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SPECTRAL SEQUENCE COMPUTATION
OF HIGHER TWISTED K-GROUPS OF SU(n)

DAVID E. EVANS AND ULRICH PENNIG

ABSTRACT. Motivated by the Freed-Hopkins-Teleman theorem we study graded equi-
variant higher twists of K-theory for the groups G = SU(n) induced by exponential
functors. We compute the rationalisation of these groups for all n and all non-trivial
functors. Classical twists use the determinant functor and yield equivariant bundles
of compact operators that are classified by Dixmier-Douady theory. Their equivariant
K-theory reproduces the Verlinde ring of conformal field theory. Higher twists give
equivariant bundles of stable uniformly hyperfinite algebras, which can be classified
using stable homotopy theory. Rationally, only the K-theory in degree dim(G) is again
non-trivial. The non-vanishing group is a quotient of a localisation of the representa-
tion ring R(G) ® Q by a higher fusion ideal Jr o. We give generators for this ideal and
prove that these can be obtained as derivatives of a potential. For the exterior algebra
functor, which is exponential, we show that the determinant bundle over LSU(n) has a
non-commutative counterpart where the fibre is the unitary group of the UHF algebra.

1. INTRODUCTION

1.1. History and motivation. K-theory has its roots in Grothendieck’s generalisa-
tion of the Riemann-Roch theorem in the 1950s, which he formulated in the language
of algebraic geometry and coherent sheaves [36]. Building on these foundational in-
sights, Atiyah and Hirzebruch recognised that similar principles could be applied in
a purely topological setting, leading them to develop topological K-theory [5,6]. For
a compact Hausdorff space X the group K°(X) is the group completion of the monoid
obtained from the isomorphism classes of complex, finite-dimensional vector bundles
over X under the direct sum. What transforms this algebraic construction into a pow-
erful topological invariant is its extension to a cohomology theory X — K*(X) with
values in Z-graded abelian groups. Bott periodicity provides natural isomorphisms
K{(X) = K'*2(X) that dramatically simplify the theory by reducing all computations
to just two degrees. It turns the long exact sequence of pairs (X, Y) with Y C X involv-
ing the relative K-groups K*(X, Y) into the characteristic six-term exact sequence that
makes K-theory computations tractable.

The importance of topological K-theory was highlighted by the foundational work
of Atiyah and Singer on index theory [, B0]: principal symbols of elliptic differential
operators naturally define classes in K°(T*M), the index of such an operator can be
computed through a pairing between K-theory and its dual K-homology, and families
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of operators parametrised by a topological space X have indices living in K°(X). Ap-
plications in physics include quantum fields as section of vector bundles and D-brane
charges in string theory [60].

By now there are many variations on the theme of K-theory. The most relevant
one for this paper is the operator-algebraic K-theory of C*-algebras. For a unital C*-
algebra A the group K,(A) is defined as the group completion of isomorphism classes
in a suitable category of projective A-modules. The functor A — K,(A) has a Z-graded
extension A — K, (A) that is defined on the category of all C*-algebras. It is homotopy-
invariant, satisfies Bott periodicity and turns a short exact sequence of C*-algebras into
a six-term exact sequence of abelian groups. For a locally compact Hausdorff space X
we have a natural isomorphism K, (Cy(X)) = K*(X) by the Serre-Swan theorem. In
the non-commutative geometry [16] of Alain Connes, K-theory of non-commutative
C*-algebras led to index theorems for foliations. The classification of amenable C*-
algebras [22] is K-theoretic. Operator-algebraic K-theory also made a recent appear-
ance in condensed matter physics and topological insulators [50].

Twisted K-theory admits two complementary definitions that illuminate different
aspects of its nature: a first one through non-commutative operator algebras, and a
second via stable homotopy theory. By the Serre-Swan theorem and stability of K-
theory we have

K"(X) = Kn(Co(X) ® K),

where K denotes the compact operators on an infinite-dimensional separable Hilbert
space. The algebra Cy(X) ® K can be interpreted as section algebra of the trivial K-
bundle over X. Replacing this by a non-trivial bundle creates a theory that locally
agrees with K-theory but is “twisted” globally, while preserving the structure of being
a module over its untwisted version. A result by Dixmier and Douady [[19] states that
locally trivial bundles with fibres isomorphic to K are classified by third cohomology,
ie.
[X,BAut(K)] = H3(X, Z),

where B Aut(K) denotes the classifying space of the automorphism group (equipped
with the point-norm topology). Given such a bundle X — X over a locally compact
Hausdorff space X, the twisted K-groups are the operator-algebraic K-theory
K.(Cy(X, X)) of the section algebra Cy(X, K). More generally, one can consider contin-
uous trace C*-algebras instead of locally trivial bundles. Background fields in quantum
field theory and string theory are described by Dixmier-Douady invariants [11].

From the viewpoint of stable homotopy theory there is a larger class of twists for
K-theory than the geometric ones classified by H3(X,Z): the tensor product turns
X — K*(X) into a ring-valued functor. From the perspective of stable homotopy the-
ory K-theory is represented by a spectrum, usually denoted KU. The ring structure on
K*(X) lifts to KU and turns it into an E_ -ring spectrum - the counterpart of a com-
mutative ring in stable homotopy theory. Just as such a ring R has a group of units
formed by the invertible elements in R, every E, -ring spectrum E has a spectrum of
units gl (E) formed by spaces GL,(E), BGL,(E), etc. with an associated cohomology
theory X ~ gly(E)*(X), for which gl;(E)°(X) & GL,(E°(X)).

The idea of twisted K-theory is to replace KU by a bundle of rank 1-module spectra
over KU and then take homotopy classes of sections. An approach to twisted K-theory
based on stable co-categories where this is made precise can be found in [2, Sec. 3]. For
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a commutative ring R the rank 1-module bundles are classified by [X, BGL;(R)]. Simi-
larly, bundles of KU-modules with rank 1 correspond (up to isomorphism) to elements
in

gh(KU)'(X) = [X, BGL,(KU)] .
In this picture the geometric twists arise as the ones that factor through a map
K(Z,3) - BGL,(KU), which induces an isomorphism on 775. Indeed, we have

[X,K(Z,3)] = H3 (X, 2).

In joint work with Dadarlat the second author has shown that analogous operator-
algebraic pictures exist for the higher (non-equivariant) twists of K-theory and its lo-
calisations [[17,[18]. In particular,

€] [X,BAut(0, ® K)] = gly(KU)'(X),
) [X, BAut(MZ* ® K)] = gly(KU[1/n])}(X),

where gl,(KU[1/n])% is the cohomology theory associated to the infinite loop space
given by the pullback diagram

GL(KU[1/n]); ———————> GLy(KU[1/n])

1 1

7o(GLi(KU[1/n])) N Q, —» mo(GL(KU[1/n)])) = GL,(Z[1/n])

Equivariant operator-algebraic K-theory is an invariant of C*-dynamical systems,
i.e. C*-algebras with group actions. The groups KS(A) provide a much finer invariant
than K, (A). Equivariant K-theory is relevant for classifying such actions on amenable
C*-algebras [B4]. In physics it arises through the Verlinde ring in two dimensional
chiral conformal field theory which describes the fusion of primary quantum fields
[56]. It appears in the 2-dimensional conformal Wess-Zumino-Witten models as well
as in 3-dimensional Chern-Simons theory.

The connection between the Verlinde ring of loop groups and equivariant K-theory
was made by Freed, Hopkins and Teleman [31-B3]: Let G be a compact, simple and
simply-connected Lie group and let LG be its free loop group, i.e. the group of all smooth
mapsy : S! — G. Even though LG is infinite-dimensional it has a rich representation
theory formed by the positive energy representations at a fixed level k € Z. After group
completion with respect to the direct sum they form a commutative ring Ry (LG) under
the fusion product. Many of the most interesting features of 1+1-dimensional quantum
field theories arise from close links to this representation theory as outlined for example
in [[L3,26,49,58]. Freed, Hopkins and Teleman constructed a ring isomorphism

3) Ri(LG) = " WgI™D(g),

where the right hand side denotes the G-equivariant twisted K-theory of G in degree
dim (G) with twist 7(k) depending on the level k and with respect to the adjoint action
of G on itself, which can be realised as the operator-algebraic K-theory of an equivariant
bundle of compact operators over G. The twist is compatible with the multiplication
#: GXG — G in the sense that u*t(k) = pit(k) + p57(k), where p,, p, are the pro-
jections. The multiplicative structure on the right hand side is the Pontrjagin product
induced by a wrong-way map in equivariant twisted K-theory associated to u (see also
[55,57)).
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Since the ring structure of Ry (LG) determines the fusion rules of the Verlinde ring of
the chiral conformal field theory associated to the loop group LG, it is a natural question
which other invariants of the CFT can be recovered from it. In joint work with Gan-
non the first named author showed that the full system, and in particular the modular
invariant partition function, is encoded in the equivariant twisted K-theory [23, 24].
Other fusion categories like the ones constructed in [53] have elegant K-theoretical
descriptions as well as shown in [25].

1.2. Results in this paper. Up to isomorphism the geometric twists of the equivari-
ant K-theory of a simply-connected group G are classified by the group H(G,Z) =
H3(G,Z) = Z. As explained in the previous section, and already noted by Atiyah and
Segal in [4], at least non-equivariantly, stable homotopy theory hands us a much larger
group of twists.

In light of this and the observations from the previous section, several key questions
emerge:

(i) Isthere an equivariant extension of the operator-algebraic models?
(ii) Is the equivariant twist 7(k) that appears in (§) the shadow of a more general
construction involving equivariant higher twists?

(ili) What are the consequences for conformal field theories associated to loop

groups?
We initiated a programme to investigate the first question in [R7] starting with circle
actions on infinite UHF-algebras. Even though we will leave a complete answer to
question (iii) to be discussed in future work, we will briefly come back to it in Sec. {.2.
A variation of the second question appeared for example in [54], where higher twists
of K§(X)[[¢]], i.e. the power series ring over equivariant K-theory, were considered.

In this paper we will focus on a different approach to question (ii) that we developed
in [28]. For a simply connected Lie group G the generator of H3.(G,Z) ~ H3(G,2) = Z
corresponds to the basic gerbe over G [42,45].

A gerbe over a space X is a higher-categorical generalisation of a line bundle. It is
given by a hermitian line bundle L — § over a groupoid §. This groupoid is Morita
equivalent to the trivial groupoid with object space X and only identity morphisms. To
be a gerbe the line bundle L needs to come equipped with a multiplicative structure
covering the groupoid multiplication, i.e. we have a bundle isomorphism

L @ m3L — m*L,

which is associative in the obvious sense. The maps i 9(2) - Gandm: 9(2) -G
denote the two projections and the multiplication, respectively. For details, we refer
the reader to [44].

Murray and Stevenson found a construction of the gerbe L, — G atlevel k € Z
for the unitary groups [43]. In their setting the groupoid G can be chosen to be locally
compact and given a Haar system. But then L, — G is an example of a saturated Fell
bundle, see [41, Sec. 2.1]. As such it has an associated section convolution algebra
C*(Ly) and it turns out that

C*(Ly) @ K = C(G, Ky)

for a locally trivial bundle X} — G with fibre K. Since L, — G can be equipped with
a group action that is compatible with the conjugation action of G on itself, the same
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turns out to be true for X, — G, which allows us to express the K-groups from the
beginning in terms of operator algebras

@ TORETO(G) 2 K (6)(C L) -

The fibres of L; are constructed by applying powers of the determinant functor to
eigenspaces of the underlying group elements, where the level enters as the exponent.
The crucial observation in [28] is that the only properties of this functor that are actu-
ally needed are:

(a) it maps all objects to C,
(b) it naturally transforms direct sums into tensor products and
(c) itis continuous and preserves adjoints.

We obtain interesting new examples of higher twists over G = SU(n) by giving up prop-
®(n+k)
erty (a), but keeping (b) and (c). More precisely, we change the functor ( /\tOp)

from the classical setting to an exponential functor
F: (V,8)~ (V. ®)

on complex inner product spaces and unitary isomorphisms (see Def. R.1)). Compared
to [28] we will also modify our setting slightly and consider exponential functors that
preserve the symmetries on both sides and take values in super-vector spaces. We will
see that all examples that have been discussed for example in [28, 47] fit much more
naturally into this new setup.

One-dimensional representations provide invertible elements in the representation
ring. This is crucial for equivariant bundle gerbes to work. Therefore giving up (a)
means that we need to turn higher-dimensional representations into units in equivari-
ant K-theory. We achieve this by swapping vector spaces (i.e. modules over C) for bi-
modules over the infinite UHF-algebra

M = End(F(C")®®

and the gerbe L, — G for a saturated Fell bundle & — G, whose fibres are invertible
My -My -bimodules and with multiplication

1€ Quz M€ > m*E.

One of the upshots of our construction is that equivariance is preserved. In particular,
there is a G-action on G and & such that the bundle projection is G-equivariant. This
turns the section algebra C*(€) into a Z/2Z-graded G-C*-algebra, and we define the
equivariant higher twisted K-theory of G = SU(n) with twist given by the exponential
functor F to be the graded K-groups K¢(C*€&) in analogy to (A). It was shown in [28,
Cor. 4.7] that
C*EQK=C(G,A)

for alocally trivial bundle A — G with fibres isomorphic to M ® K. Up to stabilisation
and neglecting equivariance our construction therefore gives a higher twist similar to
the ones in (). In contrast to the classical case, where the twist corresponds to an
integer (the level), these new twists are parametrised by exponential functors. An in-
depth analysis in the ungraded case can be found in [#7]. We return to this point in
Sec. E.2 where we will see that an exponential functor gives rise to a bundle

UM®) — LSU(n) — LSU(n)
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that is the non-commutative counterpart of the determinant bundle. Classically, this
corresponds to the central U(1)-extensions classified by the level.

Replacing the algebra C by M has the effect that the groups K¢ (C* &) become mod-
ules over the localised representation ring

K§(M®) = R(G)[F(p)'] = Rp(G)

where G = SU(n) and p : G — U(n) denotes the inclusion.

We have shown in [28, Thm. 5.3] that in the non-graded setting for G = SU(2)
and under very mild assumptions on the exponential functor F the equivariant higher
twisted K-groups satisfy

K§(c* &) =0,
KC(C*&) = Rp(G) /g ,

where Jr is the higher fusion ideal generated by the SU(2) representation correspond-
ing to the character polynomial yr € Z[t,t~1] with

AP = 11

-1
L et (F(t) F(t )) .

As explained in [28, Thm. 5.16] a similar result also holds for G = SU(3) after ratio-
nalisation, i.e. Kgim(c)(c*é‘) ® Q = (Rp(G) ® Q)/Jp o, Where J g has two generators,
whose characters can be expressed in a similar way as yr above. Both of these results
also hold in the graded setting of this paper with the only change that F(t) € R(T) is
now a graded representation.

In the present paper we are now able to complete the picture and compute the ra-
tionalised graded equivariant higher twisted K-theory for the groups G = SU(n) and
all non-trivial exponential functors F. More precisely, we show in our main result,
Thm. B.17], that the graded higher twisted K-groups are

) KSm(c)(C°€) ® Q= Rp(G) ® Ol g,
K(?im(G)+1(C*8) ® Q=0

for an ideal Jp g C Rp(G) ® Q.

With F = ( /\t°p)®("+k) for G = SU(n) the algebra End(F(C")) is trivially graded
(i.e. My = C). Asexplained in Sec. .2.T the C(G)-algebra C*€ then has graded compact
operators as fibres. However, it represents the same twist of K-theory as in (§) in the
graded Brauer group H(G, Z/27) x H3(G, Z) of [46], because H'(G, Z/27) vanishes.
Indeed, we recover the classical Verlinde ring of SU(n) at level k in accordance with (§).

We prove that the higher fusion ideal Ji g has n—1 generators constructed as follows:
Let T € G be the maximal torus given by the diagonal matrices. Note that its repre-
sentation ring satisfies R(T) = Z[t,...,t,]/(1 — t; ---t,) and R(G) = R(T)¥, where
W = S, is the Weyl group of G acting on R(T) by permuting the variables. A set of
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generators of Jp g is then given by the character polynomials

qi

A € R(MY fori €{0,...,n — 2} with
F()th F(ip)th ... Ftn)th
tn_z tn_z tn—2
Gilty, - t) = det| T, T
f t th

where A is the Vandermonde determinant. So, at least rationally, the equivariant higher
twisted K-groups are in fact quotient rings of the localised representation ring
Rr(G) ® Q by an ideal Jr o. Generators of the classical fusion ideal for SU(n) at level
k have been computed for example by Douglas in [20, Thm. 1.1] (using K-homology
instead of K-theory). For F = ( /\t0p)®(”+k) our generators correspond to the highest
weight representations with weight (k+i) w, fori = {1, ..., n—1} by the Weyl character
formula where w, is the first fundamental weight of SU(n) (see Rem. B.12). It is shown
in [I2, Sec. 3.2] how one can transform Douglas’ set of generators into ours using the
Jacobi-Trudy identity.

As in [[I, 28] the isomorphisms (f) are obtained using the Mayer-Vietoris spectral
sequence. We compare its E'-page to a cochain complex that computes the W2ff-
equivariant Bredon cohomology Hj, .« (t, R) of t with a certain local coefficient sys-
tem R (see Lem. B.4). This comparison does not require rationalisation. It is only the
computation of Hy,,¢(t, R) that is simplified after killing torsion. In addition, the gen-
erators of the ideal Jy g live in Rp(G). We therefore conjecture that the rationalisation
is only a technical difficulty and that the results should also hold integrally.

Gepner discovered in [33] that the fusion ring R, (LSU(n)) is closely related to the
cohomology ring of the Grassmann manifolds G (C"*¥) of k-dimensional subspaces
in C"*¥. We have

Gr(C"*) = U(n + k)/U(n) x U(k),
H*(Gi(C"9),2) = Z[ey, ... ) (Chesrs - Chan) -

To understand the generators and relations note that there are two non-trivial canoni-
cal vector bundles over G (C"*¥): the tautological bundle and the quotient bundle of
its embedding into the trivial bundle. The generators c; are the Chern classes of the
quotient bundle. The ideal can be obtained by expressing the elements c; in terms of
the ¢; using the identity

AQ+c++c) - Q+cg+ - +cpan)=1.

In fact, the ideal defining this cohomology ring is an example of a Jacobian ideal, i.e.
its generators can be obtained as derivatives of a potential V. ,1(¢;,...,¢,) in such a
way that

OVytka1 i

ﬁ = (D" "ok
fori € {0,...,n — 1}, see [35,B8]. The fusion ring R (LSU(n)) has a very similar alge-
braic structure. It is a quotient of Z[c, ..., c,] by the ideal generated from derivatives
of the potential V. under the additional constraint that ¢, = 1. This constraint may
be built into the potential as a perturbation as outlined in [BS].
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In Sec. i) of this paper we show that a large part of this rigid algebraic structure is
preserved when changing from classical equivariant twisted K-theory (giving
R (LSU(n)) by (B)) to equivariant higher twists. We construct a potential V from the
character polynomial F(¢4, ..., t,) € R(T)®Q of the exponential functor F and show in
Prop. @.1| that its derivatives generate the higher fusion ideal Jg g. In fact, our potential
is a linear combination of the classical potentials for various levels with coefficients
derived from structure constants of the exponential functor.

We see this as an indication that the close relationship to some Grassmannian will
persist in our case. This does not seem too far fetched. Operator-algebraic versions
of Grassmannians do exist and have been studied in the past (see for example [52]).
Witten [59] has given a physical explanation of the relationship between the fusion ring
and the cohomology of the Grassmannian manifolds. This then raises the question of
whether what may persist could be understood physically.

Finally, we would like to point out another interesting feature of our construction:
Just as in [32] a key step in the computation of the graded equivariant higher twisted K-
theory is the restriction to the maximal torus T C G. In the classical case the pullback
of the basic gerbe with respect to the Weyl map

w: SUM)/TXT— SU@n), ([g],z)+ gzg*

has been considered in [§]. Up to stable isomorphism it agrees with a tensor product
of cup-product gerbes [8, Prop. 5.3]. The restriction to T is sufficient for our computa-
tions, so we will not consider the full Weyl map. Nevertheless, we find a similar tensor
product decomposition in Lem. B.2, which takes the following form: the UHF-algebra
Mg satisfies the following decomposition into a Z/2Z-graded tensor product

(6) MF Mg, ® - @ Mp,

with Mz; = End (F(span{ei}))®°° for the standard basis {e;,...,e,} of C". Lett C R"
be the Lie algebra of the maximal torus T. Identifying My with its decomposition, the
pullback Fell bundle £&; — T is equivariantly Morita equivalent to

@) L=LQc  Qc Ly -

Each £; is a Fell bundle over t!? with the fibre product taken over the exponential map.
The fibre of £; — t2 over (x;, x,) € t?! is given by the M¥ ;-M§ ;-bimodule

(F(span{e;}) ® M?’i)®‘h(x2—x1) ,

where q; : t — R is the projection from t C R” onto the ith coordinate. This is the
operator-algebraic counterpart of the cup-product gerbe decomposition in [8, Prop. 5.3].
This decomposition only holds because we switched to functors that are symmetric
monoidal. If F does not preserve symmetries, then the order of the factors in the de-
composition (f) matters and will produce a priori different identifications with M¥ (see
Rem. B.1)).

The article is structured as follows: In Sec. P we recall the definition of the equi-
variant higher twists over SU(n) induced by an exponential functor F from [28]. We
highlight the necessary modifications to make this construction work for symmetric
monoidal functors that take values in super-vector spaces. We will also explain that all
of the known examples fit much more naturally into this setup.
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The main goal of Sec. [ is the computation of the spectral sequence ([L§) converging
to the equivariant higher twisted K-groups K¢(C*&). It begins with some background
on Lie algebras, root systems and the Weyl alcove. The terms in (I§) only involve eval-
uations of the Fell bundle at points in the maximal torus. Hence, we focus on the
restriction & of £to T C G in Sec. B.J. We construct a T-equivariant equivalence
between &; and £ (with £ as in (f)) and prove in Lem. B.2 that it induces a Morita
equivalence between C*Ey and C*£. We also study actions of the normaliser N(T)
of the maximal torus on these Fell bundles in Sec. B.1.1, which give rise to actions of
the Weyl group W on the corresponding K-theory groups as outlined in Lem. B.3. Fi-
nally we compare the E; -page of the spectral sequence with the cochain complex giving
Hj, a5 (t, R) in Lem. B.4. After rationalisation we have Hyp . (t; Rq) = Hj (t; R)” and
the right hand side can be computed using the theory of regular sequences and Koszul
complexes, which is done in Lem. B.§. The generators of the ideal Jp g are constructed
in Lem. B.10. Finally, Thm. summarises the main result.

The first part of Sec.  is devoted to the computation of the potential giving the higher

fusion ideal. The main result here is Prop. f.J], which recovers the classical potential
®(n+k)
(up to sign) initially found by Gepner for G = SU(n) at level k for F = ( /\top .

In the second part we construct the U(M§)-bundle (#3) over LG, sketch an approach to
understanding the multiplicative structure on equivariant twisted K-theory and high-
light some connections to CFT.

2. EQUIVARIANT HIGHER TWISTS OVER SU(n)

In this section we extend the definition of equivariant higher twists over G = SU(n)
from [28] to take values in complex super-Hilbert spaces. Let (Vi5°, @) be the symmet-
ric monoidal category of (ungraded) finite-dimensional complex inner product spaces
and unitary isomorphisms with the monoidal structure given by the direct sum. This
is a topological groupoid, and we will consider the morphism spaces equipped with
their natural topology. Likewise, let (VE',®) be the symmetric monoidal category
of finite-dimensional complex inner product super-vector spaces and unitary isomor-
phisms that preserve the grading. The monoidal structure is given by the graded tensor
product and the symmetry is defined on homogeneous elements as follows:

oy VOW->WRV, v@uwer (-)'"weu,

where |v| denotes the degree, i.e. with V = V; @ V; we have [v| = iforv € V.
Unless otherwise stated, we will always consider tensor products to be graded. We will
also consider Vgr as a topologically enriched category with the natural topology on the
morphism spaces.

Definition 2.1. An exponential functor F: Vi° — V£ is a continuous symmetric
monoidal functor from (VF°, @) to (VCgr, ®), which preserves duals (i.e. there is a nat-
ural isomorphism F(V)* & F(V*)) and such that the S'-representation F(C) has only
positive characters. In particular, F comes equipped with two natural isomorphisms
Tyw: FV@®W)—->FV)QFW) and (: F(0) > C,
which make the obvious unitality and associativity diagrams commute. Being sym-
metric implies that
Tw,y © F(O'IG/),W) = U?(V),F(W) °Tyw
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where 0®, 0® denote the respective symmetry transformations for the direct sum and
the tensor product (on super-vector spaces).

Example 2.2. The classical twists arise in this setting from (graded) powers of the
determinant functor. Let I € N and define F for V € V° to be

de® @) = (A" V)®l :

where we equip the exterior algebra with its natural Z/2Z-grading. This means that
det®l(V) is purely odd if dim (V) -  is odd and purely even otherwise. Another example
arises from the full exterior algebra. More generally, for a trivially graded real inner
product space X, we define

Py =@xeme \'v

meNy

again equipped with its natural Z/2Z-grading. The inner product on the mth exterior
power is

EL A ANEam A Ay = det((€ 7)) )
and the summands are orthogonal. With this definition we obtain a natural isomor-

phism FX(V*) ~ FX(V)*. We refer the reader to [47, Sec. 2.2] for the definitions of
7y, and t and further details.

Note that if F does not satisfy the character condition in Def. P.1, det®l ®F does for
a suitable choice of | € N.

2.1. Graded C*-algebras and graded Morita equivalences. To an exponential
functor F: Vis© — V& we will associate a Z/2Z-graded C*-algebra M®. A Z/2Z-
grading on a C*-algebra A is an order 2 automorphism, i.e. y € Aut(A) such that
y? = id4. It induces a direct sum decomposition A = A® @ AM as a Banach space
with

AD ={aeA|y@)=(-1a}.

If there is a self-adjoint unitary s € M(A) such that y = Ad, then we call the grad-
ing inner. A graded x-homomorphism ¢ : A — B is one that intertwines the grading
automorphisms y4 and yp.

Given a graded C*-algebra A a graded Hilbert A-module E is a right Hilbert A-
module equipped with a linear bijection S : E — E such that S% = idg and for all
vweEa€eA

Sg(va) = Sg(v)ya(a) and (Sg(v),Sp(wW)a = ya(v,Ww)4) .

Defining E® = {v € E | Sg(v) = (—1)!v} we have E = E©© @ EW. If E is a graded
Hilbert A-module, then Adg, defines an order 2 automorphism of the compact oper-
ators K4 (E) turning them into a graded C*-algebra with an inner grading. A graded
Morita equivalence between graded C*-algebras A and B is a graded right Hilbert B-
module E, which is full in the sense that (E®D, E()) C BU+)) is dense, together with an
isomorphism ¢ : A - Kp(E) of graded C*-algebras. Given graded C*-algebras A, B
and C together with an A-B-Morita equivalence E and a B-C-equivalence F, there is an
internal tensor product E ®g F, which is an A-C-Morita equivalence. This is formed
as described in [BY, Sec. 1.2.3] with the grading operator given by Sg ® Sg.
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Given two graded C*-algebras A and B we may equip the algebraic tensor product
A®Bwith the graded multiplication given on homogeneous elements a € A®, () €
BD, M e A0 qb e BO by

(@® @ b)) - (W @ dD) = (1)K (a® - ¢,y @ (bW . d)

and the graded (minimal) tensor product A ® B is the (minimal) completion of it
[9, Sec. 14.4]. For a homogeneous element a we will sometimes denote the degree of
aby|al.

Let V be a finite-dimensional complex super-vector space with inner product. The
endomorphism algebra End (V) is a graded C*-algebra with inner grading. If W is an-
other such space there is a natural isomorphism of graded C*-algebras (described in
[9, Prop. 14.5.1])

(8) End(V) ® End(W) — End(V @ W) ,

which is compatible with the monoidal symmetry on both sides. Let W be a super-
vector space equipped with a unitary G-representation that preserves the grading. Then
G acts by degree-preserving automorphisms on End(W). Consider the colimit
End(W)®> with connecting maps

) End(W)®" = EndW)®?"Y, T T®1.

Denote the grading operator on W by s and the ungraded tensor product by ® (we will
not use this non-standard notation in the rest of the paper). By [9, Prop. 14.5.1] the
map

End(W) ® End(W) — End(W)®End(W) , 1 ® T» = T;s2l @ T,

provides a x-isomorphism between the graded tensor product and the algebra
End(W) ® End (W) equipped with inner grading given by Ady ® Ady. Since the iden-
tity is even, the sequence (g) is isomorphic to

End(W)®" > End)®?™Y, T T®1

with the grading on End(W)®" given by Adg,. Hence, we can identify the colimit

End(W)®> with an ungraded tensor product as well, on which the grading automor-
phism is approximately inner and acts by conjugation with s on each tensor factor. The
G-action obtained as an infinite tensor product of the action on End(W) commutes
with this automorphism.

The construction outlined in the following section gives rise to a Z/2Z-graded G-
C*-algebra C*(&) for G = SU(n). We will compute its graded K-theory in the sense of
Kasparov [40, Def. 2.3], i.e. we define for a graded G-C*-algebra A

KP(A) = KKL(C,A).

This functor is homotopy-invariant, stable, continuous and has six-term exact sequen-
ces for semi-split exact sequences of graded G-C*-algebras. Let W be a finite-dimensio-
nal super-Hilbert space equipped with a representation by G that preserves the grading.
Note that W®" provides a G-equivariant graded End(W)®n-C-Morita equivalence that
gives rise to

KSEnd(W)®") =~ KS(C) = R(G) .
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This isomorphism intertwines the connecting maps in (f) with the multiplication by
the virtual representation Wy, := w© — w® e R(G). In the colimit we therefore
obtain the localisation

K§ (End(W)®%) = R(G)[Wgz']

2.2. Construction of the Fell bundle. In this section we will recall the construction
of the higher twist from [2§]. The twist is given as a saturated Fell bundle & over a
(locally compact Hausdorff) groupoid Y12!. We refer the reader to [14, Def. 2.6] for the
definition of Fell bundles. The fibres of & — Y12! over the units of the groupoid will
be C*-algebras and over general elements Morita equivalences between domain and
range algebra. We therefore start by defining those.

Let p: G — U(n) for G = SU(n) be the standard representation (i.e. p is the ho-
momorphism given by inclusion). It gives rise to the (grading-preserving) unitary G-
representation

F(p): G — UF(C")
on the super-vector space F(C™). As in (J) the UHF-algebra

M = End(F(C")®®

is a Z/27-graded G-C*-algebra with G-action given by (AdF(p))®°°. For any subspace
V C C" the right Hilbert M -module

(10) V=FV)® M2

is in fact a graded M¥-M®% Morita equivalence bimodule. The left multiplication by
Mg is induced by the canonical isomorphism of the compact operators Kys (V) with
End(F(V)) ® M and the composition

(11) End(F(V)) @ M® —> End(F(V)) ® End(F(V) ® F(V1))®* =5 m,

where the first map applies (Ad )@ to M and the second map is given by shift-

T L
ing the tensor factors according{;.’vl\)lote that permuting the tensor factors using the
symmetry of Vgr involves signs. Other than this the construction is the same as in
[28, Lem. 3.7].

The vector space F(V) carries a left action by End (F(V)). This turns into a right ac-
tion by End (F(V)) on the dual space F(V)* = F(V*). Therefore the opposite bimodule
of V is given by

VP =F(V)* @My = F(V*) @ My,
where the left action of M¥ only acts on M by left multiplication, but the right action
makes use of the isomorphism End(F(V)) @ My = M{%. Note that the notation “op”
will be reserved for the opposite bimodule, not for the opposite grading.

The Morita equivalence bimodules described above form the fibres of a Fell bundle
over a groupoid that we now construct: For an element g € G denote by EV(g) the set
of eigenvalues of g. The eigenspace corresponding to the eigenvalue 1 € EV(g) will be
denoted by Eig(g, 4). Let

(12) Y ={(g2) € GxS'\{1}|z ¢ EV(g)}
and let Y2 be the fibre product of Y with itself over G, i.e. a point
(821,22) € G (ST\ {1}
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is in Y[?! if and only if z; & EV(g) for i € {1,2}. This is a groupoid with respect to the
composition

(8.21,22) - (8,22, 23) = (8 21, 23) -
Choose a total order on S*\{1} by declaring z; < z, if the arc from z; to z, in S*\{1} runs
counterclockwise. The groupoid has a decomposition into three disjoint components

Y2 =y oy ooy,

where YF] contains all points (g, z;, z,) with z; < z, such that there is A € EV(g) with
2, < A < z,. The space Y!?! is defined similarly, but with z; > z, and YO[Z] is the space
with no eigenvalues between z; and z,. In the following we will denote the restrictions
of the Fell bundle £ to these three subspaces by &, £, and E_ respectively.

The bundle &, constructed in [28] is defined to be the locally trivial Z/2Z-graded

right Hilbert M -module bundle with fibre over (g, z;,2,) € YF] given by
gz = F(B(E721,2)) ®ME  with E(g,21,2,) = €D Eig(g.A).

z1<A<2y
A€EV(g)

By [28, Cor. 3.8] the endomorphism bundle of £, has a trivialisation that restricts to the
left MF-module structure on &g ,, -,y from (1) in each fibre. The monoidal natural
transformation of F provides an isomorphism

F(E(8,21,2,)) ® F(E(8, 22, 23)) = F (E(g, 21, 23)) -
Over YP] we therefore obtain a multiplication

S(g’ZI!ZZ) ®M%‘° S(g!ZZ’ZS) - 8(g9zl’z3) °

Note that the proof of its associativity in [28, Lem. 3.7] and continuity in [28, Cor. 3.8]
carry over verbatim to the graded case. Define & to be the trivial bundle with fibre My
and let

op
8(8:21,22) = (8(&22:21)) for (g,21,2,) € YRl

The spaces E(g, z;,z,) form the fibres of a vector bundle E — YP] by [435, Sec. 3].

Thus,

E,2F(E)QMy.
Hence, the grading is a continuous operation on £, and similarly on £_. The bundle
&y is trivial, so the grading is constant.

The proof of [28, Thm. 3.3] is based on properties of the two inner products on im-
primitivity bimodules which also hold in the graded case, so we obtain a Fell bundle
& — Y2l asin [28, Cor. 3.12] with a grading S : € — & turning each fibre E(g,21,22)
into a graded My -My Morita equivalence bimodule in such a way that the Fell bundle
multiplication

g(g,zl,zz) ®M%° 8(8,22,23) - g(g,zl’zs)
is compatible with the grading.

Let h € G. In the standard representation p(h) : C" — C" restricts to an isomor-
phism Eig(g, 1) — Eig(hgh~',1). Thus, G actson Y2l by h-(g, z1, z,) = (hgh™', z1, z,).
This action lifts to a continuous grading-preserving action of G on £ as described in
[28, Cor. 3.6]. Altogether we obtain a Z/2Z-graded G-equivariant saturated Fell bun-
dle &€ — Y21,
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The C*-algebra associated to £ is constructed in the same way as in [28, Sec. 4],
but we will point out where the grading enters: The algebra A = Cy(Y, M%) is now
Z/27Z-graded. Because the Fell bundle multiplication is compatible with the grading,
the right Hilbert A-module I?(&) is graded as well, which induces a Z/2Z-grading on
the adjointable bounded A-linear operators £ 4 (I*(€)). There is a well-defined graded
x-homomorphism

C(YP, &) = £4(12(€)) ,

where the domain acts as convolution operators on I?(E). We define C*& as the norm
closure of the domainin £ 4 (L2(8 )). Thisis a Fell bundle C*-algebra with the grading as
extra structure. Therefore [28, Lem. 4.2] is still valid and shows that C* £ is a continuous
C(G)-algebra with the graded C*-algebras &, as its fibres and [28, Lem. 4.6] provides
a graded Morita equivalence between &g and My. Moreover, [28, Lem. 4.3] produces
graded G-equivariant Morita equivalences.

We define the equivariant higher twisted K-theory of G = SU(n) with twist given
by the Fell bundle &€ by

KL ((G) =KF(C*¢).

The Fell condition [28, Def. 4.5] implies that C*€ ® K is isomorphic as a C(G)-algebra
to the section algebra C(G,.A) of a locally trivial bundle A — G. If we transfer the
G-action and grading from C*€ ® K to C(G, A) through this isomorphism, then com-
patibility with the C(G)-algebra structure implies that the grading acts fibrewise on A
and the G-action covers the conjugation action. Thus, to compute KiG’ +(G) we may use
the Mayer-Vietoris spectral sequence constructed in [2§, Prop. 4.9].

This spectral sequence computes these K-groups from the representation rings R(H)
for certain subgroups H C G. More precisely, we need localisations of these rings
defined as follows: If V is a finite-dimensional unitary representation of G, then F(V)
is again a finite-dimensional unitary representation. Since F is exponential it gives rise
to a monoid homomorphism

F: (R(H),®) = (R(H),®)

for any subgroup H C G, which we continue to denote by F by slight abuse of notation.
For a subgroup H C G we define

Rp(H) = RUED[F(pl;)7],

where p: G — U(n) denotes the standard representation.

Finally, we also need to see that K¢(C*€) is a module over Kg (M®). It suffices to
see that the tensor embedding C*& — C*E ® M¥ induces an isomorphism on KS. As
in [28, Prop. 4.11] this problem can be reduced to checking that

CX,M®) = C(X, M2) @ M2

with f — f ® 1 induces an isomorphism for a compact Hausdorff G-space X. By
treating grading and G-action together as a G X Z/2Z-action this follows in the same
way as in [28, Lem. 4.10], but it can also be shown directly as follows: It suffices to see
that the first factor embedding

[: MR > MR QOME, ara®l



SPECTRAL SEQUENCE COMPUTATION OF HIGHER TWISTED K-THEORY 911

isasymptotically G-unitarily equivalent to an isomorphism through grading-preserving
unitaries. This can be achieved as in [27, Lem. 2.3]. There is an equivariant isomor-
phism ¢ : MR ®ME — MF that alternates between the two tensor factors and preserves
the grading. Hence, it suffices to show that there is a path u: [0,1) - U(M¥) such
that for all a € My

lim|lu (% o (@) uf — a}=0.

Note that the subgroup U(F(C") ® F(C™))%*#/2Z of unitaries fixed by the grading and
the G-action decomposes into a product of unitary groups, which is path-connected.
Therefore there is a path

v: [0,1] - UF(C") @ F(C")),

which is G-invariant, preserves the grading and connects the identity map to the one
interchanging the two tensor factors. Now we proceed as in the proof of [27, Lem. 2.3]
with the construction of u,. The diagram on [28, p. 922] shows that the induced mul-
tiplication on K§ (M®) corresponds to the ring structure of Rp(G).

2.2.1. Classical twists. Following [32, Theorem 1] classical twists for SU(n) at level
k € Ny are given by (h¥ + k)-fold tensor powers of the basic gerbe, where h¥ = n
is the dual Coxeter number of SU(n). In our setup this situation corresponds to the

exponential functor
®(n+k)

top
=N
where our construction boils down to the one from [45]. By [28, Lem. 4.2] the C*-
algebra C*(€) is a continuous C(G)-algebra with fibre C*(€,), where &, is the restric-
tion of & to the subgroupoid of Y12 over g, i.e.

Y = {(z1,2,) € (S1\ {1)? | z; g EV(g) for i € {1,2}} .

For z; < 2z, let E(z,2,) be the direct sum of the eigenspaces Eig(g,4) with
z; < A < z, (which is the zero vector space if there are no eigenvalues in-between).
The fibre (Eg)(z,,2,) is

(/\top E(zy,2,)
(Eg)(zlyzz) = <(

®(n+k)
) ifZl < Zy,

®(n+k)\*
/\t0p E(zz,zl)) ) ifz; >z, .

Let X; = S'\ ({1} UEV(g)), 2o € Xgand let o: X, — Y3* be defined by o(z) =
(2, 20). Then I*(&) is a continuous field of Hilbert spaces over Y with fibre over (g, z,)
isomorphic to H = I*(Xg, 0*&,). Let

Kg ng - 7/27,

(n + k) dim(E(Zl,Zz)) mod 2 if Z7 S Zy,

(z1,2y) {(n + k) dim(E(z,,2,)) mod 2 else.

This is a continuous groupoid homomorphism. The Hilbert space H has a Z/2Z-
grading, where H, is the closure of compactly supported functions with support in
(kgo o)~1(0). Moreover, C*(& ¢) is the closure of the convolution algebra given by oper-
ators with compactly supported sections of &, as their integral kernels, i.e. the algebra
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of compact operators on H. A compact operator that corresponds to a compactly sup-
ported section of &, is even with respect to the Z/27-grading on C*(€) if the section is
supported in x;(0) and odd if the support is in xz*(1). Hence, the even operators are
the ones preserving the decomposition H, @ H_, whereas the odd ones map H, to H_
and vice versa. If n + k is even, H_ = 0 and the grading is trivial.

The map x, is the restriction of a continuous map « : Y2l - 7/27 to the fibre over
g, which is defined in the same way as above. Consider the quotient of Y X Z/2Z by the
equivalence relation

1,m) ~ (y2,n) ifand only if 7(y;) = 7(y;) and n = x(yy, y,) + m.

This gives a principal Z/2Z-bundle over G that represents a class [x] € H'(G, Z/2Z) in
accordance with the fact that the classical twists are up to isomorphism classified by
HY(G,7/27)x H*(G, Z). Since we are considering G=SU(n), we have H'(G, Z/27)=0
and [«] vanishes in cohomology.

3. THE SPECTRAL SEQUENCE COMPUTING HIGHER TWISTED K-THEORY

We start this section by recalling a few basic facts about the geometry underlying the
conjugacy classes of G = SU(n). Let £ = n — 1 be the rank of G. Denote by T C SU(n)
the maximal torus consisting of diagonal matrices, let t be its Lie algebra. Note that

t={¢,....50 ER" [ § 4+ -+ §, =0} CR".

Let A = ker(exp: t — T) C t be the integral weight lattice, and let A* be its dual
lattice.! We have

A={Ap..0, M) EZM | Ay + -+ + A, =0} C Z".

Denote by (-, - ), the basic inner product on the Lie algebra g of G. Choose a collection
of simple roots «y, ..., @, € t* and define

t, ={E€t| (a8 20V €fl,...,0H.

This is the corresponding positive Weyl chamber. Let ¢ € A* be the lowest root.
The intersection of t, with the half-plane defined by («, £); > —1 is the fundamental
alcove of G. For SU(n) we can take «;(§) = & — &, fori € {1,...,¢} as the simple
roots. The lowest root is given by ay(§) = &, — &;. The vertices of the Weyl alcove are
then given by the origin y, and the points

_ I_c I_c k—n k—n
M = n,...,n,—n ,...,—n
e

k times k times

fork € {1,...,¢}. Note that the vertex 1, € t lifts the central elementw*1, € Z(SU(n)),
where w = ¢?"/", The simplex obtained as the convex hull of the set {ug, ..., u,} C t
parametrises the conjugacy classes in G. We can identify it with the standard ¢-simplex

13
A ={(ty,...,t;) ER? | Zti <landt; >0Vj e{l,...,€}}
i=1

by mapping the point (¢;,...,t,) to Zle tiu;. In this way (0,...,0) corresponds to ug.
Let W = N(T)/T 2 S,, be the Weyl group of G.

1We absorb the factor 27 into the definition of exp.
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SU(3)

U(2) UR)=zUR2)xUQ)nSUQB)

SUQ3) U(2) SU(3)

FIGURE 1. The group G is associated to the barycentre of A;. The
picture shows these groups for SU(3) for all I.

For a non-empty subset I C {0, ..., ¢} let A; C A’ be the closed subsimplex spanned
by the vertices in I. Denote by £, € A? C g the barycentre? of A; and let G; be the
centraliser of exp(§;) € G. Let W C W be the stabiliser of exp(§;). Note that W, =
=Wy = W. Let] = {ig,...,i,} with0 < iy < iy < -+ < i, < €. If|I| = 1, then
Gi = Gy;,) = SU(n). Otherwise,

(13) Gr2U@ —i_) X XU(; —ig) XU — (i, —ig)) nSUn) .

The groups G for G = SU(3) and all I C {0, 1, 2} are shown in Fig. Il

The groups A = 771(T, 1) and W both act on t by translation and permuting the co-
ordinates, respectively, which gives rise to an action of the semi-direct product watf —
A X W, which fits into a split short exact sequence

(14) 1HAHW*‘H&WH1.

Let W; ¢ W2 be the stabiliser of £; € t. Note that gy restricts to an isomorphism
Qw, : W — W Itsinverse ¢; : W — W is defined by
(15) pr(o)=(§—0-§1,0) .

Themapc;: W — Awithcp(o) = £;—0-&; is the cocycle (which is also a coboundary)
for the pullback of the extension ([[4) to W ;.

For the spectral sequence computing K¢(C*&) we need an equivariant closed cover
of G. For 0 < §, < 1 define

(16) Ar={ty. ) EN 5 21-6,) forl<i<e,
n
AO = (tl,...,t€)€A€ | th Sag
Jj=1

In [28] a different parametrisation of A’ was used. Apart from this, these are the same
sets as in [28]. We can choose §, in such a way that szo A; = A’ (any &, with the

property 6, > 1/(1 + %) will work). Let g: G — A’ be the continuous map sending

2Taking any other point in the interior of the simplex A; will not change Gy up to isomorphism.



914 DAVID E. EVANS AND ULRICH PENNIG

an element to the point in A’ corresponding to its conjugacy class. For each non-empty
subset I C {0,...,¢}let

(17) Ar=()A  and A =q'A)CG.
iel
Note that &; € A;, which gives rise to an embedding (; : G/G; — A;. By [28, Lem. 4.8]
this is a G-equivariant deformation retract, so in particular a G-equivariant homotopy
equivalence.
We now have to consider restrictions of the Fell bundle & to closed subsets of A C T.
Let Y 4 be the restrictionof Y - GtoAC T C G, i.e.

Ya={wz)€e AxS'\{1}| z# w; foralli € {1,...,n}},

where we identify T with the subset of (S!)" in which the coordinates w; multiply to 1.
Denote by 1(4[2] the subgroupoid given by the restriction of Y12/, to 4, i.e.

YA[Z] = {(w, Z19Z2) (S Y[Z] | w e A} .

Analogously, denote by £4 — 1@1[2] the restriction of € to the subgroupoid YA[Z] c vl
If A = {z}, then we will write &, instead of &;;.

Let w; = exp(&;) € T. A variation of the Mayer-Vietoris spectral sequence for the
closed cover (A;);c; has the E;-term

(18) EM = P KG(CHEw) =

{®|I|:p+1 Rp(Gy) forqeven,
[I|=p+1 0

for q odd

and converges to K¢ (C*&) by [28, Prop. 4.9].
We will identify R(T) with a quotient of a polynomial ring using the ring isomor-
phism that maps ¢; to the ith projection T — U(1):

R(M) = Z[ty,....t,) /(- £, — 1).

With respect to this isomorphism the restriction of the standard representation pl;
corresponds to t; + -+ + t,,. Therefore

Rp(T) = R(D[F(t, + -+ +1,)7']
= R(MIF(t)™... . Ft)™'],

where the last equality follows from the exponential property which implies that
F(t, + .-+ t,) = F(t) --- F(ty,).

For the convenience of the reader we summarise the definitions that were made
above in Table [I.

3.1. Restriction to the maximal torus. In this section we will compare the spectral
sequence in (I§) to another one that computes the Wf-equivariant Bredon cohomol-
ogy Hjyae:(t; R) of t with respect to a local coefficient system R. As we will see, this
comparison is based on the fact that the Fell bundle & has a tensor product decom-
position when restricted to the maximal torus (see (R4) for the precise form of this
decomposition). We will start by decomposing the algebra My = End (F' (C)®. Let

€1,...,€ e the standard basis o .Forie{l,...,n}define
{e; »} be th dard basis of C" ie{ } defi

(19) ME; = End(F(span{ei}))@m0
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TABLE 1. Notation used throughout the paper

Symbol | Description

T maximal torus in G = SU(n) given by diag. matrices
g,1 Lie algebras of G and T, respectively
A integral weight lattice, kernel ofexp: t - T
w =~ S, Weyl group of G = SU(n)
waft | = A W, affine Weyl group of G

I subset of the vertices of the fundamental alcove
Ag subsimplex of the fundamental alcove spanned by I
& barycentre of A; C t
Gt centraliser of w; = exp(§;) in G
Wi stabiliser of w; = exp(§;) in W
Y | ={(g2) €GxS"\{1}|z & EV(g)} see ([2)
Y2l | groupoid given by the fibre square of Y over G
M2 | = End(F(C")®, infinite UHF-G-C*-algebra
& Fell bundle over Y?! depending on exp. functor F

Y, subgroupoid of Y!2! obtained by restriction to A C G
Ex restriction of € to YA[Z] forACTCG

Y4, &, | restrictions of Y'2! and &, respectively, to {z} ¢ T

and let
(20) V; = F(span{e;}) @ M, .

This is an My ;-My; Morita equivalence bimodule with left and right multiplication
analogous to (I0). Since F is a functor, we obtain a unitary S'-representation given
by z = F(z) € U(F(span(e;))). Likewise, each algebra My; carries an Sl-action con-
structed as the infinite tensor product of z — Adp(,). This action extends to the bi-
module V; viaz » F(z) ® Ad?é’) and turns it into an S'-equivariant My ;-M% ; Morita
equivalence.

The graded tensor product of all endomorphism algebras evaluates to

® End(F(span{e;})) = End (F (@ span{ei})) = End(F(C"))
i=1

i=1

and the tensor product of these isomorphisms gives a T-equivariant #-isomorphism of
the UHF-algebras

n
(21) 0: QMR - M.
i=1
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Remark 3.1. This is one of the subtle points where we reap the benefits of symmetric
monoidal functors: If F does not preserve the symmetry, then there are several natu-
ral maps from the tensor product in the domain to M. For example for n = 2, the
isomorphism

Mg, ® Mg, — ME, ® M§, — End(F(span{e,} @ spanfe; )® — M7,
where we first interchange the tensor factors, is potentially different from
M§, ® M, — End(F(spanfe;} @ span{e,})®® - M .

If F preserves symmetries, then they agree. As we have seen in Sec. J] our main ex-
amples of exponential functors do in fact preserve symmetries, when considered as
functors to super-vector spaces.

For any m € Z and V;, My ; as in (R0), (L9), respectively, we define
pEm" form>0,
Ve = Mg, form=0,

(vP)®=m  form <0,

where all tensor products are taken over My ;. Note that for all r,s € Z we have S'-
equivariant bimodule isomorphism

(r+
(22) V" @, VS - 12T
that are associative in the obvious sense. For each m,, ..., m,, € Z we can turn the
bimodule

®m Qm
1;1 1®C...®C o

(note that the tensor products are graded outer tensor products over C as in [9, 14.4.4])
into an M -M¥-Morita equivalence using 6 as in (2I). Combining all S*-actions on the
V;’s we obtain an action of T C (S')" on this bimodule. For I C {1,...,n}let

Vi=spanfe; |ieI} Cc C".

Letm: {1,...,n} - {0,1} be the indicator function of I. By our observations above we
obtain a T-equivariant bimodule isomorphism

n
(23) RV =Fvpemy,
i=1
where the n-fold outer tensor product on the left is a graded tensor product over C and
the left hand side is an My -Mg-bimodule via 6.

For z € S' c C denote by log, : S' — iR the logarithm with log,(1) = 0 and cut
through z (for example log_, takes values in (—i, i) C iR). Now consider [, : S >R
with L(w) = Zim log, (w). Letw,z,x € S! with x # z and x # w and note that by
[8, Lem. 5.12]

-1 ifz<x<w,
Lx)-l,x)=41 ifw<x<z,

0 else .
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The fibres of £4 for A C T can be written as follows

n
®z, (w;) =1z, (wy))
(24) Edwam =@V -
i=1
where the tensor products on the right hand side are graded tensor products over C.
Indeed, for z; < z, the isomorphism (23) gives in this case

n
&Iz, (wi)—Iz, (W) . ©
® v ' =F @ Eig(w, ) |® MEF = (EA)w,z1.2,) -
i=1 z1<A<zy
A€EV(w)

Since (R3) is T-equivariant, the above isomorphism is as well.

Similar to [8, Sec. 4.1] we can now compare £, to another Fell bundle defined as
follows: Consider the exponential map exp: t — T and let t/?! be the fibre product
over T, i.e.

t2l = {(x;,x,) € t? | x; — x, € A}

Letq;: A —» Zfori € {1,...,n} be the projection map onto the ith coordinate of
A C Z". The connected components of t[2! are labelled by A, since /2! =~ t x A. For
A € A denote the component of {2/ by ti, i.e

t£12] ={(x1,x;) € t121] Xy —x; = A}.

Now consider the following bundle

(25) £ = [T x v@a?
AeA

over t!?], where the tensor product on the right hand side is taken over M ;. The canon-
ical bimodule isomorphisms

i(4 i i(4
Vi®q( ) ®M%°,i Vi®q W _ Vi®q( +1)

turn each £; into a Fell bundle over the groupoid t!2. This Fell bundle comes equipped
with a fibrewise S!-action induced by the one on V;. Let

(26) L=LQc  ®c Ly

be the fibrewise outer tensor product of the £;’s over t[2]. It is straightforward to see
that this gives a Fell bundle over tl21, where the multiplication reshuffles the tensor
factors and uses the multiplication in each of the £;’s. Combining the S!-actions on
the tensor factors and restricting to T C (S')" we obtain a T-equivariant Fell bundle
over 121,

For a closed subset A C T letty, = exp~!(A) C t and let tf] be the fibre product
of t4 with itself over A. Let £, — tf] be the corresponding restriction of the Fell
bundle £.

From the identification of the fibres of £4 in (B4) we see that we have a bimodule
between &4 and £ 4 constructed as follows: Let Py =14 X4 Y 4 be given by

Py ={(x,w,z) €t xAx S'\ {1} | exp(x) = w,z # w; foralli € {1,...,n}}.

3There is a slight clash of notation here with tf[f] later, but it is fairly clear from the context which is
meant.
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This space carries a canonical left action of the groupoid tf] and a canonical right ac-
tion of };,[2], which turns P4 into a tf]-lg[zl-Morita equivalence. Given (x,w,z) € Py
the condition exp(x) = w implies that [,(w;) — q;(x) € Z, where q; : t — R is the
ith projection map and I, denotes (up to a factor) the logarithm with cut at z as above.
Thus, we can consider the (locally trivial) Banach bundle ¥, — P4 with fibres defined
as follows

n
Iz(w;)—q;
(27) (Fa)xwzy = ) VRGN

i=1
where the n-fold outer tensor product is a graded tensor product over C and the interior
tensor product is over My ; as above. For x,x;,Xx, € t,w € Aand z,2,,2z, € ST {1}
such that (x;, w, z) € P4 and (x, w, z;) € P4 the isomorphisms (2) give rise to
Vi®(CIi(xz)—Qi(x1)) Ree

. Vi®(lz(wi)—‘h(x2)) o Vi®(lz(wi)—Qi(X1)) ,
F,i
17}5z>(lzl(wi)—qi(x)) Bue, 12@(122(w,-)—121(wi)) N

1 1

V~®(lzz (wi)—qi(x))

i .

These piece together to give a left action by £ 4 and (using (£3)) a right action by £4 on
the bundle F 4:

(28) (L a)x;,x0) ® (Fa)xyw,z) = (Fadx,,we) »
(29) (?A)(x,w,zl) ® (EA)(w,zl,zz) - (?A)(x,w,zz) .
The associativity of the isomorphisms (B2) implies (¢ - f)-e = € - (f -e) forall ¢ €
(La)xy,x0) | € (Fadixyw,zy) and € € (Ea)(w,z,.2,)-
Recalling the structure of the opposite bimodule 17l-°p (see [28, Sec. 2.1]) we obtain

[} -
graded isomorphisms (V") P 17i®( ™) From the inner product on VE™ we there-
fore obtain an antilinear map

V@m N (Vi®m)0p N vi®(—m) i f N f* .

1
It givesrise to two inner products ; (-, -)and(-, - )., asfollows: for f; € (F4)(x,w,z)s
f2 € (?A)(xz,w,z)’ 8 € (?A)(x,w,zl) and & € (?A)(x,w,zz) we define

LA<f1’ f2> = fl : fz* € (LA)(xl,xz) >
<g17g2>8A =gi-& € (EA)(w,zl,zz) ’
where we identify the fibres of £, with tensor products of V;’s as in (4).

Lemma 3.2. Let A C T be a closed subset. The Banach bundle ¥ , — P, defined above
gives rise to a T-equivariant Morita equivalence between the two Fell bundles £, — tE]

and £4 — 1@[2] in the sense of [43, Def. 6.1]. Consequently,
K{(C*Ln) = K{(C*Ey).

Proof. The algebraic properties [43, Def. 6.1, (b) (i) — (iv)] are easily checked. Moreover,
each fibre (F4)(x,w,z) 18 an (£ 4)(x,x)"(€a)(w,z,z) Morita equivalence, since (£ 4)x,x) =
MF1 ® - @ MR, and (E4)(w,z,z) = MF and (F4)(x,w,z) is an imprimitivity bimodule
for those algebras.

Therefore F 4 is an £ 4-E4-equivalence in the sense of [43, Def. 6.1] and by [43,
Thm. 6.4] a completion of the compactly supported sections C.(P4, F 4) with left and
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right actions and inner products as stated in [43, Thm. 6.4] is an imprimitivity bimod-
ule between C*£,4 and C*E4. By construction each V; is a graded My ;-My ;-Morita
equivalence. Therefore the same is true for the completion of C.(P4.5F 4).

It remains to be seen why it defines a T-equivariant Morita equivalence. Note that
T acts trivially on 1;,[2] and tf], since this action is induced by restricting the conju-
gation action. The Banach bundle ¥, — P4 carries a fibrewise T-action induced by
the S'-actions on the V;’s. The T-equivariance of the multiplication isomorphisms (22)
implies that the left action isomorphism (2§) and the right action isomorphism (R9) are
both T-equivariant. The operation ( - )* intertwines the S'-action on V; with the one on
the opposite bimodule ViOP. Therefore the £ 4- and &£4-valued inner products are both
T-equivariant as well. This implies that the completion of C.(P4, & 4) is a T-equivariant
imprimitivity bimodule between C*£ 4 and C*&4 in the sense of [51, Def. 7.2]. O

The additional definitions from this section can be found in Table P for the conve-
nience of the reader.

TABLE 2. Notation used throughout the paper

Symbol | Description

12! groupoid given by the fibre square of t over T
L; | Fell bundle over t?! with fibre V;, see (20)

L Fell bundle over t/! givenby £, ® --- ® £,
L4 restrictionof LtoAC T C G

Fa Morita equivalence bundle between £4 and £ 4

3.1.1. Normaliser and Weyl group actions. LetI C {0,...,#¢}be asubset of the vertices of
A? (where ¢ = n— 1 s the rank of G). Recall that G is the centraliser of w; = exp(&)),
see ([3). It is connected by [10, part E, Ch. II, Thm. 3.9]. Moreover, the Weyl group
of Gy is W ;. This implies that the restriction homomorphism R(G;) — R(T)"7 is an
isomorphism. The element F(p|;) for the standard representation p is invariant under
W ;. Therefore this isomorphism survives the localisation and we have

Rp(Gy) —= Rp(M™1

induced by the restriction map.

Let Ng(T) C SU(n) be the normaliser of the maximal torus. This group consists
of “generalised permutation matrices”, i.e. matrices of determinant 1 whose only non-
zero entries are complex numbers of norm 1 that occur exactly once per row and col-
umn. It fits into a short exact sequence

(30) 15>T—>Ng(M->W->1.

The group W = S, in this sequence is the Weyl group, which acts on T c (S!)"*
by permuting the coordinates. This lifts to a corresponding action of W on ¥y with
o-(w,z) = (0-w,z) for (w,z) € ¥y and 0 € W. Hence, W also acts diagonally
on YT[Z] by groupoid isomorphisms. Each element 6 € Ng(T) gives rise to a unitary
transformation 6 : C"* — C™.
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For a given point (w, z,,2,) € YTP] with z; < z, the map & that lifts o € W restricts
to a unitary isomorphism of eigenspaces (note that o - w = swé*)

Swaz: @ Eigw )~ @ Eigl-wd)

Z1<A<z) z1<A<zy

A€EV(w) A€EV (o-w)
and likewise for z; > z,. We can consider the C*-algebra M¥ (see Table[ll) as an N 5(T)-
algebra with the action given by (Adps))®®. The map

F(a(W,Zl,Zz)) ® Adgé)

induces an isomorphism (Ev)(w,z,,2,) = (€1)(0-w,2,,2,)> Which intertwines the ordinary
left and right Mg -actions on (£)(w, z,,7,) With the ones on (E7)(g.w,z, ,7,) that are twisted
by (AdF(a))‘X""’ and the T-action on the domain with the o-permuted T-action on the
codomain.

Altogether, &t is an N(T)-equivariant Fell bundle with respect to this action. In
fact, what we have described above is just the restriction of the given G-action on & to
an N g(T)-action on &y.

The group N 4(T) also acts on £, defined in (Bf) and (R3), in the following way: An
element 0 € W acts on (x;, X,) € t?l by (o-x;, 0+ x,) with o permuting the coordinates
of x; € t C R"™. With respect to this action exp: t — T is W-equivariant. Since F is
exponential, the fibres of £ are bimodules isomorphic to

n
~ ®q;(x3—x1) )
L(xlaXZ) = F(@ Vl e ) ® IVIF ’

i=1

where V; = span{e;} and we define V;®" = (V;*)®=") if m < 0 and V®° = 0. An
element 6 € Ng(T) lifting 0 € W provides a unitary isomorphism

n n

A . Dqi(x2— ®q;(o-(x2—

S xry) - @V; qi(xa=x1) _ @Vi qi(o-(X2—x1))
i=1 i=1

by applying the restriction 6: V; — V;y or (6*)71: V' — Va*(l.) to each non-trivial
summand. As above, F(6 (x, x,)) ® (AdF(f,))‘@"o gives an isomorphism between £y, )

and

n
L(U-xl,cr-xz) ~F (@ ViGBCIi(U'(xz—xl))) QML
i=1
intertwining the ordinary and twisted actions on these bimodules. Altogether, we have
turned £ into an N g(T)-equivariant Fell bundle.

Both of the N4 (T)-actions induce corresponding W-actions on the T-equivariant
K-groups by the following general observation: Let D be a unital N 5(T)-C*-algebra.
Denote the Ng(T)-action on D by a and the action of W on T by y. Let (E,1) be a
finitely generated projective (T, D, a)-module in the sense of [4§, Def. 2.2.1] on which
the T-action is given by restricting «t, i.e. E is a finitely generated projective right Hilbert
D-module and A: T — £L(E) is a continuous representation such that 14(§ - a) =
(&) - agla). Let o € W, choose a lift & € N(T) of o and define E; to be the same
Banach space as E, but with the right D-multiplication modified by « as follows:

vxa=uv-asa)
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for v € E, a € D. The inner product can be adjusted accordingly. Let 1, : T — £L(E)
be given by 1,(w) = A(y,(w)) for w € T. The pair (Es, 1) is again a finitely generated
projective (T, D, cr)-module.

The isomorphism class of E5 does not depend on the chosen lift . Indeed, any
two choices 67,8, of a lift of o will differ by an element of v € T. But T is path-
connected. Thus, a path between  and the identity gives rise to a homotopy between
(Es,»4s) and (Eg,, A5), which therefore represent the same element in K (D). Hence,
for [E,A] € K}(D)and 0 € W

o-|E,A] = [Eg-1,A5-1]
defines a (left) action of W on K§ (D). Replacing D by DQC#;, where C¢, is the Clifford
algebra of R we see that the W-action extends to K7 (D).

Finally, we also have a W-action on B;, the base space of the bimodule bundle F;
defined in (B7): Let 0 € W and (x, w, z) € B. We define

o-(x,w,z)=(c-x,0-w,z).

With this action B turns into a W-equivariant Morita equivalence between t[?! and
YT[Z]. This W-action lifts to an N 5(T)-action 7. Since the fibres of #; and £ are both
constructed from the same bimodules V;, this action is defined completely analogous
to the one on £ and gives fibrewise N 5(T)-equivariant isomorphisms

(?T)(x,w,z) - (fT)(a~x,a~w,z) .

Let A C T be a closed subset and let W 4, C W be a subgroup such that W4 - A =
A. Let X4 be the completion of C.(P4,F4). By our observations above it provides a
Né (T)-equivariant imprimitivity bimodule between C*&€ 4 and C* £ 4, where Né (M) is
the preimage of W 4 in Ng(T). Denote the N5 (T)-action on X4 by 8. Let (E, 1) be a
finitely generated projective (T, C*E4, a)-module. For c € W 4 and a lift § € Né(T)
the map

Es Qcre, Xa = (E Qcrgy Xa)ss V@ X U s(x)

is an isomorphism of Hilbert C*£ 4-modules intertwining the two T-actions 1, ® idy,
and (1 ® idy, ), In particular, the following identity holds for classes in K{(C*Ly)

[Es ®cre, Xar Ao @ idy, ] = [(E Qcre, Xa)e» (A ®idy,)o] € KG(C*Ly) .

By forming the tensor product of €4, £ 4 and F 4 with C¢; we may extend this identity
to K] (C* £ 4). Hence, we have proven Lem. B.3:

Lemma 3.3. Let A C T be a closed subset and let W , C W be a subgroup such that
W4 - A = A. The Banach bundle ¥, — P, gives rise to an Né(T)—equivariant Morita
equivalence between £ 4 — tf] and &4 — YA[Z]. This Morita equivalence induces a W 4-
equivariant isomorphism

Ki(C*L4) =K (C*Ey).

3.1.2. Bredon cohomology. Recall that W2t = A W. Identifying Ry (G) with Rp(T)%
C Ry(T) we may consider Rg(T) as an Rg(G)-module. The exponential functor F in-
duces a group homomorphism

(31) ¥: A — GLiRp(T)), (ky,...,k,) — F(t;)*1 - F(t,)kn
= F(kltl + + kntn) .
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The group W = S,, acts on Rp(T) by permuting the variables ¢, ..., t,,. Denote this
action by *. The lattice A acts by multiplication by the element of GL,(Rg(T)) corre-
sponding to it under %. This gives rise to a W2-action on Rg(T) by Rx(G)-module
isomorphisms defined for (k, o) € W3t acting on f € Rg(T) as follows

(32) (k,0) - f =9k) (o ).

Let Orbyyar be the orbit category of Wi, Its objects are the sets W2I/H for sub-
groups H ¢ W2, Morphisms Wa/H, — Waf/H, are given by W2ff-equivariant
maps. Such morphisms are in bijection with elements [x] € W2/H, such that H; C
xH,x~!. Alocal coefficient system is a contravariant functor

Oeraff — Ab .
Define
(33) RW2E/H) = Rp(TH and  Ro(W¥/H)=Rp(MI Q.

A morphism given by [x] € W2{/H, maps an element f € Rp(T)2 to x- f € Rp(T)H1,
where the dot denotes the W 2f-module structure from (7). With this definition R and
Rq are local coefficient systems.

The simplex A’ C t is a fundamental domain for the action of W2f on t and turns
this space into a Wf-CW-complex (see Table fll for the notation). Its k-cells are labelled
by the subsets I C {0,...,¢} with [I| = k + 1. Let §: t — A’ be the composition
of the covering map exp: t — T with the quotient map T — A’ that parametrises
conjugacy classes. From the closed cover A; of A’ defined in ([[) we obtain a closed
cover (By)ieqo, ..o of t wWith B; = G71(4;). A picture of the cover (B;)ic(o,1,2) for SU(3)
can be found in [R28, Fig. 5]. Let £; be the barycentre of the subsimplex A; C A’. The
cover (B))ieqo,....e1 IS w3 invariant and has the property that the inclusion maps

Waff . g[ N BI
are equivariant homotopy equivalences, where By = ﬂl. 7 Bi- These observations allow
us to compute the Bredon cohomology groups H’L‘Vaff(t, 2R) using the Mayer-Vietoris
spectral sequence with E'-term
E;,q = @ Hgyaff(BI;R) .

IC{0,. . .,¢}
I|=p+1

The inclusions W2 . £, — B; give rise to isomorphisms

— Re(MWr ifg=0,

Hyait(Bri R) 2 Hyp o W/ W 13 R) % o s

Note that the stabiliser subgroup W ; is also the stabiliser of any other £ in the interior
of the subsimplex A;. Moreover, for J C I we have W C W, i.e. the stabilisers of
points on the bounding faces contain the stabilisers of the interior points. ForJ C I
the above isomorphism intertwines the restriction homomorphism Howaff(B s R) —
H, i (Br; R) with the inclusion Rp(T)"? — Rg(T)¥1. Thus, the E'-page boils down
to the cochain complex

Chan(t:R) = @D Rp(MP1,  dfl: CF e R) - Chfie (s R)
[I|=k+1



SPECTRAL SEQUENCE COMPUTATION OF HIGHER TWISTED K-THEORY 923

with differentials given by alternating sums of restriction homomorphisms.
Let w; = exp(§;) € Tand letY,, = 7 Yw;) where 7: Y — G for Y as in ([2) is

the projection map. We can identify ¥, with S' \ ({1} U EV(wy)). Let &,, — YL[,ZI] be
the restriction of £ to the subgroupoid YILZI] of Y21, which we will identify with

{(z1,2,) € S'\ {1} | z; & EV(wy) fori € {1,2}} .

To compare the differentials in the cochain complex Cj . (t; R) with corresponding
homomorphisms in K-theory, we need to find explicit isomorphisms

Gl e\ m 101y
KI(C*E,y,) = KT (M)

These are given by Morita equivalences that are constructed as in [28, Lem. 4.3], which
we briefly recall now: Note that any z, € Y, gives a map of : Yy, — YLLZI] with
ol (z) = (z,2). Let Fy, = (6} )*Ey,. It was shown in [2§, Lem. 4.3] that 5, is a
Gr-equivariant Morita equivalence of Fell bundles between &, and the trivial bundle
over the point with fibre M¥. In particular, there are two fibrewise inner products on
fwl, one with values in &, , the other one with values in MZ. The two completions
with respect to the norms obtained from them agree and
—_—
XwI = Cc(YwI’:’th)

is a Gr-equivariant Morita equivalence bimodule between C*(&,,, ) acting from the left
on X, and Mg acting from the right. We will first use this to show that the restriction
map Kg’(C* Ew) — Kg(C*&UI) is injective with image equal to the W ;-fixed points.

Combining the equivalence X, with KOG '(M%) = Rp(Gy) (induced by the colimit of
the isomorphisms Kg T(End(V)) =~ R(Gj)) gives

KS1(C*Ey,) = Rp(Gy) .

As a consequence we obtain the following commutative diagram:

Gr
G % res «
Ky (C*Ey) ———> K§(C*E, VT

Rp(G)) ———=—> Re(D™"

In particular, the map res?’ induced by restricting the group action from G; to T has
image in the fixed-points and is an isomorphism.

The vertical maps in the above diagram depend on the choice of z,, which is difficult
to track. Luckily, the Morita equivalence with C* £, provides an alternative as follows:
Letot: & + A — tl?I be given by ot(n) = (9, &;). Using [28, Lem. 4.3] again there is a
completion

[I-11
X, = Celér + A, (0))* L)

of the compactly supported sections, which provides a T-equivariant Morita equiva-
lence between C*LwI and My, and therefore an isomorphism

KG(C*Ly)) = KG(MF) = Re(T).
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We call this Morita equivalence the trivialisation of C*£,, . The T-equivariant Morita
equivalence between C*(£,,,) and C*(&,,,) constructed in the proof of Lem. B.2 com-
bined with the above map induces a group isomorphism

K K§(C*Ey,) —— K§(C*Ly,) —> Rp(T).

By Lem. B.3 the group W acts on the two K-groups K;(C*&,,,) and Ky(C*£y,,)
in such a way that the above isomorphism is W j-equivariant. The price to pay for
our more natural choice of isomorphism is that this map K]{(C*Lw]) — Rp(T) will
no longer be equivariant with respect to the permutation action of W; on Rg(T) as
Lem. B.4 shows.

Lemma 3.4. The isomorphism x; : Ky(C*Ey,) — Rp(T) satisfies
k(o - x) = @1(p) - x(x)

forx € Kg(C*EwI) and p € Wy, where o;: W — W is the group isomorphism
defined in ([3) and the W j-action is the restriction of (83) to W ; € W2t In particular,
Ky restricts to an isomorphism

KG1(C*Eyy) = Kg(C*Ep )T — Rp(T)71

that makes the following diagram commute

G ¢ rs dy Gr 1w
@|I|=p+1KOI(C ) ——————> @‘I‘:p+2KOI(C Ewy)
EBKI\LE E\L@"I
Ch (1 R) S ChrL(tR)

1l waff
dse

Proof. By Lem. B3 the isomorphism K (C*&,,,) = Ko(C*£,,,) induced by F,,, is W -
equivariant. Hence, it suffices to consider the W ;-equivariance of

K§(C*Lyy) = KG(MP).

Let Ny = N{GwI }(TT) be the preimage of W ; in N5(T) with respect to the quotient map
Ng(T) » W. Recall that w; = exp(&;) is fixed by W ;. As a first step we can “desta-
bilise” C* L, in an Nr-equivariant way as follows: Consider the finite set

§I={O"§I€t|O'EWI}.

Let Qu, = {(x1,x;) € t X 81 | exp(x;) = exp(x;) = wr}. Lety: Qy, — t[2! be the
inclusion map and let #,,, = (;£. Likewise, let j; : 87 — 12! be the inclusion of the
product into the fibre product. Similar to [43, Ex. 6.6] the Banach bundle fwl provides
a Morita equivalence between £, and the Fell bundle £,, = jj£ — 8f. By con-
struction this equivalence is Ny-equivariant. As explained in Sec. B.1.1, the completion
of C(Qy,» F,) gives a W -equivariant isomorphism K§(C*£,,,) = K§(C*£,,,). The
trivialisation K§(C*£,,,) — K§ (M) factors through K§(C*£,,,). Let

et 81— 87, e (&),
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The isomorphism K§(C*£,,,) — K{(M§) is induced by the Banach bundle J; — 8;
given by i3, £ with fibres

n n
(71)0'51 _ ® vj®qj(§1—0~§1) ~F (@ Vjﬂ?CIj(é’r—a-EI)) ® M,

j=1 j=1
where V ; = span{e;}. Analogous to the proof of Lem. B.2 the isomorphisms

®qj(02-§1—01-81)

Vj Ry ®qj(€1—01-41)

®61](§1 02-61)
Fi -

combine to define a left action of ﬁwl on J;. Together with the canonical right action
by Mg the bundle J; provides a Morita equivalence between f,wl and the trivial Fell
bundle with fibre M over the point. Let

n
X; = C(81, ;) = @ ® Vj@q;(‘iI—UfI)

oeWr j=1

be the associated C*ﬁwI-M%"-imprimitivity bimodule. The Banach bundle J; carries a
fibrewise T-action that turns X; into a T-equivariant bimodule. However, the homo-
morphism on K induced by X; is not W ;-equivariant when K§ (M%) is equipped with
the W ;-action induced by the natural N;-action on the algebra. Let § € N; be a lift of
p € W . This lift induces a unitary isomorphism

n n
®q;(§1—0-¢1) ®q;(p-&1—p-0-41)
DV ~ DV
j=1 j=1

as described in Sec. B.1.1. By applying F to it and taking the direct sum overalloc € W
we obtain a bimodule isomorphism

®q;j(p-§1—p-0-&1) ®q;(p-§1—0-&1)
- (R - (B R
o

oeW,] 1 creW =1 N
0 1J= 1 J= 6

where the subscript ¢ denotes the (AdF(,j))®°°—twisted left and right actions of C*£ wy
and My, respectively. The codomain of the above isomorphism is isomorphic as a bi-
module to:

n n
®q;(p-ér-¢1) ®q;(§1—p7"+6D)
(XI®M%°®V]' S I)Ep(xz)ﬁ®m%°®vj 7 “,
A Jj=1 o j=1
e 0
where we applied the map induced by 5! to the second tensor factor.
Let (E,A) be a finitely generated projective (T, M¥, c)-module and let p € W .
Let x = KI I([E, ]). The element x;(p - x) € Kj(MY) is represented by the module
(E Qug X{")s-1 ®c-z Xr for an arbitrary lift 6 € N; of p € W . (The inverse 5!
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appears here, because we wanted the action of W ; to be a left action.) A brief compu-
tation shows

(E ®ug XtP)p1 ®cez X

n

®q;(&r—p-&1)

= (E®uz 00 ®cc X)), ®ux @V
j=1

n
®q;j(§r—p-§1)
=B @y @V
j=1

After applying the isomorphism KJ (M®) & Ry(T) the module in the last line represents
the K-theory class

F (Z qi€r—p- §1)tj) (p * x7(x)) = P(er(p)) (o * 11 (X)) = 1(p) - x1(X) ,
j=1

where we used the action of W; ¢ W2f given in (B2) and the cocycle c;: W; — A
defining the isomorphism ¢; : W; — w I-

LetJ CI C{0,...,¢}. Note that G; C G;, W; C W and A; C A;, where we use
the notation from ([7). As explained in Sec. we also have W[ C W ;. To see that
the diagram containing the differentials commutes it suffices to see the commutativity
of

K" (C*Ey,) — Ko (C*Ey))

KJ\L; ’E\l/KI
Rp(M%1 ——— Re(D7r

where the lower horizontal arrow is given by the inclusion of fixed-points. The upper
horizontal arrow is the following homomorphism: Consider the composition

G/ o Gr o Gr /s
Ky’ (C*ey4,) r—G> Ko'(C*E4,) ? Ko'(C*e4)),
1J IJ

where 5 and rj‘} are the maps obtained by restricting the group action and the base
space of the Fell bundle, respectively. The upper arrow in the above diagram is then the
composition of this homomorphism with the isomorphisms KOG 5cre hg) ™ Kg S(C*EL)
forS=TIandS =1J. Letqy: T — A’ send a point in T to its conjugacy class and define
B; = q7(Ay) with A; as in ([7). Let B; = exp '(B;), where exp: t — T is the
exponential map. The following diagram commutes

K, (C E4,) — Kyi(C SAJ) — K;N(C EAI)

K3(C*eg "1 —— K(C*E5,)"T ——> Kg(Creg )™

K3 (C*Lp )T —— K5 (C*Lp )T —— Ko(C*Lp )P
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Note thatexp~}(w;) = {;+Aand C* £, , is the C*-algebra associated to the restriction
of £ to (§; + A)? C tI2l. The A-equivariant bijection

§]+A—>§I+A

that sends &; to & lifts to a W ;-equivariant isomorphism £,,, — £, of Fell bundles
giving a *-isomorphism ¢;;: C*£,,, - C*£,,. The group homomorphism
Ko(C* Ly )7 — K§(C* £y, ) induced by the bottom row of the above diagram is
the same as the one given by restricting the group action from W ; to W; and then
applying ¥;;. Consider the following diagram

w
r Y1s

KJ(C* Ly W7 —% KH(C* Ly W1 —5 KJ(C* L,y )1
1 L
Rp(MW1 ——— Rp()W1

where the vertical and diagonal arrows are induced by the trivialisation of £, , re-
spectively £, . Since the trivialisation of £, is W ;-equivariant, the square in the
diagram commutes. The homeomorphism &; + A — &; + A intertwines the two sec-
tions oy : & + A — tPland o7 & + A — tl2l. This shows that the triangle in the
diagram also commutes. Combining this diagram with the one from above proves the
statement about the differentials. O

3.2. Rationalisation and regular sequences. Lemma B.4 reduces the computation
of the E;-page of the spectral sequence to the computation of the cohomology of the
cochain complex Cyp,.¢(1; R). In fact, we will see in Thm. that rationally the spec-
tral sequence collapses on the E,-page. Since W23 = A X W and W is finite, the
cohomology computation can be dealt with in a two-step process after rationalisation.
We will follow the argument given in [[I, Sec. 3]. Let

R =R(MQ=Q[ty,....t,]/(t; - t, — 1),
Rro=Rp(T)®Q,
Rg=RQQ.
In this section we will compute H}j (1, Ro) using regular sequences and relate it back

toKS(C*E)®@Qlater. Let F : (VS°, @) — (vér, ®) be a non-trivial exponential functor,
i.e. we have deg(F(¢)) > 0.

Lemma 3.5. Let m € N. The sequence

(! — 6 65 = 01 oo 0y — s =] £ 512)

is a regular sequence in Ry = Q[ty,...,ty_1].
Proof. Multiplication by ¢* — ¢ , is the same as multiplication by ¢;* — t{"* in the quo-
tient EQ/(tE” -ttt =t ,) for k € {2,...,n — 1}. Hence, it suffices to show
that

(=6, (=0t — T, e 2T

is a regular sequence in Rq. For 3 < k < n — 1 the quotient

Q1 eos by =, — )
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is free as a Q[ty, ty, ..., t,_ |-module with basis
(652 t,i"_‘f |0<sj<m-—1forall j€{2,....,k—1}}.
The multiplication by ¢;" — t{"* acts diagonally in the sense that it maps each basis ele-

ment to a non-zero multiple. In particular, this map is injective.
The argument for k = n is very similar. Here, the quotient

Qlty, ..oty (8 =1ty — 1)
is again free as a Q[t; ]-module with basis
{52571 10 <sj<m-—1forall j€{2,...,n—-1}}.

The multiplication by —¢J --- t™ , 2™, is the same as multiplication by —/"™, because
t" = t{" in the quotient for 1 < i < n — 1. Following the same reasoning as above, this
map is again injective. ]

Exactness of the localisation functor immediately yields Cor. B.§ of Lem. B.5:

Corollary 3.6. The sequence

(F(ty) — F(t1), F(t3) — F(tp), ..., F(t,) — F(ty-1))
is regular in R, .

Proof. Let F(t) = Ekmzo a,t* with a;, € Q, a,,, # 0 and deg(F(t)) = m. Note that the
ring R, is the localisation of R, at t; -+- t,_;, i.e. in Ry we have t; --- t,, = 1. Therefore
ty™F(ty) = (t; - t,_1)™F(t,) € Ry. Moreover, Rp g is a localisation of Rg. Since
localisation is an exact functor and ¢, ..., t,,_; are units in Ry g, it suffices to show that

(F(t2) = F(tr), .., F(ty—1) = F(tn—2), (ty -+ tn_1)"(F(tp) = F(ty-1)))

is a regular sequence in Rg. The commutative ring R, has an Ny-grading by the total
degree. Thus, by [37, Cor. 5.3] the regularity will follow if it holds for the sequence of
homogeneous highest order terms:

(am(tgn - tiﬂ)’ ] am(tz:ln—l - tgl—z)! _amt{n trr{l—z tlglrfl) .
Since a,, # 0, the sequence agrees up to multiplication by a unit with the one from
Lem. B.5. Thus, the regularity follows. O

Lemma B.7 reduces the computations of the W2ff-equivariant cohomology groups
of t with coefficient systems R to computing the W-fixed points of A-equivariant co-
homology. The proof makes use of our choice of rational coefficients. We claim no
originality for this proof. It is a straightforward adaptation of [, Thm. 3.9]. Neverthe-
less, we include the proof for the convenience of the reader.

Lemma 3.7. Let: A - GL,;(Rg(T)) be the group homomorphism in (B) and let Rq,
be the coefficient system defined in (B3). There is an isomorphism of Rr(G) ® Q-modules
(34) Hyp s (15 Rg) = Hj(t; R)Y .

Proof. Choose a CW-complex structure on t such that the action of W2 is cellular. Let

C. (1) be the associated cellular chain complex and denote by Cy,.¢(1; Rg) the complex
of equivariant cochains, see [[13, Sec. .6]. Let

D* = Hom(C,(t),Rp(T) @ Q) .
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The cochain complex D* has a Z-linear action by watf defined for d € DX, w € Waff
and x € Ci(t) by (w - d)(x) = w - d(w~'x), where the dot denotes the W2f-module
structure on Rp(T) ® Q given by (B2). By [13, Sec. 1.9, eq. (9.3)] the cochain complex
Ciyate(t; Rg) is isomorphic to

Homyatr)(C. (1), Rp(T) ® @) = (D)™ .

Since A C W2 is a normal subgroup with quotient W, we may take the fixed points
in the final equation in two steps. We define

E* = Homy (C,(£), Rp(T) ® Q) = (D*)A .

Now consider the cohomology of W = S,, with coefficients in the cochain complex
E*, i.e. H*(W;E*). The double complex C*(G, E*) computing it leads to two spectral
sequences: the first one has E,-term

'EPT = HP(W; HI(E")).

Since E* is a cochain complex over Q and W is finite, the groups on the E,-page com-
pute to

1P HYE*Y ifp=o0,
2 =
0 else .

Interchanging horizontal and vertical directions leads to a second spectral sequence
with E;-page
EP)Y ifq=0,
HpP4 = HI(W; EP) (EF) 1
0 else

with differentials induced by the differential of the cochain complex E*. Hence,

ITEPA {

Both spectral sequences collapse on the E,-page without extension problems and both
converge to H*(W; E*). Therefore we have isomorphisms of R(G) ® Q-modules

Hypan(t Ro) = HH((EDY) 2 H(EDY = Hi(ERy)Y 0

HP((E")") ifq=0,
0 else.

Computing the E;-page of the original spectral sequence ([[§) therefore reduces to
determining the groups H}, (t; Rg) and identifying the W-action on them. To determine
Hj (t; Rg) we will consider

t={(x1,....x,) ER" | x; + -+ + x,, = 0}

as a A-CW-complex in the following way. Let¢; = (0,...,1,—-1,...,0) € Afori €
{1,...,¢} be the element with a 1 in the ith position. The 0-cells are given by the lattice
A C t. The k-cells for k > 1 are the elements in the A-orbit of the cube spanned by
¢jy» ---» Cj, for each sequence iy < i < -++ < i with i, € {1,...,¢}. We will denote the
corresponding k-cell by ¢;, . ;, - Altogether we can identify integral k-chains of t with

aw=\7ezAl.

where the exterior power is spanned by the cells ¢; | ; and the second tensor factor
keeps track of the position in the A-orbit. With Z[A] & Z[s¥!,...,s¥!] the boundary
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0cip =C1 + 8105 — 821 — Cy

= (51— Decy = (s, = 1)y

cy €12

€1

FIGURE 2. The A-CW-complex structure of t for n = 2 and the bound-
ary of the 2-cell ¢y,

operators of this chain complex turn out to be the ones of the Koszul complex for the
sequence (s; — 1,...,s, — 1), i.e.

k
Ak(ciy,.. i) = Z(—l)J_l(Sj -1 Ciplje iy -
j=1

For n = 2 the A-CW-structure and one boundary operator is illustrated in Fig. f. As

discussed in the final remark of [13, 1.9] the A-equivariant cohomology of t is the co-
homology of the cochain complex

(35) homgya1(C.(t) ® @ Rpo) = /\ @’ ® Rpa = /\ (Rro)’ -

By the definition of the A-action on Rpg the element s; € Z[A] is mapped to
F(t;)F(t;41)™" € R o. Therefore the coboundary operator in the above cochain com-
plex is the one of the dual Koszul complex for the sequence

xp = (F(t)F(t) ™" = 1,..., F(t,_F(t,) ™' = 1) € (Rp0)’
given by
d(Y) =xpAYy.
Lemma 3.8. We have HX(t; Rg) = 0 for k # ¢ and
H{(t Rg) = Ry o/ (F(ty) = F(ty), .., F(tn) — F(t,_1))-
Moreover, the Weyl group W = S,, acts on H4(t; Rq) by signed permutations of the vari-

ablest, ..., t,.

Proof. The elements F(t;) € Rp q are invertible. Therefore the sequence

(F(t)F(t)™ =1, , F(tp_))F(tn) ™" = 1)
is regular by Cor. B.§. Hence, the first statement follows from classical results about

regular sequences, see for example [21, Cor. 17.5].
Let Ir o = (F(t;)F(t,)™* — 1,...,F(t,_1)F(t,)~! — 1) be the ideal generated by the

. . . . k
sequence. The permutation action of W on t restricts to an action on /\" Z¢ for each
k € {0,..., ¢}, which extends to an action on C,(t). Hence, W also acts on the cochain
complex homyx;(Cy(t), Rp,q) by conjugation and the isomorphism

H(t; Ry) = Rp o/lpq
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is W-equivariant if the right hand side is equipped with the signed permutation action.

In the quotient on the right hand side translations along the roots act trivially. This
implies that the cellular action of W on the subdivision of C,(%) that uses all positive
roots induces the same action on the cohomology of the cochain complex
homy71(Co(%), R ,q) as the one described above. O

LetIp o = (F(ty)—F(ty),...,F(t,) = F(t,_;)) asin Lem. B.§. We adopt the following
notation to distinguish the ordinary permutation action from its signed counterpart: If
we consider Ry ¢ with the action by signed permutations, then we denote it by R;‘%g,
otherwise by Ry o. Note that the ideal I, g is invariant under both W-actions. Hence,
we will write If;g,a if we consider it with the signed permutation action. Taking invari-
ants with respect to the action of a finite group is an exact functor on rational vector

spaces. Thus, Lem. B.§ immediately gives
HY, (6 Ro) = HY (6 R)Y = REQY IUTEQ)Y
LetA € Q[ty,...,t,] be the Vandermonde determinant. Multiplication by A~! induces

an isomorphism of R} ,-modules

pSENW oW P
(36) lIJ . (RF,Q) - RF,Qy p g A .

Let p € Q[¢]. As we will see in Lem. B.9 we will need extended versions of the Schur
polynomials, which are defined as follows:

p(ty) p(tz) ... p(ty)
Ay+n-2 Ay+n-2 Ay+n-2
tl tz tn
A -3 A -2 A -3
(37) a(p’,lz,._,ﬂn)(tl,...,tn) = det t13+n t23+n ln3+n
tfn gn . n

Lemma 3.9. Let p € Q[t], let q(t) = p(t)t and lete;(t;,...,t,) = t; + -+ + t,, be the first
elementary symmetric polynomial. Then

A(p,1,0,...,0) = (p,0,0,...,0) * €1 — A(q,0,0,...,0) -

Proof. Bothsides are Q-linear in p. Hence, it suffices to consider the monomials p(t) =
tk for k € Ny. For k € {0,...,n — 3} both sides vanish.

For p(t) = t"~* theterm a, o ,.. o) vanishes, q(t) = t"~! and the matrix underlying
A(p,1,0,...,0) 18 Obtained from the one for a(y o0, 0) by interchanging the first two rows,
producing a sign in the determinant. Hence, the equation holds in this case as well.

Now let p(t) = t* with k > n — 1. In this case, we can express a in terms of Schur
polynomials:

1
A Ap,Azse - sdn) = Sk—(n—1),d2,.. sAn) *

By Pieri’s rule we have

S(k—(n-1),0,0,...,0) " €1 = S(k+1—(n-1),0,0,...,0) T S(k—(n—1),1,0....,0)

and therefore also ap1,0,...,0) = 4(p,0,0,...,0) * €1 = 4(q,0,0,...,0)- O
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Lemma 3.10. The RY o-submodule (I;70)" of (R;%)W is generated by the n — 1 anti-

symmetric polynomials q; fori € {0, ..., n — 2} defined by

F(t)t F(t)t ... Ftyth
tn_z tn_z t}’l—2
1 2 n
qi(tla'--’tn) = det X :
tl tz tn
1 1 1

Proof. Let Rg = R(T) ® Q = Q[ty,...,t,]/(t; - t, — 1) and let I C Rg be the ideal
generated by (F(t,) — F(t;), ..., F(t,) — F(t,_1)). As above S,, acts by permutations or
by signed permutations on Rq and I. If S,, acts on Ry and I via signed permutations,
we denote this by Rey and Iy, respectively.

Observe that F(t; + --- + t,) € Q[ty,...,t,]" and let

(REH)F = REVVIF(W + - + 1) 7]

We claim that (Rg )W )p = (R;g’g)w and will prove this first: The W-equivariant R -
module homomorphism Ragn — R;‘f’ta induces a homomorphism (Ragn)W - (R;g,g)w.
Since multiplication by F(t; + --- +t,,) is invertible in the codomain, this map gives rise
to the module homomorphism ((Ragn)W)F - (R;%B)W, which is injective, because it
can be obtained from a restriction of the injective map Ragn - R;g,a by localisation,
which is exact. Let
§ € WY

with p € Ragn and q = F(t; + - + t,)* for some k € N,. Since q is W-invariant,
the condition o - s = § implies 0 - p = p for all 0 € W. Thus § S ((Ragn)W)F.
Hence, ((Ragn)W)F - (R;%B)W is an isomorphism. Therefore it suffices to show that
IEMHY c (RE™MW is the RY -submodule generated by qq, ..., ,—, € Re Y.

Let By = Q[ty,...,t,] and denote by ngn the B,-module equipped with its natural
W-action by signed permutations. Observe that the quotient map 7 : ngn - Ragn is
W-equivariant. LetJy C R, be the ideal generated by (F(t,)—F(ty), ..., F(t,)—F(t,_1)).
Note that 7(Jy) = I. Hence, it suffices to see that (Jot )W c (B)®™)W is the BY -
submodule generated by qo, ..., q,_, € (B

Now consider the antisymmetrisation map, i.e. the P -module homomorphism
that averages over the W-action:

|

0: P@e(ngn)W, pr—)nl Z g-p.
toew

It is surjective and maps Jg onto (Jot)". Hence, it suffices to prove that (Jo¢ )W =
(90> --->qn—>)- We will first show that (Jf)gn)W C (qg,--->qn—2)- Note that 8 is anti-
equivariant in the sense that 6(o* p) = sign(o) 8(p), where o p denotes the (unsigned)

permutation action of c € W on p € R,. It suffices to show that for all p,, ..., p, € B
6((F(ty) — F(t1)) p2 + -+ + (F(t,) — F(ty—1)) Pn) € (0> -+ qn-2) -

Foreachi € {2,...,n} let o; € W be the permutation interchanging 2 < i and 1 <
(i—1). Then

O((F(t;) = F(ti—1))pi) = £0((F(t;) — F(t1))(; * py)) -
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Hence, by linearity of 8 it suffices to consider 6((F(t,) — F(t,)) p) with p € R,.

Note that B, is a free P} -module with basis {ticl oo thn |0 <k; <n—i}by[B, p.41].
Thus, it suffices to see that each 6((F(t,) — F(t;)) tf ... tlﬁ") isa P@W-linear combination
of qg, .-+, Q-

We start by computing 6(F(t;) tf L. ghn ). By the Leibniz formula this antisymmetri-
sation can be written as the following determinant:

Fin' F(t)s' ... Ft)t
e T tk2
(38) det| ™ 2 T "
thn tn tn

For this determinant to be non-zero the condition 0 < k; < n — j enforces k; = n — j
for j € {2,...,n}, otherwise we would have two identical rows in the matrix. In the
same way, Q(ti{ 'F (tz)t§ 2 1,‘;c 3 ...tk can be expressed as the determinant

i g

k> k> k

F(t)n?* F(pn? ... Ftyin
(39) det| ks PSP
thn thn L ke

Thus, 6((F(t,) — F(t)) tfl tlﬁ") = Ounlessk; = n— jforj e {3,....,n}. Ifk; €
{0,...,n— 3}, then

k kn
(40) O((F(t) —Ft)) ty" -+ tn") = =qi, (1, -+, tn) »
because the antisymmetrisation of the term F (tz)tic L... (k" vanishes.
Ifk; = n— 2, then
_2Qn—2(t1a---7tn) 1fk2 = n—2,
—qie, (b, -+ 5 tn) ifk, #n—2.
The only remaining case is therefore k;, = n — 1 and k, € {0,...,n — 2}. Fork, €
{0,...,n — 3} the determinant in (B§) vanishes and interchanging the first two rows in
(B9) we see that the rest is equal to —ap1,0,...,0) for p(t) = F(t)tk2 as defined in (B7).
By Lem. B.g we have for q(t) = F(t)tk2*1
k kn
O((F(ty) = F(t)) ty" =+ ta") = —ap1,0,....0)(F1s -+ En)

= (aep,0,....0) - €)t1s -+ tn) — Aqpo,....0)(t1s -+ -5 1)

= qkz(tl’ cee tn) : el(tl’ R tn) - Qk2+1(t1, (R tn) .
Finally, for k; = n — 1, k, = n — 2, p(t) = F(t)t"~2 and q(t) = F(t)"~! we have

k K
O((F() —Ft)) ' - tn") = (_a(p,l,O,...,O) + a(q,O,...,O)) (tr,.. o ty)
= qn—Z(tl’ ooy tn) . el(tl, ceey t}’l) .

(41)  6((F(ty) — F(t)) 1 - i) =

Along the way we have also shown that (qq,...,q,_3) C (Jagn)W, since we have
written the polynomials g; for i € {0,...,n — 2} as scalar multiples of antisymmetrisa-
tions of the form 6((F(t,) — F(t;)) tfl t’,ﬁ”), see (@Q) for i € {0,...,n — 3} and () for
i=n-2. 0
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We can now summarise the observations from this and the previous sections as fol-
lows:

Theorem 3.11. The rational graded higher twisted K-theory of G = SU(n) for a twist
induced by an exponential functor F . (V, ‘S°, D) — (VE', ®) with deg(F(t)) > 0is given

by
KS (C*€)®Q = Rp(G) ® QlJp g,
KS(C*&)®@Q =0,
where we identify Jr g with the ideal in Rp(G) ® Q obtained as the image under the iso-
morphism (Rp o) = Rp(G) ® Q. This ideal is generated by

Jra = ((g) an_z) Cc Rp)V,

where A is the Vandermonde determinant and the polynomials q; are defined in Lem. B.10.

Proof. Continuity of K-theory implies K¢(C*E) ® Q ~ K%(C*E ® Q) for the univer-
sal UHF-algebra Q (equipped with the trivial G-action). The E;-page of the spectral
sequence ([[§) for C*€ @ Q is given by
P — ®|I| p+1RF(G1)®@ for q even,
for q odd .

For even q the lines in the spectral sequence boil down to the cochain complex

Waff(t Rq) by Lem. B4, which computes the W2ff-equivariant Bredon cohomology
of t. As observed in (B4) we have

HY ot Ro) = Ha (8, Rg)™

which is only non-trivial for p = n—1 by Lem. B.§. In particular, the spectral sequence
collapses on the E,-page giving KS_;(C*€)®Q = HY1(t, Rg)” and KG(C*E)®@Q = 0.
Combining Lem. B.§ and Lem. we obtain

HR (8 R)Y = REQY /(TE)Y

with (I @)W = (qos---»qn_2)- The R}?’Q-module isomorphism ¥ from (Bf) maps the

submodule (I Sgn)W to the ideal Jp o in (Rg g)" . This proves the statement. O

Remark 3.12. Let us briefly discuss the case of classical twists SU(n)y, i.e. SU(n) at
level k. Because the dual Coxeter number of SU(n) is n, the exponential functor corre-
sponding to the classical twist at level k is

P (A")

With F(¢;) = (¢ j)"+k each generator gives (up to a sign) an alternating polynomial
ag,,.. .4, as follows:

R(n+k)

Qi(tla cees tn) = (_1)n+k Ak+i+1,0,.. .,0)(t1’ (] tn)
= % = (—1)n+k S(k+i+1,0,...,0) = (—1)ntk Rititr-
Here, s(4,,....4,) is the Schur polynomial and the final equation follows from the fact
thatsg,.o,...0) = hm for the complete homogeneous symmetric polynomial h,,,. Denote
the ith fundamental weight of SU(n) by w; with w;(x;,...,x,) = x; + --- + x; for



SPECTRAL SEQUENCE COMPUTATION OF HIGHER TWISTED K-THEORY 935

(x1,...,%,) € t. By the Weyl character formula h;;, is the character polynomial of
the representation with highest weight (k +i + 1) w;. Hence, our generators agree (up
to signs) with the ones found in [I2, Sec. 3.2].

4. POTENTIALS AND LINKS TO LOOP GROUP REPRESENTATIONS

It is surprising that the rational graded higher twisted K-groups of SU(n) still carry
a ring structure and are in fact quotients of a localisation of the representation ring.
These properties are known to hold for classical twists and seem to be preserved when
allowing higher ones. In this section we will see that it is still possible to find a potential
generating the ideals underlying higher twists. In addition, we will construct a non-
commutative counterpart of the determinant bundle over LSU(n) from the full exterior
algebra functor that generalises the central extension classified by the level.

4.1. A potential for higher twists. Asnoted in Thm. the RIV;V’@-module isomor-
phism ¥ from (Bf) maps the submodule (IIS:‘%B)W to the ideal Jp g in Rgf@ given by
_ @ An—2
Jpa= (R B2).
These generators can now be expressed in terms of symmetric polynomials as follows.
Let

d
F(t)= Y, mtt.
i=0

Letcp j = %. With agp 4,4, @s in (B7) we have

d d
1 1
Cr,j = Ka(F(t)tj,O,...,O) = Z#i Ka(ti“'j,o,...,O) = Z:uiS(Hj—(n—l),O,...,O)
i=0 i=0
d d
= Z HiCitj—(n-1) (=) Z,uici+j—(n—1) )
i=0 *) =1

where ci(t1,...,t,) = leilsmsikSn tj ti, -+~ t;, denotes the complete homogeneous
symmetric polynomialsand sy, . 1,)is the Schur polynomial. Note thatagm g . )=0
for m < n—1. Hence, we define ¢, = 0ifk < 0. In particular, the summand pc;j_(,—1)
vanishes for j € {0,...,n — 2}, which explains the equality (). Define
Cr(ty,. s ty) = Z ti i, e by
1<ij<---<ig<n

to be the elementary symmetric polynomials. The notation here is chosen to reflect the
connection between the generators of Jr o and the universal Chern classes and follows
Gepner [35]. Note that RY ~ Q¢ ..., ¢,_;] and therefore

R}’:V:Q = @[C_la---?én—laF(él)_l] .

Proposition 4.1. Let F: (Vés",@) - (VE,Q®) be an exponential functor. Let
F(t) € Q[t] be the character polynomial of F and let G(t) € Q[t] be any polynomial

FO-FO e G satisfies G'(t) = w. Define

integrating ;

n
V(ty,...,t,) = Z G(t;) EREq -
i=1
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This potential generates the ideal Ji in the sense that for j € {0,...,n — 2}

A%
epy = (-1 =2
ok 9Ch—(j+1)

Proof. Let V,(t) = % Zzzl t*. The computation in [B5, p. 389] shows

oV,

ac]

(42) = (-1

Let F(t) = Z?zo w;t' and note that Z0=F© _ Z?zl,u,-ti‘l. Since we may neglect

constant terms, we can without loss of generality assume G(0) = 0. We have

d n l’i d
V(ty,.onty) = 2 4 Y, Tk =D mV
izl k=1 i=1

Using (f2) the derivatives evaluate for j € {0,...,n — 2} to

d

s = () Y sy = (D' ey O
5Cn (]+1) = Cn (j+1) 1231 iCitj—(n-1) Fj

MQ

®(n+k)
< /\mp) and therefore

Remark 4.2. The case SU(n), corresponds to F =

F(t) = (—t)"**, where k € N, is the level, n is equal to the dual Coxeter number
for G = SU(n) and ¢ is considered to be odd as reflected by the sign. In this case the

potential is
D™* v ek
V(tl""7tn)= T tln :I/n+k(tl7""tn)7
n+k &
which coincides (up to the choice of sign) with the potential in [35]. The generators
cp,jboildowntocg ; = (—1)”+kck+j+1 for j € {0,...,n—2} and Prop. f.J retrieves the

result from [B3] (up to sign) that

av

O yien = () ey
acn—(j+1) F,j +j+1

4.2. Exponential functors as higher determinants. This section will be more spec-
ulative than the previous ones. We will outline how exponential functors can be used
to construct higher determinant bundles over loop groups. We will also briefly address
the multiplicativity of our higher twists.

Let H = H, @ H_ be a separable Z/2Z-graded Hilbert space with dim(H.) = oo.
The reduced general linear group GL,.s(H) C GL(H) consists of operators

-

such that b and c are Hilbert-Schmidt (which implies that a and b are Fredholm op-
erators, see [49, p. 81]). Consequently, the path-component of the identity GL%,(H)
contains operators T as above such that the index of a vanishes. The unitary counter-
part of GL,.s(H) is

Ures(H) = GLyes(H) N U(H)
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with identity component U (H) [49, Def. 6.2.3]. The group U2¢(H) fits into a short
exact sequence

(43) U(H) — € - Ups(H),
where
U(H)={q: H. - H, : qe€ U(H,)and q — 1is trace-class},
E={(T,q) € Us(H)x U(H,) : T=(%5) and a — qis trace-class} .

The group U, (H) consists of those unitary operators that have a Fredholm determinant,
which provides a group homomorphism det: U,(H) - U(1). If u = 1 + t for a trace-
class operator ¢, then it is given by

b n
det(u) = Z Tr(/\ t) .
n=0
The determinant can be used to obtain the determinant bundle over U2,(H) from the
extension (f3) given by

(44) U(1) > & Xget UQ) = Ug(H) .

Since det is surjective, we have €X 40t U(1) = &/ ker(det). Hence, (f4) is in fact a central
U(1)-extension of groups [49, Sec. 6.6].

With G = SU(n) let H = I?(S',C"). The Fourier decomposition of vectors in H
gives rise to a Z/2Z-grading by letting H,. be the subspace generated by z* with k > 0
and z = ¢®. The smooth loop group LG acts by multiplication operators on H. Since
G = SU(n) is simply-connected, LG is path-connected. In fact, it is not difficult to
show (see [49, Prop. 6.3.1]) that the representation by multiplication operators factors
through

pi LG — Uds(H).
The central U(1)-extension that gives rise to the level is the pullback of (f4) with respect
to p, see [49, Sec. 6.6].

We will outline how exponential functors give rise to C*-algebraic counterparts of
(F4). For simplicity we will restrict ourselves to the exterior algebra functor F = /\*,
even though the arguments given below will work for a much larger class. Note that /\*
extends to a functor on the category of countably infinite-dimensional Hilbert spaces
and unitary isomorphisms.

Now take H = C"®¢2(N) and denote the canonical Hilbert basis of £2(N) by {e,, }en-
Identify V. = @kmzl C" with the subspace spanned by vectors of the form v ® e; for
i €{l,...,m}and v € C". We have a natural unitary isomorphism

® % % * % ®k *
Ni=Nveowr= A vio N v =(Ne) e A,
* ®k #
which gives rise to a representation 7y : End( A C”) — B(/\ H). Associativity of
the above natural transformation ensures that this extends to a faithful representation
7: M® — B(/\"H) of the colimit.

Lemma 4.3. The exterior algebra functor F = /\* gives rise to a group homomorphism

¢r @ U(H) » UME).
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Proof. 1t suffices to see that 7(F(u)) € (M) for u € U,(H). If u — 1 is a finite rank
operator, then H = V @ V4 for a finite-dimensional Hilbert subspace V such that

(Yo 0
(% %)

and F(u) € U(F(H)) corresponds to uy ® 1 : U(F(V) ® F(V1)) under the exponential
transformation, which proves that F(u) € U(M¥) in this case. Now assume that u €
U(H) is of the form 1 + T for a trace-class operator T. Since u is diagonalisable, so is
T. Choose a Hilbert basis (§,),en, of eigenvectors for T corresponding to eigenvalues
A,. Define

Tp= D, i)
k=0

The T, converge to T in trace norm. To prove the claim it suffices to see that F(1 + Tj,)
converges to F(1 + T) in norm, which will show that F(1 + T) € n(U(Mg)). Let
V, = span{{, ..., &,}. Using the unitarity of the exponential transformation we obtain
the estimates

IF(L+T) = F(L+ TI| < [FQ + 2, @ (AL + Dy ) - 101

I+ Ay) = 1]+ [FO+ 2042) @ F(L+ Dy ) - 101

< 2 IFA+2)=11< 3 1Al =T = Tullr
k=n+1 k=n+1
where the first inequality in the last line follows inductively. To get the last inequality
weused that F(C) @ C@ Cand F(1 + ) —1 = (8/& ) Hence, F(1 + T,,) € UM¥)
converges in norm to F(1 + T) € B(F(H)) proving the statement. O

As a conclusion of Lem. .3, we may therefore replace det by our “higher determi-
nant” ¢ for F = /\* to get a determinant bundle of the form

(45) UME) = & Xg, UME) = Ups(H) ,
and via pullback a corresponding bundle over the loop group LG = LSU(n)
UM®) - LGr — LG

In the case of classical twists the bundle LG came equipped with a group structure
itself. This seems unlikely here. Nevertheless, the above higher determinant bundle
suggests that one should look at representations of £ as in (d3) on Hilbert M§ -modules
(or bimodules), which satisfy a suitable positive energy condition and such that U,(H)

acts through ¢ (using the Hilbert module structure). In the case of F = ( /\t0p YB(n+k)
this will then boil down to the Verlinde ring at level k.
Concerning the multiplicative structure consider the homotopy given by

H: SU(n)x SUn) x[0,1] —» SU(2n),
u 0)( cos(51) sin(zt)> (1 0) (cos(zt) —singz—Tt)>

0 1 —sin(gt) cos(51)/\0 v/ \sin(5t) cos(5t)

(u,v,t) »—><
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between the inclusions (u,v) — (4 9) and (u,v) — (% 9). It is equivariant with re-
spect to conjugation in the sense that

s one )= (8 O g o0
H(gug*, gug*,t) = (0 g) H(u,v,t) ( 0 g*) .
If we denote the Fell bundle over SU(k) by &, the two projection maps SU(n) X SU(n)
— SU(n) by p; fori € {1,2}and the multiplication map by u : SU(n)xSU(n) - SU(n),
then we speculate that

H382n = pfgn ® pggn ’
HiEyp ', QMY .

Hence, H*E,,, would give an equivariant homotopy between these two Fell bundles.
Since after stabilisation by the compact operators the continuous C(G)-algebras C*(Ey)
correspond to section algebras of locally trivial bundles, which are homotopy-invariant,
one obtains an equivariant isomorphism of C(G)-algebras

C*(p1€n) @ C*(P2€n) @ K = C* (1" E,) @ ME Q K.

In the classical case the twist would give a cohomology class 7, € Hg(G, Z). Multi-
plicativity of these twists is encapsulated by the equation

pitk + PiTi = Wit € HA(G X G,Z).

The above isomorphism seems to be the correct generalisation of this statement and
we will explore these ideas in future work.

There are more connections with conformal field theory as well: In [28, Sec. 5.1.1]
we showed that for odd powers of the full exterior algebra twist on SU(2) the locali-
sation is not necessary (in particular F(C) is already invertible in this case), and the
K-groups give fusion rings related to the even part of SU(2). These tadpole graphs also
appear as fusion graphs for modules of SU(3) as in e.g. [29, page 12]. This then raises
the question of when localisation is really present for SU(n) for n > 2 and whether
the rings derived from the K-theory are fusion rings or fusion modules. Then there is
the question of categorifying these (fusion) rings or modules to be fusion categories or
their modules which is relevant for relating our rings to conformal field theory.
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