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Celebi’s Choice: Causality-Guided Skill Optimisation for Granular
Manipulation via Differentiable Simulation'

Minglun Weil*, Xintong Yangl’*, Junyu Yan2, Yu-Kun Lai®, Ze Ji!

I. INTRODUCTION

Robotic manipulation of deformable objects remains chal-
lenging due to their nonlinear and unpredictable responses
under force. Granular materials like soil further complicate
control by exhibiting both particulate and continuum prop-
erties. As a representative case, soil manipulation is central
to automated container-based agriculture, where robots must
perform accurate excavation and levelling. However, physical
trials are costly, and standard reinforcement learning (RL)
methods often suffer from sample inefficiency and unstable
dynamics in such settings.

Differentiable physics (DP) offers an efficient gradient-
based approach to robotic skill and trajectory optimisation
in contact-rich environments [I]]. Yet, standard DP methods
typically update all control parameters uniformly, regardless
of their actual influence on outcomes, leading to inefficient
learning, increased computational cost, and instability in
high-dimensional control spaces.

To address this, we propose Celebi—causality-enhanced
soil levelling and excavation skill optimisation via
backpropagation with physical information. Inspired by
Celebi’s mythical foresight, our method leverages causal
analysis to identify how skill parameters causally influence
task-relevant outcomes, enabling adaptive gradient step sizes
and direction correction.

Celebi integrates a differentiable simulator to model gran-
ular dynamics and defines skill parameters mapped to control
inputs. During optimisation, structured features are extracted
from height maps, and their causal effects guide parameter
updates. Experiments in both simulation and the real world
show that Celebi achieves faster convergence, improved
stability, and precise soil manipulation, with strong sim-to-
real transfer.

II. METHOD: DIFFERENTIABLE OPTIMISATION
A. Problem Formulation

We formulate skill optimisation for robotic soil manipula-
tion as a differentiable trajectory optimisation problem over
parameterised skills ©. These parameters define robot motion
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Fig. 1: Overall workflow of our method. Orange: real-
world manipulation system. Green: differentiable simula-
tion, skill parameters, and skill-to-trajectory mapping. Blue:
ROS/MOVEIT!-based motion planning. Purple: causal rea-
soning. Pink: manipulation target and loss function. Colour-
coded arrows represent information directions.

primitives and are optimised via gradient descent through
differentiable simulation and causal guidance. At each epoch
7, we minimise the task loss between the final observation

ogf ) and the target state 0%7€°!:
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The control sequence L) is generated by mapping ©)
through a differentiable function g(+), and the resulting states
XU) are obtained via simulation function f(-). The skill
parameters are updated as:

0u) =0l _ o) 6 G (VeynL) @

wher¢ G corrects gradient directions, and all) =
C (053 _1), o'"eet) scales the step sizes based on causal effects.

B. Task Specification

We consider two soil manipulation tasks: excavating plant-
ing pits and levelling soil to cover seeds. The system state x;
includes full particle-level data, while the robot only observes
partial information o; from a depth camera. These observa-
tions are converted into heightmaps for loss computation.



Excavation starts from a flat soil surface, with targets de-
rived from demonstrations. Levelling begins from the excava-
tion results and aims to restore flatness using a reconstruction
pipeline [2]. Robot actions are 6D Cartesian displacements
u € RS, derived from low-dimensional skill parameters
O via a differentiable mapping g(-). These are executed
using MOVEIT! [3] in the real world. Task performance
is evaluated via pixel-wise L1 loss between the target and
observed heightmaps.

C. Skill Parameters

Long-horizon manipulation in 6D space is challenging
due to the high dimensionality of the control sequence.
To abstract this, we derive skill parameters © from human
demonstrations, with each parameter bounded by ™" and
6™, Each © is mapped via g(-) to a control sequence U
over horizon T' (see Fig. [2] and Appendix [V-A).

Given fixed translational and rotational velocities, we
compute the number of steps per stage by dividing the
displacement in each control dimension by the corresponding
velocity, rounding to the nearest integer. The resulting per-
step actions form u across time, yielding the full control

End-effector

sequence /.
Frame
y " g’
| ora |
| Frame
Stage 1

Stage 0 Stage 2

Stage 3 Stage 4

Omove Orot Oins Op-ang Op-dist

(a) Excavation Task Process and Frame Representation.

Stage 0 =——p Stage ] =——p Stage2 =—p Stage3 =——p Stage4 Stage 5
Brot Omove BOdes Brevel

(b) Levelling Task Process Visualisation.
Fig. 2: Visualisation of the Excavation and Levelling Tasks.

D. Differentiable Simulation

We employ the Moving Least Squares Material Point
Method (MLS-MPM) [4] combined with the St. Venant-
Kirchhoff elastic energy and the Drucker-Prager yield crite-
rion [S]] to approximate the granular material dynamics in our
simulator. A simplified process is detailed in Appendix

We enable end-to-end optimisation of skill parameters
via differentiable physics, computing gradients of the task
loss with respect to parameters through the full pipeline,
including perception, simulation, and control. All compo-
nents are differentiable, and non-smooth operations such
as rounding in the skill-to-action mapping are handled to
preserve gradient flow.

IIT. METHOD: CAUSALITY GUIDANCE

We propose a causality-guided optimisation method that
improves trajectory learning by selectively adjusting pa-
rameter updates based on their causal influence on task-
relevant features. Our approach includes structured feature

extraction, causal effect estimation, and causality-informed
gradient descent.

A. Feature Extraction

Directly establishing causal relationships between skill
parameters and raw height maps is challenging due to their
high dimensionality and unstructured nature. To address this,
we extract lower-dimensional features using morphological
operations to construct hole and peak maps. Binary masks
and connected regions are further processed to define task-
specific features. We define task-specific feature sets for
causal analysis. For excavation, A, = Ag, \s, \; captures
the depth, start location, and length of the largest hole.
For levelling, A; = Apq, Ans, Aps, Ape includes the area and
initial point of the first hole, as well as the start and end
points of the first peak, providing a compact representation
of surface flatness.

B. Causal Effect Estimation

Fig. 3: SCM in our method. The solid arrow indicates that
the parent node causes the child node; the hammer represents
the do operator that removes the parents of the node. S is the
environment bias variable and A/ denotes the noise variable.

We model the causal relationship between skill parameters
O and extracted features A using a structural causal model
(SCM) [6]], as shown in Fig. E} To isolate direct causal effects,
we block confounding paths through environmental variables
by applying do-interventions. We quantify influence using a
normalised form of Average Causal Effect (ACE), extended
from binary to continuous variables. The normalised ACE of
a skill parameter 6,, at value 8 on feature )\, is defined as:

E[A'm ‘ do(en = ﬁ)]
EAm | do(0n = 0)]

By sampling 8 within the valid range of 6#,, and evaluating
corresponding feature responses, we compute directional
ACE scores that indicate the strength and polarity of each
parameter-feature relationship. The computed causal effect
maps are provided in Appendix

ACEqo(p,=p) = -1 3)

C. Causality-Guided Gradient Descent

Excavation: Causal effects are used to adapt both the step
size and direction of parameter updates. Step sizes are com-
puted based on feature differences from target values, scaled
using a sigmoid function. For parameters with strong causal
influence, gradients are corrected in the direction indicated
by ACE to ensure progress toward desired outcomes.

Levelling: Since the task involves returning to a flat
surface, we define discrete surface phases based on current
feature values. Parameters are selectively updated depending
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excavation and four levelling tasks; time flows top to bottom. Levelling starts from excavation end states in the real world.

on their causal relevance to the active phase, with fixed step
sizes. Gradient directions are similarly corrected to drive the
system out of undesirable phases. The definition of these
phases is detailed in Appendix [V-C}

IV. EXPERIMENTS AND RESULTS

Our method is evaluated on real and simulated setups
with a UR5e arm and 3D-printed shovel. Appendix
provides details. A high-resolution Zivid depth camera
captures the surface point cloud. In simulation, we replicate
the same setup in the real world, including robot, container,
and tool models. Physical parameters are identified using our
previous DPSI framework to ensure alignment between
simulated and real-world dynamics. We optimise skill pa-
rameters within [—1, 1], using RMSprop with 5, = 0.9.
The simulation runs at At = 0.01 s with 20 substeps.
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(a) Optimisation loss curves of excavation (top) and levelling
(bottom).

== Qurs

Hole Depth

g =0.1 = o =0.01 N Target

Hole Length Hole Start Location

0.2

o
®

0.1

Feature Value
o
=y
S

S
=)
=3

0.0

=] 0.1 0.0
s AT -
g 0.0 A‘V" v
g 0001 = ———tem V™ v
o 0.1 -0.5
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20

Epoch Epoch Epoch

(b) Feature values and distances to targets for excavation task 1.
Fig. 5: Optimisation performances for both tasks and case
study for excavation task 1.

We design four excavation tasks, each followed by a
corresponding levelling task, yielding eight total scenarios.

Each is run with five random seeds. Our method is compared
to baselines with fixed step sizes (o = 0.1 and 0.01).

As shown in Fig. [5a (top), our method consistently con-
verges within 10 epochs for excavation, achieving lower
loss and variance than baselines. In-depth feature analysis
(Fig. @bottom) on Excavation Task 1 shows that our method
aligns hole shape and location more closely with targets,
while maintaining stable convergence. Although depth is
slightly underestimated in some cases, this corresponds to
a negligible causal effect, which intentionally suppresses its
update.

For levelling, Fig. [5a] (bottom) shows faster convergence
and lower loss across most tasks. Despite the absence of
explicit feature tracking in this phase, our method reduces
loss efficiently and maintains stability throughout.

Trajectory visualisations in Fig. [ highlight successful sim-
to-real transfer. Excavation trajectories produce consistent
hole shapes, with minor sim-to-real differences attributed to
material adhesion in simulation. Levelling skills flatten the
terrain effectively, though large holes may remain partially
unfilled due to one-shot execution in the real world. Overall,
our method demonstrates robust convergence, low variance,
and strong transfer across tasks.

V. CONCLUSIONS

This paper proposes an optimisation method that integrates
differentiable physics simulation with causality-based adap-
tive step-size adjustment and gradient direction correction
by modelling the causal effects between manipulation re-
sults and skill parameters. Experimental results demonstrate
notably improved optimisation stability, accuracy, and con-
vergence efficiency in excavation and levelling tasks in sim-
ulation, and high transferability to real-world environments.
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APPENDIX
A. Skill Parameter Definitions

Excavate: The excavation skill is parameterised by ©, =
{Omove, Orot; Bins, Op-ang s Op-aist }» With each parameter governing
a specific motion primitive. As illustrated in Fig. 2a] this
process has four stages. It begins with translating the shovel
along the world’s z-axis by dyoe While simultaneously
rotating it about its own z-axis by an angle ¢.,. Next, the
tool is inserted into the material along its pointing direction
to a depth of dj,s. This is followed by a pushing motion at an
angle ¢push over a distance dpygp. Finally, the tool is returned
to its neutral angle and lifted by dyg.

Level: The levelling skill is parameterised by ©; =
{Brot, Omove s Bdess Oiever }- As shown in Fig. this task con-
sists of five consecutive stages. It begins with rotating the tool
around the z-axis by an angle ¢.y. Next, the tool translates
along the world’s x-axis by dyove. Following this, it descends
along the z-axis by dges. The tool then moves along the z-
axis by djevel to smooth the surface. Finally, it lifts and resets
as in excavation.

B. Substep Execution in Simulation

For the i-th time step with a time step size At, the update
process is refined through Ny, substeps, each with a duration
of Aty = At/Ngp. Thus, the control input for each substep
is ut = u/Ngp, and f is further divided into N, sub-
processes f. Algorithm [I] presents a simplified simulation
process f for a single substep.

Algorithm 1: Simplified Simulation Process f

Grid Reset and Initialisation
Emp = (I + Atsubcv)F‘

U7 Sa V= fsvd(Emp)

F' o= fon(U,S,V, k)

Varid = fp2g(p7 v,o, 07 Atsub)
Szligent = fmove(sagenta uSUb, Atsub)
Vérid = Vgrid + AtsubG’

Vérid = fcol(sggent’ Scon) Vérid7 AtSUb)
v, C" = fop(Virigr Atsun)

v/ = fCOl(S‘;gent, Scons P> Vlv Atsub)
p' =p + AtV

o 0 NN AN R W N -

-
L —)

Here, F < R3><3><N,C¢ c R3x3xN70 c R3X3XN,I c
R3*3%N and G € R3*YN denote the deformation gradient,
affine matrix, Cauchy stress, identity matrix, and gravity
matrix for all particles in x. U, S,V are the singular value
decomposition (SVD) results of F' for each particle. x
represents material parameters. p and v are the position and
velocity components in X. Sagent and Scon are the state of the
robot and static container. fod, feon, fp2g, fmoves feol, and fgop
represent the SVD, elastoplastic processing, particle-to-grid,
robot motion, collision handling, and grid-to-particle in f,
respectively. The symbol ’ indicates the next sub-step. For
more details on the MLS-MPM procedure, refer to [4].

C. Causal Effects and Phase Specification

(a) Causal effects of skill parameters and features in the excavation
task, where the numbers are ACE values, and the bold arrows denote
strong causal effects.

(b) Causal effects of skill parameters and different phases in the
levelling task.

Fig. 6: The causal effect in our tasks.

TABLE I: Phase Determination in Levelling Tasks. 7,:
Threshold for hole area. Apqi, Ansi, Apsis Apei: Features of
the initial material state.

Conditions | Phases

Ahy < Ta No Holes

Apsi > Aps Peak Pushed Back
Apsi = Aps and Ape; = Ape No Change

Apsi & Aps and Apei > Ape
Ahsi > >\hs

Peak Partially Moved
Hole Not Filled

D. Experiment Setup

Zivid One+ 3D Camera

3D Printed Shovel End-effector
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