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SPECTRAL SEQUENCE COMPUTATION
OF HIGHER TWISTED 𝐾-GROUPS OF 𝑆𝑈(𝑛)

DAVID E. EVANS AND ULRICH PENNIG

Abstract. Motivated by the Freed-Hopkins-Teleman theoremwe study graded equi-
variant higher twists of 𝐾-theory for the groups 𝐺 = 𝑆𝑈(𝑛) induced by exponential
functors. We compute the rationalisation of these groups for all 𝑛 and all non-trivial
functors. Classical twists use the determinant functor and yield equivariant bundles
of compact operators that are classified by Dixmier-Douady theory. Their equivariant
𝐾-theory reproduces the Verlinde ring of conformal field theory. Higher twists give
equivariant bundles of stable uniformly hyperfinite algebras, which can be classified
using stable homotopy theory. Rationally, only the 𝐾-theory in degree dim(𝐺) is again
non-trivial. The non-vanishing group is a quotient of a localisation of the representa-
tion ring 𝑅(𝐺) ⊗ ℚ by a higher fusion ideal 𝐽𝐹,ℚ. We give generators for this ideal and
prove that these can be obtained as derivatives of a potential. For the exterior algebra
functor, which is exponential, we show that the determinant bundle over 𝐿𝑆𝑈(𝑛) has a
non-commutative counterpart where the fibre is the unitary group of the UHF algebra.

1. Introduction

1.1. History and motivation. 𝐾-theory has its roots in Grothendieck’s generalisa-
tion of the Riemann-Roch theorem in the 1950s, which he formulated in the language
of algebraic geometry and coherent sheaves [36]. Building on these foundational in-
sights, Atiyah and Hirzebruch recognised that similar principles could be applied in
a purely topological setting, leading them to develop topological 𝐾-theory [5, 6]. For
a compact Hausdorff space 𝑋 the group 𝐾0(𝑋) is the group completion of the monoid
obtained from the isomorphism classes of complex, finite-dimensional vector bundles
over 𝑋 under the direct sum. What transforms this algebraic construction into a pow-
erful topological invariant is its extension to a cohomology theory 𝑋 ↦ 𝐾∗(𝑋) with
values in ℤ-graded abelian groups. Bott periodicity provides natural isomorphisms
𝐾𝑖(𝑋) ≅ 𝐾𝑖+2(𝑋) that dramatically simplify the theory by reducing all computations
to just two degrees. It turns the long exact sequence of pairs (𝑋, 𝑌) with 𝑌 ⊆ 𝑋 involv-
ing the relative 𝐾-groups 𝐾∗(𝑋, 𝑌) into the characteristic six-term exact sequence that
makes 𝐾-theory computations tractable.
The importance of topological 𝐾-theory was highlighted by the foundational work

of Atiyah and Singer on index theory [7, 30]: principal symbols of elliptic differential
operators naturally define classes in 𝐾0(𝑇∗𝑀), the index of such an operator can be
computed through a pairing between 𝐾-theory and its dual 𝐾-homology, and families
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of operators parametrised by a topological space 𝑋 have indices living in 𝐾0(𝑋). Ap-
plications in physics include quantum fields as section of vector bundles and 𝐷-brane
charges in string theory [60].
By now there are many variations on the theme of 𝐾-theory. The most relevant

one for this paper is the operator-algebraic 𝐾-theory of 𝐶∗-algebras. For a unital 𝐶∗-
algebra 𝐴 the group 𝐾0(𝐴) is defined as the group completion of isomorphism classes
in a suitable category of projective 𝐴-modules. The functor 𝐴 ↦ 𝐾0(𝐴) has a ℤ-graded
extension𝐴 ↦ 𝐾∗(𝐴) that is defined on the category of all 𝐶∗-algebras. It is homotopy-
invariant, satisfies Bott periodicity and turns a short exact sequence of𝐶∗-algebras into
a six-term exact sequence of abelian groups. For a locally compact Hausdorff space 𝑋
we have a natural isomorphism 𝐾∗(𝐶0(𝑋)) ≅ 𝐾∗(𝑋) by the Serre-Swan theorem. In
the non-commutative geometry [16] of Alain Connes, 𝐾-theory of non-commutative
𝐶∗-algebras led to index theorems for foliations. The classification of amenable 𝐶∗-
algebras [22] is 𝐾-theoretic. Operator-algebraic 𝐾-theory also made a recent appear-
ance in condensed matter physics and topological insulators [50].
Twisted 𝐾-theory admits two complementary definitions that illuminate different

aspects of its nature: a first one through non-commutative operator algebras, and a
second via stable homotopy theory. By the Serre-Swan theorem and stability of 𝐾-
theory we have

𝐾𝑛(𝑋) ≅ 𝐾𝑛(𝐶0(𝑋) ⊗ 𝕂),
where 𝕂 denotes the compact operators on an infinite-dimensional separable Hilbert
space. The algebra 𝐶0(𝑋) ⊗ 𝕂 can be interpreted as section algebra of the trivial 𝕂-
bundle over 𝑋 . Replacing this by a non-trivial bundle creates a theory that locally
agrees with 𝐾-theory but is “twisted” globally, while preserving the structure of being
a module over its untwisted version. A result by Dixmier and Douady [19] states that
locally trivial bundles with fibres isomorphic to 𝕂 are classified by third cohomology,
i.e.

[𝑋, 𝐵 Aut(𝕂)] ≅ 𝐻3(𝑋, ℤ) ,
where 𝐵Aut(𝕂) denotes the classifying space of the automorphism group (equipped
with the point-norm topology). Given such a bundle 𝒦 → 𝑋 over a locally compact
Hausdorff space 𝑋 , the twisted 𝐾-groups are the operator-algebraic 𝐾-theory
𝐾∗(𝐶0(𝑋,𝒦)) of the section algebra𝐶0(𝑋,𝒦). More generally, one can consider contin-
uous trace𝐶∗-algebras instead of locally trivial bundles. Background fields in quantum
field theory and string theory are described by Dixmier-Douady invariants [11].
From the viewpoint of stable homotopy theory there is a larger class of twists for

𝐾-theory than the geometric ones classified by 𝐻3(𝑋, ℤ): the tensor product turns
𝑋 ↦ 𝐾∗(𝑋) into a ring-valued functor. From the perspective of stable homotopy the-
ory 𝐾-theory is represented by a spectrum, usually denoted 𝐾𝑈. The ring structure on
𝐾∗(𝑋) lifts to 𝐾𝑈 and turns it into an 𝐸∞-ring spectrum – the counterpart of a com-
mutative ring in stable homotopy theory. Just as such a ring 𝑅 has a group of units
formed by the invertible elements in 𝑅, every 𝐸∞-ring spectrum 𝐸 has a spectrum of
units 𝑔𝑙1(𝐸) formed by spaces 𝐺𝐿1(𝐸), 𝐵𝐺𝐿1(𝐸), etc. with an associated cohomology
theory 𝑋 ↦ 𝑔𝑙1(𝐸)∗(𝑋), for which 𝑔𝑙1(𝐸)0(𝑋) ≅ 𝐺𝐿1(𝐸0(𝑋)).
The idea of twisted 𝐾-theory is to replace 𝐾𝑈 by a bundle of rank 1-module spectra

over 𝐾𝑈 and then take homotopy classes of sections. An approach to twisted 𝐾-theory
based on stable∞-categories where this is made precise can be found in [2, Sec. 3]. For
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a commutative ring 𝑅 the rank 1-module bundles are classified by [𝑋, 𝐵𝐺𝐿1(𝑅)]. Simi-
larly, bundles of𝐾𝑈-modules with rank 1 correspond (up to isomorphism) to elements
in

𝑔𝑙1(𝐾𝑈)1(𝑋) = [𝑋, 𝐵𝐺𝐿1(𝐾𝑈)] .
In this picture the geometric twists arise as the ones that factor through a map
𝐾(ℤ, 3) → 𝐵𝐺𝐿1(𝐾𝑈), which induces an isomorphism on 𝜋3. Indeed, we have

[𝑋, 𝐾(ℤ, 3)] ≅ 𝐻3(𝑋, ℤ).
In joint work with Dadarlat the second author has shown that analogous operator-

algebraic pictures exist for the higher (non-equivariant) twists of 𝐾-theory and its lo-
calisations [17, 18]. In particular,

[𝑋, 𝐵 Aut(𝒪∞ ⊗𝕂)] ≅ 𝑔𝑙1(𝐾𝑈)1(𝑋) ,(1)
[𝑋, 𝐵 Aut(𝑀⊗∞

𝑛 ⊗𝕂)] ≅ 𝑔𝑙1(𝐾𝑈[1/𝑛])1+(𝑋) ,(2)

where 𝑔𝑙1(𝐾𝑈[1/𝑛])∗+ is the cohomology theory associated to the infinite loop space
given by the pullback diagram

𝐺𝐿1(𝐾𝑈[1/𝑛])+ 𝐺𝐿1(𝐾𝑈[1/𝑛])

𝜋0(𝐺𝐿1(𝐾𝑈[1/𝑛])) ∩ ℚ+ 𝜋0(𝐺𝐿1(𝐾𝑈[1/𝑛])) ≅ 𝐺𝐿1(ℤ[1/𝑛])

Equivariant operator-algebraic 𝐾-theory is an invariant of 𝐶∗-dynamical systems,
i.e. 𝐶∗-algebras with group actions. The groups 𝐾𝐺

∗ (𝐴) provide a much finer invariant
than 𝐾∗(𝐴). Equivariant 𝐾-theory is relevant for classifying such actions on amenable
𝐶∗-algebras [34]. In physics it arises through the Verlinde ring in two dimensional
chiral conformal field theory which describes the fusion of primary quantum fields
[56]. It appears in the 2-dimensional conformal Wess-Zumino-Witten models as well
as in 3-dimensional Chern-Simons theory.
The connection between the Verlinde ring of loop groups and equivariant 𝐾-theory

was made by Freed, Hopkins and Teleman [31–33]: Let 𝐺 be a compact, simple and
simply-connectedLie group and let𝐿𝐺 be its free loop group, i.e. the groupof all smooth
maps 𝛾∶ 𝑆1 → 𝐺. Even though 𝐿𝐺 is infinite-dimensional it has a rich representation
theory formed by the positive energy representations at a fixed level 𝑘 ∈ ℤ. After group
completion with respect to the direct sum they form a commutative ring 𝑅𝑘(𝐿𝐺) under
the fusion product. Many of themost interesting features of 1+1-dimensional quantum
field theories arise fromclose links to this representation theory as outlined for example
in [15, 26, 49, 58]. Freed, Hopkins and Teleman constructed a ring isomorphism

(3) 𝑅𝑘(𝐿𝐺) ≅ 𝜏(𝑘)𝐾dim(𝐺)
𝐺 (𝐺) ,

where the right hand side denotes the 𝐺-equivariant twisted 𝐾-theory of 𝐺 in degree
dim(𝐺) with twist 𝜏(𝑘) depending on the level 𝑘 and with respect to the adjoint action
of𝐺 on itself, which can be realised as the operator-algebraic𝐾-theory of an equivariant
bundle of compact operators over 𝐺. The twist is compatible with the multiplication
𝜇∶ 𝐺 × 𝐺 → 𝐺 in the sense that 𝜇∗𝜏(𝑘) ≅ 𝑝∗1𝜏(𝑘) + 𝑝∗2𝜏(𝑘), where 𝑝1, 𝑝2 are the pro-
jections. The multiplicative structure on the right hand side is the Pontrjagin product
induced by a wrong-way map in equivariant twisted 𝐾-theory associated to 𝜇 (see also
[55, 57]).
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Since the ring structure of𝑅𝑘(𝐿𝐺) determines the fusion rules of the Verlinde ring of
the chiral conformal field theory associated to the loop group𝐿𝐺, it is a natural question
which other invariants of the CFT can be recovered from it. In joint work with Gan-
non the first named author showed that the full system, and in particular the modular
invariant partition function, is encoded in the equivariant twisted 𝐾-theory [23, 24].
Other fusion categories like the ones constructed in [53] have elegant 𝐾-theoretical
descriptions as well as shown in [25].

1.2. Results in this paper. Up to isomorphism the geometric twists of the equivari-
ant 𝐾-theory of a simply-connected group 𝐺 are classified by the group 𝐻3

𝐺(𝐺, ℤ) ≅
𝐻3(𝐺, ℤ) ≅ ℤ. As explained in the previous section, and already noted by Atiyah and
Segal in [4], at least non-equivariantly, stable homotopy theory hands us a much larger
group of twists.
In light of this and the observations from the previous section, several key questions

emerge:
(i) Is there an equivariant extension of the operator-algebraic models?
(ii) Is the equivariant twist 𝜏(𝑘) that appears in (3) the shadow of a more general

construction involving equivariant higher twists?
(iii) What are the consequences for conformal field theories associated to loop

groups?
We initiated a programme to investigate the first question in [27] starting with circle
actions on infinite UHF-algebras. Even though we will leave a complete answer to
question (iii) to be discussed in future work, we will briefly come back to it in Sec. 4.2.
A variation of the second question appeared for example in [54], where higher twists
of 𝐾∗

𝐺(𝑋)[[𝑡]], i.e. the power series ring over equivariant 𝐾-theory, were considered.
In this paper wewill focus on a different approach to question (ii) that we developed

in [28]. For a simply connected Lie group𝐺 the generator of𝐻3
𝐺(𝐺, ℤ) ≅ 𝐻3(𝐺, ℤ) ≅ ℤ

corresponds to the basic gerbe over 𝐺 [42, 45].
A gerbe over a space 𝑋 is a higher-categorical generalisation of a line bundle. It is

given by a hermitian line bundle 𝐿 → 𝒢 over a groupoid 𝒢. This groupoid is Morita
equivalent to the trivial groupoid with object space 𝑋 and only identity morphisms. To
be a gerbe the line bundle 𝐿 needs to come equipped with a multiplicative structure
covering the groupoid multiplication, i.e. we have a bundle isomorphism

𝜋∗1𝐿 ⊗ 𝜋∗2𝐿 → 𝑚∗𝐿 ,
which is associative in the obvious sense. The maps 𝜋𝑗 ∶ 𝒢(2) → 𝒢 and 𝑚∶ 𝒢(2) → 𝒢
denote the two projections and the multiplication, respectively. For details, we refer
the reader to [44].
Murray and Stevenson found a construction of the gerbe 𝐿𝑘 → 𝒢 at level 𝑘 ∈ ℤ

for the unitary groups [45]. In their setting the groupoid 𝒢 can be chosen to be locally
compact and given a Haar system. But then 𝐿𝑘 → 𝒢 is an example of a saturated Fell
bundle, see [41, Sec. 2.1]. As such it has an associated section convolution algebra
𝐶∗(𝐿𝑘) and it turns out that

𝐶∗(𝐿𝑘) ⊗ 𝕂 ≅ 𝐶(𝐺,𝒦𝑘)
for a locally trivial bundle𝒦𝑘 → 𝐺 with fibre 𝕂. Since 𝐿𝑘 → 𝒢 can be equipped with
a group action that is compatible with the conjugation action of 𝐺 on itself, the same
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turns out to be true for 𝒦𝑘 → 𝐺, which allows us to express the 𝐾-groups from the
beginning in terms of operator algebras

(4) 𝜏(𝑘)𝐾dim(𝐺)
𝐺 (𝐺) ≅ 𝐾𝐺

dim(𝐺)(𝐶∗(𝐿𝑘)) .
The fibres of 𝐿𝑘 are constructed by applying powers of the determinant functor to

eigenspaces of the underlying group elements, where the level enters as the exponent.
The crucial observation in [28] is that the only properties of this functor that are actu-
ally needed are:

(a) it maps all objects to ℂ,
(b) it naturally transforms direct sums into tensor products and
(c) it is continuous and preserves adjoints.

We obtain interesting new examples of higher twists over𝐺 = 𝑆𝑈(𝑛) by giving up prop-
erty (a), but keeping (b) and (c). More precisely, we change the functor (⋀top)

⊗(𝑛+𝑘)

from the classical setting to an exponential functor
𝐹 ∶ (𝒱iso

ℂ ,⊕) → (𝒱gr
ℂ ,⊗)

on complex inner product spaces and unitary isomorphisms (see Def. 2.1). Compared
to [28] we will also modify our setting slightly and consider exponential functors that
preserve the symmetries on both sides and take values in super-vector spaces. We will
see that all examples that have been discussed for example in [28, 47] fit much more
naturally into this new setup.
One-dimensional representations provide invertible elements in the representation

ring. This is crucial for equivariant bundle gerbes to work. Therefore giving up (a)
means that we need to turn higher-dimensional representations into units in equivari-
ant 𝐾-theory. We achieve this by swapping vector spaces (i.e. modules over ℂ) for bi-
modules over the infinite UHF-algebra

𝖬∞
𝐹 = End(𝐹(ℂ𝑛))⊗∞

and the gerbe 𝐿𝑘 → 𝒢 for a saturated Fell bundle ℰ → 𝒢, whose fibres are invertible
𝖬∞
𝐹 -𝖬∞

𝐹 -bimodules and with multiplication
𝜋∗1ℰ ⊗𝖬∞𝐹 𝜋∗2ℰ → 𝑚∗ℰ .

One of the upshots of our construction is that equivariance is preserved. In particular,
there is a 𝐺-action on 𝒢 and ℰ such that the bundle projection is 𝐺-equivariant. This
turns the section algebra 𝐶∗(ℰ) into a ℤ/2ℤ-graded 𝐺-𝐶∗-algebra, and we define the
equivariant higher twisted 𝐾-theory of 𝐺 = 𝑆𝑈(𝑛) with twist given by the exponential
functor 𝐹 to be the graded 𝐾-groups 𝐾𝐺

∗ (𝐶∗ℰ) in analogy to (4). It was shown in [28,
Cor. 4.7] that

𝐶∗ℰ ⊗ 𝕂 ≅ 𝐶(𝐺,𝒜)
for a locally trivial bundle𝒜 → 𝐺with fibres isomorphic to𝖬∞

𝐹 ⊗𝕂. Up to stabilisation
and neglecting equivariance our construction therefore gives a higher twist similar to
the ones in (2). In contrast to the classical case, where the twist corresponds to an
integer (the level), these new twists are parametrised by exponential functors. An in-
depth analysis in the ungraded case can be found in [47]. We return to this point in
Sec. 4.2 where we will see that an exponential functor gives rise to a bundle

𝑈(𝖬∞
𝐹 ) → 𝐿𝑆𝑈(𝑛) → 𝐿𝑆𝑈(𝑛)
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that is the non-commutative counterpart of the determinant bundle. Classically, this
corresponds to the central 𝑈(1)-extensions classified by the level.
Replacing the algebraℂ by𝖬∞

𝐹 has the effect that the groups𝐾𝐺
∗ (𝐶∗ℰ) becomemod-

ules over the localised representation ring

𝐾𝐺
0 (𝖬∞

𝐹 ) ≅ 𝑅(𝐺)[𝐹(𝜌)−1] ≕ 𝑅𝐹(𝐺) ,

where 𝐺 = 𝑆𝑈(𝑛) and 𝜌∶ 𝐺 → 𝑈(𝑛) denotes the inclusion.
We have shown in [28, Thm. 5.3] that in the non-graded setting for 𝐺 = 𝑆𝑈(2)

and under very mild assumptions on the exponential functor 𝐹 the equivariant higher
twisted 𝐾-groups satisfy

𝐾𝐺
0 (𝐶∗ℰ) = 0 ,

𝐾𝐺
1 (𝐶∗ℰ) ≅ 𝑅𝐹(𝐺)/𝐽𝐹 ,

where 𝐽𝐹 is the higher fusion ideal generated by the 𝑆𝑈(2) representation correspond-
ing to the character polynomial 𝜒𝐹 ∈ ℤ[𝑡, 𝑡−1] with

𝜒𝐹 = 1
𝑡 − 𝑡−1 det (

𝐹(𝑡) 𝐹(𝑡−1)
1 1 ) .

As explained in [28, Thm. 5.16] a similar result also holds for 𝐺 = 𝑆𝑈(3) after ratio-
nalisation, i.e. 𝐾𝐺

dim(𝐺)(𝐶∗ℰ)⊗ℚ ≅ (𝑅𝐹(𝐺)⊗ℚ)/𝐽𝐹,ℚ, where 𝐽𝐹,ℚ has two generators,
whose characters can be expressed in a similar way as 𝜒𝐹 above. Both of these results
also hold in the graded setting of this paper with the only change that 𝐹(𝑡) ∈ 𝑅(𝕋) is
now a graded representation.
In the present paper we are now able to complete the picture and compute the ra-

tionalised graded equivariant higher twisted 𝐾-theory for the groups 𝐺 = 𝑆𝑈(𝑛) and
all non-trivial exponential functors 𝐹. More precisely, we show in our main result,
Thm. 3.11, that the graded higher twisted 𝐾-groups are

𝐾𝐺
dim(𝐺)(𝐶∗ℰ) ⊗ ℚ ≅ 𝑅𝐹(𝐺) ⊗ ℚ/𝐽𝐹,ℚ ,(5)

𝐾𝐺
dim(𝐺)+1(𝐶∗ℰ) ⊗ ℚ = 0

for an ideal 𝐽𝐹,ℚ ⊆ 𝑅𝐹(𝐺) ⊗ ℚ.
With 𝐹 = (⋀top)⊗(𝑛+𝑘) for 𝐺 = 𝑆𝑈(𝑛) the algebra End(𝐹(ℂ𝑛)) is trivially graded

(i.e.𝖬∞
𝐹 ≅ ℂ). As explained in Sec. 2.2.1 the𝐶(𝐺)-algebra𝐶∗ℰ thenhas graded compact

operators as fibres. However, it represents the same twist of 𝐾-theory as in (3) in the
graded Brauer group 𝐻1(𝐺, ℤ/2ℤ) × 𝐻3(𝐺, ℤ) of [46], because 𝐻1(𝐺, ℤ/2ℤ) vanishes.
Indeed, we recover the classical Verlinde ring of 𝑆𝑈(𝑛) at level 𝑘 in accordancewith (3).
Weprove that the higher fusion ideal 𝐽𝐹,ℚ has𝑛−1 generators constructed as follows:

Let 𝕋 ⊆ 𝐺 be the maximal torus given by the diagonal matrices. Note that its repre-
sentation ring satisfies 𝑅(𝕋) ≅ ℤ[𝑡1, . . . , 𝑡𝑛]/(1 − 𝑡1⋯𝑡𝑛) and 𝑅(𝐺) ≅ 𝑅(𝕋)𝑊 , where
𝑊 ≅ 𝑆𝑛 is the Weyl group of 𝐺 acting on 𝑅(𝕋) by permuting the variables. A set of
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generators of 𝐽𝐹,ℚ is then given by the character polynomials
𝑞𝑖
Δ ∈ 𝑅(𝕋)𝑊 for 𝑖 ∈ {0, . . . , 𝑛 − 2} with

𝑞𝑖(𝑡1, . . . , 𝑡𝑛) = det
⎛
⎜
⎜
⎝

𝐹(𝑡1) 𝑡𝑖1 𝐹(𝑡2) 𝑡𝑖2 . . . 𝐹(𝑡𝑛) 𝑡𝑖𝑛
𝑡𝑛−21 𝑡𝑛−22 . . . 𝑡𝑛−2𝑛
⋮ ⋮ ⋱ ⋮
𝑡1 𝑡2 . . . 𝑡𝑛

⎞
⎟
⎟
⎠

,

whereΔ is theVandermondedeterminant. So, at least rationally, the equivariant higher
twisted 𝐾-groups are in fact quotient rings of the localised representation ring
𝑅𝐹(𝐺) ⊗ ℚ by an ideal 𝐽𝐹,ℚ. Generators of the classical fusion ideal for 𝑆𝑈(𝑛) at level
𝑘 have been computed for example by Douglas in [20, Thm. 1.1] (using 𝐾-homology
instead of 𝐾-theory). For 𝐹 = (⋀top)⊗(𝑛+𝑘) our generators correspond to the highest
weight representations with weight (𝑘+𝑖) 𝜔1 for 𝑖 = {1, . . . , 𝑛−1} by theWeyl character
formula where𝜔1 is the first fundamental weight of 𝑆𝑈(𝑛) (see Rem. 3.12). It is shown
in [12, Sec. 3.2] how one can transform Douglas’ set of generators into ours using the
Jacobi-Trudy identity.
As in [1, 28] the isomorphisms (5) are obtained using the Mayer-Vietoris spectral

sequence. We compare its 𝐸1-page to a cochain complex that computes the 𝑊 aff-
equivariant Bredon cohomology 𝐻∗

𝑊aff(𝔱, ℛ) of 𝔱 with a certain local coefficient sys-
tem ℛ (see Lem. 3.4). This comparison does not require rationalisation. It is only the
computation of𝐻∗

𝑊aff(𝔱, ℛ) that is simplified after killing torsion. In addition, the gen-
erators of the ideal 𝐽𝐹,ℚ live in 𝑅𝐹(𝐺). We therefore conjecture that the rationalisation
is only a technical difficulty and that the results should also hold integrally.
Gepner discovered in [35] that the fusion ring 𝑅𝑘(𝐿𝑆𝑈(𝑛)) is closely related to the

cohomology ring of the Grassmann manifolds 𝐺𝑘(ℂ𝑛+𝑘) of 𝑘-dimensional subspaces
in ℂ𝑛+𝑘. We have

𝐺𝑘(ℂ𝑛+𝑘) ≅ 𝑈(𝑛 + 𝑘)/𝑈(𝑛) × 𝑈(𝑘) ,
𝐻∗(𝐺𝑘(ℂ𝑛+𝑘), ℤ) ≅ ℤ[𝑐1, . . . , 𝑐𝑛]/(𝑐𝑘+1, . . . , 𝑐𝑘+𝑛) .

To understand the generators and relations note that there are two non-trivial canoni-
cal vector bundles over 𝐺𝑘(ℂ𝑛+𝑘): the tautological bundle and the quotient bundle of
its embedding into the trivial bundle. The generators 𝑐𝑖 are the Chern classes of the
quotient bundle. The ideal can be obtained by expressing the elements 𝑐𝑗 in terms of
the 𝑐𝑖 using the identity

(1 + 𝑐1 +⋯+ 𝑐𝑛) ⋅ (1 + 𝑐1 +⋯+ 𝑐𝑘+𝑛) = 1 .

In fact, the ideal defining this cohomology ring is an example of a Jacobian ideal, i.e.
its generators can be obtained as derivatives of a potential 𝑉𝑛+𝑘+1(𝑐1, . . . , 𝑐𝑛) in such a
way that

𝜕𝑉𝑛+𝑘+1
𝜕 ̄𝑐𝑛−𝑖

= (−1)𝑛−𝑖+1𝑐𝑘+𝑖+1 ,

for 𝑖 ∈ {0, . . . , 𝑛 − 1}, see [35, 38]. The fusion ring 𝑅𝑘(𝐿𝑆𝑈(𝑛)) has a very similar alge-
braic structure. It is a quotient of ℤ[𝑐1, . . . , 𝑐𝑛] by the ideal generated from derivatives
of the potential 𝑉𝑛+𝑘 under the additional constraint that 𝑐𝑛 = 1. This constraint may
be built into the potential as a perturbation as outlined in [38].
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In Sec. 4.1 of this paper we show that a large part of this rigid algebraic structure is
preserved when changing from classical equivariant twisted 𝐾-theory (giving
𝑅𝑘(𝐿𝑆𝑈(𝑛)) by (3)) to equivariant higher twists. We construct a potential 𝑉 from the
character polynomial 𝐹(𝑡1, . . . , 𝑡𝑛) ∈ 𝑅(𝕋)⊗ℚ of the exponential functor 𝐹 and show in
Prop. 4.1 that its derivatives generate the higher fusion ideal 𝐽𝐹,ℚ. In fact, our potential
is a linear combination of the classical potentials for various levels with coefficients
derived from structure constants of the exponential functor.
We see this as an indication that the close relationship to some Grassmannian will

persist in our case. This does not seem too far fetched. Operator-algebraic versions
of Grassmannians do exist and have been studied in the past (see for example [52]).
Witten [59] has given a physical explanation of the relationship between the fusion ring
and the cohomology of the Grassmannian manifolds. This then raises the question of
whether what may persist could be understood physically.
Finally, we would like to point out another interesting feature of our construction:

Just as in [32] a key step in the computation of the graded equivariant higher twisted𝐾-
theory is the restriction to the maximal torus 𝕋 ⊂ 𝐺. In the classical case the pullback
of the basic gerbe with respect to the Weyl map

𝑤∶ 𝑆𝑈(𝑛)/𝕋 × 𝕋 → 𝑆𝑈(𝑛), ([𝑔], 𝑧) ↦ 𝑔𝑧𝑔∗

has been considered in [8]. Up to stable isomorphism it agrees with a tensor product
of cup-product gerbes [8, Prop. 5.3]. The restriction to 𝕋 is sufficient for our computa-
tions, so we will not consider the full Weyl map. Nevertheless, we find a similar tensor
product decomposition in Lem. 3.2, which takes the following form: the UHF-algebra
𝖬∞
𝐹 satisfies the following decomposition into a ℤ/2ℤ-graded tensor product

(6) 𝖬∞
𝐹 ≅ 𝖬∞

𝐹,1 ⊗⋯⊗𝖬∞
𝐹,𝑛

with 𝖬∞
𝐹,𝑖 = End(𝐹(span{𝑒𝑖}))

⊗∞ for the standard basis {𝑒1, . . . , 𝑒𝑛} of ℂ𝑛. Let 𝔱 ⊂ ℝ𝑛

be the Lie algebra of the maximal torus 𝕋. Identifying 𝖬∞
𝐹 with its decomposition, the

pullback Fell bundle ℰ𝕋 → 𝕋 is equivariantly Morita equivalent to

(7) ℒ = ℒ1 ⊗ℂ ⋯⊗ℂ ℒ𝑛 .

Eachℒ𝑖 is a Fell bundle over 𝔱[2] with the fibre product taken over the exponential map.
The fibre of ℒ𝑖 → 𝔱[2] over (𝑥1, 𝑥2) ∈ 𝔱[2] is given by the 𝖬∞

𝐹,𝑖-𝖬∞
𝐹,𝑖-bimodule

(𝐹(span{𝑒𝑖}) ⊗ 𝖬∞
𝐹,𝑖)⊗𝑞𝑖(𝑥2−𝑥1) ,

where 𝑞𝑖 ∶ 𝔱 → ℝ is the projection from 𝔱 ⊂ ℝ𝑛 onto the 𝑖th coordinate. This is the
operator-algebraic counterpart of the cup-product gerbe decomposition in [8, Prop. 5.3].
This decomposition only holds because we switched to functors that are symmetric
monoidal. If 𝐹 does not preserve symmetries, then the order of the factors in the de-
composition (6)matters andwill produce a priori different identifications with𝖬∞

𝐹 (see
Rem. 3.1).
The article is structured as follows: In Sec. 2 we recall the definition of the equi-

variant higher twists over 𝑆𝑈(𝑛) induced by an exponential functor 𝐹 from [28]. We
highlight the necessary modifications to make this construction work for symmetric
monoidal functors that take values in super-vector spaces. We will also explain that all
of the known examples fit much more naturally into this setup.
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The main goal of Sec. 3 is the computation of the spectral sequence (18) converging
to the equivariant higher twisted 𝐾-groups 𝐾𝐺

∗ (𝐶∗ℰ). It begins with some background
on Lie algebras, root systems and the Weyl alcove. The terms in (18) only involve eval-
uations of the Fell bundle at points in the maximal torus. Hence, we focus on the
restriction ℰ𝕋 of ℰ to 𝕋 ⊂ 𝐺 in Sec. 3.1. We construct a 𝕋-equivariant equivalence
between ℰ𝕋 and ℒ (with ℒ as in (7)) and prove in Lem. 3.2 that it induces a Morita
equivalence between 𝐶∗ℰ𝕋 and 𝐶∗ℒ. We also study actions of the normaliser 𝑁(𝕋)
of the maximal torus on these Fell bundles in Sec. 3.1.1, which give rise to actions of
the Weyl group𝑊 on the corresponding 𝐾-theory groups as outlined in Lem. 3.3. Fi-
nallywe compare the𝐸1-page of the spectral sequencewith the cochain complex giving
𝐻∗
𝑊aff(𝔱, ℛ) in Lem. 3.4. After rationalisation we have𝐻∗

𝑊aff(𝔱; ℛℚ) ≅ 𝐻∗
Λ(𝔱; ℛℚ)𝑊 and

the right hand side can be computed using the theory of regular sequences and Koszul
complexes, which is done in Lem. 3.8. The generators of the ideal 𝐽𝐹,ℚ are constructed
in Lem. 3.10. Finally, Thm. 3.11 summarises the main result.
Thefirst part of Sec. 4 is devoted to the computation of the potential giving the higher

fusion ideal. The main result here is Prop. 4.1, which recovers the classical potential

(up to sign) initially found by Gepner for 𝐺 = 𝑆𝑈(𝑛) at level 𝑘 for 𝐹 = (⋀top)
⊗(𝑛+𝑘)

.
In the second part we construct the𝑈(𝖬∞

𝐹 )-bundle (45) over 𝐿𝐺, sketch an approach to
understanding the multiplicative structure on equivariant twisted 𝐾-theory and high-
light some connections to CFT.

2. Equivariant higher twists over 𝑆𝑈(𝑛)
In this section we extend the definition of equivariant higher twists over𝐺 = 𝑆𝑈(𝑛)

from [28] to take values in complex super-Hilbert spaces. Let (𝒱iso
ℂ ,⊕) be the symmet-

ric monoidal category of (ungraded) finite-dimensional complex inner product spaces
and unitary isomorphisms with the monoidal structure given by the direct sum. This
is a topological groupoid, and we will consider the morphism spaces equipped with
their natural topology. Likewise, let (𝒱gr

ℂ ,⊗) be the symmetric monoidal category
of finite-dimensional complex inner product super-vector spaces and unitary isomor-
phisms that preserve the grading. Themonoidal structure is given by the graded tensor
product and the symmetry is defined on homogeneous elements as follows:

𝜎𝑉,𝑊 ∶ 𝑉 ⊗𝑊 → 𝑊 ⊗𝑉, 𝑣 ⊗ 𝑤 ↦ (−1)|𝑣|⋅|𝑤|𝑤⊗ 𝑣 ,
where |𝑣| denotes the degree, i.e. with 𝑉 = 𝑉0 ⊕ 𝑉1 we have |𝑣| = 𝑖 for 𝑣 ∈ 𝑉 𝑖.
Unless otherwise stated, we will always consider tensor products to be graded. We will
also consider𝒱gr

ℂ as a topologically enriched category with the natural topology on the
morphism spaces.

Definition 2.1. An exponential functor 𝐹 ∶ 𝒱iso
ℂ → 𝒱gr

ℂ is a continuous symmetric
monoidal functor from (𝒱iso

ℂ ,⊕) to (𝒱gr
ℂ ,⊗), which preserves duals (i.e. there is a nat-

ural isomorphism 𝐹(𝑉)∗ ≅ 𝐹(𝑉∗)) and such that the 𝑆1-representation 𝐹(ℂ) has only
positive characters. In particular, 𝐹 comes equipped with two natural isomorphisms

𝜏𝑉,𝑊 ∶ 𝐹(𝑉 ⊕𝑊) → 𝐹(𝑉) ⊗ 𝐹(𝑊) and 𝜄∶ 𝐹(0) → ℂ ,
which make the obvious unitality and associativity diagrams commute. Being sym-
metric implies that

𝜏𝑊,𝑉 ∘ 𝐹(𝜎⊕𝑉,𝑊 ) = 𝜎⊗𝐹(𝑉),𝐹(𝑊) ∘ 𝜏𝑉,𝑊 ,
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where 𝜎⊕, 𝜎⊗ denote the respective symmetry transformations for the direct sum and
the tensor product (on super-vector spaces).

Example 2.2. The classical twists arise in this setting from (graded) powers of the
determinant functor. Let 𝑙 ∈ ℕ and define 𝐹 for 𝑉 ∈ 𝒱iso

ℂ to be

det⊗𝑙(𝑉) = (⋀
top

𝑉)
⊗𝑙

,

where we equip the exterior algebra with its natural ℤ/2ℤ-grading. This means that
det⊗𝑙(𝑉) is purely odd if dim(𝑉) ⋅ 𝑙 is odd and purely even otherwise. Another example
arises from the full exterior algebra. More generally, for a trivially graded real inner
product space 𝑋 , we define

𝐹𝑋(𝑉) = ⨁
𝑚∈ℕ0

𝑋⊗𝑚
ℂ ⊗⋀

𝑚
𝑉

again equipped with its natural ℤ/2ℤ-grading. The inner product on the 𝑚th exterior
power is

⟨𝜉1 ∧⋯ ∧ 𝜉𝑚, 𝜂1 ∧⋯ ∧ 𝜂𝑚⟩ = det(⟨𝜉𝑖, 𝜂𝑗⟩𝑖,𝑗)
and the summands are orthogonal. With this definition we obtain a natural isomor-
phism 𝐹𝑋(𝑉∗) ≅ 𝐹𝑋(𝑉)∗. We refer the reader to [47, Sec. 2.2] for the definitions of
𝜏𝑉,𝑊 and 𝜄 and further details.
Note that if 𝐹 does not satisfy the character condition in Def. 2.1, det⊗𝑙⊗𝐹 does for

a suitable choice of 𝑙 ∈ ℕ.

2.1. Graded 𝐶∗-algebras and graded Morita equivalences. To an exponential
functor 𝐹 ∶ 𝒱iso

ℂ → 𝒱gr
ℂ we will associate a ℤ/2ℤ-graded 𝐶∗-algebra 𝖬∞

𝐹 . A ℤ/2ℤ-
grading on a 𝐶∗-algebra 𝐴 is an order 2 automorphism, i.e. 𝛾 ∈ Aut(𝐴) such that
𝛾2 = id𝐴. It induces a direct sum decomposition 𝐴 = 𝐴(0) ⊕ 𝐴(1) as a Banach space
with

𝐴(𝑖) = {𝑎 ∈ 𝐴 ∣ 𝛾(𝑎) = (−1)𝑖 𝑎} .
If there is a self-adjoint unitary 𝑠 ∈ 𝑀(𝐴) such that 𝛾 = Ad𝑠, then we call the grad-
ing inner. A graded ∗-homomorphism 𝜑∶ 𝐴 → 𝐵 is one that intertwines the grading
automorphisms 𝛾𝐴 and 𝛾𝐵.
Given a graded 𝐶∗-algebra 𝐴 a graded Hilbert 𝐴-module 𝐸 is a right Hilbert 𝐴-

module equipped with a linear bijection 𝑆𝐸 ∶ 𝐸 → 𝐸 such that 𝑆2𝐸 = id𝐸 and for all
𝑣, 𝑤 ∈ 𝐸, 𝑎 ∈ 𝐴

𝑆𝐸(𝑣 𝑎) = 𝑆𝐸(𝑣) 𝛾𝐴(𝑎) and ⟨𝑆𝐸(𝑣), 𝑆𝐸(𝑤)⟩𝐴 = 𝛾𝐴(⟨𝑣, 𝑤⟩𝐴) .
Defining 𝐸(𝑖) = {𝑣 ∈ 𝐸 ∣ 𝑆𝐸(𝑣) = (−1)𝑖 𝑣} we have 𝐸 = 𝐸(0) ⊕ 𝐸(1). If 𝐸 is a graded
Hilbert 𝐴-module, then Ad𝑆𝐸 defines an order 2 automorphism of the compact oper-
ators 𝒦𝐴 (𝐸) turning them into a graded 𝐶∗-algebra with an inner grading. A graded
Morita equivalence between graded 𝐶∗-algebras 𝐴 and 𝐵 is a graded right Hilbert 𝐵-
module 𝐸, which is full in the sense that ⟨𝐸(𝑖), 𝐸(𝑗)⟩ ⊆ 𝐵(𝑖+𝑗) is dense, together with an
isomorphism 𝜑∶ 𝐴 → 𝒦𝐵 (𝐸) of graded 𝐶∗-algebras. Given graded 𝐶∗-algebras 𝐴, 𝐵
and 𝐶 together with an 𝐴-𝐵-Morita equivalence 𝐸 and a 𝐵-𝐶-equivalence 𝐹, there is an
internal tensor product 𝐸 ⊗𝐵 𝐹, which is an 𝐴-𝐶-Morita equivalence. This is formed
as described in [39, Sec. 1.2.3] with the grading operator given by 𝑆𝐸 ⊗ 𝑆𝐹 .
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Given two graded 𝐶∗-algebras 𝐴 and 𝐵 we may equip the algebraic tensor product
𝐴⊙𝐵with the gradedmultiplication given onhomogeneous elements𝑎(𝑖) ∈ 𝐴(𝑖), 𝑏(𝑗) ∈
𝐵(𝑗), 𝑐(𝑘) ∈ 𝐴(𝑘), 𝑑(𝑙) ∈ 𝐵(𝑙) by

(𝑎(𝑖) ⊗ 𝑏(𝑗)) ⋅ (𝑐(𝑘) ⊗ 𝑑(𝑙)) = (−1)𝑗𝑘 (𝑎(𝑖) ⋅ 𝑐(𝑘)) ⊗ (𝑏(𝑗) ⋅ 𝑑(𝑙))
and the graded (minimal) tensor product 𝐴 ⊗ 𝐵 is the (minimal) completion of it
[9, Sec. 14.4]. For a homogeneous element 𝑎 we will sometimes denote the degree of
𝑎 by |𝑎|.
Let 𝑉 be a finite-dimensional complex super-vector space with inner product. The

endomorphism algebra End(𝑉) is a graded 𝐶∗-algebra with inner grading. If𝑊 is an-
other such space there is a natural isomorphism of graded 𝐶∗-algebras (described in
[9, Prop. 14.5.1])

(8) End(𝑉) ⊗ End(𝑊) → End(𝑉 ⊗𝑊) ,
which is compatible with the monoidal symmetry on both sides. Let 𝑊 be a super-
vector space equippedwith aunitary𝐺-representation that preserves the grading. Then
𝐺 acts by degree-preserving automorphisms on End(𝑊). Consider the colimit
End(𝑊)⊗∞ with connecting maps

(9) End(𝑊)⊗𝑛 → End(𝑊)⊗(𝑛+1) , 𝑇 ↦ 𝑇 ⊗ 1 .
Denote the grading operator on𝑊 by 𝑠 and the ungraded tensor product by⊗ (we will
not use this non-standard notation in the rest of the paper). By [9, Prop. 14.5.1] the
map

End(𝑊) ⊗ End(𝑊) → End(𝑊)⊗End(𝑊) , 𝑇1 ⊗ 𝑇2 ↦ 𝑇1𝑠|𝑇2| ⊗ 𝑇2
provides a ∗-isomorphism between the graded tensor product and the algebra
End(𝑊)⊗End(𝑊) equipped with inner grading given by Ad𝑠⊗Ad𝑠. Since the iden-
tity is even, the sequence (9) is isomorphic to

End(𝑊)⊗𝑛 → End(𝑊)⊗(𝑛+1) , 𝑇 ↦ 𝑇 ⊗ 1

with the grading on End(𝑊)⊗𝑛 given by Ad𝑠⊗𝑛 . Hence, we can identify the colimit
End(𝑊)⊗∞ with an ungraded tensor product as well, on which the grading automor-
phism is approximately inner and acts by conjugation with 𝑠 on each tensor factor. The
𝐺-action obtained as an infinite tensor product of the action on End(𝑊) commutes
with this automorphism.
The construction outlined in the following section gives rise to a ℤ/2ℤ-graded 𝐺-

𝐶∗-algebra 𝐶∗(ℰ) for 𝐺 = 𝑆𝑈(𝑛). We will compute its graded 𝐾-theory in the sense of
Kasparov [40, Def. 2.3], i.e. we define for a graded 𝐺-𝐶∗-algebra 𝐴

𝐾𝐺
𝑖 (𝐴) = 𝐾𝐾𝑖

𝐺(ℂ, 𝐴) .
This functor is homotopy-invariant, stable, continuous and has six-term exact sequen-
ces for semi-split exact sequences of graded𝐺-𝐶∗-algebras. Let𝑊 be a finite-dimensio-
nal super-Hilbert space equippedwith a representation by𝐺 that preserves the grading.
Note that𝑊⊗𝑛 provides a𝐺-equivariant graded End(𝑊)⊗𝑛-ℂ-Morita equivalence that
gives rise to

𝐾𝐺
0 (End(𝑊)⊗𝑛) ≅ 𝐾𝐺

0 (ℂ) ≅ 𝑅(𝐺) .
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This isomorphism intertwines the connecting maps in (9) with the multiplication by
the virtual representation 𝑊gr ≔ 𝑊 (0) − 𝑊 (1) ∈ 𝑅(𝐺). In the colimit we therefore
obtain the localisation

𝐾𝐺
0 (End(𝑊)⊗∞) ≅ 𝑅(𝐺)[𝑊−1

gr ] .

2.2. Construction of the Fell bundle. In this section we will recall the construction
of the higher twist from [28]. The twist is given as a saturated Fell bundle ℰ over a
(locally compact Hausdorff) groupoid 𝑌 [2]. We refer the reader to [14, Def. 2.6] for the
definition of Fell bundles. The fibres of ℰ → 𝑌 [2] over the units of the groupoid will
be 𝐶∗-algebras and over general elements Morita equivalences between domain and
range algebra. We therefore start by defining those.
Let 𝜌∶ 𝐺 → 𝑈(𝑛) for 𝐺 = 𝑆𝑈(𝑛) be the standard representation (i.e. 𝜌 is the ho-

momorphism given by inclusion). It gives rise to the (grading-preserving) unitary 𝐺-
representation

𝐹(𝜌)∶ 𝐺 → 𝑈(𝐹(ℂ𝑛))
on the super-vector space 𝐹(ℂ𝑛). As in (9) the UHF-algebra

𝖬∞
𝐹 = End(𝐹(ℂ𝑛))⊗∞

is a ℤ/2ℤ-graded 𝐺-𝐶∗-algebra with 𝐺-action given by (Ad𝐹(𝜌))
⊗∞. For any subspace

𝑉 ⊂ ℂ𝑛 the right Hilbert 𝖬∞
𝐹 -module

(10) 𝒱 = 𝐹(𝑉) ⊗ 𝖬∞
𝐹

is in fact a graded 𝖬∞
𝐹 -𝖬∞

𝐹 Morita equivalence bimodule. The left multiplication by
𝖬∞
𝐹 is induced by the canonical isomorphism of the compact operators𝒦𝖬∞𝐹 (𝒱) with

End(𝐹(𝑉)) ⊗ 𝖬∞
𝐹 and the composition

(11) End(𝐹(𝑉)) ⊗ 𝖬∞
𝐹 End(𝐹(𝑉)) ⊗ End(𝐹(𝑉) ⊗ 𝐹(𝑉⟂))⊗∞ 𝖬∞

𝐹 ,≅ ≅

where the first map applies (Ad𝜏(𝑉,𝑉⟂))
⊗∞ to 𝖬∞

𝐹 and the second map is given by shift-
ing the tensor factors accordingly. Note that permuting the tensor factors using the
symmetry of 𝒱gr

ℂ involves signs. Other than this the construction is the same as in
[28, Lem. 3.7].
The vector space 𝐹(𝑉) carries a left action by End(𝐹(𝑉)). This turns into a right ac-

tion by End(𝐹(𝑉)) on the dual space 𝐹(𝑉)∗ ≅ 𝐹(𝑉∗). Therefore the opposite bimodule
of 𝒱 is given by

𝒱op = 𝐹(𝑉)∗ ⊗𝖬∞
𝐹 ≅ 𝐹(𝑉∗) ⊗ 𝖬∞

𝐹 ,
where the left action of 𝖬∞

𝐹 only acts on 𝖬∞
𝐹 by left multiplication, but the right action

makes use of the isomorphism End(𝐹(𝑉)) ⊗ 𝖬∞
𝐹 ≅ 𝖬∞

𝐹 . Note that the notation “op”
will be reserved for the opposite bimodule, not for the opposite grading.
The Morita equivalence bimodules described above form the fibres of a Fell bundle

over a groupoid that we now construct: For an element 𝑔 ∈ 𝐺 denote by EV(𝑔) the set
of eigenvalues of 𝑔. The eigenspace corresponding to the eigenvalue 𝜆 ∈ EV(𝑔)will be
denoted by Eig(𝑔, 𝜆). Let
(12) 𝑌 = {(𝑔, 𝑧) ∈ 𝐺 × 𝑆1 ⧵ {1} ∣ 𝑧 ∉ EV(𝑔)}
and let 𝑌 [2] be the fibre product of 𝑌 with itself over 𝐺, i.e. a point

(𝑔, 𝑧1, 𝑧2) ∈ 𝐺 × (𝑆1 ⧵ {1})2
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is in 𝑌 [2] if and only if 𝑧𝑖 ∉ EV(𝑔) for 𝑖 ∈ {1, 2}. This is a groupoid with respect to the
composition

(𝑔, 𝑧1, 𝑧2) ⋅ (𝑔, 𝑧2, 𝑧3) = (𝑔, 𝑧1, 𝑧3) .
Choose a total order on 𝑆1⧵{1} by declaring 𝑧1 < 𝑧2 if the arc from 𝑧1 to 𝑧2 in 𝑆1⧵{1} runs
counterclockwise. The groupoid has a decomposition into three disjoint components

𝑌 [2] = 𝑌 [2]
+ ⨿ 𝑌 [2]

0 ⨿ 𝑌 [2]
− ,

where 𝑌 [2]
+ contains all points (𝑔, 𝑧1, 𝑧2)with 𝑧1 < 𝑧2 such that there is 𝜆 ∈ EV(𝑔)with

𝑧1 < 𝜆 < 𝑧2. The space 𝑌 [2]
− is defined similarly, but with 𝑧1 > 𝑧2 and 𝑌 [2]

0 is the space
with no eigenvalues between 𝑧1 and 𝑧2. In the following wewill denote the restrictions
of the Fell bundle ℰ to these three subspaces by ℰ+, ℰ0 and ℰ− respectively.
The bundle ℰ+ constructed in [28] is defined to be the locally trivial ℤ/2ℤ-graded

right Hilbert 𝖬∞
𝐹 -module bundle with fibre over (𝑔, 𝑧1, 𝑧2) ∈ 𝑌 [2]

+ given by

ℰ(𝑔,𝑧1,𝑧2) = 𝐹 (𝐸(𝑔, 𝑧1, 𝑧2)) ⊗ 𝖬∞
𝐹 with 𝐸(𝑔, 𝑧1, 𝑧2) = ⨁

𝑧1<𝜆<𝑧2
𝜆∈EV(𝑔)

Eig(𝑔, 𝜆) .

By [28, Cor. 3.8] the endomorphism bundle ofℰ+ has a trivialisation that restricts to the
left 𝖬∞

𝐹 -module structure on ℰ(𝑔,𝑧1,𝑧2) from (11) in each fibre. The monoidal natural
transformation of 𝐹 provides an isomorphism

𝐹 (𝐸(𝑔, 𝑧1, 𝑧2)) ⊗ 𝐹 (𝐸(𝑔, 𝑧2, 𝑧3)) ≅ 𝐹 (𝐸(𝑔, 𝑧1, 𝑧3)) .
Over 𝑌 [2]

+ we therefore obtain a multiplication

ℰ(𝑔,𝑧1,𝑧2) ⊗𝖬∞𝐹 ℰ(𝑔,𝑧2,𝑧3) → ℰ(𝑔,𝑧1,𝑧3) .
Note that the proof of its associativity in [28, Lem. 3.7] and continuity in [28, Cor. 3.8]
carry over verbatim to the graded case. Define ℰ0 to be the trivial bundle with fibre𝖬∞

𝐹
and let

ℰ(𝑔,𝑧1,𝑧2) = (ℰ(𝑔,𝑧2,𝑧1))
op for (𝑔, 𝑧1, 𝑧2) ∈ 𝑌 [2]

− .
The spaces 𝐸(𝑔, 𝑧1, 𝑧2) form the fibres of a vector bundle 𝐸 → 𝑌 [2]

+ by [45, Sec. 3].
Thus,

ℰ+ ≅ 𝐹(𝐸) ⊗ 𝖬∞
𝐹 .

Hence, the grading is a continuous operation on ℰ+ and similarly on ℰ−. The bundle
ℰ0 is trivial, so the grading is constant.
The proof of [28, Thm. 3.3] is based on properties of the two inner products on im-

primitivity bimodules which also hold in the graded case, so we obtain a Fell bundle
ℰ → 𝑌 [2] as in [28, Cor. 3.12] with a grading 𝑆ℰ ∶ ℰ → ℰ turning each fibre ℰ(𝑔,𝑧1,𝑧2)
into a graded 𝖬∞

𝐹 -𝖬∞
𝐹 Morita equivalence bimodule in such a way that the Fell bundle

multiplication
ℰ(𝑔,𝑧1,𝑧2) ⊗𝖬∞𝐹 ℰ(𝑔,𝑧2,𝑧3) → ℰ(𝑔,𝑧1,𝑧3)

is compatible with the grading.
Let ℎ ∈ 𝐺. In the standard representation 𝜌(ℎ)∶ ℂ𝑛 → ℂ𝑛 restricts to an isomor-

phismEig(𝑔, 𝜆) → Eig(ℎ𝑔ℎ−1, 𝜆). Thus,𝐺 acts on𝑌 [2] byℎ⋅(𝑔, 𝑧1, 𝑧2) = (ℎ𝑔ℎ−1, 𝑧1, 𝑧2).
This action lifts to a continuous grading-preserving action of 𝐺 on ℰ as described in
[28, Cor. 3.6]. Altogether we obtain a ℤ/2ℤ-graded 𝐺-equivariant saturated Fell bun-
dle ℰ → 𝑌 [2].
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The 𝐶∗-algebra associated to ℰ is constructed in the same way as in [28, Sec. 4],
but we will point out where the grading enters: The algebra 𝐴 = 𝐶0(𝑌, 𝖬∞

𝐹 ) is now
ℤ/2ℤ-graded. Because the Fell bundle multiplication is compatible with the grading,
the right Hilbert 𝐴-module 𝐿2(ℰ) is graded as well, which induces a ℤ/2ℤ-grading on
the adjointable bounded 𝐴-linear operatorsℒ𝐴 (𝐿2(ℰ)). There is a well-defined graded
∗-homomorphism

𝐶𝑐(𝑌 [2], ℰ) → ℒ𝐴 (𝐿2(ℰ)) ,
where the domain acts as convolution operators on 𝐿2(ℰ). We define 𝐶∗ℰ as the norm
closure of the domain inℒ𝐴 (𝐿2(ℰ)). This is a Fell bundle𝐶∗-algebrawith the grading as
extra structure. Therefore [28, Lem. 4.2] is still valid and shows that𝐶∗ℰ is a continuous
𝐶(𝐺)-algebra with the graded 𝐶∗-algebras ℰ𝑔 as its fibres and [28, Lem. 4.6] provides
a graded Morita equivalence between ℰ𝑔 and 𝖬∞

𝐹 . Moreover, [28, Lem. 4.3] produces
graded 𝐺-equivariant Morita equivalences.
We define the equivariant higher twisted 𝐾-theory of 𝐺 = 𝑆𝑈(𝑛) with twist given

by the Fell bundle ℰ by
𝐾𝑖
𝐺,ℰ(𝐺) ≔ 𝐾𝐺

𝑖 (𝐶∗ℰ) .
The Fell condition [28, Def. 4.5] implies that 𝐶∗ℰ ⊗𝕂 is isomorphic as a 𝐶(𝐺)-algebra
to the section algebra 𝐶(𝐺,𝒜) of a locally trivial bundle 𝒜 → 𝐺. If we transfer the
𝐺-action and grading from 𝐶∗ℰ ⊗ 𝕂 to 𝐶(𝐺,𝒜) through this isomorphism, then com-
patibility with the 𝐶(𝐺)-algebra structure implies that the grading acts fibrewise on 𝒜
and the𝐺-action covers the conjugation action. Thus, to compute 𝐾𝑖

𝐺,ℰ(𝐺)wemay use
the Mayer-Vietoris spectral sequence constructed in [28, Prop. 4.9].
This spectral sequence computes these𝐾-groups from the representation rings𝑅(𝐻)

for certain subgroups 𝐻 ⊆ 𝐺. More precisely, we need localisations of these rings
defined as follows: If 𝑉 is a finite-dimensional unitary representation of 𝐺, then 𝐹(𝑉)
is again a finite-dimensional unitary representation. Since 𝐹 is exponential it gives rise
to a monoid homomorphism

𝐹 ∶ (𝑅(𝐻),⊕) → (𝑅(𝐻),⊗)

for any subgroup𝐻 ⊆ 𝐺, which we continue to denote by 𝐹 by slight abuse of notation.
For a subgroup 𝐻 ⊆ 𝐺 we define

𝑅𝐹(𝐻) = 𝑅(𝐻)[𝐹(𝜌|𝐻)−1] ,

where 𝜌∶ 𝐺 → 𝑈(𝑛) denotes the standard representation.
Finally, we also need to see that 𝐾𝐺

∗ (𝐶∗ℰ) is a module over 𝐾𝐺
0 (𝖬∞

𝐹 ). It suffices to
see that the tensor embedding 𝐶∗ℰ → 𝐶∗ℰ ⊗ 𝖬∞

𝐹 induces an isomorphism on 𝐾𝐺
∗ . As

in [28, Prop. 4.11] this problem can be reduced to checking that

𝐶(𝑋,𝖬∞
𝐹 ) → 𝐶(𝑋,𝖬∞

𝐹 ) ⊗ 𝖬∞
𝐹

with 𝑓 ↦ 𝑓 ⊗ 1 induces an isomorphism for a compact Hausdorff 𝐺-space 𝑋 . By
treating grading and 𝐺-action together as a 𝐺 × ℤ/2ℤ-action this follows in the same
way as in [28, Lem. 4.10], but it can also be shown directly as follows: It suffices to see
that the first factor embedding

𝑙 ∶ 𝖬∞
𝐹 → 𝖬∞

𝐹 ⊗𝖬∞
𝐹 , 𝑎 ↦ 𝑎 ⊗ 1
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is asymptotically𝐺-unitarily equivalent to an isomorphism through grading-preserving
unitaries. This can be achieved as in [27, Lem. 2.3]. There is an equivariant isomor-
phism𝜑∶ 𝖬∞

𝐹⊗𝖬∞
𝐹 → 𝖬∞

𝐹 that alternates between the two tensor factors and preserves
the grading. Hence, it suffices to show that there is a path 𝑢∶ [0, 1) → 𝑈(𝖬∞

𝐹 ) such
that for all 𝑎 ∈ 𝖬∞

𝐹
lim
𝑡→1

‖𝑢𝑡 (𝜑 ∘ 𝑙)(𝑎) 𝑢∗𝑡 − 𝑎‖= 0 .

Note that the subgroup 𝑈(𝐹(ℂ𝑛) ⊗ 𝐹(ℂ𝑛))𝐺×ℤ/2ℤ of unitaries fixed by the grading and
the 𝐺-action decomposes into a product of unitary groups, which is path-connected.
Therefore there is a path

𝑣∶ [0, 1] → 𝑈(𝐹(ℂ𝑛) ⊗ 𝐹(ℂ𝑛)) ,
which is 𝐺-invariant, preserves the grading and connects the identity map to the one
interchanging the two tensor factors. Now we proceed as in the proof of [27, Lem. 2.3]
with the construction of 𝑢𝑡. The diagram on [28, p. 922] shows that the induced mul-
tiplication on 𝐾𝐺

0 (𝖬∞
𝐹 ) corresponds to the ring structure of 𝑅𝐹(𝐺).

2.2.1. Classical twists. Following [32, Theorem 1] classical twists for 𝑆𝑈(𝑛) at level
𝑘 ∈ ℕ0 are given by (ℎ∨ + 𝑘)-fold tensor powers of the basic gerbe, where ℎ∨ = 𝑛
is the dual Coxeter number of 𝑆𝑈(𝑛). In our setup this situation corresponds to the
exponential functor

𝐹 = (⋀
top
)
⊗(𝑛+𝑘)

,
where our construction boils down to the one from [45]. By [28, Lem. 4.2] the 𝐶∗-
algebra 𝐶∗(ℰ) is a continuous 𝐶(𝐺)-algebra with fibre 𝐶∗(ℰ𝑔), where ℰ𝑔 is the restric-
tion of ℰ to the subgroupoid of 𝑌 [2] over 𝑔, i.e.

𝑌 [2]
𝑔 ≅ {(𝑧1, 𝑧2) ∈ (𝑆1 ⧵ {1})2 ∣ 𝑧𝑖 ∉ EV(𝑔) for 𝑖 ∈ {1, 2}} .

For 𝑧1 ≤ 𝑧2 let 𝐸(𝑧1, 𝑧2) be the direct sum of the eigenspaces Eig(𝑔, 𝜆) with
𝑧1 < 𝜆 < 𝑧2 (which is the zero vector space if there are no eigenvalues in-between).
The fibre (ℰ𝑔)(𝑧1,𝑧2) is

(ℰ𝑔)(𝑧1,𝑧2) =
⎧
⎨
⎩

(⋀top 𝐸(𝑧1, 𝑧2))
⊗(𝑛+𝑘)

if 𝑧1 ≤ 𝑧2 ,

((⋀top 𝐸(𝑧2, 𝑧1))
⊗(𝑛+𝑘)

)
∗

if 𝑧1 > 𝑧2 .

Let 𝑋𝑔 = 𝑆1 ⧵ ({1} ∪ EV(𝑔)), 𝑧0 ∈ 𝑋𝑔 and let 𝜎∶ 𝑋𝑔 → 𝑌 [2]
𝑔 be defined by 𝜎(𝑧) =

(𝑧, 𝑧0). Then 𝐿2(ℰ) is a continuous field of Hilbert spaces over 𝑌 with fibre over (𝑔, 𝑧0)
isomorphic to 𝐻 = 𝐿2(𝑋𝑔, 𝜎∗ℰ𝑔). Let

𝜅𝑔 ∶ 𝑌 [2]
𝑔 → ℤ/2ℤ ,

(𝑧1, 𝑧2) ↦ {(𝑛 + 𝑘) dim(𝐸(𝑧1, 𝑧2)) mod 2 if 𝑧1 ≤ 𝑧2 ,
(𝑛 + 𝑘) dim(𝐸(𝑧2, 𝑧1)) mod 2 else .

This is a continuous groupoid homomorphism. The Hilbert space 𝐻 has a ℤ/2ℤ-
grading, where 𝐻+ is the closure of compactly supported functions with support in
(𝜅𝑔 ∘𝜎)−1(0). Moreover, 𝐶∗(ℰ𝑔) is the closure of the convolution algebra given by oper-
ators with compactly supported sections of ℰ𝑔 as their integral kernels, i.e. the algebra
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of compact operators on 𝐻. A compact operator that corresponds to a compactly sup-
ported section of ℰ𝑔 is even with respect to the ℤ/2ℤ-grading on 𝐶∗(ℰ) if the section is
supported in 𝜅−1𝑔 (0) and odd if the support is in 𝜅−1𝑔 (1). Hence, the even operators are
the ones preserving the decomposition𝐻+⊕𝐻−, whereas the odd ones map𝐻+ to𝐻−
and vice versa. If 𝑛 + 𝑘 is even, 𝐻− = 0 and the grading is trivial.
The map 𝜅𝑔 is the restriction of a continuous map 𝜅∶ 𝑌 [2] → ℤ/2ℤ to the fibre over

𝑔, which is defined in the same way as above. Consider the quotient of 𝑌 ×ℤ/2ℤ by the
equivalence relation

(𝑦1, 𝑚) ∼ (𝑦2, 𝑛) if and only if 𝜋(𝑦1) = 𝜋(𝑦2) and 𝑛 = 𝜅(𝑦1, 𝑦2) + 𝑚.
This gives a principal ℤ/2ℤ-bundle over 𝐺 that represents a class [𝜅] ∈ 𝐻1(𝐺, ℤ/2ℤ) in
accordance with the fact that the classical twists are up to isomorphism classified by
𝐻1(𝐺, ℤ/2ℤ)×𝐻3(𝐺, ℤ). Since we are considering𝐺=𝑆𝑈(𝑛), we have𝐻1(𝐺, ℤ/2ℤ)=0
and [𝜅] vanishes in cohomology.

3. The spectral sequence computing higher twisted 𝐾-theory
We start this section by recalling a few basic facts about the geometry underlying the

conjugacy classes of 𝐺 = 𝑆𝑈(𝑛). Let ℓ = 𝑛 − 1 be the rank of 𝐺. Denote by 𝕋 ⊂ 𝑆𝑈(𝑛)
the maximal torus consisting of diagonal matrices, let 𝔱 be its Lie algebra. Note that

𝔱 = {(𝜉1, . . . , 𝜉𝑛) ∈ ℝ𝑛 ∣ 𝜉1 +⋯+ 𝜉𝑛 = 0} ⊂ ℝ𝑛 .
Let Λ = ker(exp∶ 𝔱 → 𝕋) ⊂ 𝔱 be the integral weight lattice, and let Λ∗ be its dual
lattice.1 We have

Λ = {(𝜆1, . . . , 𝜆𝑛) ∈ ℤ𝑛 ∣ 𝜆1 +⋯+ 𝜆𝑛 = 0} ⊂ ℤ𝑛 .
Denote by ⟨ ⋅ , ⋅ ⟩𝔤 the basic inner product on the Lie algebra 𝔤 of𝐺. Choose a collection
of simple roots 𝛼1, . . . , 𝛼ℓ ∈ 𝔱∗ and define

𝔱+ = {𝜉 ∈ 𝔱 ∣ ⟨𝛼𝑗 , 𝜉⟩𝔤 ≥ 0 ∀𝑗 ∈ {1, . . . , ℓ}} .
This is the corresponding positive Weyl chamber. Let 𝛼0 ∈ Λ∗ be the lowest root.
The intersection of 𝔱+ with the half-plane defined by ⟨𝛼0, 𝜉⟩𝔤 ≥ −1 is the fundamental
alcove of 𝐺. For 𝑆𝑈(𝑛) we can take 𝛼𝑖(𝜉) = 𝜉𝑖 − 𝜉𝑖+1 for 𝑖 ∈ {1, . . . , ℓ} as the simple
roots. The lowest root is given by 𝛼0(𝜉) = 𝜉𝑛 − 𝜉1. The vertices of the Weyl alcove are
then given by the origin 𝜇0 and the points

𝜇𝑘 =
⎛
⎜⎜
⎝

𝑘
𝑛 , . . . ,

𝑘
𝑛⏟⎵⏟⎵⏟

𝑛−𝑘 times

, 𝑘 − 𝑛
𝑛 , . . . , 𝑘 − 𝑛

𝑛⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑘 times

⎞
⎟⎟
⎠

for𝑘 ∈ {1, . . . , ℓ}. Note that the vertex𝜇𝑘 ∈ 𝔱 lifts the central element𝜔𝑘1𝑛 ∈ 𝑍(𝑆𝑈(𝑛)),
where 𝜔 = 𝑒2𝜋𝑖/𝑛. The simplex obtained as the convex hull of the set {𝜇0, . . . , 𝜇ℓ} ⊂ 𝔱
parametrises the conjugacy classes in𝐺. We can identify it with the standard ℓ-simplex

Δℓ = {(𝑡1, . . . , 𝑡ℓ) ∈ ℝℓ ∣
ℓ
∑
𝑖=1

𝑡𝑖 ≤ 1 and 𝑡𝑗 ≥ 0 ∀𝑗 ∈ {1, . . . , ℓ}}

by mapping the point (𝑡1, . . . , 𝑡ℓ) to∑
ℓ
𝑖=1 𝑡𝑖𝜇𝑖. In this way (0, . . . , 0) corresponds to 𝜇0.

Let𝑊 = 𝑁(𝕋)/𝕋 ≅ 𝑆𝑛 be the Weyl group of 𝐺.
1We absorb the factor 2𝜋𝑖 into the definition of exp.
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𝑆𝑈(3)

𝑆𝑈(3)

𝑆𝑈(3)

𝑈(2)

𝑈(2)

𝑈(2) ≅ 𝑈(2) × 𝑈(1) ∩ 𝑆𝑈(3)𝕋

Figure 1. The group 𝐺𝐼 is associated to the barycentre of Δ𝐼 . The
picture shows these groups for 𝑆𝑈(3) for all 𝐼.

For a non-empty subset 𝐼 ⊂ {0, . . . , ℓ} let Δ𝐼 ⊂ Δℓ be the closed subsimplex spanned
by the vertices in 𝐼. Denote by 𝜉𝐼 ∈ Δℓ ⊂ 𝔤 the barycentre2 of Δ𝐼 and let 𝐺𝐼 be the
centraliser of exp(𝜉𝐼) ∈ 𝐺. Let𝑊 𝐼 ⊂ 𝑊 be the stabiliser of exp(𝜉𝐼). Note that𝑊 {0} =
⋯ = 𝑊 {ℓ} = 𝑊 . Let 𝐼 = {𝑖0, . . . , 𝑖𝑟} with 0 ≤ 𝑖0 < 𝑖1 < ⋯ < 𝑖𝑟 ≤ ℓ. If |𝐼| = 1, then
𝐺𝐼 = 𝐺{𝑖0} ≅ 𝑆𝑈(𝑛). Otherwise,

(13) 𝐺𝐼 ≅ 𝑈(𝑖𝑟 − 𝑖𝑟−1) ×⋯ × 𝑈(𝑖1 − 𝑖0) × 𝑈(𝑛 − (𝑖𝑟 − 𝑖0)) ∩ 𝑆𝑈(𝑛) .

The groups 𝐺𝐼 for 𝐺 = 𝑆𝑈(3) and all 𝐼 ⊂ {0, 1, 2} are shown in Fig. 1.
The groups Λ ≅ 𝜋1(𝕋, 1) and𝑊 both act on 𝔱 by translation and permuting the co-

ordinates, respectively, which gives rise to an action of the semi-direct product𝑊 aff =
Λ⋊𝑊 , which fits into a split short exact sequence

(14) 1 Λ 𝑊 aff 𝑊 1 .
𝑞𝑊

𝑖𝑊

Let 𝑊 𝐼 ⊂ 𝑊 aff be the stabiliser of 𝜉𝐼 ∈ 𝔱. Note that 𝑞𝑊 restricts to an isomorphism
𝑞𝑊𝐼 ∶ 𝑊 𝐼 →𝑊 𝐼 . Its inverse 𝜑𝐼 ∶ 𝑊 𝐼 →𝑊 𝐼 is defined by

(15) 𝜑𝐼(𝜎) = (𝜉𝐼 − 𝜎 ⋅ 𝜉𝐼 , 𝜎) .

Themap 𝑐𝐼 ∶ 𝑊 𝐼 → Λwith 𝑐𝐼(𝜎) = 𝜉𝐼−𝜎⋅𝜉𝐼 is the cocycle (which is also a coboundary)
for the pullback of the extension (14) to𝑊 𝐼 .
For the spectral sequence computing 𝐾𝐺

∗ (𝐶∗ℰ)we need an equivariant closed cover
of 𝐺. For 0 < 𝛿ℓ < 1 define

𝐴𝑖 = {(𝑡1, . . . , 𝑡ℓ) ∈ Δℓ ∣ 𝑡𝑖 ≥ 1 − 𝛿ℓ} for 1 ≤ 𝑖 ≤ ℓ ,(16)

𝐴0 = {(𝑡1, . . . , 𝑡ℓ) ∈ Δℓ ∣
𝑛
∑
𝑗=1

𝑡𝑗 ≤ 𝛿ℓ} .

In [28] a different parametrisation of Δℓ was used. Apart from this, these are the same
sets as in [28]. We can choose 𝛿ℓ in such a way that ⋃

ℓ
𝑗=0 𝐴𝑗 = Δℓ (any 𝛿ℓ with the

property 𝛿ℓ > 1/(1 + 1
√ℓ
) will work). Let 𝑞∶ 𝐺 → Δℓ be the continuous map sending

2Taking any other point in the interior of the simplex Δ𝐼 will not change 𝐺𝐼 up to isomorphism.
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an element to the point inΔℓ corresponding to its conjugacy class. For each non-empty
subset 𝐼 ⊂ {0, . . . , ℓ} let
(17) 𝐴𝐼 =⋂

𝑖∈𝐼
𝐴𝑖 and ̂𝐴𝐼 = 𝑞−1(𝐴𝐼) ⊆ 𝐺 .

Note that 𝜉𝐼 ∈ 𝐴𝐼 , which gives rise to an embedding 𝜄𝐼 ∶ 𝐺/𝐺𝐼 → ̂𝐴𝐼 . By [28, Lem. 4.8]
this is a 𝐺-equivariant deformation retract, so in particular a 𝐺-equivariant homotopy
equivalence.
We now have to consider restrictions of the Fell bundle ℰ to closed subsets of𝐴 ⊆ 𝕋.

Let 𝑌𝐴 be the restriction of 𝑌 → 𝐺 to 𝐴 ⊆ 𝕋 ⊂ 𝐺, i.e.
𝑌𝐴 = {(𝑤, 𝑧) ∈ 𝐴 × 𝑆1 ⧵ {1} ∣ 𝑧 ≠ 𝑤𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}} ,

where we identify 𝕋with the subset of (𝑆1)𝑛 in which the coordinates𝑤𝑖 multiply to 1.
Denote by 𝑌 [2]

𝐴 the subgroupoid given by the restriction of 𝑌 [2], to 𝐴, i.e.

𝑌 [2]
𝐴 = {(𝑤, 𝑧1, 𝑧2) ∈ 𝑌 [2] ∣ 𝑤 ∈ 𝐴} .

Analogously, denote by ℰ𝐴 → 𝑌 [2]
𝐴 the restriction of ℰ to the subgroupoid 𝑌 [2]

𝐴 ⊂ 𝑌 [2].
If 𝐴 = {𝑧}, then we will write ℰ𝑧 instead of ℰ{𝑧}.
Let 𝑤𝐼 = exp(𝜉𝐼) ∈ 𝕋. A variation of the Mayer-Vietoris spectral sequence for the

closed cover ( ̂𝐴𝑖)𝑖∈𝐼 has the 𝐸1-term

(18) 𝐸𝑝,𝑞1 = ⨁
|𝐼|=𝑝+1

𝐾𝐺𝐼𝑞 (𝐶∗ℰ𝑤𝐼 ) ≅ {
⨁|𝐼|=𝑝+1 𝑅𝐹(𝐺𝐼) for 𝑞 even ,
0 for 𝑞 odd

and converges to 𝐾𝐺
∗ (𝐶∗ℰ) by [28, Prop. 4.9].

We will identify 𝑅(𝕋) with a quotient of a polynomial ring using the ring isomor-
phism that maps 𝑡𝑖 to the 𝑖th projection 𝕋 → 𝑈(1):

𝑅(𝕋) ≅ ℤ[𝑡1, . . . , 𝑡𝑛]/(𝑡1⋯𝑡𝑛 − 1) .
With respect to this isomorphism the restriction of the standard representation 𝜌|𝕋
corresponds to 𝑡1 +⋯+ 𝑡𝑛. Therefore

𝑅𝐹(𝕋) = 𝑅(𝕋)[𝐹(𝑡1 +⋯+ 𝑡𝑛)−1]
= 𝑅(𝕋)[𝐹(𝑡1)−1, . . . , 𝐹(𝑡𝑛)−1] ,

where the last equality follows from the exponential property which implies that
𝐹(𝑡1 +⋯+ 𝑡𝑛) = 𝐹(𝑡1)⋯𝐹(𝑡𝑛).
For the convenience of the reader we summarise the definitions that were made

above in Table 1.

3.1. Restriction to themaximal torus. In this section we will compare the spectral
sequence in (18) to another one that computes the𝑊 aff-equivariant Bredon cohomol-
ogy 𝐻∗

𝑊aff(𝔱; ℛ) of 𝔱 with respect to a local coefficient system ℛ. As we will see, this
comparison is based on the fact that the Fell bundle ℰ has a tensor product decom-
position when restricted to the maximal torus (see (24) for the precise form of this
decomposition). We will start by decomposing the algebra 𝖬∞

𝐹 = End(𝐹(ℂ𝑛))⊗∞. Let
{𝑒1, . . . , 𝑒𝑛} be the standard basis of ℂ𝑛. For 𝑖 ∈ {1, . . . , 𝑛} define
(19) 𝖬∞

𝐹,𝑖 = End(𝐹(span{𝑒𝑖}))
⊗∞
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Table 1. Notation used throughout the paper

Symbol Description
𝕋 maximal torus in 𝐺 = 𝑆𝑈(𝑛) given by diag. matrices
𝔤, 𝔱 Lie algebras of 𝐺 and 𝕋, respectively
Λ integral weight lattice, kernel of exp∶ 𝔱 → 𝕋
𝑊 ≅ 𝑆𝑛, Weyl group of 𝐺 = 𝑆𝑈(𝑛)
𝑊 aff = Λ⋊𝑊 , affine Weyl group of 𝐺
𝐼 subset of the vertices of the fundamental alcove
Δ𝐼 subsimplex of the fundamental alcove spanned by 𝐼
𝜉𝐼 barycentre of Δ𝐼 ⊂ 𝔱
𝐺𝐼 centraliser of 𝑤𝐼 = exp(𝜉𝐼) in 𝐺
𝑊 𝐼 stabiliser of 𝑤𝐼 = exp(𝜉𝐼) in𝑊
𝑌 = {(𝑔, 𝑧) ∈ 𝐺 × 𝑆1 ⧵ {1} ∣ 𝑧 ∉ EV(𝑔)}, see (12)
𝑌 [2] groupoid given by the fibre square of 𝑌 over 𝐺
𝖬∞
𝐹 = End(𝐹(ℂ𝑛))⊗∞, infinite UHF-𝐺-𝐶∗-algebra
ℰ Fell bundle over 𝑌 [2] depending on exp. functor 𝐹
𝑌 [2]
𝐴 subgroupoid of 𝑌 [2] obtained by restriction to 𝐴 ⊆ 𝐺
ℰ𝐴 restriction of ℰ to 𝑌 [2]

𝐴 for 𝐴 ⊆ 𝕋 ⊂ 𝐺
𝑌 [2]
𝑧 , ℰ𝑧 restrictions of 𝑌 [2] and ℰ, respectively, to {𝑧} ⊂ 𝕋

and let

(20) 𝒱 𝑖 = 𝐹(span{𝑒𝑖}) ⊗ 𝖬∞
𝐹,𝑖 .

This is an 𝖬∞
𝐹,𝑖-𝖬∞

𝐹,𝑖 Morita equivalence bimodule with left and right multiplication
analogous to (10). Since 𝐹 is a functor, we obtain a unitary 𝑆1-representation given
by 𝑧 ↦ 𝐹(𝑧) ∈ 𝑈(𝐹(span(𝑒𝑖))). Likewise, each algebra 𝖬∞

𝐹,𝑖 carries an 𝑆1-action con-
structed as the infinite tensor product of 𝑧 ↦ Ad𝐹(𝑧). This action extends to the bi-
module 𝒱 𝑖 via 𝑧 ↦ 𝐹(𝑧)⊗Ad⊗∞𝐹(𝑧) and turns it into an 𝑆1-equivariant𝖬∞

𝐹,𝑖-𝖬∞
𝐹,𝑖 Morita

equivalence.
The graded tensor product of all endomorphism algebras evaluates to

𝑛

⨂
𝑖=1

End(𝐹(span{𝑒𝑖})) ≅ End(𝐹 (
𝑛

⨁
𝑖=1

span{𝑒𝑖})) = End(𝐹(ℂ𝑛))

and the tensor product of these isomorphisms gives a 𝕋-equivariant ∗-isomorphism of
the UHF-algebras

(21) 𝜃∶
𝑛

⨂
𝑖=1

𝖬∞
𝐹,𝑖 → 𝖬∞

𝐹 .
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Remark 3.1. This is one of the subtle points where we reap the benefits of symmetric
monoidal functors: If 𝐹 does not preserve the symmetry, then there are several natu-
ral maps from the tensor product in the domain to 𝖬∞

𝐹 . For example for 𝑛 = 2, the
isomorphism

𝖬∞
𝐹,1 ⊗𝖬∞

𝐹,2 → 𝖬∞
𝐹,2 ⊗𝖬∞

𝐹,1 → End(𝐹(span{𝑒2} ⊕ span{𝑒1}))
⊗∞ → 𝖬∞

𝐹 ,

where we first interchange the tensor factors, is potentially different from

𝖬∞
𝐹,1 ⊗𝖬∞

𝐹,2 → End(𝐹(span{𝑒1} ⊕ span{𝑒2}))
⊗∞ → 𝖬∞

𝐹 .

If 𝐹 preserves symmetries, then they agree. As we have seen in Sec. 2 our main ex-
amples of exponential functors do in fact preserve symmetries, when considered as
functors to super-vector spaces.

For any𝑚 ∈ ℤ and 𝒱 𝑖, 𝖬∞
𝐹,𝑖 as in (20), (19), respectively, we define

𝒱⊗𝑚
𝑖 =

⎧
⎨
⎩

𝒱⊗𝑚
𝑖 for𝑚 > 0 ,

𝖬∞
𝐹,𝑖 for𝑚 = 0 ,

(𝒱op
𝑖 )⊗(−𝑚) for𝑚 < 0 ,

where all tensor products are taken over 𝖬∞
𝐹,𝑖. Note that for all 𝑟, 𝑠 ∈ ℤ we have 𝑆1-

equivariant bimodule isomorphism

(22) 𝒱⊗𝑟
𝑖 ⊗𝖬∞𝐹,𝑖 𝒱

⊗𝑠
𝑖 → 𝒱⊗(𝑟+𝑠)

𝑖

that are associative in the obvious sense. For each 𝑚1, . . . , 𝑚𝑛 ∈ ℤ we can turn the
bimodule

𝒱⊗𝑚1
1 ⊗ℂ ⋯⊗ℂ 𝒱⊗𝑚𝑛𝑛

(note that the tensor products are graded outer tensor products over ℂ as in [9, 14.4.4])
into an𝖬∞

𝐹 -𝖬∞
𝐹 -Morita equivalence using 𝜃 as in (21). Combining all 𝑆1-actions on the

𝒱 𝑖’s we obtain an action of 𝕋 ⊂ (𝑆1)𝑛 on this bimodule. For 𝐼 ⊂ {1, . . . , 𝑛} let

𝑉 𝐼 = span{𝑒𝑖 ∣ 𝑖 ∈ 𝐼} ⊂ ℂ𝑛 .

Let𝑚∶ {1, . . . , 𝑛} → {0, 1} be the indicator function of 𝐼. By our observations above we
obtain a 𝕋-equivariant bimodule isomorphism

(23)
𝑛

⨂
𝑖=1

𝒱⊗𝑚(𝑖)
𝑖 ≅ 𝐹(𝑉 𝐼) ⊗ 𝖬∞

𝐹 ,

where the 𝑛-fold outer tensor product on the left is a graded tensor product over ℂ and
the left hand side is an 𝖬∞

𝐹 -𝖬∞
𝐹 -bimodule via 𝜃.

For 𝑧 ∈ 𝑆1 ⊂ ℂ denote by log𝑧 ∶ 𝑆1 → 𝑖ℝ the logarithm with log𝑧(1) = 0 and cut
through 𝑧 (for example log−1 takes values in (−𝜋𝑖, 𝜋𝑖) ⊂ 𝑖ℝ). Now consider 𝑙𝑧 ∶ 𝑆1 → ℝ
with 𝑙𝑧(𝑤) = 1

2𝜋𝑖 log𝑧(𝑤). Let 𝑤, 𝑧, 𝑥 ∈ 𝑆1 with 𝑥 ≠ 𝑧 and 𝑥 ≠ 𝑤 and note that by
[8, Lem. 5.12]

𝑙𝑧(𝑥) − 𝑙𝑤(𝑥) =
⎧
⎨
⎩

−1 if 𝑧 < 𝑥 < 𝑤 ,
1 if 𝑤 < 𝑥 < 𝑧 ,
0 else .
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The fibres of ℰ𝐴 for 𝐴 ⊆ 𝕋 can be written as follows

(24) (ℰ𝐴)(𝑤,𝑧1,𝑧2) ≅
𝑛

⨂
𝑖=1

𝒱⊗(𝑙𝑧2 (𝑤𝑖)−𝑙𝑧1 (𝑤𝑖))
𝑖 ,

where the tensor products on the right hand side are graded tensor products over ℂ.
Indeed, for 𝑧1 < 𝑧2 the isomorphism (23) gives in this case

𝑛

⨂
𝑖=1

𝒱⊗(𝑙𝑧2 (𝑤𝑖)−𝑙𝑧1 (𝑤𝑖))
𝑖 ≅ 𝐹

⎛
⎜⎜
⎝
⨁

𝑧1<𝜆<𝑧2
𝜆∈EV(𝑤)

Eig(𝑤, 𝜆)
⎞
⎟⎟
⎠
⊗ 𝖬∞

𝐹 = (ℰ𝐴)(𝑤,𝑧1,𝑧2) .

Since (23) is 𝕋-equivariant, the above isomorphism is as well.
Similar to [8, Sec. 4.1] we can now compare ℰ𝐴 to another Fell bundle defined as

follows: Consider the exponential map exp∶ 𝔱 → 𝕋 and let 𝔱[2] be the fibre product
over 𝕋, i.e.

𝔱[2] = {(𝑥1, 𝑥2) ∈ 𝔱2 ∣ 𝑥1 − 𝑥2 ∈ Λ} .
Let 𝑞𝑖 ∶ Λ → ℤ for 𝑖 ∈ {1, . . . , 𝑛} be the projection map onto the 𝑖th coordinate of

Λ ⊂ ℤ𝑛. The connected components of 𝔱[2] are labelled by Λ, since 𝔱[2] ≅ 𝔱 × Λ. For
𝜆 ∈ Λ denote the component of 𝔱[2] by 𝔱[2]𝜆 , i.e.3

𝔱[2]𝜆 = {(𝑥1, 𝑥2) ∈ 𝔱[2] ∣ 𝑥2 − 𝑥1 = 𝜆} .
Now consider the following bundle

(25) ℒ𝑖 =∐
𝜆∈Λ

𝔱[2]𝜆 × 𝒱⊗𝑞𝑖(𝜆)
𝑖

over 𝔱[2], where the tensor product on the right hand side is taken over𝖬∞
𝐹,𝑖. The canon-

ical bimodule isomorphisms

𝒱⊗𝑞𝑖(𝜆)
𝑖 ⊗𝖬∞𝐹,𝑖 𝒱

⊗𝑞𝑖(𝜇)
𝑖 → 𝒱⊗𝑞𝑖(𝜆+𝜇)

𝑖

turn eachℒ𝑖 into a Fell bundle over the groupoid 𝔱[2]. This Fell bundle comes equipped
with a fibrewise 𝑆1-action induced by the one on 𝒱 𝑖. Let
(26) ℒ = ℒ1 ⊗ℂ ⋯⊗ℂ ℒ𝑛

be the fibrewise outer tensor product of the ℒ𝑖’s over 𝔱[2]. It is straightforward to see
that this gives a Fell bundle over 𝔱[2], where the multiplication reshuffles the tensor
factors and uses the multiplication in each of the ℒ𝑖’s. Combining the 𝑆1-actions on
the tensor factors and restricting to 𝕋 ⊂ (𝑆1)𝑛 we obtain a 𝕋-equivariant Fell bundle
over 𝔱[2].
For a closed subset 𝐴 ⊆ 𝕋 let 𝔱𝐴 = exp−1(𝐴) ⊆ 𝔱 and let 𝔱[2]𝐴 be the fibre product

of 𝔱𝐴 with itself over 𝐴. Let ℒ𝐴 → 𝔱[2]𝐴 be the corresponding restriction of the Fell
bundle ℒ.
From the identification of the fibres of ℰ𝐴 in (24) we see that we have a bimodule

between ℰ𝐴 and ℒ𝐴 constructed as follows: Let 𝑃𝐴 = 𝔱𝐴 ×𝐴 𝑌𝐴 be given by
𝑃𝐴 = {(𝑥, 𝑤, 𝑧) ∈ 𝔱 × 𝐴 × 𝑆1 ⧵ {1} ∣ exp(𝑥) = 𝑤, 𝑧 ≠ 𝑤𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}}.

3There is a slight clash of notation here with 𝔱[2]𝐴 later, but it is fairly clear from the context which is
meant.
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This space carries a canonical left action of the groupoid 𝔱[2]𝐴 and a canonical right ac-
tion of 𝑌 [2]

𝐴 , which turns 𝑃𝐴 into a 𝔱[2]𝐴 -𝑌 [2]
𝐴 -Morita equivalence. Given (𝑥, 𝑤, 𝑧) ∈ 𝑃𝐴

the condition exp(𝑥) = 𝑤 implies that 𝑙𝑧(𝑤𝑖) − 𝑞𝑖(𝑥) ∈ ℤ, where 𝑞𝑖 ∶ 𝔱 → ℝ is the
𝑖th projection map and 𝑙𝑧 denotes (up to a factor) the logarithm with cut at 𝑧 as above.
Thus, we can consider the (locally trivial) Banach bundleℱ𝐴 → 𝑃𝐴 with fibres defined
as follows

(27) (ℱ𝐴)(𝑥,𝑤,𝑧) =
𝑛

⨂
𝑖=1

𝒱⊗(𝑙𝑧(𝑤𝑖)−𝑞𝑖(𝑥))
𝑖 ,

where the 𝑛-fold outer tensor product is a graded tensor product overℂ and the interior
tensor product is over 𝖬∞

𝐹,𝑖 as above. For 𝑥, 𝑥1, 𝑥2 ∈ 𝔱, 𝑤 ∈ 𝐴 and 𝑧, 𝑧1, 𝑧2 ∈ 𝑆1 ⧵ {1}
such that (𝑥𝑖, 𝑤, 𝑧) ∈ 𝑃𝐴 and (𝑥, 𝑤, 𝑧𝑖) ∈ 𝑃𝐴 the isomorphisms (22) give rise to

𝒱⊗(𝑞𝑖(𝑥2)−𝑞𝑖(𝑥1))
𝑖 ⊗𝖬∞𝐹,𝑖 𝒱

⊗(𝑙𝑧(𝑤𝑖)−𝑞𝑖(𝑥2))
𝑖 → 𝒱⊗(𝑙𝑧(𝑤𝑖)−𝑞𝑖(𝑥1))

𝑖 ,

𝒱⊗(𝑙𝑧1 (𝑤𝑖)−𝑞𝑖(𝑥))
𝑖 ⊗𝖬∞𝐹,𝑖 𝒱

⊗(𝑙𝑧2 (𝑤𝑖)−𝑙𝑧1 (𝑤𝑖))
𝑖 → 𝒱⊗(𝑙𝑧2 (𝑤𝑖)−𝑞𝑖(𝑥))

𝑖 .

These piece together to give a left action byℒ𝐴 and (using (23)) a right action by ℰ𝐴 on
the bundle ℱ𝐴:

(ℒ𝐴)(𝑥1,𝑥2) ⊗ (ℱ𝐴)(𝑥2,𝑤,𝑧) → (ℱ𝐴)(𝑥1,𝑤,𝑧) ,(28)
(ℱ𝐴)(𝑥,𝑤,𝑧1) ⊗ (ℰ𝐴)(𝑤,𝑧1,𝑧2) → (ℱ𝐴)(𝑥,𝑤,𝑧2) .(29)

The associativity of the isomorphisms (22) implies (ℓ ⋅ 𝑓) ⋅ 𝑒 = ℓ ⋅ (𝑓 ⋅ 𝑒) for all ℓ ∈
(ℒ𝐴)(𝑥1,𝑥2), 𝑓 ∈ (ℱ𝐴)(𝑥2,𝑤,𝑧1) and 𝑒 ∈ (ℰ𝐴)(𝑤,𝑧1.𝑧2).
Recalling the structure of the opposite bimodule 𝒱op

𝑖 (see [28, Sec. 2.1]) we obtain
graded isomorphisms (𝒱⊗𝑚

𝑖 )
op → 𝒱⊗(−𝑚)

𝑖 . From the inner product on𝒱⊗𝑚
𝑖 we there-

fore obtain an antilinear map

𝒱⊗𝑚
𝑖 → (𝒱⊗𝑚

𝑖 )
op → 𝒱⊗(−𝑚)

𝑖 , 𝑓 ↦ 𝑓∗ .
It gives rise to two inner products ⟨ ⋅ , ⋅ ⟩ℒ𝐴 and ⟨ ⋅ , ⋅ ⟩ℰ𝐴 as follows: for𝑓1 ∈ (ℱ𝐴)(𝑥1,𝑤,𝑧),
𝑓2 ∈ (ℱ𝐴)(𝑥2,𝑤,𝑧), 𝑔1 ∈ (ℱ𝐴)(𝑥,𝑤,𝑧1) and 𝑔2 ∈ (ℱ𝐴)(𝑥,𝑤,𝑧2) we define

⟨𝑓1, 𝑓2⟩ℒ𝐴 = 𝑓1 ⋅ 𝑓∗2 ∈ (ℒ𝐴)(𝑥1,𝑥2) ,
⟨𝑔1, 𝑔2⟩ℰ𝐴 = 𝑔∗1 ⋅ 𝑔2 ∈ (ℰ𝐴)(𝑤,𝑧1,𝑧2) ,

where we identify the fibres of ℰ𝐴 with tensor products of 𝒱 𝑖’s as in (24).

Lemma 3.2. Let 𝐴 ⊆ 𝕋 be a closed subset. The Banach bundle ℱ𝐴 → 𝑃𝐴 defined above
gives rise to a 𝕋-equivariant Morita equivalence between the two Fell bundles ℒ𝐴 → 𝔱[2]𝐴
and ℰ𝐴 → 𝑌 [2]

𝐴 in the sense of [43, Def. 6.1]. Consequently,

𝐾𝕋
∗ (𝐶∗ℒ𝐴) ≅ 𝐾𝕋

∗ (𝐶∗ℰ𝐴) .

Proof. The algebraic properties [43, Def. 6.1, (b) (i) – (iv)] are easily checked. Moreover,
each fibre (ℱ𝐴)(𝑥,𝑤,𝑧) is an (ℒ𝐴)(𝑥,𝑥)-(ℰ𝐴)(𝑤,𝑧,𝑧) Morita equivalence, since (ℒ𝐴)(𝑥,𝑥) =
𝖬∞
𝐹,1 ⊗⋯⊗𝖬∞

𝐹,𝑛 and (ℰ𝐴)(𝑤,𝑧,𝑧) = 𝖬∞
𝐹 and (ℱ𝐴)(𝑥,𝑤,𝑧) is an imprimitivity bimodule

for those algebras.
Therefore ℱ𝐴 is an ℒ𝐴-ℰ𝐴-equivalence in the sense of [43, Def. 6.1] and by [43,

Thm. 6.4] a completion of the compactly supported sections 𝐶𝑐(𝑃𝐴, ℱ𝐴) with left and
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right actions and inner products as stated in [43, Thm. 6.4] is an imprimitivity bimod-
ule between 𝐶∗ℒ𝐴 and 𝐶∗ℰ𝐴. By construction each 𝒱 𝑖 is a graded 𝖬∞

𝐹,𝑖-𝖬∞
𝐹,𝑖-Morita

equivalence. Therefore the same is true for the completion of 𝐶𝑐(𝑃𝐴.ℱ𝐴).
It remains to be seen why it defines a 𝕋-equivariant Morita equivalence. Note that

𝕋 acts trivially on 𝑌 [2]
𝐴 and 𝔱[2]𝐴 , since this action is induced by restricting the conju-

gation action. The Banach bundle ℱ𝐴 → 𝑃𝐴 carries a fibrewise 𝕋-action induced by
the 𝑆1-actions on the𝒱 𝑖’s. The𝕋-equivariance of themultiplication isomorphisms (22)
implies that the left action isomorphism (28) and the right action isomorphism (29) are
both𝕋-equivariant. The operation ( ⋅ )∗ intertwines the 𝑆1-action on𝒱 𝑖 with the one on
the opposite bimodule 𝒱op

𝑖 . Therefore the ℒ𝐴- and ℰ𝐴-valued inner products are both
𝕋-equivariant as well. This implies that the completion of𝐶𝑐(𝑃𝐴, ℱ𝐴) is a𝕋-equivariant
imprimitivity bimodule between 𝐶∗ℒ𝐴 and 𝐶∗ℰ𝐴 in the sense of [51, Def. 7.2]. □

The additional definitions from this section can be found in Table 2 for the conve-
nience of the reader.

Table 2. Notation used throughout the paper

Symbol Description
𝔱[2] groupoid given by the fibre square of 𝔱 over 𝕋
ℒ𝑖 Fell bundle over 𝔱[2] with fibre 𝒱 𝑖, see (20)
ℒ Fell bundle over 𝔱[2] given by ℒ1 ⊗⋯⊗ℒ𝑛

ℒ𝐴 restriction of ℒ to 𝐴 ⊆ 𝕋 ⊂ 𝐺
ℱ𝐴 Morita equivalence bundle between ℰ𝐴 and ℒ𝐴

3.1.1. Normaliser andWeyl groupactions. Let 𝐼 ⊂ {0, . . . , ℓ} be a subset of the vertices of
Δℓ (where ℓ = 𝑛− 1 is the rank of 𝐺). Recall that 𝐺𝐼 is the centraliser of 𝑤𝐼 = exp(𝜉𝐼),
see (13). It is connected by [10, part E, Ch. II, Thm. 3.9]. Moreover, the Weyl group
of 𝐺𝐼 is𝑊 𝐼 . This implies that the restriction homomorphism 𝑅(𝐺𝐼) → 𝑅(𝕋)𝑊𝐼 is an
isomorphism. The element 𝐹(𝜌|𝕋) for the standard representation 𝜌 is invariant under
𝑊 𝐼 . Therefore this isomorphism survives the localisation and we have

𝑅𝐹(𝐺𝐼) 𝑅𝐹(𝕋)𝑊𝐼≅

induced by the restriction map.
Let 𝑁𝐺(𝕋) ⊆ 𝑆𝑈(𝑛) be the normaliser of the maximal torus. This group consists

of “generalised permutation matrices”, i.e. matrices of determinant 1 whose only non-
zero entries are complex numbers of norm 1 that occur exactly once per row and col-
umn. It fits into a short exact sequence
(30) 1 → 𝕋 → 𝑁𝐺(𝕋) → 𝑊 → 1 .
The group 𝑊 ≅ 𝑆𝑛 in this sequence is the Weyl group, which acts on 𝕋 ⊂ (𝑆1)𝑛
by permuting the coordinates. This lifts to a corresponding action of 𝑊 on 𝑌𝕋 with
𝜎 ⋅ (𝑤, 𝑧) = (𝜎 ⋅ 𝑤, 𝑧) for (𝑤, 𝑧) ∈ 𝑌𝕋 and 𝜎 ∈ 𝑊 . Hence, 𝑊 also acts diagonally
on 𝑌 [2]

𝕋 by groupoid isomorphisms. Each element ̂𝜎 ∈ 𝑁𝐺(𝕋) gives rise to a unitary
transformation 𝜎̂∶ ℂ𝑛 → ℂ𝑛.
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For a given point (𝑤, 𝑧1, 𝑧2) ∈ 𝑌 [2]
𝕋 with 𝑧1 < 𝑧2 the map ̂𝜎 that lifts 𝜎 ∈ 𝑊 restricts

to a unitary isomorphism of eigenspaces (note that 𝜎 ⋅ 𝑤 = 𝜎̂𝑤𝜎̂∗)

𝜎̂(𝑤,𝑧1,𝑧2) ∶ ⨁
𝑧1<𝜆<𝑧2
𝜆∈EV(𝑤)

Eig(𝑤, 𝜆) → ⨁
𝑧1<𝜆<𝑧2

𝜆∈EV(𝜍⋅𝑤)

Eig(𝜎 ⋅ 𝑤, 𝜆)

and likewise for 𝑧1 ≥ 𝑧2. We can consider the𝐶∗-algebra𝖬∞
𝐹 (see Table 1) as an𝑁𝐺(𝕋)-

algebra with the action given by (Ad𝐹(𝜍̂))⊗∞. The map

𝐹(𝜎̂(𝑤,𝑧1,𝑧2)) ⊗ Ad⊗∞𝐹(𝜍̂)
induces an isomorphism (ℰ𝕋)(𝑤,𝑧1,𝑧2) → (ℰ𝕋)(𝜍⋅𝑤,𝑧1,𝑧2), which intertwines the ordinary
left and right𝖬∞

𝐹 -actions on (ℰ𝕋)(𝑤,𝑧1,𝑧2)with the ones on (ℰ𝕋)(𝜍⋅𝑤,𝑧1,𝑧2) that are twisted
by (Ad𝐹(𝜍̂))⊗∞ and the 𝕋-action on the domain with the 𝜎-permuted 𝕋-action on the
codomain.
Altogether, ℰ𝕋 is an 𝑁𝐺(𝕋)-equivariant Fell bundle with respect to this action. In

fact, what we have described above is just the restriction of the given 𝐺-action on ℰ to
an 𝑁𝐺(𝕋)-action on ℰ𝕋.
The group 𝑁𝐺(𝕋) also acts on ℒ, defined in (26) and (25), in the following way: An

element 𝜎 ∈ 𝑊 acts on (𝑥1, 𝑥2) ∈ 𝔱[2] by (𝜎⋅𝑥1, 𝜎⋅𝑥2)with 𝜎 permuting the coordinates
of 𝑥𝑖 ∈ 𝔱 ⊂ ℝ𝑛. With respect to this action exp∶ 𝔱 → 𝕋 is 𝑊 -equivariant. Since 𝐹 is
exponential, the fibres of ℒ are bimodules isomorphic to

ℒ(𝑥1,𝑥2) ≅ 𝐹 (
𝑛

⨁
𝑖=1

𝑉⊕𝑞𝑖(𝑥2−𝑥1)
𝑖 ) ⊗ 𝖬∞

𝐹 ,

where 𝑉 𝑖 = span{𝑒𝑖} and we define 𝑉⊕𝑚
𝑖 = (𝑉∗

𝑖 )⊕(−𝑚) if 𝑚 < 0 and 𝑉⊕0 = 0. An
element ̂𝜎 ∈ 𝑁𝐺(𝕋) lifting 𝜎 ∈ 𝑊 provides a unitary isomorphism

𝜎̂(𝑥1,𝑥2) ∶
𝑛

⨁
𝑖=1

𝑉⊕𝑞𝑖(𝑥2−𝑥1)
𝑖 →

𝑛

⨁
𝑖=1

𝑉⊕𝑞𝑖(𝜍⋅(𝑥2−𝑥1))
𝑖

by applying the restriction ̂𝜎∶ 𝑉 𝑖 → 𝑉𝜍(𝑖) or (𝜎̂∗)−1 ∶ 𝑉∗
𝑖 → 𝑉∗

𝜍(𝑖) to each non-trivial
summand. As above, 𝐹(𝜎̂(𝑥1,𝑥2))⊗(Ad𝐹(𝜍̂))⊗∞ gives an isomorphism betweenℒ(𝑥1,𝑥2)
and

ℒ(𝜍⋅𝑥1,𝜍⋅𝑥2) ≅ 𝐹 (
𝑛

⨁
𝑖=1

𝑉⊕𝑞𝑖(𝜍⋅(𝑥2−𝑥1))
𝑖 ) ⊗ 𝖬∞

𝐹 ,

intertwining the ordinary and twisted actions on these bimodules. Altogether, we have
turned ℒ into an 𝑁𝐺(𝕋)-equivariant Fell bundle.
Both of the 𝑁𝐺(𝕋)-actions induce corresponding 𝑊 -actions on the 𝕋-equivariant

𝐾-groups by the following general observation: Let 𝐷 be a unital 𝑁𝐺(𝕋)-𝐶∗-algebra.
Denote the 𝑁𝐺(𝕋)-action on 𝐷 by 𝛼 and the action of 𝑊 on 𝕋 by 𝛾. Let (𝐸, 𝜆) be a
finitely generated projective (𝕋, 𝐷, 𝛼)-module in the sense of [48, Def. 2.2.1] on which
the𝕋-action is given by restricting𝛼, i.e.𝐸 is a finitely generated projective rightHilbert
𝐷-module and 𝜆∶ 𝕋 → ℒ(𝐸) is a continuous representation such that 𝜆𝑔(𝜉 ⋅ 𝑎) =
𝜆𝑔(𝜉) ⋅ 𝛼𝑔(𝑎). Let 𝜎 ∈ 𝑊 , choose a lift 𝜎̂ ∈ 𝑁𝐺(𝕋) of 𝜎 and define 𝐸𝜍̂ to be the same
Banach space as 𝐸, but with the right 𝐷-multiplication modified by 𝛼 as follows:

𝑣 ∗ 𝑎 = 𝑣 ⋅ 𝛼𝜍̂(𝑎)
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for 𝑣 ∈ 𝐸, 𝑎 ∈ 𝐷. The inner product can be adjusted accordingly. Let 𝜆𝜍 ∶ 𝕋 → ℒ(𝐸)
be given by 𝜆𝜍(𝑤) = 𝜆(𝛾𝜍(𝑤)) for 𝑤 ∈ 𝕋. The pair (𝐸𝜍̂, 𝜆𝜍) is again a finitely generated
projective (𝕋, 𝐷, 𝛼)-module.
The isomorphism class of 𝐸𝜍̂ does not depend on the chosen lift 𝜎̂. Indeed, any

two choices ̂𝜎1, 𝜎̂2 of a lift of 𝜎 will differ by an element of 𝑤̂ ∈ 𝕋. But 𝕋 is path-
connected. Thus, a path between 𝑤̂ and the identity gives rise to a homotopy between
(𝐸𝜍̂1 , 𝜆𝜍) and (𝐸𝜍̂2 , 𝜆𝜍), which therefore represent the same element in 𝐾𝕋

0 (𝐷). Hence,
for [𝐸, 𝜆] ∈ 𝐾𝕋

0 (𝐷) and 𝜎 ∈ 𝑊
𝜎 ⋅ [𝐸, 𝜆] = [𝐸𝜍̂−1 , 𝜆𝜍−1]

defines a (left) action of𝑊 on𝐾𝕋
0 (𝐷). Replacing𝐷 by𝐷⊗ℂℓ1, whereℂℓ1 is the Clifford

algebra of ℝ we see that the𝑊 -action extends to 𝐾𝕋
1 (𝐷).

Finally, we also have a 𝑊 -action on 𝑃𝕋, the base space of the bimodule bundle ℱ𝕋
defined in (27): Let 𝜎 ∈ 𝑊 and (𝑥, 𝑤, 𝑧) ∈ 𝑃𝕋. We define

𝜎 ⋅ (𝑥, 𝑤, 𝑧) = (𝜎 ⋅ 𝑥, 𝜎 ⋅ 𝑤, 𝑧) .
With this action 𝑃𝕋 turns into a 𝑊 -equivariant Morita equivalence between 𝔱[2] and
𝑌 [2]
𝕋 . This𝑊 -action lifts to an 𝑁𝐺(𝕋)-action ℱ𝕋. Since the fibres of ℱ𝕋 and ℒ are both
constructed from the same bimodules 𝒱 𝑖, this action is defined completely analogous
to the one on ℒ and gives fibrewise 𝑁𝐺(𝕋)-equivariant isomorphisms

(ℱ𝕋)(𝑥,𝑤,𝑧) → (ℱ𝕋)(𝜍⋅𝑥,𝜍⋅𝑤,𝑧) .
Let 𝐴 ⊆ 𝕋 be a closed subset and let𝑊𝐴 ⊆ 𝑊 be a subgroup such that𝑊𝐴 ⋅ 𝐴 =

𝐴. Let 𝖷𝐴 be the completion of 𝐶𝑐(𝑃𝐴, ℱ𝐴). By our observations above it provides a
𝑁𝐴
𝐺 (𝕋)-equivariant imprimitivity bimodule between 𝐶∗ℰ𝐴 and 𝐶∗ℒ𝐴, where 𝑁𝐴

𝐺 (𝕋) is
the preimage of 𝑊𝐴 in 𝑁𝐺(𝕋). Denote the 𝑁𝐴

𝐺 (𝕋)-action on 𝖷𝐴 by 𝛿. Let (𝐸, 𝜆) be a
finitely generated projective (𝕋, 𝐶∗ℰ𝐴, 𝛼)-module. For 𝜎 ∈ 𝑊𝐴 and a lift ̂𝜎 ∈ 𝑁𝐴

𝐺 (𝕋)
the map

𝐸𝜍̂ ⊗𝐶∗ℰ𝐴 𝖷𝐴 → (𝐸 ⊗𝐶∗ℰ𝐴 𝖷𝐴)𝜍̂, 𝑣 ⊗ 𝑥 ↦ 𝑣 ⊗ 𝛿𝜍̂(𝑥)
is an isomorphism of Hilbert 𝐶∗ℒ𝐴-modules intertwining the two 𝕋-actions 𝜆𝜍⊗ id𝖷𝐴
and (𝜆 ⊗ id𝖷𝐴)𝜍. In particular, the following identity holds for classes in 𝐾𝕋

0 (𝐶∗ℒ𝐴)
[𝐸𝜍̂ ⊗𝐶∗ℰ𝐴 𝖷𝐴, 𝜆𝜍 ⊗ id𝖷𝐴] = [(𝐸 ⊗𝐶∗ℰ𝐴 𝖷𝐴)𝜍̂, (𝜆 ⊗ id𝖷𝐴)𝜍] ∈ 𝐾𝕋

0 (𝐶∗ℒ𝐴) .
By forming the tensor product of ℰ𝐴,ℒ𝐴 andℱ𝐴 with ℂℓ1 wemay extend this identity
to 𝐾𝕋

1 (𝐶∗ℒ𝐴). Hence, we have proven Lem. 3.3:

Lemma 3.3. Let 𝐴 ⊆ 𝕋 be a closed subset and let 𝑊𝐴 ⊂ 𝑊 be a subgroup such that
𝑊𝐴 ⋅ 𝐴 = 𝐴. The Banach bundle ℱ𝐴 → 𝑃𝐴 gives rise to an 𝑁𝐴

𝐺 (𝕋)-equivariant Morita
equivalence between ℒ𝐴 → 𝔱[2]𝐴 and ℰ𝐴 → 𝑌 [2]

𝐴 . This Morita equivalence induces a𝑊𝐴-
equivariant isomorphism

𝐾𝕋
∗ (𝐶∗ℒ𝐴) ≅ 𝐾𝕋

∗ (𝐶∗ℰ𝐴) .

3.1.2. Bredon cohomology. Recall that𝑊 aff = Λ⋊𝑊 . Identifying 𝑅𝐹(𝐺)with 𝑅𝐹(𝕋)𝑊
⊆ 𝑅𝐹(𝕋) we may consider 𝑅𝐹(𝕋) as an 𝑅𝐹(𝐺)-module. The exponential functor 𝐹 in-
duces a group homomorphism

𝜓∶ Λ → 𝐺𝐿1(𝑅𝐹(𝕋)), (𝑘1, . . . , 𝑘𝑛) ↦ 𝐹(𝑡1)𝑘1 ⋯𝐹(𝑡𝑛)𝑘𝑛(31)
= 𝐹(𝑘1𝑡1 +⋯+ 𝑘𝑛𝑡𝑛) .
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The group 𝑊 ≅ 𝑆𝑛 acts on 𝑅𝐹(𝕋) by permuting the variables 𝑡1, . . . , 𝑡𝑛. Denote this
action by ∗. The lattice Λ acts by multiplication by the element of 𝐺𝐿1(𝑅𝐹(𝕋)) corre-
sponding to it under 𝜓. This gives rise to a 𝑊 aff-action on 𝑅𝐹(𝕋) by 𝑅𝐹(𝐺)-module
isomorphisms defined for (𝑘, 𝜎) ∈ 𝑊 aff acting on 𝑓 ∈ 𝑅𝐹(𝕋) as follows
(32) (𝑘, 𝜎) ⋅ 𝑓 = 𝜓(𝑘) (𝜎 ∗ 𝑓) .
Let Orb𝑊aff be the orbit category of 𝑊 aff. Its objects are the sets 𝑊 aff/𝐻 for sub-

groups 𝐻 ⊂ 𝑊 aff. Morphisms 𝑊 aff/𝐻1 → 𝑊 aff/𝐻2 are given by 𝑊 aff-equivariant
maps. Such morphisms are in bijection with elements [𝑥] ∈ 𝑊 aff/𝐻2 such that 𝐻1 ⊆
𝑥𝐻2𝑥−1. A local coefficient system is a contravariant functor

Orb𝑊aff → Ab .
Define

(33) ℛ(𝑊 aff/𝐻) = 𝑅𝐹(𝕋)𝐻 and ℛℚ(𝑊 aff/𝐻) = 𝑅𝐹(𝕋)𝐻 ⊗ℚ .
Amorphism given by [𝑥] ∈ 𝑊 aff/𝐻2maps an element 𝑓 ∈ 𝑅𝐹(𝕋)𝐻2 to 𝑥⋅𝑓 ∈ 𝑅𝐹(𝕋)𝐻1 ,
where the dot denotes the𝑊 aff-module structure from (32). With this definitionℛ and
ℛℚ are local coefficient systems.
The simplex Δℓ ⊂ 𝔱 is a fundamental domain for the action of𝑊 aff on 𝔱 and turns

this space into a𝑊 aff-CW-complex (see Table 1 for the notation). Its 𝑘-cells are labelled
by the subsets 𝐼 ⊂ {0, . . . , ℓ} with |𝐼| = 𝑘 + 1. Let ̃𝑞∶ 𝔱 → Δℓ be the composition
of the covering map exp∶ 𝔱 → 𝕋 with the quotient map 𝕋 → Δℓ that parametrises
conjugacy classes. From the closed cover 𝐴𝑖 of Δℓ defined in (16) we obtain a closed
cover (𝐵𝑖)𝑖∈{0,. . .,ℓ} of 𝔱 with 𝐵𝑖 = ̃𝑞−1(𝐴𝑖). A picture of the cover (𝐵𝑖)𝑖∈{0,1,2} for 𝑆𝑈(3)
can be found in [28, Fig. 5]. Let 𝜉𝐼 be the barycentre of the subsimplex Δ𝐼 ⊆ Δℓ. The
cover (𝐵𝑖)𝑖∈{0,. . .,ℓ} is𝑊 aff-invariant and has the property that the inclusion maps

𝑊 aff ⋅ 𝜉𝐼 → 𝐵𝐼
are equivariant homotopy equivalences, where𝐵𝐼 = ⋂𝑖∈𝐼 𝐵𝑖. These observations allow
us to compute the Bredon cohomology groups 𝐻𝑘

𝑊aff(𝔱, ℛ) using the Mayer-Vietoris
spectral sequence with 𝐸1-term

𝐸1𝑝,𝑞 = ⨁
𝐼⊂{0,. . .,ℓ}
|𝐼|=𝑝+1

𝐻𝑞
𝑊aff(𝐵𝐼 ; ℛ) .

The inclusions𝑊 aff ⋅ 𝜉𝐼 → 𝐵𝐼 give rise to isomorphisms

𝐻𝑞
𝑊aff(𝐵𝐼 ; ℛ) ≅ 𝐻𝑞

𝑊aff(𝑊 aff/𝑊 𝐼 ; ℛ) ≅ {𝑅𝐹(𝕋)
𝑊𝐼 if 𝑞 = 0 ,

0 else .

Note that the stabiliser subgroup𝑊 𝐼 is also the stabiliser of any other 𝜉 in the interior
of the subsimplex Δ𝐼 . Moreover, for 𝐽 ⊆ 𝐼 we have 𝑊 𝐼 ⊆ 𝑊 𝐽 , i.e. the stabilisers of
points on the bounding faces contain the stabilisers of the interior points. For 𝐽 ⊂ 𝐼
the above isomorphism intertwines the restriction homomorphism 𝐻0

𝑊aff(𝐵𝐽 ; ℛ) →
𝐻0
𝑊aff(𝐵𝐼 ; ℛ) with the inclusion 𝑅𝐹(𝕋)𝑊𝐽 → 𝑅𝐹(𝕋)𝑊𝐼 . Thus, the 𝐸1-page boils down

to the cochain complex

𝐶𝑘
𝑊aff(𝔱; ℛ) = ⨁

|𝐼|=𝑘+1
𝑅𝐹(𝕋)𝑊𝐼 , 𝑑cell𝑘 ∶ 𝐶𝑘

𝑊aff(𝔱; ℛ) → 𝐶𝑘+1
𝑊aff(𝔱; ℛ)
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with differentials given by alternating sums of restriction homomorphisms.
Let 𝑤𝐼 = exp(𝜉𝐼) ∈ 𝕋 and let 𝑌𝑤𝐼 = 𝜋−1(𝑤𝐼) where 𝜋∶ 𝑌 → 𝐺 for 𝑌 as in (12) is

the projection map. We can identify 𝑌𝑤𝐼 with 𝑆1 ⧵ ({1} ∪ EV(𝑤𝐼)). Let ℰ𝑤𝐼 → 𝑌 [2]
𝑤𝐼 be

the restriction of ℰ to the subgroupoid 𝑌 [2]
𝑤𝐼 of 𝑌 [2], which we will identify with

{(𝑧1, 𝑧2) ∈ 𝑆1 ⧵ {1} ∣ 𝑧𝑖 ∉ EV(𝑤𝐼) for 𝑖 ∈ {1, 2}} .

To compare the differentials in the cochain complex 𝐶∗
𝑊aff(𝔱; ℛ) with corresponding

homomorphisms in 𝐾-theory, we need to find explicit isomorphisms

𝐾𝐺𝐼∗ (𝐶∗ℰ𝑤𝐼 ) ≅ 𝐾𝐺𝐼∗ (𝖬∞
𝐹 ).

These are given byMorita equivalences that are constructed as in [28, Lem. 4.3], which
we briefly recall now: Note that any 𝑧0 ∈ 𝑌𝑤𝐼 gives a map 𝜎𝑌𝐼 ∶ 𝑌𝑤𝐼 → 𝑌 [2]

𝑤𝐼 with
𝜎𝑌𝐼 (𝑧) = (𝑧, 𝑧0). Let ̃ℱ𝑤𝐼 = (𝜎𝑌𝐼 )∗ℰ𝑤𝐼 . It was shown in [28, Lem. 4.3] that ̃ℱ𝑤𝐼 is a
𝐺𝐼 -equivariant Morita equivalence of Fell bundles between ℰ𝑤𝐼 and the trivial bundle
over the point with fibre 𝖬∞

𝐹 . In particular, there are two fibrewise inner products on
̃ℱ𝑤𝐼 , one with values in ℰ𝑤𝐼 , the other one with values in 𝖬∞

𝐹 . The two completions
with respect to the norms obtained from them agree and

𝖷𝑤𝐼 = 𝐶𝑐(𝑌𝑤𝐼 , ̃ℱ𝑤𝐼 )
‖⋅‖

is a 𝐺𝐼 -equivariant Morita equivalence bimodule between 𝐶∗(ℰ𝑤𝐼 ) acting from the left
on 𝖷𝑤𝐼 and 𝖬∞

𝐹 acting from the right. We will first use this to show that the restriction
map 𝐾𝐺𝐼

0 (𝐶∗ℰ𝑤𝐼 ) → 𝐾𝕋
0 (𝐶∗ℰ𝑤𝐼 ) is injective with image equal to the𝑊 𝐼 -fixed points.

Combining the equivalence 𝖷𝑤𝐼 with 𝐾
𝐺𝐼
0 (𝖬∞

𝐹 ) ≅ 𝑅𝐹(𝐺𝐼) (induced by the colimit of
the isomorphisms 𝐾𝐺𝐼

0 (End(𝑉)) ≅ 𝑅(𝐺𝐼)) gives

𝐾𝐺𝐼
0 (𝐶∗ℰ𝑤𝐼 ) ≅ 𝑅𝐹(𝐺𝐼) .

As a consequence we obtain the following commutative diagram:

𝐾𝐺𝐼
0 (𝐶∗ℰ𝑤𝐼 ) 𝐾𝕋

0 (𝐶∗ℰ𝑤𝐼 )𝑊𝐼

𝑅𝐹(𝐺𝐼) 𝑅𝐹(𝕋)𝑊𝐼

res𝐺𝐼𝕋

≅ ≅

≅

In particular, the map res𝐺𝐼
𝕋 induced by restricting the group action from 𝐺𝐼 to 𝕋 has

image in the fixed-points and is an isomorphism.
The verticalmaps in the above diagramdepend on the choice of 𝑧0, which is difficult

to track. Luckily, theMorita equivalencewith𝐶∗ℒ𝑤𝐼 provides an alternative as follows:
Let 𝜎𝔱𝐼 ∶ 𝜉𝐼 + Λ → 𝔱[2] be given by 𝜎𝔱𝐼(𝜂) = (𝜂, 𝜉𝐼). Using [28, Lem. 4.3] again there is a
completion

𝖷𝔱𝑤𝐼 = 𝐶𝑐(𝜉𝐼 + Λ, (𝜎𝔱𝐼)∗ℒ)
‖⋅‖

of the compactly supported sections, which provides a 𝕋-equivariant Morita equiva-
lence between 𝐶∗ℒ𝑤𝐼 and 𝖬∞

𝐹 , and therefore an isomorphism

𝐾𝕋
0 (𝐶∗ℒ𝑤𝐼 ) ≅ 𝐾𝕋

0 (𝖬∞
𝐹 ) ≅ 𝑅𝐹(𝕋) .
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We call this Morita equivalence the trivialisation of 𝐶∗ℒ𝑤𝐼 . The 𝕋-equivariant Morita
equivalence between 𝐶∗(ℒ𝑤𝐼 ) and 𝐶∗(ℰ𝑤𝐼 ) constructed in the proof of Lem. 3.2 com-
bined with the above map induces a group isomorphism

𝜅𝐼 ∶ 𝐾𝕋
0 (𝐶∗ℰ𝑤𝐼 ) 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐼 ) 𝑅𝐹(𝕋).≅ ≅

By Lem. 3.3 the group 𝑊 𝐼 acts on the two 𝐾-groups 𝐾𝕋
0 (𝐶∗ℰ𝑤𝐼 ) and 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐼 )
in such a way that the above isomorphism is 𝑊 𝐼 -equivariant. The price to pay for
our more natural choice of isomorphism is that this map 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐼 ) → 𝑅𝐹(𝕋) will
no longer be equivariant with respect to the permutation action of 𝑊 𝐼 on 𝑅𝐹(𝕋) as
Lem. 3.4 shows.

Lemma 3.4. The isomorphism 𝜅𝐼 ∶ 𝐾𝕋
0 (𝐶∗ℰ𝑤𝐼 ) → 𝑅𝐹(𝕋) satisfies

𝜅𝐼(𝜌 ⋅ 𝑥) = 𝜑𝐼(𝜌) ⋅ 𝜅𝐼(𝑥)

for 𝑥 ∈ 𝐾𝕋
0 (𝐶∗ℰ𝑤𝐼 ) and 𝜌 ∈ 𝑊 𝐼 , where 𝜑𝐼 ∶ 𝑊 𝐼 → 𝑊 𝐼 is the group isomorphism

defined in (15) and the𝑊 𝐼 -action is the restriction of (32) to𝑊 𝐼 ⊆ 𝑊 aff. In particular,
𝜅𝐼 restricts to an isomorphism

𝐾𝐺𝐼
0 (𝐶∗ℰ𝑤𝐼 ) → 𝐾𝕋

0 (𝐶∗ℰ𝑤𝐼 )𝑊𝐼 → 𝑅𝐹(𝕋)𝑊𝐼

that makes the following diagram commute

⨁|𝐼|=𝑝+1 𝐾
𝐺𝐼
0 (𝐶∗ℰ𝑤𝐼 ) ⨁|𝐼|=𝑝+2 𝐾

𝐺𝐼
0 (𝐶∗ℰ𝑤𝐼 )

𝐶𝑝
𝑊aff(𝔱; ℛ) 𝐶𝑝+1

𝑊aff(𝔱; ℛ)

𝑑1

⨁𝜅𝐼 ≅ ⨁𝜅𝐼≅

𝑑cell1

Proof. By Lem. 3.3 the isomorphism 𝐾𝕋
0 (𝐶∗ℰ𝑤𝐼 ) → 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐼 ) induced byℱ𝑤𝐼 is𝑊 𝐼 -
equivariant. Hence, it suffices to consider the𝑊 𝐼 -equivariance of

𝐾𝕋
0 (𝐶∗ℒ𝑤𝐼 ) → 𝐾𝕋

0 (𝖬∞
𝐹 ).

Let 𝑁𝐼 = 𝑁{𝑤𝐼 }
𝐺 (𝕋) be the preimage of𝑊 𝐼 in 𝑁𝐺(𝕋) with respect to the quotient map

𝑁𝐺(𝕋) → 𝑊 . Recall that 𝑤𝐼 = exp(𝜉𝐼) is fixed by𝑊 𝐼 . As a first step we can “desta-
bilise” 𝐶∗ℒ𝑤𝐼 in an 𝑁𝐼 -equivariant way as follows: Consider the finite set

𝔰𝐼 = {𝜎 ⋅ 𝜉𝐼 ∈ 𝔱 ∣ 𝜎 ∈ 𝑊 𝐼} .

Let 𝑄𝑤𝐼 = {(𝑥1, 𝑥2) ∈ 𝔱 × 𝔰𝐼 ∣ exp(𝑥1) = exp(𝑥2) = 𝑤𝐼}. Let 𝜄𝐼 ∶ 𝑄𝑤𝐼 → 𝔱[2] be the
inclusion map and let ̂ℱ𝑤𝐼 = 𝜄∗𝐼ℒ. Likewise, let 𝑗𝐼 ∶ 𝔰2𝐼 → 𝔱[2] be the inclusion of the
product into the fibre product. Similar to [43, Ex. 6.6] the Banach bundle ̂ℱ𝑤𝐼 provides
a Morita equivalence between ℒ𝑤𝐼 and the Fell bundle ̂ℒ𝑤𝐼 = 𝑗∗𝐼ℒ → 𝔰2𝐼 . By con-
struction this equivalence is𝑁𝐼 -equivariant. As explained in Sec. 3.1.1, the completion
of 𝐶𝑐(𝑄𝑤𝐼 , ̂ℱ𝑤𝐼 ) gives a𝑊 𝐼 -equivariant isomorphism 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐼 ) → 𝐾𝕋
0 (𝐶∗ ̂ℒ𝑤𝐼 ). The

trivialisation 𝐾𝕋
0 (𝐶∗ℒ𝑤𝐼 ) → 𝐾𝕋

0 (𝖬∞
𝐹 ) factors through 𝐾𝕋

0 (𝐶∗ ̂ℒ𝑤𝐼 ). Let

𝜄𝔰𝐼 ∶ 𝔰𝐼 → 𝔰2𝐼 , 𝜂 ↦ (𝜂, 𝜉𝐼) .
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The isomorphism 𝐾𝕋
0 (𝐶∗ ̂ℒ𝑤𝐼 ) → 𝐾𝕋

0 (𝖬∞
𝐹 ) is induced by the Banach bundle 𝒯𝐼 → 𝔰𝐼

given by 𝜄∗𝔰𝐼 ̂ℒ with fibres

(𝒯𝐼)𝜍⋅𝜉𝐼 =
𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜉𝐼−𝜍⋅𝜉𝐼)
𝑗 ≅ 𝐹 (

𝑛

⨁
𝑗=1

𝑉⊕𝑞𝑗(𝜉𝐼−𝜍⋅𝜉𝐼)
𝑗 ) ⊗ 𝖬∞

𝐹 ,

where 𝑉 𝑗 = span{𝑒𝑗}. Analogous to the proof of Lem. 3.2 the isomorphisms

𝒱⊗𝑞𝑗(𝜍2⋅𝜉𝐼−𝜍1⋅𝜉𝐼)
𝑗 ⊗𝖬∞𝐹 𝒱⊗𝑞𝑗(𝜉𝐼−𝜍2⋅𝜉𝐼)

𝑗 → 𝒱⊗𝑞𝑗(𝜉𝐼−𝜍1⋅𝜉𝐼)
𝑗

combine to define a left action of ̂ℒ𝑤𝐼 on 𝒯𝐼 . Together with the canonical right action
by 𝖬∞

𝐹 the bundle 𝒯𝐼 provides a Morita equivalence between ̂ℒ𝑤𝐼 and the trivial Fell
bundle with fibre 𝖬∞

𝐹 over the point. Let

𝖷𝐼 = 𝐶(𝔰𝐼 , 𝒯𝐼) = ⨁
𝜍∈𝑊𝐼

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜉𝐼−𝜍⋅𝜉𝐼)
𝑗

be the associated 𝐶∗ ̂ℒ𝑤𝐼 -𝖬∞
𝐹 -imprimitivity bimodule. The Banach bundle 𝒯𝐼 carries a

fibrewise 𝕋-action that turns 𝖷𝐼 into a 𝕋-equivariant bimodule. However, the homo-
morphism on 𝐾𝕋

0 induced by 𝖷𝐼 is not𝑊 𝐼 -equivariant when 𝐾𝕋
0 (𝖬∞

𝐹 ) is equipped with
the𝑊 𝐼 -action induced by the natural 𝑁𝐼 -action on the algebra. Let ̂𝜌 ∈ 𝑁𝐼 be a lift of
𝜌 ∈ 𝑊 𝐼 . This lift induces a unitary isomorphism

𝑛

⨁
𝑗=1

𝑉⊕𝑞𝑗(𝜉𝐼−𝜍⋅𝜉𝐼)
𝑗 →

𝑛

⨁
𝑗=1

𝑉⊕𝑞𝑗(𝜌⋅𝜉𝐼−𝜌⋅𝜍⋅𝜉𝐼)
𝑗

as described in Sec. 3.1.1. By applying 𝐹 to it and taking the direct sum over all 𝜎 ∈ 𝑊 𝐼
we obtain a bimodule isomorphism

𝖷𝐼 →
̂𝜌

(⨁
𝜍∈𝑊𝐼

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜌⋅𝜉𝐼−𝜌⋅𝜍⋅𝜉𝐼)
𝑗 )

̂𝜌

≅
̂𝜌

(⨁
𝜍∈𝑊𝐼

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜌⋅𝜉𝐼−𝜍⋅𝜉𝐼)
𝑗 )

̂𝜌

,

where the subscript ̂𝜌 denotes the (Ad𝐹( ̂𝜌))⊗∞-twisted left and right actions of 𝐶∗ ̂ℒ𝑤𝐼
and 𝖬∞

𝐹 , respectively. The codomain of the above isomorphism is isomorphic as a bi-
module to:

̂𝜌

(𝖷𝐼 ⊗𝖬∞𝐹

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜌⋅𝜉𝐼−𝜉𝐼)
𝑗 )

̂𝜌

≅ ̂𝜌(𝖷𝐼) ̂𝜌 ⊗𝖬∞𝐹

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜉𝐼−𝜌−1⋅𝜉𝐼)
𝑗 ,

where we applied the map induced by ̂𝜌−1 to the second tensor factor.
Let (𝐸, 𝜆) be a finitely generated projective (𝕋, 𝖬∞

𝐹 , 𝛼)-module and let 𝜌 ∈ 𝑊 𝐼 .
Let 𝑥 = 𝜅−1𝐼 ([𝐸, 𝜆]). The element 𝜅𝐼(𝜌 ⋅ 𝑥) ∈ 𝐾𝕋

0 (𝖬∞
𝐹 ) is represented by the module

(𝐸 ⊗𝖬∞𝐹 𝖷op𝐼 ) ̂𝜌−1 ⊗𝐶∗ ̂ℒ 𝖷𝐼 for an arbitrary lift ̂𝜌 ∈ 𝑁𝐼 of 𝜌 ∈ 𝑊 𝐼 . (The inverse ̂𝜌−1
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appears here, because we wanted the action of𝑊 𝐼 to be a left action.) A brief compu-
tation shows

(𝐸 ⊗𝖬∞𝐹 𝖷op𝐼 ) ̂𝜌−1 ⊗𝐶∗ ̂ℒ 𝖷𝐼

≅ (𝐸 ⊗𝖬∞𝐹 (𝖷op𝐼 ⊗𝐶∗ ̂ℒ 𝖷𝐼)) ̂𝜌−1
⊗𝖬∞𝐹

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜉𝐼−𝜌⋅𝜉𝐼)
𝑗

≅ 𝐸 ̂𝜌−1 ⊗𝖬∞𝐹

𝑛

⨂
𝑗=1

𝒱⊗𝑞𝑗(𝜉𝐼−𝜌⋅𝜉𝐼)
𝑗 .

After applying the isomorphism𝐾𝕋
0 (𝖬∞

𝐹 ) ≅ 𝑅𝐹(𝕋) themodule in the last line represents
the 𝐾-theory class

𝐹 (
𝑛
∑
𝑗=1

𝑞𝑗(𝜉𝐼 − 𝜌 ⋅ 𝜉𝐼)𝑡𝑗) (𝜌 ∗ 𝜅𝐼(𝑥)) = 𝜓(𝑐𝐼(𝜌)) (𝜌 ∗ 𝜅𝐼(𝑥)) = 𝜑𝐼(𝜌) ⋅ 𝜅𝐼(𝑥) ,

where we used the action of 𝑊 𝐼 ⊂ 𝑊 aff given in (32) and the cocycle 𝑐𝐼 ∶ 𝑊 𝐼 → Λ
defining the isomorphism 𝜑𝐼 ∶ 𝑊 𝐼 →𝑊 𝐼 .
Let 𝐽 ⊆ 𝐼 ⊆ {0, . . . , ℓ}. Note that 𝐺𝐼 ⊆ 𝐺𝐽 , 𝑊 𝐼 ⊆ 𝑊 𝐽 and ̂𝐴𝐼 ⊆ ̂𝐴𝐽 , where we use

the notation from (17). As explained in Sec. 3.1.2 we also have𝑊 𝐼 ⊆ 𝑊 𝐽 . To see that
the diagram containing the differentials commutes it suffices to see the commutativity
of

𝐾𝐺𝐽
0 (𝐶∗ℰ𝑤𝐽 ) 𝐾𝐺𝐼

0 (𝐶∗ℰ𝑤𝐼 )

𝑅𝐹(𝕋)𝑊𝐽 𝑅𝐹(𝕋)𝑊𝐼

𝜅𝐽 ≅ 𝜅𝐼≅

where the lower horizontal arrow is given by the inclusion of fixed-points. The upper
horizontal arrow is the following homomorphism: Consider the composition

𝐾𝐺𝐽
0 (𝐶∗ℰ𝐴̂𝐽 ) 𝐾𝐺𝐼

0 (𝐶∗ℰ𝐴̂𝐽 ) 𝐾𝐺𝐼
0 (𝐶∗ℰ𝐴̂𝐼 ) ,𝑟𝐺𝐼𝐽 𝑟𝐴̂𝐼𝐽

where 𝑟𝐺𝐼𝐽 and 𝑟𝐴̂𝐼𝐽 are the maps obtained by restricting the group action and the base
space of the Fell bundle, respectively. The upper arrow in the above diagram is then the
composition of this homomorphismwith the isomorphisms𝐾𝐺𝑆

0 (𝐶∗ℰ𝐴̂𝑆 )→𝐾𝐺𝑆
0 (𝐶∗ℰ𝑧𝑆 )

for 𝑆 = 𝐼 and 𝑆 = 𝐽. Let 𝑞𝕋 ∶ 𝕋 → Δℓ send a point in 𝕋 to its conjugacy class and define
𝐵𝐽 = 𝑞−1𝕋 (𝐴𝐽) with 𝐴𝐽 as in (17). Let 𝐵𝐽 = exp−1(𝐵𝐽), where exp∶ 𝔱 → 𝕋 is the
exponential map. The following diagram commutes

𝐾𝐺𝐽
0 (𝐶∗ℰ𝐴̂𝐽 ) 𝐾𝐺𝐼

0 (𝐶∗ℰ𝐴̂𝐽 ) 𝐾𝐺𝐼
0 (𝐶∗ℰ𝐴̂𝐼 )

𝐾𝕋
0 (𝐶∗ℰ𝐵𝐽 )

𝑊𝐽 𝐾𝕋
0 (𝐶∗ℰ𝐵𝐽 )

𝑊𝐼 𝐾𝕋
0 (𝐶∗ℰ𝐵𝐼 )

𝑊𝐼

𝐾𝕋
0 (𝐶∗ℒ𝐵𝐽 )𝑊𝐽 𝐾𝕋

0 (𝐶∗ℒ𝐵𝐽 )𝑊𝐼 𝐾𝕋
0 (𝐶∗ℒ𝐵𝐼 )𝑊𝐼

≅ ≅ ≅

≅ ≅ ≅



SPECTRAL SEQUENCE COMPUTATION OF HIGHER TWISTED 𝐾-THEORY 927

Note that exp−1(𝑤𝐽) = 𝜉𝐽+Λ and𝐶∗ℒ𝑤𝐽 is the𝐶∗-algebra associated to the restriction
of ℒ to (𝜉𝐽 + Λ)2 ⊂ 𝔱[2]. The Λ-equivariant bijection

𝜉𝐽 + Λ → 𝜉𝐼 + Λ
that sends 𝜉𝐽 to 𝜉𝐼 lifts to a𝑊 𝐼 -equivariant isomorphism ℒ𝑤𝐽 → ℒ𝑤𝐼 of Fell bundles
giving a ∗-isomorphism 𝜓𝐼𝐽 ∶ 𝐶∗ℒ𝑤𝐽 → 𝐶∗ℒ𝑤𝐼 . The group homomorphism
𝐾𝕋
0 (𝐶∗ℒ𝑤𝐽 )𝑊𝐽 → 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐼 )𝑊𝐼 induced by the bottom row of the above diagram is
the same as the one given by restricting the group action from 𝑊 𝐽 to 𝑊 𝐼 and then
applying 𝜓𝐼𝐽 . Consider the following diagram

𝐾𝕋
0 (𝐶∗ℒ𝑤𝐽 )𝑊𝐽 𝐾𝕋

0 (𝐶∗ℒ𝑤𝐽 )𝑊𝐼 𝐾𝕋
0 (𝐶∗ℒ𝑤𝐼 )𝑊𝐼

𝑅𝐹(𝕋)𝑊𝐽 𝑅𝐹(𝕋)𝑊𝐼

𝑟𝑊𝐼𝐽 𝜓𝐼𝐽

where the vertical and diagonal arrows are induced by the trivialisation of ℒ𝑤𝐽 , re-
spectively ℒ𝑤𝐼 . Since the trivialisation of ℒ𝑤𝐽 is 𝑊 𝐽 -equivariant, the square in the
diagram commutes. The homeomorphism 𝜉𝐽 + Λ → 𝜉𝐼 + Λ intertwines the two sec-
tions 𝜎𝐼 ∶ 𝜉𝐼 + Λ → 𝔱[2] and 𝜎𝐽 ∶ 𝜉𝐽 + Λ → 𝔱[2]. This shows that the triangle in the
diagram also commutes. Combining this diagram with the one from above proves the
statement about the differentials. □

3.2. Rationalisation and regular sequences. Lemma 3.4 reduces the computation
of the 𝐸1-page of the spectral sequence to the computation of the cohomology of the
cochain complex 𝐶∗

𝑊aff(𝔱; ℛ). In fact, we will see in Thm. 3.11 that rationally the spec-
tral sequence collapses on the 𝐸2-page. Since 𝑊 aff = Λ ⋊ 𝑊 and 𝑊 is finite, the
cohomology computation can be dealt with in a two-step process after rationalisation.
We will follow the argument given in [1, Sec. 3]. Let

𝑅ℚ = 𝑅(𝕋) ⊗ ℚ = ℚ[𝑡1, . . . , 𝑡𝑛]/(𝑡1⋯𝑡𝑛 − 1) ,
𝑅𝐹,ℚ = 𝑅𝐹(𝕋) ⊗ ℚ ,
ℛℚ = ℛ ⊗ℚ .

In this section wewill compute𝐻∗
𝑊aff(𝔱, ℛℚ) using regular sequences and relate it back

to𝐾𝐺
∗ (𝐶∗ℰ)⊗ℚ later. Let𝐹 ∶ (𝒱iso

ℂ ,⊕) → (𝒱gr
ℂ ,⊗) be a non-trivial exponential functor,

i.e. we have deg(𝐹(𝑡)) > 0.

Lemma 3.5. Let𝑚 ∈ ℕ. The sequence
(𝑡𝑚2 − 𝑡𝑚1 , 𝑡𝑚3 − 𝑡𝑚2 , . . . , 𝑡𝑚𝑛−1 − 𝑡𝑚𝑛−2, −𝑡𝑚1 ⋯𝑡𝑚𝑛−2𝑡2𝑚𝑛−1)

is a regular sequence in 𝑅̂ℚ = ℚ[𝑡1, . . . , 𝑡𝑛−1].

Proof. Multiplication by 𝑡𝑚𝑘 − 𝑡𝑚𝑘−1 is the same as multiplication by 𝑡𝑚𝑘 − 𝑡𝑚1 in the quo-
tient 𝑅̂ℚ/(𝑡𝑚2 − 𝑡𝑚1 , . . . , 𝑡𝑚𝑘−1 − 𝑡𝑚𝑘−2) for 𝑘 ∈ {2, . . . , 𝑛 − 1}. Hence, it suffices to show
that

(𝑡𝑚2 − 𝑡𝑚1 , 𝑡𝑚3 − 𝑡𝑚1 , . . . , 𝑡𝑚𝑛−1 − 𝑡𝑚1 , −𝑡𝑚1 ⋯𝑡𝑚𝑛−2𝑡2𝑚𝑛−1)
is a regular sequence in 𝑅̂ℚ. For 3 ≤ 𝑘 ≤ 𝑛 − 1 the quotient

ℚ[𝑡1, . . . , 𝑡𝑛−1]/(𝑡𝑚2 − 𝑡𝑚1 , . . . , 𝑡𝑚𝑘−1 − 𝑡𝑚1 )
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is free as a ℚ[𝑡1, 𝑡𝑘, . . . , 𝑡𝑛−1]-module with basis
{𝑡𝑠22 ⋯𝑡𝑠𝑘−1𝑘−1 ∣ 0 ≤ 𝑠𝑗 ≤ 𝑚 − 1 for all 𝑗 ∈ {2, . . . , 𝑘 − 1}} .

The multiplication by 𝑡𝑚𝑘 − 𝑡𝑚1 acts diagonally in the sense that it maps each basis ele-
ment to a non-zero multiple. In particular, this map is injective.
The argument for 𝑘 = 𝑛 is very similar. Here, the quotient

ℚ[𝑡1, . . . , 𝑡𝑛−1]/(𝑡𝑚2 − 𝑡𝑚1 , . . . , 𝑡𝑚𝑛−1 − 𝑡𝑚1 )
is again free as a ℚ[𝑡1]-module with basis

{𝑡𝑠22 ⋯𝑡𝑠𝑛−1𝑛−1 ∣ 0 ≤ 𝑠𝑗 ≤ 𝑚 − 1 for all 𝑗 ∈ {2, . . . , 𝑛 − 1}} .
The multiplication by −𝑡𝑚1 ⋯𝑡𝑚𝑛−2𝑡2𝑚𝑛−1 is the same as multiplication by −𝑡𝑛𝑚1 , because
𝑡𝑚𝑖 = 𝑡𝑚1 in the quotient for 1 ≤ 𝑖 ≤ 𝑛 − 1. Following the same reasoning as above, this
map is again injective. □

Exactness of the localisation functor immediately yields Cor. 3.6 of Lem. 3.5:

Corollary 3.6. The sequence
(𝐹(𝑡2) − 𝐹(𝑡1), 𝐹(𝑡3) − 𝐹(𝑡2), . . . , 𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1))

is regular in 𝑅𝐹,ℚ.

Proof. Let 𝐹(𝑡) = ∑𝑚
𝑘=0 𝑎𝑘𝑡𝑘 with 𝑎𝑘 ∈ ℚ, 𝑎𝑚 ≠ 0 and deg(𝐹(𝑡)) = 𝑚. Note that the

ring 𝑅ℚ is the localisation of 𝑅̂ℚ at 𝑡1⋯𝑡𝑛−1, i.e. in 𝑅ℚ we have 𝑡1⋯𝑡𝑛 = 1. Therefore
𝑡−𝑚𝑛 𝐹(𝑡𝑛) = (𝑡1⋯𝑡𝑛−1)𝑚 𝐹(𝑡𝑛) ∈ 𝑅̂ℚ. Moreover, 𝑅𝐹,ℚ is a localisation of 𝑅ℚ. Since
localisation is an exact functor and 𝑡1, . . . , 𝑡𝑛−1 are units in 𝑅𝐹,ℚ, it suffices to show that

(𝐹(𝑡2) − 𝐹(𝑡1), . . . , 𝐹(𝑡𝑛−1) − 𝐹(𝑡𝑛−2), (𝑡1⋯𝑡𝑛−1)𝑚(𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1)))
is a regular sequence in 𝑅̂ℚ. The commutative ring 𝑅̂ℚ has an ℕ0-grading by the total
degree. Thus, by [37, Cor. 5.3] the regularity will follow if it holds for the sequence of
homogeneous highest order terms:

(𝑎𝑚(𝑡𝑚2 − 𝑡𝑚1 ), . . . , 𝑎𝑚(𝑡𝑚𝑛−1 − 𝑡𝑚𝑛−2), −𝑎𝑚𝑡𝑚1 ⋯𝑡𝑚𝑛−2 𝑡2𝑚𝑛−1) .
Since 𝑎𝑚 ≠ 0, the sequence agrees up to multiplication by a unit with the one from
Lem. 3.5. Thus, the regularity follows. □

Lemma 3.7 reduces the computations of the 𝑊 aff-equivariant cohomology groups
of 𝔱 with coefficient systems ℛℚ to computing the𝑊 -fixed points of Λ-equivariant co-
homology. The proof makes use of our choice of rational coefficients. We claim no
originality for this proof. It is a straightforward adaptation of [1, Thm. 3.9]. Neverthe-
less, we include the proof for the convenience of the reader.

Lemma 3.7. Let 𝜓∶ Λ → 𝐺𝐿1(𝑅𝐹(𝕋)) be the group homomorphism in (31) and let ℛℚ
be the coefficient system defined in (33). There is an isomorphism of 𝑅𝐹(𝐺)⊗ℚ-modules
(34) 𝐻∗

𝑊aff(𝔱; ℛℚ) ≅ 𝐻∗
Λ(𝔱; ℛℚ)𝑊 .

Proof. Choose a CW-complex structure on 𝔱 such that the action of𝑊 aff is cellular. Let
𝐶∗(𝔱) be the associated cellular chain complex and denote by 𝐶∗

𝑊aff(𝔱; ℛℚ) the complex
of equivariant cochains, see [13, Sec. I.6]. Let

𝐷∗ = Hom(𝐶∗(𝔱), 𝑅𝐹(𝕋) ⊗ ℚ) .
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The cochain complex 𝐷∗ has a ℤ-linear action by𝑊 aff defined for 𝑑 ∈ 𝐷𝑘, 𝑤 ∈ 𝑊 aff

and 𝑥 ∈ 𝐶𝑘(𝔱) by (𝑤 ⋅ 𝑑)(𝑥) = 𝑤 ⋅ 𝑑(𝑤−1𝑥), where the dot denotes the 𝑊 aff-module
structure on 𝑅𝐹(𝕋) ⊗ ℚ given by (32). By [13, Sec. I.9, eq. (9.3)] the cochain complex
𝐶∗
𝑊aff(𝔱; ℛℚ) is isomorphic to

Homℤ[𝑊aff](𝐶∗(𝔱), 𝑅𝐹(𝕋) ⊗ ℚ) = (𝐷∗)𝑊aff .

Since Λ ⊆ 𝑊 aff is a normal subgroup with quotient𝑊 , we may take the fixed points
in the final equation in two steps. We define

𝐸∗ = Homℤ[Λ](𝐶∗(𝔱), 𝑅𝐹(𝕋) ⊗ ℚ) = (𝐷∗)Λ .
Now consider the cohomology of 𝑊 ≅ 𝑆𝑛 with coefficients in the cochain complex
𝐸∗, i.e. 𝐻∗(𝑊; 𝐸∗). The double complex 𝐶∗(𝐺, 𝐸∗) computing it leads to two spectral
sequences: the first one has 𝐸2-term

𝐼𝐸𝑝,𝑞2 = 𝐻𝑝(𝑊;𝐻𝑞(𝐸∗)) .
Since 𝐸∗ is a cochain complex over ℚ and𝑊 is finite, the groups on the 𝐸2-page com-
pute to

𝐼𝐸𝑝,𝑞2 ≅ {𝐻
𝑞(𝐸∗)𝑊 if 𝑝 = 0 ,

0 else .
Interchanging horizontal and vertical directions leads to a second spectral sequence
with 𝐸1-page

𝐼𝐼𝐸𝑝,𝑞1 = 𝐻𝑞(𝑊; 𝐸𝑝) ≅ {(𝐸
𝑝)𝑊 if 𝑞 = 0 ,

0 else
with differentials induced by the differential of the cochain complex 𝐸∗. Hence,

𝐼𝐼𝐸𝑝,𝑞2 ≅ {𝐻
𝑝((𝐸∗)𝑊 ) if 𝑞 = 0 ,

0 else .
Both spectral sequences collapse on the 𝐸2-page without extension problems and both
converge to 𝐻∗(𝑊; 𝐸∗). Therefore we have isomorphisms of 𝑅(𝐺) ⊗ ℚ-modules

𝐻∗
𝑊aff(𝔱; ℛℚ) ≅ 𝐻∗((𝐸∗)𝑊 ) ≅ 𝐻∗(𝐸∗)𝑊 ≅ 𝐻∗

Λ(𝔱; ℛℚ)𝑊 . □

Computing the 𝐸1-page of the original spectral sequence (18) therefore reduces to
determining the groups𝐻∗

Λ(𝔱; ℛℚ) and identifying the𝑊 -action on them. To determine
𝐻∗
Λ(𝔱; ℛℚ) we will consider

𝔱 = {(𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛 ∣ 𝑥1 +⋯+ 𝑥𝑛 = 0}
as a Λ-CW-complex in the following way. Let 𝑐𝑖 = (0, . . . , 1, −1, . . . , 0) ∈ Λ for 𝑖 ∈
{1, . . . , ℓ} be the element with a 1 in the 𝑖th position. The 0-cells are given by the lattice
Λ ⊂ 𝔱. The 𝑘-cells for 𝑘 ≥ 1 are the elements in the Λ-orbit of the cube spanned by
𝑐𝑖1 , . . . , 𝑐𝑖𝑘 for each sequence 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 with 𝑖ℓ ∈ {1, . . . , ℓ}. We will denote the
corresponding 𝑘-cell by 𝑐𝑖1,. . .,𝑖𝑘 . Altogether we can identify integral 𝑘-chains of 𝔱 with

𝐶𝑘(𝔱) = ⋀
𝑘
ℤℓ ⊗ℤ[Λ] ,

where the exterior power is spanned by the cells 𝑐𝑖1,. . .,𝑖𝑘 and the second tensor factor
keeps track of the position in the Λ-orbit. With ℤ[Λ] ≅ ℤ[𝑠±11 , . . . , 𝑠±1ℓ ] the boundary
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𝑐1

𝑐2 𝑠1𝑐2

𝑠2𝑐1

𝑐12
𝜕𝑐12 = 𝑐1 + 𝑠1𝑐2 − 𝑠2𝑐1 − 𝑐2

= (𝑠1 − 1)𝑐2 − (𝑠2 − 1)𝑐1

Figure2. TheΛ-CW-complex structure of 𝔱 for𝑛 = 2 and the bound-
ary of the 2-cell 𝑐12

operators of this chain complex turn out to be the ones of the Koszul complex for the
sequence (𝑠1 − 1, . . . , 𝑠ℓ − 1), i.e.

𝜕𝑘(𝑐𝑖1,. . .,𝑖𝑘) =
𝑘
∑
𝑗=1

(−1)𝑗−1(𝑠𝑗 − 1) 𝑐𝑖1,. . ., ̌𝑖𝑗 ,. . .,𝑖𝑘 .

For 𝑛 = 2 the Λ-CW-structure and one boundary operator is illustrated in Fig. 2. As
discussed in the final remark of [13, I.9] the Λ-equivariant cohomology of 𝔱 is the co-
homology of the cochain complex

(35) homℚ[Λ](𝐶∗(𝔱) ⊗ ℚ, 𝑅𝐹,ℚ) ≅ ⋀
∗
ℚℓ ⊗𝑅𝐹,ℚ ≅⋀

∗
(𝑅𝐹,ℚ)ℓ .

By the definition of the Λ-action on 𝑅𝐹,ℚ the element 𝑠𝑖 ∈ ℤ[Λ] is mapped to
𝐹(𝑡𝑖)𝐹(𝑡𝑖+1)−1 ∈ 𝑅𝐹,ℚ. Therefore the coboundary operator in the above cochain com-
plex is the one of the dual Koszul complex for the sequence

𝑥𝐹 = (𝐹(𝑡1)𝐹(𝑡2)−1 − 1, . . . , 𝐹(𝑡𝑛−1)𝐹(𝑡𝑛)−1 − 1) ∈ (𝑅𝐹,ℚ)ℓ

given by
𝑑𝑘(𝑦) = 𝑥𝐹 ∧ 𝑦 .

Lemma 3.8. We have𝐻𝑘
Λ(𝔱; ℛℚ) = 0 for 𝑘 ≠ ℓ and

𝐻ℓ
Λ(𝔱; ℛℚ) ≅ 𝑅𝐹,ℚ/(𝐹(𝑡2) − 𝐹(𝑡1), . . . , 𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1)).

Moreover, the Weyl group𝑊 ≅ 𝑆𝑛 acts on 𝐻ℓ
Λ(𝔱; ℛℚ) by signed permutations of the vari-

ables 𝑡1, . . . , 𝑡𝑛.
Proof. The elements 𝐹(𝑡𝑖) ∈ 𝑅𝐹,ℚ are invertible. Therefore the sequence

(𝐹(𝑡1)𝐹(𝑡2)−1 − 1, . . . , 𝐹(𝑡𝑛−1)𝐹(𝑡𝑛)−1 − 1)
is regular by Cor. 3.6. Hence, the first statement follows from classical results about
regular sequences, see for example [21, Cor. 17.5].
Let 𝐼𝐹,ℚ = (𝐹(𝑡1)𝐹(𝑡2)−1 − 1, . . . , 𝐹(𝑡𝑛−1)𝐹(𝑡𝑛)−1 − 1) be the ideal generated by the

sequence. The permutation action of 𝑊 on 𝔱 restricts to an action on⋀𝑘 ℤℓ for each
𝑘 ∈ {0, . . . , ℓ}, which extends to an action on 𝐶∗(𝔱). Hence,𝑊 also acts on the cochain
complex homℤ[Λ](𝐶ℓ(𝔱), 𝑅𝐹,ℚ) by conjugation and the isomorphism

𝐻ℓ
Λ(𝔱; ℛℚ) ≅ 𝑅𝐹,ℚ/𝐼𝐹,ℚ
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is𝑊 -equivariant if the right hand side is equipped with the signed permutation action.
In the quotient on the right hand side translations along the roots act trivially. This

implies that the cellular action of 𝑊 on the subdivision of 𝐶ℓ(𝔱) that uses all positive
roots induces the same action on the cohomology of the cochain complex
homℤ[Λ](𝐶ℓ(𝔱), 𝑅𝐹,ℚ) as the one described above. □

Let 𝐼𝐹,ℚ = (𝐹(𝑡2)−𝐹(𝑡1), . . . , 𝐹(𝑡𝑛)−𝐹(𝑡𝑛−1)) as in Lem. 3.8. We adopt the following
notation to distinguish the ordinary permutation action from its signed counterpart: If
we consider 𝑅𝐹,ℚ with the action by signed permutations, then we denote it by 𝑅

sgn
𝐹,ℚ,

otherwise by 𝑅𝐹,ℚ. Note that the ideal 𝐼𝐹,ℚ is invariant under both𝑊 -actions. Hence,
we will write 𝐼sgn𝐹,ℚ if we consider it with the signed permutation action. Taking invari-
ants with respect to the action of a finite group is an exact functor on rational vector
spaces. Thus, Lem. 3.8 immediately gives

𝐻ℓ
𝑊aff(𝔱; ℛℚ) ≅ 𝐻ℓ

𝜋1(𝕋)(𝔱; ℛℚ)𝑊 ≅ (𝑅sgn𝐹,ℚ)𝑊 /(𝐼
sgn
𝐹,ℚ)𝑊 .

Let Δ ∈ ℚ[𝑡1, . . . , 𝑡𝑛] be the Vandermonde determinant. Multiplication by Δ−1 induces
an isomorphism of 𝑅𝑊𝐹,ℚ-modules

(36) Ψ∶ (𝑅sgn𝐹,ℚ)𝑊 → 𝑅𝑊𝐹,ℚ, 𝑝 ↦ 𝑝
Δ .

Let 𝑝 ∈ ℚ[𝑡]. As we will see in Lem. 3.9 we will need extended versions of the Schur
polynomials, which are defined as follows:

(37) 𝑎(𝑝,𝜆2. . .,𝜆𝑛)(𝑡1, . . . , 𝑡𝑛) = det

⎛
⎜
⎜
⎜
⎜
⎝

𝑝(𝑡1) 𝑝(𝑡2) . . . 𝑝(𝑡𝑛)
𝑡𝜆2+𝑛−21 𝑡𝜆2+𝑛−22 . . . 𝑡𝜆2+𝑛−2𝑛
𝑡𝜆3+𝑛−31 𝑡𝜆3+𝑛−22 . . . 𝑡𝜆3+𝑛−3𝑛

⋮ ⋮ ⋱ ⋮
𝑡𝜆𝑛1 𝑡𝜆𝑛2 . . . 𝑡𝜆𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

Lemma 3.9. Let 𝑝 ∈ ℚ[𝑡], let 𝑞(𝑡) = 𝑝(𝑡)𝑡 and let 𝑒1(𝑡1, . . . , 𝑡𝑛) = 𝑡1+⋯+𝑡𝑛 be the first
elementary symmetric polynomial. Then

𝑎(𝑝,1,0,. . .,0) = 𝑎(𝑝,0,0,. . .,0) ⋅ 𝑒1 − 𝑎(𝑞,0,0,. . .,0) .

Proof. Both sides areℚ-linear in 𝑝. Hence, it suffices to consider themonomials 𝑝(𝑡) =
𝑡𝑘 for 𝑘 ∈ ℕ0. For 𝑘 ∈ {0, . . . , 𝑛 − 3} both sides vanish.
For 𝑝(𝑡) = 𝑡𝑛−2 the term 𝑎(𝑝,0,0,. . .,0) vanishes, 𝑞(𝑡) = 𝑡𝑛−1 and thematrix underlying

𝑎(𝑝,1,0,. . .,0) is obtained from the one for 𝑎(𝑞,0,0,. . .,0) by interchanging the first two rows,
producing a sign in the determinant. Hence, the equation holds in this case as well.
Now let 𝑝(𝑡) = 𝑡𝑘 with 𝑘 ≥ 𝑛 − 1. In this case, we can express 𝑎 in terms of Schur

polynomials:
1
Δ 𝑎(𝑝,𝜆2,. . .,𝜆𝑛) = 𝑠(𝑘−(𝑛−1),𝜆2,. . .,𝜆𝑛) .

By Pieri’s rule we have

𝑠(𝑘−(𝑛−1),0,0,. . .,0) ⋅ 𝑒1 = 𝑠(𝑘+1−(𝑛−1),0,0,. . .,0) + 𝑠(𝑘−(𝑛−1),1,0,. . .,0)
and therefore also 𝑎(𝑝,1,0,. . .,0) = 𝑎(𝑝,0,0,. . .,0) ⋅ 𝑒1 − 𝑎(𝑞,0,0,. . .,0). □
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Lemma 3.10. The 𝑅𝑊𝐹,ℚ-submodule (𝐼
sgn
𝐹,ℚ)𝑊 of (𝑅sgn𝐹,ℚ)𝑊 is generated by the 𝑛 − 1 anti-

symmetric polynomials 𝑞𝑖 for 𝑖 ∈ {0, . . . , 𝑛 − 2} defined by

𝑞𝑖(𝑡1, . . . , 𝑡𝑛) = det
⎛
⎜
⎜
⎜
⎝

𝐹(𝑡1)𝑡𝑖1 𝐹(𝑡2)𝑡𝑖2 . . . 𝐹(𝑡𝑛)𝑡𝑖𝑛
𝑡𝑛−21 𝑡𝑛−22 . . . 𝑡𝑛−2𝑛
⋮ ⋮ ⋱ ⋮
𝑡1 𝑡2 . . . 𝑡𝑛
1 1 . . . 1

⎞
⎟
⎟
⎟
⎠

.

Proof. Let 𝑅ℚ = 𝑅(𝕋) ⊗ ℚ ≅ ℚ[𝑡1, . . . , 𝑡𝑛]/(𝑡1⋯𝑡𝑛 − 1) and let 𝐼ℚ ⊆ 𝑅ℚ be the ideal
generated by (𝐹(𝑡2) − 𝐹(𝑡1), . . . , 𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1)). As above 𝑆𝑛 acts by permutations or
by signed permutations on 𝑅ℚ and 𝐼ℚ. If 𝑆𝑛 acts on 𝑅ℚ and 𝐼ℚ via signed permutations,
we denote this by 𝑅sgnℚ and 𝐼sgnℚ , respectively.
Observe that 𝐹(𝑡1 +⋯+ 𝑡𝑛) ∈ ℚ[𝑡1, . . . , 𝑡𝑛]𝑊 and let

((𝑅sgnℚ )𝑊 )𝐹 = (𝑅sgnℚ )𝑊 [𝐹(𝑡1 +⋯+ 𝑡𝑛)−1] .
We claim that ((𝑅sgnℚ )𝑊 )𝐹 ≅ (𝑅sgn𝐹,ℚ)𝑊 and will prove this first: The𝑊 -equivariant 𝑅𝑊ℚ -
module homomorphism 𝑅sgnℚ → 𝑅sgn𝐹,ℚ induces a homomorphism (𝑅sgnℚ )𝑊 → (𝑅sgn𝐹,ℚ)𝑊 .
Since multiplication by 𝐹(𝑡1+⋯+𝑡𝑛) is invertible in the codomain, this map gives rise
to the module homomorphism ((𝑅sgnℚ )𝑊 )𝐹 → (𝑅sgn𝐹,ℚ)𝑊 , which is injective, because it
can be obtained from a restriction of the injective map 𝑅sgnℚ → 𝑅sgn𝐹,ℚ by localisation,
which is exact. Let 𝑝

𝑞 ∈ (𝑅sgn𝐹,ℚ)𝑊

with 𝑝 ∈ 𝑅sgnℚ and 𝑞 = 𝐹(𝑡1 + ⋯ + 𝑡𝑛)𝑘 for some 𝑘 ∈ ℕ0. Since 𝑞 is 𝑊 -invariant,
the condition 𝜎 ⋅ 𝑝

𝑞 = 𝑝
𝑞 implies 𝜎 ⋅ 𝑝 = 𝑝 for all 𝜎 ∈ 𝑊 . Thus 𝑝

𝑞 ∈ ((𝑅sgnℚ )𝑊 )𝐹 .
Hence, ((𝑅sgnℚ )𝑊 )𝐹 → (𝑅sgn𝐹,ℚ)𝑊 is an isomorphism. Therefore it suffices to show that
(𝐼sgnℚ )𝑊 ⊂ (𝑅sgnℚ )𝑊 is the 𝑅𝑊ℚ -submodule generated by 𝑞0, . . . , 𝑞𝑛−2 ∈ (𝑅sgnℚ )𝑊 .
Let 𝑃ℚ = ℚ[𝑡1, . . . , 𝑡𝑛] and denote by 𝑃

sgn
ℚ the 𝑃ℚ-module equipped with its natural

𝑊 -action by signed permutations. Observe that the quotient map 𝜋∶ 𝑃sgnℚ → 𝑅sgnℚ is
𝑊 -equivariant. Let 𝐽ℚ ⊂ 𝑃ℚ be the ideal generated by (𝐹(𝑡2)−𝐹(𝑡1), . . . , 𝐹(𝑡𝑛)−𝐹(𝑡𝑛−1)).
Note that 𝜋(𝐽ℚ) = 𝐼ℚ. Hence, it suffices to see that (𝐽

sgn
ℚ )𝑊 ⊂ (𝑃sgnℚ )𝑊 is the 𝑃𝑊ℚ -

submodule generated by 𝑞0, . . . , 𝑞𝑛−2 ∈ (𝑃sgnℚ )𝑊 .
Now consider the antisymmetrisation map, i.e. the 𝑃𝑊ℚ -module homomorphism

that averages over the𝑊 -action:

𝜃∶ 𝑃ℚ → (𝑃sgnℚ )𝑊 , 𝑝 ↦ 1
𝑛! ∑𝜍∈𝑊

𝜎 ⋅ 𝑝 .

It is surjective and maps 𝐽ℚ onto (𝐽sgnℚ )𝑊 . Hence, it suffices to prove that (𝐽sgnℚ )𝑊 =
(𝑞0, . . . , 𝑞𝑛−2). We will first show that (𝐽sgnℚ )𝑊 ⊆ (𝑞0, . . . , 𝑞𝑛−2). Note that 𝜃 is anti-
equivariant in the sense that 𝜃(𝜎∗𝑝) = sign(𝜎) 𝜃(𝑝), where𝜎∗𝑝 denotes the (unsigned)
permutation action of 𝜎 ∈ 𝑊 on 𝑝 ∈ 𝑃ℚ. It suffices to show that for all 𝑝2, . . . , 𝑝𝑛 ∈ 𝑃ℚ

𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑝2 +⋯+ (𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1)) 𝑝𝑛) ∈ (𝑞0, . . . , 𝑞𝑛−2) .
For each 𝑖 ∈ {2, . . . , 𝑛} let 𝜎𝑖 ∈ 𝑊 be the permutation interchanging 2 ↔ 𝑖 and 1 ↔
(𝑖 − 1). Then

𝜃((𝐹(𝑡𝑖) − 𝐹(𝑡𝑖−1))𝑝𝑖) = ±𝜃((𝐹(𝑡2) − 𝐹(𝑡1))(𝜎𝑖 ∗ 𝑝𝑖)) .
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Hence, by linearity of 𝜃 it suffices to consider 𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑝) with 𝑝 ∈ 𝑃ℚ.
Note that 𝑃ℚ is a free 𝑃𝑊ℚ -module with basis {𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ∣ 0 ≤ 𝑘𝑖 ≤ 𝑛− 𝑖} by [3, p. 41].

Thus, it suffices to see that each 𝜃((𝐹(𝑡2)−𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ) is a 𝑃𝑊ℚ -linear combination
of 𝑞0, . . . , 𝑞𝑛−2.
We start by computing 𝜃(𝐹(𝑡1) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ). By the Leibniz formula this antisymmetri-

sation can be written as the following determinant:

(38) det
⎛
⎜
⎜
⎜
⎝

𝐹(𝑡1)𝑡𝑘11 𝐹(𝑡2)𝑡𝑘12 . . . 𝐹(𝑡𝑛)𝑡𝑘1𝑛
𝑡𝑘21 𝑡𝑘22 . . . 𝑡𝑘2𝑛
⋮ ⋮ ⋱ ⋮
𝑡𝑘𝑛1 𝑡𝑘𝑛2 . . . 𝑡𝑘𝑛𝑛

⎞
⎟
⎟
⎟
⎠

.

For this determinant to be non-zero the condition 0 ≤ 𝑘𝑗 ≤ 𝑛 − 𝑗 enforces 𝑘𝑗 = 𝑛 − 𝑗
for 𝑗 ∈ {2, . . . , 𝑛}, otherwise we would have two identical rows in the matrix. In the
same way, 𝜃(𝑡𝑘11 𝐹(𝑡2)𝑡𝑘22 𝑡𝑘33 ⋯𝑡𝑘𝑛𝑛 ) can be expressed as the determinant

(39) det

⎛
⎜
⎜
⎜
⎜
⎝

𝑡𝑘11 𝑡𝑘12 . . . 𝑡𝑘1𝑛
𝐹(𝑡1)𝑡𝑘21 𝐹(𝑡2)𝑡𝑘22 . . . 𝐹(𝑡𝑛)𝑡𝑘2𝑛
𝑡𝑘31 𝑡𝑘32 . . . 𝑡𝑘3𝑛
⋮ ⋮ ⋱ ⋮
𝑡𝑘𝑛1 𝑡𝑘𝑛2 . . . 𝑡𝑘𝑛𝑛

⎞
⎟
⎟
⎟
⎟
⎠

.

Thus, 𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ) = 0 unless 𝑘𝑗 = 𝑛 − 𝑗 for 𝑗 ∈ {3, . . . , 𝑛}. If 𝑘1 ∈
{0, . . . , 𝑛 − 3}, then
(40) 𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ) = −𝑞𝑘1(𝑡1, . . . , 𝑡𝑛) ,

because the antisymmetrisation of the term 𝐹(𝑡2)𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 vanishes.
If 𝑘1 = 𝑛 − 2, then

(41) 𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ) = {−2𝑞𝑛−2(𝑡1, . . . , 𝑡𝑛) if 𝑘2 = 𝑛 − 2 ,
−𝑞𝑘2(𝑡1, . . . , 𝑡𝑛) if 𝑘2 ≠ 𝑛 − 2 .

The only remaining case is therefore 𝑘1 = 𝑛 − 1 and 𝑘2 ∈ {0, . . . , 𝑛 − 2}. For 𝑘2 ∈
{0, . . . , 𝑛 − 3} the determinant in (38) vanishes and interchanging the first two rows in
(39) we see that the rest is equal to −𝑎(𝑝,1,0,. . .,0) for 𝑝(𝑡) = 𝐹(𝑡)𝑡𝑘2 as defined in (37).
By Lem. 3.9 we have for 𝑞(𝑡) = 𝐹(𝑡)𝑡𝑘2+1

𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ) = −𝑎(𝑝,1,0,. . .,0)(𝑡1, . . . , 𝑡𝑛)
= (𝑎(𝑝,0,. . .,0) ⋅ 𝑒1)(𝑡1, . . . , 𝑡𝑛) − 𝑎(𝑞,0,. . .,0)(𝑡1, . . . , 𝑡𝑛)
= 𝑞𝑘2(𝑡1, . . . , 𝑡𝑛) ⋅ 𝑒1(𝑡1, . . . , 𝑡𝑛) − 𝑞𝑘2+1(𝑡1, . . . , 𝑡𝑛) .

Finally, for 𝑘1 = 𝑛 − 1, 𝑘2 = 𝑛 − 2, 𝑝(𝑡) = 𝐹(𝑡)𝑡𝑛−2 and 𝑞(𝑡) = 𝐹(𝑡)𝑛−1 we have
𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ) = (−𝑎(𝑝,1,0,. . .,0) + 𝑎(𝑞,0,. . .,0)) (𝑡1, . . . , 𝑡𝑛)

= 𝑞𝑛−2(𝑡1, . . . , 𝑡𝑛) ⋅ 𝑒1(𝑡1, . . . , 𝑡𝑛) .
Along the way we have also shown that (𝑞0, . . . , 𝑞𝑛−2) ⊆ (𝐽sgnℚ )𝑊 , since we have

written the polynomials 𝑞𝑖 for 𝑖 ∈ {0, . . . , 𝑛 − 2} as scalar multiples of antisymmetrisa-
tions of the form 𝜃((𝐹(𝑡2) − 𝐹(𝑡1)) 𝑡𝑘11 ⋯𝑡𝑘𝑛𝑛 ), see (40) for 𝑖 ∈ {0, . . . , 𝑛 − 3} and (41) for
𝑖 = 𝑛 − 2. □
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We can now summarise the observations from this and the previous sections as fol-
lows:

Theorem 3.11. The rational graded higher twisted 𝐾-theory of 𝐺 = 𝑆𝑈(𝑛) for a twist
induced by an exponential functor 𝐹 ∶ (𝒱iso

ℂ ,⊕) → (𝒱gr
ℂ ,⊗) with deg(𝐹(𝑡)) > 0 is given

by
𝐾𝐺
𝑛−1(𝐶∗ℰ) ⊗ ℚ ≅ 𝑅𝐹(𝐺) ⊗ ℚ/𝐽𝐹,ℚ ,
𝐾𝐺
𝑛 (𝐶∗ℰ) ⊗ ℚ ≅ 0 ,

where we identify 𝐽𝐹,ℚ with the ideal in 𝑅𝐹(𝐺) ⊗ ℚ obtained as the image under the iso-
morphism (𝑅𝐹,ℚ)𝑊 ≅ 𝑅𝐹(𝐺) ⊗ ℚ. This ideal is generated by

𝐽𝐹,ℚ = (𝑞0Δ , . . . , 𝑞𝑛−2Δ ) ⊂ (𝑅𝐹,ℚ)𝑊 ,

whereΔ is theVandermondedeterminant and the polynomials𝑞𝑖 are defined inLem. 3.10.
Proof. Continuity of 𝐾-theory implies 𝐾𝐺

∗ (𝐶∗ℰ) ⊗ ℚ ≅ 𝐾𝐺
∗ (𝐶∗ℰ ⊗ 𝒬) for the univer-

sal UHF-algebra 𝒬 (equipped with the trivial 𝐺-action). The 𝐸1-page of the spectral
sequence (18) for 𝐶∗ℰ ⊗ 𝒬 is given by

𝐸𝑝,𝑞1 = {
⨁|𝐼|=𝑝+1 𝑅𝐹(𝐺𝐼) ⊗ ℚ for 𝑞 even,
0 for 𝑞 odd .

For even 𝑞 the lines in the spectral sequence boil down to the cochain complex
𝐶𝑝
𝑊aff(𝔱, ℛℚ) by Lem. 3.4, which computes the 𝑊 aff-equivariant Bredon cohomology

of 𝔱. As observed in (34) we have
𝐻𝑝
𝑊aff(𝔱, ℛℚ) ≅ 𝐻𝑝

Λ(𝔱, ℛℚ)𝑊

which is only non-trivial for 𝑝 = 𝑛−1 by Lem. 3.8. In particular, the spectral sequence
collapses on the𝐸2-page giving𝐾𝐺

𝑛−1(𝐶∗ℰ)⊗ℚ ≅ 𝐻𝑛−1
Λ (𝔱, ℛℚ)𝑊 and𝐾𝐺

𝑛 (𝐶∗ℰ)⊗ℚ = 0.
Combining Lem. 3.8 and Lem. 3.10 we obtain

𝐻𝑛−1
Λ (𝔱, ℛℚ)𝑊 ≅ (𝑅sgn𝐹,ℚ)𝑊 /(𝐼

sgn
𝐹,ℚ)𝑊

with (𝐼sgn𝐹,ℚ)𝑊 = (𝑞0, . . . , 𝑞𝑛−2). The 𝑅𝑊𝐹,ℚ-module isomorphism Ψ from (36) maps the
submodule (𝐼sgn𝐹,ℚ)𝑊 to the ideal 𝐽𝐹,ℚ in (𝑅𝐹,ℚ)𝑊 . This proves the statement. □

Remark 3.12. Let us briefly discuss the case of classical twists 𝑆𝑈(𝑛)𝑘, i.e. 𝑆𝑈(𝑛) at
level 𝑘. Because the dual Coxeter number of 𝑆𝑈(𝑛) is 𝑛, the exponential functor corre-
sponding to the classical twist at level 𝑘 is

𝐹 = (⋀
top
)
⊗(𝑛+𝑘)

.

With 𝐹(𝑡𝑗) = (−𝑡𝑗)𝑛+𝑘 each generator gives (up to a sign) an alternating polynomial
𝑎(𝜆1,. . .,𝜆𝑛) as follows:

𝑞𝑖(𝑡1, . . . , 𝑡𝑛) = (−1)𝑛+𝑘 𝑎(𝑘+𝑖+1,0,. . .,0)(𝑡1, . . . , 𝑡𝑛)

⇒ 𝑞𝑖
Δ = (−1)𝑛+𝑘 𝑠(𝑘+𝑖+1,0,. . .,0) = (−1)𝑛+𝑘 ℎ𝑘+𝑖+1.

Here, 𝑠(𝜆1,. . .,𝜆𝑛) is the Schur polynomial and the final equation follows from the fact
that 𝑠(𝑚,0,. . .,0) = ℎ𝑚 for the complete homogeneous symmetric polynomialℎ𝑚. Denote
the 𝑖th fundamental weight of 𝑆𝑈(𝑛) by 𝜔𝑖 with 𝜔𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑥1 + ⋯ + 𝑥𝑖 for
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(𝑥1, . . . , 𝑥𝑛) ∈ 𝔱. By the Weyl character formula ℎ𝑘+𝑖+1 is the character polynomial of
the representation with highest weight (𝑘 + 𝑖 + 1) 𝜔1. Hence, our generators agree (up
to signs) with the ones found in [12, Sec. 3.2].

4. Potentials and links to loop group representations

It is surprising that the rational graded higher twisted 𝐾-groups of 𝑆𝑈(𝑛) still carry
a ring structure and are in fact quotients of a localisation of the representation ring.
These properties are known to hold for classical twists and seem to be preserved when
allowing higher ones. In this sectionwewill see that it is still possible to find a potential
generating the ideals underlying higher twists. In addition, we will construct a non-
commutative counterpart of the determinant bundle over 𝐿𝑆𝑈(𝑛) from the full exterior
algebra functor that generalises the central extension classified by the level.

4.1. A potential for higher twists. As noted in Thm. 3.11 the 𝑅𝑊𝐹,ℚ-module isomor-
phism Ψ from (36) maps the submodule (𝐼sgn𝐹,ℚ)𝑊 to the ideal 𝐽𝐹,ℚ in 𝑅𝑊𝐹,ℚ given by

𝐽𝐹,ℚ = (𝑞0Δ , . . . , 𝑞𝑛−2Δ ) .

These generators can now be expressed in terms of symmetric polynomials as follows.
Let

𝐹(𝑡) =
𝑑
∑
𝑖=0

𝜇𝑖𝑡𝑖 .

Let 𝑐𝐹,𝑗 =
𝑞𝑗
∆ . With 𝑎(𝑝,𝜆2,. . .,𝜆𝑛) as in (37) we have

𝑐𝐹,𝑗 =
1
Δ𝑎(𝐹(𝑡)𝑡𝑗 ,0,. . .,0) =

𝑑
∑
𝑖=0

𝜇𝑖
1
Δ𝑎(𝑡𝑖+𝑗 ,0,. . .,0) =

𝑑
∑
𝑖=0

𝜇𝑖𝑠(𝑖+𝑗−(𝑛−1),0,. . .,0)

=
𝑑
∑
𝑖=0

𝜇𝑖𝑐𝑖+𝑗−(𝑛−1) =(∗)

𝑑
∑
𝑖=1

𝜇𝑖𝑐𝑖+𝑗−(𝑛−1) ,

where 𝑐𝑘(𝑡1, . . . , 𝑡𝑛) = ∑1≤𝑖1≤⋯≤𝑖𝑘≤𝑛
𝑡𝑖1𝑡𝑖2 ⋯𝑡𝑖𝑘 denotes the complete homogeneous

symmetric polynomials and 𝑠(𝜆1,. . .,𝜆𝑛) is the Schur polynomial. Note that𝑎(𝑡𝑚,0,. . .,0)=0
for𝑚 < 𝑛−1. Hence, we define 𝑐𝑘 = 0 if 𝑘 < 0. In particular, the summand 𝜇0𝑐𝑗−(𝑛−1)
vanishes for 𝑗 ∈ {0, . . . , 𝑛 − 2}, which explains the equality (∗). Define

̄𝑐𝑘(𝑡1, . . . , 𝑡𝑛) = ∑
1≤𝑖1<⋯<𝑖𝑘≤𝑛

𝑡𝑖1𝑡𝑖2 ⋯𝑡𝑖𝑘

to be the elementary symmetric polynomials. The notation here is chosen to reflect the
connection between the generators of 𝐽𝐹,ℚ and the universal Chern classes and follows
Gepner [35]. Note that 𝑅𝑊ℚ ≅ ℚ[ ̄𝑐1, . . . , ̄𝑐𝑛−1] and therefore

𝑅𝑊𝐹,ℚ ≅ ℚ[ ̄𝑐1, . . . , ̄𝑐𝑛−1, 𝐹( ̄𝑐1)−1] .

Proposition 4.1. Let 𝐹 ∶ (𝒱iso
ℂ ,⊕) → (𝒱gr

ℂ ,⊗) be an exponential functor. Let
𝐹(𝑡) ∈ ℚ[𝑡] be the character polynomial of 𝐹 and let 𝐺(𝑡) ∈ ℚ[𝑡] be any polynomial
integrating 𝐹(𝑡)−𝐹(0)

𝑡 , i.e. 𝐺 satisfies 𝐺′(𝑡) = 𝐹(𝑡)−𝐹(0)
𝑡 . Define

𝑉(𝑡1, . . . , 𝑡𝑛) =
𝑛
∑
𝑖=1

𝐺(𝑡𝑖) ∈ 𝑅𝑊𝐹,ℚ .
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This potential generates the ideal 𝐽𝐹 in the sense that for 𝑗 ∈ {0, . . . , 𝑛 − 2}

𝑐𝐹,𝑗 = (−1)𝑛−𝑗 𝜕𝑉
𝜕 ̄𝑐𝑛−(𝑗+1)

.

Proof. Let 𝑉𝑚(𝑡) = 1
𝑚 ∑𝑛

𝑘=1 𝑡𝑚𝑘 . The computation in [35, p. 389] shows

(42) 𝜕𝑉𝑚
𝜕 ̄𝑐𝑗

= (−1)𝑗−1𝑐𝑚−𝑗 .

Let 𝐹(𝑡) = ∑𝑑
𝑖=0 𝜇𝑖𝑡𝑖 and note that

𝐹(𝑡)−𝐹(0)
𝑡 = ∑𝑑

𝑖=1 𝜇𝑖𝑡𝑖−1. Since we may neglect
constant terms, we can without loss of generality assume 𝐺(0) = 0. We have

𝑉(𝑡1, . . . , 𝑡𝑛) =
𝑑
∑
𝑖=1

𝜇𝑖
𝑛
∑
𝑘=1

𝑡𝑖𝑘
𝑖 =

𝑑
∑
𝑖=1

𝜇𝑖𝑉 𝑖 .

Using (42) the derivatives evaluate for 𝑗 ∈ {0, . . . , 𝑛 − 2} to

𝜕𝑉
𝜕 ̄𝑐𝑛−(𝑗+1)

=
𝑑
∑
𝑖=1

𝜇𝑖
𝜕𝑉 𝑖

𝜕 ̄𝑐𝑛−(𝑗+1)
= (−1)𝑛−𝑗

𝑑
∑
𝑖=1

𝜇𝑖𝑐𝑖+𝑗−(𝑛−1) = (−1)𝑛−𝑗𝑐𝐹,𝑗 . □

Remark 4.2. The case 𝑆𝑈(𝑛)𝑘 corresponds to 𝐹 = (⋀top)
⊗(𝑛+𝑘)

and therefore
𝐹(𝑡) = (−𝑡)𝑛+𝑘, where 𝑘 ∈ ℕ0 is the level, 𝑛 is equal to the dual Coxeter number
for 𝐺 = 𝑆𝑈(𝑛) and 𝑡 is considered to be odd as reflected by the sign. In this case the
potential is

𝑉(𝑡1, . . . , 𝑡𝑛) =
(−1)𝑛+𝑘
𝑛 + 𝑘

𝑛
∑
𝑖=1

𝑡𝑛+𝑘𝑖 = 𝑉𝑛+𝑘(𝑡1, . . . , 𝑡𝑛) ,

which coincides (up to the choice of sign) with the potential in [35]. The generators
𝑐𝐹,𝑗 boil down to 𝑐𝐹,𝑗 = (−1)𝑛+𝑘𝑐𝑘+𝑗+1 for 𝑗 ∈ {0, . . . , 𝑛−2} and Prop. 4.1 retrieves the
result from [35] (up to sign) that

𝜕𝑉
𝜕 ̄𝑐𝑛−(𝑗+1)

= (−1)𝑛−𝑗𝑐𝐹,𝑗 = (−1)𝑘−𝑗𝑐𝑘+𝑗+1 .

4.2. Exponential functors ashigherdeterminants. This sectionwill bemore spec-
ulative than the previous ones. We will outline how exponential functors can be used
to construct higher determinant bundles over loop groups. We will also briefly address
the multiplicativity of our higher twists.
Let 𝐻 = 𝐻+ ⊕ 𝐻− be a separable ℤ/2ℤ-graded Hilbert space with dim(𝐻±) = ∞.

The reduced general linear group 𝐺𝐿res(𝐻) ⊂ 𝐺𝐿(𝐻) consists of operators

𝑇 = (𝑎 𝑏
𝑐 𝑑)

such that 𝑏 and 𝑐 are Hilbert-Schmidt (which implies that 𝑎 and 𝑏 are Fredholm op-
erators, see [49, p. 81]). Consequently, the path-component of the identity 𝐺𝐿0res(𝐻)
contains operators 𝑇 as above such that the index of 𝑎 vanishes. The unitary counter-
part of 𝐺𝐿res(𝐻) is

𝑈res(𝐻) = 𝐺𝐿res(𝐻) ∩ 𝑈(𝐻)



SPECTRAL SEQUENCE COMPUTATION OF HIGHER TWISTED 𝐾-THEORY 937

with identity component 𝑈0
res(𝐻) [49, Def. 6.2.3]. The group 𝑈0

res(𝐻) fits into a short
exact sequence

(43) 𝑈𝜏(𝐻) → ℰ → 𝑈0
res(𝐻) ,

where

𝑈𝜏(𝐻) = {𝑞∶ 𝐻+ → 𝐻+ ∶ 𝑞 ∈ 𝑈(𝐻+) and 𝑞 − 1 is trace-class} ,
ℰ = {(𝑇, 𝑞) ∈ 𝑈0

res(𝐻) × 𝑈(𝐻+) ∶ 𝑇 = ( 𝑎 𝑏
𝑐 𝑑 ) and 𝑎 − 𝑞 is trace-class} .

The group𝑈𝜏(𝐻) consists of those unitary operators that have a Fredholmdeterminant,
which provides a group homomorphism det∶ 𝑈𝜏(𝐻) → 𝑈(1). If 𝑢 = 1 + 𝑡 for a trace-
class operator 𝑡, then it is given by

det(𝑢) =
∞
∑
𝑛=0

Tr(⋀
𝑛
𝑡) .

The determinant can be used to obtain the determinant bundle over 𝑈0
res(𝐻) from the

extension (43) given by

(44) 𝑈(1) → ℰ ×det 𝑈(1) → 𝑈0
res(𝐻) .

Since det is surjective, we haveℰ×det𝑈(1) ≅ ℰ/ ker(det). Hence, (44) is in fact a central
𝑈(1)-extension of groups [49, Sec. 6.6].
With 𝐺 = 𝑆𝑈(𝑛) let 𝐻 = 𝐿2(𝑆1, ℂ𝑛). The Fourier decomposition of vectors in 𝐻

gives rise to a ℤ/2ℤ-grading by letting 𝐻+ be the subspace generated by 𝑧𝑘 with 𝑘 ≥ 0
and 𝑧 = 𝑒𝑖𝜃. The smooth loop group 𝐿𝐺 acts by multiplication operators on 𝐻. Since
𝐺 = 𝑆𝑈(𝑛) is simply-connected, 𝐿𝐺 is path-connected. In fact, it is not difficult to
show (see [49, Prop. 6.3.1]) that the representation by multiplication operators factors
through

𝜌∶ 𝐿𝐺 → 𝑈0
res(𝐻) .

The central𝑈(1)-extension that gives rise to the level is the pullback of (44)with respect
to 𝜌, see [49, Sec. 6.6].
We will outline how exponential functors give rise to 𝐶∗-algebraic counterparts of

(44). For simplicity we will restrict ourselves to the exterior algebra functor 𝐹 = ⋀∗,
even though the arguments given belowwill work for amuch larger class. Note that⋀∗

extends to a functor on the category of countably infinite-dimensional Hilbert spaces
and unitary isomorphisms.
Now take𝐻 = ℂ𝑛⊗ℓ2(ℕ) anddenote the canonicalHilbert basis of ℓ2(ℕ) by {𝑒𝑛}𝑛∈ℕ.

Identify 𝑉 𝑘 = ⨁𝑚
𝑘=1 ℂ𝑛 with the subspace spanned by vectors of the form 𝑣 ⊗ 𝑒𝑖 for

𝑖 ∈ {1, . . . , 𝑚} and 𝑣 ∈ ℂ𝑛. We have a natural unitary isomorphism

⋀
∗
𝐻 =⋀

∗
(𝑉 𝑘 ⊕𝑉⟂

𝑘 ) ≅ ⋀
∗
𝑉 𝑘 ⊗⋀

∗
𝑉⟂
𝑘 ≅ (⋀

∗
ℂ𝑛)

⊗𝑘
⊗⋀

∗
𝑉⟂
𝑘 ,

which gives rise to a representation 𝜋𝑘 ∶ End(⋀∗ ℂ𝑛)
⊗𝑘

→ ℬ(⋀∗𝐻). Associativity of
the above natural transformation ensures that this extends to a faithful representation
𝜋∶ 𝖬∞

𝐹 → ℬ(⋀∗𝐻) of the colimit.

Lemma 4.3. The exterior algebra functor 𝐹 = ⋀∗ gives rise to a group homomorphism

𝜑𝐹 ∶ 𝑈𝜏(𝐻) → 𝑈(𝖬∞
𝐹 ) .
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Proof. It suffices to see that 𝜋(𝐹(𝑢)) ∈ 𝜋(𝖬∞
𝐹 ) for 𝑢 ∈ 𝑈𝜏(𝐻). If 𝑢 − 1 is a finite rank

operator, then 𝐻 = 𝑉 ⊕ 𝑉⟂ for a finite-dimensional Hilbert subspace 𝑉 such that

𝑢 = (𝑢0 0
0 1)

and 𝐹(𝑢) ∈ 𝑈(𝐹(𝐻)) corresponds to 𝑢0⊗1∶ 𝑈(𝐹(𝑉)⊗𝐹(𝑉⟂)) under the exponential
transformation, which proves that 𝐹(𝑢) ∈ 𝑈(𝖬∞

𝐹 ) in this case. Now assume that 𝑢 ∈
𝑈(𝐻) is of the form 1 + 𝑇 for a trace-class operator 𝑇. Since 𝑢 is diagonalisable, so is
𝑇. Choose a Hilbert basis (𝜉𝑛)𝑛∈ℕ0 of eigenvectors for 𝑇 corresponding to eigenvalues
𝜆𝑛. Define

𝑇𝑛 =
𝑛
∑
𝑘=0

𝜆𝑘 𝜉𝑘 ⟨𝜉𝑘, ⋅ ⟩ .

The 𝑇𝑛 converge to 𝑇 in trace norm. To prove the claim it suffices to see that 𝐹(1 + 𝑇𝑛)
converges to 𝐹(1 + 𝑇) in norm, which will show that 𝐹(1 + 𝑇) ∈ 𝜋(𝑈(𝖬∞

𝐹 )). Let
𝑉𝑛 = span{𝜉0, . . . , 𝜉𝑛}. Using the unitarity of the exponential transformation we obtain
the estimates

‖𝐹(1 + 𝑇) − 𝐹(1 + 𝑇𝑛)‖ ≤ ‖
‖𝐹(1 + 𝜆𝑛+1) ⊗ 𝐹((1 + 𝑇)|𝑉⟂

𝑛+1
) − 1 ⊗ 1‖‖

≤ ‖𝐹(1 + 𝜆𝑛+1) − 1‖ + ‖
‖𝐹(1 + 𝜆𝑛+2) ⊗ 𝐹((1 + 𝑇)|𝑉⟂

𝑛+2
) − 1 ⊗ 1‖‖

≤
∞
∑

𝑘=𝑛+1
‖𝐹(1 + 𝜆𝑘) − 1‖ ≤

∞
∑

𝑘=𝑛+1
|𝜆𝑘| = ‖𝑇 − 𝑇𝑛‖1 ,

where the first inequality in the last line follows inductively. To get the last inequality
we used that 𝐹(ℂ) ≅ ℂ ⊕ ℂ and 𝐹(1 + 𝜆𝑘) − 1 = ( 0 0

0 𝜆𝑘 ). Hence, 𝐹(1 + 𝑇𝑛) ∈ 𝑈(𝖬∞
𝐹 )

converges in norm to 𝐹(1 + 𝑇) ∈ ℬ(𝐹(𝐻)) proving the statement. □

As a conclusion of Lem. 4.3, we may therefore replace det by our “higher determi-
nant” 𝜑𝐹 for 𝐹 = ⋀∗ to get a determinant bundle of the form

(45) 𝑈(𝖬∞
𝐹 ) → ℰ ×𝜑𝐹 𝑈(𝖬∞

𝐹 ) → 𝑈0
res(𝐻) ,

and via pullback a corresponding bundle over the loop group 𝐿𝐺 = 𝐿𝑆𝑈(𝑛)

𝑈(𝖬∞
𝐹 ) → 𝐿𝐺𝐹 → 𝐿𝐺 .

In the case of classical twists the bundle 𝐿𝐺𝐹 came equipped with a group structure
itself. This seems unlikely here. Nevertheless, the above higher determinant bundle
suggests that one should look at representations of ℰ as in (43) on Hilbert𝖬∞

𝐹 -modules
(or bimodules), which satisfy a suitable positive energy condition and such that 𝑈𝜏(𝐻)
acts through 𝜑𝐹 (using the Hilbert module structure). In the case of 𝐹 = (⋀top)⊗(𝑛+𝑘)
this will then boil down to the Verlinde ring at level 𝑘.
Concerning the multiplicative structure consider the homotopy given by

𝐻∶ 𝑆𝑈(𝑛) × 𝑆𝑈(𝑛) × [0, 1] → 𝑆𝑈(2𝑛),

(𝑢, 𝑣, 𝑡) ↦ (𝑢 0
0 1) (

cos(𝜋2 𝑡) sin(𝜋2 𝑡)
− sin(𝜋2 𝑡) cos(𝜋2 𝑡)

) (1 0
0 𝑣) (

cos(𝜋2 𝑡) − sin(𝜋2 𝑡)
sin(𝜋2 𝑡) cos(𝜋2 𝑡)

)
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between the inclusions (𝑢, 𝑣) ↦ ( ᵆ 0
0 𝑣 ) and (𝑢, 𝑣) ↦ ( ᵆ𝑣 0

0 1 ). It is equivariant with re-
spect to conjugation in the sense that

𝐻(𝑔𝑢𝑔∗, 𝑔𝑣𝑔∗, 𝑡) = (𝑔 0
0 𝑔)𝐻(𝑢, 𝑣, 𝑡) (

𝑔∗ 0
0 𝑔∗) .

If we denote the Fell bundle over 𝑆𝑈(𝑘) by ℰ𝑘, the two projection maps 𝑆𝑈(𝑛)×𝑆𝑈(𝑛)
→ 𝑆𝑈(𝑛) by𝑝𝑖 for 𝑖 ∈ {1, 2} and themultiplicationmap by𝜇∶ 𝑆𝑈(𝑛)×𝑆𝑈(𝑛) → 𝑆𝑈(𝑛),
then we speculate that

𝐻∗
0ℰ2𝑛 ≅ 𝑝∗1ℰ𝑛 ⊗ 𝑝∗2ℰ𝑛 ,

𝐻∗
1ℰ2𝑛 ≅ 𝜇∗ℰ𝑛 ⊗𝖬∞

𝐹 .
Hence, 𝐻∗ℰ2𝑛 would give an equivariant homotopy between these two Fell bundles.
Since after stabilisation by the compact operators the continuous𝐶(𝐺)-algebras𝐶∗(ℰ𝑘)
correspond to section algebras of locally trivial bundles, which are homotopy-invariant,
one obtains an equivariant isomorphism of 𝐶(𝐺)-algebras

𝐶∗(𝑝∗1ℰ𝑛) ⊗ 𝐶∗(𝑝∗2ℰ𝑛) ⊗ 𝕂 ≅ 𝐶∗(𝜇∗ℰ𝑛) ⊗ 𝖬∞
𝐹 ⊗𝕂 .

In the classical case the twist would give a cohomology class 𝜏𝑘 ∈ 𝐻3
𝐺(𝐺, ℤ). Multi-

plicativity of these twists is encapsulated by the equation
𝑝∗1𝜏𝑘 + 𝑝∗2𝜏𝑘 = 𝜇∗𝜏𝑘 ∈ 𝐻3

𝐺(𝐺 × 𝐺, ℤ) .
The above isomorphism seems to be the correct generalisation of this statement and
we will explore these ideas in future work.
There are more connections with conformal field theory as well: In [28, Sec. 5.1.1]

we showed that for odd powers of the full exterior algebra twist on 𝑆𝑈(2) the locali-
sation is not necessary (in particular 𝐹(ℂ) is already invertible in this case), and the
𝐾-groups give fusion rings related to the even part of 𝑆𝑈(2). These tadpole graphs also
appear as fusion graphs for modules of 𝑆𝑈(3) as in e.g. [29, page 12]. This then raises
the question of when localisation is really present for 𝑆𝑈(𝑛) for 𝑛 > 2 and whether
the rings derived from the 𝐾-theory are fusion rings or fusion modules. Then there is
the question of categorifying these (fusion) rings or modules to be fusion categories or
their modules which is relevant for relating our rings to conformal field theory.
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