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Expanding the utility of variant effect
predictions with phenotype-specific models

David Stein 1,2,3, Meltem Ece Kars 4, Baptiste Milisavljevic 5, MatthewMort6,
Peter D. Stenson6, Jean-Laurent Casanova5,7,8,9,10, David N. Cooper 6,
Bertrand Boisson 5,7,8, Peng Zhang 5,7,8, Avner Schlessinger 2 &
Yuval Itan 1,3,4,11,12

Current methods for variant effect prediction do not differentiate between
pathogenic variants resulting in different disease outcomes and are restricted
in application due to a focus on variants with a single molecular consequence.
We have developed Variant-to-Phenotype (V2P), a multi-task, multi-output
machine learning model to predict variant pathogenicity conditioned on top-
level Human Phenotype Ontology disease phenotypes (n = 23) for single
nucleotide variants and insertions/deletions throughout the human genome.
V2P leverages a unique approach for the modeling of variant effect that
incorporates resultant disease phenotypes as output and during training to
improve the quality of variant disease phenotype and effect predictions,
simultaneously. We describe the architecture, training strategy, and biological
features contributing to V2P’s output, revealing initial characteristics under-
lying the relationship betweendisease genotype andphenotype.Moreover, we
demonstrate the benefit of incorporatingdisease phenotypes for variant effect
predictions by comparing V2P with several variant effect predictors across
various high-quality evaluation datasets frommanually curated databases and
functional assays. Finally, we examine how V2P’s predictions result in the
successful identification of pathogenic variants in real and simulated patient
sequencing data, outperforming other tested methods in initial comparisons.
V2P offers a complete mapping of human genetic variants to disease-pheno-
types, offering a uniquely conditioned set of variant effect characterizations.

The increasing accessibility of high-throughput sequencing technolo-
gies has precipitated the proliferation of genetic data, including
observed human sequence variants1–4. Although significant efforts
have been expended to interpret this data, the substantial majority of
variants remain uncharacterized4. To aid in the interpretation of these
variants of uncertain significance, myriad computational approaches
for the rapid, automated prediction of variant effect have been
developed. Incremental improvements to these methods employing
more sophisticated model architectures and improvements in data

curation have allowed substantial progress to be made over the past
decades5–7.

Despite the continued generation of novel genetic data and
advancements in detection methodology, several key limitations
impede computational tools for variant assessment. Firstly, most
methods cannot generate interpretations across variant types, i.e., for
both coding and non-coding variants, or for both single nucleotide
variants (SNVs) and insertions/deletions (indels)8. Secondly, most
methods consider pathogenic variants as a homogeneous class, and
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hence may systematically underperform for certain genes or for var-
iants with particular molecular mechanisms or disease
presentations9–11. Recent efforts have been made to investigate more
granular characteristics of pathogenic variants, such as their
mechanism of effect12 or mode of inheritance13. However, many qua-
lities of pathogenic variants, such as their specific phenotypic effects,
remain to be addressed by computational methods.

Currently, most efforts to predict relationships between patho-
genic genotypes and phenotypes have been carried out at the gene or
protein level. For example, several methods exist for the prediction of
phenotypes, as defined by the Human Phenotype Ontology14 (HPO),
associated with genes15–22. Similarly, a variety of methods have
attempted to predict gene-disease relationships23,24. More recently, at
the variant level, efforts to design pathogenicity prediction methods
tailored to specific diseases or phenotypes have reported enhanced
classification performance as compared tomethods predicting variant
pathogenicity in general25–30. However, these methods are limited to a
single or a small number of disease(s)/phenotype(s). As a result,
methods exploring the specific phenotypic effects—as opposed solely
to binary pathogenicity—of variants with diverse molecular con-
sequences genome-wide are needed.

Here, we present Variant-to-Phenotype (V2P), a multi-task, multi-
outputmachine learningmodel to jointly predict variant pathogenicity
and the broad phenotypic effect of SNVs and indels throughout the
human genome, that exploits relationships between pathogenic var-
iants and top-level disease phenotypes from the Human Phenotype
Ontology (HPO) to enhance pathogenicity predictions. We describe
V2P’s architecture and training strategy, and thoroughly assess V2P’s
performance on a variety of high-quality datasets. We compare V2P to
state-of-the-art variant effect prediction methods, illustrating the
benefit of considering variant phenotypic outcomes during training.
Moreover, we demonstrate V2P’s utility for the identification of causal
disease variants in real and simulated patient sequencing data. Finally,
we identify the features of pathogenic variants underlying each human
phenotype group, including features that occur only in specific human
phenotypes and features that are common across various human
phenotype groups. We have precomputed V2P scores for every pos-
sible SNV in the human hg38 reference genome and for all indels from
gnomAD to provide a complete mapping of variants to disease phe-
notypes. We offer these along with a simple framework to generate
V2P phenotype-specific prediction scores for user-specified variants at
www.v2p.ai.

Results
V2P architecture and dataset
V2P is an ensemble ofmulti-label,machine-learningmodels developed
for the classification of pathogenic variants and their resulting phe-
notypes. V2P accepts as input SNV or indel variants that have been
annotated with a variety of gene-level features describing a gene’s
function in terms of associated diseases, pathways, and more, as well
as protein-level features derived from protein sequence and struc-
tures, network features describing protein interactions, and variant-
level features such as conservation (Fig. 1a and Supplementary Data 1).
Contrary to methods solely estimating pathogenicity in general, V2P’s
output comprises 24 values, each ranging between zero and one,
indicating a given variant’s likelihoodof being pathogenic or benign as
well as the variant’s likelihood to result in one or more of the 23 first-
level disease phenotypes from the phenotypic abnormality sub-
ontology of the HPO14. These 23 classes, which include designations
such as abnormalities of the nervous system and neoplasms, encom-
pass the extent of inherited human disease phenotypes (Fig. 1b).

V2P was developed using 252,125 pathogenic variants from the
Human Gene Mutation Database3 (HGMD) and 244,231 putatively
benign variants from gnomAD v2.131 exome sequences—spanning
6,620 genes. Of the pathogenic variants, 202,514 were associated with

HPO phenotypes. Notably, the distribution of phenotypes resulting
from these variants is skewed with substantially greater numbers of
variants resulting in the most abundant phenotypes, such as
abnormalities of the nervous system or the musculoskeletal system,
than the least represented phenotypes such as abnormalities of the
thoracic cavity (Fig. 1b). Similarly, the phenotypic classes comprise
varying proportions of variants that result in one or more phenotypes,
likely due in part to the structure of the ontology. For example, var-
iants resulting in abnormalities of the nervous systemweremost often
unique to this phenotype, whereas variants resulting in neoplasms
most often also resulted in additional phenotypes (Fig. 1b).

Many variant effect predictors employ genic and positional con-
servation as a primary component of their estimation of variant effect.
Thus, we investigated the tendency of variants resulting in particular
pathogenic phenotypes to occur in essential genes, i.e., those intol-
erant to loss of function, and at variably conserved sites.Weobserved a
distinct tendency between variants resulting in different phenotypes
to impact genes of varying essentiality as indicated by the Residual
Variation Intolerance Score (RVIS)32, the de novo excess rate33, and the
indispensability score34 (Fig. 1c). These three measurements estimate
gene essentiality via differing approaches and thus may not always
agree. Nevertheless, for abnormalities of the ear, eye, and genitour-
inary system, we noted that each essentiality measure examined indi-
cated a significant tendency of variants resulting in the phenotype to
be less likely to inhabit essential genes (Fig. 1c). Conversely, variants
resulting in neoplasms, abnormalities of the integumentary, endo-
crine, cardiovascular, and nervous systems, exhibited a greater ten-
dency to inhabit essential genes according to each of the included
measures (Fig. 1c). Similarly, when examining measures of conserva-
tion, we observed variability between phenotypes (Fig. 1d).

We explored predictions fromseveral variant effect predictors for
variants stratified by resultant phenotypes, noting that variants
resulting in certain phenotypes were consistently associated with
lower (e.g. breast, respiratory) or higher (e.g. cellular, limbs) estimates
of pathogenicity compared to variants from other phenotype groups,
as measured by the continuous scores output by the examined
methods (Fig. 1e). To investigate if these observed differences were
driven solely by gene-level effects, we selected variants from genes
associated with both abnormalities of the breast and of the integu-
ment, phenotypes associated with lower and higher confidence pre-
dictions of pathogenicity, respectively (Fig. 1f). Again, we found that
abnormality of thebreast variantswere generally associatedwith lower
predicted pathogenicity whereas abnormality of the integument var-
iants were associated with higher predicted pathogenicity across
examined methods (Fig. 1f), suggesting these methods may produce
variable predictions between pathogenic phenotypes even
within genes.

Identifying biological features associated with human
disease groups
To further investigate mechanisms of pathogenicity and the relation-
ship between features and phenotypes, we employed the Boruta35 all-
relevant feature selection algorithm. On average, 282 features were
selected for the task of distinguishing between variants resulting in
each respective disease phenotype and the other pathogenic variants,
indicating a non-random association between each respective feature-
phenotype pair (Supplementary Data 2). These features pertained to a
variety of biological qualities, including gene-disease associations36–38,
tissue-specific expression and transcription factor co-expression39,
phenotypes associated with homologous mouse genes40, character-
izations of gene conservation and function, protein interaction41,
characteristics of variants and their impacted nucleotides and amino
acids, pathways42–44, and epigenetics45 (Supplementary Data 1). Fea-
tures commonly identified as discriminant across phenotypes inclu-
ded those pertaining to gene function, variant impact on protein
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structure and function, variant conservation and location, and more.
For instance, several features estimating gene essentiality were selec-
ted for many phenotypes. Similarly, a variety of protein structural
featureswere frequently selected, such as those indicating an effect on
binding residues, disordered regions, and buried residues. Features
associatedwith the presence of variants in regulatory or epigenetically
modified regions, proximity to known common or rare variation, and

location within cDNA and coding regions were also flagged as impor-
tant for many phenotypes. Other features were selected as dis-
criminant for a single phenotype only. The majority of these features
were in regard to the association between genes and disease, tissue-
specific gene expression and co-expression of genes and transcription
factors, the involvement of genes in pathways or biological processes,
and the subcellular localization of protein products, as well as the
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association of orthologous mouse genes with various phenotypes and
descriptions of surrounding chromatin states. While none of the
included features is directly correspondent to the phenotypes pre-
dicted by V2P, these results suggest they may provide a signal for
this task.

For example, variants resulting in abnormalities of the muscu-
loskeletal system were enriched in genes associated with a variety of
disorders including arthrogryposis and myopathy, among other fea-
tures (Fig. 2a). Conversely, these variants were depleted in genes with
up-regulated expression in non-musculoskeletal tissues (Fig. 2a).
Similarly, variants resulting in abnormalities of the integument were
enriched for a variety of skin tumors and other dermatological dis-
orders as well as higher expression in both sun-exposed and non-sun-
exposed skin and were negatively associated with up-regulation in
several other tissue types (Fig. 2b). These findings emphasize the need
to consider a wide range of sources of biological information when
attempting inference of variant function with a view to elucidating the
biological qualities of variants resulting in distinct phenotypes.

Across examined features, we noted a moderate correlation
between certain phenotypes as indicated by the features selected
during feature selection (Fig. 2c). In particular, abnormalities of the
musculoskeletal system and abnormalities of the limbs were most
highly associated; indeed, 30% of their selected features were shared
and had the same direction of effect (Fig. 2c). This correlation is likely
driven to an extent by the definition of the HPO in which certain
phenotypes may be more likely to co-occur. Indeed, in several cases,
the correlation between phenotypes based on selected features was
analogous to the pairwise correlation between phenotypes according
to the proportion of variants resulting in both phenotypes in a pair. For
instance, abnormalities of the digestive system and neoplasms, as well
as abnormalities of the musculoskeletal system and abnormalities of
the limbs, were among the most correlated phenotypes as measured
by variant co-occurrence (Fig. 2d). Nonetheless, correlation between
phenotypes according to shared variants was not observed to guar-
antee equally strong correlation of selected features, potentially indi-
cating that the included features capture signal unique to variants
resulting in the investigated phenotypes.

Using the LightGBM gradient-boosted decision tree implementa-
tion as a proxy for V2P, we calculated Shapley values, treating patho-
genic variants resulting in a given phenotype as the positive class and
benign variants as the negative class, for each phenotype separately
(Supplementary Fig. 1). Thus, the identified important features reflect
thosemost important for themodel to separate pathogenic variants of
the phenotype and benign variants. For all pathogenic variants vs.
benign variants, the top twenty features include relative placement in
the coding/protein sequence, predicted impact on protein stability
and other protein structural qualities, amino acid substitution matrix
scores, andmeasurements of conservation. While some of the sources

of this information may be unique to V2P, the content—e.g., con-
servation, amino acid substitution impact—is common tomany variant
effect prediction methods. We do not observe features pertaining to
particular phenotypes in the top 20, as we might expect, since this
model must distinguish between pathogenic variants of all types and
benign variants.

Conversely, as we investigate the top features for particular phe-
notypes, we note that phenotype-specific features have a substantial
impact on the model. For example, while the top features for separ-
ating pathogenic nervous system variants and benign variants contain
some of the same features as those identified for general pathogeni-
city, such as placement in the coding/protein sequence and con-
servation, we also observe several phenotype specific features such as
gene expression in different brain tissues, gene association with ner-
vous system diseases, and genes associated with nervous system
phenotypes in mice. Further, we observe that features describing the
protein-protein interactomehave a substantial impact, suggesting that
protein proximity, as expressed by direct or indirect interaction, may
have bearing on pathogenic variant phenotype. Curiously, we also
observe that gene association with cardiovascular phenotypes in mice
tends to decrease the model’s confidence that a variant causes a
pathogenic nervous systemphenotype. Concordantly, nervous system
and cardiovascular abnormalities are one of the least commonly co-
occurring phenotype pairs for variants in our dataset. We note the
inverse for cardiovascular phenotypes in which gene association with
intellectual disability decreases model confidence.

Similar trends are noted for most phenotypes—in particular, sev-
eral features relating to pathogenicity in general will be important,
alongwith features relating to expression inphenotype-related tissues,
association with phenotype-related diseases, and association with
different portions of the protein interactome.

V2P’s phenotype-conditioned output effectively estimates
variant effect
V2P’s multi-task architecture produces scores estimating whether a
given variant is pathogenic or benign, alongside thephenotypes, if any,
resulting from that variant. To assess the quality of V2P’s predictions
for these complementary tasks,weassembled threedistinct evaluation
datasets comprising a total of 391,856 variants spanning 4135 genes.
Specifically, we assessed V2P on 49,106 pathogenic and benign var-
iants thatwereheld out for testing from theoriginal dataset assembled
for the development of V2P, 37,767 pathogenic and benign variants
from a more recent release (2023.4) of the HGMD database and from
gnomAD, and 304,893 pathogenic and benign variants from ClinVar
that were not present in V2P’s development dataset. Of the pathogenic
variants, 20,116 from the held-out dataset, 17,503 from the HGMD
2023.4 dataset, and 62,312 from ClinVar were assigned phenotypic
effects, respectively (Fig. 3a).

Fig. 1 | Examining conservation, essentiality, and variant effect prediction
stratifying variants by phenotype. a V2P workflow. A single nucleotide variant or
indel is annotated with gene-, protein-, and variant-related features and input to a
multi-task, multi-output ensemble of gradient-boosted decision trees. Thismethod
outputs 24 scores ranging between 0 and 1 corresponding to the predicted prob-
ability that the input variant results in each of the 23 top-level Human Phenotype
Ontology (HPO)14 phenotypic abnormality sub-ontology terms, respectively, and
that the variant is pathogenic/benign.b The number of phenotype-labeled samples
for each considered HPO phenotype in V2P’s development dataset. Distinctly
coloredportions of eachbar indicate theproportionof variants labeledwith a given
phenotype that result in different numbers of phenotypes, where the darkest blue
portion indicates single-phenotype variants and the lightest blue portion indicates
variants resulting in five or more phenotypes. c The log odds ratios indicating
relationships between phenotypes, compared to each other, and threemeasures of
gene essentiality, namely the de novo excess rate33 (n = 212,545), the RVIS32

(n = 210,361), and the indispensability score34 (n = 220,521). (RVIS scores inverted).
d The log odds ratios indicating relationships between phenotypes, compared to
each other, and three measures of sequence conservation, PhastCons75 (Primate)
(n = 221,651), PhyloP75 (Primate) (n = 221,651), and GERP++76 (n = 221,651). e The
number of variant effect predictors (PrimateAI77, DEOGEN278, VEST479, REVEL80,
AlphaMissense6, MetaLR81, MetaSVM81, MutPred82, PolyPhen283, SIFT84, CADD v1.77,
and PROVEAN85) for which variants were associated with greater or lesser prob-
ability of pathogenicity for each phenotype. f The log odds ratios for tools indi-
cating the association between variants resulting in abnormalities of the breast and
abnormalities of the integument from genes harboring variants resulting in both
phenotypes (solid bars), and for all variants resulting in either of the phenotypes.
Dashed lines indicate confidence intervals of the log odds ratio around the esti-
mated regression coefficient, asterisks indicate significance determined via a two-
sidedWald test after Bonferroni correction formultiple hypothesis testing. Variant
effect predictor versions are detailed in the dbNSFP65 4.7a.
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V2P consistently demonstrated effective performance for phe-
notype prediction across the evaluation datasets. In particular, the
method improved over the randombaseline, often substantially so, for
21 out of the 23 top-level HPO phenotypes in the held-out testing
dataset (Fig. 3b). As expected, for the two least represented pheno-
types in our set, abnormalities of the voice and thoracic cavity, which
account for only 100 and 3 of the labeled samples, respectively, V2P

was unable to provide substantial improvement (Figs. 1b, 3b). For the
remaining phenotypes, V2P’s performance was not solely dependent
on the number of training samples. For instance, V2P achieved sizable
performance gain for less represented classes such as abnormalities of
the ear and cellular phenotypes (Fig. 3b). Furthermore, V2P’s perfor-
mance was consistently strong across evaluation datasets, achieving
micro-averaged Average Precision (AP) scores of 0.53, 0.79, and 0.67

a.

b.

c.

d.

Fig. 2 | Associations between phenotypes and biological features. a Log odds
ratios for Boruta74 selected features for abnormality of themusculoskeletal variants
with magnitudes of effect in the 90th percentile or above as measured by Shapley
values. b Log odds ratios for Boruta selected features for abnormality of the inte-
gument system variants with magnitudes of effect in the 90th percentile or above.
c Pairwise correlation, expressed as the number of shared selected features with

concordant direction of effect over the total number of selected features, between
phenotypes. d Pairwise correlations between disease phenotypes as indicated by
the number of variants resulting in both phenotypes simultaneously. Dashed lines
indicate confidence intervals of the log odds ratio around the estimated regression
coefficient.
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for separating variants resulting in each phenotypic class from the
others in the held-out testing, HGMD 2023.4, and ClinVar datasets,
respectively (Supplementary Figs. 2a, 3 and 4).

For each of the three evaluation datasets, the distribution of V2P
phenotype predictions in genes with variants resulting in a given
phenotype was compared to those without. This analysis was per-
formed separately for genes associated with a single phenotype and
those associated with multiple phenotypes. In the held-out test

dataset, for 11 of 12 phenotypes in genes resulting in a single pheno-
type, the relevant V2P phenotype-score was significantly higher
(Mann–Whitney U, one-sided, Bonferroni-corrected). In all genes, the
relevant V2P phenotype-score was significantly higher for 19 out of 22
phenotypes. In the HGMD 2023.4 dataset, in single-phenotype genes,
the V2P scorewas significantly higher for 17 out of 17 phenotypes. In all
genes, it was significantly higher for 20 of 22 phenotypes. Finally, for
the ClinVar dataset, in single-phenotype genes, it was significantly

a. b.

d. e.

c.

Fig. 3 | Assessment and comparison of V2P performance on clinical variation.
a Relative proportion of pathogenic variants belonging to each phenotype in each
dataset. b (Top) V2P’s one-vs.-rest Average Precision (AP) on phenotype-labeled
variants in the held-out testing dataset for each of the 23 top-level phenotypic
abnormality Human Phenotype Ontology (HPO)14 phenotypes. Horizontal black
lines bisecting each bar indicate the baseline performance for variants resulting in
each respective phenotype. (bottom) Number of labeled variants resulting in the
denoted phenotype in the held-out testing dataset. c (Top) Distributions of V2P
pathogenicity scores across ClinVar clinical significance labels. (Bottom) Distribu-
tions of V2P pathogenicity scores for gnomAD (benign), HGMD DM+ (low-con-
fidencepathogenic), andHGMDDM(high-confidencepathogenic) variants.d (Top)
Box-and-whiskerplots indicating thedistributionof variant effect predictor AP’s for
separating pathogenic missense variants resulting in each phenotype from benign
missense variants in the held-out testingdataset. Existingmethods’AP’s denotedby
gray circles, V2P pathogenicity score APdenoted by blue dots, and V2P phenotype-
specific score denoted by red dots. (LRT86, MutationTaster87, MutationAssessor72,
MetaSVM81, MetaLR81, MetaRNN88, M-CAP89, MVP90, gMVP91, MPC92, PrimateAI77,

BayesDel93, ClinPred94, VARITY95, ESM1b96, DANN97, GenoCanyon98, GERP++_RS76,
DEOGEN278, FATHMM99, PROVEAN85, PolyPhen283, REVEL80, SIFT84, VEST479,
AlphaMissense6, CADD7. Low coverage methods excluded). (n. left-to-right—9570,
2649, 1386, 750, 850, 640, 845, 786, 883, 801, 459, 393, 325, 603, 291, 377, 173, 104,
53, 11, 42, 24, 6). (bottom) AP’s achieved by V2P’s pathogenicity score (blue), V2P’s
phenotype-specific scores (red), and CADD46 v1.7(orange) for the separation of
variants resulting in each phenotype and benign variants from the held-out testing
dataset. e Weighted average of APs achieved by each variant effect predictor for
separating pathogenic missense and benign missense from the held-out testing
(top), HGMD 2023.4 (middle), and ClinVar (bottom) datasets, respectively.
Numerical values on bars indicate the number of variants for which the compared
variant effect predictor had a prediction in the dbNSFP. Variant effect predictor
versions are detailed in the dbNSFP 4.7a. Boxes represent the quartiles of the data.
Whiskers extend to points that lie within 1.5 times the interquartile range of the
lower and upper quartiles. Violins extend to and are clipped at data minima and
maxima.
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higher for all 16 phenotypes, and in all genes, it was significantly higher
for all 20 phenotypes (Supplementary Data 3).

Similarly, V2P achieved notable success in its discrimination
between pathogenic and benign variants in general. Across the three
evaluation datasets, V2P’s pathogenicity score resulted in considerable
improvement over the respective random baselines. In particular, V2P
achieved APs of 0.86, 0.93, and 0.94 for separating pathogenic and
benign variants in the held-out, HGMD 2023.4, and ClinVar datasets,
respectively (Supplementary Fig. 2b). Likewise, the distribution of
V2P’s pathogenicity scores demonstrated substantial divergence
between pathogenic and benign variants in both ClinVar and the
HGMD (Fig. 3c and Supplementary Figs. 2–4). Further, V2P successfully
identified de novo variants in cases vs. controls (Supplementary Fig. 5).

To assess V2P’s phenotype-specific strategy in comparison with
methods considering pathogenic variants homogeneously, patho-
genic variants in the held-out testing dataset were split into distinct
groups according to their resultant phenotype(s). For each of the
predicted phenotypes, each compared method was assessed for its
ability to separate variants resulting in the given phenotype from the
benign variants in the held-out testing dataset, asmeasured by the AP.
Remarkably, for missense variants, for 21 out of the 22 phenotypes
included, V2P’s phenotype-specific predictions surpassed not only its
own general pathogenicity predictions, but also all of the compared
methods, for the examined metrics (Fig. 3d). For variants of any
molecular consequence, V2P’s phenotype predictions also out-
performed CADD46—a leading method able to predict variants beyond
coding regions—across all phenotypes except abnormalities of the
thoracic cavity for which no assessment variants were available
(Fig. 3d). Formissense variants in eachof the three evaluationdatasets,
averaged across phenotypes, V2P’s phenotype-specific scores resulted
in the highest AP scores (Fig. 3e). Similarly, for missense variants from
ClinVar submissions last reviewed after V2P’s training and in genes
with ten or fewer pathogenic/likely pathogenic variants, V2P’s
phenotype-specific scores resulted in the highest AP scores (Supple-
mentary Fig. 6).

V2P is highly concordant with functional evidence of
variant effect
Deep mutational scanning (DMS) is a technology that systematically
maps genetic variations to phenotypic variations bymeasuring protein
fitness upon mutation, providing an efficient and affordable alter-
native to in vivo studies. To compare V2P and other variant effect
predictors in their alignment with DMSoutputs, we examined 66Deep
Mutational Scanning (DMS) assays of 52 proteins. For data from each
assay, the correlation of the output of each method with the assay’s
continuousoutputwas assessed alongwith eachmethod’s AP score for
predicting the binarized assay outputs, where the assessed mutations
were either functional or non-functional (Fig. 4a and Supplementary
Figs. 7, 8). Notably, V2P’s pathogenicity predictions were comparable
to the top-performing methods—as measured by the AP and the
Spearman correlation coefficient (pairwise Mann–Whitney U, all
p >0.05) (Fig. 4a and Supplementary Figs. 7, 8).

For example, V2P’s pathogenicity score achieved a Spearman’s
rank correlation coefficient (ρ) of 0.59 with DMS output for the PRKN
protein—a component of an E3 ubiquitin ligase complex that is known
to cause Parkinson’s disease. Notably, despite this high concordance,
V2P surpassed the DMS assay for classification of PRKN variants in
ClinVar, achieving an AP score of 0.87 compared to an AP score of
0.84. Examining the distribution of the predictions, V2P appears to be
sensitive to structural context, correctly classifying five missense var-
iants (K211N, T240R, M434T, G430D, A46T) in functional domains of
PRKN that were experimentally misclassified as per ClinVar (Fig. 4b).
Conversely, ClinVar and the experimental data were contrary to V2P’s
predictions in only twocases (R42C, G359D) (Fig. 4b). Interestingly, for
two pathogenic/likely pathogenic variants (R33Q, T415N) and one

benign/likely benign variant (R366W) from ClinVar, both V2P and the
DMS assay agreed on the inverse classification (Fig. 4b).

In other cases, both the DMS assay results and the V2P scores
aligned strongly with ClinVar. For example, in P53, for which V2P’s
score correlated stronglywith theDMSoutput (ρ = 0.67), V2P andDMS
yielded AP scores of 0.992 and 0.979, respectively, according to
ClinVar labels (Fig. 4c, d). Again, V2P proved sensitive to the structural
and functional context of the protein, yielding significantly higher
pathogenicity scores (p < 10−5) for variants in the DNA-binding domain
between residues 102–292—a region with a high density of pathogenic
ClinVar variants—than variants in residues outside this region (Fig. 4c,
e). Similarly, variants occurring in the TADI, TADII, Bipartite nuclear
localization signal, Nuclear export signal, [KR]-[STA]-K motifs had
significantly higher pathogenicity scores (p < 10−5) than variants not
located in a motif or in the DNA-binding domain (Fig. 4c, e).

We further assessed the quality of V2P’s predictions for non-
coding variants by comparing V2P’s outputwith that from 16massively
parallel reporter assays (MPRA) of distinct regulatory elements. While
none of the variant effect prediction methods reached the perfor-
mance of Enformer47, a specialized method for predicting non-coding
variant effect on expression, we found that, compared to CADD and
FATHMM, for 7 out of the 16 assays, V2P achieved the highest corre-
lation with the experimental data. CADD also had the highest corre-
lation for 7 assays, and FATHMM48 had the highest for 2 assays (Fig. 4f).
Across MPRAs, V2P had the highest median correlation of ρ =0.34,
followed by CADD with ρ =0.29, and FATHMM with ρ =0.19 (Fig. 4f).

V2P aids in causal variant identification in patient exomes
Whilst most variant effect predictors have focused solely on the
pathogenicity of missense variants, V2P provides predictions of dis-
ease phenotypes for both SNVs and indels in both coding and non-
coding regions, genome-wide. Thus, it is well-suited for the analysis of
patient exome or genome sequencing data containing variants of
diverse effects, leveraging the patients’ pathology and the corre-
sponding V2P phenotype score(s). To investigate V2P’s utility for the
prioritization of 73 causal disease variants (Supplementary Data 4) in
patient sequencing data, variants from116 exomes of patients from the
Human Genetics of Disease laboratory at Rockefeller University with
rare immune disorders were ranked by the V2P phenotype-specific
score(s) associated with each patient’s disease, CADD, and Capice49—
another method capable of scoring variants genome-wide. The posi-
tions of the known pathogenic variants for each patient were com-
pared. Remarkably, the median causal variant ranking was two when
using V2P compared to 5.5 when using CADD and 10 when using
Capice (Fig. 5a, b). We observed the distribution of the ranks of causal
variants to be significantly lower when using V2P than when using
CADD (p =0.004) or Capice (p < 10−5) (Fig. 5a, b).

To further assess the effectiveness of V2P in prioritizing causal
variants with a broader range of phenotypic effects, we selected, at
random, 100 patient exomes sequenced as part of the diverse cohort
curated for Mount Sinai’s BioMe BioBank. Pathogenic variants from
each of the three evaluation datasets—held-out, HGMD 2023.4, and
ClinVar—were introduced one at a time into each exome. Again, the
variants from each patient’s exome, including the introduced patho-
genic variant (spiked-in), were ranked according to corresponding V2P
phenotype score(s), CADD, and Capice. The rankings of each spiked-in
variant were averaged across the 100 exomes. Overall, the average
rankings of spiked-in variants from each dataset, as ranked by V2P’s
phenotype-specific scores, were substantially lower than the rankings
of spiked-in variants as ranked by CADD (p < 10−5) and Capice (p < 10−5)
(Fig. 5c and Supplementary Fig. 9). Notably, 49%, 70%, 80%, 87%, and
95% of pathogenic variants were ranked within the top 1, 5, 10, 20, and
100 by V2P, respectively, compared with 22%, 49%, 62%, 75%, and 95%
for CADD and 18%, 48%, 68%, 80%, and 95% for Capice (Fig. 5d).
Examining variants resulting in a single phenotype, we found that
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median V2P rankings were lower for 13 out of 18 phenotypes in the
held-out dataset, 16 out of 18 phenotypes in the HGMD2023.4 dataset,
12 out of 17 in the ClinVar dataset (Supplementary Fig. 9), and 15 out of
19 across the datasets (Fig. 5e). Considering all variants, including
those resulting in multiple phenotypes, V2P’s median ranks of causal

variants were lower for 267 out of 501 phenotypes in the held-out
dataset (CADD= 159, Capice = 75), 237 out of 349 phenotypes in the
HGMD 2023.4 dataset (CADD=60, Capice = 52), 58 out of 96 in the
ClinVar dataset (CADD= 24, Capice = 14), and 411 out 690 across
datasets (CADD= 180, Capice = 99). Thus, V2P’s phenotype-specific

a. c.

d. e.

f.

b.

V2P

DMS

Fig. 4 | Assessment and comparison of V2P performance on functional char-
acterization of variant effect. a Comparison of V2P’s pathogenicity predictions
with six previously published methods on variants from 66 deep mutational
scanning (DMS) assays of 52 proteins, for which each pair of methods provided
predictions. (Top) Distribution of average precision scores per assay. (Bottom)
Spearman’s rank correlation coefficient (ρ) per assay. b V2P (top) and inverse DMS
output (bottom) averaged at each amino acid for single-nucleotide variant (SNV)
missense variants in the PRKN protein (PDB 5C1Z). Highlighted variants colored
according to ClinVar4 classification: pathogenic (red) and benign (blue). c (Top)
P53 families and domains. (Bottom) Inverse of DMS output, V2P pathogenicity
scores, and ClinVar labels, respectively, for SNV missense variants in P53. ClinVar

label key. 1: Benign, 2: Benign/Likely benign, 3: Likely Benign, 4: Uncertain sig-
nificance, 5: Likely pathogenic, 6: Pathogenic/Likely pathogenic, 7: Pathogenic.
d V2P and DMS scores for pathogenic and benign P53 variants from ClinVar.
eDistribution of V2P scores in regions of P53. fComparison of V2P’s pathogenicity
predictions with Enformer, CADD v1.7, and FATHMM on 16 massively parallel
reporter assays (MRPA) of distinct regulatory elements. (left) ρ for each MPRA.
(right)Medianρ and averageρweightedby thenumber of variants per assay across
MPRAs. Variant effect predictor versions are detailed in the dbNSFP 4.7a. Boxes
represent the quartiles of the data. Whiskers extend to points that lie within 1.5
times the interquartile range of the lower and upper quartiles. Violins extend to
and are clipped at data minima and maxima.
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a. b.

c.

d.

e.

Fig. 5 | Assessment of V2P for phenotype-driven causal variant identification in
sequencing data. a Distribution of the rankings of causal variants in 116 immune
disorder patients, where variants are ordered by their relevant V2P phenotype
score(s) (blue), CADD v1.7 (orange), and Capice 5.1.2 (red). b The proportion of
causal exome variants (percentage) within the top n rankings for causal immune
disorder patient variants. c The distribution of pathogenic variants from the held-
out testing,HGMD2023.4, andClinVar datasets according to their average rankings

in patient exomes. d The proportion of causal exome variants (percentage) within
the topn rankings for variants from theheld-out testing,HGMD2023.4, andClinVar
datasets. e The distribution of rankings for variants resulting in a single phenotype
from the held-out testing, HGMD2023.4, and ClinVar datasets. Boxes represent the
quartiles of the data. Whiskers extend to points that lie within 1.5 times the inter-
quartile range of the lower and upper quartiles.
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prediction strategy, in conjunction with observed patient phenotypes,
allows for significantly improved resolution of causal disease variants
in sequencing data as compared to other genome-wide prediction
methods on these data.

Discussion
We have developed V2P, a high-throughput, multi-task predictor of
variant pathogenicity and top-level HPO phenotype (n = 23). V2P’s
unique architecture, which exploits commonalities between the rela-
ted pursuits of general and phenotype-specific pathogenicity predic-
tion, allows for the exploration of pathogenic variant functional effect
throughout the human genome. Due to the broad body of evidence
upon which V2P’s predictions are conditioned, V2P may be employed
for both SNVs and indels in both coding and non-coding regions of the
genome, extending its usefulness beyond the assessment of missense
variants to other pertinent undertakings such as the prioritization of
causal variants in patient sequencing data. V2P allows for the mapping
of humanSNVs and indels toplausible phenotypes, providingevidence
that may help guide novel investigations of disease etiology and var-
iant effect throughout the genome. Our investigation has yielded
several notable findings.

Varying disease severity and presentation within a single gene
may be masked by binary representations of variant effect, i.e.,
pathogenic vs. benign, resulting in less effective predictive methods50.
Often, this performance variability is not transparent to the user, as
most variant effect predictors assess performance on variants with
varying phenotypes. V2P seeks to address this limitation by generating
distinct predictions for different disease phenotypes. Crucially, for our
benchmarking data presented in Fig. 3d, e, V2P’s phenotype-specific
models outperform existing methods and its own general pathogeni-
city prediction. Across the 23 examined phenotypes, V2P’s phenotype-
specific scores yielded on average a 0.16 improvement in AP score
compared to the next best method for the given phenotype and an
average increase of 0.38 over the median AP score of the compared
methods across phenotypes in the three evaluation datasets (Fig. 3d,
e). Further, we observe that V2P does not lose performance, compared
with other methods, for underrepresented phenotypes. Indeed, for
cellular phenotypes, abnormalities of the ear, prenatal development
and birth, and constitutional symptoms—several of the least repre-
sented phenotypes in our dataset—we observe that V2P’s phenotype-
specific score outperforms the compared methods on the examined
data for the assessed metrics. Together, these results indicate that
V2P’s phenotype-specific approach may have utility for the identifica-
tion of pathogenic variants in the context of their phenotypic effects.
For the investigation of a particular phenotype or disease, V2P may
offer a unique perspective on variant effect.

Circularity in training and testing data can result in misleading
results when assessing variant effect predictor performance51. Thus, it
is essential to include evaluation data from diverse sources for accu-
rate benchmarking. Notably, V2P generalizes beyond clinical char-
acterizations of variant effect per the data examined in this study,
aligning well with experimentally-derived evidence of pathogenicity in
both coding and non-coding regions of the genome. In particular,
despite the additional complexity of V2P’s learning task in relation to
that of most compared methods, V2P performs favorably in compar-
ison with previously published variant effect predictors in its correla-
tion with outcomes from DMS assays across a broad array of proteins
(Fig. 4a). For non-coding variants, V2P was comparable to CADD46 and
achieved better correlation with outputs from MPRAs of several pro-
moter and enhancer regulatory elements than FATHMM48 (Fig. 4f).

Moreover, initial investigations indicate V2P may be efficiently
employed for the automated identification of causal variants in simu-
lated and actual patient sequencing data across phenotypes. Often,
patients suffering from rare diseases do not harbor a known causative
pathogenic variant11. In such cases, investigators and clinicians must

leverage alternative techniques for filtering variants in whole-exome
(WES) or whole-genome sequencing results, rendering variant effect
predictors essential to the diagnostic process11. To simulate this pro-
cess, we introduced known pathogenic variants into WES data from
patients in the Mount Sinai BioMe biobank, and, for each patient
separately, ranked each variant according to scores from V2P, CADD,
and Capice. Across the three evaluation datasets, we found V2P’s
phenotype-specific scores to result in a significantly lower average
ranking than when ranking with other methods. We observed similar
phenomena with V2P for 116 patients suffering rare immune disorders
with previously identified causal variants.

Finally, we undertook a preliminary investigation of the biological
qualities underlying pathogenic variants across the spectrum of
human phenotypes. Using feature importance to quantify the rela-
tionship between phenotypes and features, we identified a variety of
biological properties that were predictive of variant phenotype. These
features included protein structural characteristics, measures of evo-
lutionary conservation, tissue-specific gene expression, and regulatory
and epigenetic qualities, among others (Fig. 2a, b and Supplementary
Data 2). While some features were indicated to be relevant across
phenotypes, the remaining identified features for each phenotype
varied quite widely. These findings revealed biologically meaningful
features contributing to the variant disease phenotype predictions.

There are several possible explanations for V2P’s observed per-
formance in relation to other variants' effect predictors on our
benchmarking data. For instance, the multi-label approach V2P
employs allows for increased specificity for each individual classifica-
tion task. Moreover, each individual task, that is, each phenotype
prediction,maybebolsteredby the others, sinceour approachmodels
the correlation between labels. This is particularly important for phe-
notypes with fewer labeled samples, for which existing VEPs tend to be
less effective per our benchmarking. Simultaneously, V2P allows rele-
vant features to be prioritized for each phenotype, and indeed, we
observe phenotype-related features to influence the model in our
Shapley analysis (Supplementary Fig. 1). Another possible explanation
is overfitting, which is challenging to conclusively rule out for any
machine learning task. However, our extensive benchmarking—span-
ning thousands of genes and including our test set that exclusively
includes proteins with low sequence similarity to those in our training
data—provides evidence that suggests V2P generalizes well.

Whilst V2P offers a unique approach for the investigation and
identification of pathogenic variants, its characterization of variant
phenotypes is broad. In particular, V2P classifies variants according to
the 23 top-level phenotypic categories defined by the HPO14, e.g.,
abnormalities of the nervous system and neoplasms. Due to limited
sample sizes, supervised learning approaches such as that employed
by V2P cannot easily be extended to more granular phenotypes or
specific diseases. Future iterations employing strategies such as pre-
training and transfer learning with deep learning models may help to
ameliorate this limitation. Furthermore, some HPO classes contain
phenotypes/diseases that do not necessarily share pathophysiological
mechanisms. Because of its training strategy, V2P adopts the
assumptions and limitations of theHPO’s definition. Similarly, as V2P is
trained on data from the HGMD, it may exhibit bias for well-studied
genes and the curation strategy employed51. Further, databases suchas
the HGMD and ClinVar are understood to contain false positives,
though the proportion of false positives has improved over time52.
As seen in Supplementary Data 5, certain molecular consequences,
e.g., frameshift, are overrepresented in the pathogenic class of the
V2P dataset. While the observed disparity likely reflects the underlying
biology to some extent rather than solely an issue of data coverage,
in future releases of V2P, we may be able to move closer to
parity with the incorporation of additional data from gnomAD
v4, which may improve performance in some cases. Regardless, V2P
demonstrates utility for pathogenic variant detection and provides
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indications of variant phenotypes that can be expanded upon in future
work. Inparticular, for the investigations of a particular phenotype and
for thefiltrationof sequencingdata, V2Pmayprove tobeof use. Future
VEP developers may also consider applying their architectures and
approaches in a phenotype-specific manner, as in V2P, to investigate
the effects on performance. We anticipate that the novel resources
provided by V2P will allow for new insights into the relationship
between pathogenic variants and their phenotypic outcomes during
future investigations and as these data are explored in detail by the
genetics community.

Methods
Model development and dataset assembly
Pathogenic andputatively benign variants used for thedevelopmentof
V2P were retrieved from the HGMD3 Professional version 2022.4 and
from the gnomAD31 version 2.1 exome database, respectively. Specifi-
cally, all high-confidence, pathogenic variants in the disease-causing
mutations (DM) category of the HGMD database that were mapped to
the GRCh38 human reference genome were selected, for a total of
252,125 pathogenic variants. Of these, 201,969 were associated with
one ormoreHPO14 phenotypes, whichweremapped to one ormore of
the 23 top-level phenotypes in the phenotypic abnormality sub-
ontology. The Sequence Ontology53 (SO) consequence (Supplemen-
tary Data 5) and impacted gene or regulatory region affected by each
pathogenic variant was identified using Ensembl’s Variant Effect
Predictor54 version 108. All gnomAD variants from the affected genes
and regions were collected, and any variants from gnomAD that co-
occurred in the HGMD were filtered out. For each gene or region
containing HGMD variants, gnomAD variants were selected such that
the total number of gnomAD variants from that gene or region was
equal to that of the HGMD variants and also such that the SO con-
sequences of the gnomAD variants matched those of the HGMD var-
iants (Supplementary Data 5). When an equivalent number of gnomAD
variants resulting in a given SO consequence were not available, other
gnomAD variants from the same gene or region were selected ran-
domly so as to achieve parity between the total count of gnomAD and
HGMD variants for the gene or region. When fewer gnomAD variants
were available than HGMD variants for a gene or region, all gnomAD
variants from that gene or region were selected. As a result of this
process, 244,231 putatively benign variants were selected
from gnomAD

Assigning HPO phenotypes to pathogenic variants
HPO phenotypes were assigned to pathogenic variants by annotation
of the diseases associated with variants against the Unified Medical
Language System (UMLS) metathesaurus55, carried out using a simple
word permutation-based method56. The disease names were mapped
to UMLS concept identifiers (CUI) using the open source UMLS-Query
module56. The UMLS concepts were then cross-mapped onto the HPO.
Each HPO phenotype was subsequentlymapped to one ormore of the
top-level phenotypic abnormality sub-ontology phenotypes by tra-
versal of the HPO graph. Crucially, variants were assigned to all top-
level phenotypes to which they were related per the mapping proce-
dure rather than a single top-level phenotype.

Training, testing, and validation dataset split
The labeled variants from the HGMD and gnomAD were apportioned
into training, validation, and testing sets such that each accounted for
roughly80%, 10%, and 10%of thedata, respectively, with the constraint
that variants from proteins with greater than 40% sequence identity
did not belong to different sets and such that the proportions of var-
iants with each label were similar between the sets. To calculate
sequence identity, the Ensembl reference amino acid sequences for
each protein in the dataset were retrieved from the Ensembl BioMart57

version 108. CD-HIT58 version 4.8.1 was employed to assign each

protein to a set such that each protein sequence in the set had no less
than 40% sequence identity with all the others in that set.

To ensure that the distribution of labels across the training,
validation, and testing datasets reflected the overall distribution
of labels, a randomized algorithm was employed to calculate the
deviation of the distribution of the label powerset for a given split
from an ideal split—i.e. a split in which the distribution of the labels
is exactly equivalent to the distribution of the labels in the
complete dataset—where the label powerset is defined aseveryunique,
observed combination of labels for every sample in the dataset.
Specifically, to obtain the training dataset, for 100,000 iterations,
the sets of homologous proteins, calculated as described above,
were randomly shuffled with a unique random seed. A total of 80%
of these protein sets were selected, and all variants occurring in
the proteins/genes belonging to those sets were assigned to the
candidate training dataset. The deviation between the candidate
training dataset and the ideal training dataset was then measured
with p=0:2 as defined in Eq. (1) where d is the total deviance, l is
the label powerset, p is the expected proportion of a label set in
the remainder of the data after splitting, nR is the number of occur-
rences of a label set in the remaining data after allocating the desired
data, and nT is the number of occurrences of a label set in the total
dataset.

d =
Xlj j

n

p×
nR

nT

� �����
����×nT

ð1Þ

After calculating the deviance for each split, the split with the
lowest deviance d was selected. Similarly, after allocating the training
data, the remaining ~20% of the data was split into validation and
testing datasets using the above procedure for 100,000 iterations
with p=0:5.

Model architecture and training
V2P comprises six constituent models, ensembled for more robust
performance. Three problem transformation approaches for multi-
label classification were employed, namely, binary relevance59, label
powerset59, and RaKel-D60 with the LightGBM61 v3.3.5 implementation
of the gradient boosted decision tree (GBDT) algorithm as the base
estimator. GBDT was chosen considering it has been consistently
demonstrated to outperform other algorithms for classification on
tabular data62. Two models were created employing each of the pro-
blem transformation approaches, respectively. Each constituent
model was trained on the combined samples from the training and
validation datasets. For one model from each pair using a particular
problem transformation technique, samples representing minority
phenotypes were over-sampled using random multi-label
oversampling63 to increase the frequency of the minority classes by
25%. Over-sampling was performed to provide a greater signal for the
least represented classes during training. The predictions from each
constituent model for each class are averaged to obtain the final
predictions.

Model evaluation datasets
In addition to samples from the held-out testing set described above,
V2P’s performance was evaluated on data from the 2023.4 release of
the HGMD that was not used in V2P’s development. In particular, all
DMvariants thatwerenot present in the 2022.4 releasewere extracted,
and those associated with HPO phenotypes were labeled with the 23
top-level HPO phenotypes as described above. In total, 17,767 patho-
genic variants not present in the original training/validation datasets
were obtained. Of those, 17,503were associatedwith one ormoreHPO
phenotypes. Putatively benign variants were matched to the patho-
genic variants following the same process detailed for the model
development dataset. A total of 17,336 putatively benign variants were
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accumulated in this manner. An additional 2664 gnomAD missense
variants were retrieved from the same genes, bringing the total num-
ber of putatively benign variants to 20,000. DM+ (low-confidence
pathogenic) variants from the HGMD were also retrieved for exam-
ination of V2P score distribution across variant pathogenicity con-
fidence levels.

Additional labeleddatawere retrieved fromClinVar4. In particular,
all variants mapped to the GRCh38 human reference genome were
retrieved from the ClinVar FTP website release 10/15/2024. Variants
mapped to the GRCh38 reference genome were selected, and those
with clinical significance of “Pathogenic”, “Pathogenic/Likely patho-
genic”, “Likely pathogenic”, “Benign”, “Benign/Likely benign”, and
“Likely benign” were retained. Any of these variants occurring in the
HGMD/gnomAD training/validation dataset were removed. Variants
were further filtered to retain only those with review status of “criteria
provided, single submitter”, “criteria provided,multiple submitters, no
conflicts”, “reviewed by expert panel”, “practice guideline”, removing
those variants with the lowest confidence/assertion criteria. Further,
variants with greater than0.01% allele frequency in gnomAD v4 exome
or genome datasets or in the African, Admixed American, East Asian,
non-Finnish European, or South Asian subpopulations were removed.
Finally, variants were assigned HPO phenotypes via a combination of
UMLS mapping and manual labeling (Supplementary Methods, Sup-
plementary Data 6). Those without phenotype information were
removed. The resulting dataset contained 242,523 benign variants and
62,460 pathogenic variants. Data from ClinVar were further refined to
investigatemodel performance in genes with fewer known pathogenic
variants and for variants reviewed after V2P’s training. Specifically,
variants mapped to the GRCh38 human reference genome were
retrieved from the ClinVar FTP website release 06/15/2025. Variants
“LastEvaluated” in 2024 and 2025 and “Pathogenic”, “Pathogenic/
Likely pathogenic”, “Likely pathogenic”, “Benign”, “Benign/Likely
benign”, and “Likely benign” variants in genes with ten or fewer
pathogenic/likely pathogenic entries were retained. Variants with the
lowest confidence/assertion criteria were removed. A total of 17,334
benign/likely benign and 618 pathogenic/likely pathogenic variants
were accumulated as a result of this process.

Method comparison
CADD46 version 1.7 scores were retrieved from the CADD web appli-
cation, dbNSFPv4.7a, or computed locallywith thedefault parameters.
AlphaMissense6 scores were retrieved from theweb resourceprovided
by the authors and dbNSFP v4.7a. EVE50 scores were obtained from the
ProteinGym64 website and dbNSFP v4.7a. FATHMM-XF48 scores were
retrieved from the FATHMM website. Capice49 and Enformer47 scores
were computed locally with default parameters. When Capice pro-
duced multiple scores for a variant in different transcripts of a gene,
these scores were averaged. All other variant effect predictor scores
were obtained from dbNSFP65 version 4.7a. For dbNSFP scores, when
scores were available for multiple transcripts, the score for the tran-
script employed by V2P—i.e., the transcript prioritized by Ensembl’s
Variant Effect Predictor—was used. When multiple scores were avail-
able but could not be matched to the transcript employed by V2P, the
average of scores across transcripts was used. The continuous scores
output by each method were used for all comparisons, unless other-
wise explicitly stated. Methods were compared in terms of their
average precision (AP) scores (Eq. (2)) and the Spearman rank corre-
lation coefficients (Eq. (3)). Precision-recall baselines were calculated
as the ratioof positive samples to total samples for respective datasets.
AP is defined as follows, where Pn and Rn are the precision and recall at
the nth threshold, respectively.

AP =
X

n

Rn � Rn�1

� �
Pn ð2Þ

Spearman’s rank correlation coefficient is defined as follows,
where di is the difference in rankings for the ith observation and n is the
number of observations.

ρ= 1� 6
P

d2
i

n n2 � 1
� � ð3Þ

Functional studies of variant effect
DMS data were retrieved from the ProteinGym64 database. Sequence
identity between the assayed amino acid sequence and the Ensembl
amino acid sequence employed by V2P was calculated using the
BLOSUM62 substitution matrix and the Needleman-Wunsch
algorithm66 implemented in BioPython version 1.81. Assays of
sequences with an identity less than 85% were discarded. For each
remaining protein, V2P scores were generated for all amino acid sub-
stitutions expressible via an SNV. Methods were compared solely on
variants for which each included tool yielded a prediction. When
multiple assays of a single protein were available, results from each
tool were averaged across available assays. MPRA data were retrieved
from theMPRAdata access portal67. Variants with fewer than 10 tags or
a p value greater than 0.00001 were removed. Elements
MYCrs11986220, BCL11A, FOXE1, UC88 were omitted7. For DMS and
MPRA data, variants occurring in V2P’s training data were removed.
Hypothesis testing for V2P scores in varying regions of P53 was con-
ducted via one-tailed Mann–Whitney U tests.

Causal variant identification
To simulate human disease cases, pathogenic variants from each
evaluation dataset with known phenotypic outcomes were inserted,
one at a time, into 100 randomly selected sequenced exomes from
patients in the Mount Sinai BioMe Biobank. Variants were filtered
according to several criteria closelymatching the procedure employed
by Exomiser68. First, variants were filtered according to allele fre-
quencies from gnomAD v4. Variants passing calling filters with an
exome, genome, or population (African, Admixed American, East
Asian, non-Finnish European, South Asian) allele frequency greater
than 0.01 were removed. Next, variants with Sequence Ontology
molecular consequence 5_prime_UTR_variant, 3_prime_UTR_variant,
non_coding_transcript_variant, upstream_gene_variant, down-
stream_gene_variant, intergenic_variant, or intron_variant were
removed. Finally, genes associated with the phenotype(s) caused by
the pathogenic variants were predicted using Phen2Gene69, a
phenotype-driven gene prioritization tool to score genes. Variants in
genes with Phen2Gene scores in the 95th percentile and above were
retained. If the causal variant was filtered out, sets of 100 genes with
the next highest Phen2Gene scores were added until the variant was
recovered tomimic a scenario in which progressively broader analyses
are required to identify a satisfactory candidate variant. If the causal
gene was not in the Phen2Gene prioritized genes, all genes were
included. After filtration, for each exome, the endogenous variants,
excluding structural variations, and the spiked-in variant were anno-
tated with the features employed by V2P for prediction, and their
functional impact was predicted by V2P. Variants were sorted into
descending order according to the V2P phenotype-specific scores
corresponding to the phenotype resulting from the spiked-in variant,
the CADD scores, and the Capice scores, separately. For variants
resulting in more than one phenotype, z-scores for the corresponding
V2P phenotype-specific predictions were summed. For each patho-
genic variant, this processwas repeated ineachof the 100 exomes, and
the average rank of the pathogenic variant according to the different
scores was determined. Hypothesis testing was conducted via one-
tailed Mann–Whitney U tests.
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Feature provenance and engineering
Gene model data were retrieved for variants according to their
GRCh38 genomic coordinates using Ensembl’s Variant Effect
Predictor54 (VEP) version 108. AlphaFold270 models of protein
structures were employed for the calculation of a variety of protein
structural descriptors. A thorough description of the generation
and processing of the features calculated from the AlphaFold2models
may be found in ref. 12. Protein-protein interaction features were
calculated using node2vec71 on the human protein interactome
data from the STRING41 database version 11. Node2vec produced 64
output dimensions characterizing the data. Association between
mouse phenotypes and top-level HPO phenotypes was calculated as
the number of level four terms from the Mammalian Phenotype
Ontology40 associated with a given gene that mapped to a top-level
HPO phenotype. Gene functional data, obtained from Enrichr, were
converted into sparse binary features. Particularly, for each term in
each Enrichr library, if the term was associated with a gene, the
gene would have a value of one for that term. Otherwise, the gene
would have a value of zero for that term. Other features were retrieved
from their respective databases or tools, unless otherwise specified
(Supplementary Data 1).

Some included features such as MutationAssessor72 and Eigen73

were designed for the prediction of variant effect. Features predicting
variant effect were chosen to limit the effects of circularity due to
overlapping training/testing datasets. In particular, the included variant
effect prediction features only include unsupervised models and
those not making use of strongly labeled pathogenicity/neutrality
data for training. To further assess V2P, we retrained the model with
variant effect prediction features removed, taking a broad definition of
variant effect predictor. These features include MaxEntScan_alt, Max-
EntScan_diff,MaxEntScan_ref, ada_score, rf_score, Eigen_PC_raw_coding,
Eigen_raw_coding, GERP+ + _NR, GERP+ + _RS, GM12878_confidence_-
value, GM12878_fitCons_score, GenoCanyon_score, H1_hESC_confi-
dence_value, H1_hESC_fitCons_score, HUVEC_confidence_value,
HUVEC_fitCons_score, LINSIGHT, LIST_S2_score, LRT_Omega,
LRT_score, MPC_score, MutationAssessor_score, SiPhy_29way_logOdds,
integrated_confidence_value, integrated_fitCons_score, GDI, MSC_95CI,
RVIS, Indispensability_score, A3D_SCORE, concavity_score, S_DDG[SEQ],
S_DDG[3D], s_het, targetScan, mirSVR-Score, mirSVR-E, mirSVR-Aln,
GerpRS, GerpRSpval, GerpN, GerpS, SpliceAI-acc-gain, SpliceAI-acc-loss,
SpliceAI-don-gain, SpliceAI-don-loss, MMSp_acceptorIntron, MMSp_ac-
ceptor, MMSp_exon, MMSp_donor, MMSp_donorIntron, dbscSNV-
ada_score, and dbscSNV-rf_score.

Feature analysis
Relevant features were selected using the training dataset for each
phenotype using the Boruta74 all-relevant feature selection algorithm
with Shapley values to estimate feature importance and a LightGBM
base estimator. Specifically, for each phenotype, pathogenic variants
resulting in a given phenotype were treated as the positive class, and
pathogenic variants not resulting in the phenotype were treated as the
negative class. The pairwise relationship between phenotypes based
on shared selected features was calculated as the number of com-
monly selected features with the same direction of effect, as indicated
by the log odds ratio, over the total number of selected features for
each phenotype. Log odds ratios were calculated for the standardized
features via logistic regression with the Newton-conjugate gradient
solver.

Three measures of genic essentiality were assessed: RVIS32, the de
novo excess rate33, and the indispensability score34. RVIS is a metric
derived by comparing common functional genetic variations to neu-
tral variations in a large dataset of human whole-exome sequences.
Positive RVIS suggests a prevalence of common functional variations,
whereas a negative score suggests intolerance. The de novo excess
rate evaluates the frequency of de novo mutations per gene and

determines if a gene harbors a greater number of de novo mutations
than anticipated by random chance alone. Higher scores indicate
greater essentiality. The indispensability score measures a gene’s
essentiality by analyzing its network and evolutionary characteristics.
Again, higher scores indicate greater essentiality.

Three measures of evolutionary conservation were assessed:
PhastCons75 (primate), PhyloP75 (primate), and GERP++76. For each
measure, higher values indicate greater conservation of the site.

Log odds ratios were calculated via logistic regression with the
Newton-conjugate gradient solver. Hypothesis testing for essentiality
and conservation features was carried out via Wald tests of the logistic
regression coefficients.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The phenotype/variant effect predictions generated in this study are
available at https://v2p.ai/downloads/. The annotation data employed
by V2P are accessible at https://v2p.ai/downloads/. The provenance of
features used for model training is detailed in Supplementary Data-
set 1. The Human Gene Mutation Database Professional data are
available via license. gnomAD v2.1 lifted to the GRCh38 reference was
retrieved from https://storage.googleapis.com/gcp-public-data-
gnomad/release/2.1.1/liftover_grch38/vcf/exomes/gnomad.exomes.r2.
1.1.sites.liftover_grch38.vcf.bgz. The ClinVar variant_summary.txt.gz
data were obtained at the ClinVar FTP portal (https://ftp.ncbi.nlm.nih.
gov/pub/clinvar/tab_delimited/), release 10/15/2024. dbNSFP v4.7a
data were obtained at https://sites.google.com/site/jpopgen/dbNSFP.
AlphaMissense scores were obtained at https://zenodo.org/records/
10813168/files/AlphaMissense_hg38.tsv.gz?download=1. EVE scores
were retrieved from ProteinGym, https://proteingym.org/download.
FATHMM-XF scoreswere obtained at https://fathmm.biocompute.org.
uk/fathmm-xf. DMS data were retrieved from https://proteingym.org/
download. MPRA data were obtained at https://kircherlab.bihealth.
org/satMutMPRA/. De novo mutations from Deciphering Develop-
mental Disorders were retrieved from Supplementary Data S7 of
https://doi.org/10.1126/science.adg7492. Autism spectrum do novo
mutations were retrieved from Supplementary Table S2 of https://doi.
org/10.1126/science.aat6576. Congenital heart disease de novo muta-
tions were collected from Supplementary Table S9 of https://doi.org/
10.1038/ng.3970. Sequencing data for causal variant ranking were
obtained from the Mount Sinai BioMe BioBank and from the Human
Genetics of Disease laboratory at Rockefeller University. A website to
query and generate predictions from V2P is available at www.v2p.ai.

Code availability
Code related to the v2p project is available at https://github.com/
davidfstein/v2p (https://doi.org/10.5281/zenodo.17316362).
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