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Skeleton-Guided Rolling-Contact Kinematics for Arbitrary Point
Clouds via Locally Controllable Parameterized Curve Fitting

Qingmeng Wen1, Ze Ji2, Yu-Kun Lai3, Mikhail Svinin4 and Seyed Amir Tafrishi1

Abstract— Rolling contact kinematics plays a vital role in
dexterous manipulation and rolling-based locomotion. Yet, in
practical applications, the environments and objects involved
are often captured as discrete point clouds, creating substantial
difficulties for traditional motion control and planning frame-
works that rely on continuous surface representations. In this
work, we propose a differential geometry-based framework that
models point cloud data for continuous rolling contact using
locally parameterized representations. Our approach leverages
skeletonization to define a rotational reference structure for
rolling interactions and applies a Fourier-based curve fitting
technique to extract and represent meaningful controllable
local geometric structure. We further introduce a novel 2D
manifold coordinate system tailored to arbitrary surface curves,
enabling local parameterization of complex shapes. The govern-
ing kinematic equations for rolling contact are then derived,
and we demonstrate the effectiveness of our method through
simulations on various object examples.

I. INTRODUCTION

Rolling is a motion type common in numerous robotic
applications [1], [2], spanning from spherical rolling robots
[3], [4] to fine manipulation tasks [5], [6]. The foundational
relationship between rolling motion and surface curvature
was well-formulated by Montana [7] for robotics applica-
tions. Nevertheless, the majority of prior research emphasizes
continuous-time motion planning and control strategies [8]–
[10], which often fail to align with practical implementation
challenges, especially since sensor data is inherently discrete,
commonly obtained as point clouds via LiDAR or RGB-D
sensors. Moreover, analyzing rolling dynamics over unknown
and arbitrary geometries demands identifying a reference
contact point, a task complicated when the contact location
is not directly observable [11]. Despite these complexities,
current literature lacks a unified framework for deriving
continuous rolling kinematics from discrete, real-world point
cloud inputs.

Rolling contact kinematics defines the relationship be-
tween two rolling bodies based on their curvature properties
[12]. In an underactuated model with five states—two for
each body in local coordinates and a spin angle between
them—the kinematics is governed by velocity dependencies,
including angular orientation and slippage velocity [13].
Initially, this model attracted significant attention from math-
ematicians and roboticists, primarily for studying motion
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planning problems in the continuous domain [2], [8], [10].
Rolling systems have been widely explored in applications
such as disks, wheels, and omnidirectional rolling robots
[2]. This concept has also been extended to more complex
problems, such as dexterous manipulation, where a grasping
mechanism’s fingertips roll against an arbitrary object to
enable unique motion capabilities [6]. However, despite the
promising applications, sensing and modeling rolling objects
in real-world scenarios remain challenging [11]. LiDAR and
RGB-D sensors capture surfaces as point clouds, but link-
ing these discrete models to continuous rolling kinematics
remains challenging, especially for deformable or curved
objects. Deriving a mesh representation from a point cloud
or using a signed distance field to represent the object shape
might be a solution. However, deriving those representations
is typically computationally heavy, and requires high-quality
and complete data input [14], [15].

In addition to the lack of integration between discrete
point clouds and continuous rolling contact kinematics, a
key challenge lies in identifying the center of rotation or a
reliable moving frame–a quantity that is often unknown or
difficult to define in real-world scenarios. While assuming a
fixed center simplifies analysis, such an assumption restricts
applicability to highly idealized or symmetric geometries,
making it unsuitable for most freeform surfaces encoun-
tered in practice. Curve skeletonization offers a promising
alternative by extracting medial curves that capture the
intrinsic structure of 3D shapes and can serve as potential
motion references [16], [17]. Although skeletons have been
widely employed in graphics and robotics for tasks such as
shape abstraction and motion planning [18], [19], their use
as a structural basis for rolling contact modeling remains
largely unexplored. Leveraging skeletons as dynamic ref-
erence frames not only mitigates the difficulty of defining
rotation centers but also provides a geometric foundation to
bridge discrete shape data and continuous kinematic models.
This motivates the development of a principled framework
that connects skeleton-guided slicing with differentiable sur-
face modeling and rolling motion analysis.

In this work, we propose a novel approach for formulating
skeleton-based rolling contact kinematics on arbitrary object
surfaces, using Fourier curve fitting in local coordinate form
to achieve continuous and differentiable reconstructions from
raw point cloud inputs. Our contributions are summarized as
follows:

• We propose a new point cloud slicing method based on
curve skeletonization and geometric curvature, enabling
structured cross-sectional analysis.

• We develop a local surface reconstruction model from
discrete point clouds using Fourier-based curve fitting,
providing a smooth and differentiable sectional surface
representation.



• We introduce a differential geometry-based rolling con-
tact model formulated in locally parametrized coordi-
nates, suitable for general semi-convex surfaces and
check the controllability.

• We validate the proposed framework through extensive
simulations on real-world object data.

The paper is structured as follows: Section II presents
the preliminaries on point cloud representations, skeleton
extraction, and the proposed slicing strategy for curve fitting.
Section III details the generalized rolling contact model
tailored to locally parametrized surfaces and its integration
with the sliced and fitted surface representations. Section IV
discusses simulation results, demonstrating the effectiveness
of our approach across a variety of object geometries.

II. POINT CLOUD SKELETONIZATION, SLICING AND
CURVE FITTING

A. Skeletonization of Point Cloud Surfaces
An object’s point cloud is typically represented as a

discrete set of 3D points, P = pi | pi ∈ R3, i = 1, . . . , n. Its
curve skeleton is modeled as a graph Gs = (V,E), where
V ⊆ R3 is a set of vertices connected by edges ei ∈ E. The
process of generating such a skeleton is referred to as curve
skeletonization. In this work, we adopt a Laplacian-based
approach [20]. The method begins by identifying local neigh-
borhoods using the k-nearest neighbors (KNN) algorithm,
which are then refined via Delaunay triangulation. Princi-
pal Component Analysis (PCA) is subsequently applied to
extract ring structures from the triangulated neighborhoods.

Using the neighbor ring information, the Laplacian matrix
L ∈ Rn×n is defined as:

Lij =


ωij = cotαij + cotβij , if pj ∈ µi;

−
∑
k∈µi

ωik, if i = j;

0, otherwise.
(1)

where µi is the ring point set of pi, and αij , βij are the
opposite angles of edge (i, j) in the point ring triangles. The
contracted cloud points at iteration k + 1 are obtained by
solving: [

WLL
WH

]
Pk+1 =

[
0

WHPk

]
, (2)

where WL,WH ∈ Rn×n are contraction and attraction
weights, jointly balancing the movement of points toward
the medial axis. These weights are updated iteratively to
ensure continuous contraction [20]. The process runs until a
termination criterion—based on global or local point cloud
features—is met [17], [20].

The resultant contracted points form an approximation
of the medial surface. This is further reduced to skeleton
vertices using farthest point sampling. Connections among
vertices are inferred from neighbor ring information, fol-
lowed by refinement to produce the final curve skeleton.

B. Slicing Algorithm and Fourier Curve Fitting
We begin by introducing the general slicing algorithm

that leverages curve skeleton information to reconstruct local
geometric surfaces of an object point cloud. This algorithm
enables a structured approach to local surface modeling by
defining cross-sectional slices guided by the curve skeleton
and fitting them with a continuous representation.
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Fig. 1: Slicing algorithm and Fourier curve fitting process

As illustrated in Fig. 1, the slicing and modeling pipeline
starts with the extraction of cross-sectional shapes based on
a point vg along the object’s skeleton. This point determines
the slicing plane, guiding the selection of a local cross-
sectional region from the input point cloud P. Each extracted
section is then fitted using a Fourier series model, which
offers an explicit, differentiable representation of the surface
geometry. This representation allows us to define a surface
parameterization ug(ug, vg), where vg indicates the slicing
position along the skeleton and ug denotes the polar angle
in the fitted cross section. This parameterization enables the
computation of a contact point pc on the object surface and
yields a smooth surface approximation from raw point cloud
data.

To support kinematic modeling in rolling contact systems,
it is essential to define a differentiable manifold over the
object surface. While curve skeletonization provides a com-
pact, topology-preserving representation of a shape in 3D
space [19], it typically yields a graph-like structure composed
of edge-connected vertices. As seen in Fig. 2(a), this discrete
representation is not differentiable at vertex junctions, posing
challenges for continuous geometric modeling.

To address this, we further smooth the curve skeleton by
parameterizing it with respect to arc length. Given a point
vg along the skeleton, we fit a branch of the skeleton using
a polynomial curve, adaptively selecting the polynomial
order to minimize the mean squared error (MSE) between
the fit and the discrete skeleton points. This results in a
continuous, differentiable curve model θ(t) = θ(αvg) =
(px(t), py(t), pz(t)), where t = αvg is the arc length
parameter and α is a scalar. Under the assumption that the
curve skeleton has either a single path or can be semantically
decomposed into separate branches, this modeling approach
enables efficient and differentiable slicing of the shape. As
shown in Fig. 2(a), a carrot-shaped point cloud can thus be
sectioned along the tangent direction of the curve skeleton
at predefined intervals.

After modeling an individual curve skeleton branch, a
point cloud shape branch can be continuously sectioned,
allowing the extraction of corresponding points for sectional
shape modeling. As shown in Fig. 2(a), the extracted points
from the point cloud shape are marked in red. Assuming
the section thickness is sufficiently small, the sectional
shape surface can be approximated as a 2D closed shape.
Consequently, these extracted points can be projected onto a
2D plane aligned with the tangent at the associated skeleton



point. However, directly modeling a closed shape is challeng-
ing. Inspired by [21], we approximate the closed curve of a
2D shape using a Fourier series, as outlined in Fig. 1, where
the extracted points are represented in the polar coordinate
system. The fitting equations are formulated as a function of
the slice radius Rg at the vg-th slice angle of the considered
object by

Rg(ug) = a0 +

n∑
i=1

[ai sin(iηug) + bi cos(iηug)] , (3)

where ug is the angle in the polar coordinate system relative
to the section center point. The coefficients {a0, ai, bi} are
Fourier coefficients obtained through curve fitting using a
Fourier series model, and n denotes the number of harmonic
terms. Additionally, η represents the fundamental frequency.
Note that n is chosen adaptively to obtain the best fitting
performance by minimizing a loss given by

L(Rg(ug)) = w1RMSE + w2∥ms −me∥, (4)

where RMSE is the root mean squared error of the fitted
model Rg(ug), and ms, me are the start and end polar
coordinates of the final points in the closed shape of the sec-
tion (see Fig. 2). The two terms, RMSE and point distance,
represent fitting loss and disclosure loss, respectively, with
w1 and w2 as their corresponding weights. The fitting process
is considered converged if the loss L(Rg(ug)) < ϵ, where ϵ
is a constant. In practice, the original polar coordinate data
of the section points only covers one period, but we perform
periodic extension to generate multiple periods of data for
curve fitting. Using data from several periods enhances the
periodic information and improves accuracy.

As shown in Fig. 2(b)-(c), fitting with Fourier models
recovers detailed curvature variations of the point cloud
surface, filtering out noise and providing a smooth curve
fitting result for the projected section points in Fig. 2(a).
Also, note that the first and second derivatives of the fitted
curve model are given by

Rg,u =

n∑
i=1

iη [bi cos(iηug)− ai sin(iηug)] ,

Rg,uu = −
n∑
i=1

i2η2 [bi sin(iηug) + ai cos(iηug)] . (5)

III. THE LOCALLY GENERALIZED SEMI-CONVEX
SURFACE

This section introduces a continuous 2D manifold coor-
dinate formulated locally for allowing us to determine the
kinematics of rolling contact through a curve-fitted cloud
point model. To do this, a semi-convex 2D manifold is
designed and a rolling object for simplification is considered
a sphere.

Firstly, we consider a spin-rolling sphere ΣS on a geo-
metrically fitted surface ΣG, as shown in Fig. 3, describing
the rolling contact between the sphere’s velocity u̇s and the
geometric surface’s velocity u̇g . Additionally, there exists a
relative spin angle ψ between the contact coordinate frames.
Note that the contact points of both surfaces, ΣCS and ΣCG,
coincide. In this formulation, by considering a sphere with a
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Fig. 2: Point cloud section and fitting

variable radius as a generalized coordinate for a symmetric
surface, we can define as follows

fg : UG → R3 : ug(ug, vg) 7→
[
Rg(ug) cosug,

Rg(ug) sinug, αvg
]
,

fs : US → R3 : us(us, vs) 7→
[
Rs cosus cos vs,

−Rs cosus sin vs, Rs sinus
]
, (6)

where UG = {(ug, vg)| − π < ug < π, 0 < vg < π}, Us =
{(us, vs)| − π

2 < us < π
2 ,−π < vs < π}, α = Ls/π

(Ls is the total skeleton length), Rg is the fitted curve
model function as expressed by Eq. (3). For mapping fg ,
it is formulated with the concept of local slices, where vg
indicated the selected slice.

We utilized Gauss frame to explain the rolling con-
tact kinematics. As explained by [7], the coordinates
of Gauss frame is x(u) = fu(u)/∥fu(u)∥, y(u) =
fv(u)/∥fv(u)∥, z(u) = g(f(u)), where g is an outward
normal map of surface points. As there is no explicit outward
normal map function for an irregular object surface ΣG, we
derive zg(ug) by xg(ug)×yg(ug). Thus, we can derive an
orthogonal Gauss frame for object surface ΣG as:

xg(ug) = (R2
g +R2

g,u)
−1/2

[
Rg,u cosug −Rg sinug,

Rg,u sinug +Rg cosug, 0
]T
, yg(ug) = [0, 0, 1]T ,

zg(ug) = (R2
g +R2

g,u)
−1/2

[
Rg,u sinug +Rg cosug,

Rg sinug −Rg,u cosug, 0
]T
. (7)

By substituting metric, curvature form,
torsion form respectively explained as
Mg = diag(∥fg,u (ug)∥, fg,v(ug)∥) , Kg =[
xg,yg, ]

T [zg,u/∥fg,u(ug)∥, zg,v/∥fg,v(ug)∥
]
, Tg =

yTg [zg,u/∥fg,u(ug)∥, zg,v/∥fg,v(ug)∥], we derive
corresponding metric and form matrices for the rolling



sphere surface as

Mg =

[ (
R2
g +R2

g,u

) 1
2 0

0 α

]
,Kg =

[
kgnu τgnu
τgnv kgnv

]
Tg =

[
kggu , k

g
gv

]
, (8)

where

kgnu = (R2
g +R2

g,u)
−3/2(R2

g −RgRg,uu + 2R2
g,u),

τgnu = τgnv = kgnv = 0, kggu = kggv = 0.

Similarly, we can derive these matrices for sphere surface as

Ms =

[
Rs 0
0 Rs cosus

]
,Ks =

[ 1
Rs

0

0 1
Rs

]
Ts = [0 , − tanus/Rs] . (9)

The rolling contact kinematics equation is explained as [7]

u̇g = M−1
g

(
Kg + K̃s

)−1
([

−ωy
ωx

]
− K̃s

[
vx
vy

])
u̇s = M−1

s Rψ

(
Kg + K̃s

)−1
([

−ωy
ωx

]
+Kg

[
vx
vy

])
ψ̇i = ωz +TgMgu̇g +TsMsu̇s, vz = 0, (10)

where ωrel = [ωx, ωy, ωz]
T and Vrel = [vx, vy, vz]

T are
the relative angular and linear velocities between the rolling
objects with respect to the orthogonal Gauss frame at the
contact point. By substituting Eqs. (8)-(9) into Eq. (10), we
finalize the kinematic equations of a sphere rolling with a
rigid object maintaining contact as

u̇g =

[
RsS1

S
3/2
1 +RsS2

0

0 Rs

α

]([−ωy
ωx

]
−

[
1
Rs

0

0 1
Rs

] [
vx

vy

])

u̇s =

 cosψS
3/2
1

S
3/2
1 +RsS2

− sinψ

− sinψS
3/2
1

cosus(S
3/2
1 +RsS2)

− cosψ
cosus

 ·

([−ωy
ωx

]

+

[
S
−3/2
1 S2 0

0 0

] [
vx

vy

])
ψ̇ = ωz +

[
0 0

]
u̇g +

[
0 − sinus

]
u̇s (11)

where S1 = R2
g +R2

g,u, S2 = R2
g −RgRg,uu + 2R2

g,u

For spin-rolling, let x = [ug, vg, us, vs, ψ]
T denote the

state vector, the re-ordered kinematic equation under the no-
sliding constraint (Vrel = 0) becomes

ẋ = g1ωx + g2ωy + g3ωz, (12)

where

g1 = [0, Rs/α,− sinψ,− cosψ/ cosus, tanus cosψ]
T ,

g2 =
1

RsS2 + S
3/2
1

[−RsS1, 0,−S3/2
1 cosψ,

S
3/2
1 sinψ/ cosus, S

3/2
1 sinψ/ cosus]

T ,

g3 = [0, 0, 0, 0, 1]T ,

where singularities occur only if RsS2+S
3/2
1 = 0. We define

the distribution Q(x) = {g1,g2,g3, [g1,g3], [g2,g3]}, and
the system is controllable if dim(Q) = 5 [22]. By evaluating

åCG c(u ,v )g g
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ψ
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θz

θy

åG

Rg

z

x

yåS

ωz

ωy Rs

c(u ,v )s s

åCS

Fig. 3: The parametrization and frame definitions of rolling
contact kinematics between rolling sphere and geometrically
fitted surface.

the determinant of the matrix formed by these vector fields,
we obtain

det(Q) = − RsS
2
1

α cosus(S
3/2
1 +RsS2)2

. (13)

Since det(Q) ̸= 0, the distribution Q is full rank, implying
that the system is controllable under the proposed spin-
rolling kinematics.

IV. RESULTS AND DISCUSSION

In this section, we present and analyze our proposed
method for geometrically fitting the point cloud objects,
using the example of a rolling sphere on multiple surfaces.
Additionally, we discuss the performance and capabilities of
the resulting geometric kinematic model.

The simulation is performed in MATLAB using the
ODE45 solver on a 13th Gen Intel(R) Core(TM) i5-13500H
@ 2.60 GHz platform. The absolute error tolerance for the
ODE45 solver is set to 1 × 10−5, and the total simulation
time is 10 seconds. The number of harmonic terms in the
Fourier fitting (Eq. (3)) is chosen from the range n ∈ [3, 8],
with a default convergence threshold of ϵ = 1 × 10−3

for the fitting loss. The initial states are set as follows:
ug = [0.1, π2 ], us = [0.1, 0.1], and ψ = π

2 . And the rolling
sphere radius is chosen as Rs = 0.1. In this simulation
study, we consider three distinct objects as examples, for
which real-world experimental point cloud data models were
obtained from real-world-captured data [23].

The first object considered is a carrot, where the sphere
starts at approximately vg = π

2 , corresponding to its center,
and begins moving around it, as illustrated by Fig. 4. The
simulation results show that for both pure rolling and rolling
with slippage, the trajectories of the sphere are smooth
and realizable, without any unexpected deviations. Further-
more, the state responses demonstrate that the performance
is stable, exhibiting smooth trajectories across all states,
including the sphere contact point state ug , the sphere contact
point state us, and the orientation angle ψ, as illustrated in
Fig. 7(a). To examine the effects of sliding, we induce small
sliding in the simulation to determine if any singularities
or unexpected behavior emerge. The results clearly show
that sliding motion leads to longer trajectory in the direction
of sliding velocity than the one without sliding component,
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demonstrating the effectiveness of our kinematics model.
Besides,we can notice that there is no significant issue in
the simulation, with no singularities detected.

The next object considered is a banana, which presents a
more complex geometry compared to the carrot. The skeleton
curve of the banana is much more curved than that of the
carrot, as observed in Fig. 5. To comprehensively test our
kinematics performance, we change the slippage direction
in the simulation of banana rolling contact motion. We can
notice that the direction change are correctly affecting the
expected rolling motion along another axis, showing longer
trajectory along the skeleton path. Similar results can also
be found in Fig 6, where the rolling contact motion of an
egg object is also simulated. The egg is an object with
distinct structure in comparison with the other two. In the
simulation with slippage, we can notice that the slippage in
both directions leads to longer displacement of the contact
point both in the direction of skeleton path and the direction
orthogonal to the skeleton path.

Finally, we demonstrated the variation in Rg , as shown
in Fig. 7(b). The radius change is consistent with how the
sphere rolls along the objects, demonstrating the effective-



ness of our closed curve fitting model via Fourier series
model. For example, in the banana case (B-NS), the sphere
travels a short distance along a path with nearly constant
radius, so Rg remains nearly unchanged. In contrast, in
the carrot case (C-NS), the sphere travels a longer distance
toward a region with larger radius, resulting in an increase
in Rg . Besides, the radius continuous decrease in the Rg
response of egg rolling motion simulation is align with the
behavior that the contact point on egg surface is moving from
middle toward a side point. However, some fluctuations occur
in the simulation as shown in the Rg response, especially
in the results of egg rolling with slippage (E-S) and carrot
rolling simulation (C-NS and C-S). This is because the fitted
Fourier series model varies along the skeleton path due to
data change and the fitted model is sensitive to the data
quality, including density and the noise level. It is evident
that for more consistent or denser point clouds, such as the
banana, the fluctuations are significantly reduced. Thus, a
more detailed study of the sensitivity to noise or sparsity in
the data is essential in future.

The simulation, based on real-world object shape data,
demonstrates our method’s effectiveness and potential for
rolling motion control and planning in scenarios such as in-
hand manipulation [6], [24].

V. CONCLUSIONS

In this study, we introduced a novel method for locally
fitting arbitrary point cloud data using a skeleton-guided
reference frame, integrated with a semi-convex spin-rolling-
sliding kinematic model grounded in differential geometry.
Our framework was validated through simulations on repre-
sentative objects, including a carrot, banana, and egg, using
real-world point cloud data acquired from physical objects.
The results indicate that both pure rolling and rolling with
slippage yield smooth and physically plausible trajectories,
with consistent state evolution along the skeleton-guided
kinematic paths.

Furthermore, our experiments reveal a strong correlation
between point cloud density and model accuracy. Higher-
density point clouds enable more reliable slicing and yield
more precise surface and motion reconstructions. In contrast,
sparsity in the input data, such as that observed in the
banana model, can lead to minor fluctuations in the resulting
kinematics.

Looking ahead, we plan to extend our slicing strategy to
handle more complex, multi-branch geometries by incorpo-
rating finer curvature analysis, thereby enabling applications
to structures such as trees, tunnels, or branching anatomi-
cal shapes. We also aim to implement a motion planning
framework and evaluate our kinematic model in real-world
fingertip rolling experiments, further validating its practical
applicability in dexterous manipulation scenarios.
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