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A B S T R A C T

The geological study of Marine Isotopic Stage (MIS) 11c (424–397 ka) is key to reconstructing the climatic and 
oceanographic conditions during one of the longest and the warmest interglacial in the last 1 million years. 
Moreover, interglacial MIS 11c is considered as an important analogue for our near future in times of climate 
change, under anthropogenic emissions scenarios, due to its similar orbital forcing configuration. Here we 
present the results of a comprehensive analysis of one of the most extensive Quaternary fossiliferous sedimentary 
successions in the Cabo Verde archipelago in the tropical northeastern Atlantic. The Nossa Senhora da Luz Bay 
(Santiago Island) is one of the few MIS 11 fossiliferous sites known in Macaronesia. The sedimentary succession 
records a set of transitions between fluvial and marine environments, and emersion and immersion events within 
a confined, highly protected bay environment. A thick layer of fine-branched rhodoliths in its upper part suggests 
ecological conditions that no longer exist in Cabo Verde. The presence of specimens of the intertidal clam Senilia 
senilis in life position ~12 m above present-day mean sea level leads us to reinterpret the relative sea-level 
changes at Santiago Island and show that the uplift trend since MIS 11c is an order of magnitude lower (0.01 
mm/yr) than previously calculated (0.10 to 0.14 mm/yr). The fossil assemblage includes representatives of five 
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versidade dos Açores, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Açores, Portugal.

E-mail address: avila@uac.pt (S.P. Ávila). 
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phyla, with molluscs being the most diverse and abundant. Despite the abundance of some bivalves (Saccostrea 
cuccullata, S. senilis, and Aequipecten opercularis), and gastropods (Thetystrombus latus and Thais nodosa), and some 
horizons showing the crustacean burrows Thalassinoides suevicus, the general biodiversity is low. The presence of 
S. cuccullata and S. senilis, both absent from present-day Cabo Verde archipelago, indicates a tropical, more 
humid climate in this region, during MIS 11c.

1. Introduction

Sea-level changes have a considerable impact on the marine biota of 
volcanic oceanic islands (Ávila et al., 2019). Past glacial-interglacial 
cycles led to significant glacio-eustatic oscillations, dramatically 
impacting habitable littoral area, as well as to important changes in 
mean sea-surface temperatures (SSTs). Both phenomena are connected 
to profound ecological changes in local ecosystems and in overall species 
distribution, drastically transforming the structure of insular bio
communities (Budd et al., 1996; Ávila et al., 2019). These changes are 
more pronounced when comparing the maxima of interglacial (Stirling 
et al., 1998; Meco et al., 2002; Ávila et al., 2009a; Zazo et al., 2010; 
Garilli, 2011; Montesinos et al., 2014; Muhs et al., 2014; Ávila et al., 
2015b; Martín-González et al., 2016, 2019; Ávila et al., 2019) and 
glacial episodes (Lea et al., 2000; Amano, 2004; Monegatti and Raffi, 
2007, 2010; Ávila et al., 2018a; Yokoyama et al., 2018), when extremes 
of mean sea levels (msl) and SSTs are reached. Similarly, it is during 
stillstands that marine abrasion surfaces are formed, often acting as loci 
for the deposition of coastal sediments (Trenhaile, 1989, 2001, 2002; 
Ramalho et al., 2013; Ricchi et al., 2018). Marine terrace sedimentary 
successions formed during interglacials, especially during highstand 

maxima, are more likely to be preserved (Rovere et al., 2016). Their 
preservation, however, largely depends on their shielding from subse
quent marine erosion by younger highstands, and from ensuing sea level 
heights not reaching them (Ricchi et al., 2018; Bulian et al., 2025). 
Although uncommon, interglacial marine terraces constitute prime lo
calities to look for biological and environmental records, providing 
unique insights into periods which had a different climate from today.

Two significant interglacials of the past 800 ka are the Marine Iso
topic Stages (MIS) 11c (424–397 ka) and 5e (129–115 ka) (Rohling 
et al., 2010; Govin et al., 2015; Past Interglacials Working Group of 
PAGES, 2016). During these periods, msl was 6 to 13 m (MIS 11c) and 6 
to 9 m (MIS 5e) higher than present (Raymo and Mitrovica, 2012; 
Dutton and Lambeck, 2012; Hansen et al., 2015; Spratt and Lisiecki, 
2016; Hearty and Tormey, 2017), with temperatures up to 3 ◦C higher 
than modern (Clark and Huybers, 2009; Kleinen et al., 2014; Hoffman 
et al., 2017). However, the MIS 11c is the longest interglacial of this 
period, lasting for around 30 ky (McManus et al., 2003; Tzedakis et al., 
2012) and, despite being a good analogue for the present-day intergla
cial (Loutre and Berger, 2003), the MIS 11c extended over two insolation 
peaks, with precession and obliquity in almost opposing phase, unlike 
our current interglacial (Tzedakis et al., 2022). These environmental 

Fig. 1. Geographical framework of Santiago Island within the tropical East Atlantic. Photo insert of Nossa Senhora da Luz Bay. The black vertical lines on the photo 
mark the locations of Logs A to D. White squares indicate coral dating sites. Red rectangles indicate the sectors where calcareous nannofossil were collected (at the 
base, middle and top of the stratigraphic succession). Present-day coastline obtained from Portuguese Instituto Hidrográfico (2019) data. Orthophotomap from 
Unidade de Coordenação do Cadastro Predial (UCCP) from Ministério do Ambiente, Habitação e Ordenamento do Território, Cabo Verde. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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conditions impacted marine insular biological communities worldwide, 
such as those in the archipelagos of the Macaronesian region (Fig. 1): the 
Azores (Ávila et al., 2008, 2009a, b, 2015a, b); Madeira (Gerber et al., 
1989); Selvagens (García-Talavera and Sánchez-Pinto, 2001); Canary 
Islands (Zazo et al., 2002; Meco et al., 2002; Zazo et al., 2003a, 2003b; 
Montesinos et al., 2014; Muhs et al., 2014; Martín-González et al., 2016, 
2019); and Cabo Verde (Zazo et al., 2007, 2010). As a result, local 
disappearance (extirpation) – and in some cases, species extinction – 
occurred. However, speciation also took place, resulting in noticeable 
changes in the biodiversity of insular marine ecosystems (Hachich et al., 
2015; Ávila et al., 2016a, 2016b, 2018b, 2019; Hachich et al., 2019; 
Melo et al., 2022a, 2022b; see Table 1.)

The identification of the highest position of past relative sea levels in 
insular volcanic edifices is key to understand the evolutionary history of 
oceanic islands, namely, to accurately establish their uplift, static or 
subsidence trends. Stratigraphic palaeo-relative-sea-level markers, as 
defined by Ramalho (2011) are visible on the island shores, often as 
wave-cut notches. The shore angle of palaeoshorelines (i.e., the angle of 
the inner edge of marine terraces), together with wave-cut notches, are 
commonly used to deduce, with great accuracy and resolution, the 
relative-sea-level position coeval of that shoreline (Rovere et al., 2016), 
which in turn allows to estimate vertical land movement rates. Well- 
preserved palaeo-relative-sea-level markers in the geological record of 
oceanic islands are common for the MIS 5e interglacial. However, they 
are quite rare for the older MIS 11c interglacial (Hearty et al., 1999).

Likewise, well-preserved Quaternary interglacial fossiliferous ma
rine sequences are also rare in active volcanic ocean islands, because 
they are usually subjected to pronounced subsidence (Ramalho et al., 
2013). Such occurrences, however, are key to understanding past en
vironments and palaeobiodiversity, allowing us to better predict the 
effects that future climate change will have on mid-ocean living com
munities (Doney et al., 2012).

Numerous studies have investigated the present-day marine Maca
ronesian fauna and flora (see Freitas et al., 2019, and references 
therein). However, only some of these studies focused on the Maca
ronesian palaeobiodiversity (Supplementary data 1 for list of works), 
with the northern archipelagos receiving more attention. By contrast, for 
the Cabo Verde archipelago, studies on marine palaeobiodiversity are 
scarce and mainly focused on macrofossils (Lecointre and Serralheiro, 
1966; Serralheiro, 1967, 1976; Mitchell-Thomé, 1976; García-Talavera, 
1999; Johnson et al., 2012; Baarli et al., 2013, 2017) and trace fossils 
(Baarli et al., 2013; Mayoral et al., 2013; Santos et al., 2015; Mayoral 
et al., 2018). This knowledge gap severely hampers understanding the 
marine palaeobiogeography of the region during Quaternary intergla
cial periods.

Santiago is the largest Cabo Verdean island (Fig. 1), with a complex 
geological history dating back to the Late Miocene to Early Pliocene 
(Ramalho et al., 2010a, 2010b, 2010c; Ramalho, 2011). The island ex
hibits well exposed Miocene-Pliocene marine fossiliferous sedimentary 
successions (Serralheiro, 1976; Ramalho et al., 2010a, 2010b, 2010c; 
Ramalho, 2011), Pleistocene marine fossiliferous deposits (Johnson 
et al., 2012; Baarli et al., 2013; Mayoral et al., 2018), and tsunamigenic 
deposits (Paris et al., 2011; Ramalho et al., 2015b; Paris et al., 2018; 
Madeira et al., 2020; Costa et al., 2021). However, mentions of Qua
ternary interglacial marine sedimentary successions were made only by 
Serralheiro (1967, 1976), Madeira et al. (2010), and Ramalho (2011). 
Atlantic volcanic island MIS 11c sedimentary successions are only re
ported from Gran Canaria and Lanzarote (Canary Islands; Zazo et al., 
2002; Montesinos et al., 2014; Muhs et al., 2014; Clauzel et al., 2020), 
and possibly from Santo Antão (Cabo Verde; Ramalho, 2011).

Herein, we report and discuss a peculiar, in the context of volcanic 
oceanic islands, very sheltered, low energy, and remarkably well- 
preserved MIS 11 marine fossiliferous sedimentary succession exposed 
within the Nossa Senhora da Luz Bay on Santiago Island, Cabo Verde. 
We examine its sedimentological and morphological features, as well as 
its biodiversity. The stratigraphic age control in this study is provided by Ta
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new Uranium/Thorium (U/Th) dates performed on fossil corals, and by 
nannofossil biostratigraphy. Finally, we use our findings to reconstruct 
the palaeoecological and environmental conditions through the lengthy 
MIS 11 interglacial and to frame the coeval Cabo Verde marine fauna in 
a tropical East Atlantic palaeoclimatic and palaeobiogeographical 
context.

2. The Cabo Verde archipelago: A geographic, geological, and 
geomorphological framework

Located 600 km off the western coast of Africa, the Cabo Verde 

archipelago consists of 10 volcanic islands and a few islets, with the 
oldest ages of subaerial volcanic rocks ranging from 15.8 Ma in Sal to 
<3 Ma in Fogo Island (Ramalho, 2011; Fig. 1). The origin of the archi
pelago is attributed to the Cabo Verde hotspot, with volcanic activity 
ranging from the Oligocene (Ramalho, 2011) to the present (Fogo 
2014–15 volcanic eruption; Mata et al., 2017). Santiago (15◦N, 23.5◦W) 
is the largest island and one of the four islands that make up the leeward 
group of the archipelago. This island presents several exposures of 
fossiliferous sedimentary successions, ranging in age from Miocene to 
Quaternary (e.g., Serralheiro, 1967, 1976).

The earliest accounts of the geology of Santiago were produced by 

Fig. 2. Stratigraphic logs from Nossa Senhora da Luz Bay fossiliferous sections, with correlation between them. Red hexagons indicate the position where samples for 
nannofossil analysis were collected. PAEC – Pico da Antónia Eruptive Complex; BD – Boulder Deposit. Geological units are in accordance with the geological map of 
Santiago Island (Serralheiro, 1976). The sedimentological analysis was performed on five samples that were collected from layers 2a, 3a, 3b, 3c and 4, across log A. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Darwin (1839, 1844), and later by Bebiano (1932). A summary of 
Santiago’s volcanostratigraphic history is presented in Supplementary 
data 2. The MIS 11 studied sequence is part of a ‘Quaternary unit’ 
composed of sediments resulting from marine erosion (Serralheiro, 
1967, 1976). The MIS 11 terraces are associated with marine abrasion 
surfaces carved on the Pico da Antónia Eruptive Complex basalts, also 
showing signs of subaerial erosion (Serralheiro, 1967, 1976).

Nossa Senhora da Luz Bay (15.044◦N, 23.452◦W) is a peculiar 
geomorphological feature in the context of the Macaronesian islands. 
This type of sheltered bay with a narrow inlet is uncommon in eastern 
Atlantic islands. Similar bays are more common in western Atlantic 
Ocean archipelagos (Supplementary data 3). However, the occurrence of 
Quaternary interglacial marine fossiliferous sedimentary successions in 
such sheltered bays is only known to us from Santa Martha Bay (Curaçao 
Island; MIS 5e; del Valle, 2012), with Nossa Senhora da Luz Bay being 
just the second reported for the Atlantic Ocean.

3. Materials and methods

3.1. Stratigraphy and fossil content

To fully represent the facies variation, four stratigraphic logs were 

compiled at different locations across the bay. The outcrop is located on 
the north bank of the bay, following an East-West direction (Fig. 1, logs 
A to D). Bulk samples of 1 kg each were collected along the sedimentary 
succession, later sorted, and its fossil content analysed in the laboratory 
using a Leica Zoom 2000 stereomicroscope. All material collected is 
stored at the fossil reference collection of the Department of Biology of 
the University of the Azores, (DBUA-F 1256, 1301, 1310, 1314, 1318, 
1319, 1320; 1331; 1403, 1404, 1405, 1406, 1407, 1408, 1423, 1424 and 
1425). All Mollusca from these bulk samples were sorted in the labo
ratory, counted, and identified; search sampling of fossil specimens was 
also performed along the sedimentary succession and later sorted and 
identified in the laboratory (Supplementary Fig. S1).

A quantitative survey of modern taxa was done on a 90-m transect 
laid down along the bay-shore in the vicinity of Log B. The remains of 
Holocene invertebrates were collected, sorted, and identified using the 
same methodology as for the fossil samples. The present-day specimens 
are stored at the reference collection of the Department of Biology of the 
University of the Azores, (DBUA 1395, 1396, and 1398). Species 
nomenclature and authority are in accordance with the World Register 
of Marine Species (WoRMS Editorial Board, 2023).

All molluscan data from the bulk and qualitative search samples is 
shown in Supplementary Table S1. Notes were taken from the 

Fig. 3. General and detailed views of the MIS 11c deposits at Nossa Senhora da Luz Bay. A: General view of the Eastern part of the study area. The dashed squares 
mark the location of Logs C (Fig. 3B) and A (Fig. 3C); B: General view of the stratigraphic succession in Log C location; C: General view of the stratigraphic succession 
in Log A location. Dashed white lines represent the transition between sub-layers; solid white lines represent the location of the transition between layers. The 
numbers of the layers are the same as in Fig. 2.
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PaleoBiology Database (https://paleobiodb.org/), regarding species 
biological and ecological traits, namely data on larval development, 
mineralogy of the shell, life habit (infaunal or epifaunal), type of 
mobility/locomotion, trophic group, substrate type, the average SST, 
expressed as a whole environmental envelope (tropical, subtropical), 
and the type of habitat.

3.2. Biostatistics

Analyses were performed using R version 4.2.0 (R Core Team, 2022). 
Severgal R packages were used, namely: vegan (Oksanen et al., 2017), 
ade4 (Dray and Dufour, 2007), cluster (Maechler et al., 2018), gclus 
(Hurley, 2012), and recluster (Dapporto et al., 2015). Dendrograms 
depicting the relationships between areas were constructed, using 
dissimilarity indices and cluster analysis. Several classical distance 
metrics for presence/absence data were applied, namely Jaccard, 
Sørensen, Ochiai and Simpson dissimilarities (Jaccard, 1901; Sørensen, 
1948; Ochiai, 1957; Simpson, 1960). Furthermore, for each dissimilarity 
coefficient, several agglomeration methods were tested (Legendre and 
Legendre, 1998), namely complete linkage, centroid distance, un
weighted pair group method with arithmetic mean (UPGMA), and 
Ward’s minimum variance clustering (Ward, 1963). To determine the 
best combination of dissimilarity measure and agglomeration method, 
the cophenetic correlation value between the region’s distance matrix 
and the dendrogram representation was calculated (Sokal and Rohlf, 
1962). The guidelines defined in Borcard et al. (2011), and the hierar
chical clustering approach reported by Pavão et al. (2019) were fol
lowed. For the dendrogram, the putative number of groups formed by 
the target regions was estimated using both the Rousseeuw quality 

index, that determines the optimal number of clusters according to 
silhouette widths (Rousseeuw, 1987) and the Mantel statistic, that de
termines the optimal number of clusters according to Mantel statistic 
(Pearson) (Legendre and Legendre, 1998). For dendrogram imple
mentation the guidelines of Borcard et al. (2011) and Pavão et al. (2019)
were followed. This was further supported by a bootstrap validation 
procedure, implemented using the Recluster package, which provides 
robust techniques to analyse patterns of similarity in species composi
tion (Kreft and Jetz, 2010; Dapporto et al., 2013, 2014, 2015). Each 
dendrogram was targeted by a resampling procedure with 100 trees per 
iteration and a total of 1000 iterations. All the dissimilarity coefficients 
were retested using this approach, to ensure consistency in the number 
of groups formed by the target regions, for each taxonomic group.

3.3. Sediment analysis

Seven sediment samples were collected: five from the studied 
fossiliferous sequence (one from each layer 2a, 3a, 3b, 3c and 4, across 
log A; samples 1–5; cf. Fig. 2) and two from present-day tidal flat sedi
ments (samples 6 and 7). Samples 6 and 7 were collected near the 
location of Log B at, respectively, 1.5 and 3 m from the margin at low 
tide. These samples were analysed at the Sedimentology Laboratory of 
the Geology Department of the University of Lisbon. Graphic mean, 
median, standard deviation, skewness, and kurtosis were obtained using 
Folk and Ward (1957) methodology. Due to the richness in carbonate 
bioclasts, some samples were decalcified.

Six samples for calcareous nannofossil samples were collected from 
the most favourable layers, with fewer coarse bioclasts and a rich fine 
carbonate matrix (see Figs. 1 and 2). In the laboratory, approximately 

Fig. 4. Specimens of the fossil assemblage. A: In situ Saccostrea cuccullata (Log A); B: Balanidae on S. cuccullata (Log A); C: Right valve of Aequipecten opercularis (Log 
B); D: Several Thetystrombus latus (Log C); E: Senilia senilis in living position (plan view; top of Log D); F: External mould of Turritella bicingulata (Log C).
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one-third of a test tube of sediment was vigorously mixed with tap water 
and left to settle for 24 h. A small portion of the uppermost, finest 
fraction was then extracted using a Pasteur pipette and directly smeared 
onto a cover glass. The resulting ripple-textured smear was dried and 
permanently mounted onto a slide using synthetic resin (Entellan). For 
each sample, an entire 30 mm length of the smear slide was examined for 
nannoliths using a petrographic microscope (Leica DM2700P with Leica 
Flexcam C1) at 1250× magnification.

3.4. Laser-ablation U/Th disequilibrium geochronology

In total, six coral fossil specimens (Siderastrea radians) were collected 
and dated using U/Th disequilibrium geochronology from the middle 
and top of the sequence (corals are absent at the base of the sequence) 
corresponding to samples ST84–1, ST84–3, ST85–1, and STG34–2 from 
the middle of the sequence, and ST86–1 and STG-34-4, from the top of 
the sequence (ST = STG: Santiago).

The sampled fossils of corals had no visible signs of recrystallization 
and were processed, cut, and polished for analysis at the University of 
Bristol, following established protocols outlined in Spooner et al. 
(2016). For dating, the half-lives method reported in Cheng et al. (2000)
was used. The samples were laser-ablated using a Photon Machines 
Analyte G2 193 nm laser. 230Th and 238U isotopes were measured using a 
Neptune Multi-Collector Inductivity Coupled Plasma Mass Spectrometer 
(MC-ICP-MS) on a central ion counter and a Faraday cup respectively. 
Ages were calculated using 230Th/238U ratios corrected for background 
(laser cell gas blank), assuming that there has been no open-system 
behaviour and that initial 230Th was negligible. Ages were calculated 
by Newton-Raphson iteration and scaled to the in-house inorganic 
aragonite standard VS001. This technique is routinely applied to car
bonate samples <350 ka in age and age uncertainty greatly inflates as 
samples approach ages of 400 ka and secular equilibrium (Spooner et al., 
2016). This method does however allow carbonate samples from 
younger interglacial intervals (i.e. MIS 9e or younger) to be distin
guished from previous interglacials like MIS 11c (400 ka).

3.5. Topographic survey

The present-day maximum altitude of the studied fossiliferous sedi
mentary succession was measured using a single-band differential GPS, 
Emlid Reach RS+. Delimitation of the outcrop was made both in the 
field, and by using high-resolution aerial photography acquired by un
manned aerial vehicle (UAV) DJI Mavic Pro, with native camera 
attached. An UAV orthomosaic map was compiled using “DroneDeploy” 
photogrammetry tools. A Digital Elevation Model (DEM, 2010) from 
Santiago Island was computed using ArcGIS 10.2.2, to which the de
limitation of the Hydrographic Basin that drains into Nossa Senhora da 
Luz Bay was added. An additional airborne orthophotomap (50 cm of 
spatial resolution) and altimetric information from Santiago Island were 
also used, provided by Unidade de Coordenação do Cadastro Predial 
(UCCP) from Ministério do Ambiente, Habitação e Ordenamento do 
Território, Cabo Verde Republic.

4. Results

4.1. Stratigraphic logs

Four sections (Logs A, B, C, and D) were measured along the northern 
coast of Nossa Senhora da Luz Bay (Fig. 1). Except for Log B, where the 
base of the sequence is not exposed, all the sedimentary sequences 
measured start on an erosion surface carved on subaerial basalts (i.e., a 
shore platform).

4.1.1. Log A
The stratigraphic succession recorded in Log A lies on subaerial ba

salts from the Pico da Antónia Eruptive Complex (sub-layer 1a, Figs. 2, 

3A, C). It starts as a 20 to 55 cm-thick coarse gravel deposit composed of 
both rounded and angular clasts on a silty-clay matrix, more abundant at 
the top (sub-layer 2a, Logs A, C and D, Fig. 2). In situ fossil specimens of 
the bivalve Saccostrea cuccullata (Born, 1778; Fig. 4A and B) were found 
attached to the bedrock and boulders (sub-layer 2a, Fig. 2). A paleosol 
(sub-layer 2b) is developed on top of sub-layer 2a, separating it from 
sub-layer 3a (Log A, Figs. 2, 3C).

The deposit represented in layer 3 is present only in Log A and can be 
divided in three sub-layers. Sub-layer 3a is a silty sand containing oc
casional pebbles. This layer is rich in specimens of S. cuccullata, varying 
in size from 5 to 15 cm, some of which articulated (Fig. 3C), scarce 
rhodoliths and bioturbation structures. The burrows, Thalassinoides 
suevicus (Rieth, 1932), generally assigned to the burrowing activity of 
crustaceans, have an average diameter of 5 cm. Sub-layer 3b is a silty 
clay with thicknesses, from 0 to 35 cm. In this layer S. cuccullata is less 
abundant and valves are often incrusted with balanids; specimens with 
articulated valves were not observed (Fig. 4B). Sub-layer 3c corresponds 
to a 70 to 90 cm-thick coquina composed almost exclusively of dis
articulated valves of S. cuccullata. Sporadic poorly preserved rhodoliths 
are also present at the top. The silty-clay matrix includes occasional 
rounded (up to 5 cm in diameter) and rare angular basalt clasts (up to 15 
cm in diameter). In all sub-layers of layer 3, valves of S. cuccullata are 
present, both pristine and bored with clionaid sponges (trace fossil 
Entobia isp.).

Layer 4 is present in Logs A and C (Fig. 2) and corresponds to a 60 
cm-thick, bioturbated clay bed, containing scattered rhodoliths, frag
ments of bivalve shells and internal and external moulds of gastropods 
(e.g., Turritella bicingulata Lamarck, 1822).

Layer 5 (Fig. 2) is a stratigraphic succession of thin silt levels that 
ranges from 2.0 m (Log C) to 8.0 m-thick (Log D), and is divided into four 
sub-layers. The lowermost level presents desiccation cracks indicating 
temporary emersion. Disarticulated valves of S. cuccullata are present in 
the lowermost sub-layer 5a, absent in the intermediate ones, and 
become abundant in the upper sub-layer 5d (cf. Log B, Fig. 2). Other 
bivalve species, such as Aequipecten opercularis (Linnaeus, 1758) 
(Fig. 4C) and Senilia senilis (Linnaeus, 1758) (Fig. 4E) are present but less 
frequent, together with echinoid spines (cf. Eucidaris sp.), while gas
tropods are represented by poorly preserved moulds of T. bicingulata 
(Fig. 4F). The whole stratigraphic succession is heavily bioturbated with 
Thalassinoides suevicus, forming large, slightly oblique, simple, straight, 
subcylindrical burrows, probably produced by crabs.

Layer 6 corresponds to a 1.7 (Log A) to 3.3 m-thick rhodolith deposit 
(Log B, Fig. 2). This layer is the one that presents higher biodiversity, 
with large, disarticulated specimens of S. cuccullata, Thetystrombus latus 
(Gmelin, 1791) (Fig. 4D), A. opercularis, spines of cidaroid and Echino
metra echinoids, and corals, but also smaller specimens of the bivalve 
Arcopsis afra (Gmelin, 1791) and the gastropod Volvarina sp. Some shells 
show serpulid incrustations. The stratigraphic succession in Log A is 
topped by layer 7, a present-day boulder colluvium (Fig. 2) resulting 
from mechanical erosion of nearby basaltic outcrops.

4.1.2. Log B
In Log B, unlike Logs A, C, and D (Fig. 2), the basement is not exposed 

above present-day mean sea level. The subaerially exposed stratigraphic 
succession begins with layer 5 of the overall sequence. The lowermost 
bed is a 40 cm-thick highly bioturbated clay (sub-layer 5a) containing 
dispersed rhodoliths and specimens of A. opercularis. It is covered by a 
3.7 m-thick level of heavily bioturbated clayey-silty sands (sub-layer 
5b), presenting horizontal bedding. It contains scattered rhodoliths, rare 
specimens of S. cuccullata, A. opercularis, Conus spp., moulds of 
T. bicingulata, and echinoid spines. Sub-layer 5d is a 20 cm-thick 
coquina, composed of an accumulation of S. cuccullata shells, occa
sionally articulated.

Layer 6 is composed of two sub-layers: sub-layer 6a is a 120 cm-thick 
silty-clayey sandstone slightly bioturbated, containing rhodoliths, Conus 
spp., S. cuccullata and T. latus. Upwards this layer changes into a 
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Table 2 
Comparison between fossil molluscs from the MIS 11c sediments and recent molluscs from the 
present-day tidal flat. * Reported by Serralheiro (1976); ** reported by Serralheiro (1976) but 
not found in our surveys. Pr/Ab: Presence/Absence: 1 - present; 1+ − probable presence. 
Species occurring in both MIS 11c sediments and in the present tidal shore are highlighted.

Taxonomic composi�on
Quan�ta�ve Samples

MIS 11c Recent

Species / Taxa Pr/Ab Log 
A

Log 
B

Log 
C

Log 
D TOTAL % Pr/Ab TOTAL %

Aequipecten opercularis (Linnaeus, 
1758) * 1 16 37 4 57 18.15

Alvania cf. peli Moolenbeek & Rolán, 
1988 1 1 1 0.32

Arca noae Linnaeus, 1758 1 6 1.57
Arca tetragona Poli, 1795 ** 1 - - - - ?
Arcopsis afra Gmelin, 1791) 1 6 6 1.91 1 8 2.10
Bulla cf. striata Bruguière, 1792 1 7 1.84
Bursa scrobilator (Linnaeus, 1758) 1 2 2 0.64 1 1 0.26
Caecum sp. 1 1 1 0.32
Cerithium cf. atratum (Born, 1778) 1 1 1 0.32 1 1 0.26
Chama cf. gryphoides Linnaeus, 1758 1 1 0.26
Columbella adansoni Menke, 1853 1 1 0.26
Conus sp. 1 3 2 2 7 2.23 1 7 1.84
Cymbula safiana (Lamarck, 1819) 1 1 0.26
Cypraecassis tes�culus senegalica 
(Gmelin, 1791) 1 3 0.79

Dendropoma sp. 1 6 6 1.91
Euthria cf. helenae Rolán, Monteiro 
& Fraussen, 2003 1 1 1 0.32

Fissurella sp. 1 1 1 0.32 1 16 4.20
Gari fervensis (Gmelin, 1791) ** 1 - - - - ?
Gastrana fragilis (Linnaeus, 1758) ** 1 - - - - ?
Gemophos viverratus (Kiener, L.C., 
1834) 1 51 13.39

Hexaplex cf. rosarium (Röding, 1798) 1 2 2 0.64 1 1 0.26
Hipponix cf. an�quatus (Linnaeus, 
1767) 1 4 1.05

Hipponix cf. subrufus (Lamarck, 
1822) 1 1 1 0.32 23 6.04

Hyo�ssa virle� (Deshayes, 1832) ** 1 - - - - ?
Isognomon dunkeri (P. Fischer, 1881) 1 8 2.10
Jujubinus cf. rubioi Rolán & 
Templado, 2001 1 2 1 3 0.96

Leporime�s papyracea (Gmelin, 
1791) ** 1 - - - - ?

Loripes cf. orbiculatus Poli, 1795 1 16 4.20
Luria lurida (Linnaeus, 1758) 1 12 3.15
Megaxinus sp. 1 3 0.79
Naria spurca (Linnaeus, 1758) 1 4 1.05
Nerita senegalensis Gmelin, 1791 1 102 26.77
Patella sp.** 1 - - - - ?
Thetystrombus latus (Gmelin, 1791) 
* 1 1 16 2 19 6.05 1+

Phorcus cf. mariae Templado & 
Rolán, 2012 1 5 1.31

Saccostrea cuccullata (Born, 1778) * 1 24 69 2 6 101 32.17
Schwartziella cf. punc�culata Rolán 
& Luque, 2000 1 1 1 0.32

Senilia senilis (Linnaeus, 1758) * 1 2 48 2 10 62 19.75
Siphonaria cf. pec�nata (Linnaeus, 
1758) 1 10 2.62

Spondylus senegalensis Schreibers, 
1793 1 1 1 0.32 1 1 0.26

Stramonita haemastoma (Linnaeus, 
1767) 1 3 0.79

Tagelus cf. adansonii (Bosc, 1801) 1 8 2.10
Thais nodosa (Linnaeus, 1758) * 1 11 11 3.50 1 63 16.54
Thyasira sp.** 1 - - - - ?
Turritella bicingulata Lamarck, 
1799* 1 1 3 23 27 8.60 1 14 3.67

Venus sp.** 1 - - - - ?
Vermetus sp. 1 3 3 0.96
Volvarina sp. 1 1 0.26
TOTAL 29 44 211 10 49 314 100 29 381 100
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rhodolith bed (sub-layer 6b), devoid of sediment matrix. Besides the 
dominant rhodoliths, fragments of S. cuccullata, coral fragments, echi
noid spines, and well-preserved specimens of T. latus are also embedded 
within the rhodolith bed.

4.1.3. Log C
The sedimentary succession lies on basaltic subaerial lava flows (sub- 

layer 1a), whose top is intensely weathered (sub-layer 1b; Fig. 3B). A 35 
to 55-cm thick fluvial deposit, mainly composed of angular basaltic 
submarine lava flow clasts (sub-layer 2a), covers the basal lava flows, 
and presents a well-developed 20 cm-thick paleosol (sub-layer 2b) at the 
top (Log C, Fig. 2). The base of the marine sedimentary succession stands 
at approximately 6.5 m above msl and starts with layer 4. This unit is a 1 
m-thick fine sand layer with scattered basalt clasts, rich in S. cuccullata 
fossils in the lowermost 60 cm, some in situ, still attached to basaltic 
boulders and showing encrusting barnacles; the oyster abundance de
creases upwards. Specimens of T. bicingulata, A. opercularis, S. senilis, 
Conus spp., rhodoliths, spines of echinoids, serpulids and rare coral 
fragments are also present. The sandy matrix is bioturbated by un
identified vertical burrows.

Layer 5 is represented by sub-layer 5b and corresponds to a 2 m-thick 
silty-clayey sandstone highly bioturbated with vertical, oblique, and 
horizontal T. suevicus.

4.1.4. Log D
As in Log C, the marine sedimentary succession lies on a subaerial 

basaltic basement, having its base ~5.2 m above msl. The basement is 
composed of strongly weathered subaerial basaltic lava flows (sub-layer 
1b). It is overlain by a 1 to 2-m thick fluvial pebble/boulder deposit (sub- 
layer 2a). The largest boulders are 1 m in diameter and the deposit is 
clast supported. Flat boulders in this fluvial deposit display imbrication 
indicating incoming currents from the northeast. The marine sedimen
tary succession starts with a 1 m-thick torrential deposit (sub-layer 5a). 
The lower 60 cm correspond to a thinly layered grey sandy deposit with 
scattered pebbles. The upper 40 cm are intensely bioturbated and 
contain shells of S. cuccullata and moulds of T. bicingulata. The dominant 
galleries are sub-horizontal up to 15 cm in diameter, and fewer, thinner, 
vertical burrows.

The stratigraphic succession continues with 6–7 m of fine sandstone 
with ill-defined parallel stratification (sub-layers 5b and 5c). It shows 
intense bioturbation with T. suevicus that shows galleries with horizon
tal, oblique, and vertical tunnels, ranging in diameter from a few mil
limetres to 10 cm, and progressively decreasing in intensity towards the 
top. Some tunnels are branched. The sandstone contains shells of 
S. cuccullata, abundant moulds of T. bicingulata, rare shells of Conus spp., 
T. latus, A. opercularis, and dispersed and poorly preserved rhodoliths 
mostly concentrated at the basal section of the sequence. The first 1 m 
(sub-layer 5b) is characterized by the presence of several moulds of 
T. bicingulata, but mainly by the occurrence of articulated shells of 
S. senilis in living position (Fig. 4E). The sedimentary succession presents 
a lenticular geometry draping over the basaltic basement, which grad
ually rises to an elevation of 10–11 m above present-day mean sea level 
(apsl), thus representing the submersion and filling of a palae
otopography (fluvial valley), similar to the present-day topography.

4.2. Sediment characterization

The grain size of the sediment sampled from the fossiliferous strati
graphic succession (samples 1–5) varies from medium to coarse sand, 
whereas the samples collected from the present-day tidal flats show a 
variation from fine to medium sand (Table 1). Only sample 6 shows a 
moderate calibration, with the remaining samples poorly calibrated. The 
asymmetry of the sampled fossiliferous sediment varies from positive to 
negative, while the samples from the tidal flat (samples 6–7) present a 
negative asymmetry. Unlike sample 6, which presents a leptokurtic 
distribution curve, all remaining samples are platykurtic (Table 1).

Based on Flemming’s (2000) textural classification, the sediment of 
samples 1 and 4 are classified as “slightly sandy mud”, samples 3 and 5 
as “sandy mud”, and sample 2 as “muddy sand”, whereas the samples 
from the tidal flat are “slightly sandy mud” (sample 6) and “slightly 
muddy sand” (sample 7).

4.3. Fossil and present-day faunal content

The total number of specific molluscan taxa reported for this bay 
compiled from the literature and including the present results, amounts 
to 48: 29 reported from the MIS 11 marine sediments and another 29 
found on the present-day tidal flat; only ten species are common to both 
contexts (Table 2).

We excluded from the following analysis the eight specific taxa re
ported for this outcrop by Serralheiro et al. (1976; Table 2) that we did 
not find. The only mollusc species having a calcitic shell is the bivalve 
Saccostrea cuccullata (Supplementary Table S1); all other taxa present 
aragonitic, or a variable combination of aragonitic/calcitic shells. 
Regarding life habit, most are epifaunal, with only five infaunal species: 
four bivalves [(Loripes cf. orbiculatus Poli, 1795, Megaxinus sp., S. senilis, 
Tagelus cf. adansonii (Bosc, 1801)], and one gastropod (T. bicingulata). 
Most of the taxa are mobile, with only one quarter of the species (10 
taxa) living attached to the substrate (Supplementary Table S1). Con
cerning the trophic composition, 16 taxa are grazers, 14 are suspension- 
feeders (all bivalves), 10 are carnivores, 5 are omnivorous, and only 2 
are deposit feeders (Supplementary Table S1). Most of the species (26 
taxa) live associated with rocky shores, with fewer living in sandy en
vironments (13), gravel (9) and among algae (6). Of the 40 tropical taxa 
listed in Supplementary Table S1, about half (22) extend their 
geographical ranges to subtropical latitudes as well. Finally, when it 
comes to habitat, all but one species [Cymbula safiana (Lamarck, 1819)] 
are coastal taxa, only 5 and 4 are considered as outer shelf or oceanic 
taxa, respectively. There are 10 taxa that may live in brackish condi
tions, and only one, the bivalve S. cuccullata, is able to endure hyper
saline conditions (Supplementary Table S1).

4.3.1. Fossil samples
The preservation of the fossil specimens is not uniform, with smaller 

specimens being less well preserved. Representatives of five phyla were 
collected (Foraminifera, Echinodermata, Mollusca, Arthropoda, and 
Bryozoa). The Mollusca is the best represented phylum, with 21 specific 
taxa and 314 specimens (Table 2). The most abundant species are 
S. cuccullata (32.17 %), S. senilis (19.75 %), A. opercularis (18.15 %), 
T. bicingulata (8.60 %), and T. latus (6.05 %), followed by Thais nodosa 
(Linnaeus, 1758) (3.50 %). The remaining species represent 11.78 % of 
the specimens. The fossil assemblage has a low biodiversity, a fact 
already mentioned by Serralheiro (1976; Table 2).

Calcareous nannofossils are very rare and poorly preserved, with 
evidences of dissolution/ recrystallization. They were collected in facies 
5b, 6a, and 6b of the marine terrace of Nossa Senhora da Luz Bay (cf. 
Fig. 2), and are represented by four specific taxa: a small, identified with 
open nomenclature, Gephyrocapsa sp., Gephyrocapsa caribbeanica Bou
dreaux & Hay, 1967, Gephyrocapsa oceanica Kamptner, 1943, and 
Umbilicosphaera sibogae (Weber Bosse) Gaarder, 1970.

Layers 4 (Logs A and C, Fig. 2) and 5 (Logs A to D, Fig. 2) show dense 
bioturbation with Thalassinoides suevicus, as well as abundant shells of 
S. senilis showing Entobia isp. Bioerosion structures.

4.3.2. Present-day fauna
The present-day fauna samples yielded representatives of four phyla 

with the Mollusca, again, being the best represented with 29 specific 
taxa (Table 2). A total of 381 specimens were collected (Table 2). The 
most abundant species are Nerita senegalensis Gmelin, 1791 (26.77 %), 
T. nodosa (16.54 %), and Gemophos viverratus (Kiener, L.C., 1834) 
(13.39 %), followed by Hipponix cf. subrufus (Lamarck, 1822) (6.04 %), 
L. cf. orbiculatus (4.20 %), Fissurella sp. (4.20 %), and T. bicingulata (3.67 

C.S. Melo et al.                                                                                                                                                                                                                                  Palaeogeography, Palaeoclimatology, Palaeoecology 684 (2026) 113505 

9 



%). The remaining species represent 25.19 % of the specimens (Table 2).

4.4. U/Th disequilibrium geochronology

A total of six coral samples were analysed and all were found to be 
close to the upper limit of the laser-ablation U–Th dating technique 
proposed by Niki et al. (2022; cf. Table 3). In samples where Newton- 
Raphson iterations were able to provide an age uncertainty, resulting 
coral ages ranged from 383 to 357 ka with a typically uncertainty of ±72 
kyrs (2σ). Whilst none of these ages are precise, they do allow us to 
distinguish these MIS 11 deposits from younger interglacials (e.g. MIS 
5e, ~125 ka).

5. Discussion

5.1. Age of the deposit

The transgressive sedimentary succession found at Nossa Senhora da 
Luz Bay indicates deposition during a sea-level rise and successive 
highstand, necessarily during an interglacial period as compatible with 
its stratigraphic position, elevation (in the context of an uplifting island), 
and degree of preservation. Accordingly, it is reasonable to postulate 
that this marine terrace was either formed during a time when sea level 
was higher than the modern sea level, for example MIS 5e or MIS 11c, or 
during MIS 9e, but that would require very high uplift rates, as 
maximum sea level during MIS 9e was lower than today (Bintanja et al., 
2005; Miller et al., 2011).

The coral samples from the Nossa Senhora da Luz sedimentary suc
cession dated by U/Th disequilibrium geochronology, yielded mean 
ages of ~370 ka, which fall within the MIS 11 interval (424–374 ka; 
Lisiecki and Raymo, 2005). These dates suggest that the sedimentary 
succession at Nossa Senhora da Luz Bay was formed during the MIS 11 
interglacial and not during the later MIS 5e sea level highstand at 120 
ka. Most of the calcareous nannofossil species present in the sediments of 
the lower beds of the study site, showing low abundances and diversity 
as expected for a semi-confined palaeoenvironment like the one found in 
the present-day bay (Fig. 7), confirm a very coastal facies with an 
indication of warm waters. The presence of the extinct species Gephyr
ocapsa caribbeanica corroborates that these deposits fall within the 
G. caribbeanica zone that lasted from MIS 14 to MIS 8 (Bollmann et al., 
1998; Baumann and Freitag, 2004). Additionally, the absence of Pseu
doemiliania lacunosa Kamptner, 1963 ex Gartner, 1969 places these 
sediments younger than MIS 12 (<440 ka; Raffi et al., 2006). Thus, the 
calcareous nannofossil assemblages, while low in diversity, provide 
relevant biostratigraphic constrains and support the assignment to MIS 
11.

5.2. Stratigraphic succession and palaeoenvironment

The transgressive MIS 11c sedimentary succession at Nossa Senhora 
da Luz Bay documents the transition from a subaerial environment 
incised by fluvial valleys, into a confined, sheltered marine bay envi
ronment similar to its present-day environment. Sediment analysis 
(Table 1) shows a variation in grain size distribution, with the present- 
day tidal flat sediments being better calibrated than the MIS 11c ones. 
Moreover, MIS 11c deposits are slightly coarser, suggesting that wave 
energy inside the bay was higher during the MIS 11c than it is today.

The sedimentary succession starts with conglomerate and breccia 
deposits resulting from fluvial discharge (Logs A, C and D). Today (and 
during MIS 11) the bay is the mouth of two main streams (Fig. 5). The 
tropical climate in Cabo Verde is characterized by rare, short but intense 
periods of precipitation, resulting in a torrential regime (Costa and 
Nunes, 2008; Varela-Lopes et al., 2014). These intermittent, torrential 
rains feeding the streams that drain mainly into the southern side of 
Nossa Senhora da Luz Bay are probably the reason for the absence of 
fossiliferous marine sediments on the south side of the bay (Fig. 5), most 

likely having been eroded away.
The presence of a paleosol (sub-layer 2b, Logs A and C, Fig. 2) 

developed on top of a marine conglomerate implies a relative sea-level 
fall producing emersion and interruption of sedimentation for a period 
long enough to allow pedogenesis. A subsequent relative sea-level rise 
event submerged the paleosol and led to suitable ecological conditions 
for the later settlement of a monospecific initial oyster bank, composed 
almost entirely of articulated shells of the bivalve S. cuccullata (sub-layer 
3a in Log A; Figs. 2, 3C). Monospecific oyster banks are known to occur 
in river mouths and estuaries, being associated with the early trans
gressive systems tract, when pre-existing topographies were flooded by 
sea-level rise, providing ecological conditions suitable for the estab
lishment of dense oyster clusters (Pufahl and James, 2006). The higher 
matrix content in sub-layers 3b and 3c (Log A, Fig. 2), as well as the 
occurrence of disarticulated valves of oysters, suggesting post-mortem 
transport, and the presence of boulders and coarse sediment in sub- 
layer 3c, suggest an increase in stream discharge that we relate to 
torrential rain events.

The higher biodiversity recorded in layer 4 (Logs A and C; Fig. 2), as 
well as the higher bioturbation, show that more marine species 
inhabited the bay (e.g. corals). The first specimens of the bivalve 
S. senilis also begins to appear in the targeted sedimentary succession.

The thick package of fine silty-clay sediment in layer 5 is charac
terized by horizontal to sub-horizontal laminar stratification, suggesting 
a calm, low energy, environment. In Log A, the lower layers of this 
sedimentary succession exhibit desiccation cracks indicating a shallow 
environment temporarily exposed to subaerial conditions. This bed is 
intensely bioturbated, displaying a dense network of burrows (sub-layer 
5b, Fig. 3B) throughout its entire vertical extension (Fig. 2). The grain 
size and thickness of this bed show that, for an extended period, only 
fine sediment was transported into the bay, suggesting the presence of a 
wide low-energy tidal flat similar to the present-day conditions in the 
inner part of Nossa Senhora da Luz Bay. This type of ecosystems is 
usually highly biodiverse in meiofauna (Dittmann, 2000, and references 
therein; Schratzberger and Ingels, 2018). Crustaceans and polychaetes 
are usually responsible for most of the burrows (e.g., Thalassinoides 
suevicus). Ichnofossil records from insular environments are known from 
other Macaronesian islands, with several examples of galleries made by 
polychaetes, crustaceans and echinoderms: e.g., Macaronichnus segre
gatis Clifton & Thompson, 1978, Palaeophycus isp., and Diopatrichnus 
santamariensis Uchman, Quintino & Rodrigues, 2017, produced by 
polychaetes (Santos et al., 2015; Uchman et al., 2016, 2017, 2018, 
2020); Thalassinoides isp., Ophiomorpha nodosa Lundgren, 1981, and 
Centrichnus dentatus Uchman, Wisshak, Madeira, Melo, Sachcetti, Ávila, 
G. & Ávila, S., 2025, produced by crustaceans; Bichordites monastiriensis 
Plaziat & Mahmoudi, 1988, Circolites kotoucensis Mikuláš, 1992, and 
Ericichnus bromleyi Santos & Mayoral, 2015, produced by echinoderms 
(Santos et al., 2015; Ávila et al., 2023). Some of these burrowing or
ganisms are represented by body fossils, such as spines of the Eucidaris 
echinoid and claws of unidentified decapod crustaceans, but possibly 
also by several molluscs such as T. bicingulata and S. senilis. The latter 
two species are abundant in sub-layer 5d, where remains of S. senilis in 
living position, as well as several casts of T. bicingulata, are found 
(Fig. 4E and F).

5.3. Crustaceans as ‘ecosystem engineers’

An ecosystem engineer is an organism that modifies, creates or de
stroys habitat and directly or indirectly modulates the availability of 
resources to other species, “causing physical state changes in biotic or 
abiotic materials” (Jones et al., 1994) and can be classified as autogenic 
(changing the environment via their own physical structures) or allo
genic (changing the environment by transforming living or non-living 
materials from one physical state (e.g., living trees in a forest) to 
another (e.g., dead trees in a beaver dam) via mechanical or other ac
tions). Crustaceans are allogenic engineers and play an important role in 
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shaping the ecosystems. Crustacean burrows are one of the most 
pervasive changes performed by these organisms. These structures 
result, e.g., from the need of refuge for hot and dry periods (Kristensen, 
2008, and references therein), and can also function as habitat for other 
species. Several crab claws (that will be the subject of a forthcoming 
paper) attest to the presence of decapod crustaceans in the bay at least 
since the MIS 11. The thickness of the sedimentary succession and the 
complex network of galleries (layer 5, Logs A–D) suggest a high sedi
mentation rate and an intense crab activity.

5.4. The importance of rhodolith beds

One of the most distinctive layers of the MIS 11 sedimentary suc
cession in Nossa Senhora da Luz Bay is the thick rhodolith deposit in 
layer 6 (Logs A and B; Fig. 2). Rhodolith beds are rare and fragile eco
systems (Wilson et al., 2004; Joshi et al., 2017) and their preservation in 
the fossil record is relatively uncommon (see Silva et al., 2019; Uchman 
et al., 2020), with most examples corresponding to more resistant as
semblages of lumpy rhodolith morphologies. And, notwithstanding the 
fact that Macaronesia exhibits several remarkable examples of well- 
preserved fossil rhodolith beds (e.g., Johnson et al., 2011, Johnson 
et al., 2017; Rebelo et al., 2016, 2021, 2022, 2025), these mostly 
correspond to hard-wearing lumpy forms, denoting their higher ener
getic formational and depositional environment. The rhodolith bed of 
Nossa Senhora da Luz, however, stands out on account of the excep
tional degree of preservation of its very large (up to 15 cm in diameter), 
extremely fine-branching – and hence very fragile – rhodoliths; these are 
largely unbroken and are stacked on top of each other forming a layer 
that reaches up to 3 m in thickness. This layer is thus, arguably, one of 
the better-preserved calm-water fragile fossil rhodolith assemblages in 
the fossil record of the Atlantic, and a testimony to the degree of pro
tection afforded by the Nossa Senhora da Luz Bay during the sea-level 
highstand during which it was formed, as well as during subsequent 
highstands. Moreover, rhodolith beds are known to require constant 
submergence (Barbera et al., 2003). Thus, assuming a sea level rise of 
6–13 m during the MIS 11c (Raymo and Mitrovica, 2012), the only sites 
suitable for rhodolith development would be those recorded at the top of 
layer 5, located 4–5 m apsl (Logs A and B, Fig. 2).

Rhodolith beds are important ecosystems that provide three- 
dimensional habitats for a highly diverse suite of organisms (Fig. 6), 
including epibenthic, epiphytic, cryptic, and infaunal species (Birkett 
et al., 1998; Steller et al., 2003; Basso and Brusoni, 2004; Grall et al., 
2006; Amado-Filho et al., 2007), especially crustaceans and polychaetes 
(Harvey and Bird, 2008). Being a delicate ecosystem, its presence helps 
on the reconstruction of palaeoenvironments (Bassi et al., 2012). Rho
dolith beds are known to occur in a variety of temperatures, with
standing temperatures as low as 2 ◦C [e.g., Phymatolithon calcareum 
(Pallas) Adey and McKibbin, 1970], and tend to occupy high salinity 
areas (Bosence, 1976). The coralline algae that form the rhodoliths are 
light dependent, so they only occur within the euphotic zone (Birkett 
et al., 1998). They require enough wave action and/or bioturbation to 
promote rotation and do not tolerate emersion and desiccation (Barbera 
et al., 2003). Therefore, they tend to occur in sheltered areas, such as 
coastal bays or inlets (Bosence, 1979) presenting an optimal wave action 
to prevent the burial of the thalli (Joshi et al., 2017) by high sedimen
tation rates (Rebelo et al., 2022). The rhodolith bed at Nossa Senhora da 
Luz Bay represents an extremely fragile stack of very fine-branching 
rhodoliths, most probably still in their life position, denoting a rela
tively calm environment, possibly under fairly constant wave energy 
conditions, as the one afforded by an inlet well protected by rocky spurs 
on both sides, which would moderate, by refraction, the wave energy 
entering the inlet (see Fig. 7B).

The rhodolith bed (layer 6) is recorded at the top unit of Logs A and 
B. Since this unit does not exhibit any terrigenous sediments in its ma
trix, we infer that the rhodolith bed was not affected by inland sediment 
discharges and attribute its preservation to subsequent emersion caused 

by a relative sea-level fall. The rhodolith bed also indicates low turbidity 
during the final recorded stages of the MIS 11c sedimentary succession 
at the study site, in contrast with present-day conditions (cf. Supple
mentary material 3). Such conditions would indicate that the rhodolith 
bed was formed towards the end or after the North African humid period 
(420–405 ka; see Helmke et al., 2008; Grant et al., 2022), when north
ward heat flux in the North Atlantic was at its maximum and SSTs were 
warmest throughout the Atlantic basin (Stein et al., 2009; Voelker et al., 
2010; Rodrigues et al., 2011; Milker et al., 2013; Hu et al., 2024).

5.5. Inferring vertical land movement rates at Nossa Senhora da Luz Bay

Eustatic oscillations (Haq et al., 1987; Bintanja et al., 2005; Miller 
et al., 2005, 2011; Kominz et al., 2008) allied to uplift resulted in 
considerable topographic changes in Santiago Island, which are more 
noticeable in flat and gently dipping coastal areas such as the Nossa 
Senhora da Luz Bay region.

Like other Macaronesian islands [e.g., Santa Maria Island, Azores 
(Ramalho et al., 2017); Madeira Island (Ramalho et al., 2015a); Lan
zarote, Fuerteventura, Tenerife, and La Gomera, in the Canaries (Acosta 
et al., 2003 and references therein)], Santiago has a complex vertical 
movement history, either dominated by a general uplift trend, or 
including significant uplift episodes (Ramalho et al., 2010a, 2010b, 
2010c; Marques et al., 2020). For Santiago, Ramalho et al. (2010b, 
2010c) estimated a long-term, averaged uplift rate of 100 m/Myr for the 
last 4 Ma.

As described by Ramalho (2011), the vertical displacement can be 
calculated by: 

Dv = h+d–H 

where Dv corresponds to the vertical displacement due to land 
movement, h is the present elevation, d the inferred palaeodepth of sea 
water, and H the contemporaneous palaeo-global mean sea-level 
(PGMSL) height (all measured in meters). In the calculation of the ver
tical displacement of Santiago presented herein, we implicitly included 
glacial isostatic adjustments into Dv, which is not entirely adequate, as 
glacial isostatic adjustments follows glacial cycles, while Dv represents a 
trend through time. The msl height for MIS 11c (= +8 m) was obtained 
from Miller et al. (2011). For Nossa Senhora da Luz Bay and using the 
data for the MIS 11c maximum (H =+8 m at circa 405 kyr), Dv = 40.5 m 
(estimated uplift rate of 100 m/Ma x 0.405 Ma), and h = 0 m, we obtain 
a value for d of +48.5 m (Fig. 8). If we use other sea level curves (e.g., 
Raymo and Mitrovica, 2012), MIS 11c maximum PGMSL values range 
from +6 to +13 m, which translates into values for d ranging from +46.5 
to +53.5 m. Thus, we should expect to find the MIS 11c marine terraces 
at these altitudes. However, no signs of such terraces were found.

The existence of several raised marine terraces in Cabo Verde is 
documented since Serralheiro (1976), with fossiliferous sequences at 
Nossa Senhora da Luz Bay positioned at 2–4 m, 5–10 m and at 15–25 m 
apsl. Our data supports the interpretation that only those at +2–4 m and 
+ 5–10 m correspond to MIS 11c fossiliferous deposits, whilst the ones 
standing 15–25 m apsl are interpreted as a younger tsunami deposit 
(Ramalho et al., 2015b; Ávila et al., 2017, 2025). The MIS 11c deposits 
were found at a maximum altitude of 12 m apsl (at the location of Log 
D), where specimens of S. senilis are found in living position. This 
infaunal bivalve is known to tolerate periodic emersion during low tide 
(Lavaud et al., 2013). Therefore, because of higher sea-level during MIS 
11c and vertical displacement due to the recorded uplift trend, the 
application of Ramalho’s (2011) vertical displacement formula results in 
a value of Dv = 4 m (i.e., 0,01 mm/yr; h = 0, d = 12 and H = 8 m). This 
value indicates a variable uplift rate in Santiago (as already suggested by 
Marques et al., 2020), with a significantly slower uplift during the last 
~400 ka. Changes in uplift trends are not uncommon in oceanic islands 
and have also been reported from other islands in the archipelago 
(Ramalho et al., 2010b, 2010c; Madeira et al., 2010), and from Santa 
Maria Island in the Azores (Ricchi et al., 2020). These observations, 
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however, are at odds with the much faster uplift rate proposed by 
Marques et al. (2020) of 0.14 mm/yr in the last ~800 ka, showing that 
more research is necessary to reconcile vertical motion rates derived 
from lava deltas with those obtained from marine terraces.

5.6. Palaeoclimatology and palaeoecology

Only ten species of invertebrates are common to both the middle 
Pleistocene fossil assemblage and the present-day fauna at Nossa 
Senhora da Luz Bay (eight gastropods and two bivalves; cf. Table 2). 
Moreover, at least two bivalve species reported for the MIS 11c of Cabo 
Verde are thought to have disappeared from the archipelago, namely 
Saccostrea cuccullata and Senilia senilis.

In the Atlantic coasts of Africa, the extant oyster S. cuccullata has a 
geographic distribution ranging from the Ivory Coast down to Angola 
(Cosel and Gofas, 2019). It has also been reported from the Indian Ocean 
(Dye, 1989) and the south-eastern and southern Brazilian coasts (Amaral 
et al., 2020). This species inhabits brackish water environments, being 
common at river mouths and estuaries (Awati and Rai, 1931; Mon
tesinos, 2011). In the Macaronesia geographic region, S. cuccullata has 
been reported from the MIS 11c of the Canary Islands (Montesinos, 
2011; Montesinos et al., 2014) and from Quaternary marine fossiliferous 
deposits of Santiago Island (Serralheiro, 1976).

Today, the infaunal bivalve S. senilis occurs along the coasts of West 
Africa, from Western Sahara to Angola (Cosel and Gofas, 2019), living in 
silty sand bottoms in coastal lagoons and channels, and brackish tidal 
flats (Djangmah et al., 1979; Wolff et al., 1987; Lavaud et al., 2013), 
tolerating a range of temperatures from 16◦ to 31 ◦C (Debenay et al., 
1994). Cosel (1982) and Cosel and Gofas (2019) report extant S. senilis 
from Cabo Verde. However, according to Rui Freitas (pers. comm. 2019) 
no live specimens were ever collected in the archipelago, only a few 
disarticulated valves. If S. senilis did occur in the archipelago today, 
being an edible mollusc, it would have been harvested, as it is in 
Mauritania (Lavaud et al., 2013). Therefore, we consider S. senilis to be 

absent in present-day Cabo Verde. Fossil occurrences of S. senilis in the 
Macaronesian region have been reported only from Quaternary marine 
terraces of Santiago and tsunami deposits in Maio in Cabo Verde 
(Serralheiro, 1976; Madeira et al., 2020).

Both S. senilis and S. cuccullata live in brackish water environments, 
typical of river mouths, estuaries, and coastal lagoons. Presently, the 
MIS 11c marine fossiliferous sequences exposed at Nossa Senhora da Luz 
Bay cover ~0.035 km2, a very restricted area when compared to the 
current area of the bay (0.53 km2) and its inferred area during the MIS 
11c peak (1.16 km2; Fig. 7; see point 5.1. for discussion about erosion). A 
coastal lagoon still exists today at Nossa Senhora da Luz Bay, however, 
the current low precipitation regime in Santiago Island (Varela-Lopes & 
Molion, 2014) prevents the occurrence of suitable ecological conditions 
for the existence of populations of S. cuccullata and S. senilis there.

For the Last Interglacial (MIS 5e, i.e., 129–115 ka; Shackleton et al., 
2020), Hansen et al. (2015) and Hearty et al. (2017) inferred stormier 
climatic conditions, which would produce a more humid tropical envi
ronment. The presence of S. cuccullata and S. senilis at the Nossa Senhora 
da Luz Bay fossiliferous sequence, coupled with their absence today, 
suggests that the environmental conditions during the MIS 11c were 
closer to the ones during the MIS 5e. Higher precipitation during MIS 
11c occurred during the insolation maxima when the NW African 
monsoon was intensified leading to wetter conditions (increased river 
run-off) between 420 and 405 ka (Helmke et al., 2008; Grant et al., 
2022; O’Mara et al., 2022).

5.7. Palaeobiogeographical relevance

The studied fossiliferous sequence provides valuable clues on marine 
life in Cabo Verde during the middle Pleistocene. In stark contrast to 
Spalding et al. (2007), who considered the present-day faunas of Cabo 
Verde as representing an ecoregion, Freitas et al. (2019) viewed them as 
an autonomous biogeographic subprovince. This reclassification from 
ecoregion to subprovince was based on the high number of endemic 
Cabo Verdean species belonging to several marine phyla (Freitas et al., 
2019). A similar analysis has also been made for the late Pleistocene 
(MIS 5e; Melo et al., 2023), showing a different situation: whereas today 
the Webbnesia (including the Madeira, Selvagens, and Canaries archi
pelagos; Freitas et al., 2019) is ranked as an ecoregion and Cabo Verde as 
a subprovince, both acting as different marine biogeographic entities, 
data shows that during MIS 5e a closer biogeographic relationship be
tween the marine faunas of Cabo Verde and those of the Canary archi
pelagos existed (Melo et al., 2023)). The biogeographic relationships 
between them during the MIS 5e were quite different from what is seen 
today, stressing the need for further biogeographic studies of past in
terglacials, namely MIS 11c.

The geographical range of the specific taxa reported from the MIS 
11c fossiliferous record, and the present-day fauna of Nossa Senhora da 
Luz was checked, based on unpublished data provided by one of the 
authors (S.P. Ávila). The data was computed, resulting in the dendro
gram presented in Fig. 9. Three groups are statistically valid and stand 
out from this analysis: 1) GME (Gulf of Mexico) and CAR (Caribbean 
Sea); 2) NAF [NW African shores, including Atlantic Morocco, from the 
Straits of Gibraltar south to Western Sahara, Mauritania, and Senegal]; 
PRE (Holocene fauna collected within the Nossa Senhora da Luz Bay); 
and CAB (Cabo Verde Archipelago); and 3) AZO (Azores); POR (western 
Atlantic Iberian façade from Cabo Vilán, western Galician shores, down 
to Cape São Vicente, and southern shores of Algarve, Portugal); MED 
(Mediterranean Sea); CAN (Canary Islands); SEL (Selvagens); and MAD 
(Madeira, Porto Santo, and Desertas Islands).

Interestingly, despite the low statistical relevance, the assemblage 
reported for MIS 11c at Nossa Senhora da Luz Bay shows a closer 
biogeographical similarity with the present-day faunas of SAF (SW Af
rican shores, from Senegal to Angola). This higher similarity with 
Senegal highlights the fact that some MIS 11c species that were subse
quently extirpated from the Cabo Verde archipelago occur today on the 

Table 3 
U/Th disequilibrium ages for Nossa Senhora da Luz corals. * Newton-Raphson 
iterations did not converge on an uncertainty for this sample.

Sample code Latitude Longitude U/Th age (ka) ± 2σ

ST84–1 15.04407◦N 23.45088◦W 378 ± 65
ST84–3 15.04407◦N 23.45088◦W 373 ± 72
ST85–1 15.04293◦N 23.45122◦W 371 ± 75
ST86–1 15.04377◦N 23.45175◦W 357 ± 83
STG34–2 15.04310◦N 23.45130◦W 383 ± 66
STG34–4 15.04310◦N 23.45130◦W 323*

Fig. 5. Hydrographic basin of Nossa Senhora da Luz Bay. Green areas represent 
hydrographic basins. Stream order was measured according to the Strahler 
(1952) method. The main stream has an order of 7 (at the scale used) and is 
represented in dark blue. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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coast of Senegal. As mentioned by Melo et al. (2023), the extirpation of 
species from Cabo Verde stresses the need for studies focusing on the 
ecological factors that control species distribution in this region.

For the northern Macaronesian archipelagos, changes in mean SST 
have been widely used to explain the extirpation of thermophilic species 
during the MIS 5e. However, climatic conditions in Cabo Verde during 
the Quaternary have always been tropical (Ávila et al., 2016a; Melo 

et al., 2022a). Moreover, other factors, such as climatic stability (which 
correlates with latitude and promotes low extinction rates) and high 
littoral area values during interglacials, both promoting high speciation 
rates, explain why Cabo Verde faunas show high endemism, including 
SIME (Single Island Marine Endemics), an extremely rare situation in the 
marine realm. These variables and their effect on insular shallow-water 
ecosystems were fully explored by Ávila et al. (2019) and their Sea-Level 

Fig. 6. Functional groups comparisons among the MIS 11c samples (Logs A, B, C, and D) and the present ones (P). A: Life habitat (epifaunal, infaunal). B: Shell 
composition (aragonite, calcite). C: Diet (grazer, deposit feeder, omnivore, suspension feeder, chemosymbiotic). D: Type of locomotion (crawler, facultatively mobile, 
actively mobile, attached). 
Absent: no information was obtained for the analysed functional trait.
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Sensitive dynamic model of marine island biogeography.
Physical barriers (e.g., upwelling systems) are currently present be

tween the Cabo Verdean islands and Senegal, thus preventing the 
migration/dispersal of shallow-water marine species between the ar
chipelago and the nearby African coastal areas (Capet et al., 2017). 
Upwelling appears, however, to have been diminished during the early 
phase of MIS 11 and more seasonal (see Fig. 6 in Milker et al., 2013), also 
supported by the decreased Saharan dust flux in the Cabo Verde region 
(Crocker et al., 2022). Similar to glacial Termination II and MIS 5e 
(Ávila et al., 2019; Melo et al., 2022a), we postulate that the North 
Atlantic meltwater event during Termination V (430–425 ka; e. g., Stein 
et al., 2009; Rodrigues et al., 2011), followed by an expanded period 
with diminished winds during the African Humid period (Helmke et al., 
2008; Crocker et al., 2022), severely impacted the Canary Current / 
Cabo Verde Frontal Zone and Senegal Upwelling Centre, effectively 
causing these physical barriers to nearly disappear. Northward transport 
of tropical planktonic foraminifera species during the transition from 
MIS 12 into early MIS 11c was observed by Voelker et al. (2010) on the 

western Portuguese margin, potentially linked to a northward transport 
along the NW African margin, and is also seen during the MIS 10 to 
interglacial MIS 9e transition (A. Voelker, unpublished data). Conse
quently, the increase in the number of mollusc species and specimens 
exchanged between Cabo Verde islands and Senegal is probably linked 
to the climatic conditions preceding and during MIS 11c and potentially 
MIS 9e, the two middle Pleistocene periods associated with a postulated 
stronger North Equatorial Current and an intensification of the sub
tropical gyre circulation (Billups et al., 2020).

5.8. Pleistocene interglacials in the Cabo Verde Archipelago: comparing 
MIS 11c with MIS 5e deposits

The two warmest Quaternary interglacials (MIS 11c and MIS 5e) 
share similarities that make it difficult to differentiate their sedimentary 
record. Being one of the longest interglacials (27 kyr in duration; Tze
dakis et al., 2012), the MIS 11c fossiliferous sequences are usually 
thicker than MIS 5e counterparts. However, MIS 11c fossiliferous 

Fig. 7. 3D view of Nossa Senhora da Luz Bay. A: Present-day geographical configuration of the bay; B: Inferred geographical configuration of the bay during MIS 11c, 
with the sea level 8 m higher than present msl. C: The red line represents the estimated position of sea level during MIS 11c. Altimetric data retrieved from DEM 
(2010). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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assemblages are poorly documented throughout the Macaronesian 
archipelagos, known only from three other locations (cf. section 1). All 
these deposits are found at altitudes of 10 to 13 m apsl. By contrast, MIS 
5e fossiliferous outcrops have been reported for the Azores (Santa Maria 
Island; Ávila et al., 2002, 2008, 2009a, 2010; Madeira et al., 2011; Ávila 
et al., 2015a, 2015b, 2018a, 2020; Hyzny et al., 2021), Madeira (Porto 
Santo Island; Gerber et al., 1989), Selvagens (García-Talavera and 
Sánchez-Pinto, 2001), Canaries (Meco, 1977, 1981; Meco et al., 1997, 
2002; García-Talavera, 1999; Cabero, 2009; Cabero et al., 2010; Mon
tesinos et al., 2014; Martín-González et al., 2016, 2018, 2019), and Cabo 
Verde (García-Talavera, 1999; Zazo et al., 2010), at altitudes that range 
from 2 to 3 m apsl (Azores, Canary Islands, and Cabo Verde; Zazo et al., 

2002; Ávila et al., 2009a, 2010; Zazo et al., 2010) to a maximum of 7 m 
apsl (Azores; Ávila et al., 2015a).

Both MIS 11c and MIS 5e Macaronesian fossiliferous sequences are 
characterized by tropical species that arrived to the different archipel
agos either during the final phase of glacial Termination V and II, 
respectively, or during the MIS 11c and MIS 5e interglacials (Meco et al., 
2002; Ávila, 2005; Ávila et al., 2009a; Muhs et al., 2014; Ávila et al., 
2015a; Melo et al., 2022a, 2022b), and that were subsequently extir
pated during the following glacial episodes (MIS 10 and MIS 5d-2, 
respectively). The bivalves Saccostrea cuccullata and Senilia senilis are 
good examples for MIS 11c, whereas Tethystrombus latus and several 
Conus spp. better characterize MIS 5e deposits. We stress that, unlike for 
the remaining Macaronesian archipelagos, for Cabo Verde there is no 
evidence suggesting a high biotic turnover in the molluscan fauna either 
during or after MIS 11c, or during MIS 5e, making it difficult to use 
“ecostratigraphic indicators” (sensu Melo et al., 2022a) for this 
archipelago.

6. Conclusions

Thick coquina deposits are extremely rare in volcanic oceanic 
islands. Nossa Senhora da Luz Bay constitutes one of the best-preserved 
Pleistocene marine fossiliferous sedimentary successions in all Maca
ronesia, providing unique clues on past climates and how the present 
interglacial may evolve as a result of climate change and what effects it 
could have on the Macaronesia geographical region. Moreover, our 
study suggests that: 

1. The fossiliferous sequence exposed at Nossa Senhora da Luz Bay is of 
MIS 11c age, one of the few sedimentary successions assigned to this 
interglacial in the context of the Macaronesian archipelagos;

2. The elevation of the MIS 11c deposit at Nossa Senhora da Luz sug
gests that Santiago, in the last ~400 kyr, experienced an uplift rate of 
just 0.01 mm/yr, which is much slower than the long-term averaged 
uplift rates of 0.10 mm/yr proposed by Ramalho et al. (2010a, 
2010b, 2010c) and especially that of 0.14 mm/yr proposed by 
Marques et al. (2020).

Fig. 8. Reconstruction of Santiago Island uplift. The green line represents the uplift rate suggested by Ramalho (2011) of 100 m/Ma; the red line represents the uplift 
rate of 10 m/Ma proposed herein. Mean sea level variation for the last 450 kyr from Miller et al. (2011; blue line); marine isotopic stages and terminations according 
to Railsback et al. (2015). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Dendrogram depicting the biogeographic similarity between the marine 
molluscan assemblage in the study outcrop and the faunas of several present- 
day Atlantic regions (29 species in total). Non-bold numbers correspond to 
the bootstrap values providing support for each tree node (100 repetitions of 
100 trees). Numbers in bold represent the clusters validated by Mantel statistics 
(Pearson). BER (Bermuda); GME (Gulf of Mexico); CAR (Caribbean Sea); MIS 
11c (MIS 11c marine terrace from Nossa Senhora da Luz Bay); SAF (SW African 
shores, from Senegal to Angola); NAF [NW African shores, including Atlantic 
Morocco, from Straits of Gibraltar south, Western Sahara, Mauritania, down to 
Cape Vert (Senegal)]; PRE (Holocene fauna collected within the Nossa Senhora 
da Luz Bay); CAB (Cabo Verde Archipelago); AZO (Azores); POR (western 
Atlantic Iberian façade from Cabo Vilán, western Galician shores, down to Cape 
São Vicente, and southern shores of Algarve, Portugal); MED (Mediterranean 
Sea); CAN (Canary Islands); SEL (Selvagens); and MAD (Madeira, Porto Santo, 
and Desertas Islands).
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3. The MIS 11c fossiliferous sedimentary succession at Nossa Senhora 
da Luz Bay indicates tropical climatic conditions moister and warmer 
than those on the island at present;

4. After the MIS 11c interglacial, the ecological conditions at Nossa 
Senhora da Luz Bay changed (e.g., less discharge of fresh-water into 
the bay; narrow inlet; higher turbidity of the sea water inside the 
bay), as the representative MIS 11c species (S. cuccullata and 
S. senilis) do not occur today, neither in the bay nor in the 
archipelago.

Finally, this study provides further insight on what can be expected 
in the Macaronesia geographical region with future climatic change. If 
this paleo analogue holds, it is likely this region will experience more 
tropical conditions, warmer surface oceanic waters, more humid con
ditions and increased freshwater inputs. These changes will ultimately 
contribute to the migration of tropical species to higher latitudes, as a 
result of specific climatological and oceanographical conditions (“win
dows of opportunity”) and possibly follow similar patterns as those 
presented by Melo et al. (2022a) for MIS 5e.
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d’Histoire naturelle, Paris Institut de Recherche pour le Développement, Marseille, 
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Porto Santo (Madeira–Archipel). Mitteilungen der Deutschen Malakozoologischen 
Gesellschaft 44–45, 19–30.

Govin, A., Capron, E., Tzedakis, P.C., Verheyden, S., Ghabelb, B., Hillaire-Marcel, C., St- 
Onge, G., Stoner, J.S., Bassinot, F., Bazin, L., Blunier, T., Combourieu-Nebout, N., El 
Ouahabi, A., Genty, D., Gersonde, R., Jimenez-Amat, P., Landais, A., Martrat, B., 
Masson-Delmotte, V., Parrenin, F., Seidenkrantz, M.-S., Veres, D., Waelbroeck, C., 
Zahn, R., 2015. Sequence of events from the onset to the demise of the last 
Interglacial: evaluating strengths and limitations of chronologies used in climatic 
archives. Quat. Sci. Rev. 129, 1–36.

Grall, J., Le Loch, F., Guyonnet, B., Riera, P., 2006. Community structure and food web 
based on stable isotopes (δ15N and δ13C) analyses of a North Eastern Atlantic maerl 
bed. J. Exp. Mar. Biol. Ecol. 338, 1–15.

Grant, K.M., Amarathunga, U., Amies, J.D., Hu, P., Qian, Y., Penny, T., Rodriguez- 
Sanz, L., Zhao, X., Heslop, D., Liebrand, D., Hennekam, R., Westerhold, T., 
Gilmore, S., Lourens, L.J., Roberts, A.P., Rohling, E.J., 2022. Organic carbon burial 
in Mediterranean sapropels intensified during Green Sahara periods since 3.2 Myr 
ago. Commun. Earth Environ. 3, 11. https://doi.org/10.1038/s43247-021-00339-9.

Hachich, N.F., Bonsall, M.B., Arraut, E.M., Barneche, D.R., Lewinsohn, T.M., Floeter, S. 
R., 2015. Island biogeography: patterns of marine shallow-water organisms in the 
Atlantic Ocean. J. Biogeogr. 42, 1871–1882.

Hachich, N.F., Ferrari, D.S., Quimbayo, J.P., Pinheiro, H.T., Floeter, S.R., 2019. Island 
biogeography of marine shallow-water organisms. In: Encyclopedia of the World’s 
Biomes. Elsevier, New York. https://doi.org/10.1016/B978-0-12-409548-9.11947- 
5. 

Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., 
Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Kandiano, E., Schuckmann, K., 
Kharecha, P., Legrande, A.N., Bauer, M., Lo, K.-W., 2015. Ice melt, sea level rise and 
superstorms: evidence from paleoclimate data, climate modeling, and modern 
observations that 2◦C global warming is highly dangerous. Atmospheric Chemistry 
and Physics Discussions 15 (14), 20059–20179.

Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of Fluctuating Sea Levels since the 
Triassic. Science 235, 1156–1166.

Harvey, A.S., Bird, F.L., 2008. Community structure of a rhodolith bed from cold- 
temperate waters (southern Australia). Aust. J. Bot. 56, 437–450.

Hearty, P.J., Tormey, B.R., 2017. Sea-level change and superstorms: geologic evidence 
from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous 
prospects for a warming Earth. Mar. Geol. 390, 347–365.

Hearty, P.J., Kindler, P., Cheng, H., Edwards, R.L., 1999. A +20 m middle Pleistocene 
Sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic 
ice. Geology 27, 375–378. https://doi.org/10.1130/0091-7613(1999)0272.3.CO;2.
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Yánez, J.J., 2002. The maximum warmings of the Pleistocene world climate 
recorded in the Canary Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 185, 
197–210.
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