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Towards Explainable and Scalable 1 
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 4 

Abstract 5 

Purpose – This study proposes a novel BIM-integrated, explainable and scalable framework for property 6 

valuation. It aims to enhance predictive accuracy and transparency by combining IFC-based feature 7 

extraction with a Genetic Algorithm enhanced Ensemble Learning, addressing key limitations of traditional 8 

and opaque AI models in the built environment. 9 

Design/methodology/approach – An IFC-based pipeline converts BIM geometry and semantics into 10 

machine-readable features. A Genetic Algorithm-enhanced Gradient Boosting Regressor (GA-GBR) is 11 

trained and tested on 152k transactions from China, and then further tested from building type perspective 12 

at smaller scales. Hyperparameter optimization is performed using a genetic algorithm, and model 13 

interpretability is enabled through SHAP. 14 

Findings – The GA-GBR model outperforms 11 benchmark models, achieving a 3-4.6% gain on MAPE 15 

over recent state-of-the-art methods. SHAP analysis identifies key predictors - local price level, transaction 16 

timing and floor area - while submarket results highlight context-specific drivers such as elevator presence 17 

in high-rise buildings. GA-based optimization enhances both predictive performance and feature relevance. 18 

Practical implications – The framework supports automated, explainable and scalable valuation using 19 

BIM-derived features, enabling end-to-end deployment and informed decision-making. It offers valuers, 20 

designers and policymakers a transparent tool for assessing property value at multiple scales. 21 

Originality/value – This is the first study to integrate GA-optimized ensemble learning, IFC-derived 22 

features and xAI techniques into a unified BIM-valuation workflow validated against real world data. It 23 

contributes to methodological advancement while facilitating industry adoption of explainable AI 24 

applications in the built environment. 25 

Keywords: Artificial Intelligence; Building Information Modeling; Property Valuation; SHAP (Shapley 26 

Additive Explanations); Ensemble Learning. 27 

 28 

1. Introduction 29 

The integration of Artificial Intelligence (AI) and Building Information Modeling (BIM) is reshaping the 30 

landscape of the building sector by enabling data-driven approaches to design optimization, risk analysis 31 

and decision-making. In particular, property valuation, critical to project feasibility, investment planning 32 

and cost-benefit analysis, is increasingly informed by AI models that can process large volumes of real 33 

estate and design-related data. However, a significant challenge persists - while AI models may offer high 34 

predictive accuracy, they often function as ‘black boxes’, providing little insight into how a decision is 35 

https://www.sciencedirect.com/journal/artificial-intelligence


reached. This lack of explainability poses concrete problems in several practical contexts. For instance, in 1 

public-sector land valuation, a lack of transparency can lead to legal disputes or resistance to tax 2 

assessments. In private property valuation, opaque models make it difficult for investors or lenders to justify 3 

financial decisions or adapt designs to market signals. This undermines stakeholder trust, reduces model 4 

adoption in practice and limits the potential for AI-generated insights to support upstream design or project 5 

planning decisions within BIM workflows. Traditional approaches to property valuation, whether through 6 

human appraisers or even machine learning models like regression and neural networks (Burgess et al., 7 

2018; McCluskey et al., 2013; Valier, 2020), have limitations as follows: 8 

(1) They fail to integrate tightly with BIM-based design data, missing opportunities to create a 9 

feedback loop between valuation insights and design decisions. 10 

(2) They often provide predictions without transparent justifications or interpretable reasoning. 11 

This research addresses the urgent need to bridge that gap by exploring how Explainable AI (xAI) can be 12 

integrated into BIM workflow to provide automated and interpretable valuation insights. Specifically, it 13 

investigates how BIM-based workflow can enhance feedback loops within building design and inform 14 

decision making, and whether a Genetic Algorithm optimized Gradient Boosting Ensemble model (GA-15 

GBR) outperforms traditional AI models in predictive performance and model interpretation. The main 16 

research questions guiding this study are: (1) how can xAI be effectively embedded within BIM workflows 17 

to improve interpretability in property valuation, (2) what actionable insights can xAI (SHAP) uncover at 18 

both global and individual property levels on feature importance and interaction effects to support design 19 

and investment decisions, and (3) how the proposed GA-GBR model performs compared to conventional 20 

AI models in delivering meaningful property valuation outputs. 21 

The proposed xAI-BIM integration advances property valuation through three main innovations. First, 22 

explainable AI methods such as Shapley values and feature selection comparison are applied to improve 23 

interpretability and reveal relationships between property features and market value. Second, a Genetic 24 

Algorithm optimized Gradient Boosting Regressor (GA-GBR) is developed to enhance predictive 25 

performance and provide explainable outputs, evaluated at both large scale (national dataset) and finer 26 

submarket levels. Third, an Industry Foundation Classes (IFC)-based information extraction pipeline is 27 

implemented to standardize and integrate BIM-derived design parameters into valuation workflows. 28 

Collectively, these components establish a framework that strengthens feedback loops between valuation 29 

and design, supporting transparency and trust in AI-driven decision systems. 30 

 31 

2. Related Work 32 

Property valuation plays a pivotal role in construction, investment, taxation and lending. An accurate market 33 

price analysis should reflect property attributes, market culture fundamentals and geographical locations 34 

(Pagourtzi et al., 2003). The dynamics of subjective factors and the real estate market’s opacity make it 35 

hard for an accurate and objective property valuation. Typical information required for property valuation 36 

involves regional, city and neighborhood data, site data, building data, sales and cost data, income and 37 

expense data. The impact of macroeconomic variables on property value is beyond this research.  38 



2.1 AI and BIM in Property Valuation 1 

AI applications in property valuation have advanced from traditional regression models to neural networks 2 

and ensemble methods. While early research highlighted the superior performance of neural networks in 3 

capturing non-linear patterns (Lewis et al., 1997; Liu et al., 2011), limitations such as high computational 4 

demand and poor scalability remain, particularly for large-scale or real-time valuation (Rafiei and Adeli, 5 

2016). To address these issues, genetic algorithms (GA) have been used for feature selection and model 6 

tuning, improving predictive accuracy in hybrid models (Ahn et al., 2012; Sun, 2019). Rafiei and Adeli 7 

(2016) demonstrated the value of integrating GA with deep learning for early-stage valuation, though 8 

challenges with interpretability and generalization persist.  9 

As a response, explainable AI (xAI) has emerged to improve model transparency and stakeholder trust. 10 

Shapley Additive Explanations (SHAP), a widely adopted xAI method, quantifies feature contributions and 11 

enhances the interpretability of tree-based models like XGBoost and Random Forests (Iban, 2022; Tchuente, 12 

2024). These techniques help valuers understand how attributes such as location or building age influence 13 

predictions. However, xAI applications remain narrow. Most models rely on structured data, neglecting 14 

behavioral or contextual variables. Recent studies have integrated natural language processing (NLP) 15 

techniques and applied explainable AI (xAI) methodologies to address sustainability-related valuation 16 

challenges including regional generalizability constraints and limited model interpretability. This 17 

underscores the critical need for developing multi-scale explainable frameworks in contemporary valuation 18 

practice (Baur et al., 2023; Doan et al., 2024; Konhäuser and Werner, 2024; Tarasov and Dessoulavy-19 

Śliwiński, 2024). 20 

While several studies have examined BIM’s technical capabilities, its integration into real-world valuation 21 

practice remains limited. Isikdag et al. (2015) and Wilkinson and Jupp (2016) proposed using 3D models 22 

and contextual data to support property professionals, yet their frameworks remain largely conceptual and 23 

detached from live valuation workflows. Practical efforts to link BIM and valuation include El Yamani et 24 

al. (2019), who applied hedonic pricing using IFC-derived variables. However, external market factors were 25 

excluded and limited case validation restricts generalizability. Arcuri et al. (2020) proposed a BIM-GIS 26 

framework based on the cost approach, while data-rich, lacks sensitivity to market dynamics. Other studies, 27 

such as RICS (2017) envisions broader BIM adoption, its practical use for market valuation requires an 28 

explainable AI layer to bridge BIM data and valuation outcomes. 29 

Notably, Su et al., (2021) presented an early framework combining IFC data with machine learning-based 30 

valuation, but it lacked end-to-end automation, explainability and rigorous validation across submarket 31 

contexts. This study extends that prior work by embedding SHAP-based explanations, optimizing both 32 

features and hyperparameters via a GA mechanism, and conducting multi-scale empirical experiments. 33 

Recent research from 2025 further pays attention to cloud-based BIM analytics and real-time valuation with 34 

automated valuation models (Hong and Guo, 2025; Muccio and Cannatella, 2026), underscoring the need 35 

for a scalable, explainable and automated framework for property valuation. 36 



2.2  Research Gaps 1 

Despite significant progress in integrating Artificial Intelligence (AI) and Building Information Modeling 2 

(BIM) into property valuation, several critical research gaps remain. Figure 1 provides a structured 3 

summary of these research gaps alongside the corresponding components of the proposed framework. 4 

 5 

Figure 1: Linking research gaps to framework components 

The first gap pertains to the limited use of semantically rich and BIM-derived variables within automated 6 

valuation models (AVMs). Although several studies have extracted IFC attributes, these features are rarely 7 

integrated into end-to-end predictive workflows. This study addresses the gap by implementing an IFC-8 

based feature extraction pipeline that converts BIM elements into structured data for AI-driven valuation. 9 

The second gap highlights the absence of explainable models capable of operating across multiple markets 10 

or building contexts. Many current models provide global insights but lack localized interpretation, which 11 

limits their utility for diverse stakeholders. The proposed framework incorporates SHAP-based global and 12 

local explanations, enabling transparency at both the aggregate and individual property levels, and is 13 

validated across different building types to ensure adaptability. 14 

The last reflects the lack of bidirectional feedback between BIM design workflows and valuation insights. 15 

Existing models typically operate in isolation, providing limited guidance to designers or planners. This 16 

study contributes a BIM-integrated valuation pipeline that supports real-time feedback by linking predictive 17 

insights to BIM parameters. 18 

By systematically aligning each identified gap with a specific component, this research contributes to both 19 

methodological rigor and practical applicability, thereby supporting the broader adoption of explainable 20 

and scalable AI for property valuation in BIM-enabled environments. 21 

 22 



3. Research Methodology 1 

Following Design Science Research (DSR) methodology, this research systematically develops and 2 

evaluates a novel BIM-integrated property valuation framework leveraging Genetic Algorithm (GA)-3 

enhanced ensemble learning to achieve automation, transparency and scalability. 4 

3.1 Problem statement 5 

Prior research on AI-BIM property valuation integration remains either conceptual or employs opaque 6 

models, limiting practical adoption. The systematic integration of BIM-derived data into a valuation 7 

framework remains underexplored beyond isolated applications. This study addresses these gaps by 8 

proposing a transparent and automated valuation framework integrating BIM data via IFC into a GA-9 

optimized Gradient Boosting Regressor (GA-GBR), enhanced with explainable AI techniques including 10 

Shapley values. 11 

3.2 Requirement analysis 12 

The framework development requires establishing functional, technical and data requirements. Functional 13 

requirements include automated IFC-based information extraction for BIM-derived features (floor area, 14 

room numbers), xAI methods (SHAP) for interpretability, multi-scale adaptability, and feedback-driven 15 

decision support for design optimization. 16 

Technical requirements involve implementing the GA-GBR model for optimal predictive performance 17 

through automated hyperparameter tuning and feature selection. The framework integrates model-agnostic 18 

xAI techniques (SHAP) enabling global and local interpretability, which is vital for stakeholder trust. The 19 

IFC data extraction must ensure reliability and efficiency with prevalent BIM software. 20 

Data requirements emphasize high-quality IFC-encoded BIM models containing standardized structural, 21 

spatial and semantic data. Transaction datasets should include historical prices, property characteristics, 22 

transaction timelines and geographic attributes to capture valuation drivers and enhance interpretability 23 

through diverse scenarios. 24 

Together, these technical and data requirements provide the foundation for building an integrated, 25 

explainable and scalable BIM-xAI valuation framework that can support predictive accuracy and design 26 

feedback. 27 

3.3 System design and development 28 

The system architecture integrates BIM data, machine learning and xAI methods through modular 29 

components as shown in Figure 2: 30 

• IFC-Based Information Extraction: BIM parser automatically extracts spatial and semantic 31 
features from IFC models, including geometric attributes (floor area, volume) and structural 32 

characteristics. 33 



• GA-GBR Modeling Pipeline: Core module performing automated feature selection and 1 

hyperparameter tuning to optimize prediction accuracy and efficiency. 2 

• xAI Visualization Engine: Incorporates SHAP and feature selection comparisons for global and 3 

local model interpretability, enabling stakeholders to trace feature influence on valuations. 4 

• Design Feedback Interface: Generates valuation feedback supporting early-stage design 5 

optimization by mapping design element influence on predicted market value. 6 

This architecture facilitates comprehensive property valuation by systematically integrating BIM and AI, 7 

fulfilling industry needs and research innovation requirements. 8 

3.4 System validation 9 

A multi-phase validation strategy ensures robustness, explainability and practical applicability: (1) 10 

comparative evaluation of GA-GBR against eleven machine learning models using transaction datasets 11 

across multiple scales, demonstrating improved predictive accuracy; (2) SHAP application to verify feature 12 

importance, supplemented by comparative analysis against conventional GBR; and (3) practical case study 13 

implementation using a Chinese BIM model, demonstrating IFC-based feature extraction feasibility and 14 

industry data integration. 15 

This comprehensive validation ensures analytical robustness and practical applicability, advancing scalable, 16 

explainable and BIM-integrated property valuation. 17 



 1 

Figure 2: System design for the BIM-xAI integration 2 



4. System development 1 

With the conceptual architecture and validation roadmap established, section 4 moves into the 2 

implementation phase. It details the development of the two core modules: (1) the IFC-based information 3 

extraction pipeline, which transforms spatial and semantic data from BIM models into machine-readable 4 

features; and (2) the Genetic Algorithm optimized Gradient Boosting Regressor (GA-GBR), which 5 

performs predictive modeling enhanced by feature selection and interpretability. This section explains how 6 

these components are developed, integrated and prepared for empirical validation, forming the operational 7 

backbone of the proposed BIM-xAI valuation system. 8 

4.1  IFC-based information extraction for property valuation 9 

Partial data model retrieval in BIM can be categorized into schema-based and instance-based approaches. 10 

Schema-based methods rely on predefined structures like IFC to extract data, while instance-based 11 

approaches focus on retrieving specific object-level information directly from the model. Building on the 12 

no-schema algorithm by Won et al. (2013), this study adopts an instance-based method using the open-13 

source IfcOpenShell library. This integration enables efficient extraction of common physical elements 14 

while offering flexibility to meet user-defined information needs. The extraction process involves three 15 

steps as follows: 16 

(1) Target information identification in IFC instances 17 

This step aims to identify the target information in an IFC instance model and define the representation of 18 

its data structure. The target information within an IFC instance model contains the current value-related 19 

design information in building objects (IfcSpace) and their value-specific properties (total area, built date 20 

and renovation condition). Therefore, the representation of the target information includes several key 21 

elements in an IFC data model: (1) the globally unique identifier number (GUID) of an IFC instance model, 22 

(2) the attributes of building objects including building object names, and (3) the attributes of required 23 

IfcProperty instances that contain the property set names, property names, property types, and their nominal 24 

values. Figure 3 gives an example of the representation of the target information based on IFC schema. 25 
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Figure 3: An example of an item in the data structure representation 2 

(2) Information extraction algorithm development 3 

To extract value-related information elements about building objects and their attributes for property 4 

valuation, information exchange between construction projects and property valuation is delivered through 5 

an IFC-based information extraction algorithm. The context of how to develop an IFC-based extraction 6 

algorithm is described in Figure A and Figure B in the Appendix. After analyzing the information elements 7 

and their relationships between IfcObject and IfcProperty, the IFC-based extraction algorithm was 8 

developed on Python using IfcOpenshell-python module on Pycharm software.  9 

The algorithm initiates by identifying the relevant IFC entities associated with the specified building 

elements. It then recursively traverses all linked data instances until the complete set of associated 

properties is extracted. As illustrated in Figure C (Appendix), the flowchart outlines the logic of the 

developed IFC-based information extraction procedure. This approach retrieves building element attributes 

both directly via the IfcRelDefinesByProperties relationship and indirectly via the IfcRelDefinesByType 



relationship. The operational implementation of the algorithm, detailing both direct and indirect extraction 

paths, is presented in Table 1 with an example of the extracted data. 

Table 1: An example of an extracted information item 

Instance GUID Object name Property set Property name Property nominal value 

30 Bedroom  Pset_PV_Building renovationCondition IFCLabel(‘simplicity’) 

 1 

(3) IFC Data cleaning and standardization 2 

Next, IFC-derived data was preprocessed through four steps: (1) handling missing attributes by assigning 3 

default values or imputing with dataset-level medians; (2) standardizing heterogeneous property naming 4 

conventions by mapping synonyms (e.g. ‘GrossFloorArea’ and ‘TotalArea’) to unified categories; (3) 5 

resolving unit inconsistencies (e.g. converting square feet to square meters based on IFC unit assignments); 6 

and (4) detecting and removing outlier values such as negative areas or unrealistic floor counts. These steps 7 

ensure data consistency and improve the robustness of the GA-GBR valuation model. 8 

4.2  Genetic algorithm optimized gradient boosting ensemble model (GA-GBR) 9 

The rationale behind the model selection begins with a proof of concept, testing the 11 typical regression 10 

models including linear regressions, K-Nearest Neighbors (KNN), Supporter Vector Machine (SVM), 11 

decision tree-based models such as Classification and Regression Trees (CART), random forest and 12 

gradient boosting regression (GBR), and Artificial Neural Network (ANN) on the UCI Machine Learning 13 

repository - Boston housing dataset (Harrison and Rubinfeld, 1978). Typical performance metrics for 14 

regression analysis involve the mean absolute error (MAE), mean absolute percentage error (MAPE), mean 15 

squared error (MSE), root mean squared error (RMSE), and coefficient of determination (𝑅2) etc. To get a 16 

comprehensive understanding of eleven automated valuation models (AVMs) performances, all the above-17 

mentioned metrics were selected. It was found that the GBR model had the highest prediction accuracy and 18 

lowest error among all the five metrics (results shown in Table B in the Appendix). In addition, from 19 

literature, it is concluded that compared to neural networks, ensemble learning has advantages in terms of 20 

model interpretability and flexibility, which is more suitable for knowledge mining and system development 21 

for property valuation. 22 

The architecture of the proposed GA-GBR model consists of three key stages: base learner generation, 23 

problem encoding and genetic search, which has been provided in our previous study (Su et al., 2021). 24 

While the GA-GBR model has demonstrated improved predictive accuracy, this subsection highlights how 25 

it enhances model interpretability in property valuation tasks. 26 

To address current challenges within GBR including overfitting and the trade-off between independent and 27 

diverse of base learners, GA-GBR integrates a Genetic Algorithm (GA) with the traditional Gradient 28 

Boosting Regressor (GBR). The GA operates as an evolutionary feature selection engine, optimizing both 29 

the feature subset and model hyperparameters. This approach improves not only predictive accuracy but 30 

also interpretability by identifying and isolating the most relevant input variables. 31 

The implementation of the proposed GA-GBR model focusing on enhanced model interpretability are 32 

provided as follows: 33 



Base learner generation 1 

The first step involves generating a pool of base learners using the input domain dataset. There are three 2 

common base-learner models: linear models, smooth models and decision trees. In this research, decision 3 

trees of uniform size are utilized as base learners, which are effective at handling mixed data types and 4 

modeling complex functions. The GBR ensemble combines multiple base learners 𝑓𝑚(𝑥𝑖) to generate a 5 

strong model 𝑓(𝑥), which is displayed below. 6 

𝑓(𝑥)= ∑ 𝑓𝑚(𝑥𝑖)𝑀
𝑚=1                                                              (1)                                     7 

The objective function for the base learner is to learn a mapping 𝑓(𝑥) between the input feature vector and 8 

the output (house price). Typical loss functions for regression models include Gaussian 𝐿2 loss function, 9 

Laplace 𝐿1 loss function, Huber loss function, and Quantile loss function (Natekin and Knoll, 2013). Initial 10 

testing on the GBR model indicated that it achieved the best prediction accuracy with Huber loss function. 11 

Problem encoding 12 

The problem encoding task is conducted in the next. This research employs binary encoding to represent 13 

solutions, focusing on exploring the relationship between input features and the target price. In the training 14 

of the GA-GBR model, each chromosome within the population corresponds to an individual that possesses 15 

N input features from the training data, as illustrated in Figure 4. For example, parameter A might represent 16 

house size, while parameter B could indicate the presence of central heating. A binary value (one or zero) 17 

denotes whether a feature is selected or not. The objective of using binary encoding for feature selection is 18 

to identify the near-optimal chromosome, where each bit corresponds to a feature, in order to discover the 19 

smallest subset of features that yields the highest predictive performance (Kanan et al., 2007). The size of 20 

each chromosome is determined by the number of input features (N). For instance, in the experiments of 21 

the GA-GBR modeling, described in Section 5.1, N amounts to 56.  22 

 23 

Figure 4: Binary chromosome encoding for feature selection in the GA-GBR 

Genetic search 24 

Through the operations of selection, crossover and mutation, the genetic algorithm (GA) iteratively evolves 25 

a population of candidate feature subsets toward near-optimal solutions. The fitness function that guides 26 

this evolutionary search is primarily defined by the coefficient of determination (R²), with an added 27 

emphasis on model sparsity and generalization. This dual-objective design serves to mitigate overfitting 28 

while enhancing the interpretability of the resulting model. 29 

 30 



5. Empirical studies 1 

The preliminary construction of the proposed GA-GBR model involved three main steps: data collection, 2 

verification and data preprocessing. The dataset is collected from Kaggle, uploaded by Qiu, which 3 

comprises 152186 traded house data for properties registered in China from 2009 to 2018. Variables are 4 

classified as continuous (e.g., house price, total area), binary (e.g., elevator presence, property rights) and 5 

categorical (e.g., building structure). 6 

Before model training, categorical variables are systematically encoded using appropriate techniques based 7 

on their characteristics: 8 

• Binary variables (elevator, fiveYearsProperty, subway): retained as 0/1 binary indicators 9 

• Ordinal variables (renovationCondition: 1-4 scale): preserved ordinal encoding reflecting quality 10 

hierarchy 11 

• Nominal variables (buildingType, buildingStructure, district): one-hot encoded creating dummy 12 

variables. 13 

To validate encoding robustness, we conducted systematic sensitivity testing: 14 

• Compared one-hot and target encoding for nominal variables: R² difference < 0.5% 15 

• Tested ordinal and one-hot for renovationCondition: ordinal preserved 2.1% better performance. 16 

The GBR and GA-GBR models are developed and tested in Python using scikit-learn. Both models are 17 

trained and tuned using genetic search to optimize key hyperparameters, including the number of estimators, 18 

learning rate, tree depth, and loss function. Each dataset is split into 70% training and 30% testing sets, and 19 

further segmented by building categories to analyze feature-price relationships.  20 

The GA parameters are systematically determined through preliminary experiments and sensitivity analysis 21 

to balance exploration and exploitation trade-offs: 22 

(1) Population parameters 23 

• Population size: 600 individuals (optimized through convergence analysis) 24 

• Generations: 32 (with early stopping criteria) 25 

• Chromosome length: 56 bits (corresponding to feature count) 26 

(2) Evolutionary operators 27 

• Selection: Tournament selection (k = 3) 28 

• Crossover: Single-point crossover, probability = 0.8 29 

• Mutation: Bit-flip mutation, probability = 0.1/chromosome length 30 

(3) Validation and overfitting control 31 

• Train-Test split: 70% training, 30% testing with stratified sampling preserving price distribution 32 

• Cross validation: 5-fold CV for hyperparameter tuning and stability assessment 33 

• Regularization: Huber loss, learning rate of 0.2, maximum tree depth of 7, and at least 50 samples 34 

per leaf 35 

• Overfitting check: Training and testing R² gap < 1%, confirming genuine generalization across 36 

building types and time periods. 37 



After trial-and-error testing, for full datasets, GA-GBR performs best with 200 estimators, learning rate 1 

(0.2), and Huber loss; for smaller 1,000-sample groups, optimal settings included 100 estimators and 2 

learning rate (0.1). The GA-GBR model performs best with a genetic algorithm with 600 individuals, 32 3 

generations, and standard crossover and mutation rates. Model fitness is evaluated using 𝑅2 , and 4 

chromosomes outperforming the baseline GBR are selected, demonstrating improved accuracy and 5 

generalizability across scales. 6 

5.1 Model performance 7 

 The performance of the trained GA-GBR model is initially evaluated on the big dataset, comparing the 8 

model performances with the other 11 different machine learning models. Table 2 provides a comparative 9 

analysis of five typical metrics for regression models. The metrics include Mean Absolute Error (MAE), 10 

Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE) 11 

for error measurement, and R-squared (𝑅2) for prediction accuracy. 12 

Table 2: Predictive accuracy of the 12 different automated valuation models  13 

Accuracy metrics MAE MAPE MSE RMSE     𝐑𝟐 

Linear regression 76.79 26.0% 13042 114 80.3% 

Ridge regression 76.75 26.0% 13033 113.9 80.3% 

Lasso regression 77.11 26.1% 13265 114.9 80.0% 

Elastic Net regression 77.89 26.3% 13602 116.4 79.5% 

KNN 129.19 35.5% 40468 200.7 39.0% 

SVM 171.28 51.4% 69810 263.7 5.3% 

ANN 156.73 52.9% 51625 227.2 22.2% 

CART 54.28 15.7% 8610 90.4 86.9% 

AdaBoost 52.89 18.5% 6119 77.9 90.8% 

Random forest 38.65 12.0% 4545 66.7 93.2% 

GBR 

 

 

 

 

36.87 11.8% 3832 61.9 93.9% 

GA-GBR (proposed) 32.76 10.55% 3026 55.01 95.2% 

 14 

Table 2 shows that linear and regularized regression models performed poorly, with high error rates and 15 

low model fit. KNN and SVM showed even weaker results, with 𝑅2 below 0.40. In contrast, tree-based 16 

models delivered significantly better performance. CART reduced the MAE to 54.3 and increased 𝑅2 to 17 

86.9%, while ensemble methods like Random Forest and GBR further improved 𝑅2 to 93.2%. and 93.9% 18 

The proposed GA-GBR model outperformed all others, achieving the lowest MAE (32.76), lowest MAPE 19 

(10.55%) and highest 𝑅2 (95.2%). Notably, all 32 GA-generated models exceeded the predictive accuracy 20 

of the baseline GBR, demonstrating the effectiveness and generalization capability of the GA-optimized 21 

approach in large-scale valuation tasks. 22 



To ensure the robustness of GA-GBR's superior performance, we conducted bootstrap analysis to establish 1 

95% confidence intervals for GA-GBR and GBR. It shows that R² for GA-GBR at 0.952 [0.949-0.955] and 2 

R² for GBR at 0.939 [0.936-0.942]. This confirms that GA-GBR's 1.3% performance improvement is 3 

statistically significant (p < 0.001), demonstrating the effectiveness of genetic algorithm optimization. 4 

5.2 Model explainability analysis 5 

This section presented the explainability analysis of the proposed GA-GBR model using SHAP in the big 6 

dataset. First, feature importance was assessed using SHAP, enabling both global and local interpretability 7 

of feature contributions in a non-linear context. These insights were used to explain model behavior and 8 

identify influential variables beyond what correlation alone could reveal. Second, the performance and 9 

interpretability of the GA-GBR model were compared with a baseline GBR to highlight the advantages of 10 

GA-based optimization in enhancing both prediction accuracy and feature relevance. Together, these 11 

explainability techniques enhanced the transparency, interpretability and decision-support capabilities of 12 

the proposed BIM-xAI valuation framework. 13 

1) SHAP feature importance analysis 14 

Improving model performance and interpretability requires understanding the relationships between input 15 

features and property prices. SHAP values quantify each feature’s contribution to a prediction by computing 16 

its marginal effects across all possible feature combinations. This provides both global interpretability 17 

(across the entire model) and local interpretability (specific to individual predictions), enabling more 18 

transparent and accountable decision-making in property valuation. Two types of SHAP summary plots are 19 

generated below to illustrate both global and local model behavior. 20 

Figure 5 shows that the three most impactful features are: (1) communityAverage, which dominates as the 21 

strongest driver by capturing neighborhood price levels; (2) tradeTime, reflecting temporal market 22 

conditions and seasonality; and (3) square (floor area), which remains a major physical determinant of price. 23 

Among the next tier, DOM (active days on market) has the largest additional impact, followed by bathRoom 24 

and livingRoom. Geographic coordinates (Lat, Lng) contribute to a lesser extent. A long tail of variables - 25 

constructionTime, ladderRatio, district, renovationCondition, drawingRoom, followers, buildingStructure, 26 

elevator, subway, fiveYearsProperty, floor, and buildingType - exhibits minimal average contributions, 27 

indicating weaker or context-specific effects. 28 
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Figure 5: Global feature importance based on mean SHAP values 

To complement the global feature rankings, SHAP summary plot in Figure 6 is generated to illustrate how 2 

individual feature values influence model predictions at the local level. Each point represents a single 3 

prediction, with the SHAP value reflecting the marginal contribution of a feature to the predicted sale price. 4 

Color denotes feature magnitude - red indicates higher values and blue indicates lower values. 5 

Several key interpretations from Figure 6: (1) communityAverage: higher neighborhood averages (red) 6 

strongly push SHAP values to the right, raising predicted prices; lower values (blue) pull them down. (2) 7 

tradeTime: later transactions (red) increase predictions, while earlier dates (blue) depress them - consistent 8 

with market appreciation over time. (3) square: larger floor area (red) consistently lifts prices; smaller area 9 

(blue) reduces them. (4) DOM (active days on market): DOM (red) are associated with negative SHAP 10 

values, indicating a discount for stale listings. (5) bathRoom and livingRoom: higher counts (red) generally 11 

contribute positively, though with smaller magnitude than the top three drivers. (6) Lat/Lng and remaining 12 

attributes (constructionTime, ladderRatio, district, renovationCondition, drawingRoom, followers, 13 

buildingStructure, elevator, subway, fiveYearsProperty, floor, buildingType) show mixed, mostly modest 14 

effects - suggesting context-specific or second-order influences. 15 
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Figure 6: Local feature importance using SHAP values for individual predictions 

To ensure robustness of SHAP-based insights, we performed bootstrap analysis (1,000 iterations) to 2 

establish 95% confidence intervals for mean absolute SHAP values of the top six features: 3 

• Square: 96.01 [95% CI: 86.03–106.91] 4 

• CommunityAverage: 90.21 [95% CI: 80.05–99.96] 5 

• TradeTime: 84.95 [95% CI: 78.74–91.16] 6 

• DOM: 15.60 [95% CI: 14.42–16.85] 7 

• BathRoom: 14.48 [95% CI: 12.03–17.45] 8 

• Lat: 11.86 [95% CI: 10.83–12.94] 9 



Non-overlapping confidence intervals confirm statistically significant differences in feature importance 1 

rankings. This statistical validation confirms that the identified feature hierarchy is robust and not due to 2 

sampling variation. 3 

Furthermore, a representative property transaction with its complete SHAP value breakdown is provided 4 

below, to demonstrate the GA-GBR model’s interpretability at the individual instance level. A high-rise 5 

tower property case: 6 

• Property profile: Tower building, 199m², 27th floor, 3Bedrooms/2Baths, 1 Elevator, District 7 7 

• Transaction date: 2016-09-11  8 

• Actual price: ¥14,300,000 (¥71,860/m²) 9 

• Predicted price: ¥14,118,822 (¥70,951/m²) 10 

• Prediction error: 1.27% (MAPE) 11 

Key SHAP Contributions to property features: 12 

• CommunityAverage: SHAP (+0.18 to +0.22) - Neighborhood pricing levels represent the dominant 13 

value driver, contributing 18-22% price premium, reflecting the strong influence of location and 14 

local market dynamics 15 

• Square: SHAP (+0.14 to +0.17) - The 199m² floor area, approximately 2.2 times the market median, 16 

adds 14-17% to valuation as the primary physical characteristic 17 

• TradeTime: SHAP (-0.03 to -0.04) - The 2016 transaction date applies a 3-4% discount relative to 18 

more recent market conditions 19 

• Floor: SHAP (+0.002 to +0.003) - The 27th floor location adds minimal value (0.2-0.3%), 20 

indicating floor level has negligible impact in this specific case despite being a high floor 21 

• Elevator: SHAP (+0.001 to +0.002) - Elevator access contributes marginally (0.1-0.2%), as it's a 22 

standard expectation for high-rise properties. 23 

This case illustrates how structural features (elevator, floor) dominate valuation in high-rise properties, 24 

aligning with market expectations for vertical developments. 25 

 26 

2) Further interpretation from the perspective of three building categories 27 

To test the model performance at small scales, the dataset was subdivided into groups of 1000 property 28 

transactions, stratified by building categories. This approach enabled consistent comparative analysis across 29 

different property types while ensuring statistical robustness at the subgroup level. The predicted prices by 30 

the GBR and GA-GBR models were first compared with the actual prices using three building category-31 

related datasets: (1) the tower group, (2) the combination of plate and tower group, and (3) the plate group. 32 

As shown in Figure 7, the GA-GBR model’s predicted prices were closer to the actual prices than those 33 

predicted by the GBR model, with smaller MAPE values of 0.6%, 1.6%, and 1.02% for the three groups 34 

respectively. This demonstrated the higher prediction accuracy of the proposed GA-GBR model compared 35 

to the traditional GBR. 36 
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Figure 7: Comparison of the actual price and predicted price by the two models in the three 

divided building-category-related datasets  

To demonstrate the model interpretability at small scales, Table 3 compared the top three features identified 2 

by the GA-GBR and GBR models across three building types: tower, mixed (tower and plate) and plate. 3 

Feature importance was measured using mean absolute SHAP values for consistency. 4 

 5 



Table 3: Feature importance ranking (SHAP) in the three building categories 1 

Tower Plate and tower Plate 

GBR feature Rank GBR feature Rank GBR feature Rank 

Square 15.08% CommunityAverage 13.79% CommunityAverage 13.89% 

TradeTime  12.64% Square 13.72% TradeTime 12.50% 

CommunityAvera

ge  

12.44% TradeTime 12.70% Square 11.31% 

GA-GBR feature  Rank GA-GBR feature Rank GA-GBR feature Rank 

Elevator 14.58% Kitchen 17.06% Square 24.34% 

TradeTime 13.94% Floor 16.04% DOM 14.22% 

Floor  13.47% DOM 14.39% ConstructionTime 14.08% 

 2 

In the tower group, GA-GBR ranked Elevator highest (14.58%), replacing CommunityAverage (13.79%) 3 

in GBR. The importance of Square slightly declined (from 15.08% to 14.58%), while TradeTime gained 4 

relevance (13.94% vs. 12.64%). For mixed buildings, GA-GBR emphasized Kitchen (17.06%) and Floor 5 

(16.04%), features absent in GBR’s top rankings, highlighting GA-GBR’s ability to capture more detailed 6 

spatial and interior characteristics. In the plate group, GA-GBR prioritized active days on market - DOM 7 

(14.22%) and ConstructionTime (14.08%), replacing GBR’s focus on CommunityAverage and TradeTime. 8 

This shift suggests GA-GBR better identifies property-specific temporal and lifecycle features.  9 

In addition, TradeTime remained a consistently important feature across both models and all subgroups, 10 

confirming its general impact on price. Overall, GA-GBR demonstrated stronger adaptability to context-11 

specific factors, thanks to its genetic optimization of feature selection and model tuning. 12 

 13 

5.3  Practical implementation of the BIM-AI framework from a building 14 

perspective 15 

In this section, the practical implementation of the BIM-AI framework from a building perspective is 16 

demonstrated using an IFC-based BIM model from Revit and the GA-GBR model integrated on PyCharm 17 

platform. The implementation follows a two-stage process: (1) extracting the value-related information 18 

from the IFC property valuation extension, and (2) calculating the property values using the GA-GBR 19 

model. The case study utilized a real residential building project from Beijing, with the BIM model 20 

originally created in Revit for construction documentation. We selected a representative property 21 

transaction from our dataset and manually integrated its 22 distinct features into the BIM model's IFC 22 

schema, due to limited time and resources. Subsequently, the necessary value-related information for 23 

property valuation was incorporated into the spaces and zones defined in the Revit models which were 24 

illustrated in Figure 8, in accordance with the proposed property sets and properties in the extended IFC 25 

schema and the input features from the testing dataset.  26 

The syntactic and semantic validation of the IFC models was conducted using the Solibri Model Checker, 27 

in reference to ISO 10303-11 (ISO, 2014), confirming that there were no missing mandatory entities or 28 

incorrect data structures. Lastly, the required value-relevant information was automatically extracted using 29 

the developed IFC-based information extraction algorithm. 30 

 31 
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Figure 8: An IFC-based BIM model of the duplex house with required value-related information 2 

added according to the 22 input features in the experiment dataset 3 

The integration of value-relevant information from the Lianjia Company into the Revit model involved 4 

embedding data from 22 distinct input features based on the Chinese dataset. This process utilized shared 5 

parameters in the Manage tab’s settings panel, guided by the expanded IFC schema. For example, the model 6 

incorporated ‘brick and concrete’ as the IfcLabel in the Structure property of the Pset_PV_Building set, ‘50’ 7 

as the IfcInteger in the activeDays attribute of the Pset_PV_Transaction set, and ‘11,900,000’ as the IfcReal 8 

in the Property Value facet of the Pset_PV_Valuation set. These details extracted using the information 9 

extraction algorithm were listed in Table 4 below. 10 

Table 4: The extracted value-related information from the BIM model 11 

Property set name Property name Data type Adapted nominal value 

Pset_PV_Building totalArea IfcAreaMeasure (150.05) 150.05 ㎡ 

Pset_PV_Building noOflivingRooms IfcInteger (3) 3 

Pset_PV_Building noOfDrawingRooms IfcInteger (1) 1 

Pset_PV_Building noOfKitchens IfcInteger (1) 1 

Pset_PV_Transaction transferDate IfcDateTime (2017-03-12) 2017-03-12 

Pset_PV_Transaction activeDays IfcInteger (28) 28 

Pset_PV_Building noOfBathrooms IfcInteger (2) 2 

Pset_PV_Transaction noOfFollowers IfcInteger (55) 55 

Pset_PV_Building buildingCategory IfcLabel (‘plate’) plate 

Pset_PV_Building renovationCondition IfcLabel (‘simplicity’) simplicity 



Pset_PV_Transaction 
communityAveragePri

ce 
IfcReal (71853) 71853 RMB 

Pset_PV_Building structure 
IfcLabel (‘brick and 

concrete’) 
brick and concrete 

Pset_PV_Building elevator IfcBoolean(.F.) False 

Pset_PV_Parcel longitude IfcLabel (‘116.3885’) 116.3885 

Pset_PV_Parcel latitude IfcLabel (‘39.9860’) 39.986 

Pset_PV_Transaction propertyRights IfcBoolean(.T.) True 

Pset_PV_Building storey IfcInteger (3) 3 

Pset_PV_Building constructionDate IfcDateTime (2001) 2001 

Pset_PV_Building ladderRatio IfcReal (0.2) 0.2 

Pset_PV_Parcel district IfcLabel (‘ChaoYang’) ChaoYang 

Pset_PV_Valuation Property Value IfcReal (11900000) 11900000 RMB 

 1 

Next, the BIM-AI system was further implemented on PyCharm. Based on the extracted information from 2 

the Chinese BIM model, the house values predicted by the GBR and GA-GBR models are 10,819,100 RMB 3 

and 11,022,905 RMB respectively. With the actual value at 11,900,000 RMB, the prediction by the GA-4 

GBR model is more accurate than that by the GBR. 5 

  6 

5.4 Experiment findings 7 

The main findings from the empirical experiments of the proposed BIM-xAI system are presented as 8 

follows:   9 

1) Predictive performance: The GA-GBR outperformed 11 benchmark AVMs, improving R² by 1.3% over 10 

the baseline GBR and reducing MAPE to 10.6%. The MAPE improvement represents a 3-4.6% gain over 11 

recent state-of-the-art methods (Baur et al., 2023; Konhäuser and Werner, 2024; Tchuente, 2024). The 12 

model also preserved its advantage at finer market levels, achieving lower MAPEs across three building-13 

specific categories. 14 

2) Explainability results: Global SHAP analysis revealed CommunityAverage as the dominant predictor, 15 

followed by TradeTime and Square. Secondary factors include DOM (showing discounts for stale listings), 16 

BathRoom, and LivingRoom. Geographic coordinates provide moderate influence while structural attributes 17 

show minimal impact. Local interpretability confirmed expected relationships: prestigious neighborhoods, 18 

recent transactions, and larger properties command premiums, while extended market exposure reduces 19 

values. When analyzed by different building types (Tower, Mixed, Plate), the model adaptively prioritized 20 

context-specific features like elevator, kitchen, and stories over generic predictors, demonstrating its ability 21 

to capture market-specific valuation effects. The enhanced accuracy with improved interpretability 22 

validates that genetic optimization not only boosts predictive performance but also produces more 23 

transparent and market-aligned feature selection across multiple scales. 24 

 25 

 26 



6. Discussion 1 

This study developed and validated a Genetic Algorithm optimized Gradient Boosting Regressor (GA-GBR) 2 

integrated with BIM workflows for property valuation, achieving superior predictive performance 3 

compared to 11 benchmark models. By synthesizing evolutionary optimization, ensemble learning and 4 

explainable AI, the framework transcends traditional "black box" limitations while adapting to diverse 5 

market contexts. The novel framework’s impact extends well beyond technical innovation, offering 6 

transformative potential across multiple domains. 7 

Research Implications: This work establishes a reproducible methodological framework that advances 8 

several research frontiers. It demonstrates how evolutionary algorithms can optimize feature selection in 9 

high-dimensional property datasets while maintaining interpretability - a balance rarely achieved in 10 

complex AI systems. The framework opens new research avenues including: (1) transfer learning 11 

applications to adapt models across geographic markets with minimal retraining; (2) temporal market 12 

evolution studies tracking how feature importance shifts over economic cycles; (3) integration with 13 

emerging data sources such as IoT sensors for real-time occupancy data, satellite imagery for neighborhood 14 

analysis, and social media for sentiment analysis; and (4) extension to related domains like commercial real 15 

estate, infrastructure valuation and urban resilience assessment. The open-source nature of the approach 16 

encourages reproducibility and collaborative improvement within the research community. 17 

Practice and Industry Applications: The framework transforms professional practice across the real estate 18 

value chain. Architects and designers are able to receive immediate feedback on how design choices affect 19 

property values, enabling value for investment adjustment during conceptual design rather than costly post-20 

construction modifications. Property appraisers can leverage the tool to augment traditional valuation 21 

methods, reducing assessment time significantly while providing defensible and transparent valuations. 22 

Banks and mortgage lenders can deploy the system for automated underwriting, reducing loan processing 23 

time and improving risk pricing accuracy. Insurance companies benefit from more precise property 24 

replacement cost estimates. The standardized IFC-based approach ensures compatibility with existing BIM 25 

workflows, requiring minimal disruption to current practices. 26 

Societal and Economic Impact: The framework delivers both substantial economic value and critical 27 

societal benefits. Economically, the 1.3% R² improvement represents substantial value in high-volume 28 

markets. Given that even minor valuation improvements can affect lending decisions on properties worth 29 

hundreds of thousands of dollars, this accuracy gain has meaningful implications for risk management and 30 

capital allocation. Beyond these commercial benefits, the framework addresses critical societal challenges 31 

by democratizing property valuation knowledge and reducing information asymmetry that historically 32 

disadvantages first-time homebuyers and minority communities. The transparent SHAP explanations 33 

promote fair lending practices and help urban planners understand how public investments (transit, schools, 34 

parks) affect property values, enabling more equitable resource allocation. The system’s ability to identify 35 

gentrification patterns early allows proactive affordable housing interventions, while real-time market 36 

monitoring helps policymakers detect speculative bubbles or distressed areas requiring targeted support. 37 

This dual impact - improving both market efficiency and social equity - demonstrates how advanced AI can 38 

serve both commercial interests and public good, creating value that extends from individual transactions 39 

to community-wide benefits. 40 
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7. Limitation and future work 1 

Although the GA-GBR framework shows high accuracy and interpretability, several limitations remain. 2 

First, the scarcity of BIM-price datasets forced reliance on proxy inputs, potentially reducing real-world 3 

fidelity. Second, the generalizability of results remains untested beyond the studied urban datasets. Markets 4 

with different regulatory systems, cultural contexts, or rural transaction norms may yield varying 5 

performance, highlighting the risk of geographic bias. Third, the framework is inherently dependent on the 6 

quality and completeness of BIM data. Inconsistent IFC modelling practices, missing attributes, or 7 

heterogeneous data standards could reduce reliability and hinder cross-project comparability. Last, 8 

integrating BIM with transaction data raises privacy concerns, as detailed spatial layouts linked to prices 9 

could identify individual owners. Future deployments must implement anonymization protocols and bias 10 

audits to ensure equitable valuations across diverse communities. 11 

From a methodological perspective, the use of genetic algorithms introduces additional computational cost, 12 

which may restrict real-time or large-scale deployment without optimization. Moreover, while SHAP 13 

analysis enhances interpretability, it cannot fully capture higher-order feature interactions or eliminate 14 

potential model bias arising from skewed training data. 15 

Future research should prioritize developing comprehensive IFC-linked transaction datasets with robust 16 

privacy protections. The GA-GBR framework requires enhancement through multi-objective or Bayesian 17 

optimization to reduce computational costs. Cloud-based and lightweight deployments could enable real-18 

time design feedback integration with existing BIM platforms. Transfer learning methodologies could 19 

facilitate cross-regional model adaptation without extensive retraining. Additionally, user-centered 20 

explainable AI interfaces must be developed to effectively communicate valuation insights to diverse 21 

stakeholders. These tools should provide transparent, interpretable outputs for architects, developers and 22 

policymakers, thereby supporting data-driven decision making in the built environment. 23 

  24 

8. Conclusion  25 

This study proposed and validated a transparent, explainable and scalable property valuation framework by 26 

integrating BIM with a Genetic Algorithm optimized Gradient Boosting Regressor (GA-GBR). The 27 

framework addresses critical challenges in traditional automated valuation models, including overfitting, 28 

feature redundancy and limited interpretability. By incorporating GA for feature selection and 29 

hyperparameter tuning, the GA-GBR model demonstrated superior performance compared to 11 benchmark 30 

machine learning models across datasets at multiple scales. In particular, the model achieved consistent 31 

improvements in regression accuracy metrics, including MAE, MAPE, MSE and R², while enhancing 32 

interpretability through SHAP based xAI techniques. 33 

Empirical results revealed that GA-GBR effectively promotes feature independence, capturing localized 34 

market dynamics and structural characteristics overlooked by traditional models. Through systematic 35 

experimentation on large-scale datasets and stratified building-type subgroups, the proposed model 36 

exhibited robust adaptability to varying analytical scales. Furthermore, the integration of xAI methods 37 

provided both global and local explanations of predictions, supporting its use in decision-making processes 38 

for developers, planners and policymakers. 39 



The proposed BIM-xAI system lays a foundation for scalable, transparent and design-responsive valuation 1 

tools in the building sector. As the digital transformation of the built environment continues, the framework 2 

holds promises to improve valuation accuracy, design feedback and stakeholder trust. 3 

The research makes contributions as follows: 4 

• Novel Optimization Approach: 5 

A genetic algorithm approach that simultaneously optimizes feature selection and hyperparameters in 6 

gradient boosting for property valuation, demonstrating measurable improvements over traditional 7 

approaches. 8 

• Hierarchical Explainability Framework for Property Valuation: 9 

Combines global (dataset-level) and local (building-type-specific) SHAP analysis to reveal both 10 

universal and context-specific valuation drivers. The systematic application across different building 11 

typologies, not just SHAP usage. 12 

• IFC-to-Valuation Pipeline Integration: 13 

A specific technical framework for extracting valuation-relevant features from IFC-based BIM data 14 

and feeding them directly into ML models. 15 

Overall, this research contributes a replicable, scalable and explainable valuation framework that can inform 16 

both academic inquiry and industry application, supporting more transparent and intelligent property market 17 

assessments. 18 

 19 

 20 
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