchad/bostonhoustingmlnd> (accessed 13 September 2025).

4 Hong, Y. and Guo, F. (2025), “A framework of BIM-IoT application in construction projects through
5 multiple case study approach”, *Journal of Building Design and Environment*, Vol. 3 No. 1, p. 202439,
6 doi: <https://doi.org/10.70401/jbde.2025.0004>.

7 Iban, M.C. (2022), “An explainable model for the mass appraisal of residences: The application of tree-
8 based Machine Learning algorithms and interpretation of value determinants”, *Habitat International*,
9 Vol. 128, p. 102660, doi: <https://doi.org/10.1016/j.habitatint.2022.102660>.

10 Isikdag, U., Horhammer, M., Zlatanova, S., Kathmann, R. and Van Oosterom, P. (2015), “Utilizing 3D
11 building and 3D cadastre geometries for better valuation of existing real estate”, in FIG (Ed.),
12 *Proceedings FIG Working Week 2015 “From the Wisdom of the Ages to the Challenges of Modern
13 World”*, International Federation of Surveyors (FIG), Sofia, pp. 1–18.

14 ISO. (2014), “Industrial automation systems and integration — Product data representation and exchange
15 — Part 11: Description methods: The EXPRESS language reference manual”, available at:
16 <https://www.iso.org/standard/38047.html> (accessed 19 September 2025).

17 Kanan, H.R., Faez, K. and Taheri, S.M. (2007), “Feature Selection Using Ant Colony Optimization (ACO):
18 A New Method and Comparative Study in the Application of Face Recognition System”, in Petra
19 Perner (Ed.), *Industrial Conference on Data Mining*, Springer Berlin Heidelberg, pp. 63–76, doi:
20 https://doi.org/10.1007/978-3-540-73435-2_6.

21 Konhäuser, K. and Werner, T. (2024), “Uncovering the financial impact of energy-efficient building
22 characteristics with eXplainable artificial intelligence”, *Applied Energy*, Vol. 374, p. 123960, doi:
23 <https://doi.org/10.1016/j.apenergy.2024.123960>.

24 Lewis, O.M., Ware, J.A. and Jenkins, D. (1997), “A novel neural network technique for the valuation of
25 residential property”, *Neural Computing & Applications*, Vol. 5 No. 4, pp. 224–229, doi:
26 <https://doi.org/10.1007/BF01424227>.

27 Liu, X.S., Deng, Z. and Wang, T.L. (2011), “Real estate appraisal system based on GIS and BP neural
28 network”, *Transactions of Nonferrous Metals Society of China*, Vol. 21 No. Supplement 3, pp. s626–
29 s630, doi: [https://doi.org/10.1016/S1003-6326\(12\)61652-5](https://doi.org/10.1016/S1003-6326(12)61652-5).

30 McCluskey, W.J., McCord, M., Davis, P.T., Haran, M. and McIlhatton, D. (2013), “Prediction accuracy in
31 mass appraisal: A comparison of modern approaches”, *Journal of Property Research*, Vol. 30 No. 4,
32 pp. 239–265, doi: <https://doi.org/10.1080/09599916.2013.781204>.

33 Muccio, E. and Cannatella, D. (2026), *Mapping Real Estate Values: A Semi-Systematic Literature Review
34 of Spatial Evaluation Methods and Approaches, Lecture Notes in Computer Science*, Vol. 15893
35 LNCS, Springer Nature Switzerland, doi: https://doi.org/10.1007/978-3-031-97645-2_16.

36 Natekin, A. and Knoll, A. (2013), “Gradient boosting machines, a tutorial”, *Frontiers in Neurorobotics*,
37 Vol. 7, doi: <https://doi.org/10.3389/fnbot.2013.00021>.

38 Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T. and French, N. (2003), “Real estate appraisal: a review

1 of valuation methods”, *Journal of Property Investment & Finance*, Vol. 21 No. 4, pp. 383–401, doi:
2 <https://doi.org/10.1108/14635780310483656>.

3 Rafiei, M.H. and Adeli, H. (2016), “A Novel Machine Learning Model for Estimation of Sale Prices of
4 Real Estate Units”, *Journal of Construction Engineering and Management*, Vol. 142 No. 2, doi:
5 [https://doi.org/10.1061/\(asce\)co.1943-7862.0001047](https://doi.org/10.1061/(asce)co.1943-7862.0001047).

6 RICS. (2017), “The Future of Valuations”, available at:
7 https://www.rics.org/content/dam/ricsglobal/documents/to-be-sorted/future_of_valuations_insights_paper_rics.pdf (accessed 19 September 2025).

9 Su, T., Li, H. and An, Y. (2021), “A BIM and machine learning integration framework for automated
10 property valuation”, *Journal of Building Engineering*, Vol. 44, p. 102636, doi:
11 <https://doi.org/10.1016/j.jobe.2021.102636>.

12 Sun, Y. (2019), “Real estate evaluation model based on genetic algorithm optimized neural network”, *Data
13 Science Journal*, Vol. 18 No. 1, pp. 1–9, doi: <https://doi.org/10.5334/dsj-2019-036>.

14 Tarasov, S. and Dessoulaev-Śliwiński, B. (2024), “Algorithm-Driven Hedonic Real Estate Pricing – an
15 Explainable Ai Approach”, *Real Estate Management and Valuation*, Vol. 33 No. 1, pp. 22–34, doi:
16 <https://doi.org/10.2478/remav-2025-0003>.

17 Tchuente, D. (2024), “Real Estate Automated Valuation Model with Explainable Artificial Intelligence
18 Based on Shapley Values”, *Journal of Real Estate Finance and Economics*, doi:
19 <https://doi.org/10.1007/s11146-024-09998-9>.

20 Valier, A. (2020), “Who performs better? AVMs vs hedonic models”, *Journal of Property Investment and
21 Finance*, Vol. 38 No. 3, pp. 213–225, doi: <https://doi.org/10.1108/JPIF-12-2019-0157>.

22 Wilkinson, S.J. and Jupp, J.R. (2016), “Exploring the value of BIM for corporate real estate”, *Journal of
23 Corporate Real Estate*, Vol. 18 No. 4, pp. 254–269, doi: <https://doi.org/10.1108/JCRE-11-2015-0040>.

24 Won, J., Lee, G. and Cho, C. (2013), “No-Schema Algorithm for Extracting a Partial Model from an IFC
25 Instance Model”, *Journal of Computing in Civil Engineering*, Vol. 27 No. 6, pp. 585–592, doi:
26 [https://doi.org/10.1061/\(asce\)cp.1943-5487.0000320](https://doi.org/10.1061/(asce)cp.1943-5487.0000320).

27 El Yamani, S., Ettarid, M. and Hajji, R. (2019), “BIM potential for an enhanced real estate valuation
28 approach based on the hedonic method”, *3rd International Conference on Building Information
29 Modelling (BIM) in Design, Construction and Operations*, Séville, Spain, available at:
30 <https://orbi.uliege.be/handle/2268/250013> (accessed 19 September 2025).