

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/183397/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Mangano, Giacomo, Alves, Tiago M. , Civile, Dario, Critelli, Salvatore and Zecchin, Massimo 2025. A Cenozoic shift from extensional to strike-slip tectonics in the Central Mediterranean Sea. *Tectonics* 44 (12) , e2025TC009054. 10.1029/2025TC009054

Publishers page: <http://dx.doi.org/10.1029/2025TC009054>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.



1      **A Cenozoic shift from extensional to strike-slip tectonics in the central**  
2      **Mediterranean Sea**  
3

4      Giacomo Mangano<sup>a,c</sup>, Tiago M. Alves<sup>b</sup>, Dario Civile<sup>c</sup>, Salvatore Critelli<sup>a</sup>, Massimo Zecchin<sup>c</sup>

5      a Department of Environmental Engineering, University of Calabria, 87036, Arcavacata di  
6      Rende, CS, Italy

7      b 3D Seismic Laboratory – School of Earth and Environmental Sciences, Cardiff University,  
8      CF10 3AT, United Kingdom

9      c National Institute of Oceanography and Applied Geophysics – OGS 34010 Sgonico, TS,  
10     Italy

11     **Abstract**

12     High-resolution 3D seismic reflection data, structural interpretations and expansion index  
13     analyses are combined in this work to explain the mechanisms that drove a newly discovered  
14     shift from extensional to strike-slip tectonics in the central Mediterranean region. In the  
15     Crotone Basin, Early Pliocene extension predominated at first as proven by the nucleation of  
16     N- to NE-striking normal faults bounding half-graben basins and tilt blocks. Fault length  
17     reached ~13 km, with associated half-grabens being 5 to 8 km wide and up to 2.5 s TWT  
18     deep. Extensional tectonics at this stage followed tectonic collision between the Calabrian  
19     margin and the Apulian foreland; the removal of dense lithospheric mantle induced sharp  
20     elevation gradients and a rapid uplift of continental crust in the study area, promoting  
21     isostatic imbalances that ultimately led to extensional orogenic collapse. This same phase of  
22     extension was accompanied by the reactivation of inherited fault systems, which occurred  
23     together with the forward migration of the Calabrian Arc and oceanization of the Tyrrhenian  
24     Sea. Conversely, normal-oblique to strike-slip faulting has predominated offshore Crotone  
25     since the Late Pliocene as recorded by the development of elongated (up to ~ 22 km long)  
26     and narrow (~ 3 km wide) NW-trending pull-apart basins. Structural styles have since then  
27     been influenced by rheological contrasts between the continental Apulian foreland and  
28     Ionian oceanic lithosphere, which activated a broad WNW-striking shear corridor. As a  
29     corollary of this work, modern structural and kinematic evidence indicates that fault  
30     segments within this shear corridor are arranged in an *en echelon* geometry and act as  
31     conjugate structures accommodating the progressive fragmentation of the overriding  
32     Apulian plate. On a broader scale of analysis, the transition from pure extension to strike-  
33     slip tectonics documented offshore Crotone is associated with the differential subduction of  
34     heterogeneous foreland domains, a phenomenon that reflects the dynamic evolution of the  
35     central Mediterranean backarc system as a whole.

36  
37     **Keywords:** Central Mediterranean Sea, Calabria, Strike-slip, Extension, Tectonics, Crotone  
38     Basin.  
39  
40  
41

42

43 **1. Introduction**

44 Normal faults are the hallmark structures of continental rifting, evolving as the  
 45 lithosphere is progressively thinned due to the interplay between tectonic forces and  
 46 inherited lithospheric heterogeneity (Jackson and McKenzie, 1983; Ebinger et al., 1993;  
 47 Gawthorpe and Leeder, 2000; Brune et al., 2023; Civile et al., 2024). As rifting localizes, brittle  
 48 deformation is preferentially accommodated via the nucleation and growth of normal faults,  
 49 a process that marks a fundamental change from a stable plate interior to nascent plate  
 50 boundaries (Jackson and McKenzie, 1983; Peacock and Sanderson, 1991; Elliott et al., 2017;  
 51 Strugale and Cartwright, 2022; Brune et al., 2023). Importantly, normal faults can also  
 52 develop during orogenic fragmentation, i.e. in the context of compressional tectonics and  
 53 orogenesis (Dewey, 1988; Rossetti et al., 2005; Cavalcante et al., 2024; Pollock, 2025),  
 54 whereby a combination of gravitational body forces acting on overthickened crust, thermal  
 55 weakening and crustal delamination, are able to drive extensional deformation over  
 56 previously accreted lithosphere (Bird, 1978; Sawyer, 1985; Dewey, 1988; England and  
 57 Houseman, 1988; Rossetti et al., 2005; Heron et al., 2016; Cavalcante et al., 2024; Pollock,  
 58 2025).

59 Extensional detachments in post-orogenic settings are often localized along inherited  
 60 weakness zones, which are reactivated when lithospheric thickening changes to gravitational  
 61 spreading and tectonic extension (Dalmayrac and Molnar, 1981; Silverstone, 1988; Dewey,  
 62 1988; Labrousse et al., 2011; Teyssier et al., 2005; Rossetti et al., 2005; Cavalcante et al., 2024;  
 63 Pollock, 2025). In some cases, normal oblique and strike-slip movements reflect the presence  
 64 of lithospheric discontinuities and contrasting rheological properties between foreland  
 65 domains, with both being able to cause important strain partitioning along horizontal and  
 66 vertical shear components (Finetti and Del Ben 1986; Lanzafame and Bousquet 1997;  
 67 Gvirtzman and Nur 1999; Argani 2000; Doglioni et al. 2001; Rosenbaum and Lister 2004;  
 68 Finetti 2005). This means that important lithospheric deformation associated with  
 69 subsidence, horizontal stretching, and localized crustal thinning may arise from the lateral  
 70 displacement between tectonic plates, where strike-slip fault systems are formed (Molnar  
 71 and Tapponnier, 1975; Peacock and Sanderson, 1995; Tapponnier et al., 2001; Dooley and  
 72 Schreurs, 2012).

73 The Crotone Basin is a forearc basin of the central Mediterranean (southern Italy) that  
 74 is also a constituting part of the Calabrian Accretionary Wedge; yet, it has been dominated  
 75 by extensional and transtensional tectonics since the Pliocene (Van Dijk et al., 2000; Massari  
 76 and Prosser, 2013, Zecchin et al., 2020; Civile et al., 2022; Mangano et al., 2022; 2023a; 2024)  
 77 (**Figure 1a,b**). The presence, in the Crotone Basin, of normal faults with orientations that  
 78 differ markedly from Quaternary NW and NNW faults, is still poorly understood. Some of  
 79 these Quaternary faults can be attributed to upper-crustal gravitational collapse (Zecchin et  
 80 al., 2018; Mangano et al., 2020; 2021; 2023b; Ceramicola et al. 2024), but the majority are  
 81 located far from well-known gravitational complexes, revealing kinematics indicators that  
 82 are not associated to slope instability.

83 The aim of this study is to discriminate between Early Pliocene and younger faults in  
 84 the Crotone Basin, addressing the tectonic drivers and boundary conditions that controlled  
 85 their evolution. The focus is placed on the offshore sector of the Rossano–San Nicola fault  
 86 zone, a NW-trending regional-scale strike-slip structure that defines the northern boundary

87 of the Crotone Basin and evolved in connection with the southeastward migration of the  
88 Calabrian Accretionary Wedge (**Figure 1b**). Three-dimensional (3D) seismic data and a suite  
89 of exploration wells are therefore used in this work to address three fundamental research  
90 questions:

91 a) What are the kinematic differences between Early Pliocene and Late Pliocene-Quaternary  
92 fault systems?  
93 b) How do fault geometries, orientations, and associated syn-tectonic strata relate to  
94 differing tectonic regimes?  
95 c) What role did orogenic processes and lithospheric heterogeneity play in localizing  
96 deformation during the tectonic evolution of the Calabrian Arc?

98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
Answers to these questions are contextualized within the broader geodynamic  
framework of the central Mediterranean, and add crucial information regarding the complex  
evolution of this region (**Figure 1**).

## 2. Geological setting

### 2.1 Tectonic Framework of the Calabrian Accretionary Wedge

The central Mediterranean region is one of the most complex and dynamic subduction systems of the Alpine-Mediterranean belt, having been shaped throughout the Cenozoic by slab retreat, back-arc extension, and plate convergence (Dewey et al. 1989; Guerrera et al. 1993, 2012; Schettino and Turco 2011; Guerrera and Martín-Martín 2014; Hosseinpour et al. 2016; Royden and Faccenna, 2018; van Hinsbergen et al. 2020; Critelli and Criniti 2021; Critelli et al., 2021; Critelli and Martín-Martín 2022, 2024; Belayouni et al. 2023). Against this backdrop, the subduction zone that marks the modern boundary between the Eurasia and Africa plates runs parallel to the North African coast from Cyprus to Southern Greece, turning northward at the eastern part of the central Mediterranean, in the Ionian Sea (Faccenna et al., 2001; 2004; Minelli and Faccenna, 2010; Polonia et al., 2011). The geodynamic history of the central Mediterranean is *per se* closely related, for the past 50 Ma, to episodes of retreat and rollback of its NW-dipping oceanic lithosphere, and has led to orogenic accretion along the Kabylia (Algeria), Calabrian and Apennine (Italy) mountain ranges. Importantly, the opening of the back-arc Liguro-Provencal and Tyrrhenian basins occurred further west at the same time tectonic convergence ensued (Malinverno and Ryan, 1986; Royden, 1993; Chaumillon and Mascle, 1997; Wortel and Spakman, 2000; Faccenna et al., 2001; 2004; Minelli and Faccenna, 2010; Polonia et al., 2011).

The Calabrian Accretionary Wedge (CAW), located in the northern part of the Ionian Sea near Italy, is a SE-verging tectonic domain of a subduction system that resulted from the scraping of the descending Ionian oceanic lithosphere under continental crust of the Calabrian Arc – the latter comprising an arcuate nappe-stack of ophiolites, pre-Alpine basement units, remnants of Mesozoic-Cenozoic sediments, and metamorphozed rocks (Bonardi et al., 2001; Critelli et al., 2018) (**Figure 1a**). The CAW accreted an area roughly 300 km wide to 400 km long that is located between the Maghrebides thrust belt and the Malta Escarpment to the SW, and the Apulian foreland and Apulia Escarpment to the N and the

131 NE (Rossi and Sartori, 1981; Barone et al., 1982; Finetti, 1982; Sioni, 1996; Faccenna et al.,  
132 2001; 2004; Minelli and Faccenna, 2010) (**Figure 1a**). The CAW is itself limited to the SE by  
133 the Mediterranean Ridge, an evolving accretionary complex resulting from ongoing  
134 convergence between Africa and Eurasia, and from the concomitant southward motion of  
135 the Aegean microplate (Bonardi et al., 2001; Polonia et al., 2002; Camerlenghi et al. 2020;  
136 Mouslopoulou et al. 2025; Chizzini et al., 2025) (**Figure 1a**).

137 Authors such as Minelli and Faccenna (2010), Polonia et al. (2011), Gallais et al. (2012) and  
138 Maesano et al. (2017) have sub-divided the CAW into four tectonic domains which, from the  
139 SE to the NW, comprise: i) the Ionian foreland basin, an area made up of Mesozoic to Plio-  
140 Quaternary sediments located between the Mediterranean Ridge and the Malta Escarpment,  
141 inferred to be a relic of the Ionian Abyssal Plain, ii) the outer accretionary wedge, composed  
142 of Messinian to Plio-Quaternary sediments representing the frontal part of the wedge, iii)  
143 the inner accretionary wedge formed by pre-Messinian to Plio-Quaternary successions and  
144 constituting the inner portion of the wedge, and iv) the Crotone-Spartivento Basin, filled by  
145 Serravallian to Quaternary deposits accumulated in a forearc position relative to the CAW  
146 (**Figure 1a,c**). In addition to this four-fold subdivision, the CAW is partitioned into eastern  
147 and western lobes, which present differences in tectonic architecture and structural  
148 complexity. These two lobes are separated by the Ionian Fault System, a major structural  
149 lineament that acts as a first-order boundary within the CAW (**Figure 1a**).

150  
151 *2.2 Miocene evolution of the Crotone Basin*

152 The Crotone Basin is separated from the Spartivento Basin by the Punta Stilo Swell  
153 (Mangano et al., 2022) and overlies both inner accretionary-wedge sediments and crystalline  
154 basement rocks (Rossi and Sartori, 1981; Minelli and Faccenna, 2010) (**Figure 1a,b**). Its origin  
155 dates to the Middle Miocene (Serravallian), when continental rifting migrated from the  
156 western margin of the Sardinia-Corsica block to the southeast after the end of the Liguro-  
157 Provencal oceanic spreading phase (Kastens et al., 1988; Sartori, 1990). Its development was  
158 controlled by the NW-striking Rossano-San Nicola and Petilia-Sosti fault zones, which  
159 imposed distinct phases of deformation and subsidence inside the basin (Meulenkamp et  
160 al., 1986; Van Dijk, 1991, 1994; Van Dijk and Okkes, 1991; Muto et al., 2014; Van Dijk et al.,  
161 2000; Civile et al., 2022) (**Figure 1b**). Such structures are, in turn, confined within a broader  
162 shear system, the Sibari and Catanzaro strike-slip zones, structures that were initiated in the  
163 Early Pliocene and accommodated the clockwise rotation of the Calabrian Arc during its  
164 southeastward migration (Del Ben et al., 2008) (**Figure 1a**).

165  
166 *2.3 Messinian Salinity Crisis and related tectonic inputs*

167 The Crotone Basin was significantly affected by the Messinian Salinity Crisis (MSC), which  
168 followed an initial phase of tectonic extension and frontal accretion of the CAW. In the  
169 geodynamic framework considered in this work, the MSC was triggered by the progressive  
170 tectonic confinement and closure of the Atlantic-Mediterranean gateways (Betic and Rif  
171 corridors), which severely reduced water exchange with the Atlantic Ocean and led to  
172 extreme basinwide evaporative drawdown (Roveri et al., 2014; Flecker et al., 2015; Krijgsman  
173 et al., 2018; Krijgsman et al., 2024). The sea-level drop associated with this crisis was enough

174 to promote the flexural rebound of the lithosphere near the CAW, thus generating strike-  
175 slip faults that accommodated up to 1600 m of evaporites and produced a prominent,  
176 basinwide Intra-Messinian Unconformity (IMU) dated at 5.6–5.55 Ma (DeCelles and Cavazza,  
177 1995; Cavazza and DeCelles, 1998; Krijgsman et al., 1999; Hilgen et al., 2007; Govers et al.,  
178 2009; Zecchin et al., 2020; Borrelli et al., 2021, 2022; Mangano et al., 2024). Evaporite  
179 deposition facilitated, at the same time, the southeastward advance of the CAW by over 100  
180 km along a salt-rich basal décollement (Minelli and Faccenna, 2010). The evaporitic  
181 substratum also promoted the deformation of the basinal successions located at the front  
182 of the Messinian evaporites, which subsequently became incorporated into the post-  
183 Messinian outer accretionary wedge (Polonia et al., 2011, 2016; Gallais et al., 2012;  
184 Camerlenghi et al., 2020; Chizzini et al., 2025). This phase of accretionary wedge advance was  
185 then followed by a contractional/transpressional episode that was probably triggered by a  
186 reduction in the wedge's taper below its critical value, as marked by a landward migration  
187 of deformation and resulting out-of-sequence internal shortening in the CAW (Minelli and  
188 Faccenna, 2010; Polonia et al., 2011). In the Crotone Basin, this tectonic phase is expressed  
189 by the development of the Upper Messinian Unconformity (UMU) at 5.42 Ma. Importantly,  
190 it also marks the transient coupling between the northeastern Calabrian Arc and the Apulian  
191 margin at the very end of the Miocene (Massari and Prosser, 2013; Zecchin et al., 2013, 2020)  
192 (**Figure 2**).

#### 193 194 2.4 Pliocene-Quaternary evolution

195 Backarc extension related to Ionian plate subduction started in the study area after the  
196 late Messinian contractional/transpressional events as the Vavilov sub-basin opened in the  
197 Tyrrhenian back-arc (**Figure 1a**). Seafloor spreading occurred at first in the Vavilov sub-basin  
198 at around 4.3 Ma, recording a fast extensional rate of 8 cm/yr (Guillaume et al., 2010). At the  
199 same time, the CAW witnessed fast frontal growth above the weaker Messinian salt, thus  
200 reducing the accretionary wedge's taper angle, lowering the topographic slope, and  
201 increasing its total length by more than 200 km (Minelli and Facenna, 2010). This event  
202 triggered important subsidence in the Crotone Basin, as testified by the accumulation of up  
203 to 1000 m of Zanclean mudstones (Zecchin et al., 2012; 2015; 2020) (**Figure 3**).

204 After another (Pliocene) phase of contractional/transpressional tectonics, which resulted  
205 in the development of the basinwide Mid-Pliocene Unconformity (MPCU; Basso et al., 2021;  
206 Zecchin et al., 2015, 2020) (**Figure 2**) and the concomitant onset of large mass-transport  
207 complexes (Zecchin et al., 2018; Mangano et al., 2020; 2021; 2022; 2023a; b; 2024), the  
208 Crotone Basin experienced a phase of tectonic stretching in the Piacenzian (latest Pliocene).  
209 This phase was contemporaneous with the final episode of ocean spreading in the Vavilov  
210 sub-basin, which probably ended at ~2.6 Ma (Feraud, 1990). It led to the accumulation of  
211 the lower part of the Cutro Clay in the distal parts of the Crotone Basin (Zecchin et al., 2006;  
212 2012) (**Figure 2**). This latest Pliocene pulse of subsidence was again interrupted by a local  
213 contractional episode at the start of the Quaternary, in the early Gelasian (ca. 2.4 Ma), as  
214 marked by an Early Pleistocene unconformity (EPSU). Contractional tectonics was likely  
215 associated with the end of the movement of northern Calabria towards the Apulian plate. It

216 also marked the end of the Vavilov sub-basin's development (Zecchin et al., 2012; Basso et  
217 al., 2021).

218 Rapid tectonic subsidence continued during the middle Gelasian in parallel with the ultra-  
219 fast opening of the Marsili sub-basin, with spreading rates reaching up to  $19 \text{ cm yr}^{-1}$  at this  
220 time (Nicolosi et al., 2006; Guillaume et al., 2010). As a result, a  $\sim 20^\circ$  clockwise rotation and  
221 southeastward migration of the Calabrian Arc occurred at this time due to trench rollback  
222 and back-arc extension (Sagnotti, 1992; Scheepers et al., 1994; Speranza et al., 2000, 2011;  
223 Mattei et al., 2004, 2007; Nicolosi et al., 2006; Mattei et al., 2004, 2007; Chiarabba et al., 2008;  
224 Zecchin et al., 2012). Subsequently, transpressional NW-striking shear zones were formed to  
225 accommodate the differential motion between the northern and southern sectors of the  
226 Calabrian Arc. Marked stratigraphically by a Mid-Pleistocene Unconformity (MPSU) dated at  
227  $\sim 1.1 \text{ Ma}$ , such an accommodation was made easier by the presence of lithospheric-scale  
228 tear faults at the boundary between the Apulian and Ionian forelands (Del Ben et al., 2008;  
229 Zecchin et al., 2012, 2015).

230 A final episode of transtensional tectonics linked to a renewed, low rate spreading of the  
231 Marsili sub-basin occurred after 1.1 Ma. Rapid tectonic uplift affected the Crotone Basin soon  
232 after at  $\sim 0.45 \text{ Ma}$ , with diverse mechanisms being proposed for its onset. These include slab  
233 break-off and isostatic rebound (Spakman, 1986; Wortel and Spakman, 2000), whereas  
234 convective removal of the lithospheric root has been proposed by Doglioni (1991) and  
235 Gvirtzman and Nur (2001) amongst other authors.

236

### 237 **3. Data and methods**

238

#### 239 *3.1 Seismic and borehole data*

240 The main dataset in this work is part of a post-stack time-migrated (PSTM) 3D seismic  
241 volume provided by ENI Natural Resources. It covers part of the offshore sector of the  
242 Crotone Basin, spanning an area of c.  $535 \text{ km}^2$  of the continental shelf and slope off Calabria  
243 (**Figures 1 and 3**). The seismic cube consists of 4,652 inline and 2,908 crossline traces with  
244 a regular inline and crossline spacing of 15 m.

245 The imaging window of the seismic data is 5.0 s two-way time (TWT), while each seismic  
246 trace has 1251 samples and was sampled at an interval of 4 ms. Based on the borehole data  
247 used in this study, average interval velocities were estimated at approximately 1,800 m/s for  
248 Unit A, 2,300 m/s for Unit B, and 3,300 m/s for Unit U (see section 4.1). By also estimating a  
249 dominant frequency of  $\sim 48 \text{ Hz}$ , within a bandwidth range of approximately 2.75 Hz to 80  
250 Hz, vertical resolution was calculated to vary from  $\sim 9.4 \text{ m}$  in Unit A to  $\sim 17.2 \text{ m}$  in the deeper  
251 Unit U.

252 Two key seismic horizons, H1 and H2, together with the seafloor, were mapped and  
253 correlated to the regional stratigraphic framework based on data from nine (9) exploration  
254 wells and the tectono-stratigraphic scheme of Critelli (1999), Zecchin et al. (2020) and  
255 Mangano et al., (2023a) (**Figures 2, 3 and 4**). These horizons were selected because they  
256 show characteristic high-amplitude signatures that can be traced consistently across the  
257 entire study area, enabling a clear separation between the Early Pliocene and Late Pliocene–  
258 Recent intervals. They effectively bracket the temporal window of importance to this study.  
259 Essential lithological descriptions and depth measurements from the rotary table (RT) were  
260 extracted from these wells, allowing for an accurate time-depth conversion and calibration

261 of the seismic horizons. These borehole data enabled a robust correlation of H1 and H2 with  
262 the regional stratigraphic framework.

263

264 *3.2 Seismic Interpretation*

265 Seismic interpretation was completed in the time domain using Schlumbergers' Petrel®.  
266 The analysis was guided by the seismic-stratigraphic principles in Mitchum et al. (1977),  
267 which emphasize the recognition of reflection patterns corresponding to lithological  
268 variations and unconformities. Key unconformities bound seismic units that are  
269 distinguished by variations in seismic facies, configuration patterns, reflector terminations,  
270 depth, and thickness.

271 The interpreted borehole data were imported into Schlumberger's Petrel® with their  
272 check-shots, allowing the visualization of their measured depth - defined as the depth from  
273 the rotary table (RT) - within the time domain. This integration enabled an accurate time-to-  
274 depth calibration of the seismic data, and precise correlations between seismic reflectors  
275 and well data. For units not fully penetrated by exploration wells, their ages and lithologies  
276 were derived from published work on the Crotone Basin's stratigraphy (Critelli, 1999; Zecchin  
277 et al., 2020; Mangano et al., 2023a) (**Figure 2**).

278 Faults were interpreted according to breaks in continuity (and associated offsets) of  
279 seismic reflectors. Although seismic amplitude displays are routinely used to trace out faults  
280 in profiles, other seismic attributes such as variance were applied, especially in plan view.  
281 Variance measures the degree of contrast between seismic traces and transforms a volume  
282 characterized by seismic continuity into one that emphasizes discontinuities, effectively  
283 delineating structural and stratigraphic boundaries (Brown, 2004). Knowing that faults reveal  
284 themselves in seismic data as trace-to-trace variations, they are identified in areas  
285 characterized by high variance coefficients. A total of 12 major faults were interpreted across  
286 the study area, with their orientation graphically displayed in a rose diagram.

287 The interpretations of horizons and faults were further used to generate structural  
288 surfaces and thickness maps, providing insights into basin architecture and deformation  
289 history.

290

291 *3.3 Fault growth analyses using the Expansion Index (EI) method*

292 Fault activity was assessed via measuring their Expansion Indices, a quantitative approach  
293 that assesses the growth history and nucleation of normal faults (Thorsen, 1963, McCulloh,  
294 1988; Edwards, 1995). Expansion Index (EI) is defined as the ratio of the stratigraphic  
295 thickness of a seismically resolved unit on a fault's hanging-wall depocenter relative to its  
296 thickness on immediate footwall blocks (Thorsen, 1963; Pochat et al., 2009). The method  
297 provides a robust way to assess fault activity through the systematic measurement of syn-  
298 tectonic strata thickness accumulated near mapped faults. Hence, an EI value of 1 indicates  
299 no variations in stratigraphic thickness across a fault, suggesting that it was inactive during  
300 the deposition of a given unit. Conversely, EI values greater than 1 document stratigraphic  
301 thickening on the immediate hanging-wall of a fault, i.e. they relate to fault movement  
302 during deposition (Thorsen, 1963; Cartwright et al., 1998; Rouby et al., 2003; Hongxing and  
303 Anderson, 2007). The measurement of EI across all 12 mapped faults allowed for a detailed  
304 reconstruction of fault growth patterns and their role in controlling sediment accumulation.

305 Data were sampled every line at the maximum resolution of 15 m as suggested by Tao and  
306 Alves (2019).

307

## 308 4. Results

309 This section gives an account of the seismic stratigraphic units offshore the Crotone Basin  
310 based on the comprehensive seismic and borehole data interpreted in this work (**Figure 3**).

311

### 312 4.1 Seismic-stratigraphy

313 Horizon H1 is a high-amplitude, wavy reflector with poor lateral continuity (**Figures 5 and**  
314 **6**). It is dissected by an extensional system formed by NW-oriented normal faults, which dip  
315 approximately 55–70° and define two narrow and elongated depocenters. This same  
316 extensional system defines two structural highs in the central and southwestern parts of the  
317 study area, both with a minimum TWT depth of 417 ms (**Figure 4a**). A broader depocenter  
318 occurs to the north, where it reaches a maximum TWT depth of 2651 ms (**Figure 4a**). On  
319 most of the interpreted seismic profiles, horizon H1 is sub-parallel to the strata immediately  
320 above and below (**Figures 5 and 6**).

321 Horizon H2 is a high-amplitude, discontinuous and deformed seismic reflector that  
322 defines structural lows and highs across the downthrown and upthrown sides of normal  
323 faults, i.e. F1 to F4 and F11 and F12 (**Figures 4b, 5 and 6**). Its TWT depth varies from 962 ms  
324 to 2983 ms (**Figure 4b**). Through most of the study area, H2 truncates its underlying strata  
325 and is onlapped by seismic reflections at its top (**Figures 5 and 6**).

326 Horizons H1 and H2 are both basinwide seismic-stratigraphic markers that correlate with  
327 the MPCU and UMU, respectively (**Figure 2**). They divide the imaged successions into Units  
328 A, B and U (**Figures 5 and 6**).

329

### 330 Unit A

331 Unit A consists of parallel to sub-parallel internal reflections with a variable amplitude and  
332 continuity, changing laterally into inclined and wavy reflections (**Figures 5 and 6**). Unit A tops  
333 half-grabens filled by Unit B (**Figures 5b and 6c**) and is thicker on the immediate hanging-  
334 walls of faults F7 to F10 (**Figure 6a, b**). In contrast, it has a fan-like geometry near faults F5  
335 and F6 (**Figures 5a**). The unit is bounded at its top by the seafloor and at its base by Horizon  
336 H1 (**Figures 5 and 6**).

337 The thickness of Unit A varies across the study area, with values ranging from a maximum  
338 of approximately 1530 ms in fault-controlled depocenters to a minimum of 144 ms over  
339 structural highs (**Figure 7a**). The thickest accumulations are found in the northern and  
340 northwestern sectors of the study area, stressing how important was tectonic subsidence  
341 near fault F3 (**Figure 7a**). In turn, important thinning occurs in Unit A between the two later  
342 depocenters, a character highlighting the presence of NW-striking footwall blocks between  
343 depocentres. Unit A also becomes thinner towards the south (**Figure 7a**).

344 Based on the available borehole stratigraphic data, Unit A correlates with shelf to slope  
345 claystones and siltstones in the Cutro Clay, which have accumulated in the study area since  
346 the latest Pliocene (Piacenzian; Zecchin et al., 2020) (**Figures 2 and 3**).

347

### 348 Unit B

349        Unit B is composed of parallel to sub-parallel internal reflections with moderate continuity  
350 and low to high amplitude. They change locally into chaotic facies (**Figures 5b and 6a**). In  
351 some areas, seismic reflections present onlap and downlap terminations against Horizon H1,  
352 hinting at local sediment progradation (**Figures 5a, b, c and 6b**). Unit B is bounded at its  
353 top by Horizon H1 and at its base by Horizon H2 (**Figures 5 and 6**). It reveals growth strata  
354 on the immediate hanging-wall of normal faults (**Figure 5a, b, d**), although still presenting  
355 other important changes in thickness. In fact, Unit B records maxima in thickness near the  
356 central, southern, and northwestern sectors of the study area where it reaches values of 1425  
357 m in well-defined depocenters (**Figure 7b**). These depocenters coincide with hanging-wall  
358 blocks formed near major N-, NNE-, and NE-striking normal faults, i.e. F1, F2, F3, F4, F11, and  
359 F12 (**Figure 7b**). Unit B is much thinner over structural highs, particularly across the uplifted  
360 footwall blocks of the latter faults, where it is absent (**Figure 7b**). The number of normal  
361 faults cross-cutting Unit B is also greater than in Unit A, with minor normal faults being  
362 observed throughout the study area within the former unit (**Figures 5 and 6**). Fault  
363 displacement within this interval is minor, however, not disrupting the continuity of seismic  
364 reflections within Unit B.

365        Based on the available borehole data, Unit B correlates with the Lower Pliocene shelf to  
366 slope mudstones of the Cavalieri Marl (Zecchin et al., 2020) (**Figures 2 and 3**).

367

### 368        *Unit U*

369        The lowermost Unit U is characterized by a diverse range of seismic reflection patterns,  
370 including transparent to high-amplitude internal reflections with variable continuity (**Figures**  
371 **5 and 6**). The unit is predominantly chaotic, with internal reflections locally dipping towards  
372 the SW, SE, and NE (**Figures 5 and 6**). Its TWT thickness reaches a maximum value of c. 4.0  
373 s, but varying significantly across the study area (**Figure 5c**). In addition, Unit U is crosscut  
374 by both low- and high-angle faults, with those extending into the deeper section being  
375 associated with the Rossano-San Nicola Fault Zone, as reported by Mangano et al. (2023b)  
376 and Mangano et al. (2024) (**Figures 5a and 6c**). Its upper boundary is horizon H2 (**Figures**  
377 **5 and 6**).

378        Unit U correlates with deposits ranging in age from the Mesozoic to the Messinian based  
379 on the regional stratigraphic framework presented by Critelli (1999), Zecchin et al. (2020)  
380 and Mangano et al. (2023a), and include a thick carbonate succession with intercalated  
381 organic-rich shales. The upper part of the unit corresponds to mass-wasting deposits and  
382 shelf-to-slope mudstones, with the latter reflecting sedimentary processes associated with  
383 progressive basin subsidence and deepwater deposition (Zecchin et al., 2020) (**Figure 2**).

### 384        *4.2 Fault geometry and distribution*

385        Seismic interpretation reveals a network composed of 12 main faults (F1–F12), each  
386 with particular kinematic expressions and structural styles. Their orientations are summarized  
387 in the accompanying rose diagrams in **Figure 8a**. They all fall within the offshore  
388 prolongation of the Rossano-San Nicola Fault Zone (**Figures 8**). Two-way time structural  
389 maps show that faults F1 to F4, and also F11 and F12, strike predominantly to the NE, N, and  
390 NNW, bounding a series of depocenters filled by the Lower Pliocene Unit B (**Figure 4a**). In

392 contrast, faults F5 to F10 strike NW–SE and show variable lengths, bounding narrow,  
393 elongated depocenters that are only filled by Unit A (Late Pliocene-Quaternary) (**Figure 4b**).  
394 Faults F1, F5 and F6 are sigmoidal on variance time slices, a geometry typically found where  
395 the shear strain is partitioned in a direction parallel to the strike of the fault planes (**Figure**  
396 **9**). These faults are also filled by strata with a divergent, concave-upward geometry  
397 (**Figure 5a**). When imaged together, faults F1, F5, and F6 reveal an *en echelon* geometry in  
398 map view, with well-developed splay systems or horsetail geometries at their tips (**Figure 9**).  
399 These splays are parallel to slightly oblique to the strike of master faults, suggesting localized  
400 strain partitioning near fault tips and their damage zones (**Figure 9**). The presence of  
401 releasing fault stepovers is also recognized near F7 and F8 (**Figure 6a**). Similarly, faults F7 to  
402 F10 accommodate localized transtension and led to the formation of local pull-apart sub-  
403 basins within a larger NW-striking fault zone (**Figure 6**).

404 Faults F2, F4, F11, and F12 are relatively straight and form nearly parallel arrays  
405 (**Figures 5b, 5c and 6c**). These faults bound tilt blocks and their adjacent half-graben basins,  
406 and are associated with drag folding in their hanging-wall domains as observed in **Figures**  
407 **5b and 6c**. Selected variance time slices further confirm that faults F2 and F4 are linear and  
408 form parallel fault arrays (**Figure 10a,c**).

409 Seismic profiles also reveal that the upper tips of faults F2 and F12 terminate within Unit  
410 B (**Figures 5a and 6c**), while F1 and F11 extend slightly above the horizon MPCU (**Figures**  
411 **5a and 6c**). In contrast, faults F3 and F4, as well as the F5–F10 fault system, propagate  
412 through Unit A in its entirety (**Figures 5a, c, d and 6a, b**).  
413

#### 414 4.3 Expansion indexes

415 Expansion indices (EI) for the mapped faults F1 to F12 are characterized by their  
416 marked variability (**Figure 11**). The highest EI value (5.65) was measured for fault F2, while  
417 the lowest values (0.67) were calculated for faults F9 and F10. Variations in EI across different  
418 units were also recorded for the analyzed faults. For instance, faults F1, F2, F11, and F12  
419 reveal an increase in EI with depth, significantly exceeding 1.0 in Unit B (**Figure 11**). In  
420 contrast, faults F3 and F5 to F10 show an increase in EI towards the seafloor. Among the  
421 latter, only fault F3 shows a consistent increment in the thickness of hanging-wall strata  
422 compared to its footwall. It is worth mentioning that the highest variation in thickness from  
423 hanging-wall to footwall is recorded in Unit A (Late Pliocene-Quaternary) for fault F3.  
424 Conversely, faults F5 to F10 record EI values below 1.0 in Unit B (**Figure 11**).  
425

## 426 5. Discussion

427 The interpretations in this work stress that Crotone's offshore basins were affected by  
428 major tectonic pulses, resulting in contrasting fault deformation styles since the Messinian  
429 Salinity Crisis. Each tectonic pulse is best understood within the broader framework of  
430 convergence between Africa and Europe, which dominated the Late Cenozoic evolution of  
431 the central Mediterranean Sea (Chamot-Rooke et al., 2005; Faccenna et al., 2001; 2004;  
432 Minelli and Faccenna, 2010; Polonia et al., 2011; Chizzini et al., 2025). Hence, this work  
433 recognizes for the first time the effect of two main tectonic stages in the CAW - separated  
434 by an episode of contractional/transpressional tectonics – that responded to collision  
435 between the NE Calabrian Arc and Apulian foreland. The seismic-stratigraphic marker

436 separating these two main tectonic regimes is the MPCU - Mid-Pliocene Unconformity  
437 (Zecchin et al., 2012; 2015; 2020).

438

439 5.1 *Structural and depositional expressions of distinct tectonic regimes*

440

441 5.1.1 *Early Pliocene*

442 Structures and deformation styles affecting Lower Pliocene strata point out to a tectonic  
443 regime governed by interacting extensional and strike-slip faults. Evidence from seismic  
444 profiles and EI data suggest important extensional faulting just after the Miocene, whereby  
445 multiple half-grabens were filled by the Lower Pliocene Unit B (**Figures 5b, 6c and 11**). In  
446 fact, structural and stratigraphic features indicate, at this time, a tectonic regime that was  
447 primarily controlled by extension rather than pure strike-slip (**Figures 5b, 6c, and 7b**). This  
448 interpretation is also supported by the common strikes and relative parallelism of interpreted  
449 Lower Pliocene faults (**Figures 5d**), characters that contrast markedly with the conjugate or  
450 cross-cutting geometries typically observed in strike-slip fault systems ([Peacock et al., 2017](#), [Wu et al., 2018](#), [Wu et al., 2020](#); Kumar et al., 2023; Ma et al., 2025). Such parallelism in  
451 faults is evident near fault F4, where the absence of linked fault segments commonly  
452 associated with strike-slip deformation further indicates extensional tectonics as being  
453 predominant in the Crotone Basin during the Lower Pliocene (**Figure 5d**). Consequently, the  
454 small-scale folds observed in the immediate hanging-wall of faults F2, F11 and F12,  
455 expressed as a gentle warping of seismic reflections, are associated with local drag folding  
456 developed during normal-fault motion (**Figures 5b and 6c**). The presence of drag folds in  
457 these areas also suggests mechanical heterogeneity and strain partitioning across faults F2,  
458 F11 and F12 (Mohammedyasin et al. 2016). All in all, such geological features - linear and  
459 parallel fault arrays, the formation of tilt blocks and local drag folds - are consistent with  
460 predominant extensional tectonics. Furthermore, the N-S and NNW-SSE- and NE-SW strikes  
461 of main fault segments are not aligned with the expected NW-SE orientation of younger,  
462 regional-scale strike-slip structures (**Figure 4a**), indicating that Early Pliocene faults are  
463 unlikely to have developed as part of the major shear zones associated with the long-term  
464 tectonic evolution of the Calabrian Arc.

466 A single exception to extensional faulting is recorded along fault F1, where its reactivation  
467 promoted strike-slip movement along inherited structures that pre-date Early Pliocene  
468 extensional tectonics (**Figure 5a**). Such an observation pertaining to fault F1 concurs with the  
469 model proposed in **Mangano et al. (2023a)**; faults along F1 reveal plan-view geometries  
470 that are sigmoidal and record systematic *en echelon* segmentation (**Figure 9**). In other  
471 words, the development of localized releasing stepovers and horsetail splays observed on  
472 attribute maps are diagnostic of a normal-oblique to strike-slip reactivation of F1 within an  
473 overall extensional regime (**Figure 9a**).

474

475 5.1.2 *Late Pliocene – Quaternary*

476 Upper Pliocene to Quaternary strata comprise multiple structures documenting strike-  
477 slip deformation. These structures mark a major shift between two fault deformation styles,  
478 i.e. from extensional to strike-slip tectonics. Based on the structural styles observed in seismic  
479 data, and the estimated EI plots, strike-slip motion was initiated in the Late Pliocene when

480 faults became curved and some fault blocks (bounded by **F5 and F6**) formed pull-apart sub-  
481 basins, which are recognized as negative flower structures on selected seismic profiles  
482 (**Figures 5a and 9b**). Under such a transtensional regime, pull-apart sub-basins were  
483 developed in the study area along faults F7, F8, F9 and F10 (**Figure 6a,b**). Adjacent to these,  
484 releasing stepovers can be observed and are characterized by a notable degree of fault  
485 parallelism and bending, reflecting localized zones of transtensional strain (**Figures 6a and**  
486 **9a**). All these features are predominantly NW-striking (**Figure 9a**). The new pull-apart sub-  
487 basins are typically narrow and elongated basins with a width/length ratio of 1:7, consistent  
488 with the morphology expected for transtensional basins (Mann et al., 2007) (**Figure 4b**). In  
489 such a context, the associated flower structures affecting Unit A (Late Pliocene-Quaternary)  
490 are linked to releasing beds and fault stepovers with *en echelon* fault segments in plan view  
491 (**Figures 5a and 9b**). Horsetail splays are additional structures suggesting strike-slip (see  
492 Mann et al., 2007), and occur as: a) fault segments curving away from master faults, and b)  
493 nearly linear splays that are subparallel to the principal zone of fault displacement (**Figure**  
494 **9b**). The resulting divergent and variably curvilinear to subparallel fault splays reflect  
495 progressive block rotation and variations in displacement direction along master faults,  
496 indicating strike-slip deformation in a transtensional tectonic regime (Choi et al., 2016; Kim  
497 et al., 2003, 2004; McGrath & Davison, 1995; Mouslopoulou et al., 2007; Zampieri &  
498 Massironi, 2007).

499 Stratigraphically, Upper Pliocene-Quaternary strata in Unit A show variable thickness on  
500 both sides of faults F5 to F10 coming from NE to SW, indicating transtensional activity along  
501 this interval (**Figures 5a and 6a, b**). The extracted EI values further indicate important fault  
502 activity since the Late Pliocene; faults F5 to F10 record EI values that are consistently greater  
503 than 1, suggesting syn-tectonic growth (**Figure 11**). Evidence for syn-tectonic growth is also  
504 documented along fault F3, which appears to have acted as a conjugate segment between  
505 adjacent strike-slip structures. As shown in the variance time slice at T=1108 ms (**Figure 10b**),  
506 fault F3 exhibits a nearly linear geometry, lacks oblique splays, and is limited by sigmoidal  
507 fault traces that are typical of active strike-slip zones.

## 509 **5.2 Geodynamic controls on the deformation styles**

### 511 **5.2.1 Early Pliocene**

512 The formation of an extensional fault system in the Early Pliocene can be linked to  
513 gravitational collapse of an overthickened block of the overriding plate, itself inherited from  
514 Late Messinian contractional/transpressional tectonics. In line with the framework proposed  
515 by Dewey (1988), lithospheric extension is preferentially recorded along orogenic belts due  
516 to their anomalously thick continental crust, elevated topography, and internal structural  
517 heterogeneities. Extensional collapse is driven by body forces acting to restore isostatic  
518 equilibrium, particularly where sharp elevation gradients and rapid advective thinning of the  
519 lithospheric mantle combine to enhance uplift and crustal instability. The Crotone Basin,  
520 located along the internal margin of the CAW, offers an ideal setting for such a gravitational  
521 readjustment.

522 Crustal collapse in the Early Pliocene is therefore interpreted in this work as a direct  
523 consequence of the compressional phase that affected the CAW during the Late Messinian  
524 (Polonia et al., 2011; Chizzini et al. 2022; Butler, 2009; Basso et al., 2021; Volpi et al., 2017).

525 This time period was marked by basin inversion, with uplift and interruption of arc migration  
526 likely driven by collision between the Calabrian Arc and the Apulian foreland, a  
527 compressional regime that not only promoted thickening within the CAW but also  
528 propagated stress into the foreland, leading to salt mobilization, inversion of inherited  
529 extensional structures, and localized development of new deformation (Somma, 2006; Del  
530 Ben et al., 2010; Massari and Prosser, 2013; Volpi et al., 2017; Zecchin et al., 2020; Cicala et  
531 al., 2021; Chizzini et al., 2023). Such a compression led to rapid crustal thickening along the  
532 internal margin of the Calabrian Arc, setting the conditions for later extensional faulting.

533 Seismic profiles reveal the presence of broad, structurally controlled negative features just  
534 beneath faults F2, F11 and F12 where crustal thickening inferred from the Late Messinian  
535 compressional phase seems to have enhanced gravitational instability (**Figures 5b and 6c**).  
536 These subsiding domains, interpreted as inherited zones of lower crustal or lithospheric  
537 weakness, are interpreted as the preferential loci for vertical loading, ultimately promoting  
538 localized extension in response to crustal thickening. In such a setting, the formation of  
539 extensional structures in the Early Pliocene reflects the mechanical response of the orogenic  
540 crust to Late Messinian shortening, and gravitational spreading acted as the main driver of  
541 fault nucleation and upper crustal deformation. Renewed tectonic movements along  
542 inherited strike-slip structures thus relate to discrete pulses of stretching in the Crotone Basin  
543 that responded to the forward migration of the Calabrian Arc. They were also coeval with  
544 the initial oceanization of the Vavilov sub-basin in the Tyrrhenian back-arc region (Nicolosi  
545 et al., 2006; Guillaume et al., 2010; Zecchin et al., 2013; Zecchin et al., 2020).

#### 546 5.2.2 Late Pliocene – Quaternary

547 The gradual imposition of a strike-slip tectonic regime after the Early Pliocene is  
548 documented in the study area by the formation of horsetail splays and negative flower  
549 structures that are subparallel to the strike of main faults (**Figure 9**). They are also  
550 accompanied by the opening of local pull-apart sub-basins in the areas where transtensional  
551 strain was accommodated (Mann et al., 2007). The linear to gently curving fault splays  
552 aligned with the shear direction of master faults (e.g. faults F1, F5 and F6) are characteristic  
553 of Riedel Shears (see Mann et al. 2007; Cubas and Klinger, 2020 and reference therein),  
554 splaying out of strike-slip faults whenever shear is parallel to the fault plane but orthogonal  
555 to the curving splays (**Figure 9b**). These structures are typically associated with asymmetric  
556 stress fields. Conversely, fault splays oriented at high angles to a master fault are formed  
557 wherever shear is parallel both to the fault plane and to the splay itself, and reflect a more  
558 symmetric stress distribution around master faults (Atkinson, 1989; Choi et al., 2016; Dooley  
559 & Schreurs, 2012; Kim et al., 2003, 2004; McGrath & Davison, 1995) (**Figure 9**).

560 The spatial distribution of horsetail splays provides valuable insights into the direction of  
561 fault propagation. In particular, the occurrence of these splays on the footwall blocks  
562 suggests that master faults (e.g. faults F1, F5) propagated downward (**Figure 5a**). This  
563 interpretation aligns with previous studies demonstrating that horsetail splays forming in  
564 hanging-wall blocks typically reflect the upward propagation of fault tips, whereas their  
565 development on footwall blocks indicates a downward propagation (Friedman & Logan,  
566 1970; McGrath & Davison, 1995; Del Ben et al., 2010). Hence, the geometric and spatial  
567 characters of horsetail splays not only reflect localized stress distribution at the fault tip, but

569 also serve as kinematic markers of both the propagation direction and the oblique-slip  
570 nature of strike-slip systems.

571 Transtensional tectonics has dominated the study area since the Late Pliocene in the  
572 context of lateral fragmentation of the CAW's overriding slab. This resulted in varied fault  
573 displacements and the rotation of crustal blocks that are internal to the Calabrian Arc  
574 (Scheepers et al. 1993; Duermeijer et al. 1998; Van Dijk and Scheepers 1995). Normal-oblique  
575 strike-slip movements were accommodated by the Sibari and Catanzaro strike-slip faults,  
576 leading northern Calabria to change its movement from E to ESE (Del Ben et al., 2008) (**Figure**  
577 **1a**). This process was controlled by the presence of two distinct foreland domains in terms  
578 of subduction resistance (i.e. continental Apulian and the oceanic Ionian), with the caveat  
579 that some authors interpret the Ionian plate as a hyper-extended continental crust (Platt and  
580 Vissers, 1989; Calvert et al., 2000).

581 Despite these alternative views, we favor an oceanic model in this work because recent  
582 wide-angle seismic, refraction, and potential-field data provide robust, internally consistent  
583 evidence for a thin (6–7 km), high-velocity crust and a shallow Moho beneath the Ionian  
584 Abyssal Plain - characteristics that are diagnostic of Mesozoic oceanic lithosphere. In  
585 particular, the velocity structure and Moho geometry documented by Dannowski et al.  
586 (2019) and the margin architecture and crustal affinities synthesized by Tugend et al. (2019)  
587 demonstrate that the Ionian Basin represents a preserved remnant of the Neo-Tethyan  
588 ocean domain. These findings align with earlier geophysical and geological studies  
589 supporting an oceanic crustal nature for the Ionian Basin (Finetti and Del Ben, 1986;  
590 Lanzafame and Bousquet, 1997; Gvirtzman and Nur, 1999; Argnani, 2000; Doglioni et al.,  
591 2001; Rosenbaum and Lister, 2004; Finetti, 2005). Despite the above crustal deformation  
592 processes, a relationship between transtensional tectonics along the Rossano-San Nicola  
593 Fault Zone and the left-lateral activation of the Sibari and Catanzaro strike-slip faults cannot  
594 be ruled out. Strike-slip movement along the Rossano-San Nicola Fault Zone can be referred  
595 as the development of conjugate structures in an *en echelon* arrangement with respect to  
596 the regional shear zone, which is WNW–ESE striking (**Figure 1a**). Strike-slip movements after  
597 the Lower Pliocene were also concomitant with the fast spreading of the Marsili sub-basin  
598 in the CAW's backarc region, at a rate of c. 19 mm/year (Nicolosi et al., 2006). This phase of  
599 fast ocean spreading occurred together with inception of the southern sector of the Messina  
600 Strait (Del Ben et al., 2008). Therefore, the strike-slip tectonics documented in this work  
601 reflects the rheological asymmetry of the central Mediterranean foreland. Ultimately, the  
602 contrasting mechanical behaviors of the more rigid Apulian continental lithosphere relative  
603 to the denser (but more deformable) Ionian ocean domain, provide the fundamental control  
604 on the segmentation of the overriding plate and its Calabrian Arc.

605

## 606 **6. Conclusions**

607 This paper investigated the various deformation styles associated with episodic tectonic  
608 pulses affecting the offshore sector of the Crotone Basin after the Miocene. This was  
609 achieved via the interpretation and mapping of tectonic faults by using high-quality 3-D

610 seismic reflection data. These data were tied to stratigraphic information gathered from nine  
611 (9) exploration boreholes, and were complemented by the measurement of Expansion  
612 Indices (EI) to quantify fault activity. The main conclusions from this work are summarized as  
613 follows:

614 a) Distributed extensional faulting started in the Early Pliocene in response to the  
615 gravitational collapse of an overthickened orogenic crust. This is better documented by the  
616 presence of N-striking normal faults and associated half-grabens, tilt blocks and local drag  
617 folds. Such normal faults are linear in plan view.

618 b) The presence of structurally controlled negative flower structures beneath some of the  
619 interpreted faults suggests a mechanical response to crustal instability inherited from Late  
620 Messinian shortening. Such an extensional tectonic style marks a post-collisional response  
621 to crustal overthickening produced by the convergence between the Calabrian Arc and the  
622 Apulian foreland.

623 c) Following the Late Messinian contractional/transpressional phase, crustal thickening  
624 and elevated topography drove vertical loading and orogenic extension along pre-existing  
625 structural weaknesses. This event was also concomitant with Ionian slab rollback, fast forward  
626 arc migration, and the onset of ocean spreading within the Vavilov sub-basin in the backarc  
627 area of the Calabrian Arc.

628 d) A transtensional regime took over the study area in the Late Pliocene due to the  
629 fragmentation of the overriding plate in response to the contrasting rheological behavior of  
630 adjacent foreland domains — the Apulian continental block and the Ionian oceanic  
631 lithosphere. This is demonstrated by the development of pull-apart zones and negative  
632 flower structures along NW– and NNW–striking fault zones.

633 e) Structural-kinematic indicators, including sigmoidal fault traces, releasing bends,  
634 horsetail splays, and *en echelon* fault arrangements, suggest a dominant normal oblique-slip  
635 mechanism consistent with the transition from extensional collapse to transtensional  
636 tectonics.

637 f) Notably, the Rossano-San Nicola Fault Zone may have acted as a conjugate structure  
638 of a regional WNW–ESE fault zones, forming part of a broader pattern of oblique  
639 deformation internal to the Calabrian Arc. This deformation style reflects the  
640 accommodation of differential displacement rates imposed by the contrasting rheological  
641 properties of the adjacent Apulian and Ionian forelands; a pattern consistent with a tectonic  
642 framework governed by lithospheric heterogeneity and diachronous foreland-arc  
643 interactions.

644

645 In summary, the evolution of the Crotone Basin reflects the interplay between regional  
646 convergence, slab rollback, and inherited structural fabrics. The transition from pure  
647 extension to oblique strike-slip faulting is closely linked to the differential subduction of  
648 heterogeneous foreland domains, and the dynamic evolution of the central Mediterranean  
649 backarc system as a whole.

650

651 **Acknowledgments**

652 Geophysical and geological data were generously supplied by ENI Natural Resources. We also thank Schlumberger for granting  
653 academic licenses for Petrel® software to the University of Calabria. We sincerely thank the Editor in Chief Federico Rossetti, the  
654 anonymous associate editor, reviewer D. Sakellariou, and two other anonymous reviewers, for their valuable and constructive comments,  
655 which improved the quality of the first submitted draft.

656

657 **Open Research**

658 Data availability. All data underlying the findings of this study are fully included in the main text and supplementary materials of this  
659 manuscript. Due to a confidentiality agreement with our industrial partner ENI NR, the raw data cannot be stored in a public repository.

660 Software availability. Structural modeling and visualization were performed using Petrel® software by Schlumberger. The software is  
661 proprietary and was used under an academic license granted to the University of Calabria. Petrel® is not publicly available for download.  
662 No custom scripts were developed for this study.

663 **Conflict of interest statement**

664 The authors have no conflicts of interest to disclose.

665

666 **References**

667 Argnani, A.(2000). The Southern Tyrrhenian subduction system: Recent evolution and neotectonic implication. *Annali di Geofisica*,43, 585–  
668 607

669 Atkinson, B. K.(Ed.). (1989).Fracture Mechanics of Rock. London: Academic Press

670 Basso, J., Artoni, A., Torelli, L., Polonia, A., Carlini, M., Gasperini, L. & Mussoni, P. (2021). Oblique plate collision and orogenic translation of  
671 the Southern Apennines revealed by post -Messinian interregional unconformities in the Bradano Basin (Ionian Sea - Central  
672 Mediterranean). *Marine and Petroleum Geology*. 128, 104999. <https://doi.org/10.1016/j.marpetgeo.2021.104999>

673 Barone, A., A. Fabbri, S. Rossi, & R. Sartori (1982). Geological structure and evolution of the marineareas adjacent to the Calabrian Arc,  
674 *Earth Evol.Sci.*, 3, 207–221

675 Belayouni, H., Guerrera, F., Martin-Martin, M., Le Breton, E., & Tramontana, M. (2023).The Numidian formation and its lateral successions  
676 (Central-Western Mediterranean): A review. *International Geology Review*, 65(22), 3570-3602

677 Bird, P. (1979). Continental delamination and the Colorado Plateau. *Journal of Geophysical Research: Solid Earth*, 84(B13), 7561-7571

678 Bonardi, G., Cavazza, W., Perrone, V., & Rossi, S. (2001). Calabria-Peloritani terrane and northern Ionian Sea. In: *Vai, G. B., & Martini, I. P.*  
679 (Eds.), *Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins* (pp. 287–306). Kluwer Academic Publishers, Dordrecht,  
680 Netherlands

681 Borrelli, M., Perri, E., Critelli, S., Gindre-Chanu, L. 2021. The onset of the Messinian Salinity Crisis in the central Mediterranean recorded by  
682 pre-salt carbonate/evaporite deposition. *Sedimentology* 68, 1159–1197, doi: 10.1111/sed.12824.

683 Borrelli, M., Perri, E., Avagliano, D., Coraggio, F., Critelli, S., 2022. Paleogeographic and sedimentary evolution of North Calabrian basins  
684 during the Messinian Salinity Crisis (South Italy). *Marine and Petroleum Geology*, v. 141, Article number 105726, doi:  
685 10.1016/j.marpetgeo.2022.105726.

686 Brown, A. R. (2004). Interpretation of three-dimensional seismic data (6th ed.). *AAPG Memoir 42, SEG Investigations in Geophysics*. Tulsa:  
687 American Association of Petroleum Geologists

688 Brown, A. (2004). Interpretation of Three-Dimensional Seismic Data, Sixth. ed. American Association of Petroleum Geologists (AAPG), Tulsa

689 Brune, S., Kolawole, F., Olive, J. A., Stamps, D. S., Buck, W. R., Buit, S. J., Furman, T. & Shillington, D. J. (2023). Geodynamics of continental  
690 rift initiation and evolution. *Nature Reviews Earth & Environment*, 4(4), 235-253

691 Brune, S., Williams, S. E., Butterworth, N. P., & Müller, R. D. (2023). Rift dynamics and architecture from 3D seismic: Examples from the  
692 Atlantic margins. *Tectonics*, 42(3), e2023TC007123

693 Butler, R.W.H. (2009). Relationships between the Apennine thrust belt, foredeep and foreland revealed by marine seismic data, offshore  
694 Calabria. *Boll. della Soc. Geol. Ital.* 128, 269–278. <https://doi.org/10.3301/JG.2009.128.2.269>

695 Calvert, A., E. Sandvol, D. Seber, M. Barazangi, S. Roecker, T. Mourabit, F. Vidal, G. Alguacil, and N. Jabour (2000), Geodynamic evolution of  
696 the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography, *J.*  
697 *Geophys. Res.*, 105, 10,871 – 10,898.

698 Camerlenghi, A., Del Ben, A., Hübscher, C., Forlin, E., Geletti, R., Brancatelli, G., Micallef, A., Saule, M. & Facchin, L. (2020). Seismic markers  
699 of the Messinian salinity crisis in the deep Ionian Basin. *Basin Research* 32, 716–738. <https://doi.org/10.1111/bre.12392>

700 Cartwright, J. A., & Mansfield, C. S. (1998). Lateral displacement variation and lateral tip geometry of normal faults in the Canyonlands  
701 National Park, Utah. *Journal of Structural Geology*, 20(1), 3–19.[https://doi.org/10.1016/S0191-8141\(97\)00079](https://doi.org/10.1016/S0191-8141(97)00079)

702 Cavalcante, C., Fossen, H., Lagoeiro, L., & Taufner, R. (2024). The collapse of the Caledonian orogen in SW Norway: Insights from quartz  
703 textures. *Journal of Structural Geology*, 189, 105274

704 Cavazza, W., DeCelles, P.G., (1998). Upper Messinian siliciclastic rocks in southeastern Calabria (southern Italy): palaeotectonic and eustatic  
705 implications for the evolution of the central Mediterranean region. *Tectonophysics* 298, 223–241

706 Ceramicola, S., Cova, A., Forlin, E., Markezic, N., Mangano, G., Civile, D., Zecchin, M., Fanucci, F., Colizza, E., Corselli, C., Morelli, D., Savini, A.,  
707 Caburlotto, A., Candoni, O., Coste, M., Cotterle, D., Critelli, S., Cuppari, A., Deponte, M., Dominici, R., Facchin, L., Gordini, E., Locatelli, M.,  
708 Muto, F., Praeg, D., Romeo, R., & Tessarolo, C. (2024). Geohazard features of the Ionian Calabrian margin. *Journal of Maps*, 20(1), 2349785

709 Chamot-Rooke, N., Laigle, M., Gutscher, M.-A., & Klaeschen, D. (2005). The structural framework of the Calabrian Arc and Mediterranean  
710 Ridge. *Earth and Planetary Science Letters* 233, 1–18. <https://doi.org/10.1016/j.epsl.2005.01.006>

711 Chaumillon, E., & Mascle, J. (1997). From foreland to forearc domains: new multichannel seismic reflection survey of the Mediterranean  
712 Ridge accretionary complex (Eastern Mediterranean). *Marine Geology*, 138(3-4), 237-259

713 Chiarabba, C., De Gori, P. & Speranza, F. (2008). The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-  
714 Pleistocene evolution. *Earth Planet Sci. Lett.* 268, 408–423

715 Chizzini, N., Artoni, A., Torelli, L., Polonia, A., Qadir, A., & Gasperini, L. (2025). Accretionary wedge collision in the Ionian Sea: Timing and  
716 movement of the Calabrian Arc and the Mediterranean Ridge in the central Mediterranean Sea. *Gondwana Research* 144, 212–238.  
717 <https://doi.org/10.1016/j.gr.2025.04.011>

718 Chizzini, N., Artoni, A., Torelli, L., Basso, J., Polonia, A. & Gasperini, L. (2022). Tectono-stratigraphic evolution of the offshore Apulian Swell,  
719 a continental sliver between two converging orogens (Northern Ionian Sea, Central Mediterranean). *Tectonophysics* 839.  
720 <https://doi.org/10.1016/j.tecto.2022.229544>

721 Chizzini, N., Artoni, A., Torelli, L., Maiorana, M., & Sulli, A. (2023). Evidence of new diapiric structures in the southern Adria Plate (Eastern  
722 Margin of Tethyan Ocean): Implications for Triassic paleogeography and evaporites remobilization during subduction/collision (Northern  
723 Ionian Sea, Central Mediterranean). *Marine Geology* 465. <https://doi.org/10.1016/j.margeo.2023.107162>

724 Choi, J. H., Edwards, P., Ko, K., & Kim, Y. S. (2016). Definition and classification of fault damage zones: A review and a new methodological  
725 approach. *Earth-Science Reviews*, 152, 70–87. <https://doi.org/10.1016/j.earscirev.2015.11.006>

726 Cicala, M., Festa, V., Sabato, L., Tropeano, M., & Doglioni, C. (2021). Interference between Apennines and Hellenides foreland basins around  
727 the Apulian swell (Italy and Greece). *Marine and Petroleum Geology* 133. <https://doi.org/10.1016/j.marpetgeo.2021.105300>

728 Civile, D., Mangano, G., Micallef, A., Lodolo, E., & Baradello, L. (2024). A Failed Rift in the Eastern Adventure Plateau (Sicilian Channel, Central  
729 Mediterranean). *Journal of Marine Science and Engineering*, 12(7), 1142

730 Civile, D., Zecchin, M., Tosi, L., Da Lio, C., Muto, F., Sandron, D., Affatato, A., Accettella, D., & Mangano, G. (2022). The Petilia-Sosti Shear  
731 Zone (Calabrian Arc, southern Italy): An onshore-offshore regional active structure. *Marine and Petroleum Geology*, 141, 105693

732 Critelli, S. & Criniti, S. (2021). Sandstone Petrology and Provenance in Fold Thrust Belt and Foreland Basin System, *in* Ali Ismail Al-Juboury  
733 , ed., *Sedimentary Petrology - Implications in Petroleum Industry*: Intech Open Access Publisher, Janeza Trdine 9, Rijeka, Croatia, p. 1-15,  
734 doi: 10.5772/intechopen.96985.

735 Critelli, S., & Martín-Martín, M. (2022). Provenance, paleogeographic and paleotectonic interpretations of Oligocene-Lower Miocene  
736 sandstones of the western-central Mediterranean region: A review. *Journal of Asian Earth Sciences*: X, 8, 100124

737 Critelli, S. & Martín-Martín, M. (2024). History of western Tethys Ocean and the birth of the circum-Mediterranean orogeny as reflected by  
738 source-to-sink relations. *International Geology Review*, v. 66 (2), p. 505-515, doi: 10.1080/00206814.2023.2280787.

739 Critelli, S. (1999). The interplay of lithospheric flexure and thrust accomodation in forming stratigraphic sequences in the southern  
740 Apennines foreland basin system, Italy. *Rendiconti Lincei* 10(4), 257-326

741 Critelli, S., Martín-Martín, M., Capobianco, W., & Perri, F. (2021). Sedimentary history and palaeogeographic of the Cenozoic clastic wedges  
742 of the Mal' aguide Complex, Internal Betic cordillera Southern Spain. *Marine Petrol. Geol.* 124, 104775

743 Critelli, S., Perri, F., Arribas, J. & Herrero, M.J. (2018). Sandstone detrital modes and diagenetic evolution of Mesozoic continental redbeds  
744 from western-central circum-Mediterranean orogenic belts, *in* Ingersoll, R.V., Lawton, T.F., Graham, S., eds., *Tectonics, Sedimentary Basins*  
745 and Provenance: A Celebration of William R. Dickinson's Career: *Geological Society of America Special Paper* 540, p. 119-132 doi:  
746 10.1130/2018.2540(06).

747 Cubas, N., & Klinger, Y. (2020). Experimental evidence for crustal control over seismic fault segmentation. <https://doi.org/10.1130/G47115.1>

748 Dalmayrac, B., & Molnar, P. (1981). Parallel thrust and normal faulting in Peru and constraints on the state of stress. *Earth and Planetary  
749 Science Letters*, 55(3), 473-481

750 Dannowski, A., Kopp, H., Klingelhoefer, F., Klaeschen, D., Gutscher, M. A., Krabbenhoft, A., Dellong, D., Rovere, M., Graindorge, D.,  
751 Papenberg, D., & Klaucke, I. (2019). Ionian Abyssal Plain: A window into the Tethys oceanic lithosphere. *Solid Earth*, 10(2), 447-462.

752 Del Ben, A., Geletti, R., & Mocnik, A. (2010). Relation between recent tectonics and inherited Mesozoic structures of the central-southern  
753 Adria plate. *Boll. di Geofis. Teor. ed Appl.* 51, 99–115.

754 DeCelles, P.G., Cavazza, W., & (1995). Upper Messinian conglomerates in Calabria, southern Italy: response to orogenic wedge adjustment  
 755 following Mediterranean sea-level changes. *Geology* 23, 775–778

756 Del Ben, A., Barnaba, C., & Taboga, A. (2008). Strike-slip systems as the main tectonic features in the Plio-Quaternary kinematics of the  
 757 Calabrian Arc. *Mar. Geophys. Res.* 29, 1–12

758 Dewey, J. F. (1988). Extensional collapse of orogens. *Tectonics*, 7(6), 1123–1139

759 Dewey, J. F., Helman, M. L., Knott, S. D., Turco, E., & Hutton, D. H. W. (1989). Kinematics of the western Mediterranean. *Geological Society, London, Special Publications*, 45(1), 265–283

761 Doglioni, C. (1991). A proposal of kinematic modelling for W-dipping subductions-possible applications to the Tyrrhenian–Apennines  
 762 system. *Terra. Nova* 3, 423–434

763 Doglioni, C., Innocenti, F., & Mariotti, G. (2001). Why Mt Etna?. *Terra Nova*, 13(1), 25–31

764 Dooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike-slip tectonics: A review and new experimental  
 765 results. *Tectonophysics*, 574, 1–71

766 Duermeijer, C. E., Van Vugt, N., Langereis, C. G., Meulenkamp, J. E., & Zachariasse, W. J. (1998). A major late Tortonian rotation phase in the  
 767 Crotone basin using AMS as tectonic tilt correction and timing of the opening of the Tyrrhenian basin. *Tectonophysics*, 287(1–4), 233–249

768 Ebinger, C. J., Yemane, T., Woldegabriel, G., Aronson, J. L., & Walter, R. C. (1993). Late Eocene–Recent volcanism and faulting in the southern  
 769 main Ethiopian rift. *Journal of the Geological Society*, 150(1), 99–108

770 Elliot, D. H., Larsen, D., Fanning, C. M., Fleming, T. H., & Vervoort, J. D. (2017). The Lower Jurassic Hanson Formation of the Transantarctic  
 771 Mountains: implications for the Antarctic sector of the Gondwana plate margin. *Geological Magazine*, 154(4), 777–803

772 England, P. C., & Houseman, G. A. (1988). The mechanics of the Tibetan Plateau. *Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences*, 326(1589), 301–320.

773 Faccenna, C., Becker, T. W., Luente, F. P., Jolivet, L., & Rossetti, F. (2001). History of subduction and back arc extension in the Central  
 775 Mediterranean. *Geophysical Journal International*, 145(3), 809–820

776 Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., & Rossetti, F. (2004). Lateral slab deformation and the origin of the western  
 777 Mediterranean arcs. *Tectonics*, 23(1)

778 Feraud, G. (1990). 39Ar-40Ar analysis on basaltic lava series of Vavilov basin, Tyrrhenian sea (ocean drilling program, leg 107, holes 655B  
 779 and 651A). In: In: Kastens, K.A., Mascle, J. (Eds.). *Proceedings of the Ocean Drilling Program, Scientific Results*, vol. 107. *Ocean Drilling  
 780 Program, College Station, Texas*, pp. 93–97

781 Finetti IR (ed) (2005). CROP Project: deep seismic exploration of the Central Mediterranean and Italy. *Atlases in Geoscience*, vol 1. Elsevier

782 Finetti I, & Del Ben A (1986). Geophysical study of the Tyrrhenian opening. *Boll Geofis Teor Appl* 28(110):75–155

783 Finetti, I. (1982). Structure, stratigraphy and evolution of central Mediterranean. *Boll. Geofis. Teor. Appl.*, 24, 247–312

784 Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C., Dmitrieva, E., Mayser, J. P.,  
 785 Marzocchi, A., Modestou, S., Ochoa, D., Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., de Lange, G., Ellam, R., Govers, R.,  
 786 Gutjahr, M., Hilgen, F., Kouwenhoven, T., [Lofi](#), J., & Yousfi, M. Z. (2015). Evolution of the Late Miocene Mediterranean–Atlantic gateways  
 787 and their impact on regional and global environmental change. *Marine Geology* 352, 25–58Gallais, F., Gutscher, M.-A., Klaeschen, D., &  
 788 Graindorge, D. (2012). Two-stage growth of the Calabrian accretionary wedge in the Ionian Sea (Central Mediterranean): constraints from  
 789 depth-migrated multichannel seismic data. *Marine Geology* 326–328, 28–45. <https://doi.org/10.1016/j.margeo.2012.08.006>

790 Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono-sedimentary evolution of active extensional basins. *Basin Research*, 12(3–4), 195–218

791 Govers, R., Meijer, P., & Rijgsman, W. (2009). Regional isostatic response to messinian salinity crisis events. *Tectonophysics* 463, 109–129

792 Guerrera, F., & Martín-Martín, M. (2014). Geodynamic events reconstructed in the Betic, Maghrebian, and Apennine chains (central-western  
 793 Tethys). *Bulletin de la Société géologique de France*, 185(5), 329–341

794 Guerrera, F., Martín-Algarra, A., & Martín-Martín, M. (2012). Tectono-sedimentary evolution of the ‘Numidian Formation’ and Lateral Facies  
 795 (southern branch of the western Tethys): constraints for central-western Mediterranean geodynamics. *Terra Nova*, 24(1), 34–41

796 Guillaume, B., Funiciello, F., Faccenna, C., Martinod, J., & Olivetti, V. (2010). Spreading pulses of the Tyrrhenian sea during the narrowing of  
 797 the calabrian slab. *Geology* 38, 819–822

798 Gvirtzman, Z., & Nur, A. (1999). The formation of Mount Etna as the consequence of slab rollback. *Nature*, 401(6755), 782–785

799 Gvirtzman, Z. & Nur, A. (2001). Residual topography, lithospheric structure and sunken slabs in the central Mediterranean. *Earth Planet Sci.  
 800 Lett.* 187, 117–130

801 Heron, P. J., Pysklywec, R. N., & Stephenson, R. (2016). Lasting mantle scars lead to perennial plate tectonics. *Nature communications*, 7(1), 11834

803 Hilgen, F.J., Kuiper, K.F., Krijgman, W., Snel, E., & van der Laan, E. (2007). High-resolution integrated stratigraphy and astronomical tuning  
804 as prerequisites for deciphering the intricate history of the Messinian salinity crisis. *Stratigraphy* 4, 231–238

805 Hongxing, G., & Anderson, J. K. (2007). Fault throw profile and kinematics of Normal fault: conceptual models and geologic  
806 examples. *Geological Journal of China Universities*, 13(1), 75

807 Hosseinpour, M., Williams, S., Seton, M., Barnett-Moore, N., & Müller, R. D. (2016). Tectonic evolution of Western Tethys from Jurassic to  
808 present day: coupling geological and geophysical data with seismic tomography models. *International Geology Review*, 58(13), 1616-1645

809 Jackson, J., & McKenzie, D. (1983). The geometrical evolution of normal fault systems. *Journal of Structural Geology*, 5(5), 471-482

810 Kastens, K., Mascle, J., Auroux, C., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K-C., Glacon, G., Hasegawa, S., Hieke, W., Mascle, G.,  
811 McCoy, F., McKenzie, J., Muller, J. M. C., Rehault, J-P., Robertson, A., Sartori, R., Sprovieri, R., & Torii, M. (1988). ODP Leg 107 in the Tyrrhenian  
812 Sea: Insights into passive margin and back-arc basin evolution. *Geological Society of America Bulletin*, 100(7), 1140-1156.

813 Kim, Y. S., Peacock, D. C. P., & Sanderson, D. J. (2003). Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta.  
814 *Journal of Structural Geology*, 25(5), 793–812. [https://doi.org/10.1016/S0191-8141\(02\)00200](https://doi.org/10.1016/S0191-8141(02)00200)-Kim, Y. S., Peacock, D. C., & Sanderson, D. J.  
815 (2004). Fault damage zones. *Journal of Structural Geology*, 26(3), 503–517. <https://doi.org/10.1016/j.jsg.2003.08.002>

816 Krijgsman, W., Capella, W., Simon, D., Hilgen, F. J., Kouwenhoven, T. J., Meijer, P. T., & Flecker, R. (2018). The Gibraltar corridor: Watergate  
817 of the Messinian salinity crisis. *Marine Geology*, 403, 238-246.

818 Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., & Wilson, D.S. (1999). Chronology, causes and progression of the Messinian salinity crisis.  
819 *Nature* 400, 652–655

820 Krijgsman, W., Rohling, E. J., Palcu, D. V., Raad, F., Amarathunga, U., Flecker, R., Florindo, F., Roberts, A. P., Sierro, J. F., & Aloisi, G. (2024).  
821 Causes and consequences of the Messinian salinity crisis. *Nature Reviews Earth & Environment*, 5(5), 335-350.

822 Kumar, P. C., Sain, K., & Omosanya, K. O. L. (2023). Geometry and Kinematics of strike-slip faults in the Dibrugarh field of the Upper Assam  
823 foreland basin, NE India. *Marine and Petroleum Geology*, 153, 106291

824 Labrousse, L., Prouteau, G., & Ganzhorn, A. C. (2011). Continental exhumation triggered by partial melting at ultrahigh  
825 pressure. *Geology*, 39(12), 1171-1174

826 Lanzafame, G., & Bousquet, J. C. (1997). The Maltese escarpment and its extension from Mt. Etna to Aeolian Islands (Sicily): importance  
827 and evolution of a lithosphere discontinuity. *Acta Vulcanologica*, 9, 113-120

828 Ma, B., He, Y., Chen, L., Wu, G., Dong, H., Wang, J., Yao, J., & Liu, X. (2025). Linkage, evolution and formation mechanism of the partially-  
829 thoroughgoing intra-cratonic conjugate strike-slip fault system in the northern Tarim Basin, NW China. *Journal of Asian Earth Sciences*,  
830 106784.

831 Maesano, F.E., Tiberti, M.M., & Basili, R. (2017). The Calabrian Arc: Three-dimensional modelling of the subduction interface. *Scientific  
832 Reports* 7 (1), 1–15. <https://doi.org/10.1038/s41598-017-09074-8>

833 Malinverno, A., & Ryan, W. B. (1986). Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by  
834 sinking of the lithosphere. *Tectonics*, 5(2), 227-245

835 Mangano, G., Alves, T. M., Zecchin, M., Civile, D., & Critelli, S. (2023). The Rossano–San Nicola Fault Zone evolution impacts the burial and  
836 maturation histories of the Crotone Basin, Calabrian Arc, Italy. *Petroleum Geoscience*, 29(2), petgeo2022-085

837 Mangano, G., Ceramicola, S., Alves, T. M., Zecchin, M., Civile, D., Del Ben, A., & Critelli, S. (2023a). A new large-scale gravitational complex  
838 discovered in the Gulf of Squillace (central Mediterranean): tectonic implications. *Scientific reports*, 13(1), 14695

839 Mangano, G., Ceramicola, S., Zecchin, M., Brancatelli, G., & Critelli, S. (2021, September). Geohazard-related geomorphic features in the  
840 Crotone-Spartivento Basin (Southern Italy): an expression of Calabrian Arc kinematics. In *Offshore Mediterranean Conference and  
841 Exhibition* (pp. OMC-2021). OMC

842 Mangano, G., Zecchin, M., & Civile, D. (2020). Large-scale gravity-driven phenomena in the Crotone Basin, southern Italy. *Marine and  
843 Petroleum Geology*, 117, 104386

844 Mangano, G., Zecchin, M., Civile, D., & Critelli, S. (2024). Tectonic evolution of the Crotone Basin (central Mediterranean): The important  
845 role of two strike-slip fault zones. *Marine and Petroleum Geology*, 163, 106769

846 Mangano, G., Zecchin, M., Civile, D., Ceramicola, S., Donato, A., Muto, F., Tripodi, V., & Critelli, S. (2022). Mid-miocene to recent tectonic  
847 evolution of the punta stilo swell (calabrian arc, southern Italy): an effect of calabrian arc migration. *Marine Geology*, 448, 106810

848 Mann, P., DeMets, C., & Wiggins-Grandison, M. (2007). Toward a better understanding of the Late Neogene strike-slip restraining bend in  
849 Jamaica: geodetic, geological, and seismic constraints.

850 Massari, F., & Prosser, G. (2013). Late Cenozoic tectono-stratigraphic sequences of the Crotone Basin: insights on the geodynamic history  
851 of the Calabrian arc and Tyrrhenian Sea. *Basin Research*, 25(1), 26-51

852 Mattei, M., Cifelli, F., & D'Agostino, N. (2007). The evolution of the Calabrian Arc: evidence from paleomagnetic and GPS observations.  
853 *Earth Planet Sci. Lett.* 263, 259–274

854 Mattei, M., Petrocelli, V., Lacava, D., & Schiattarella, M. (2004). Geodynamic implications of Pleistocene ultrarapid vertical-axis rotations in  
855 the Southern Apennines. Italy. *Geology* 32, 789–792

856 Mcculloh, R. P. (1988). Differential fault-related early Miocene sedimentation, Bayou Hebert area, southwestern Louisiana. *AAPG  
857 bulletin*, 72(4), 477-492

858 McGrath, A. G., & Davison, I. (1995). Damage zone geometry around fault tips. *Journal of Structural Geology*, 17(7), 1011–1024.  
859 [https://doi.org/10.1016/0191-8141\(94\)00116-H](https://doi.org/10.1016/0191-8141(94)00116-H)

860 Meulenkamp, J. E., & Hilgen, F. J. (1986). Event stratigraphy, basin evolution and tectonics of the Hellenic and Calabro-Sicilian arcs.  
861 In *Developments in Geotectonics* (Vol. 21, pp. 327-350).

862 Minelli, L., & Faccenna, C. (2010). Evolution of the Calabrian accretionary wedge (central Mediterranean). *Tectonics*, 29(4)

863 Mitchum, R.M., Vail, P.R., & Thompson, S. (1977). Seismic stratigraphy and global changes of Sea level, Part 2: the depositional sequence  
864 as a basic unit for stratigraphic analysis. In: *Seismic Stratigraphy Applied to Hydrocarbon Exploration*, vol. 26. AAPG Memoir, pp. 53–62

865 Mohammedyasin, S. M., Lippard, S. J., Omosanya, K. O., Johansen, S. E., & Harishidayat, D. (2016). Deep-seated faults and hydrocarbon  
866 leakage in the Snøhvit Gas Field, Hammerfest Basin, southwestern Barents Sea. *Marine and Petroleum Geology*, 77, 160-178

867 Molnar, P., & Tappouner, P. (1975). Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics  
868 in Asia can be interpreted as results of the India-Eurasia collision. *Science*, 189(4201), 419-426

869 Mouslopoulou, V., Nicol, A., Little, T. A., & Walsh, J. J. (2007). Displacement transfer between intersecting regional strike-slip and extensional  
870 fault systems. *Journal of Structural Geology*, 29(1), 100–116.<https://doi.org/10.1016/j.jsg.2006.08.002>

871 Mouslopoulou, V., Begg, J.G., Polonia, A., Nicol, A., Reston, T.J., Cesca, S., Giba, M., & Gasperini, L. (2025). Hellenic Subduction System and  
872 Upper-Plate Structures Revealed by Deep High-Resolution Seismic-Reflection Profiles and Seafloor Bathymetry. *Tectonics* 44.  
873 <https://doi.org/10.1029/2025TC008943>

874 Muto F., Spina V., Tripodi V., Critelli S., 2014, Tectonostratigraphic Neogene evolution of the allochthonous terrane in the Eastern Calabrian  
875 Foreland (Southern Italy). *Italian Journal of Geosciences*, v. 133, p. 455-473, doi: 10.3301/IJG.2014.23.

876 Nicolosi, I., Speranza, F., & Chiappini, M. (2006). Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from  
877 magnetic anomaly analysis. *Geology*, 34(9), 717-720

878 Nicolosi, I., Speranza, F., Chiappini, M., 2006. Ultrafast oceanic spreading of the Marsili basin, southern Tyrrhenian Sea. Evidence from  
879 magnetic anomaly analysis. *Geology* 34, 717–720

880 Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. *Journal of Structural  
881 Geology*, 13(6), 721-733

882 Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2017). Interacting faults. *Journal of Structural Geology*, 97,  
883 1-22.

884 Peacock, D. C., & Sanderson, D. J. (1995). Strike-slip relay ramps. *Journal of Structural Geology*, 17(10), 1351-1360Platt, J. P., and R. L. M.  
885 Vissers (1989), Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc,  
886 *Geology*, 17, 540 – 543.

887 Pochat, S., Castelltort, S., Choblet, G., & Van Den Driessche, J. (2009). High-resolution record of tectonic and sedimentary processes in  
888 growth strata. *Marine and Petroleum Geology*, 26(8), 1350-1364

889 Pollock, J. (2025). The role of orogenic collapse on tectonic inheritance of passive continental margins. *Tectonics*, 44(1), e2023TC008207

890 Polonia, A., Camerlenghi, A., Davey, F., & Storti, F. (2002). Accretion, structural style and syncontrac-tional sedimentation in the eastern  
891 Mediterranean Sea. *Mar. Geol.*, 186, 127–144, doi:10.1016/S0025-3227(02)00176-7

892 Polonia, A., Torelli, L., Mussoni, P., Gasperini, L., Artoni, A., & Klaeschen, D. (2011). The Calabrian Arc subduction complex in the Ionian Sea:  
893 Regional architecture, active deformation, and seismic hazard. *Tectonics* 30. <https://doi.org/10.1029/2010TC002821>

894 Polonia, A., Torelli, L., Artoni, A., Carlini, M., Faccenna, C., Ferranti, L.,  
895 Gasperini, L., Govers, R., Klaeschen, D., Monaco, C., Neri, G., Nijholt, N., Orecchio, B., & Wortel, R. (2016). The Ionian and Alfeo–Etna fault  
896 zones: New segments of an evolving plate boundary in the central Mediterranean Sea? *Tectonophysics*, 675, 69-90

897 Rosenbaum, G., & Lister, G. S. (2004). Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian  
898 Maghrebides. *Tectonics*, 23(1)

899 Rossetti, F., Goffé, B., Monié, P., Faccenna, C., & Vignaroli, G. (2004). Alpine orogenic P-T-t-deformation history of the Catena Costiera area  
 900 and surrounding regions (Calabrian Arc, southern Italy): The nappe edifice of north Calabria revised with insights on the Tyrrhenian-  
 901 Apennine system formation. *Tectonics*, 23(6)

902 Rossi, S., & Sartori, R. (1981). A seismic reflection study of the external Calabrian Arc in the northern Ionian Sea (eastern  
 903 Mediterranean). *Marine Geophysical Researches*, 4(4), 403-426

904 Rossi, S., & Sartori, R. (1981). A seismic reflection study of the external Calabrian Arc in the northern Ionian Sea (eastern  
 905 Mediterranean). *Marine Geophysical Researches*, 4(4), 403-426

906 Rouby, D., Guillocheau, F., Robin, C., Bouroullac, R., Raillard, S., Castellort, S., Nalpas, T., & (2003). Rates of deformation of an extensional  
 907 growth fault/raft system (offshore Congo, West African margin) from combined accommodation measurements and 3-D restoration. *Basin  
 908 Res.* 15, 183e200

909 Royden, L. H. (1993). Evolution of retreating subduction boundaries formed during continental collision. *Tectonics*, 12(3), 629-638

910 Royden, L., & Faccenna, C. (2018). Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs. *Annual Review of Earth  
 911 and Planetary Sciences* 46, 261-289. <https://doi.org/10.1146/annurev-earth-060115-012419>

912 Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R.,  
 913 Hilgen, F. J., Hübscher, C., Meijer, P. T., & Stoica, M. (2014). The Messinian Salinity Crisis: past and future of a great challenge for marine  
 914 sciences. *Marine Geology*, 352, 25-58.

915 Sagnotti, L. (1992). Paleomagnetic evidence for a Pleistocene counterclockwise rotation of the Sant-Arcangelo Basin, southern Italy.  
 916 *Geophys. Res. Lett.* 19, 135-138

917 Sartori, R. (1990). The main results of ODP Leg 107 in the frame of Neogene to Recent geology of peri-Tyrrhenian areas. In *Proceedings of  
 918 the Ocean Drilling Program, Scientific Results* (Vol. 107, pp. 715-730)

919 Sawyer, D. S. (1985). Brittle failure in the upper mantle during extension of continental lithosphere. *Journal of Geophysical Research*, 90(B4),  
 920 3021-3025. <https://doi.org/10.1029/JB090iB04p03021>

921 Scheepers, P. J. J., Langereis, C. G., & Hilgen, F. J. (1993). Counter-clockwise rotations in the southern Apennines during the Pleistocene:  
 922 paleomagnetic evidence from the Matera area. *Tectonophysics*, 225(4), 379-410

923 Scheepers, P.J.J., Langereis, C.G., Zijderveld, J.D.A., Hilgen, F.J., 1994. Paleomagnetic evidence for a Pleistocene clockwise rotation of the  
 924 Calabro-Peloritan block (southern Italy). *Tectonophysics* 230, 19-48

925 Schettino, A., & Turco, E. (2011). Tectonic history of the western Tethys since the Late Triassic. *Bulletin*, 123(1-2), 89-105

926 Selverstone, J. (1988). Evidence for east-west crustal extension in the Eastern Alps: Implications for the unroofing history of the Tauern  
 927 Window. *Tectonics*, 7(1), 87-105

928 Sioni, S. (1996). Mer Ionienne et Apulie depuis l'over-ture de l'Ocean Alpin, *Ph.D. thesis, Univ. de Bretagne Occidentale, Brest*

929 Somma, R. (2006). The south-western side of the Calabrian Arc (Peloritani Mountains): Geological, structural and AMS evidence for passive  
 930 clockwise rotations. *Journal of Geodynamics* 41, 422-439. <https://doi.org/10.1016/j.jog.2005.11.001>

931 [Software] Schlumberger. (2024). Petrel® E&P Software Platform. Version 2024. Schlumberger Limited.  
 932 <https://www.software.slb.com/products/petrel>

933 Spakman, W. (1986). Subduction beneath Eurasia in connection with the mesozoic tethys. *Geol. Mijnbouw* 65, 145-153

934 Speranza, F., Macrì, P., Rio, D., Fornaciari, E., & Consolaro, C. (2011). Paleomagnetic evidence for a post-1.2 Ma disruption of the Calabria  
 935 terrane: consequences of slab breakoff on orogenic wedge tectonics. *Geol. Soc. Am. Bull.* 123, 925-933

936 Speranza, F., Mattei, M., Sagnotti, L., & Grasso, F., (2000). Rotational differences between the northern and southern Tyrrhenian domains:  
 937 palaeomagnetic constraints from the Amantea basin (Calabria, Italy). *J. Geol. Soc. London* 157, 327-334

938 Strugale, M., & Cartwright, J. (2022). Tectono-stratigraphic evolution of the rift and post-rift systems in the Northern Campos Basin, offshore  
 939 Brazil. *Basin Research*, 34(5), 1655-1687

940 Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., & Jingsui, Y. (2001). Oblique stepwise rise and growth of the Tibet  
 941 Plateau. *Science*, 294(5547), 1671-1677

942 Teyssier, C., Ferré, E. C., Whitney, D. L., Norlander, B., Vanderhaeghe, O., & Parkinson, D. (2005). Flow of partially molten crust and origin of  
 943 detachments during collapse of the Cordilleran orogen. <https://doi.org/10.1144/GSL.SP.2005.245.01.03>

944 Thorsen, C. (1963). Age of growth faulting in Southeast Louisiana. *Trans. Gulf Coast Assoc. Geol. Soc.* 13, 103e110

945 Tugend, J., Chamot-Rooke, N., Arsenikos, S., Blanpied, C., & Frizon de Lamotte, D. (2019). Geology of the Ionian Basin and margins: A key  
 946 to the East Mediterranean geodynamics. *Tectonics*, 38(8), 2668-2702.

947 Van Dijk, J. P., & Scheepers, P. J. J. (1995). Neotectonic rotations in the Calabrian Arc; implications for a Pliocene-Recent geodynamic  
948 scenario for the Central Mediterranean. *Earth-Science Reviews*, 39(3-4), 207-246

949 Van Dijk, J. P., Bello, M., Toscano, C., Bersani, A., & Nardon, S. (2000). Tectonic model and three-dimensional fracture network analysis of  
950 Monte Alpi (southern Apennines). *Tectonophysics*, 324(4), 203-237

951 Van Dijk, J.P. (1991). Basin dynamics and sequence stratigraphy in the Calabrian Arc (central mediterranean): records and pathways of the  
952 Crotone Basin. *Geol. Mijnbouw* 70, 187-201

953 Van Dijk, J.P. (1994). Late Neogene kinematics of intra-arc oblique shear zones: the petiliaRizzuto fault zone (Calabrian Arc, central  
954 mediterranean). *Tectonics* 13, 1201-1230

955 Van Dijk, J.P., Bello, M., Brancaleoni, G.P., Cantarella, G., Costa, V., Frix, A., Goffetto, F., Merlini, S., Riva, M., Torricelli, S., Toscano, C., & Zerilli,  
956 A. (2000). A regional structural model for the northern sector of the Calabrian Arc (southern Italy). *Tectonophysics* 324, 267-320

957 Van Dijk, J.P., & Okkes, F.W.M. (1991). Neogene tectonostratigraphy and kinematics of Calabrian basins; implications for the geodynamics  
958 of the Central Mediterranean. *Tectonophysics* 196, 23-60

959 van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Matenco, L.C., Maffione, M., Vissers, R.L.M., Gürer, D., & Spakman, W. (2020). Orogenic  
960 architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. *Gondwana Research* 81,  
961 79-229. <https://doi.org/10.1016/j.gr.2019.07.009>

962 Wortel, M. J. R., & Spakman, W. (2000). Subduction and slab detachment in the Mediterranean-Carpathian region. *Science*, 290(5498), 1910-1917

963 Wu, G., Kim, Y. S., Su, Z., Yang, P., Ma, D., & Zheng, D. (2020). Segment interaction and linkage evolution in a conjugate strike-slip fault  
964 system from the Tarim Basin, NW China. *Marine and Petroleum Geology*, 112, 104054

965 Wu, G., Yuan, Y., Huang, S., Vandyk, T. M., Xiao, Y., Cai, Q., & Luo, B. (2018). The dihedral angle and intersection processes of a conjugate  
966 strike-slip fault system in the Tarim Basin, NW China. *Acta Geologica Sinica-English Edition*, 92(1), 74-88

967 Zampieri, D., & Massironi, M. (2007). Evolution of a poly-deformed relay zone between fault segments in the eastern Southern Alps, Italy.  
968 *Geological Society, London, Special Publications*, 290(1), 351-366. <https://doi.org/10.1144/SP290.13>

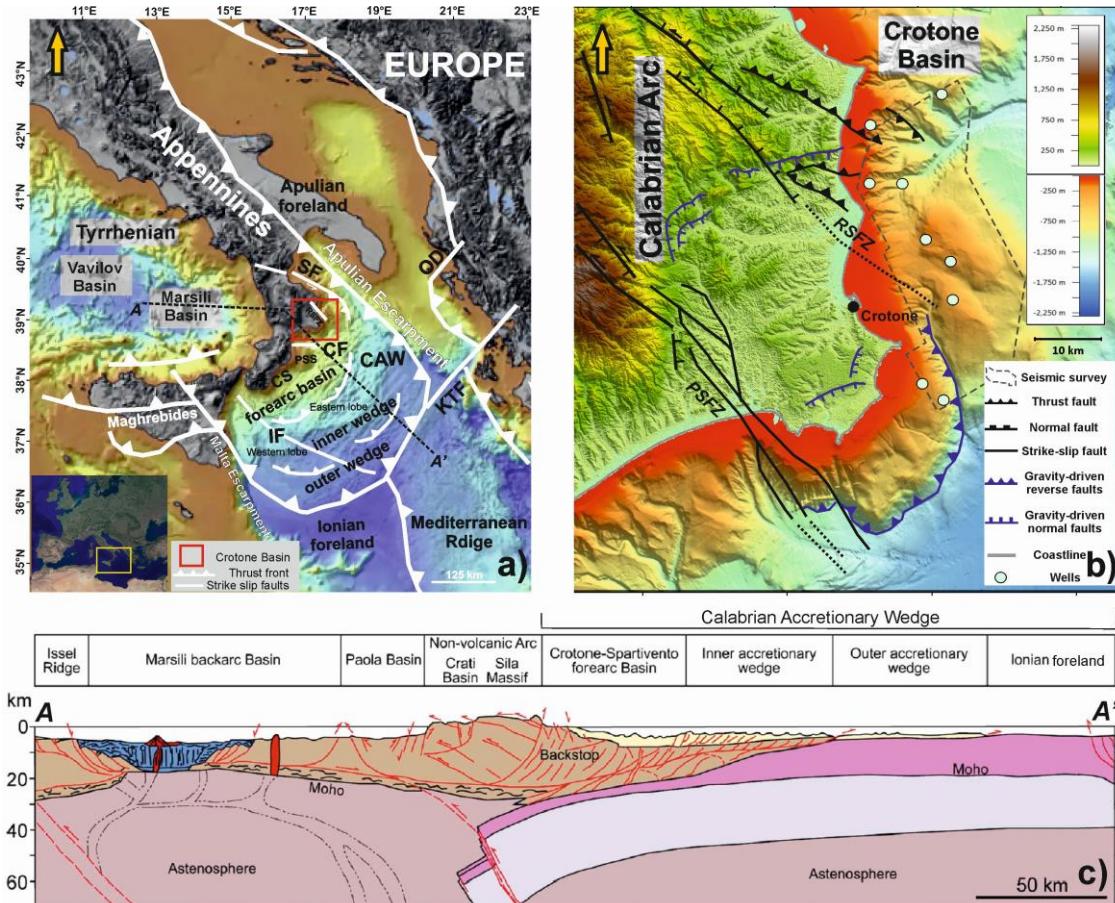
969 Zecchin M., Civile D., Caffau M., Muto F., Di Stefano A., Maniscalco R., & Critelli S., (2013a). The Messinian succession of the Crotone Basin  
970 (southern Italy) I: Stratigraphic architecture reconstructed by seismic and well data. *Marine and Petroleum Geology* 48, 455-473

971 Zecchin M., Caffau M., Di Stefano A., Maniscalco R., Lenaz D., Civile D., Muto F., & Critelli S., (2013b). The Messinian succession of the  
972 Crotone Basin (southern Italy) II: Facies architecture and stratal surfaces across the Miocene-Pliocene boundary. *Marine and Petroleum  
973 Geology* 48, 474-492

974 Zecchin, M., Accaino, F., Ceramicola, S., Civile, D., Critelli, S., Da Lio, C., Mangano, G., Prosser, G., Teatini, P., & Tosi, L. (2018). The Crotone  
975 Megalandslide, southern Italy: Architecture, timing and tectonic control. *Scientific reports*, 8(1), 7778

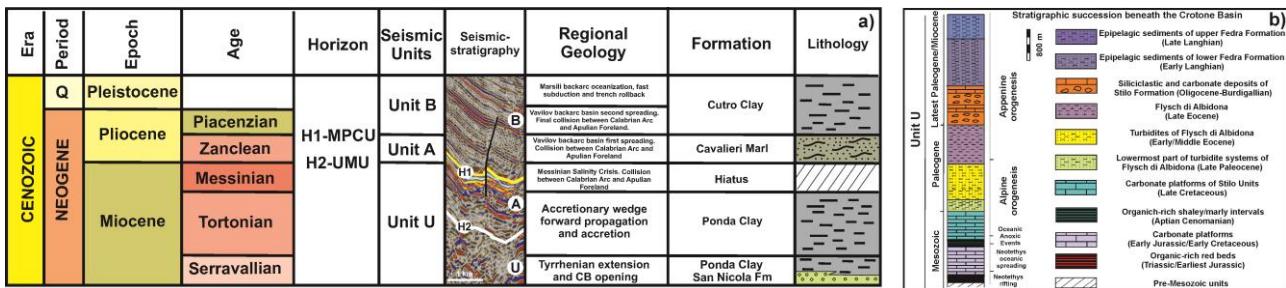
976 Zecchin, M., Caffau, M., Civile, D., Critelli, S., Di Stefano, A., Maniscalco, R., Muto, F., Sturiale, G., & Roda, C., (2012). The Plio-Pleistocene  
977 evolution of the Crotone Basin (southern Italy): interplay between sedimentation, tectonics and eustasy in the frame of Calabrian Arc  
978 migration. *Earth-Science Reviews* 115(4), 273-303

979 Zecchin, M., Civile, D., Caffau, M., Critelli, S., Muto, F., Mangano, G., & Ceramicola, S. (2020). Sedimentary evolution of the Neogene-  
980 Quaternary Crotone Basin (southern Italy) and relationships with large-scale tectonics: A sequence stratigraphic approach. *Marine and  
981 Petroleum Geology*, 117, 104381


982 Zecchin, M., Mellere, D., & Roda, C., (2006). Sequence stratigraphy and architectural variability in growth fault-bounded basin fills: a review  
983 of Plio-Pleistocene stratal units of the Crotone Basin, southern Italy. *J. Geol. Soc. London* 163, 471-486

984 Zecchin, M., Praeg, D., Ceramicola, S., & Muto, F., (2015). Onshore to offshore correlation of regional unconformities in the Plio-Pleistocene  
985 sedimentary successions of the Calabrian Arc (central Mediterranean). *Earth-Science Reviews* 142, 60-78

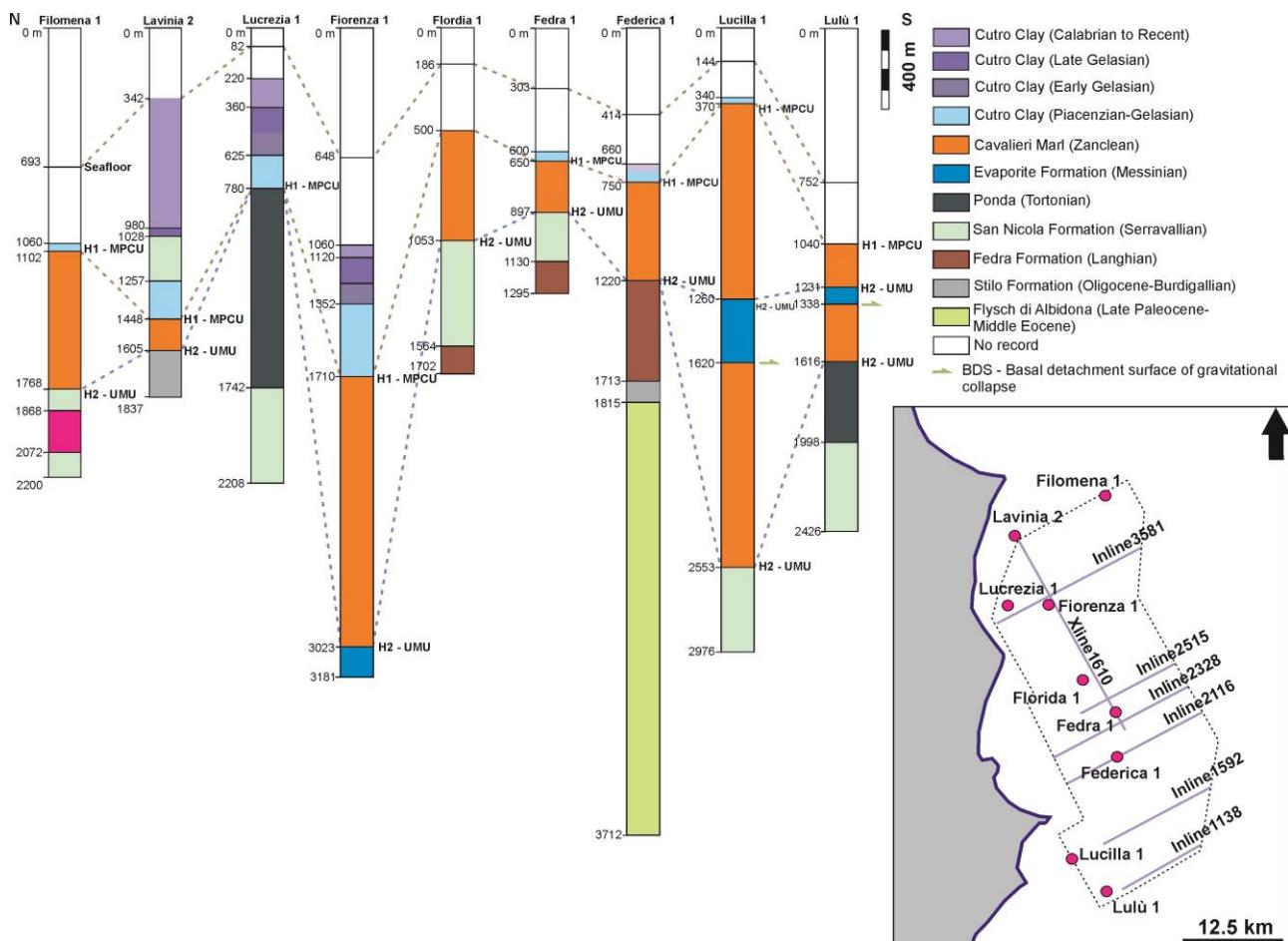
986


987

988 **Figure captions**



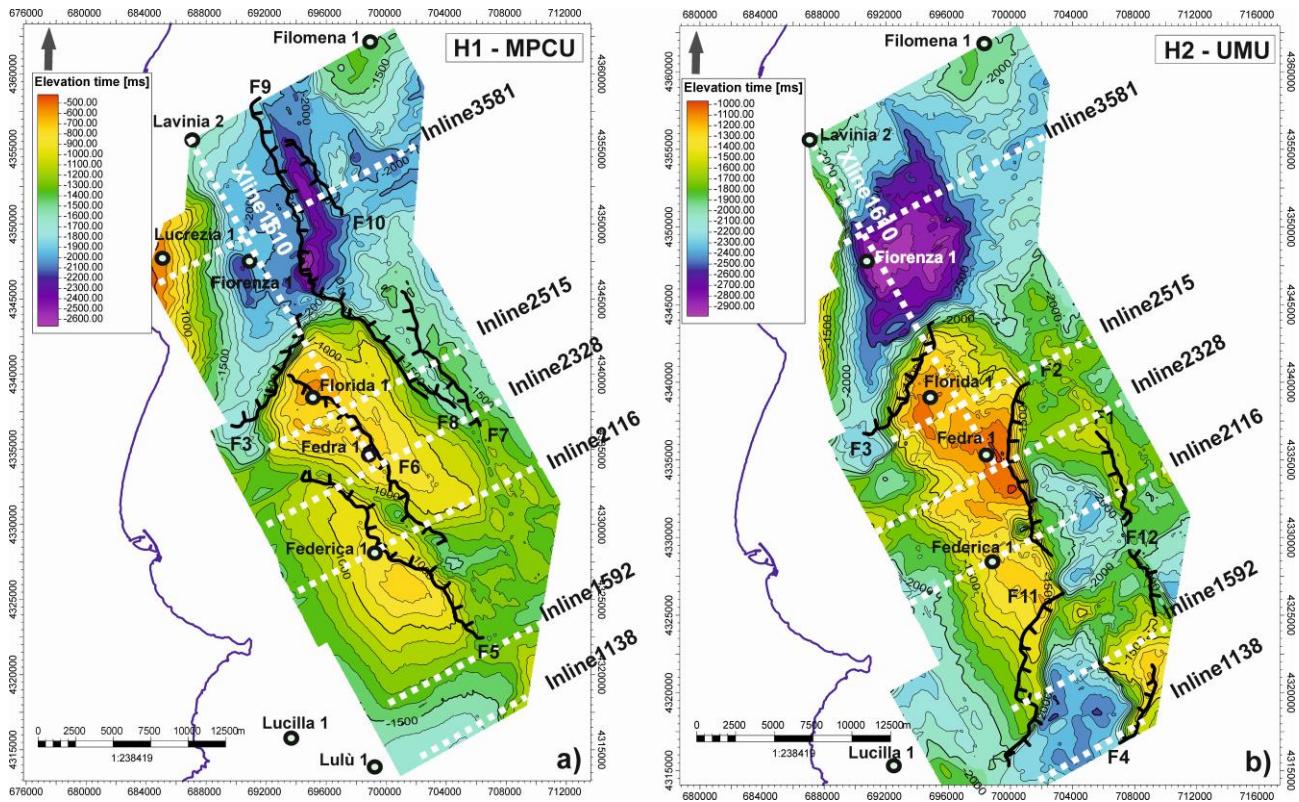
989


990 **Figure 1.** a) Present-day structural map of the Central Mediterranean region showing the  
991 Calabrian Accretionary Wedge and its backarc area. The inset highlights its location in the  
992 middle part of the Mediterranean Sea. CAW: Calabrian Accretionary Wedge; CS: Crotone-  
993 Spartivento; CF: Catanzaro Fault; IF: Ionian Fault System; KFT: Kefalonia Transfer Zone; OD:  
994 Othoni-Dhermi; RSFZ: Rossano-San Nicola Fault Zone; SF: Sibari Fault Source: CGMW and  
995 UNESCO (2012). b) Present-day structural map of the Crotone Basin, which is crosscut by the  
996 two fault zones: the Rossano-San Nicola Fault Zone (RSFZ) and the Petilia Sotisi Fault Zone  
997 (PSFZ). The location of the seismic volume used in this study is show in the figure. Onshore  
998 data are derived from: SRTM (Shuttle Radar Topography Mission) worldwide digital elevation  
999 data with 30 m (1 arc-second) resolution, released by NASA (SRTM PLUS Version 3.0) and  
1000 made available by the U.S. Geological Survey (<https://lpdaac.usgs.gov/search/>), and Tin Italy  
1001 DEM, a digital elevation model of the whole Italian territory available as a 10 m cell size grid  
1002 (Tarquini et al., 2012, 2012; [http://tinitaly.pi.ingv.it/Download\\_Area2.html](http://tinitaly.pi.ingv.it/Download_Area2.html)). Bathymetric data  
1003 are derived from the EMODnet Digital Terrain Model with a 1/16 \* 1/16 arc minutes grid  
1004 resolution (about 115-115 m) and extracted from  
1005 <https://emodnet.ec.europa.eu/en/bathymetry>. The vector data (coastline) are derived from  
1006 Copernicus, which is the European Union's earth observation program based on satellite and  
1007 in situ observations (<https://land.copernicus.eu/imagery-in-situ/eu-hydro/eu-hydro-river-network-database>). c) NW-SE section across the CAW, showing main structural elements and  
1008 its back-arc area (modified from Van Dijk et al., 2000).



**Figure 2.** a) Lithological and seismic stratigraphic column with the ages, lithology, and regional tectonic events that marked the evolution of the Crotone Basin from the Middle Miocene (Serravallian) to the present day. Main seismic-stratigraphic horizons interpreted in this study are named horizons H1 to H2, which correspond to the MPCU and UMU. They bound Units A, B and U. Hence, the interval of interest to this study spans from the San Nicola Formation (Serravallian) to the Cutro Clay (Piacenzian-Quaternary). b) Triassic–upper Langhian strata, occurring beneath the Mid-Miocene–Quaternary Crotone Basin, composing most of the seismic-stratigraphic Unit U (modified from Mangano et al., 2023a).

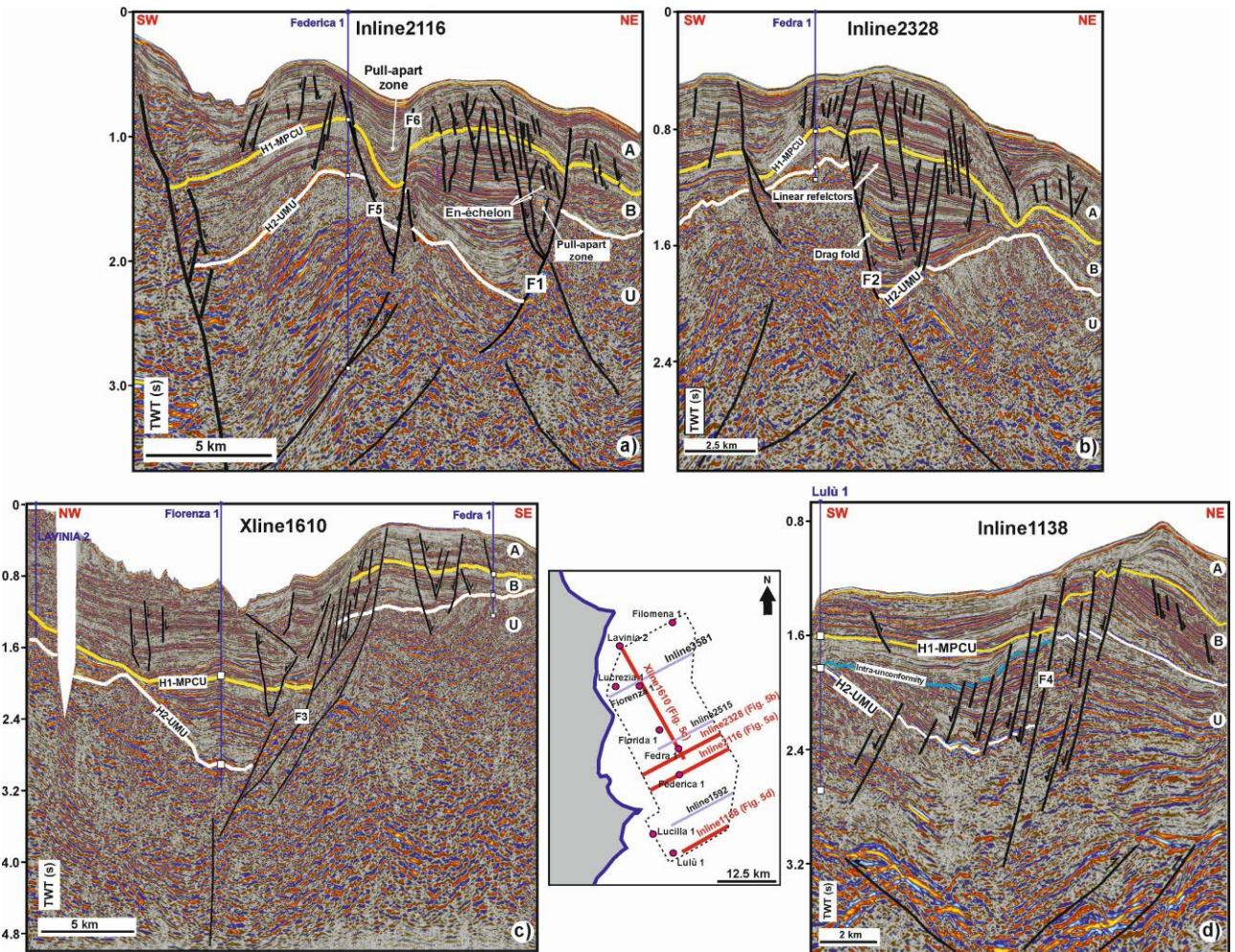
1019


1020

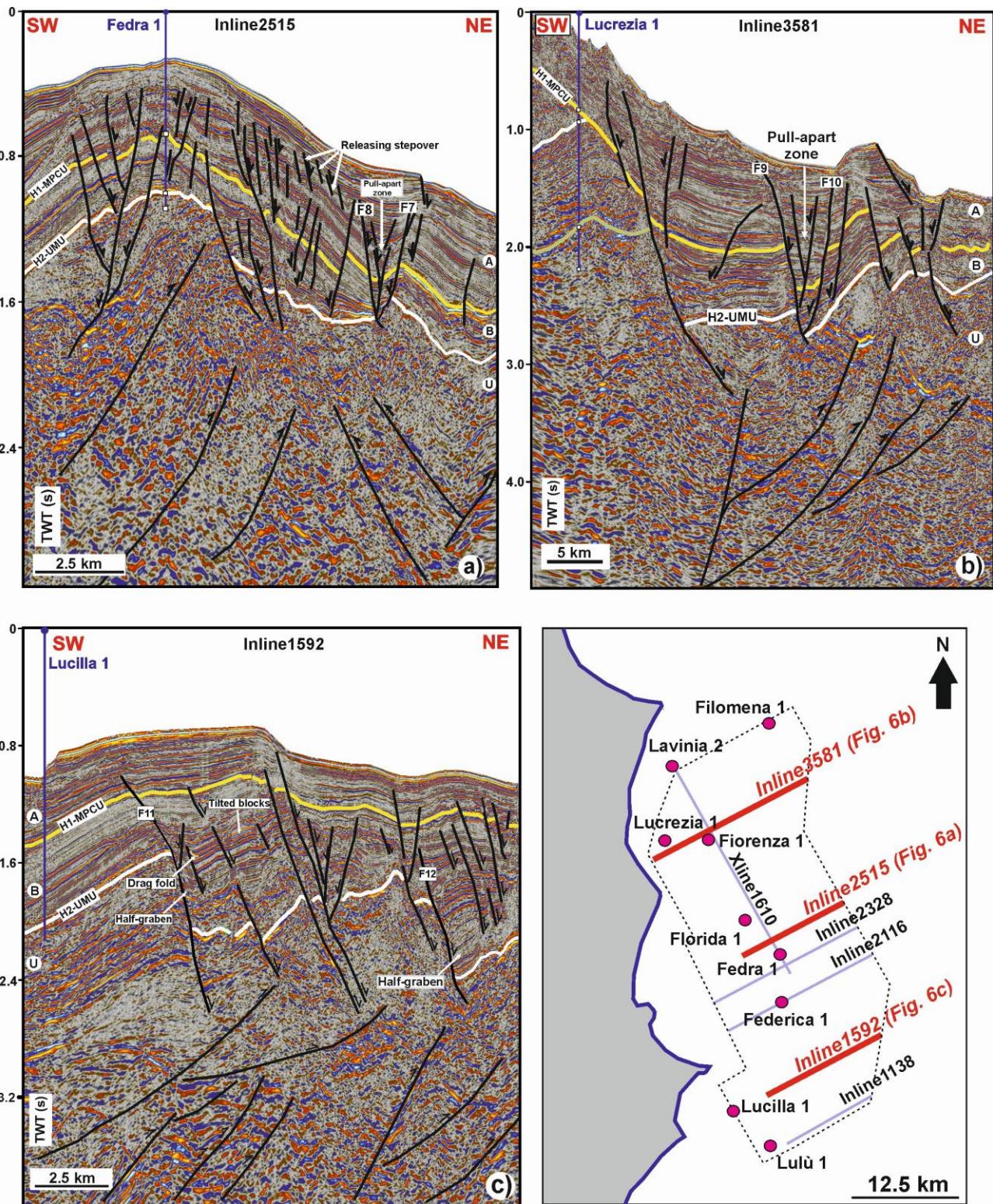


1021

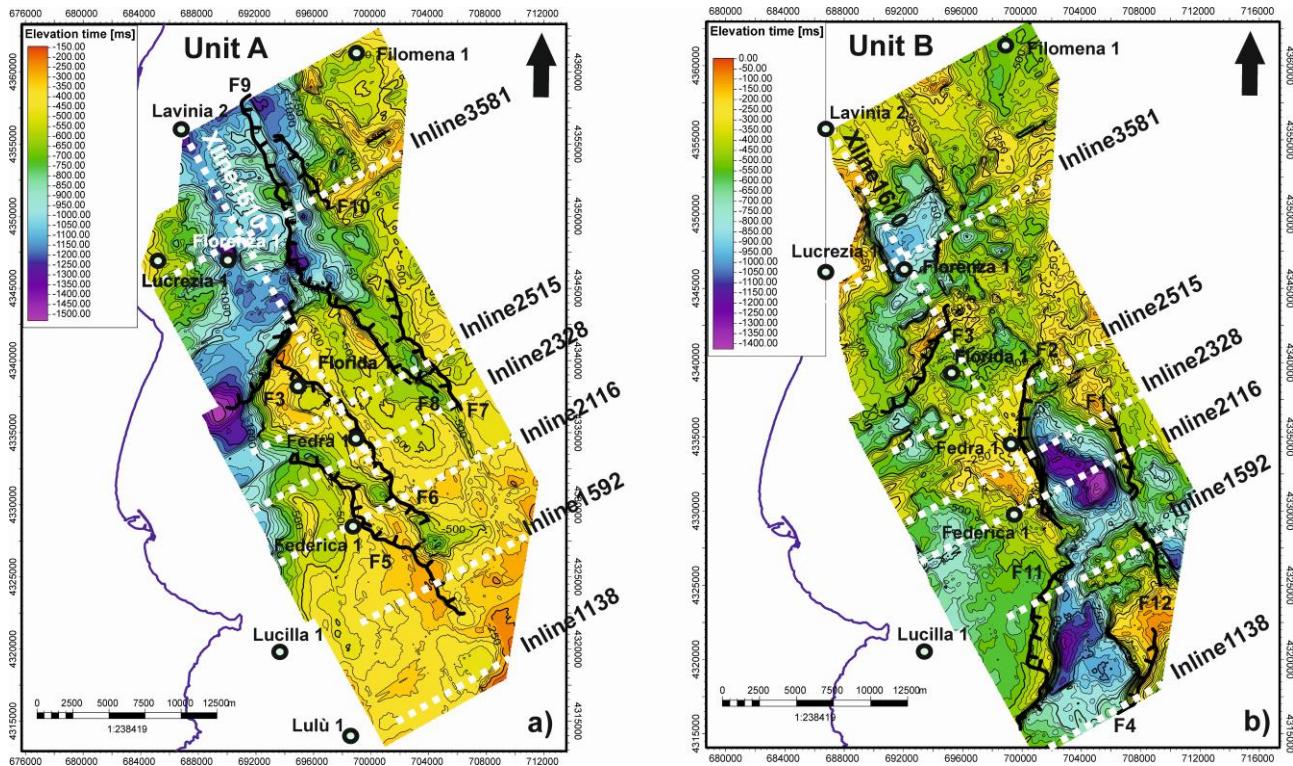
**Figure 3.** Panel correlating lithologies and ages of stratigraphic units in the study area. Inset highlights the wells and seismic sections interpreted in this paper.


1024




1025

1026 **Figure 4.** Two-way-time (TWT) structural maps of horizon H1 associated with MPCU, and  
 1027 horizon H2 corresponding to UMU. a) Horizon H1 reveals a narrow and elongated NW-SE  
 1028 oriented depocenter, bounded by transtensional faults, that reaches a depth of c. 2600 ms  
 1029 TWT. B) Horizon H2 significantly deepens to more than 2900 ms (TWT) and is offset by  
 1030 extensional/transtensional faults.


1031



1033 **Figure 5.** Interpreted seismic sections a) Inline 2116, b) Inline 2328, c) Xline 1610 and d)  
1034 Inline 1138 highlighting the tectonic styles in the Crotone Basin. a) Faults F1, F5 and F6  
1035 crosscut Units A, B and U to reveal a divergent geometry towards their upper tips and a  
1036 curved *en echelon* geometry in plan view. b) Inline 2328 shows linear reflectors with drag  
1037 folds related to normal offsets along fault F2, whose upper tips lie beneath the MPCU. c)  
1038 Fault F3 is a normal fault with marked splaying on its footwall block. It was likely reactivated  
1039 as a conjugate fault during strike-slip motion. d) Fault F4 is part of a normal fault array with  
1040 a clear structural parallelism. Faults are marked using solid black-colored lines. UMU: Upper  
1041 Messinian Unconformity. MPCU: Mid-Pliocene unconformity. Unit A: Late Pliocene-  
1042 Quaternary; Unit B: Early Pliocene; Unit U: pre-Pliocene. The uninterpreted seismic sections  
1043 are provided as supplementary files.



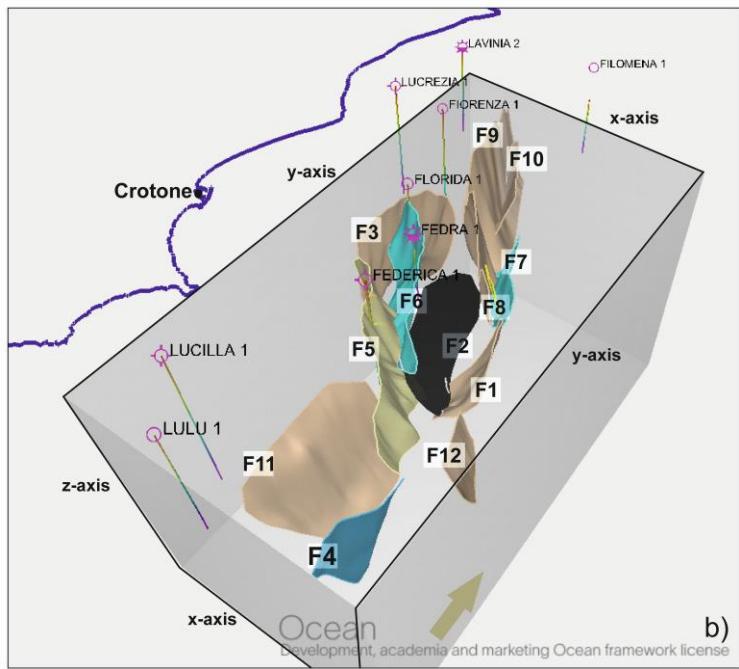
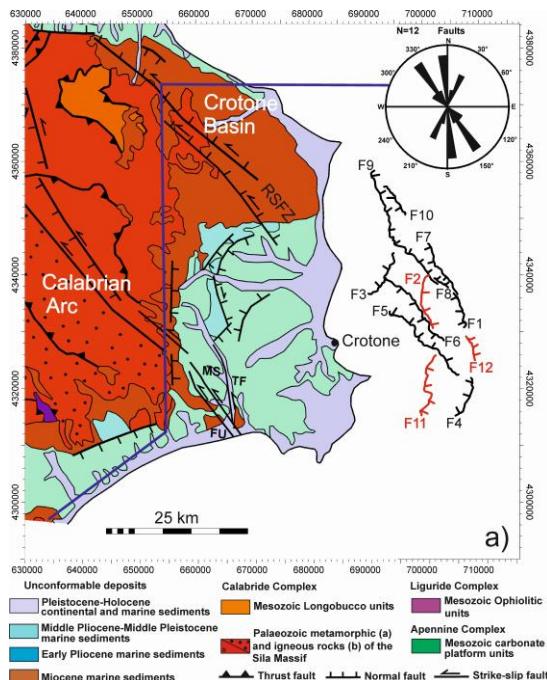
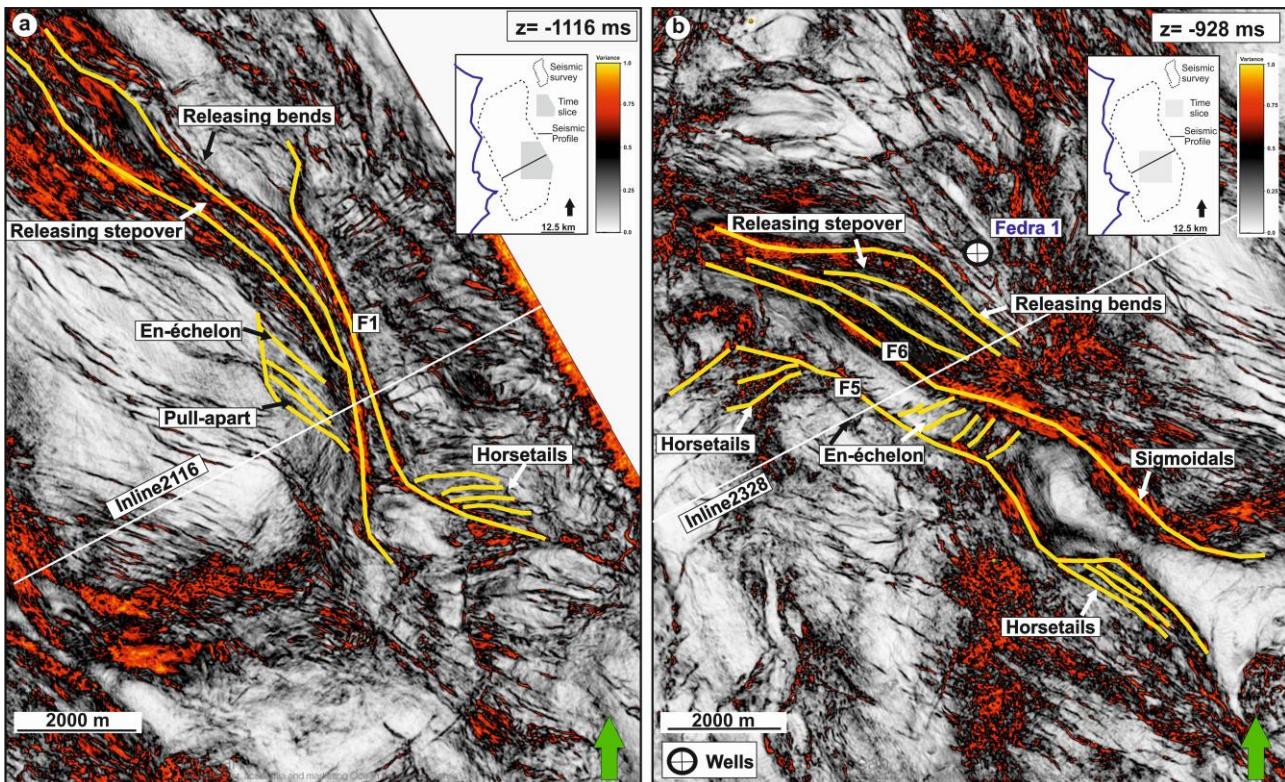
1045 **Figure 6.** Geoseismic sections of a) Inline 2515, b) Inline 3581 and c) Inline 1592. a) Inline  
 1046 2515 and b) Inline 3581 showing main structures along F7 to F10 and associated with pull-  
 1047 apart zones in this work. c) Inline 1592 highlighted the presence of faults F11 and F12 to be  
 1048 restricted to Unit B. Fault geometry includes half-graben and tilt blocks, and both structures  
 1049 are sub-parallel. Faults are marked using solid black-colored lines. UMU: Upper Messinian  
 1050 Unconformity. MPCU: Mid-Pliocene unconformity. Unit A: Late Pliocene-Quaternary; Unit B:  
 1051 Early Pliocene; Unit U: pre-Pliocene. The uninterpreted seismic sections are provided as  
 1052 supplementary files.

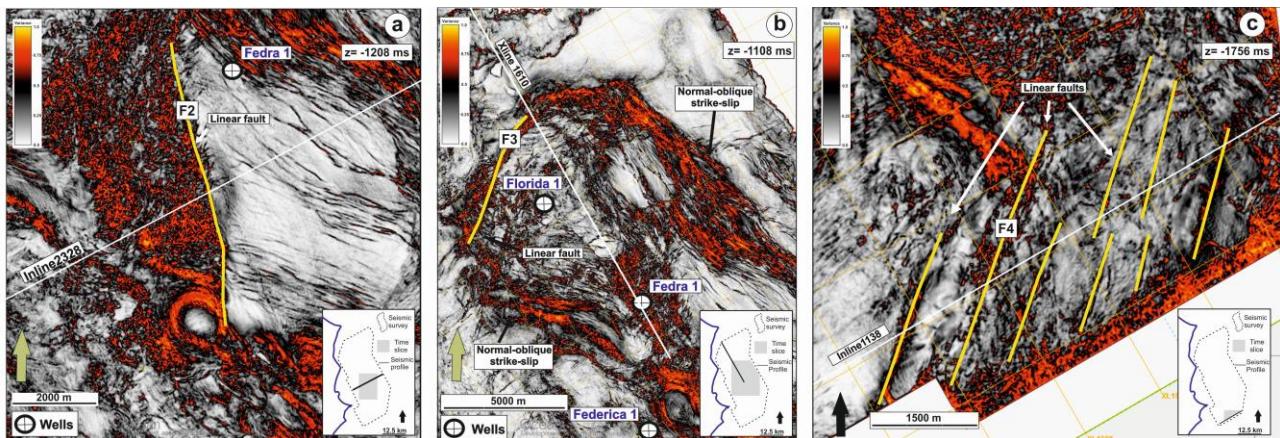


1053

1054 **Figure 7.** Isochron thickness of: a) Unit A (Late Pliocene-Quaternary), and b) Unit B (Early  
1055 Pliocene). a) Unit A reveals the thickest strata in the northern sector of the study area, where  
1056 it is affected by transtensional faults. b) In the central and southern sectors there are two  
1057 regions bounded by extensional faults in which Unit B is thicker.

1058

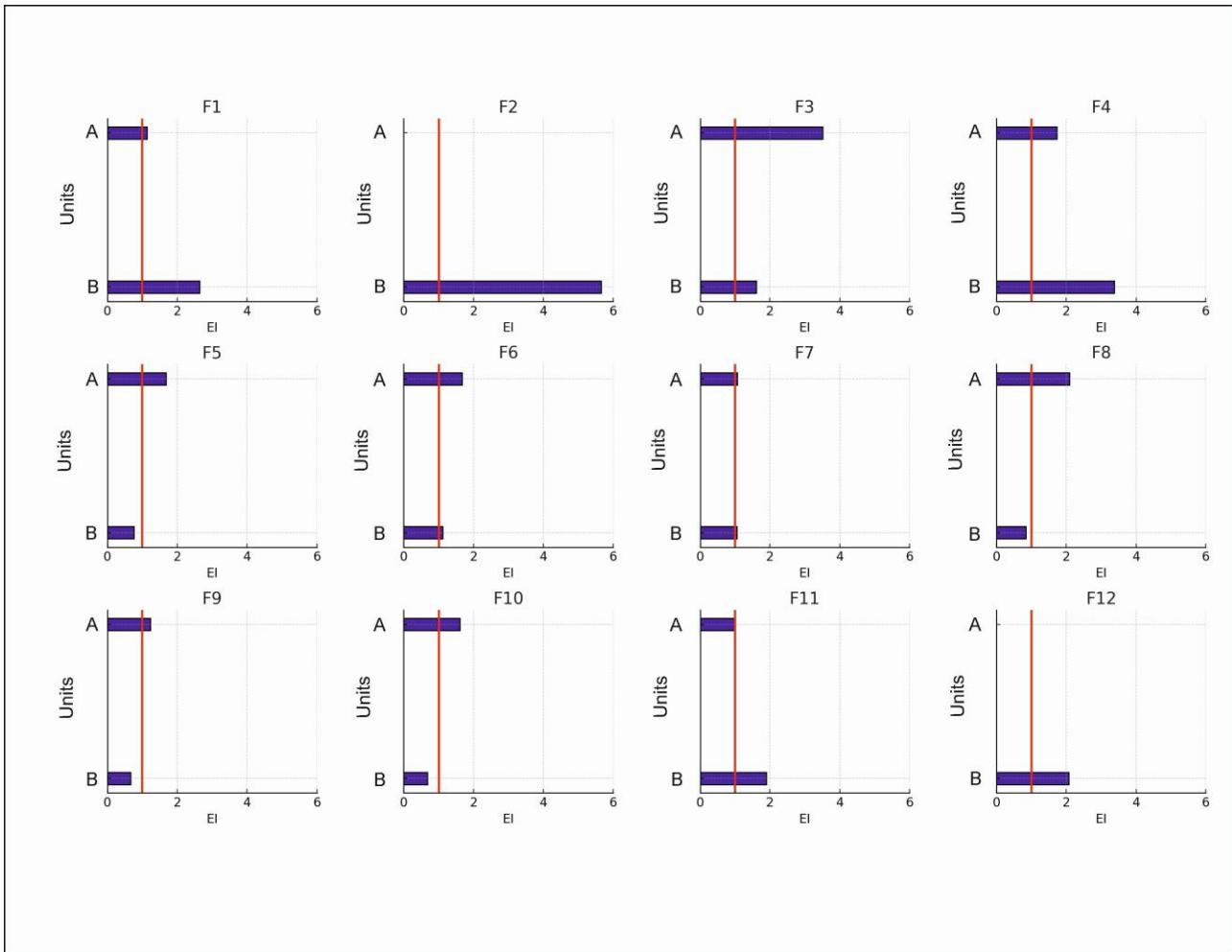






Figure 8. a) Structural map of the Calabrian Arc combined with the onshore geology of the Crotone Basin (modified after Van Dijk and Okkes, 1991). The figure highlights the location of the Rossano–San Nicola Fault Zone (RSFZ), plus the Marcedusa–Steccato (MS), the Tacina (TF) and Fosso Umbro (FU) faults that form the larger Petilia Sosti Fault Zone (PSFZ). The 12 faults (F1 to F12) mapped in this work are also shown in the figure. Faults marked as red-colored segments (F2, F11, F12) are quiescent at present, while those represented by black-colored segments (F1, F3 to F10) show signs of activity in seismic data. A rose diagram shows that the strike of the interpreted faults ranges from approximately N20 to N176. b) Three-dimensional view of the 12 faults interpreted in this work. Vertical exaggeration is 5x in the figure.



1072

1073 **Figure 9.** Variance time-slices extracted at a TWT depth of a) -1116 ms and b) -928 ms.  
1074 Faults F1, F5 and F6 show several structural indicators such as sigmoidal geometries in faults  
1075 as well as splay faults that are oblique and parallel to main fault segments.


1076



1077

1078 **Figure 10.** Variance time-slices extracted at a TWT depth of a) -1208 ms, b) -1108 ms and c)  
1079 -1756 ms highlighting the geometry of faults F2, F3 and F4. They form discrete segments  
1080 that strike N-S and NE-SW in Fig. 4a. The faults are linear in plan view, whereas F3 appears  
1081 as a conjugate fault for the normal strike-slip faults in Fig. 10b. c) Fault F4 shown as part of  
1082 a subparallel network of faults.

1083



1084

1085 **Figure 11.** Expansion index (EI) for the faults interpreted in this work. Faults F1, F2, F4, F11,  
1086 and F12 show EI values that exceed 1 along Unit B, whereas they show values close to or  
1087 below 1 in Unit A. In contrast, faults F5 to F10 record EI values well above 1 in Unit A,  
1088 changing to an EI close to 1 in Unit B. N.B: The red line marks the position of expansion index  
1089 values (EI) equivalent to 1.