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Highlights:

e  Sparse sensors enable high-fidelity reconstruction of thermal—fluid fields.
e Hybrid physics—data modeling enhances accuracy and physical consistency.

e  Structure-aware design adapts to varying heat source sizes.

Abstract: Efficient thermal management in liquid cooling systems relies heavily on the
accurate reconstruction of temperature and velocity fields. However, obtaining full-
field information under sparse sensor deployment remains a critical challenge. To
address this issue, this study proposes a Physics-Informed Structure-Aware Network
(PISA-Net) for adaptive and high-fidelity reconstruction of coupled thermal-fluid fields
in liquid-cooled environments with limited measurements. The proposed framework
integrates sparse temperature and velocity data with geometric information of heat
sources and flow channels, enabling structure-aware representation of varying thermal
configurations. A physics-informed loss term, derived from the steady-state energy
conservation equation, is incorporated to enforce physical consistency during training.
This hybrid learning strategy effectively combines data-driven approximation with
physical constraints, improving both predictive accuracy and generalizability.
Numerical validation on a representative cold plate configuration demonstrates that
PISA-Net achieves a normalized mean absolute error of 0.98% for temperature and
velocity field reconstruction using only eight sensor measurements. In addition, the
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physics residual, quantified by the energy equation deviation, is reduced by

approximately 80% compared to purely data-driven models. These results highlight the

potential of PISA-Net as a robust and interpretable approach for real-time field

reconstruction, anomaly detection, and sensor optimization in complex thermal-fluid

systems.

Keyword: Liquid Cooling System; Thermal-fluid Fields Reconstruction; Sparse sensor
measurements; Physics-Informed Neural Networks; Hybrid Data-physics Learning
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Model-related variables

Pressure

Distributed heat source

Surface heat flux

Radius of heat-source cylinder
Temperature

Predicted temperature (network output)
Inlet temperature

Outlet temperature

Velocity components in x- and y-directions
Predicted velocity components
Velocity field

Fluid inlet velocity

Specific heat at constant pressure
Thermal conductivity

Hyperparameter for weighting the data loss

Hyperparameter for weighting the physical loss

Dynamic viscosity
Density

Trainable parameters of PISA-Net network

Pa
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Dy Sparse observations

Fo Deep neural network model (PISA-Net)
fgtobar Global feature vector

fi Local feature vector

H W Domain height and width

Ljata Supervised data-driven loss

Lppg Physics-based loss from PDE residuals
Liotal Total hybrid loss

M(x,y) Structure mask

Renergy Energy residual

TS, ui, vi Temperature and velocity data at sensor points
Xinit Initial upsampled global feature

Xinput Input tensor (global feature + mask)

Y Ground-truth output (7, u, v)

Y Predicted output (7, u, v)
Abbreviations

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network
DeepONet Deep Operator Network

FNO Fourier Neural Operator

MLP Multi-Layer Perceptron

NMAE Normalized mean absolute error
PDE-R Physical residual

PINN Physics-Informed Neural Network
RMSE Root mean square error

U-Net U-shaped convolutional network

1. Introduction

The dense distribution of heat sources imposes stringent demands on the cooling
efficiency and thermal reliability of thermal management systems [1, 2]. Liquid cooling
technology has emerged as the mainstream solution for high heat flux thermal control
systems, owing to its superior heat transfer capabilities, effective thermal capacity
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matching, and improved cooling uniformity [3-5].

Ensuring the thermal safety and long-term operational stability of such systems
necessitates access to high-fidelity spatial distributions of temperature and velocity
fields, which are essential for thermal anomaly detection and the development of
intelligent control strategies [6, 7]. Despite their advantages, liquid cooling systems
exhibit strongly coupled thermal-fluid behavior, where the temperature and velocity
fields are interdependent and influenced by multiple factors, including internal heat
source geometries and flow disturbances [8]. Consequently, reconstructing a single
physical field is insufficient to fully characterize the system state. Instead, the
simultaneous reconstruction of both temperature and velocity fields has become critical
for achieving refined thermal regulation and enabling accurate multiphysics field
analysis [9, 10].

In engineering applications, it is typically infeasible to obtain full-field information
through direct visualization or measurement. Instead, only sparse temperature and
velocity data can be acquired via a limited number of sensors. However, due to the
sparse spatial distribution of these sensors, traditional reconstruction methods often
struggle to accurately and efficiently infer the complete physical fields. As a result, the
operation monitoring, state evaluation, and thermal management of liquid cooling
systems often pose a typical physical inverse problem: reconstructing the complete
internal temperature and velocity field distributions from limited measurement points
[11, 12]. Such inverse problems are generally ill-posed, where the solution may lack
existence, uniqueness, or stability [13, 14]. These challenges are further exacerbated
under conditions involving complex geometries or incomplete boundary information,
where conventional numerical or analytical methods often fail to produce stable and
reliable reconstructions of the physical fields [15-17].

Classical physical field reconstruction methods can be broadly classified into two
categories: direct interpolation methods and indirect inverse methods. Traditional direct
approaches include techniques such as Kriging interpolation [18], radial basis function
(RBF) interpolation [19], and spline interpolation [20]. While these methods can rapidly
generate continuous fields between known measurements, their performance is highly
dependent on the spatial coverage and distribution of observation points, and they
typically exhibit low sensitivity to boundary conditions or structural variations. Indirect
methods, by contrast, encompass state estimation and regularization-based inverse
techniques. For example, Wei et al. [21] proposed a new sparse Kalman filtering method
that can achieve force localization and reconstruction using a limited number of sensors.
Liang et al. [22] applied Kalman filtering and dimensionality reduction to non-
stationary image reconstruction in ultrasonic transmission tomography. These indirect
methods can perform indirect inference by combining with system dynamics models,
but they are generally highly sensitive to prior models and error distributions, have high
computational complexity, and are difficult to be extended to applications involving
complex flow fields with multiple structures [23, 24]. Therefore, achieving high-
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accuracy and generalizable reconstruction of temperature and velocity fields under
sparse observation remains a key challenge in the intelligent thermal management of
liquid cooling systems.

In recent years, the emergence of deep learning has opened new avenues for inverse
problem modeling. Leveraging their powerful nonlinear approximation capabilities and
end-to-end mapping structures, deep neural networks (DNNs) have been successfully
applied to a wide range of inverse problems, including medical image reconstruction,
electromagnetic inversion, and structural response identification [25-28]. In the field of
thermal control, data-driven models can directly learn the mapping between sparse
sensor measurements and target physical quantities. For instance, Chen et al. [29]
constructed a network based on a transfer learning framework to achieve efficient
identification of temperature responses and material parameters in thermal protection
systems; Yan et al. [30] proposed a convolutional network architecture that successfully
realized rapid reconstruction of the structural deformation field of aerospace vehicles
under sparse observation conditions. Li et al. [31] put forward a data-driven model
composed of a transposed network and a residual network to predict the flow field
structure of supersonic cascade channels by measuring the wall pressure of the cascade
channels. Gong and Wang [32] proposed an artificial neural network-based quadratic
constitutive relation (ANN-QCR) for Reynolds stress modeling, incorporating field
inversion and machine learning (FIML) techniques and high-fidelity experimental data
for simulating separated turbulent flows. These approaches demonstrate high predictive
accuracy and low computational cost when sufficient training data and stable operating
conditions are available, making them promising tools for real-time monitoring,
anomaly detection, and feedback control in thermal-fluid systems.

However, purely data-driven models inherently lack the capacity to incorporate explicit
physical laws, often resulting in large reconstruction errors, severe overfitting, and
limited generalization performance across varying conditions [33]. Consequently,
incorporating physical priors into data-driven frameworks to enhance physical
consistency and cross-structural robustness has emerged as a key focus of recent
research efforts [34, 37]. To address this, Raissi et al. [38] proposed the Physics-
Informed Neural Networks (PINNs) method, which realizes the embedded modeling of
physical laws by explicitly introducing the residuals of control equations (such as
convection-diffusion equations, Navier—Stokes equations) as loss terms in the training
of neural networks. This method has achieved good results in tasks such as partial
differential equation solving, parameter inversion, and dynamic prediction [39].
Despite these successes, PINNs face significant challenges in sparse observation
problems. First, they typically require full-field spatial coordinates as inputs, which is
incompatible with practical engineering conditions where only limited sensor
measurements are available [40]. Second, training PINNs is often hindered by
vanishing gradients [41] and optimization instability [42], especially in nonlinear
strongly coupled systems, leading to poor convergence, long training times, and strong
sensitivity to hyperparameter settings [43-45]. Third, PINNs generally lack explicit
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mechanisms to represent complex geometric boundaries, resulting in limited robustness
in multi-structure or irregular domain reconstruction tasks [46-48].

In light of the aforementioned challenges, a key scientific and technical bottleneck in
intelligent thermal management lies in developing a modeling framework that
integrates data-driven learning with physical constraints to enable high-fidelity
reconstruction of temperature and velocity fields under sparse sensor conditions, across
diverse geometric structures and operating scenarios in liquid cooling systems. To
address this issue, this study proposes a hybrid neural network framework - Physics-
Informed Structure-Aware Network (PISA-Net) - which incorporates both structural
awareness and physics-based constraints. The model takes sparse sensor measurements
of temperature and velocity fields as input, and leverages structure masks to enhance
perception of geometric and topological features. A physics-informed loss function
based on the steady-state energy conservation equation is further introduced to enforce
explicit physical consistency during training. By embedding physical priors within a
data-driven architecture, PISA-Net significantly improves reconstruction accuracy and
generalization across varying heat source configurations and sparse observation
conditions.

The main contributions of this work are summarized as follows:

1) A hybrid neural network framework, PISA-Net, is proposed, which combines sparse
sensor data with structural awareness via structure masks. The model enables high-
fidelity reconstruction of temperature and velocity fields under varying operating
conditions and geometric configurations.

2) A physics-informed loss function is designed based on the steady-state convection—
diffusion energy equation and integrated into the training process to enforce physical
consistency under weakly supervised conditions.

3) A finite element simulation dataset is established, covering diverse heat source
structures and operating conditions, which serves as a high-quality benchmark for
training and evaluating the proposed model.

The structure of this paper is organized as follows: Section 2 introduces the liquid
cooling system and the mathematical description of the target problem. Section 3
presents the numerical analysis and dataset construction. Section 4 briefly describes the
method of the proposed framework in this paper. Section 5 analyzes and discusses the
results. Finally, some conclusions are given in Section 6.

2. Problem Formulation

This section provides a detailed description of the research problem and mathematically
defines the considered problems.
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2.1 Liquid Cooling System

In a typical design of multi-layer cold plate (MLCP), each layer of the cold plate is
thermally coupled with heat-generating components, and several vertically aligned
cylindrical elements are embedded within the structure. These elements act as localized
heat sources or structural supports, while also inducing significant disturbances in the
local flow field, as illustrated in Figure 1.

The liquid cooling system investigated in this study adopts a cold plate configuration.
The channel thickness is considerably smaller than its length and width, and multiple
cylindrical heat sources are embedded within the fluid domain to emulate the thermal
behavior of electronic components or localized thermal loads. To reduce modeling
complexity and improve computational efficiency, the three-dimensional thermal—fluid
interaction problem is reasonably approximated as a two-dimensional inverse problem
governed by steady-state nonlinear partial differential equations.
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Figure 1. Liquid Cooling System

2.2 Problem Modeling

In liquid cooling systems, accurate knowledge of the internal temperature and velocity
fields under operating conditions is essential. However, due to the high cost and
potential impact on heat transfer performance, only a limited number of sensors can be
deployed to capture temperature and flow velocity at discrete locations within the
domain.

To address this limitation, this study employs deep learning techniques to construct a
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model that maps sparse sensor measurements to full-field physical quantities, as Figure
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Figure 2. Problem Description
Given a set of sparse observations:
D = {(x ¥ TE ui, v (1)
the objective is to predict the corresponding continuous fields of temperature and
velocity:

Fo: {Cxi, y), TF, ui, v, MO}y = (T, ul ), v M} ayen ()

where, Fy denotes the deep neural network model (PISA-Net), parameterized by 6.
The term, M (x,y) represents the geometric structure mask (i.e., a binary matrix that
encodes the fluid domain corresponding to different structural configurations), and
Q is the two-dimensional design domain. The coordinates (x;,y;) indicate the

positions of the sparse sensors, and (T7,u?,v]) are the corresponding measured

temperature and velocity components at those locations.

The goal is to learn the mapping Fy that accurately approximates the true physical
fields (T(x,y),u(x,y),v(x,y)) based on the limited input Dy and structural prior
M (x,y), thereby achieving high-fidelity and physically consistent reconstruction of
the thermal—fluid fields.

3. Dataset Construction

3.1 Analysis Model

In this study, a two-dimensional planar model is established to represent a single layer
of the cold plate. A rectangular fluid subdomain containing six representative
cylindrical heat sources is extracted as the computational domain. This subdomain
captures essential physical phenomena, including velocity recirculation and
temperature gradient variations induced by the embedded heat sources, while
significantly reducing the computational cost compared to full-system modeling. As

such, it provides a balanced modeling strategy that ensures both physical fidelity and
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numerical efficiency. As illustrated in Figure 3, the two-dimensional rectangular
cooling channel (128 mm x 96 mm) incorporates six embedded cylindrical structures
with fixed spatial locations. The radius of each cylinder is treated as a tunable geometric
parameter to simulate structural variations. Each cylinder is modeled as an internal heat
source subjected to a constant heat flux boundary condition.
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Figure 3. Structure Modeling

In the model, the geometric dimension of the heat source (characterized by radius R) is
defined as a tunable parameter to reflect structural variations arising from different
packaging configurations or design scales. The fluid inlet velocity U;, and inlet
temperature Ty, are specified as boundary condition variables, representing the level
of flow enhancement and the thermal state of the incoming coolant, respectively.
Meanwhile, the heat source intensity @Q;, is treated as an internal condition variable,
used to simulate the thermal load generated by the heat source under varying
operational scenarios.

The coupled heat and flow behaviors under the system's steady state satisfy the
following governing equations simultaneously:

Mass equation:

V-u=0 3)
Momentum equation:
p(d-V)U =—Vp + uvu 4)
Energy equation:
pcy (@i - VT) = V- (kVT)+Q(x,y) (5)

Here, 1 = (u,v) represents the velocity field, p denotes pressure, and T signifies
temperature. p, 4, cy, k correspond to density, dynamic viscosity, specific heat
capacity at constant pressure, and thermal conductivity respectively. Q(x,y) indicates
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the distributed heat source term.

The energy equation adopted in this study is established under the steady-state
assumption and neglects viscous dissipation.

This setting is consistent with the characteristics of the forced-convection liquid cooling
plate investigated here, where the inlet velocity and temperature remain constant, and
all CFD datasets were exported after steady convergence.

Under such conditions, the temporal variation of temperature becomes negligible
compared to spatial gradients, making the steady-state energy balance appropriate for
both the numerical simulations and the neural network reconstruction.

Furthermore, the viscous dissipation term, which represents the conversion of
mechanical energy into internal energy due to shear stress, is several orders of
magnitude smaller than the dominant convective—diffusive transport in low-Mach,
laminar liquid-cooling flows.

Therefore, its omission introduces no measurable effect on the predicted thermal field
and is a standard simplification for such operating regimes.

If the framework were to be extended to high-speed or high-viscosity cases, this term
could be reintroduced without modifying the overall model structure.

The boundary conditions of the simulation domain are defined as follows:

1) The left inlet boundary is prescribed with varying combinations of inlet
velocity u;, and inlet temperature Tj,.

2) The right outlet boundary is set as a constant pressure outlet.

3) A constant heat flux ¢” is applied to the cylinder to simulate the heat-
generating source.

4) The top and bottom walls are modeled as adiabatic boundaries, implying zero
heat flux.

The steady-state coupled solution of the incompressible Navier-Stokes equations and
the energy conservation equation is conducted using Fluent for simulation.

3.2 Parameter Space and Sample Generation

To comprehensively evaluate the performance and generalization ability of the
proposed method under varying heat source geometries and boundary conditions, a
multiphysics dataset is constructed by sampling an extensive parameter space. Four
categories of key physical parameters are selected for combination: the heat source
radius R, surface heat flux ¢”, fluid inlet velocity u;,, and inlet temperature T;,. The
discrete settings for each parameter are provided in Table 1:

Table 1. Structural and Operating Condition Parameters

Parameters Intervals Groups

R 5,6,7,8,9,10 mm 6
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q"” 0.55 % 107-1.2 x 107 W/m> 5
Uin 0.01, 0.02, 0.03, 0.04, 0.05 m/s 5
Tin 283.15, 293.15, 303.15, 313.15 K 4

The selected parameters are designed to represent realistic operating conditions
involving variations in heat dissipation intensity, flow disturbances, and geometric
structures. To ensure both parameter space coverage and computational feasibility, a
random sampling strategy is employed to uniformly select 300 representative
combinations from the full factorial space for simulation and training purposes.

For each sampled condition, the simulation yields temperature (7) and velocity
components (# and v), which are subsequently interpolated onto a uniform spatial grid
and stored in a standardized format. The resulting dataset serves as the foundation for
training and evaluating the proposed model, particularly in terms of its generalization
capability across varying structural configurations and operating conditions.

3.3 Mesh Convergence of numerical model

Table 2 compares three levels of mesh resolutions in representative local regions, where
the mesh with element size of Imm achieves an effective trade-off between spatial
resolution and computational cost. It also demonstrates excellent geometric conformity
and numerical stability during simulation.

To ensure compatibility with the subsequent deep learning framework, all simulation
results are uniformly interpolated onto a fixed spatial grid of size 193 x 257.

Table 2. Comparison of Mesh Convergence

Size 0.5mm 1.0mm 2.0mm

The CFD simulations were performed on unstructured triangular meshes. To obtain
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datasets with a uniform spatial resolution suitable for neural-network input, all
simulation results were interpolated onto a regular Cartesian grid of 193 x 257 points
covering the computational domain Figure 4. The interpolation is based on the finite-
element shape-function reconstruction, which is mathematically equivalent to
piecewise-linear interpolation within each triangular element. This approach ensures
geometric flexibility for unstructured meshes and preserves the physical continuity and
accuracy order of the numerical solution. Importantly, the interpolation was carried out
only within the fluid domain. The circular solid regions corresponding to the cylindrical
heat sources were excluded from the interpolation using a binary structural mask (mask
= 0 for solid and mask = 1 for fluid). Consequently, the neural network processes and
predicts physical fields (e.g., temperature, velocity) only in the fluid region, ensuring
physical consistency and avoiding non-physical artifacts in the non-fluid domain. The
generated uniform-field data and corresponding masks were then saved in .csv or .npy

format for model training.

Triangular Mesh 193x257

Interpolation
e —

Figure 4 Interpolation from Triangular mesh to regular Cartesian grid.

An unstructured triangular mesh was employed for the CFD modeling, with local
refinement applied around the cylindrical heat sources.

Under a representative operating condition, six levels of element sizes were tested (as
shown in Figure 5), and the temperature distribution along the right boundary line was
used as the convergence criterion.

When the element size was smaller than 1.0 mm, the temperature deviation converged
to within 1%.

Meanwhile, the relative variations of the domain-averaged temperature and pressure
drop were controlled within 1-2%, and the residuals of the continuity, momentum, and
energy equations decreased below 107°, 107°, and 107¢, respectively, indicating good
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numerical convergence of the steady-state solution.

Therefore, a mesh size of 1 mm (approximately 5 x 10° cells) was selected as the
standard grid, achieving a balance between computational accuracy and cost.
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Figure 5 Grid Independence Test under a Representative Operating Condition.

To further validate the CFD dataset, we performed simulations using the k— standard
and SST k- turbulence models under the same conditions. The comparison results
show that the temperature fields predicted by all three models (laminar, k—® standard,
and SST k—m) are highly consistent, with temperature differences within 0.1-0.5%. This
confirms that the flow remains laminar under the present conditions, and the turbulence
models have negligible impact on the results.

The present study intentionally focuses on a simulation—algorithm framework to
establish a reliable and reproducible benchmark before introducing experimental
uncertainties. The CFD datasets are derived from numerically validated models that
ensure physical consistency, including mesh-independence verification, residual
convergence, and realistic boundary conditions. These high-fidelity numerical data
serve as a controlled environment to evaluate model performance, generalization, and
robustness under varying sensor sparsity and geometric perturbations.

Importantly, the current simulation-based workflow represents the first stage of a
broader digital-twin pipeline. Once the algorithmic framework and data-driven—
physics-integrated methodology are consolidated, the approach will be transferred to
real engineering systems through experimental data assimilation and sensor-based
digital-twin updating. In this way, the validated CFD data not only provide a physically
trustworthy training foundation but also act as a bridge connecting purely numerical
studies to practical applications in industrial thermal—fluid monitoring and optimization.
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4. Method

4.1 Framework Architecture of PISA-Net

This section introduces the details of the proposed Physics-Informed Structure-Aware
Network (PISA-Net), a hybrid deep learning framework designed for reconstructing
full-field temperature and velocity distributions in liquid cooling systems from sparse
sensor data. As illustrated in Figure 6, PISA-Net consists of three key components: a
sparse measurement encoder, a structure-aware decoder, and a hybrid loss function that
incorporates both data supervision and physical constraints.

1) Sensor MLP Encoder: This module encodes the sparse measurement information
from sensor points, including temperature, velocity, and spatial coordinates, using a
multilayer perceptron (MLP). The encoded features are then projected into a high-
dimensional latent space to capture local spatial-physical relationships.

2) U-Net Based Decoder: The encoded sensor features are concatenated with the
binary mask matrix representing the fluid-solid domain geometry. These are then
decoded through a U-Net architecture that progressively upsamples and reconstructs
the spatially continuous fields, while preserving structural priors.

3) Physics & Data-Driven: The total loss function combines a data consistency loss,
which enforces agreement with observed sensor values, and a physics-informed loss,
derived from the steady-state energy equation. The joint optimization improves both
prediction accuracy and physical consistency.
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Figure 6. Overall Architecture of the Proposed PISA-Net Framework. (a) MLP Based Encoder for

Sparse Sensor Data; (b)Structure-aware U-Net Based Decoder.

PISA-Net mainly consists of the following two sub-modules:
1) Sparse Sensor Encoder

As shown in Figure 7, The input of the model is composed of Ny =8 sparse
measurement points located at preset key positions. Each measurement point contains
a five-dimensional feature vector to characterize its local state and spatial position
information:

norm orm] (6)

[Tl' ul' vl' ’yl

where, T;, u;, v; are the observed values of temperature and velocity respectively, and
(x*°T™, y[*°T™) are the normalized coordinate positions. These measurement point
data form the input tensor D € RNs*5,
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Figure 7. Sparse Sensor Encoder

The input tensor D; is first mapped to local feature representations f; € R of the
same dimension through a Multi-Layer Perceptron (MLP) encoder, and then all point
features are concatenated into a global feature representation:

fotobar = Concat(fi, f2, .-, fg) (7

Subsequently, this one-dimensional feature is mapped to a medium-resolution initial
feature map C X H' X W' (R3*48%64) through a fully connected layer, and then
upsampled to C X H x W (R3%193%257) a5 the "initial guess" X;,;; input for field
reconstruction.

2) Structure -aware U-Net Decoder

To enhance the model’s ability to recognize structural boundaries and avoid unphysical
predictions within the cylindrical heat source regions, a structure mask map M (x,y)
is introduced, where a value of 1 denotes the fluid region and 0 denotes the solid heat
source region, as shown in Figure 8. As a form of spatial prior, the mask explicitly
encodes the geometry of non-flow domains, effectively constraining the network to
perform feature extraction and prediction only within physically valid regions. This
improves both the physical consistency and numerical stability of the model, especially
near interfaces.
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Figure 8. Structure-aware U-Net Decoder

In addition, this mechanism enables the network to generalize across varying heat
source configurations. By replacing the structure mask input, the model can perform
multiphysics field reconstruction for different structural layouts without modifying the
network architecture or spatial discretization. This greatly enhances the generalization
capacity and deployment flexibility of PISA-Net in cross-structural scenarios. Details
on the construction of the structure mask and its role in enabling cross-structural
adaptability are provided in Section 4.2.

The mask map is concatenated with the sparse encoding output along the channel
dimension:

Xinput = Concat(Xn;t, M) )]

Subsequently, the encoded sparse features are passed into the U-Net-based decoder for
multi-scale reconstruction of the target physical fields. The architecture consists of three
levels of downsampling and upsampling paths, with each stage composed of stacked
convolutional modules. Each module contains two consecutive 3x3 convolution layers,
followed by Group Normalization and ReL U activation, which are used to extract local
spatial features and stabilize the training process.

Leveraging the skip connection mechanism inherent to the U-Net architecture, shallow
structural features captured during downsampling are directly propagated to the
corresponding upsampling stages. This effectively preserves fine-grained boundary
details, particularly around the heat source regions. Simultaneously, deeper layers
aggregate global multi-scale features, enhancing the network's ability to model the
broader spatial distribution of the thermal—fluid fields.

Through this hierarchical architecture, the network achieves a balance between local
feature alignment and global field reconstruction. This makes it well-suited for high-
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fidelity multiphysics field prediction tasks in geometrically complex domains

Finally, an end-to-end mapping neural network framework PISA-Net is constructed,
which maps the input sparse measurement points Dg and structural mask M to the
output multi-physics fields:

T@(DS’M) - [T’(x, }’),ﬁ(x, Y),ﬁ(x: 3’)] (9)

where Fg represents the parameterized neural network model, i.e., PISA-Net. The
specific parameters of the model can be found in the appendix.

4.2 Dynamic Structure Mask for Cross-Structural Generalization

The traditional methods suffer from a strong dependence on fixed geometric structures
and exhibit poor generalization capability, often leading to significant degradation in
reconstruction accuracy of temperature and velocity fields under varying geometric
radii of embedded heat sources. To overcome these limitations, this study proposes a
structure-aware neural network framework that incorporates a structure mask (Structure
Mask) to explicitly encode geometric features and enable cross-structural transfer. By
leveraging this design, the framework demonstrates robust generalization across
diverse heat source geometries, achieving high-fidelity multiphysics field
reconstruction even in the presence of structural perturbations.

Such capability highlights the method's superior adaptability to geometric variability
and enhances its spatial generalization performance, which is critical for practical
engineering deployment. To support this, PISA-Net incorporates a structure mask as an
explicit geometric input. This mask encodes the spatial layout of the fluid—solid domain,
allowing the model to operate within a unified input space and generalize across
different heat source configurations without modifying the network architecture or
retraining.
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Figure 9. Schematic of Structural Mask Generation and Representation
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Figure 9 illustrates the structural mask mechanism and its adaptability to different heat
source radii:

1) Depicts the strategy for generating structural masks based on the center coordinates
and radius of cylindrical heat sources;

2) Shows the resulting binary mask map M (x, y), where a value of 1 denotes the fluid
region and 0 denotes the solid (cylindrical) region.

This pre-generation strategy enables the rapid construction of structure-aware masks
without the need for remeshing, allowing the model to dynamically adapt to structural
variations across different samples.

Notably, this design allows the model to perform field reconstruction even for unseen
structural configurations during inference. By simply replacing the corresponding mask
M (x,y), the network can generalize to new geometries without additional training or
structural modifications. This significantly improves the model's flexibility and
deployment efficiency in practical applications.

Overall, PISA-Net demonstrates strong cross-structural transferability, making it a
promising tool for rapid thermal—fluid analysis and sensitivity studies in complex liquid
cooling systems.

4.3 Physics-Embedded Constraint Formulation via Finite Difference
Operators

This study proposes a novel method to address the challenge of reconstructing physical
fields from highly sparse observations. The scarcity of ground-truth data hinders purely
data-driven models from accurate reconstruction, while the lack of explicit physical
constraints limits generalization under structural perturbations or changing operational
conditions. Consequently, models often overfit to observed points and fail to respect
the underlying governing equations, reducing the physical reliability of predictions.

To address these issues, this study incorporates physics-informed constraints into the
data-driven framework by embedding the steady-state energy conservation law (i.e., the
convection—diffusion equation) as a weakly supervised guidance signal. Specifically,
the residuals of the governing equation are discretized using finite difference operators
and introduced as an additional loss component during training. This strategy facilitates
physical guidance under sparse supervision and enhances both the reconstruction
accuracy and physical interpretability of the model. This component corresponds to the
third module of the overall framework, as depicted in Figure 6(c).

The total loss function comprises two components: a data fidelity term and a physics-
informed residual term. The detailed structure of the loss formulation is illustrated in
Figure 10.
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Figure 10. Data and Physics Hybrid-driven Strategy

Data Loss: Considering the limited sensor deployment within the liquid cooling system,
supervised learning is applied exclusively at locations identified as fluid regions in the
structural mask. Loss computations in solid regions—such as cylindrical heat sources—
are excluded from the loss evaluation.

The specific definition of data loss is as follows:

1 A ~ "
Lgata = —Z My [Ty = Tip)* + (i — 0 )® + (viy = 9,)%] (10
Yij Mij ¥
where M ; € {0,1} represents the masked region, with 1 indicating the supervised
region and 0 indicating the structural region. T,4,70 are the output results, while
T,u,v are the data-driven labels.

However, the supervision signals derived only from sparse observations are prone to
causing violations of conservation laws, thus it is necessary to further introduce
physical consistency constraints.

PDE Residual Loss (Physics-Informed Loss): To enhance physical consistency, this
paper constructs an unsupervised residual loss based on the steady-state convection-
diffusion equation. The output tensor is Y € R3*#*W  corresponding to the
reconstructed temperature field T, the horizontal component of the velocity field I,
and the vertical component ¥ respectively. Suppose the output grid sizeis H X W, the
grid step sizes are Ax and Ay, and the corresponding pixel indices are i =
L., Hj=1..W.

For each grid point i = 1,...,H,j = 1, ..., W, the three channels in the model output
tensor can be expressed as:
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To calculate the residual Repergy of the energy equation, we compute the first-order
and second-order derivatives of the aforementioned output variables based on the two-
dimensional central difference scheme.

First-order derivative:

(5T> Tijer — Ti,j—l(au) Ujjer — Ujjq
LJj

ox/; ; 20Ax x/; 20x -
(G_T) _Tig1,j = Tica, (3_17) _Vit1,j ~Vi-yj (12)
dy i 2Ay dy L 2Ay
Second-order derivative:
0°T\  Tij+1 = 2T+ Tja
dx? L Ax?
' (13)
0°T\ Ty — 2T+ Tisy,
dy? L Ay?

Residual of the energy equation (steady-state convection-diffusion equation):

oT oT 0%T 0°T
Renergy,ij = Uij * (ﬁ)” t (@) e 0x2 * a_yz
' LJ i,j ij

Using the mask map M; ; € {0,1}, the cylindrical flow-disturbing heat source regions

(14)

are excluded, and the residuals are calculated only within the fluid regions:
1 2
Lppg = mlz]: Mij - (:Renergy.i,j) (15)

The physical loss guides the model output to tend to satisfy the energy condition,
thereby improving its physical rationality and generalization ability.

At the domain boundaries, spatial derivatives required for the PDE residual loss are
computed using reflection padding, which extends the interior field values beyond the
edges in a mirrored manner. This approach allows central differences to be applied
uniformly across the entire grid, including boundary-adjacent points, without
introducing one-sided numerical bias. This treatment ensures consistent numerical
stencils, smooth derivative transitions, and stable residual evaluation near boundaries.

Total Loss Function Design:

The training loss of PISA-Net is formulated as a weighted sum of the data supervision
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term and the physics residual term, which jointly guide the network to balance fidelity
to labeled data and adherence to physical laws. To enhance training stability and
generalization capability, a Progressive Physics-guided Training Strategy is employed
(see Section 4.4 for details).

4.4 Progressive Physics-guided Training Strategy

This section details the training strategy of PISA-Net, covering data preprocessing, the
overall training procedure, the physics-guided loss injection mechanism, and the
configuration of training hyperparameters.

Each training sample comprises three components:

1) Sparse Input Features: Measurements from eight fixed sensor locations, each
providing five-dimensional input data, including temperature (7), horizontal and
vertical velocities (i, v), and their corresponding spatial coordinates (x, );

2) Structural Mask Map (Mask): A binary matrix of size 193x257 automatically
generated based on the geometric position and radius of each cylindrical heat source.
The fluid region is labeled as 1, while the solid heat source region is labeled as 0. This
serves as prior geometric information to guide the network in focusing on physically
valid domains;

3) Full-Field Ground Truth Labels: The complete temperature field T and velocity
fields u and v, each with a resolution of 193x%257, used for supervised learning and
unsupervised physics residual computation.

All variables are normalized to the [0, 1] interval using Min-Max scaling. After
interpolation onto a uniform grid, the data are formatted into tensors compatible with
the input requirements of the network.

The training loss of PISA-Net is a weighted combination of the data supervision term
and the physical residual term:

Liotal = AoLdata + 41 (t)LPDE (16)

where A, is the hyperparameter for weighting the data loss, which is used to regulate
the network's attention to real labels and is set to 10 based on experience, and A, (t) >
0 1s the hyperparameter for weighting the physical loss, which is used to regulate the
network's attention to real labels and physical consistency. To improve training stability
and generalization performance, we introduce a Progressive Physics-Injection strategy:
in the early stage of training (e.g., the first 200 epochs), only the data supervision loss
Lgata 15 applied to enable the model to fully learn sparse label information and avoid
underfitting caused by the dominance of physical terms in optimization. As training
progresses, the weight of A,(t) is gradually increased to introduce the physical
residual loss Lppg, providing structure-aware constraint guidance to ensure that the
reconstruction results maintain physical consistency even in unlabeled regions.The
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variation form of the weight A, (t) can be a smooth function such as linear, exponential,
or cosine annealing; to improve stability, the following cosine increment strategy is

adopted in this study:
0 Jt <t
t—t
1—cos(m- 0
= ti —t
A,(t) Ay - (2 1 0)’t0 <t<t, (17)
Ao >t

Where, t, represents the epoch at which the physical term starts to be introduced (200
epochs), and t; represents the epoch at which the physical term is fully weighted (400
epochs). A; is the final weight of the physical loss, which is empirically set to 1; =
0.1 and shows a good balancing effect in multi-structure reconstruction.

5. Results and Discussion

5.1 Training Process and Convergence Analysis

The proposed method is implemented using the PyTorch 2.7 framework and trained on
a workstation equipped with an Intel Core 19-13900KF processor and an NVIDIA
GeForce RTX 4090 GPU. The Adam optimizer is employed with an initial learning rate
of 1x1073, which is adaptively adjusted using a cosine annealing scheduler to promote
stable convergence. The training is conducted for a total of 500 epochs with a batch size
of 32, where each batch corresponds to an independent structural condition. This design
ensures that gradient updates are decoupled across different geometrical configurations,
thereby enhancing the model's robustness to structural perturbations and improving its
cross-structure generalization capability.

The computation of PDE residuals is based on a central difference scheme for spatial
discretization, with reflective boundary padding applied to improve the numerical
stability of edge derivative calculations. Both the physical residual and supervised loss
terms are evaluated strictly within the fluid regions defined by the structural mask,
thereby avoiding the backpropagation of physically meaningless gradients from non-
fluid (solid) areas.

A total of 300 simulated samples are used, with 70% allocated for training and 30% for
testing. As shown in Figure 11, after introducing the physical loss, the data loss remains
stable while the physical residual term consistently decreases throughout training,
demonstrating the effectiveness of the proposed physics-guided strategy and the
controllability of the training process. All model architecture details, hyperparameter
configurations, and training codes are provided in Appendix A to ensure reproducibility.
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Figure 11. Physics and Data Loss Curves

5.2 Field Reconstruction Results under Varying Structures and
Operating Conditions

To visually assess the multi-physics field reconstruction performance of the proposed
structure-aware neural network, PISA-Net, several representative test samples are
selected to showcase the reconstructed distributions of temperature (7)), horizontal
velocity (u), and vertical velocity (v). These results are further evaluated using
quantitative error metrics.

Table 3 presents the reconstruction performance under various representative structural
and operating conditions. The first column lists the corresponding input parameters for
each condition, including inlet velocity, inlet temperature, heat flux, and heat source
radius. The second column displays the reconstructed contour maps alongside the
ground-truth distributions for qualitative comparison. The final two columns show the
quantitative error metrics: normalized mean absolute error (NMAE) and root mean
square error (RMSE), both computed within the structural mask region. The definitions
of these metrics are provided in Section 5.3.

It is observed that PISA-Net consistently achieves accurate reconstructions across
diverse structural and operational scenarios. The reconstructed temperature fields
effectively capture the main channel gradients and heat diffusion patterns in disturbed
flow regions. The horizontal velocity fields exhibit good continuity and directional
coherence, while the vertical velocity fields maintain correct flow trends. The error
metrics show that both NMAE and RMSE remain at low levels across all conditions.
Moreover, the physical residual (PDE-R) distributions show no abnormal high
deviations, indicating strong physical consistency in both supervised and unsupervised
regions.

Overall, PISA-Net demonstrates stable and reliable reconstruction performance for
temperature and velocity fields across varying structural configurations and working
conditions.
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633 5.3 Evaluation of Multiphysics Field Reconstruction Performance

634 To quantitatively evaluate the multi-physical field reconstruction performance of
635 the proposed PISA-Net framework, this paper employs two metrics, namely
636  Normalized Mean Absolute Error (NMAE) and Root Mean Square Error (RMSE), to
637  systematically assess the model's reconstruction results in three physical fields:
638  temperature field (7), horizontal velocity (u), and vertical velocity (v).

639

640 The two types of error indicators are defined as follows:
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1
RMSE = NZ i = 90
i=

Where y; and ; represent the true and reconstructed values within the masked
region, respectively, and ¥; is the number of effective sampling points.

Figure 12 and Figure 13 illustrate the model's performance on multiple structural
working condition samples from the test set, the following observations can be made:

The error in the temperature field T is the smallest overall, indicating that in steady-
state forced convection problems, temperature distributions are relatively smooth and
easier to reconstruct from sparse points.
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Figure 13. RMSE for T, u, and v Fields Reconstruction

The error in the horizontal velocity u is slightly higher, reflecting the uncertainty
introduced by flow-direction disturbances in velocity reconstruction.

The error distribution for the vertical velocity v is the widest, being significantly
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influenced by strong gradients upstream/downstream of the heat source cylinders,
where local disturbances are more pronounced.

The median errors for all three fields remain at low levels, demonstrating the network's
robustness and generalization ability across various structural disturbances and
boundary conditions.

Notably, outliers in the error distribution for some samples are primarily concentrated
in regions with densely distributed heat source cylinders. These areas exhibit complex
flow patterns due to enhanced local convection, posing ongoing challenges. Overall,
PISA-Net consistently and accurately reconstructs temperature and velocity fields
under varying cylinder configurations and heat source sizes, providing a solid
foundation for subsequent thermal management optimization and structural diagnostics.

Figure 14 presents the contour maps of the local absolute error and RMS-normalized
local error for the reconstructed temperature (T) and velocity components (U, V) under
a representative working condition.
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Figure 14. Contour maps of the local absolute error (top) and RMS-normalized local error
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(bottom) for the reconstructed temperature (T) and velocity components (U, V) under a

representative working condition.

These two indicators together provide a comprehensive view of the spatial error
patterns: the local absolute error quantifies the magnitude of pointwise deviations,
while the RMS ( Root Mean Square ) -normalized error reveals the relative deviation
with respect to the global energy scale of each physical field. Across all conditions, the
hybrid-driven model exhibits excellent reconstruction performance.

local absolute error = |y; — ¥;| (19)
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The local absolute error maps show that the majority of the temperature deviations
remain below 2 K, and velocity deviations are within 0.004 m s in the mainstream
regions. When normalized by the field RMS values, the RMS-normalized local errors
are mostly confined within 1-3 % for 7, U, and V, indicating highly consistent accuracy
across variables with different magnitudes.

Notably, relatively larger normalized errors appear in two characteristic areas:

(1) Near the heat-source walls, where strong thermal gradients and intense heat transfer
lead to mismatch in local wall-normal derivatives of 7; and

(2) In the wake regions behind disturbance columns, where flow separation and
recirculation produce highly nonlinear velocity fluctuations.

In these zones, the model slightly underpredicts local vortex-induced velocity
variations, yet still maintains coherent global flow and thermal patterns.

Overall, the spatial distributions of both indicators demonstrate strong physical
interpretability: the hybrid-driven model accurately captures the large-scale thermo-
fluid behavior, confirming the model’s robustness and physical consistency.

5.4 Ablation Study on the Effect of Physics-Informed Constraints

To further verify the role and necessity of physics-informed embedding in the multi-
physical field reconstruction task, this paper designs an ablation experiment on the
physical loss to investigate the performance changes of the model without
introducingLppE.

We train two versions of PISA-Net based on the same network structure and training
process:

Data-Driven Model: Includes only the data supervision termLq,¢, Without physical
residual constraints.

Hybrid-Driven Model: Employs the full loss functionLyta1 = AoLgata + 41 (t) LppE
(see Section 4.4 for details).

The experiments are conducted on the same test set. We record the PDE Residual and
NMAE of both models across the three physical fields (T,u,v) and compare their
error distributions and physical consistency.

Figure 15 shows a comparison between our method and the data-driven method. It is
evident that after introducing physical information constraints, the smoothness and
realism of the flow field and temperature field are more consistent with the real physical
fields. In the following, we will conduct comparisons using various indicators and cloud
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719  Figure 16(a) shows the NMAE error plots of the two models on the test set. It can be
720  seen from the results that after introducing physical constraints, the overall errors of the
721  temperature and velocity fields decrease, and the number of abnormal value is reduced,
722 indicating that physics-informed embedding enhances the robustness of the model.
723 Figure 16(b) presents the PDE Residual error plots of the two models on the test set.
724  The results reveal that with the introduction of physical constraints, the physical
725  residuals decrease by multiples and the number of outliers is reduced, demonstrating
726  that physics-informed embedding significantly improves the physical interpretability of
727  the model.
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Figure 16. Error Evaluation of the Two Types of Models on the Test Set

Although the hybrid-driven reconstructions in Figure 15 generally exhibit closer
agreement with the ground truth across most regions, the data-driven results appear
slightly more similar near the heat-source sides. This difference does not arise from
interpolation but from the distinct optimization objectives of the two models. Both were
evaluated on the same Cartesian grid, ensuring consistent spatial resolution. The data-
driven model focuses solely on minimizing pixel-wise MSE, which emphasizes local
similarity, while the hybrid-driven model jointly minimizes data and physics-based
residual losses, preserving thermal fluid coupling and enforcing conservation
consistency. As a result, the hybrid-driven model maintains physically accurate
gradients that may appear slightly vague but represent more realistic flow behavior. The
improved quantitative metrics in Figure 16 further confirm its higher physical fidelity
and numerical accuracy.

As shown in Figure 17, by comparing the physical fields reconstructed by the two
methods, it can be found that our reconstruction method solves the problems of physical
field discontinuity and gradient anomalies caused by the pure data-driven method.
Specifically, such anomalies manifest as ripples and checkerboard patterns in the fields,
which are all caused by the fact that the pure data-driven method does not take physical
information into account.
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Figure 17. Detailed Comparison of Physical Informed Effects

Meanwhile, Figure 18 shows the heat map of the residual distribution Repergy of the
energy equation under a typical flow-disturbing condition. The model without
introducing physical terms exhibits large residual values in the vicinity of and
downstream from the flow-disturbing cylinders, showing obvious physical
inconsistency; whereas after introducing Lppg, the residual values converge overall,
and in particular, better smoothness and conservation are demonstrated in the boundary
transition regions.

Residual: Data-Driven Residual: Hybrid-Driven Residual: Data-Driven Residual: Hybrid-Driven

Residual: Data-Driven Residual: Hybrid-Driven Residual: Data-Driven Residual: Hybrid-Driven

Figure 18. Distribution Map of Physical Residuals

In summary, physics-informed can not only effectively compensate for the lack of
supervision caused by sparse data, but also significantly improve the physical
consistency of the model in disturbed regions and downstream regions, providing
important support for achieving interpretable and generalizable multi-physical field
reconstruction.
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5.5 Comparative Study of Network Structures with Baseline Models

To systematically assess the capability of the proposed structure-aware decoder in
reconstructing multi-physics fields, this section conducts comparative experiments with
baseline decoder architectures. Two representative convolutional decoding structures
are selected: (i) a ResNet-34 decoder incorporating deep residual connections, and (ii)
a standard convolutional network without skip connections, referred to as Baseline-
CNN. All three models (including the proposed U-Net decoder in PISA-Net) share
identical input configurations, network capacity, and training strategies. Each takes as
input sparse physical observations and structural masks, and outputs full-field
predictions of temperature and velocity distributions (7, u, v).

Table 4 presents the reconstruction error comparison of these decoders under typical
test conditions, including the Normalized Mean Absolute Error (NMAE) for the three
fields and the PDE-based physical consistency metric derived from the residual of the
steady-state convection-diffusion equation. The results demonstrate that the U-Net
decoder achieves the best performance across all metrics, with a temperature field
NMAE of 3.12% and a PDE residual as low as 0.0007, significantly outperforming the
ResNet-34 and Baseline-CNN structures.

In particular, although ResNet-34 benefits from residual connections that enhance deep
feature stability, it suffers from blurred boundaries and noisy velocity reconstructions
due to its limited capacity in multi-scale feature fusion and shallow detail preservation.
On the other hand, the Baseline-CNN, despite its simplicity, lacks the ability to
effectively capture turbulent structures and geometric boundary variations, leading to
inferior accuracy and physical consistency. In contrast, the U-Net decoder's symmetric
structure and skip connections facilitate efficient fusion of low-level spatial and high-
level semantic features, enabling accurate recovery of fine-scale boundary details and
consistent full-field reconstructions.

In summary, the proposed structure-aware decoder in PISA-Net demonstrates superior
generalization capability and robustness across diverse structural and operational
scenarios, offering an effective solution for sparse-sensor-based thermal—fluid field
reconstruction.

Table 4. Comparison of Reconstruction Errors Under Different Decoder

Structure NMAE (7) NMAE (1) NMAE (v) PDE Residual (7/u/v)

U-Net 3.12 3.44 3.01 0.0007
ResNet-34 4.45 4.89 4.12 0.0014
Baseline-CNN 4.83 4.92 4.45 0.0016

Beyond reconstruction accuracy, we also analyzed the computational performance and
methodological positioning of PISA-Net relative to other modeling paradigms. Once
trained, PISA-Net reconstructs full temperature and velocity fields from sparse-sensor
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inputs within milliseconds, whereas a single CFD forward simulation typically requires
several minutes even on parallel hardware. This computational efficiency makes PISA-
Net promising for real-time monitoring and digital-twin updating in industrial cooling
systems where boundary conditions are partially unknown and sensor coverage is
sparse.

The present study tackles an inverse field-reconstruction problem (sparse — full field)
rather than a conventional forward prediction. Operator-learning frameworks such as
the Fourier Neural Operator (FNO) and Deep Operator Network (DeepONet) assume
dense inputs and fixed mesh topology, and thus cannot directly handle sparse-sensor,
geometry-varying scenarios without major architectural redesigns. Bayesian inversion
methods, although effective for uncertainty quantification, require repeated PDE solves
or large-scale sampling, which is computationally prohibitive for complex thermo-fluid
systems.

PISA-Net is specifically designed for such sparse-sensor, multi-geometry inverse
problems. It integrates a sparse-sensor encoder, structure-aware mask input, and
lightweight PDE regularization to achieve physically consistent reconstructions. Unlike
classical Physics-Informed Neural Networks (PINNs), which use PDE residuals as the
main optimization objective and often converge slowly, PISA-Net treats physics-based
residuals as auxiliary constraints that guide supervised learning toward physically
meaningful solutions. Classical PINNs are suited for forward or inverse PDE solving
with fully known boundary and initial conditions. However, when applied to inverse
problems where boundary information is unknown and only sparse sensor data are
available, PINNs become highly inefficient—requiring exponentially more collocation
points and days of training due to the lack of data-driven guidance.

In contrast, PISA-Net efficiently combines limited sensor data with physics-based
residuals computed within the fluid domain, enabling convergence within hours while
maintaining physical consistency. From a probabilistic viewpoint, the physics residuals
encode prior knowledge of admissible field behavior, whereas the supervised term
enforces agreement with sensor observations. Embedding both into a unified loss
function ensures data fidelity and physical realism without costly posterior sampling.
Overall, PISA-Net bridges data-driven inference and physics-based modeling,
providing two key advantages over existing forward-learning frameworks: (1) robust
reconstruction from highly sparse and irregular sensor inputs, and (2) strong cross-
geometry generalization without retraining. These properties make it a practical
solution for large-scale, sparse-sensor inverse field reconstruction in engineering
applications.

5.6 Impact of Sensor Configuration on Reconstruction Performance

To further assess the reconstruction capability of the proposed PISA-Net under sparse
observation conditions and investigate the influence of sensor deployment density on
reconstruction performance, a series of controlled experiments are conducted with



842
843
844
845
846
847
848

849
850
851
852
853
854
855
856
857
858
859
860

861
862
863

864
865
866
867
868
869
870
871
872

varying sensor quantities and layouts. Specifically, under fixed structural and boundary
condition parameters, each sample is configured with 4, 6, 8, 10, 12, and 14
measurement points, respectively. The temperature and velocity information at these
locations is extracted as model input, while the reconstruction results of the three
physical fields (7, u, v) serve as output. All sensors are positioned within the fluid region,
with their locations selected based on a combination of uniform grid sampling and
engineering feasibility.

The sensor positions were deliberately selected according to the flow and thermal
characteristics of the cooling plate. The layout follows the geometric symmetry of the
domain and aims to capture the dominant spatial gradients of temperature and velocity.
Specifically, sensors were placed in three representative regions: (1) the inlet and
central channel to reflect the global inflow condition and main flow direction; (2) the
cylinder-side shear layers where the velocity and temperature gradients are strongest;
and (3) the wake region that contains the major recirculation and convective mixing
effects. As the number of sensors increases (from 4 to 14), the placement progressively
extends from these dominant zones toward the peripheral regions, enhancing coverage
of the flow domain. This symmetric and feature-oriented configuration ensures that a
small number of sensors can effectively represent the main physical variations of the
system.

To quantify reconstruction accuracy, the Normalized Mean Absolute Error (NMAE), as
defined in Section 5.2, is adopted as the primary evaluation metric across different
sensor configurations.

The experimental results are illustrated in Figure 19. As the number of sensors increases,
the reconstruction error exhibits a pronounced decreasing trend. Notably, when the
number of sensors increases from 4 to 8, the NMAE shows the most substantial drop,
indicating that a moderate increase in observational information significantly enhances
the model's spatial representation capability. However, when the number of sensors
exceeds 10, the performance gain becomes marginal, demonstrating an "information
saturation" effect. This suggests that PISA-Net already achieves high reconstruction
accuracy under moderate observation densities, and further increasing sensor counts
yields diminishing returns.
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Figure 19. The Influence of the Number and Layout of Sensors on Accuracy

It is worth noting that even under the extremely sparse input condition with only 6
sensors, PISA-Net can still control the error within an acceptable range. This result
demonstrates the inherent generalization ability and physical consistency guiding effect
of the model after integrating the structure mask and physical residual mechanism.

In summary, the experiments in this section verify that PISA-Net still has good
robustness and generalization ability under low-observation conditions, and optimal
performance can be achieved when the number of sensors is 8 or more.

6. Conclusion

To tackle the multi-physical field reconstruction problem in liquid cooling systems from
sparse sensor deployment, variable heat source geometries, and diverse operating
conditions—this study proposes a deep learning framework that integrates structure-
awareness and physics-based constraints: PISA-Net (Physics-Informed Structure-
Aware Network). By leveraging limited temperature and velocity measurements,
together with a geometry-guided structural mask and a physics-informed loss function
derived from the energy conservation equation, the proposed method achieves high-
fidelity reconstruction of steady-state thermal-flow fields across varying structural
scales and working conditions. The model demonstrates superior generalization across
geometries and enhanced physical consistency. The core contributions of this work are
as follows:

1) Sparse-observation-driven multi-physics field reconstruction — A nonlinear mapping
is established from sparse temperature and velocity measurements to full-field physical
distributions, significantly reducing sensor density and measurement costs while
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maintaining suitability for engineering deployment.

2) Geometric awareness fundamentally enhances cross-structural adaptability —
Incorporating structure masks enables the model to perceive and adapt to variations in
embedded heat source geometries, maintaining stable accuracy across unseen structural
configurations.

3) Embedding physics laws improves both fidelity and interpretability — A physics-
informed loss based on the energy conservation equation substantially reduces residual
deviations, especially in regions of strong flow disturbance, and provides physically
consistent reconstructions under sparse supervision.

In summary, the proposed framework offers an effective and scalable solution to the
inverse reconstruction problem in liquid cooling systems. It holds substantial
theoretical value and application potential in intelligent thermal management, digital
twin systems, thermal performance assessment, and fault detection. In future work, we
plan to extend the framework to higher Reynolds number regimes by incorporating
turbulence models or higher-fidelity CFD data, thereby assessing its robustness under
more complex flow conditions and broadening its applicability to a wider range of
engineering scenarios.

Appendix A. Network architecture and training of PISA-Net

A.1l. Overall framework

PISA-Net (Physics-Informed Structure-Aware Network) is designed for sparse-sensor
inverse field reconstruction under multi-geometry cooling structures. It consists of two
main sub-networks: (1) an MLP-based sparse-sensor encoder that embeds discrete
measurements into a latent feature space, and (2) a structure-aware U-Net decoder that
reconstructs full-field temperature and velocity distributions guided by both data
supervision and PDE-based physical consistency.

A.2. Network architecture details

The overall network architecture includes both an MLP encoder and a structure-aware
U-Net decoder. The details of each module are summarized in Tables A1-A3.

Table A1. Sparse-sensor encoder.

Input Output o o
Layer ) ) ) ) Activation Description
dimension dimension
Encodes single-point
MLP-1 5(Tu,v,Xx,y) 64 RelLU

measurement features

MLP-2 64 128 ReLU Expands latent
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representation

Projects embedding to
128%Ns ) ) )
MLP-3 256 ReLU higher-dimensional
(Ns=8 sensors)
latent space

Interpolated to regular

Output )
256 3xHxW — grid and concatenated

Reshape )
with structural mask

Table A2. Structure-aware U-Net decoder.

Block Output shape Kernel/stride | Activation | Normalization

Input 3 x193 x 257 1x1/1 ReLU —
Encoder-1 16 x 193 x 257 3x3/2 ReLU GroupNorm
Encoder-2 32 x96 x 128 3x3/2 ReLU GroupNorm
Encoder-3 64 x 48 x 64 3x3/2 ReLU GroupNorm
Bottleneck 128 x 24 x 32 3x3/1 ReLU GroupNorm
Decoder-1 64 x 48 x 64 3x3/1 ReLU GroupNorm
Decoder-2 32 x96 x 128 3x3/1 ReLU GroupNorm
Decoder-3 16 x 193 x 257 3x3/1 ReLU GroupNorm

Output 3 x193 x 257 1x1/1 — —

Table A3. Model summary.

Sub-module Parameters Description
Sparse-sensor ) )
~0.3M Encodes discrete measurements into latent space
MLP encoder
Structure-aware S3M Performs full-field reconstruction with physics
U-Net decoder ' guidance
Total =5.6 M Balanced model capacity and efficiency

A.3. Training configuration

Optimizer: Adam. Initial learning rate: 1x1073. Scheduler: Cosine annealing with
warm restarts. Batch size: 32. Epochs: 500. Loss: Ligta1 = Ao Ldata + 41 () LppE,
where Lgata 1 the MSE of (7, u, v) in the fluid domain, and Lppg represents energy
and mass residuals. The weight A,(t) = 0.05 is activated after 200 epochs.
Normalization: channel-wise min—max. Framework: PyTorch 2.7. Hardware: NVIDIA
RTX 4090 GPU (24 GB), training time ~ 1 hours.
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A.4. Training procedure

Stage I (supervised pretraining): train for 200 epochs with L4, only. Stage II
(hybrid fine-tuning): gradually activate Lppg with Ap=0.05 to balance data and
physics. Gradient clipping (1.0) is applied to avoid instability. The cosine annealing
scheduler reduces the learning rate to 1x1073,

A.5. Dataset and reproducibility

The dataset contains simulated flow and temperature fields under five structural
configurations and multiple inlet conditions (300 samples total). Each sample includes
full-field labels (T, u, v) and corresponding sparse-sensor inputs (8 measurement points).
Both the dataset and source code will be released upon publication to promote
reproducibility and community adoption. The corresponding code and documentation
can be accessed via the author's GitHub repository:

GitHub URL: https://github.com/DDBLB/PISA-Net

This repository provides comprehensive guidance for reproducing the proposed PISA-
Net framework, including dataset preprocessing, training scripts, and evaluation
procedures.
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