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Highlights: 11 

• Sparse sensors enable high-fidelity reconstruction of thermal–fluid fields. 12 

• Hybrid physics–data modeling enhances accuracy and physical consistency. 13 

• Structure-aware design adapts to varying heat source sizes. 14 

 15 

Abstract: Efficient thermal management in liquid cooling systems relies heavily on the 16 

accurate reconstruction of temperature and velocity fields. However, obtaining full-17 

field information under sparse sensor deployment remains a critical challenge. To 18 

address this issue, this study proposes a Physics-Informed Structure-Aware Network 19 

(PISA-Net) for adaptive and high-fidelity reconstruction of coupled thermal-fluid fields 20 

in liquid-cooled environments with limited measurements. The proposed framework 21 

integrates sparse temperature and velocity data with geometric information of heat 22 

sources and flow channels, enabling structure-aware representation of varying thermal 23 

configurations. A physics-informed loss term, derived from the steady-state energy 24 

conservation equation, is incorporated to enforce physical consistency during training. 25 

This hybrid learning strategy effectively combines data-driven approximation with 26 

physical constraints, improving both predictive accuracy and generalizability. 27 

Numerical validation on a representative cold plate configuration demonstrates that 28 

PISA-Net achieves a normalized mean absolute error of 0.98% for temperature and 29 

velocity field reconstruction using only eight sensor measurements. In addition, the 30 
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physics residual, quantified by the energy equation deviation, is reduced by 31 

approximately 80% compared to purely data-driven models. These results highlight the 32 

potential of PISA-Net as a robust and interpretable approach for real-time field 33 

reconstruction, anomaly detection, and sensor optimization in complex thermal-fluid 34 

systems. 35 

Keyword：Liquid Cooling System; Thermal-fluid Fields Reconstruction; Sparse sensor 36 

measurements; Physics-Informed Neural Networks; Hybrid Data-physics Learning 37 
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Nomenclature   

   

Roman symbols   

p Pressure Pa 

𝑄(𝑥, 𝑦) Distributed heat source  

𝑞′′ Surface heat flux W·m-2 

𝑅 Radius of heat-source cylinder mm 

T Temperature K 

𝑇̂ Predicted temperature (network output) K 

𝑇in Inlet temperature K 

𝑇𝑜𝑢𝑡  Outlet temperature K 

u, v Velocity components in x- and y-directions m·s⁻¹ 

𝑢̂, 𝑣̂ Predicted velocity components m·s⁻¹ 

𝑢⃗ = (𝑢, 𝑣) Velocity field m·s⁻¹ 

𝑢in Fluid inlet velocity m·s⁻¹ 

   

Greek symbols   

𝑐𝑝 Specific heat at constant pressure J·kg⁻¹·K⁻¹ 

𝑘 Thermal conductivity W·m⁻¹·K⁻¹ 

𝜆0 Hyperparameter for weighting the data loss  

𝜆1(𝑡) Hyperparameter for weighting the physical loss  

𝜇 Dynamic viscosity Pa·s 

𝜌 Density kg·m⁻³ 

θ Trainable parameters of PISA-Net network  

   

Model-related variables   



 

 

𝒟s Sparse observations  

ℱ𝜃 Deep neural network model (PISA-Net)  

𝑓𝑔𝑙𝑜𝑏𝑎𝑙  Global feature vector  

𝑓𝑖 Local feature vector  

H, W Domain height and width  

ℒdata Supervised data-driven loss  

ℒPDE Physics-based loss from PDE residuals  

ℒtotal Total hybrid loss  

ℳ(𝑥, 𝑦) Structure mask   

ℛenergy Energy residual  

𝑇𝑖
s, 𝑢𝑖

s, 𝑣𝑖
s Temperature and velocity data at sensor points  

𝑥𝑖𝑛𝑖𝑡  Initial upsampled global feature   

𝑥𝑖𝑛𝑝𝑢𝑡 Input tensor (global feature + mask)  

Y Ground-truth output (T, u, v)  

Ŷ Predicted output (T, u, v)  

   

Abbreviations   

CFD Computational Fluid Dynamics  

CNN Convolutional Neural Network  

DeepONet Deep Operator Network  

FNO Fourier Neural Operator  

MLP Multi-Layer Perceptron  

NMAE Normalized mean absolute error  

PDE-R Physical residual  

PINN Physics-Informed Neural Network  

RMSE Root mean square error  

U-Net U-shaped convolutional network  
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1. Introduction 40 

The dense distribution of heat sources imposes stringent demands on the cooling 41 

efficiency and thermal reliability of thermal management systems [1, 2]. Liquid cooling 42 

technology has emerged as the mainstream solution for high heat flux thermal control 43 

systems, owing to its superior heat transfer capabilities, effective thermal capacity 44 



 

 

matching, and improved cooling uniformity [3-5]. 45 

Ensuring the thermal safety and long-term operational stability of such systems 46 

necessitates access to high-fidelity spatial distributions of temperature and velocity 47 

fields, which are essential for thermal anomaly detection and the development of 48 

intelligent control strategies [6, 7]. Despite their advantages, liquid cooling systems 49 

exhibit strongly coupled thermal-fluid behavior, where the temperature and velocity 50 

fields are interdependent and influenced by multiple factors, including internal heat 51 

source geometries and flow disturbances [8]. Consequently, reconstructing a single 52 

physical field is insufficient to fully characterize the system state. Instead, the 53 

simultaneous reconstruction of both temperature and velocity fields has become critical 54 

for achieving refined thermal regulation and enabling accurate multiphysics field 55 

analysis [9, 10]. 56 

In engineering applications, it is typically infeasible to obtain full-field information 57 

through direct visualization or measurement. Instead, only sparse temperature and 58 

velocity data can be acquired via a limited number of sensors. However, due to the 59 

sparse spatial distribution of these sensors, traditional reconstruction methods often 60 

struggle to accurately and efficiently infer the complete physical fields. As a result, the 61 

operation monitoring, state evaluation, and thermal management of liquid cooling 62 

systems often pose a typical physical inverse problem: reconstructing the complete 63 

internal temperature and velocity field distributions from limited measurement points 64 

[11, 12]. Such inverse problems are generally ill-posed, where the solution may lack 65 

existence, uniqueness, or stability [13, 14]. These challenges are further exacerbated 66 

under conditions involving complex geometries or incomplete boundary information, 67 

where conventional numerical or analytical methods often fail to produce stable and 68 

reliable reconstructions of the physical fields [15-17]. 69 

Classical physical field reconstruction methods can be broadly classified into two 70 

categories: direct interpolation methods and indirect inverse methods. Traditional direct 71 

approaches include techniques such as Kriging interpolation [18], radial basis function 72 

(RBF) interpolation [19], and spline interpolation [20]. While these methods can rapidly 73 

generate continuous fields between known measurements, their performance is highly 74 

dependent on the spatial coverage and distribution of observation points, and they 75 

typically exhibit low sensitivity to boundary conditions or structural variations. Indirect 76 

methods, by contrast, encompass state estimation and regularization-based inverse 77 

techniques. For example, Wei et al. [21] proposed a new sparse Kalman filtering method 78 

that can achieve force localization and reconstruction using a limited number of sensors. 79 

Liang et al. [22] applied Kalman filtering and dimensionality reduction to non-80 

stationary image reconstruction in ultrasonic transmission tomography. These indirect 81 

methods can perform indirect inference by combining with system dynamics models, 82 

but they are generally highly sensitive to prior models and error distributions, have high 83 

computational complexity, and are difficult to be extended to applications involving 84 

complex flow fields with multiple structures [23, 24]. Therefore, achieving high-85 



 

 

accuracy and generalizable reconstruction of temperature and velocity fields under 86 

sparse observation remains a key challenge in the intelligent thermal management of 87 

liquid cooling systems. 88 

In recent years, the emergence of deep learning has opened new avenues for inverse 89 

problem modeling. Leveraging their powerful nonlinear approximation capabilities and 90 

end-to-end mapping structures, deep neural networks (DNNs) have been successfully 91 

applied to a wide range of inverse problems, including medical image reconstruction, 92 

electromagnetic inversion, and structural response identification [25-28]. In the field of 93 

thermal control, data-driven models can directly learn the mapping between sparse 94 

sensor measurements and target physical quantities. For instance, Chen et al. [29] 95 

constructed a network based on a transfer learning framework to achieve efficient 96 

identification of temperature responses and material parameters in thermal protection 97 

systems; Yan et al. [30] proposed a convolutional network architecture that successfully 98 

realized rapid reconstruction of the structural deformation field of aerospace vehicles 99 

under sparse observation conditions. Li et al. [31] put forward a data-driven model 100 

composed of a transposed network and a residual network to predict the flow field 101 

structure of supersonic cascade channels by measuring the wall pressure of the cascade 102 

channels. Gong and Wang [32] proposed an artificial neural network-based quadratic 103 

constitutive relation (ANN-QCR) for Reynolds stress modeling, incorporating field 104 

inversion and machine learning (FIML) techniques and high-fidelity experimental data 105 

for simulating separated turbulent flows. These approaches demonstrate high predictive 106 

accuracy and low computational cost when sufficient training data and stable operating 107 

conditions are available, making them promising tools for real-time monitoring, 108 

anomaly detection, and feedback control in thermal-fluid systems. 109 

However, purely data-driven models inherently lack the capacity to incorporate explicit 110 

physical laws, often resulting in large reconstruction errors, severe overfitting, and 111 

limited generalization performance across varying conditions [33]. Consequently, 112 

incorporating physical priors into data-driven frameworks to enhance physical 113 

consistency and cross-structural robustness has emerged as a key focus of recent 114 

research efforts [34, 37]. To address this, Raissi et al. [38] proposed the Physics-115 

Informed Neural Networks (PINNs) method, which realizes the embedded modeling of 116 

physical laws by explicitly introducing the residuals of control equations (such as 117 

convection-diffusion equations, Navier–Stokes equations) as loss terms in the training 118 

of neural networks. This method has achieved good results in tasks such as partial 119 

differential equation solving, parameter inversion, and dynamic prediction [39]. 120 

Despite these successes, PINNs face significant challenges in sparse observation 121 

problems. First, they typically require full-field spatial coordinates as inputs, which is 122 

incompatible with practical engineering conditions where only limited sensor 123 

measurements are available [40]. Second, training PINNs is often hindered by 124 

vanishing gradients [41] and optimization instability [42], especially in nonlinear 125 

strongly coupled systems, leading to poor convergence, long training times, and strong 126 

sensitivity to hyperparameter settings [43-45]. Third, PINNs generally lack explicit 127 



 

 

mechanisms to represent complex geometric boundaries, resulting in limited robustness 128 

in multi-structure or irregular domain reconstruction tasks [46-48]. 129 

In light of the aforementioned challenges, a key scientific and technical bottleneck in 130 

intelligent thermal management lies in developing a modeling framework that 131 

integrates data-driven learning with physical constraints to enable high-fidelity 132 

reconstruction of temperature and velocity fields under sparse sensor conditions, across 133 

diverse geometric structures and operating scenarios in liquid cooling systems. To 134 

address this issue, this study proposes a hybrid neural network framework - Physics-135 

Informed Structure-Aware Network (PISA-Net) - which incorporates both structural 136 

awareness and physics-based constraints. The model takes sparse sensor measurements 137 

of temperature and velocity fields as input, and leverages structure masks to enhance 138 

perception of geometric and topological features. A physics-informed loss function 139 

based on the steady-state energy conservation equation is further introduced to enforce 140 

explicit physical consistency during training. By embedding physical priors within a 141 

data-driven architecture, PISA-Net significantly improves reconstruction accuracy and 142 

generalization across varying heat source configurations and sparse observation 143 

conditions. 144 

The main contributions of this work are summarized as follows: 145 

1) A hybrid neural network framework, PISA-Net, is proposed, which combines sparse 146 

sensor data with structural awareness via structure masks. The model enables high-147 

fidelity reconstruction of temperature and velocity fields under varying operating 148 

conditions and geometric configurations. 149 

2) A physics-informed loss function is designed based on the steady-state convection–150 

diffusion energy equation and integrated into the training process to enforce physical 151 

consistency under weakly supervised conditions. 152 

3) A finite element simulation dataset is established, covering diverse heat source 153 

structures and operating conditions, which serves as a high-quality benchmark for 154 

training and evaluating the proposed model. 155 

The structure of this paper is organized as follows: Section 2 introduces the liquid 156 

cooling system and the mathematical description of the target problem. Section 3 157 

presents the numerical analysis and dataset construction. Section 4 briefly describes the 158 

method of the proposed framework in this paper. Section 5 analyzes and discusses the 159 

results. Finally, some conclusions are given in Section 6. 160 

 161 

2. Problem Formulation 162 

This section provides a detailed description of the research problem and mathematically 163 

defines the considered problems. 164 



 

 

2.1 Liquid Cooling System 165 

In a typical design of multi-layer cold plate (MLCP), each layer of the cold plate is 166 

thermally coupled with heat-generating components, and several vertically aligned 167 

cylindrical elements are embedded within the structure. These elements act as localized 168 

heat sources or structural supports, while also inducing significant disturbances in the 169 

local flow field, as illustrated in Figure 1. 170 

The liquid cooling system investigated in this study adopts a cold plate configuration. 171 

The channel thickness is considerably smaller than its length and width, and multiple 172 

cylindrical heat sources are embedded within the fluid domain to emulate the thermal 173 

behavior of electronic components or localized thermal loads. To reduce modeling 174 

complexity and improve computational efficiency, the three-dimensional thermal–fluid 175 

interaction problem is reasonably approximated as a two-dimensional inverse problem 176 

governed by steady-state nonlinear partial differential equations. 177 

 178 

Figure 1. Liquid Cooling System 179 

2.2 Problem Modeling 180 

In liquid cooling systems, accurate knowledge of the internal temperature and velocity 181 

fields under operating conditions is essential. However, due to the high cost and 182 

potential impact on heat transfer performance, only a limited number of sensors can be 183 

deployed to capture temperature and flow velocity at discrete locations within the 184 

domain. 185 

 186 

To address this limitation, this study employs deep learning techniques to construct a 187 



 

 

model that maps sparse sensor measurements to full-field physical quantities, as Figure 188 

2.  189 

 190 

Figure 2. Problem Description 191 

Given a set of sparse observations: 192 

𝒟s = {(𝑥𝑖, 𝑦𝑖 , 𝑇𝑖
s, 𝑢𝑖

s, 𝑣𝑖
s)}𝑖=1

𝑁  (1) 

the objective is to predict the corresponding continuous fields of temperature and 193 

velocity: 194 

ℱ𝜃: {(𝑥𝑖, 𝑦𝑖), 𝑇𝑖
s, 𝑢𝑖

s, 𝑣𝑖
s,ℳ(𝑥, 𝑦)}𝑖=1

𝑁 → {𝑇(𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)}(𝑥,𝑦)∈Ω (2) 

where, ℱ𝜃 denotes the deep neural network model (PISA-Net), parameterized by 𝜃. 195 

The term, ℳ(𝑥, 𝑦) represents the geometric structure mask (i.e., a binary matrix that 196 

encodes the fluid domain corresponding to different structural configurations), and 197 

Ω  is the two-dimensional design domain. The coordinates (𝑥𝑖 , 𝑦𝑖)  indicate the 198 

positions of the sparse sensors, and (𝑇𝑖
s, 𝑢𝑖

s, 𝑣𝑖
s)  are the corresponding measured 199 

temperature and velocity components at those locations. 200 

The goal is to learn the mapping ℱ𝜃 that accurately approximates the true physical 201 

fields (𝑇(𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦))  based on the limited input 𝒟s  and structural prior 202 

ℳ(𝑥, 𝑦), thereby achieving high-fidelity and physically consistent reconstruction of 203 

the thermal–fluid fields. 204 

3. Dataset Construction 205 

3.1 Analysis Model 206 

In this study, a two-dimensional planar model is established to represent a single layer 207 

of the cold plate. A rectangular fluid subdomain containing six representative 208 

cylindrical heat sources is extracted as the computational domain. This subdomain 209 

captures essential physical phenomena, including velocity recirculation and 210 

temperature gradient variations induced by the embedded heat sources, while 211 

significantly reducing the computational cost compared to full-system modeling. As 212 

such, it provides a balanced modeling strategy that ensures both physical fidelity and 213 



 

 

numerical efficiency. As illustrated in Figure 3, the two-dimensional rectangular 214 

cooling channel (128 mm × 96 mm) incorporates six embedded cylindrical structures 215 

with fixed spatial locations. The radius of each cylinder is treated as a tunable geometric 216 

parameter to simulate structural variations. Each cylinder is modeled as an internal heat 217 

source subjected to a constant heat flux boundary condition. 218 

 219 

Figure 3. Structure Modeling 220 

 221 

In the model, the geometric dimension of the heat source (characterized by radius R) is 222 

defined as a tunable parameter to reflect structural variations arising from different 223 

packaging configurations or design scales. The fluid inlet velocity 𝑈𝑖𝑛  and inlet 224 

temperature 𝑇𝑖𝑛 are specified as boundary condition variables, representing the level 225 

of flow enhancement and the thermal state of the incoming coolant, respectively. 226 

Meanwhile, the heat source intensity 𝑄𝑖𝑛 is treated as an internal condition variable, 227 

used to simulate the thermal load generated by the heat source under varying 228 

operational scenarios. 229 

The coupled heat and flow behaviors under the system's steady state satisfy the 230 

following governing equations simultaneously: 231 

Mass equation: 232 

∇ ⋅ 𝑢⃗ = 0 (3) 

Momentum equation: 233 

𝜌(𝑢⃗ ⋅ ∇)𝑢⃗ = −∇𝑝 + 𝜇∇2𝑢⃗  (4) 

Energy equation: 234 

𝜌𝑐𝑝(𝑢⃗ ⋅ ∇𝑇) = ∇ ⋅ (𝑘∇𝑇)+𝑄(𝑥, 𝑦) (5) 

Here, 𝑢⃗ = (𝑢, 𝑣) represents the velocity field, 𝑝 denotes pressure, and 𝑇 signifies 235 

temperature. 𝜌, 𝜇, 𝑐𝑝, 𝑘  correspond to density, dynamic viscosity, specific heat 236 

capacity at constant pressure, and thermal conductivity respectively. 𝑄(𝑥, 𝑦) indicates 237 



 

 

the distributed heat source term. 238 

The energy equation adopted in this study is established under the steady-state 239 

assumption and neglects viscous dissipation. 240 

This setting is consistent with the characteristics of the forced-convection liquid cooling 241 

plate investigated here, where the inlet velocity and temperature remain constant, and 242 

all CFD datasets were exported after steady convergence. 243 

Under such conditions, the temporal variation of temperature becomes negligible 244 

compared to spatial gradients, making the steady-state energy balance appropriate for 245 

both the numerical simulations and the neural network reconstruction. 246 

Furthermore, the viscous dissipation term, which represents the conversion of 247 

mechanical energy into internal energy due to shear stress, is several orders of 248 

magnitude smaller than the dominant convective–diffusive transport in low-Mach, 249 

laminar liquid-cooling flows. 250 

Therefore, its omission introduces no measurable effect on the predicted thermal field 251 

and is a standard simplification for such operating regimes. 252 

If the framework were to be extended to high-speed or high-viscosity cases, this term 253 

could be reintroduced without modifying the overall model structure. 254 

The boundary conditions of the simulation domain are defined as follows: 255 

1) The left inlet boundary is prescribed with varying combinations of inlet 256 

velocity 𝑢𝑖𝑛 and inlet temperature 𝑇𝑖𝑛. 257 

2) The right outlet boundary is set as a constant pressure outlet. 258 

3) A constant heat flux 𝑞′′  is applied to the cylinder to simulate the heat-259 

generating source. 260 

4) The top and bottom walls are modeled as adiabatic boundaries, implying zero 261 

heat flux. 262 

The steady-state coupled solution of the incompressible Navier-Stokes equations and 263 

the energy conservation equation is conducted using Fluent for simulation. 264 

3.2 Parameter Space and Sample Generation 265 

To comprehensively evaluate the performance and generalization ability of the 266 

proposed method under varying heat source geometries and boundary conditions, a 267 

multiphysics dataset is constructed by sampling an extensive parameter space. Four 268 

categories of key physical parameters are selected for combination: the heat source 269 

radius 𝑅, surface heat flux 𝑞′′, fluid inlet velocity 𝑢in, and inlet temperature 𝑇in. The 270 

discrete settings for each parameter are provided in Table 1: 271 

Table 1. Structural and Operating Condition Parameters 272 

Parameters Intervals Groups 

𝑅 5, 6, 7, 8, 9, 10 mm 6 



 

 

𝑞′′ 0.55 × 107–1.2 × 107 W/m² 5 

𝑢in 0.01, 0.02, 0.03, 0.04, 0.05 m/s 5 

𝑇in 283.15, 293.15, 303.15, 313.15 K 4 

 273 

The selected parameters are designed to represent realistic operating conditions 274 

involving variations in heat dissipation intensity, flow disturbances, and geometric 275 

structures. To ensure both parameter space coverage and computational feasibility, a 276 

random sampling strategy is employed to uniformly select 300 representative 277 

combinations from the full factorial space for simulation and training purposes. 278 

For each sampled condition, the simulation yields temperature (T) and velocity 279 

components (u and v), which are subsequently interpolated onto a uniform spatial grid 280 

and stored in a standardized format. The resulting dataset serves as the foundation for 281 

training and evaluating the proposed model, particularly in terms of its generalization 282 

capability across varying structural configurations and operating conditions. 283 

 284 

3.3 Mesh Convergence of numerical model 285 

Table 2 compares three levels of mesh resolutions in representative local regions, where 286 

the mesh with element size of 1mm achieves an effective trade-off between spatial 287 

resolution and computational cost. It also demonstrates excellent geometric conformity 288 

and numerical stability during simulation. 289 

To ensure compatibility with the subsequent deep learning framework, all simulation 290 

results are uniformly interpolated onto a fixed spatial grid of size 193 × 257. 291 

Table 2. Comparison of Mesh Convergence 292 

Size 0.5mm 1.0mm 2.0mm 

Mesh 

   

T 

   

 293 

The CFD simulations were performed on unstructured triangular meshes. To obtain 294 



 

 

datasets with a uniform spatial resolution suitable for neural-network input, all 295 

simulation results were interpolated onto a regular Cartesian grid of 193 × 257 points 296 

covering the computational domain Figure 4. The interpolation is based on the finite-297 

element shape-function reconstruction, which is mathematically equivalent to 298 

piecewise-linear interpolation within each triangular element. This approach ensures 299 

geometric flexibility for unstructured meshes and preserves the physical continuity and 300 

accuracy order of the numerical solution. Importantly, the interpolation was carried out 301 

only within the fluid domain. The circular solid regions corresponding to the cylindrical 302 

heat sources were excluded from the interpolation using a binary structural mask (mask 303 

= 0 for solid and mask = 1 for fluid). Consequently, the neural network processes and 304 

predicts physical fields (e.g., temperature, velocity) only in the fluid region, ensuring 305 

physical consistency and avoiding non-physical artifacts in the non-fluid domain. The 306 

generated uniform-field data and corresponding masks were then saved in .csv or .npy 307 

format for model training. 308 

 309 

 310 
Figure 4 Interpolation from Triangular mesh to regular Cartesian grid. 311 

 312 

An unstructured triangular mesh was employed for the CFD modeling, with local 313 

refinement applied around the cylindrical heat sources. 314 

Under a representative operating condition, six levels of element sizes were tested (as 315 

shown in Figure 5), and the temperature distribution along the right boundary line was 316 

used as the convergence criterion. 317 

When the element size was smaller than 1.0 mm, the temperature deviation converged 318 

to within 1%. 319 

Meanwhile, the relative variations of the domain-averaged temperature and pressure 320 

drop were controlled within 1–2%, and the residuals of the continuity, momentum, and 321 

energy equations decreased below 10⁻⁵, 10⁻⁵, and 10⁻⁶, respectively, indicating good 322 



 

 

numerical convergence of the steady-state solution. 323 

Therefore, a mesh size of 1 mm (approximately 5 × 10⁵ cells) was selected as the 324 

standard grid, achieving a balance between computational accuracy and cost. 325 

 326 

Figure 5 Grid Independence Test under a Representative Operating Condition. 327 

 328 

To further validate the CFD dataset, we performed simulations using the k–ω standard 329 

and SST k–ω turbulence models under the same conditions. The comparison results 330 

show that the temperature fields predicted by all three models (laminar, k–ω standard, 331 

and SST k–ω) are highly consistent, with temperature differences within 0.1–0.5%. This 332 

confirms that the flow remains laminar under the present conditions, and the turbulence 333 

models have negligible impact on the results. 334 

The present study intentionally focuses on a simulation–algorithm framework to 335 

establish a reliable and reproducible benchmark before introducing experimental 336 

uncertainties. The CFD datasets are derived from numerically validated models that 337 

ensure physical consistency, including mesh-independence verification, residual 338 

convergence, and realistic boundary conditions. These high-fidelity numerical data 339 

serve as a controlled environment to evaluate model performance, generalization, and 340 

robustness under varying sensor sparsity and geometric perturbations. 341 

Importantly, the current simulation-based workflow represents the first stage of a 342 

broader digital-twin pipeline. Once the algorithmic framework and data-driven–343 

physics-integrated methodology are consolidated, the approach will be transferred to 344 

real engineering systems through experimental data assimilation and sensor-based 345 

digital-twin updating. In this way, the validated CFD data not only provide a physically 346 

trustworthy training foundation but also act as a bridge connecting purely numerical 347 

studies to practical applications in industrial thermal–fluid monitoring and optimization. 348 

 349 



 

 

4. Method 350 

4.1 Framework Architecture of PISA-Net 351 

This section introduces the details of the proposed Physics-Informed Structure-Aware 352 

Network (PISA-Net), a hybrid deep learning framework designed for reconstructing 353 

full-field temperature and velocity distributions in liquid cooling systems from sparse 354 

sensor data. As illustrated in Figure 6, PISA-Net consists of three key components: a 355 

sparse measurement encoder, a structure-aware decoder, and a hybrid loss function that 356 

incorporates both data supervision and physical constraints. 357 

1) Sensor MLP Encoder: This module encodes the sparse measurement information 358 

from sensor points, including temperature, velocity, and spatial coordinates, using a 359 

multilayer perceptron (MLP). The encoded features are then projected into a high-360 

dimensional latent space to capture local spatial-physical relationships. 361 

2) U-Net Based Decoder: The encoded sensor features are concatenated with the 362 

binary mask matrix representing the fluid-solid domain geometry. These are then 363 

decoded through a U-Net architecture that progressively upsamples and reconstructs 364 

the spatially continuous fields, while preserving structural priors. 365 

3) Physics & Data-Driven: The total loss function combines a data consistency loss, 366 

which enforces agreement with observed sensor values, and a physics-informed loss, 367 

derived from the steady-state energy equation. The joint optimization improves both 368 

prediction accuracy and physical consistency. 369 

 370 



 

 

 371 

Figure 6. Overall Architecture of the Proposed PISA-Net Framework. (a) MLP Based Encoder for 372 

Sparse Sensor Data; (b)Structure-aware U-Net Based Decoder. 373 

 374 

PISA-Net mainly consists of the following two sub-modules: 375 

1) Sparse Sensor Encoder 376 

As shown in Figure 7, The input of the model is composed of 𝑁𝑠 = 8  sparse 377 

measurement points located at preset key positions. Each measurement point contains 378 

a five-dimensional feature vector to characterize its local state and spatial position 379 

information: 380 

[𝑇𝑖, 𝑢𝑖 , 𝑣𝑖 , 𝑥𝑖
𝑛𝑜𝑟𝑚, 𝑦𝑖

𝑛𝑜𝑟𝑚] (6) 

where, 𝑇𝑖,  𝑢𝑖,  𝑣𝑖 are the observed values of temperature and velocity respectively, and 381 

(𝑥𝑖
𝑛𝑜𝑟𝑚, 𝑦𝑖

𝑛𝑜𝑟𝑚)  are the normalized coordinate positions. These measurement point 382 

data form the input tensor 𝒟𝑠 ∈ ℝ
𝑁𝑠×5.  383 



 

 

 384 

Figure 7. Sparse Sensor Encoder 385 

 386 

The input tensor 𝒟𝑠 is first mapped to local feature representations 𝑓𝑖 ∈ ℝ
𝑑  of the 387 

same dimension through a Multi-Layer Perceptron (MLP) encoder, and then all point 388 

features are concatenated into a global feature representation: 389 

𝑓𝑔𝑙𝑜𝑏𝑎𝑙 = Concat(𝑓1, 𝑓2, … , 𝑓8) (7) 

Subsequently, this one-dimensional feature is mapped to a medium-resolution initial 390 

feature map 𝐶 × 𝐻′ ×𝑊′  (ℝ3×48×64 ) through a fully connected layer, and then 391 

upsampled to 𝐶 × 𝐻 ×𝑊   (ℝ3×193×257 ) as the "initial guess" 𝑥𝑖𝑛𝑖𝑡  input for field 392 

reconstruction. 393 

2) Structure -aware U-Net Decoder 394 

To enhance the model’s ability to recognize structural boundaries and avoid unphysical 395 

predictions within the cylindrical heat source regions, a structure mask map ℳ(𝑥, 𝑦) 396 

is introduced, where a value of 1 denotes the fluid region and 0 denotes the solid heat 397 

source region, as shown in Figure 8. As a form of spatial prior, the mask explicitly 398 

encodes the geometry of non-flow domains, effectively constraining the network to 399 

perform feature extraction and prediction only within physically valid regions. This 400 

improves both the physical consistency and numerical stability of the model, especially 401 

near interfaces. 402 



 

 

 403 

Figure 8. Structure-aware U-Net Decoder 404 

 405 

In addition, this mechanism enables the network to generalize across varying heat 406 

source configurations. By replacing the structure mask input, the model can perform 407 

multiphysics field reconstruction for different structural layouts without modifying the 408 

network architecture or spatial discretization. This greatly enhances the generalization 409 

capacity and deployment flexibility of PISA-Net in cross-structural scenarios. Details 410 

on the construction of the structure mask and its role in enabling cross-structural 411 

adaptability are provided in Section 4.2. 412 

The mask map is concatenated with the sparse encoding output along the channel 413 

dimension: 414 

𝑥𝑖𝑛𝑝𝑢𝑡 = Concat(𝑥𝑖𝑛𝑖𝑡,ℳ) (8) 

Subsequently, the encoded sparse features are passed into the U-Net-based decoder for 415 

multi-scale reconstruction of the target physical fields. The architecture consists of three 416 

levels of downsampling and upsampling paths, with each stage composed of stacked 417 

convolutional modules. Each module contains two consecutive 3×3 convolution layers, 418 

followed by Group Normalization and ReLU activation, which are used to extract local 419 

spatial features and stabilize the training process. 420 

Leveraging the skip connection mechanism inherent to the U-Net architecture, shallow 421 

structural features captured during downsampling are directly propagated to the 422 

corresponding upsampling stages. This effectively preserves fine-grained boundary 423 

details, particularly around the heat source regions. Simultaneously, deeper layers 424 

aggregate global multi-scale features, enhancing the network's ability to model the 425 

broader spatial distribution of the thermal–fluid fields. 426 

Through this hierarchical architecture, the network achieves a balance between local 427 

feature alignment and global field reconstruction. This makes it well-suited for high-428 



 

 

fidelity multiphysics field prediction tasks in geometrically complex domains 429 

Finally, an end-to-end mapping neural network framework PISA-Net is constructed, 430 

which maps the input sparse measurement points 𝒟𝑠 and structural mask ℳ to the 431 

output multi-physics fields: 432 

ℱ𝜃(𝒟𝑠,ℳ) → [𝑇̂(𝑥, 𝑦), 𝑢̂(𝑥, 𝑦), 𝑣(𝑥, 𝑦)] (9) 

where ℱ𝜃  represents the parameterized neural network model, i.e., PISA-Net. The 433 

specific parameters of the model can be found in the appendix. 434 

4.2 Dynamic Structure Mask for Cross-Structural Generalization 435 

The traditional methods suffer from a strong dependence on fixed geometric structures 436 

and exhibit poor generalization capability, often leading to significant degradation in 437 

reconstruction accuracy of temperature and velocity fields under varying geometric 438 

radii of embedded heat sources. To overcome these limitations, this study proposes a 439 

structure-aware neural network framework that incorporates a structure mask (Structure 440 

Mask) to explicitly encode geometric features and enable cross-structural transfer. By 441 

leveraging this design, the framework demonstrates robust generalization across 442 

diverse heat source geometries, achieving high-fidelity multiphysics field 443 

reconstruction even in the presence of structural perturbations. 444 

Such capability highlights the method's superior adaptability to geometric variability 445 

and enhances its spatial generalization performance, which is critical for practical 446 

engineering deployment. To support this, PISA-Net incorporates a structure mask as an 447 

explicit geometric input. This mask encodes the spatial layout of the fluid–solid domain, 448 

allowing the model to operate within a unified input space and generalize across 449 

different heat source configurations without modifying the network architecture or 450 

retraining. 451 

 452 

Figure 9. Schematic of Structural Mask Generation and Representation 453 

 454 



 

 

Figure 9 illustrates the structural mask mechanism and its adaptability to different heat 455 

source radii: 456 

1) Depicts the strategy for generating structural masks based on the center coordinates 457 

and radius of cylindrical heat sources; 458 

2) Shows the resulting binary mask map ℳ(𝑥, 𝑦), where a value of 1 denotes the fluid 459 

region and 0 denotes the solid (cylindrical) region.  460 

This pre-generation strategy enables the rapid construction of structure-aware masks 461 

without the need for remeshing, allowing the model to dynamically adapt to structural 462 

variations across different samples. 463 

Notably, this design allows the model to perform field reconstruction even for unseen 464 

structural configurations during inference. By simply replacing the corresponding mask 465 

ℳ(𝑥, 𝑦), the network can generalize to new geometries without additional training or 466 

structural modifications. This significantly improves the model's flexibility and 467 

deployment efficiency in practical applications. 468 

Overall, PISA-Net demonstrates strong cross-structural transferability, making it a 469 

promising tool for rapid thermal–fluid analysis and sensitivity studies in complex liquid 470 

cooling systems. 471 

4.3 Physics-Embedded Constraint Formulation via Finite Difference 472 

Operators 473 

This study proposes a novel method to address the challenge of reconstructing physical 474 

fields from highly sparse observations. The scarcity of ground-truth data hinders purely 475 

data-driven models from accurate reconstruction, while the lack of explicit physical 476 

constraints limits generalization under structural perturbations or changing operational 477 

conditions. Consequently, models often overfit to observed points and fail to respect 478 

the underlying governing equations, reducing the physical reliability of predictions. 479 

To address these issues, this study incorporates physics-informed constraints into the 480 

data-driven framework by embedding the steady-state energy conservation law (i.e., the 481 

convection–diffusion equation) as a weakly supervised guidance signal. Specifically, 482 

the residuals of the governing equation are discretized using finite difference operators 483 

and introduced as an additional loss component during training. This strategy facilitates 484 

physical guidance under sparse supervision and enhances both the reconstruction 485 

accuracy and physical interpretability of the model. This component corresponds to the 486 

third module of the overall framework, as depicted in Figure 6(c). 487 

The total loss function comprises two components: a data fidelity term and a physics-488 

informed residual term. The detailed structure of the loss formulation is illustrated in 489 

Figure 10. 490 



 

 

 491 

Figure 10. Data and Physics Hybrid-driven Strategy 492 

 493 

Data Loss：Considering the limited sensor deployment within the liquid cooling system, 494 

supervised learning is applied exclusively at locations identified as fluid regions in the 495 

structural mask. Loss computations in solid regions—such as cylindrical heat sources—496 

are excluded from the loss evaluation. 497 

The specific definition of data loss is as follows: 498 

ℒdata =
1

∑  𝑖,𝑗 ℳ𝑖,𝑗
∑ 

𝑖,𝑗

ℳ𝑖,𝑗 ⋅ [(𝑇𝑖,𝑗 − 𝑇̂𝑖,𝑗)
2 + (𝑢𝑖,𝑗 − 𝑢̂𝑖,𝑗)

2 + (𝑣𝑖,𝑗 − 𝑣𝑖,𝑗)
2] (10) 

where ℳ𝑖,𝑗 ∈ {0,1}  represents the masked region, with 1 indicating the supervised 499 

region and 0 indicating the structural region. 𝑇̂, 𝑢̂, 𝑣  are the output results, while 500 

𝑇, 𝑢, 𝑣 are the data-driven labels. 501 

However, the supervision signals derived only from sparse observations are prone to 502 

causing violations of conservation laws, thus it is necessary to further introduce 503 

physical consistency constraints. 504 

PDE Residual Loss (Physics-Informed Loss)：To enhance physical consistency, this 505 

paper constructs an unsupervised residual loss based on the steady-state convection-506 

diffusion equation. The output tensor is Ŷ ∈ ℝ3×𝐻×𝑊 , corresponding to the 507 

reconstructed temperature field 𝑇̂, the horizontal component of the velocity field 𝑢̂, 508 

and the vertical component 𝑣 respectively. Suppose the output grid size is 𝐻 ×𝑊, the 509 

grid step sizes are Δ𝑥  and Δ𝑦 , and the corresponding pixel indices are 𝑖 =510 

1, … , 𝐻, 𝑗 = 1,… ,𝑊. 511 

For each grid point 𝑖 = 1,… ,𝐻, 𝑗 = 1,… ,𝑊, the three channels in the model output 512 

tensor can be expressed as:  513 



 

 

𝑇𝑖,𝑗 = 𝐘̂0,𝑖,𝑗

𝑢𝑖,𝑗 = 𝐘̂1,𝑖,𝑗

𝑣𝑖,𝑗 = 𝐘̂2,𝑖,𝑗

 (11) 

To calculate the residual ℛenergy of the energy equation, we compute the first-order 514 

and second-order derivatives of the aforementioned output variables based on the two-515 

dimensional central difference scheme. 516 

First-order derivative: 517 

(
∂𝑇

∂𝑥
)
𝑖,𝑗
≈
𝑇𝑖,𝑗+1 − 𝑇𝑖,𝑗−1

2Δ𝑥

(
∂𝑇

∂𝑦
)
𝑖,𝑗

≈
𝑇𝑖+1,𝑗 − 𝑇𝑖−1,𝑗

2Δ𝑦

(
∂𝑢

∂𝑥
)
𝑖,𝑗
≈
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2Δ𝑥

(
∂𝑣

∂𝑦
)
𝑖,𝑗

≈
𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗

2Δ𝑦

 (12) 

Second-order derivative: 518 

(
∂2𝑇

∂𝑥2
)
𝑖,𝑗

≈
𝑇𝑖,𝑗+1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

Δ𝑥2

(
∂2𝑇

∂𝑦2
)
𝑖,𝑗

≈
𝑇𝑖+1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

Δ𝑦2

 (13) 

Residual of the energy equation (steady-state convection-diffusion equation): 519 

ℛenergy,𝑖,𝑗 = 𝑢𝑖,𝑗 ⋅ (
∂𝑇

∂𝑥
)
𝑖,𝑗
+ 𝑣𝑖,𝑗 ⋅ (

∂𝑇

∂𝑦
)
𝑖,𝑗

− 𝛼 [(
∂2𝑇

∂𝑥2
)
𝑖,𝑗

+ (
∂2𝑇

∂𝑦2
)
𝑖,𝑗

] (14) 

Using the mask map ℳ𝑖,𝑗 ∈ {0,1}, the cylindrical flow-disturbing heat source regions 520 

are excluded, and the residuals are calculated only within the fluid regions: 521 

ℒPDE =
1

∑  𝑖,𝑗 ℳ𝑖,𝑗
∑ 

𝑖,𝑗

ℳ𝑖,𝑗 ⋅ (ℛenergy,𝑖,𝑗)
2
 (15) 

The physical loss guides the model output to tend to satisfy the energy condition, 522 

thereby improving its physical rationality and generalization ability. 523 

At the domain boundaries, spatial derivatives required for the PDE residual loss are 524 

computed using reflection padding, which extends the interior field values beyond the 525 

edges in a mirrored manner. This approach allows central differences to be applied 526 

uniformly across the entire grid, including boundary-adjacent points, without 527 

introducing one-sided numerical bias. This treatment ensures consistent numerical 528 

stencils, smooth derivative transitions, and stable residual evaluation near boundaries. 529 

Total Loss Function Design: 530 

The training loss of PISA-Net is formulated as a weighted sum of the data supervision 531 



 

 

term and the physics residual term, which jointly guide the network to balance fidelity 532 

to labeled data and adherence to physical laws. To enhance training stability and 533 

generalization capability, a Progressive Physics-guided Training Strategy is employed 534 

(see Section 4.4 for details). 535 

 536 

4.4 Progressive Physics-guided Training Strategy 537 

This section details the training strategy of PISA-Net, covering data preprocessing, the 538 

overall training procedure, the physics-guided loss injection mechanism, and the 539 

configuration of training hyperparameters. 540 

Each training sample comprises three components: 541 

1) Sparse Input Features: Measurements from eight fixed sensor locations, each 542 

providing five-dimensional input data, including temperature (T), horizontal and 543 

vertical velocities (u, v), and their corresponding spatial coordinates (x, y); 544 

2) Structural Mask Map (Mask): A binary matrix of size 193×257 automatically 545 

generated based on the geometric position and radius of each cylindrical heat source. 546 

The fluid region is labeled as 1, while the solid heat source region is labeled as 0. This 547 

serves as prior geometric information to guide the network in focusing on physically 548 

valid domains; 549 

3) Full-Field Ground Truth Labels: The complete temperature field T and velocity 550 

fields u and v, each with a resolution of 193×257, used for supervised learning and 551 

unsupervised physics residual computation. 552 

All variables are normalized to the [0, 1] interval using Min-Max scaling. After 553 

interpolation onto a uniform grid, the data are formatted into tensors compatible with 554 

the input requirements of the network. 555 

The training loss of PISA-Net is a weighted combination of the data supervision term 556 

and the physical residual term: 557 

ℒtotal = 𝜆0ℒdata + 𝜆1(𝑡)ℒPDE (16) 

where 𝜆0 is the hyperparameter for weighting the data loss, which is used to regulate 558 

the network's attention to real labels and is set to 10 based on experience, and 𝜆1(𝑡) >559 

0 is the hyperparameter for weighting the physical loss, which is used to regulate the 560 

network's attention to real labels and physical consistency. To improve training stability 561 

and generalization performance, we introduce a Progressive Physics-Injection strategy: 562 

in the early stage of training (e.g., the first 200 epochs), only the data supervision loss 563 

ℒdata is applied to enable the model to fully learn sparse label information and avoid 564 

underfitting caused by the dominance of physical terms in optimization. As training 565 

progresses, the weight of 𝜆1(𝑡)  is gradually increased to introduce the physical 566 

residual loss ℒPDE, providing structure-aware constraint guidance to ensure that the 567 

reconstruction results maintain physical consistency even in unlabeled regions.The 568 



 

 

variation form of the weight 𝜆1(𝑡) can be a smooth function such as linear, exponential, 569 

or cosine annealing; to improve stability, the following cosine increment strategy is 570 

adopted in this study: 571 

𝜆1(𝑡) =

{
 
 

 
 
0                                            , 𝑡 < 𝑡0         

𝜆0 ⋅
1 − cos (𝜋 ⋅

𝑡 − 𝑡0
𝑡1 − 𝑡0

)

2
, 𝑡0 ≤ 𝑡 < 𝑡1

𝜆0                                           , 𝑡 ≥ 𝑡1         

 (17) 

Where, 𝑡0 represents the epoch at which the physical term starts to be introduced (200 572 

epochs), and 𝑡1 represents the epoch at which the physical term is fully weighted (400 573 

epochs). 𝜆1 is the final weight of the physical loss, which is empirically set to 𝜆1 =574 

0.1 and shows a good balancing effect in multi-structure reconstruction. 575 

 576 

5. Results and Discussion 577 

5.1 Training Process and Convergence Analysis 578 

The proposed method is implemented using the PyTorch 2.7 framework and trained on 579 

a workstation equipped with an Intel Core i9-13900KF processor and an NVIDIA 580 

GeForce RTX 4090 GPU. The Adam optimizer is employed with an initial learning rate 581 

of 1×10⁻³, which is adaptively adjusted using a cosine annealing scheduler to promote 582 

stable convergence. The training is conducted for a total of 500 epochs with a batch size 583 

of 32, where each batch corresponds to an independent structural condition. This design 584 

ensures that gradient updates are decoupled across different geometrical configurations, 585 

thereby enhancing the model's robustness to structural perturbations and improving its 586 

cross-structure generalization capability. 587 

The computation of PDE residuals is based on a central difference scheme for spatial 588 

discretization, with reflective boundary padding applied to improve the numerical 589 

stability of edge derivative calculations. Both the physical residual and supervised loss 590 

terms are evaluated strictly within the fluid regions defined by the structural mask, 591 

thereby avoiding the backpropagation of physically meaningless gradients from non-592 

fluid (solid) areas. 593 

A total of 300 simulated samples are used, with 70% allocated for training and 30% for 594 

testing. As shown in Figure 11, after introducing the physical loss, the data loss remains 595 

stable while the physical residual term consistently decreases throughout training, 596 

demonstrating the effectiveness of the proposed physics-guided strategy and the 597 

controllability of the training process. All model architecture details, hyperparameter 598 

configurations, and training codes are provided in Appendix A to ensure reproducibility. 599 

 600 



 

 

 601 

Figure 11. Physics and Data Loss Curves 602 

 603 

5.2 Field Reconstruction Results under Varying Structures and 604 

Operating Conditions 605 

To visually assess the multi-physics field reconstruction performance of the proposed 606 

structure-aware neural network, PISA-Net, several representative test samples are 607 

selected to showcase the reconstructed distributions of temperature (T), horizontal 608 

velocity (u), and vertical velocity (v). These results are further evaluated using 609 

quantitative error metrics. 610 

Table 3 presents the reconstruction performance under various representative structural 611 

and operating conditions. The first column lists the corresponding input parameters for 612 

each condition, including inlet velocity, inlet temperature, heat flux, and heat source 613 

radius. The second column displays the reconstructed contour maps alongside the 614 

ground-truth distributions for qualitative comparison. The final two columns show the 615 

quantitative error metrics: normalized mean absolute error (NMAE) and root mean 616 

square error (RMSE), both computed within the structural mask region. The definitions 617 

of these metrics are provided in Section 5.3. 618 

It is observed that PISA-Net consistently achieves accurate reconstructions across 619 

diverse structural and operational scenarios. The reconstructed temperature fields 620 

effectively capture the main channel gradients and heat diffusion patterns in disturbed 621 

flow regions. The horizontal velocity fields exhibit good continuity and directional 622 

coherence, while the vertical velocity fields maintain correct flow trends. The error 623 

metrics show that both NMAE and RMSE remain at low levels across all conditions. 624 

Moreover, the physical residual (PDE-R) distributions show no abnormal high 625 

deviations, indicating strong physical consistency in both supervised and unsupervised 626 

regions. 627 

Overall, PISA-Net demonstrates stable and reliable reconstruction performance for 628 

temperature and velocity fields across varying structural configurations and working 629 

conditions. 630 



 

 

Table 3. Display of Multiphysics Field Reconstruction Results 631 

STATE T/u/v NMAE RMSE 

R= 10 

𝑻𝒊𝒏= 283.15 

𝑽𝒊𝒏= 0.03 

Q=1.2×107 

 

T=0.37 

u=1.43 

v=1.21 

T=2.52 

u=1.24 

v=0.61 

R= 6 

𝑻𝒊𝒏= 313.15 

𝑽𝒊𝒏= 0.02 

Q=1.05×107 

 

T=0.53 

u=1.97 

v=1.38 

T=3.52 

u=1.07 

v=0.31 

R= 8 

𝑻𝒊𝒏= 293.15 

𝑽𝒊𝒏= 0.05 

Q=0.9×107 

 

T=0.54 

u=0.97 

v=0.88 

T=4.51 

u=0.96 

v=0.81 

 632 

5.3 Evaluation of Multiphysics Field Reconstruction Performance 633 

To quantitatively evaluate the multi-physical field reconstruction performance of 634 

the proposed PISA-Net framework, this paper employs two metrics, namely 635 

Normalized Mean Absolute Error (NMAE) and Root Mean Square Error (RMSE), to 636 

systematically assess the model's reconstruction results in three physical fields: 637 

temperature field (T), horizontal velocity (u), and vertical velocity (v). 638 

 639 

The two types of error indicators are defined as follows: 640 



 

 

NMAE =
1

𝑁
∑  

𝑁

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 

RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2 

(18) 

Where 𝑦𝑖  and 𝑦̂𝑖  represent the true and reconstructed values within the masked 641 

region, respectively, and 𝑦̂𝑖 is the number of effective sampling points. 642 

Figure 12 and Figure 13 illustrate the model's performance on multiple structural 643 

working condition samples from the test set, the following observations can be made: 644 

The error in the temperature field 𝑇 is the smallest overall, indicating that in steady-645 

state forced convection problems, temperature distributions are relatively smooth and 646 

easier to reconstruct from sparse points.   647 

 648 

Figure 12 NMAE for T, u, and v Fields Reconstruction 649 

 650 

Figure 13. RMSE for T, u, and v Fields Reconstruction 651 

 652 

The error in the horizontal velocity 𝑢  is slightly higher, reflecting the uncertainty 653 

introduced by flow-direction disturbances in velocity reconstruction.   654 

The error distribution for the vertical velocity 𝑣  is the widest, being significantly 655 



 

 

influenced by strong gradients upstream/downstream of the heat source cylinders, 656 

where local disturbances are more pronounced.   657 

The median errors for all three fields remain at low levels, demonstrating the network's 658 

robustness and generalization ability across various structural disturbances and 659 

boundary conditions.   660 

Notably, outliers in the error distribution for some samples are primarily concentrated 661 

in regions with densely distributed heat source cylinders. These areas exhibit complex 662 

flow patterns due to enhanced local convection, posing ongoing challenges. Overall, 663 

PISA-Net consistently and accurately reconstructs temperature and velocity fields 664 

under varying cylinder configurations and heat source sizes, providing a solid 665 

foundation for subsequent thermal management optimization and structural diagnostics. 666 

Figure 14 presents the contour maps of the local absolute error and RMS-normalized 667 

local error for the reconstructed temperature (T) and velocity components (U, V) under 668 

a representative working condition.  669 

 670 

Figure 14. Contour maps of the local absolute error (top) and RMS-normalized local error 671 

(bottom) for the reconstructed temperature (T) and velocity components (U, V) under a 672 

representative working condition. 673 

 674 

These two indicators together provide a comprehensive view of the spatial error 675 

patterns: the local absolute error quantifies the magnitude of pointwise deviations, 676 

while the RMS ( Root Mean Square ) -normalized error reveals the relative deviation 677 

with respect to the global energy scale of each physical field. Across all conditions, the 678 

hybrid-driven model exhibits excellent reconstruction performance. 679 

local absolute error = |𝑦𝑖 − 𝑦̂𝑖| (19) 



 

 

RMS − normalized error =
|𝑦𝑖 − 𝑦̂𝑖|

√1
𝑁
∑  𝑁
𝑖=1 𝑦𝑖

2

 

The local absolute error maps show that the majority of the temperature deviations 680 

remain below 2 K, and velocity deviations are within 0.004 m s⁻¹ in the mainstream 681 

regions. When normalized by the field RMS values, the RMS-normalized local errors 682 

are mostly confined within 1–3 % for T, U, and V, indicating highly consistent accuracy 683 

across variables with different magnitudes. 684 

Notably, relatively larger normalized errors appear in two characteristic areas: 685 

(1) Near the heat-source walls, where strong thermal gradients and intense heat transfer 686 

lead to mismatch in local wall-normal derivatives of T; and 687 

(2) In the wake regions behind disturbance columns, where flow separation and 688 

recirculation produce highly nonlinear velocity fluctuations. 689 

In these zones, the model slightly underpredicts local vortex-induced velocity 690 

variations, yet still maintains coherent global flow and thermal patterns. 691 

Overall, the spatial distributions of both indicators demonstrate strong physical 692 

interpretability: the hybrid-driven model accurately captures the large-scale thermo-693 

fluid behavior, confirming the model’s robustness and physical consistency. 694 

 695 

5.4 Ablation Study on the Effect of Physics-Informed Constraints 696 

To further verify the role and necessity of physics-informed embedding in the multi-697 

physical field reconstruction task, this paper designs an ablation experiment on the 698 

physical loss to investigate the performance changes of the model without 699 

introducingℒPDE. 700 

We train two versions of PISA-Net based on the same network structure and training 701 

process: 702 

Data-Driven Model: Includes only the data supervision termℒdata without physical 703 

residual constraints. 704 

Hybrid-Driven Model: Employs the full loss functionℒtotal = 𝜆0ℒdata + 𝜆1(𝑡)ℒPDE 705 

(see Section 4.4 for details). 706 

The experiments are conducted on the same test set. We record the PDE Residual and 707 

NMAE of both models across the three physical fields (𝑇, 𝑢, 𝑣)  and compare their 708 

error distributions and physical consistency. 709 

Figure 15 shows a comparison between our method and the data-driven method. It is 710 

evident that after introducing physical information constraints, the smoothness and 711 

realism of the flow field and temperature field are more consistent with the real physical 712 

fields. In the following, we will conduct comparisons using various indicators and cloud 713 



 

 

images. 714 

 715 

Figure 15. Comparison of Data-Driven and Hybrid-Driven Reconstructions Against Ground Truth 716 

for T, u, and v Fields 717 

 718 

Figure 16(a) shows the NMAE error plots of the two models on the test set. It can be 719 

seen from the results that after introducing physical constraints, the overall errors of the 720 

temperature and velocity fields decrease, and the number of abnormal value is reduced, 721 

indicating that physics-informed embedding enhances the robustness of the model. 722 

Figure 16(b) presents the PDE Residual error plots of the two models on the test set. 723 

The results reveal that with the introduction of physical constraints, the physical 724 

residuals decrease by multiples and the number of outliers is reduced, demonstrating 725 

that physics-informed embedding significantly improves the physical interpretability of 726 

the model.  727 



 

 

 728 

Figure 16. Error Evaluation of the Two Types of Models on the Test Set 729 

Although the hybrid-driven reconstructions in Figure 15 generally exhibit closer 730 

agreement with the ground truth across most regions, the data-driven results appear 731 

slightly more similar near the heat-source sides. This difference does not arise from 732 

interpolation but from the distinct optimization objectives of the two models. Both were 733 

evaluated on the same Cartesian grid, ensuring consistent spatial resolution. The data-734 

driven model focuses solely on minimizing pixel-wise MSE, which emphasizes local 735 

similarity, while the hybrid-driven model jointly minimizes data and physics-based 736 

residual losses, preserving thermal fluid coupling and enforcing conservation 737 

consistency. As a result, the hybrid-driven model maintains physically accurate 738 

gradients that may appear slightly vague but represent more realistic flow behavior. The 739 

improved quantitative metrics in Figure 16 further confirm its higher physical fidelity 740 

and numerical accuracy. 741 

As shown in Figure 17, by comparing the physical fields reconstructed by the two 742 

methods, it can be found that our reconstruction method solves the problems of physical 743 

field discontinuity and gradient anomalies caused by the pure data-driven method. 744 

Specifically, such anomalies manifest as ripples and checkerboard patterns in the fields, 745 

which are all caused by the fact that the pure data-driven method does not take physical 746 

information into account. 747 



 

 

 748 

Figure 17. Detailed Comparison of Physical Informed Effects 749 

 750 

Meanwhile, Figure 18 shows the heat map of the residual distribution 𝑅energy of the 751 

energy equation under a typical flow-disturbing condition. The model without 752 

introducing physical terms exhibits large residual values in the vicinity of and 753 

downstream from the flow-disturbing cylinders, showing obvious physical 754 

inconsistency; whereas after introducing ℒPDE， the residual values converge overall, 755 

and in particular, better smoothness and conservation are demonstrated in the boundary 756 

transition regions. 757 

 758 

Figure 18. Distribution Map of Physical Residuals 759 

 760 

In summary, physics-informed can not only effectively compensate for the lack of 761 

supervision caused by sparse data, but also significantly improve the physical 762 

consistency of the model in disturbed regions and downstream regions, providing 763 

important support for achieving interpretable and generalizable multi-physical field 764 

reconstruction. 765 



 

 

5.5 Comparative Study of Network Structures with Baseline Models 766 

To systematically assess the capability of the proposed structure-aware decoder in 767 

reconstructing multi-physics fields, this section conducts comparative experiments with 768 

baseline decoder architectures. Two representative convolutional decoding structures 769 

are selected: (i) a ResNet-34 decoder incorporating deep residual connections, and (ii) 770 

a standard convolutional network without skip connections, referred to as Baseline-771 

CNN. All three models (including the proposed U-Net decoder in PISA-Net) share 772 

identical input configurations, network capacity, and training strategies. Each takes as 773 

input sparse physical observations and structural masks, and outputs full-field 774 

predictions of temperature and velocity distributions (T, u, v). 775 

Table 4 presents the reconstruction error comparison of these decoders under typical 776 

test conditions, including the Normalized Mean Absolute Error (NMAE) for the three 777 

fields and the PDE-based physical consistency metric derived from the residual of the 778 

steady-state convection-diffusion equation. The results demonstrate that the U-Net 779 

decoder achieves the best performance across all metrics, with a temperature field 780 

NMAE of 3.12% and a PDE residual as low as 0.0007, significantly outperforming the 781 

ResNet-34 and Baseline-CNN structures. 782 

In particular, although ResNet-34 benefits from residual connections that enhance deep 783 

feature stability, it suffers from blurred boundaries and noisy velocity reconstructions 784 

due to its limited capacity in multi-scale feature fusion and shallow detail preservation. 785 

On the other hand, the Baseline-CNN, despite its simplicity, lacks the ability to 786 

effectively capture turbulent structures and geometric boundary variations, leading to 787 

inferior accuracy and physical consistency. In contrast, the U-Net decoder's symmetric 788 

structure and skip connections facilitate efficient fusion of low-level spatial and high-789 

level semantic features, enabling accurate recovery of fine-scale boundary details and 790 

consistent full-field reconstructions. 791 

In summary, the proposed structure-aware decoder in PISA-Net demonstrates superior 792 

generalization capability and robustness across diverse structural and operational 793 

scenarios, offering an effective solution for sparse-sensor-based thermal–fluid field 794 

reconstruction. 795 

Table 4. Comparison of Reconstruction Errors Under Different Decoder  796 

Structure NMAE (T) NMAE (u) NMAE (v) PDE Residual (T/u/v) 

U-Net 3.12 3.44 3.01 0.0007 

ResNet-34 4.45 4.89 4.12 0.0014 

Baseline-CNN 4.83 4.92 4.45 0.0016 

 797 

Beyond reconstruction accuracy, we also analyzed the computational performance and 798 

methodological positioning of PISA-Net relative to other modeling paradigms. Once 799 

trained, PISA-Net reconstructs full temperature and velocity fields from sparse-sensor 800 



 

 

inputs within milliseconds, whereas a single CFD forward simulation typically requires 801 

several minutes even on parallel hardware. This computational efficiency makes PISA-802 

Net promising for real-time monitoring and digital-twin updating in industrial cooling 803 

systems where boundary conditions are partially unknown and sensor coverage is 804 

sparse. 805 

The present study tackles an inverse field-reconstruction problem (sparse → full field) 806 

rather than a conventional forward prediction. Operator-learning frameworks such as 807 

the Fourier Neural Operator (FNO) and Deep Operator Network (DeepONet) assume 808 

dense inputs and fixed mesh topology, and thus cannot directly handle sparse-sensor, 809 

geometry-varying scenarios without major architectural redesigns. Bayesian inversion 810 

methods, although effective for uncertainty quantification, require repeated PDE solves 811 

or large-scale sampling, which is computationally prohibitive for complex thermo-fluid 812 

systems. 813 

PISA-Net is specifically designed for such sparse-sensor, multi-geometry inverse 814 

problems. It integrates a sparse-sensor encoder, structure-aware mask input, and 815 

lightweight PDE regularization to achieve physically consistent reconstructions. Unlike 816 

classical Physics-Informed Neural Networks (PINNs), which use PDE residuals as the 817 

main optimization objective and often converge slowly, PISA-Net treats physics-based 818 

residuals as auxiliary constraints that guide supervised learning toward physically 819 

meaningful solutions. Classical PINNs are suited for forward or inverse PDE solving 820 

with fully known boundary and initial conditions. However, when applied to inverse 821 

problems where boundary information is unknown and only sparse sensor data are 822 

available, PINNs become highly inefficient—requiring exponentially more collocation 823 

points and days of training due to the lack of data-driven guidance. 824 

In contrast, PISA-Net efficiently combines limited sensor data with physics-based 825 

residuals computed within the fluid domain, enabling convergence within hours while 826 

maintaining physical consistency. From a probabilistic viewpoint, the physics residuals 827 

encode prior knowledge of admissible field behavior, whereas the supervised term 828 

enforces agreement with sensor observations. Embedding both into a unified loss 829 

function ensures data fidelity and physical realism without costly posterior sampling. 830 

Overall, PISA-Net bridges data-driven inference and physics-based modeling, 831 

providing two key advantages over existing forward-learning frameworks: (1) robust 832 

reconstruction from highly sparse and irregular sensor inputs, and (2) strong cross-833 

geometry generalization without retraining. These properties make it a practical 834 

solution for large-scale, sparse-sensor inverse field reconstruction in engineering 835 

applications. 836 

 837 

5.6 Impact of Sensor Configuration on Reconstruction Performance 838 

To further assess the reconstruction capability of the proposed PISA-Net under sparse 839 

observation conditions and investigate the influence of sensor deployment density on 840 

reconstruction performance, a series of controlled experiments are conducted with 841 



 

 

varying sensor quantities and layouts. Specifically, under fixed structural and boundary 842 

condition parameters, each sample is configured with 4, 6, 8, 10, 12, and 14 843 

measurement points, respectively. The temperature and velocity information at these 844 

locations is extracted as model input, while the reconstruction results of the three 845 

physical fields (T, u, v) serve as output. All sensors are positioned within the fluid region, 846 

with their locations selected based on a combination of uniform grid sampling and 847 

engineering feasibility. 848 

The sensor positions were deliberately selected according to the flow and thermal 849 

characteristics of the cooling plate. The layout follows the geometric symmetry of the 850 

domain and aims to capture the dominant spatial gradients of temperature and velocity. 851 

Specifically, sensors were placed in three representative regions: (1) the inlet and 852 

central channel to reflect the global inflow condition and main flow direction; (2) the 853 

cylinder-side shear layers where the velocity and temperature gradients are strongest; 854 

and (3) the wake region that contains the major recirculation and convective mixing 855 

effects. As the number of sensors increases (from 4 to 14), the placement progressively 856 

extends from these dominant zones toward the peripheral regions, enhancing coverage 857 

of the flow domain. This symmetric and feature-oriented configuration ensures that a 858 

small number of sensors can effectively represent the main physical variations of the 859 

system.  860 

To quantify reconstruction accuracy, the Normalized Mean Absolute Error (NMAE), as 861 

defined in Section 5.2, is adopted as the primary evaluation metric across different 862 

sensor configurations. 863 

The experimental results are illustrated in Figure 19. As the number of sensors increases, 864 

the reconstruction error exhibits a pronounced decreasing trend. Notably, when the 865 

number of sensors increases from 4 to 8, the NMAE shows the most substantial drop, 866 

indicating that a moderate increase in observational information significantly enhances 867 

the model's spatial representation capability. However, when the number of sensors 868 

exceeds 10, the performance gain becomes marginal, demonstrating an "information 869 

saturation" effect. This suggests that PISA-Net already achieves high reconstruction 870 

accuracy under moderate observation densities, and further increasing sensor counts 871 

yields diminishing returns. 872 



 

 

 873 

Figure 19. The Influence of the Number and Layout of Sensors on Accuracy 874 

 875 

It is worth noting that even under the extremely sparse input condition with only 6 876 

sensors, PISA-Net can still control the error within an acceptable range. This result 877 

demonstrates the inherent generalization ability and physical consistency guiding effect 878 

of the model after integrating the structure mask and physical residual mechanism. 879 

In summary, the experiments in this section verify that PISA-Net still has good 880 

robustness and generalization ability under low-observation conditions, and optimal 881 

performance can be achieved when the number of sensors is 8 or more. 882 

 883 

6. Conclusion 884 

To tackle the multi-physical field reconstruction problem in liquid cooling systems from 885 

sparse sensor deployment, variable heat source geometries, and diverse operating 886 

conditions—this study proposes a deep learning framework that integrates structure-887 

awareness and physics-based constraints: PISA-Net (Physics-Informed Structure-888 

Aware Network). By leveraging limited temperature and velocity measurements, 889 

together with a geometry-guided structural mask and a physics-informed loss function 890 

derived from the energy conservation equation, the proposed method achieves high-891 

fidelity reconstruction of steady-state thermal–flow fields across varying structural 892 

scales and working conditions. The model demonstrates superior generalization across 893 

geometries and enhanced physical consistency. The core contributions of this work are 894 

as follows: 895 

1) Sparse-observation-driven multi-physics field reconstruction – A nonlinear mapping 896 

is established from sparse temperature and velocity measurements to full-field physical 897 

distributions, significantly reducing sensor density and measurement costs while 898 



 

 

maintaining suitability for engineering deployment. 899 

2) Geometric awareness fundamentally enhances cross-structural adaptability –900 

Incorporating structure masks enables the model to perceive and adapt to variations in 901 

embedded heat source geometries, maintaining stable accuracy across unseen structural 902 

configurations. 903 

3) Embedding physics laws improves both fidelity and interpretability – A physics-904 

informed loss based on the energy conservation equation substantially reduces residual 905 

deviations, especially in regions of strong flow disturbance, and provides physically 906 

consistent reconstructions under sparse supervision. 907 

In summary, the proposed framework offers an effective and scalable solution to the 908 

inverse reconstruction problem in liquid cooling systems. It holds substantial 909 

theoretical value and application potential in intelligent thermal management, digital 910 

twin systems, thermal performance assessment, and fault detection. In future work, we 911 

plan to extend the framework to higher Reynolds number regimes by incorporating 912 

turbulence models or higher-fidelity CFD data, thereby assessing its robustness under 913 

more complex flow conditions and broadening its applicability to a wider range of 914 

engineering scenarios. 915 

 916 

Appendix A. Network architecture and training of PISA-Net 917 

A.1. Overall framework 918 

PISA-Net (Physics-Informed Structure-Aware Network) is designed for sparse-sensor 919 

inverse field reconstruction under multi-geometry cooling structures. It consists of two 920 

main sub-networks: (1) an MLP-based sparse-sensor encoder that embeds discrete 921 

measurements into a latent feature space, and (2) a structure-aware U-Net decoder that 922 

reconstructs full-field temperature and velocity distributions guided by both data 923 

supervision and PDE-based physical consistency. 924 

A.2. Network architecture details 925 

The overall network architecture includes both an MLP encoder and a structure-aware 926 

U-Net decoder. The details of each module are summarized in Tables A1–A3. 927 

Table A1. Sparse-sensor encoder. 928 

Layer 
Input 

dimension 

Output 

dimension 
Activation Description 

MLP-1 5 (T, u, v, x, y) 64 ReLU 
Encodes single-point 

measurement features 

MLP-2 64 128 ReLU Expands latent 



 

 

representation 

MLP-3 
128×Ns 

(Ns=8 sensors) 
256 ReLU 

Projects embedding to 

higher-dimensional 

latent space 

Output 

Reshape 
256 3 × H × W — 

Interpolated to regular 

grid and concatenated 

with structural mask 

 929 

Table A2. Structure-aware U-Net decoder. 930 

Block Output shape Kernel/stride Activation Normalization 

Input 3 ×193 × 257 1×1 / 1 ReLU — 

Encoder-1 16 × 193 × 257 3×3 / 2 ReLU GroupNorm 

Encoder-2 32 × 96 × 128 3×3 / 2 ReLU GroupNorm 

Encoder-3 64 × 48 × 64 3×3 / 2 ReLU GroupNorm 

Bottleneck 128 × 24 × 32 3×3 / 1 ReLU GroupNorm 

Decoder-1 64 × 48 × 64 3×3 / 1 ReLU GroupNorm 

Decoder-2 32 × 96 × 128 3×3 / 1 ReLU GroupNorm 

Decoder-3 16 × 193 × 257 3×3 / 1 ReLU GroupNorm 

Output 3 ×193 × 257 1×1 / 1 — — 

 931 

Table A3. Model summary. 932 

Sub-module Parameters Description 

Sparse-sensor 

MLP encoder 
~0.3 M Encodes discrete measurements into latent space 

Structure-aware 

U-Net decoder 
~5.3 M 

Performs full-field reconstruction with physics 

guidance 

Total ≈ 5.6 M Balanced model capacity and efficiency 

A.3. Training configuration 933 

Optimizer: Adam. Initial learning rate: 1×10⁻³. Scheduler: Cosine annealing with 934 

warm restarts. Batch size: 32. Epochs: 500. Loss: ℒtotal  = 𝜆0  ℒdata  + 𝜆1(𝑡)ℒPDE , 935 

where ℒdata is the MSE of (T, u, v) in the fluid domain, and ℒPDE represents energy 936 

and mass residuals. The weight 𝜆1(𝑡)  = 0.05 is activated after 200 epochs. 937 

Normalization: channel-wise min–max. Framework: PyTorch 2.7. Hardware: NVIDIA 938 

RTX 4090 GPU (24 GB), training time ≈ 1 hours. 939 



 

 

A.4. Training procedure 940 

Stage I (supervised pretraining): train for 200 epochs with ℒdata only. Stage II 941 

(hybrid fine-tuning): gradually activate ℒPDE  with λp=0.05 to balance data and 942 

physics. Gradient clipping (1.0) is applied to avoid instability. The cosine annealing 943 

scheduler reduces the learning rate to 1×10⁻⁵.  944 

A.5. Dataset and reproducibility 945 

The dataset contains simulated flow and temperature fields under five structural 946 

configurations and multiple inlet conditions (300 samples total). Each sample includes 947 

full-field labels (T, u, v) and corresponding sparse-sensor inputs (8 measurement points). 948 

Both the dataset and source code will be released upon publication to promote 949 

reproducibility and community adoption. The corresponding code and documentation 950 

can be accessed via the author's GitHub repository: 951 

GitHub URL: https://github.com/DDBLB/PISA-Net 952 

This repository provides comprehensive guidance for reproducing the proposed PISA-953 

Net framework, including dataset preprocessing, training scripts, and evaluation 954 

procedures. 955 
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