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Abstract

The consensus view in the growth literature is that R&D scale effects are absent in mature industrialized
economies but may be present in emerging economies undergoing transition. Scale effects imply a propor-
tional relationship between a stationary I(0) regressand (growth rates of real per capita GDP and/or TFP)
and a non-stationary I(1) regressor (the scale of R&D), which gives rise to the problem of unbalanced
regression and spurious parameter estimates. This issue has not been adequately addressed in the existing
literature. Furthermore, emerging economies have received relatively little attention in this context. We
address these issues by (i) accurately measuring R&D scale and (ii) adopting an appropriate econometric
specification and estimator. We find significant scale effects in a panel of emerging countries, but not in
developed countries. We propose an endogenous growth model that captures these properties—presence
of scale effects during growth transitions, but not at the long-run equilibrium—thereby reconciling our
results. Our model predicts that the long-run growth rates of per capita real GDP and TFP are driven by the
growth rates of technological innovation and aggregate employment—although, in the case of emerging
economies, only technological innovation significantly contributes to TFP growth.
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growth
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1. Introduction

The scale effects, predicted by the first generation of the R&D-based endogenous growth mod-
els (Romer, 1990b; Aghion and Howitt, 1992), posit a proportional relationship of growth rates
of knowledge (technology) and real per capita GDP to the scale of research and development
(R&D) activity. However, the lack of empirical support for scale effects across developed coun-
tries is established as a stylized fact. Jones (1995b) eloquently summarizes it by stating that the
increasing trend of either R&D labor or real R&D expenditure bears no relation to TFP (total
factor productivity) growth.!

The theoretical and empirical conundrum of scale effects led theorists to develop two classes of
second-generation R&D-based endogenous growth models: (i) semi-endogenous growth models
(e.g., Jones, 1995a; Kortum, 1997; Segerstrom, 1998), and (ii) fully-endogenous “Schumpeterian”
growth models (henceforth Schumpeterian; e.g., Young, 1998; Dinopoulos and Thompson, 1998;
Howitt, 1999). In semi-endogenous growth models, scale effects are primarily supply-side effects,
while in fully-endogenous growth models, scale effects can arise from both the supply side and
the demand side. These two classes of growth models eliminate scale effects through different
mechanisms. Semi-endogenous models assume decreasing returns to knowledge stock, which
weakens scale effects as the economy advances and accumulates knowledge. Fully endogenous
growth models maintain constant returns to aggregate R&D, but they offset scale effects through
two main mechanisms. First, R&D at the firm level faces diminishing returns, meaning that adding
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more researchers to a single firm does not lead to a proportional increase in technological progress,
thereby weakening the direct link between population growth and innovation. In other words,
each firm undertakes its own R&D instead of contributing to a shared knowledge pool, which
would otherwise scale proportionally with population growth. Second, as population grows, the
number of firms and product varieties expand, maintaining a competitive market where demand
per firm does not systematically increase with population size. As more firms enter, competition
increases, preventing any one firm from enjoying higher per-product demand or excess prof-
itability, which, in turn, removes the incentive for population-driven R&D growth. Following
these theoretical advances—namely, the advent of second-generation growth models—empirical
scrutiny of scale effects has taken a back seat. The empirical literature has mainly concentrated on
developed economies, comparing the two types of second-generation R&D-based growth models
by testing either technology production functions or the models’ predictions.

We aim to contribute to the literature both empirically and theoretically. Empirically, we
obtain valid estimates of scale parameters by appropriately measuring R&D scale and employing
a suitable regression specification and estimator that address issues of unbalanced regression and
potential spurious parameter estimates. Our novel empirical approach uncovers significant R&D
scale effects in emerging countries, but finds them absent (i.e., insignificant) in OECD countries.
Theoretically, in light of the markedly different results between the developed and emerging coun-
try panels, we propose an endogenous growth model that incorporates R&D labor and capital in a
distinct manner. We then analyze the dynamics of scale effects, offering a theoretical framework
that reconciles our empirical findings.

To provide context, most existing empirical assessments of scale effects use either labor input
(Z) in the R&D sector or total R&D expenditure (R) as proxies for the scale of R&D. These studies
typically compare the time-series properties of these proxies with the growth rates of technol-
ogy (TFP) and/or per capita real GDP (e.g., Jones, 1995a), analyzing the trends between variables
measured in levels versus those measured in growth rates. Variables measured in growth rates
are unequivocally stationary, 1(0), while those measured in levels are non-stationary, I(1), (see
Section 2). As a result, they exhibit very different data patterns (trends), which led Jones (1995a)
to conclude that scale effects are “counterfactual.” Although these data patterns are insightful,
they still leave room for valid estimation and testing of scale parameters.

The scale of R&D activities encompasses two key components: the labor employed (Z) and the
real capital expenditure incurred (E) in the R&D sector. A focus on Z alone, as the scale variable,
suffers from the problem of omitting a relevant variable (measure of R&D scale), namely, E, and
vice versa. The use of R as the scale measure captures both R&D labor and capital expenditures as
a single aggregate measure, however, the downsides of employing the aggregate measure are (i) it
does not allow for the potentially different effects (roles) of Z and E—as two distinct components
of the scale of R&D—on the growth rates of per capita real GDP and/or technology (TFP), and
(ii) any attempt to estimate the scale parameters in a bivariate setting—by employing either R
or Z as the scale measure—is likely to suffer from the problem of unbalanced regression (non-
standard distribution) and spurious parameter estimates. This is because the theory of scale effects
associates 1(0) dependent variables measured in growth rates with I(1) covariates measured in
levels (scales of R&D), which gives rise to the problem of an unbalanced regression (relevant tests
in Section 2). To our knowledge, this issue has not been formally addressed while testing the
scale effects. We address this issue by incorporating both Z and E as covariates in estimating
the scale effects. Our trivariate approach not only captures the scale of R&D appropriately and
distinctly but also resolves the issue of unbalanced regression and provides valid estimates of scale
parameters, so long as the two scale variables (covariates) are mutually cointegrated, and this is
what we find. Thus, our estimates of the scale effects are based on a more realistic measure of the
scales of R&D than has been utilized hitherto, and on an estimation strategy that addresses the
issue of non-standard distribution.
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We conduct separate but parallel estimates of the scale effects across developed (DE) and
emerging (EME) country panels. The DE panel includes 19 OECD countries from 1960 to 2016,
while the EME panel comprises 26 emerging economies from 1988 to 2016. Over the last three
decades or so, EME countries have made significant headway in their R&D activities. Both the
scales of R&D and of patenting activities have gone up significantly across EME countries, and, as
is well known, they have also outperformed DE countries in terms of growth rates (see Luintel and
Khan, 2017). Nonetheless, there is little doubt that EME countries are in growth transitions and
are yet to mature. In this context, a parallel scrutiny of scale effects across DE and EME countries
would be interesting from the perspectives of both the first- and the second-generation growth
models. This is because if DE countries operate close to their long-run equilibrium, as is widely
concurred, and if scale effects are indeed the phenomena associated with growth transitions, then
one would expect to find evidence of scale effects across EME countries but not across DE coun-
tries. This is exactly what we find, which underpins both the first- and the second-generation of
growth models. Our results from the DE panel are consistent with the core findings in the lit-
erature that scale effects are missing in these economies as they operate close to their long-run
equilibrium. Likewise, the significance of scale effects across EME economies is also consistent
with the view that these countries are in growth transitions.

Theoretically, we propose a semi-endogenous growth model that explains why scale effects are
present during economic transition but disappear as economies approach their long-run equilib-
rium. To the best of our knowledge, no formal analysis has examined the dynamics of scale effects
in an endogenous growth framework that treats R&D labor and R&D capital as distinct inputs in
the production function, each serving different roles in the innovation process. Our model draws
from Acemoglu (1998) and is augmented by Jones’ (1995a) technology production function.?

The frontier innovation that underpins scientific progress and contributes to the enhancement
of final goods production is driven by R&D activity within a perfectly competitive research sector.
This sector employs scientists and engineers—i.e., R&D labor—who initiate the discovery of new
innovations. When a research firm innovates, it patents its discovery and becomes a monopolist of
the new technology. Then, the monopolist translates/improves the new technology into a tangible
form by embedding it in a device for a profit using R&D capital. In our theoretical model, we
treat R&D labor as the primary input driving breakthroughs in fundamental knowledge, which
aligns with much of the existing literature (e.g., Romer, 1990b; Jones, 1995b; Ha and Howitt, 2007;
Luintel and Khan, 2009). We model R&D capital as the key input for transforming basic inno-
vations (knowledge) into tangible, device-embedded technologies—an approach consistent with
recent findings by Growiec et al. (2023), who emphasize the critical role of R&D capital in fostering
innovation and potentially reversing the decline in U.S. “ideas TFP”.”> Our theoretical construct
seeks to capture the subtle differences between basic innovations and their subsequent progression
into applied and experimental innovations, without explicitly modeling this transition. Research
firms without the patent can conduct research in enhancing the technology and sell the outcome
of their research to the firm possessing the patent.®

We show that scale effects are a function of an economy’s position along its path to long-
run equilibrium, and that they are non-monotonically related to the shares of new technologies,
which are proportional to the growth rate of technology. We characterize developed economies as
those having relatively small shares of new technologies due to their large accumulated knowledge
stocks (the denominator of the share). Emerging economies, on the other hand, are characterized
as having relatively large shares of new technologies due to their small accumulated knowledge
stocks. Small shares of new technologies across DE countries imply small scale effects, whereas
large shares across EME countries imply large scale effects, unless the latter are at the very early
stage of development with little or no accumulated R&D capital stock. This characteristic is a fun-
damental aspect of semi-endogenous growth models, in which economies experience diminishing
marginal returns to innovation capacity. As a result, scale effects diminish as the level of accumu-
lated technology rises, aligning with the notion that innovation capacity becomes progressively
less sensitive to additional technological accumulation over time.
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Our model further shows that when the economy converges to its balanced growth path (BGP),
the rate of economic growth is driven by the growth rates of aggregate employment and techno-
logical innovations. EME countries, being at a further distance from their BGP relative to DE
economies, take longer to converge. We empirically evaluate the model’s long-run growth pre-
dictions by approximating technological innovations using the flow of patent filings—a widely
used measure in the literature—and find that the results are largely consistent with the model’s
predictions.

The rest of the paper is organized as follows. Section 2 presents empirical estimates of scale
effects, Section 3 presents the endogenous growth model, and Section 4 tests the long-run
predictions of the model. Section 5 concludes.

2. Estimates of scale effects

In this section, we discuss our sample and data, lay out our econometric model and estimation
method, and report the parallel results of scale effects obtained from DE and EME country panels.
We have an unbalanced panel of DE countries, which consists of 19 OECD countries with data
on almost all relevant variables spanning the period 1965-2016. The exceptions are (i) the data on
TFP which cover the period of 1965-2014, and (ii) the employment data for Austria and Denmark
which span 1969-2016. The DE panel has a minimum of 950 to a maximum of 988 country years
of data points spanning at least 50 years. Our EME country panel is also unbalanced, consisting
of 26 countries with data points covering a minimum of 609 to a maximum of 719 country years,
spanning a maximum of 29 (1988-2016) to a minimum of 23 (1994-2016) years. Of the 26 sam-
ple EME countries, three (Belarus, Cuba, and Pakistan) do not have data on TFP. Table Al of
Appendix A lists data sources and sample countries.

In principle, using adjusted measures of TFP such as those developed by Basu et al. (2006)
would be preferable, as they better isolate technological progress by accounting for cyclical vari-
ations in factor utilization. However, constructing a reliable adjusted TFP series across the broad
panel of emerging market economies in our sample is almost infeasible due to data limitations—in
particular, the unavailability of consistent information on capital services, labor effort, and capac-
ity utilization. Given these constraints, we rely on the TFP growth measure from the Penn World
Table (PWT), primarily due to its broad coverage, cross-country consistency, and widespread use
in empirical growth research.”

Summary statistics for some of the key R&D variables for both country panels are reported in
Table A2 of Appendix A. There is considerable heterogeneity in the growth rates of real per capita
income, domestic patent filings, R&D and research intensities, and research productivity both
within and across these country panels. Our panel of EME countries shows an average annual
growth rate of 2.69% during the sample period. China records the highest average annual growth
rate of 8.19% and the Russian Federation the lowest (0.006%). Likewise, the average annual growth
rate is 2.05% across the DE panel: Ireland records the highest (3.80%) and Switzerland the lowest
(1.16%). The average number of annual domestic patent filings is 26,594 in the DE panel which
is 2.6 folds higher than in the EME panel (10,232). China is dominant in patent filings across
the EME countries, and the USA is dominant across the DE countries. However, Chinese aver-
age annual domestic patent filings are 61% higher than those of the USA. Our empirical results,
reported below, are robust to the exclusions of big and/or small countries from the panel. The
sample average R&D intensity is 0.75% across EME countries, which is much lower than that of
DE countries (1.69%). Singapore shows the highest R&D intensity of 1.90% across the EMEs, and
Sweden across the DEs (2.54%). The average research intensity across EME countries is about two-
thirds of the DE level. The average research productivity in DE countries is a lot higher (over 4
folds) than in EME countries. The USA shows quite a low proportion of R&D capital expenditure
relative to its total R&D expenditure, which may reflect its mature R&D sector.
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The theory of scale effects posits a proportional relationship of growth rates of productivity
(TFP) and real per capita GDP (x) to the level (scale) of R&D activity. Specifically, we estimate the
average cross-country-time scale effects across EME and DE countries, as measured by the average
cross-country and time semi-elasticities errz = = 37 3/ enrzis and exp = 5 7 3, em,
for M € {x ; TFP}. To this end, we specify an auxiliary regression of the following form:

amir=pi+vi+emzInZiy+emplnEj;

2 2
+ Z nAInZ, ;+ Z WiAInE;; i+ eig, (1)
j=—2 j=—2

where gar;; is the growth rate of M, for country i at time ¢. Equation (1) is a fixed effects linear-
log model in the Dynamic OLS (DOLS, Stock and Watson, 1993) framework, where p; captures
the country-specific fixed effects and y; captures the time effects. The scale effects relationship is
between the dependent variable, gyr ¢, measured in growth rates, and the covariates, Z;; and E;,
measured in log levels. Panel unit root tests confirm that growth rates of per capita real GDP, g ; 1,
and total factor productivity, grrp,;i ¢, are I(0), while scale variables, InZ;; and InE;;, are I (1).8 This
very presence of stationary I(0) dependent variable and non-stationary I(1) covariates may give
rise to the problem of unbalanced regression while testing the scale effects.

Any estimation of scale effects through bivariate regressions which employs a single proxy of
the scale of R&D—whether InZ or InE or InR as they all are I(1)—suffers from the problem of
an unbalanced regression and non-standard distribution because the regression residuals will be
non-stationary. However, our specification is a trivariate one, and so long as the two I(1) covari-
ates, InZ and InE, are mutually cointegrated, they provide a sensible specification for the I(0)
dependent variable by making the estimating equation balanced.® Our specification, therefore,
has two clear advantages: (i) it provides valid estimates of scale parameters as InZ and InE are
cointegrated, and (ii) the inclusion of both InZ and InE captures the scale of R&D activities dis-
tinctly and more accurately. If the parameters of InZ;; and InE;; are both positive and significant,
this would support the presence of scale effects in both measures of R&D scale. Alternatively,
a positive and significant coefficient on either [nZ;; or InE; ; alone would also indicate evidence of
an R&D scale effect in the corresponding scale measure.

The DOLS is a powerful and efficient estimator of a cointegrating relationship when the
regression model contains a mixture of stationary and non-stationary variables. This approach
augments the estimating equation by the suitably differenced leads and lags of non-stationary
regressors, which eliminate endogeneity. Stock and Watson (1993) allow for covariates with dif-
ferent orders of integration—e.g., I(0), I(1), and I(2)—in the regression equation; however, they
always maintain the dependent variable as I(1). Our dependent variable is stationary, therefore,
our trivariate specification, which incorporates two mutually cointegrated regressors, is important
for a valid estimation and inference of scale effects.

Table 1 reports the estimates of scale parameters for the EME and DE country panels. The
first two columns of results pertain to the full EME panel of 26 countries. Results from the full
EME panel show significant scale effects under both measures of R&D scale, as both [nZ and InE
appear positive and significant in explaining gy i, and grpp;¢. The estimated scale parameter of
InZ is significant at 1% in explaining g, ; ; while the scale parameter of InE; ; is significant at 10% or
better. Likewise, InE appears significant at 1% in explaining grrp,;; but InZ is significant at 10% or
better. The Levin et al. (2002) t-tests (f;;.) reject the non-stationarity of the error correction term
at a very high level of precision, confirming the estimated scale effect relationships for the EME
panel are indeed cointegrated.

China and India are two major emerging countries, with China notably leading in R&D and
patenting within the emerging world. To assess the robustness of our findings on significant scale
effects in the EME panel, we exclude China and India from the sample and re-estimate the rela-
tionship. Results, reported in the middle two columns of Table 1, show a significant scale effect
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Table 1. Panel DOLS estimates of scale effects

EME (1988-2016) EME excl. China & India OECD (1965-2016)
Regressors Dependent variables
9x grrp 9x grrp 9x grrp

InZ 0.045 0.024 0.014 0.012 0.013 —0.002

(0.018) (0.014) (0.019) (0.016) (0.009) (0.007)

{0.012} {0.095} {0.473} {0.597} {0.139} {0.827}
InE 0.016 0.027 0.020 0.024 —0.0004 —0.004

(0.009) (0.011) (0.009) (0.011) (0.015) (0.003)

{0.089} {0.011} {0.046} {0.038} {0.939} {0.297}

Panel cointegration tests

tie {0.000} {0.000} {0.00} {0.00} N/A N/A
N [OBS] 26 [501] 23 [446) 24 [461] 21 [406] 19 [890] 19 [893]

Notes: Numbers in parentheses are standard errors, and those within curly braces are p-values of Wald tests under the null that the estimated
coefficientis zero, which are x2(1). t;c {p-value reported} are the Levin, Lin, and Chu (ibid.) t-test of the null of unit root in the panel error correction
term (i.e., the null of non-cointegration of the estimated relationships). Since all parameter estimates of OECD panels are statistically insignificant,
it makes no sense to conduct cointegration tests; hence, “N/A.” The second-order leads and lags are used for augmentations, and constant and
linear trends are maintained as individual deterministic components. Belarus, Cuba, and Pakistan do not have data on grep. N [OBS] denotes the
number of countries [data points] used in each estimation after accounting for the leads and the lags. Numbers beyond three decimal places are
reported as 3.5e-4 = 0.00035.

in InE while the coefficient of InZ is positively signed but imprecisely estimated. These results are
consistent with the findings of Growiec et al. (2023), albeit from a slightly different perspective,
indicating that R&D capital demonstrates greater robustness than R&D labor in explaining pro-
ductivity growth.!? Although the exclusion of China and India represents a substantial change
to the EME sample, the results continue to exhibit significant scale effects, underscoring the
robustness of our findings.

Likewise, to control for the potential influence of international knowledge spillovers on our
scale effects estimates, we incorporate international spillover pools into the estimating equation.
These are sourced from Luintel and Khan (2017), who construct them using bilateral capital
(machinery) import shares from 20 OECD countries as weights, and provide detailed documenta-
tion on their construction. Spillover data are available for 23 of the 26 emerging economies in our
sample (excluding Cuba, Hong Kong, and South Africa) for the period 1988-2013. Consistent
with the lagged nature of knowledge diffusion, a two-year lag is applied, following Mansfield
(1985) and Caballero and Jaffe (1993). Despite a modest reduction in country coverage and data
span, incorporating spillover pools continues to yield strong evidence in support of scale effects.
The coefficient on In E remains highly significant and positive for both real per capita output and
TFP growth. Notably, the inclusion of spillovers reinforces the results obtained by excluding China
and India, as the qualitative nature of the results remain while the magnitude of the parameter of
In E increases noticeably.!! In sharp contrast, as evidenced by the results in the last two columns
of Table 1, the corresponding estimates of scale effects for the DE panel are entirely insignificant.!?

This difference in scale effects results between the EME and DE country panels is consistent
with the view that scale effects are unlikely to exist amongst mature economies that are on or
close to their BGP but may exist when economies are progressing through growth transitions, as
may be the case for the emerging countries. Our findings vis-a-vis the industrialized countries are
consistent with those of Jones (1995a, b), despite our different empirical approach.!?

Interestingly, the estimated scale parameters show large scale effects of R&D on economic and
productivity growth rates of emerging countries. Dependent variables are measured as propor-
tions (i.e., 5% as 0.05) and covariates are measured in log levels, hence the reported parameters
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are semi-elasticities. To provide some perspective on the magnitudes of the scale effects, using the
estimated scale parameters for the full EME sample, a 1% increase in Chinese R&D labor would
lead to a 0.55% increase in the growth rate of per capita real GDP in China (point elasticity).'*
Likewise, a 1% increase in real R&D capital expenditure would increase the Chinese growth rate
of per capita real GDP by 0.20%. Chinese average annual productivity growth has been 1.91% dur-
ing the sample period. The scale effect parameter estimates imply point elasticity of Chinese TFP
of above unity with respect to both Z and E. Likewise, other emerging countries appear to benefit
by increasing the scale of their R&D activities: countries experiencing lower growth rates are set
to benefit more by expanding their R&D sectors.

There is also a useful analogy to Schumpeterian models, which imply positive relation-
ships between R&D intensity, technological change, and the growth rate of per capita output.
Specifically, these models suggest that higher R&D intensity—here measured by increases in the
quantities of inputs used in the R&D sector—leads to improved technologies and higher economic
growth. Although the theoretical model we develop in the following section is semi-endogenous—
in the sense that new ideas or innovations are exogenous—it nevertheless incorporates
Schumpeterian elements, as these innovations take shape and become usable through R&D efforts.

3. Endogenous growth model

Our empirical results from the emerging countries panel show significant scale effects of R&D,
using both R&D labor and R&D capital as measures of scale. In contrast, our results across devel-
oped countries suggest the absence of scale effects for both measures of scale. Existing growth
models typically assume that R&D labor is the sole input into the R&D process (e.g., Romer, 1990b;
Jones, 1995a; Ha and Howitt, 2007). However, we argue that this assumption may be overly sim-
plistic, as our results highlight the importance of R&D capital expenditure alongside labor. We
propose a new semi-endogenous growth model, building on Acemoglu’s (1998) framework and
incorporating both R&D labor and R&D capital as key drivers of technological progress in analyz-
ing the dynamics of scale effects. The structure of our model is similar to that of Acemoglu (1998),
while the evolution of technology is modeled along the lines of Jones (1995a, b). Analyzing both
R&D inputs—R&D labor and R&D capital— we offer a clearer understanding of how technolog-
ical advancement affects growth and productivity in both developed and emerging economies.
Specifically, our model reconciles the significant scale effects across emerging country panels and
the insignificant scale effects across developed country panels. There is a continuum of infinitely-
lived individuals, with identical intertemporally additive preferences defined over consumption.
The marginal utility of consumption is assumed to be constant, which implies that the rate of time
preference r > 0 is also the interest rate.

3.1. Production of final goods
Aggregate output, Y, is produced by perfectly competitive firms, defined on the unit interval such

that Y = /01 y(i)di, where y(i) denotes the output produced by firm i. The price of the final output
is the numeraire. Output for firm i is produced using neutral technology A(i), labor n(i), and,
general capital k(i), such that y(i) = A()n(i)Pk(i)!=#, where 0 < B < 1. The general capital is the
physical capital owned by consumers who rent it out to firms. The aggregate supply of workers and
general capital are given by N = fol n(i)diand K = fol k(i)di, respectively. The evolution of neutral
technology is driven by R&D-induced intangible technology, Q, which takes on a tangible form
through the use of R&D capital that enables the technology to be used in the production process.
Put differently, Q acquires material form once it is embedded into a device using firm-specific
R&D capital, e(i). The function that maps Q into tangible technology devices is F(i) = Qe(i)*,
where 0 < A < 1. The firm that utilizes technology Q must incur the firm-invariant cost of R&D
capital, denoted by y, per unit of R&D capital. It follows that the change of firm-specific neutral
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technology A(i) is given by A(i) = A~ 0=02) A(71)PAF(i), where 0 < ¢4 < 1 and A(i) is the derivative
of A(i) with respect to time. For the sake of notational simplicity, we omit time as an argument
unless it is necessary. The profit function for firm i is, 7 (i) = A()n()Pk() =P — ye() — wn (i) —
rxk(i), where w and rg are the wage rate and the rental price for general capital, respectively, while
the level of neutral technology is given by:

r =N
A(i):% [(1—¢A)/O Q(r)e(i,r)kdz} " )

The firm chooses quantities of n(7), k(i) and e(i) in order to maximize profit. Firms are identical,
therefore, in equilibrium, they end up making the same choices, hence the optimality conditions
reduce to: w = BA(K/N)'7P; x = A4 A%4 QE-U-MNPK'-Pand, rx = (1 — B)A(K/N)~F; where
N=nE= fol e(i) = e(i), and Y = y(i). Due to the risk-neutrality of consumers, who are also the
owners of physical capital, rx = r + §, where § is the depreciation rate of general capital.

3.2. Research & development sector

We assume a research sector with free entry that is populated by perfectly competitive firms.
A research firm j contributes q(j) to the development of technology Q= fol q()dj by car-
rying out R&D using researchers, z(j).!® The profit from R&D activity is given by 7 P(j) =
PNV (i) — Bq()z(j), where p(j) = ¢(Q, Z)Cz(j) is the flow rate of innovation with ¢(Q,Z) =
(=0 Qazv-1 7 — fol z(j)dj, C is a productivity factor defined below, 0 < g < 1,0 <v < 1,
V(j) is the value of innovation, and Bq(j) is the firm’s cost per researcher with B > 0. Research
firms take ¢(Q, Z) as given, i.e., they perceive themselves to be too small to affect the aggregate
invention probability.!” The productivity factor is given by C(t) = o exp (gct), where o is a scale
factor that coincides with the Poisson rate at which new ideas arrive at a research firm, and gc > 0
is the sectoral growth rate of productivity due to new ideas.'® In other words, while new ideas
at the sectoral level grow over time, at every instant a new idea is randomly allocated to a single
research firm and although access to C is not exclusive to the allocated firm, the latter acquires a
monopoly right over the particular vintage by receiving a patent. Once the technology is upgraded,
the patent holding research firm is the only firm that can sell the upgraded technology to the final
goods firms, charging a profit maximizing rent for the R&D capital needed to translate technology
into tangible form.

While the patent prevents the rest of the research firms from accessing the market of final
goods, they can sell their research output to the firm that possesses the patent for p(i) V(i). The
firm that owns the patent has an incentive to purchase the research output of other firms in order
to motivate them to work on improving technology further since the latter improves its own pro-
ductivity via ¢(Q, Z). The ownership value of the leading vintage of technology input is given by:

1 .
PV () = 7™ () — fo )V (di+ V), 3)

where 777 (j) is the instantaneous profit of the monopolist that owns the leading vintage and V is
the derivative of V with respect to time, which captures changes in the valuation of the leading vin-
tage. The profit function 7™ (j) is written as 7" = x (E)E — QE; where x (E) is the inverse demand
for R&D capital derived from the problem of the firm producing final output. As in Acemoglu
(1998), the profit-maximizing price, x, turns out to be a constant mark-up over marginal cost,
thatis, x = Q/A."°
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3.3. The balanced growth path and transition dynamics

In this section, we characterize the Balanced Growth Path (BGP) and the transition dynamics to
it. Using the production function of final output, the growth rate of per capita output, x = Y/N,
can be written as gy = ga + (1 — B)gg, where gz denotes the growth rate of per capita general
capital. The optimal condition for general capital implies that gz = (1/8)ga, which means that
gx=(1/B)ga. Since C is common across all research firms, in equilibrium, z(j)=Z, V(j) =V,
q(j) = Q and thus p(j) = p, while the optimal condition for a research firm becomes ¢(Q, Z)CV =

BQ for all j. It follows that Q evolves according to Q = p which implies that,

1 ! g
Q=;[(1—¢Q> /0 C(r>Z<r)”dr} . @

Along the BGP all variables grow at a constant rate, i.e., g4 = g0 =g« =g = gr = g7 = gv = 0.
As shown in Online Appendix B, at the BGP the growth rates of all endogenous variables are
driven by the growth rates of the exogenous arrival of new ideas, gc, and aggregate employment,
gN, that is,

& = Vj,c8c + VI.NEN> (5)

for ] = Z, Q,E, A, x, where y; ¢ and y},y are functions of structural parameters.?’ For gc > 0 and
gn > 0, the existence of a BGP requires that,

0 _ (1 =9¢[B(1 —a) — 2]
<Y<V =
1—B(1—¢a)

with the necessary condition A < (1 — ¢4). If parameter values do not satisfy these inequalities,
the non-negativity conditions for Q, A, E as well as gc and gy, along the BGP, are violated.?! Thus,
our model’s solution shows that long-run growth is driven not only by labor growth, as a typical
semi-endogenous model would suggest, but also by the rate of new discoveries (or the flow of
new ideas), which enable innovators to earn monopoly rents through patents. In other words, our
model includes an additional exogenous growth component—the flow of new ideas—that exists
beyond the growth rate of labor.

Figure 1 displays the transition dynamics towards the BGP, which are summarized by two lines
in the (g4, go) space: a vertical line for gq, as per the BGP equation (B3) (Online Appendix B), and
an upward sloping line for g4, as per the equation (B2) (Online Appendix B). The economy tends
to converge to the unique BGP where the two lines intersect and the growth rates of A and Q are
driven only by g¢ and gy.??

To examine the dynamics of scale effects, we consider the semi-elasticities: dg;/d In E and
0g7/01n Z for J = Q, A, x. These semi-elasticities, denoted by ¢;  and ¢; 2, can be written as:

_ 204 [1 —6a()] eap(t) = vOQ(£)0a(1) [1 — Oa(1)] _ vho(t) [1 — 6o(1)]
1—¢gs M (1— o)1 - ¢Q) 1 - ¢q
eaE(t) eaz(t)

B

>

ea,E(t) , eqQz(t)

8x,E(t) = > 8x,Z(t) =

>

where 04 (t) and 0¢(¢) are the following technology shares:

Q(HE()* cHZ(t)
= =(1- ,and 0 = —
JTQoE@rar s and GO =T o e

As shown above, the growth rates of technology are proportional to the technology share
parameters, 6g and 64, which reflect the economy’s state of development. In this model, scale
effects are clearly supply-side in nature, as decreasing returns reduce the impact of R&D capi-
tal and labor on the growth rates of technology and per capita output. We argue that emerging

04(t) = (1 - ¢Q)go(t).
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Figure 1. Transition dynamics toward the BGP.

economies, which are in the early stages of development, exhibit high technology shares, while
developed economies, which operate close to their BGP, exhibit low technology shares. This is
because emerging (developed) economies have small (large) accumulated stocks of technology,
therefore incremental technology forms a large (small) share of their accumulated stocks. Since
ga and gq are proportional to technology shares, the technological growth rates of emerging
economies are relatively high while those of the developed economies are relatively low. It fol-
lows that emerging economies at the initial stages of development exhibit high growth rates of
technology which lie at the top corners of Figure 1, denoted by areas I and II or at a point along
the 45° line. However, when EMEs gradually develop by accumulating technology, their rates of
growth of technology slow down as they converge towards their BGP values at the intersection
of the two lines of Figure 1. This is a classical feature of semi-endogenous growth models, where
economies are characterized by diminishing marginal returns to innovation capacity. This implies
that scale effects are weakened as the level of accumulated technology increases, consistent with
the theory that innovation capacity becomes less responsive to further technological accumulation
over time.

Figure 2 is a visual display that relates the transition dynamics of scale effects with the tech-
nology shares. Specifically, it highlights the BGP semi-elasticities versus the technology shares
obtained from a calibration exercise where A = ¢4 =g =v =0.1, B =0.75 and gc = gn = 1%.
The implied BGP scale effect from this calibration is ex g = 0.34%, as measured by R&D capital,
and &, 7 = 3.9079 — 05, as measured by R&D labor.?® To make the BGP values of 6 and 6,
visually distinct we denote them by 6§ and 6.

As is evident from Figure 2, economies that are either at the very early stages of development
where technology growth rates are high (on the lower right corners of Figure 2a-c and on the
lower right corners of Figure 2d and e) or operating close to their BGP, where technology growth
rates are low (on the lower left corners of Figure 2a—c and on the lower front corners of Figure 2d
and e), exhibit small scale effects, measured both by R&D capital and researchers. That is, technol-
ogy growth rates at the very early stages of economic development are large since the accumulated
levels of technology are small, and so logarithmic increments of Z and E have negligible effects
on the former. On the other hand, for economies operating very close to their BGP, scale effects
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Figure 2. Transition of scale effects toward the BGP.

cease to exist due to decreasing returns to technology. Intuitively, economies which are about to
converge to their BGP have large accumulated stocks of knowledge, hence any new incremental
knowledge induced from either Z or E exerts a trivial effect on overall knowledge stocks.>

Thus, our model shows that once the emerging countries pass through their initial stages of
development and begin their transition towards their long-run equilibrium, they initially expe-
rience amplified scale effects. As they approach closer and closer to their BGPs, the scale effects
gradually subside. Hence, scale effects are seen during growth transitions but not at the BGP or at
its vicinity, which reconciles our empirical results of significant scale effects across EME countries
but their insignificance across DE countries, unless EME countries are at the very early stages of
their development.

4, Testing the model’s balanced growth path

A typical semi-endogenous growth model implies that along the BGP, economic growth is pri-
marily driven by the growth rate of research effort (Jones, 2021). Our model predicts that, along
the BGP, economic growth is driven by both the growth rate of labor and the growth rate of new
discoveries, as shown by equation (5). The latter implies cointegrating relationships between InJ;,
InCy, and InN¢, where ] = Z, E, A, x, with the cointegrating vector of (1, —yj,c, —yj,n), which can
be shown as:

InJ; = yy,clnCy + yyNInNg, (6)

where A is approximated with TFP.2> A direct way to evaluate the model’s prediction along the
BGP is by testing the cointegrating relationships in equation (6).

In our model, there is a distinction between new ideas and the process of transforming these
ideas or discoveries into intangible technologies, Q, which are later used in production by trans-
lating them into tangible form through R&D capital. New ideas are exogenous and correspond
to variable C in our model. These ideas require R&D labor to refine and develop them. Since Cis
directly unobservable, we consider the flow of domestic patent filings of sample countries to be the
closest available proxy—though not a perfect one—for these new ideas. Patents are a widely used
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measure of new-to-the-world ideas, which also serve as legal protections for these new ideas.2®

Note that in our model, whenever a new idea is developed, it increases C, and is patented by the
inventor. Hence, there is a natural link between patent flows and the variable C. The key notion is
that new discoveries, as ideas, are exogenous, while their transformation into usable technology is
an endogenous process. This is consistent with the fact that firms often patent discoveries before
committing to large-scale R&D investment, meaning patents serve as a snapshot of the exogenous
innovation landscape, distinct from the endogenous process of converting ideas into productive
technology.

For a robust inference on the BGP relationships, we employ two estimators of cointegrating
relationships, namely, DOLS and the FMOLS (Fully Modified OLS; Phillips and Hansen, 1990,
and Phillips and Moon, 1999), supplemented by the Levin, Lin, and Chu (ibid.) t-test (f;), on
the estimated error correction term. Unlike the scale effects specifications in equation (1), which
include variables in both logarithmic first differences and levels, equation (6) is specified entirely
in log levels, which are I(1), hence the use of FMOLS is valid.?”

The cointegration estimates, which proxy the BGP relationships, as predicted by our model, are
reported in Table 2. Panel A reports the results for the EME panel, and Panel B for the DE panel. It
is evident that the levels of per capita real GDP, R&D employment, and R&D capital expenditure
are cointegrated with the flow of new ideas (innovations) and the level of total employment across
emerging countries. Their cointegrating parameters are positive and significant at very high levels
of precision (1% or better), and the fj. tests reject the null of non-cointegration (i.e., the non-
stationarity of the error correction term). However, TFP only appears cointegrated with the flow of
innovations, as the cointegrating parameter of [nN appears statistically insignificant. The reported
tyic test for TFP only captures the significant parameret of InC. These results are robust across both
estimators: DOLS and FMOLS. They imply that, in the long run, growth rates of per capita real
GDP (gy), R&D employment (gz), and R&D capital expenditure (gg) are driven by both the growth
rates of exogenous technology (gc) and total employment (gn) across emerging countries. These
results are consistent with the long-run predictions of our model. However, the growth rate of
TFP is driven by (gc) alone, a purely Schumpeterian outcome.

Although our theory suggests that both In C; and In N; should drive TFP, this does not seem to
hold in our estimates for the EME panel. This discrepancy may reflect that emerging economies
are not operating near their balanced growth paths (BGP) and may exhibit significant deviations
from optimal resource allocation, including in labor markets. This may be due to several fac-
tors: emerging economies often face capital constraints, which limit the extent to which increased
employment translates into technological progress; a large share of employment occurs in the
informal sector, outside regulated labor markets; and institutional rigidities and policy ineffi-
ciencies may delay adjustments, prolonging the time to equilibrium and dampening the positive
impact of employment on TFP. In contrast, results of Panel B show significant cointegrating rela-
tionships of the levels of per capita real GDP, total factor productivity, R&D employment, and
R&D capital expenditure with the flow of innovations and the level of total employment across
developed countries. All estimated cointegrating parameters are positive and highly significant,
and the t;. test unequivocally rejects the null of non-cointegration across all estimates. It can be
argued that developed economies are more likely to operate near the technological frontier, where
changes in employment are closely associated with the adoption of new technologies. Given that
all cointegrating vectors—except for the one describing the long-run dynamics of TFP in emerging
markets—are consistent with theoretical expectations suggests that, overall, our model accurately
captures the underlying long-run relationships. Specifically, the results of Table 2 suggest that a 1%
increase in the flow of innovation, C, induces an increase of per capita real GDP by 0.09% (0.21%)
for emerging countries in the long run, and by 0.20% (0.19%) for OECD countries based on the
DOLS (FMOLS) estimates. Likewise, a 1% increase in the aggregate employment, N, induces an
increase of per capita real GDP by 0.78% (0.62%) for emerging countries and 1.14% (1.32%) for
OECD countries.
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Table 2. Estimates of long-run (BGP) relationships

Panel A: 26 emerging countries

DOLS FMOLS
Regressors Dependent variables
[nGDP InZ InE InTFP InGDP InZ InE InTFP
InC 0.092 0.303 0.443 0.023 0.211 0.308 0.483 0.066
(0.011) (0.022) (0.028) (0.011) (0.022) (0.033) (0.036) (0.012)
{0.000} {0.000} {0.000} {0.042} {0.000} {0.000} {0.000]} {0.000}
InN 0.784 2.164 2.042 —0.011 0.618 2.108 1.986 —0.094
(0.034) (0.145) (0.163) (0.039) (0.121) (0.189) (0.212) (0.072)
{0.000} {0.000} {0.000} {0.775} {0.000} {0.000} {0.000} {0.188}

Panel cointegration tests

tie {0.000} {0.046} {0.023} {0.001} {0.002} {0.047} {0.049} {0.000}
N [0BS] 26 [584] 26 [575] 26 [561] 23 [522] 26 [679] 26 [659] 26 [632] 23 [568]

Panel B: 19 OECD countries

[nGDP InZ InE InTFP [nGDP InZ InE InTFP
InC 0.200 0.289 0.273 0.076 0.194 0.462 0.313 0.052
(0.019) (0.055) (0.046) (0.011) (0.027) (0.065) (0.068) (0.018)
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.004}
InN 1.144 2.887 2.377 0.383 1.324 2.826 2.443 0.462
(0.064) (0.134) (0.117) (0.033) (0.084) (0.196) (0.208) (0.054)
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

Panel cointegration tests

et {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}
N [OBS] 19 [883] 19 [885] 19 [885] 19 [885] 19 [957] 19 [961] 19 [961] 19 [923]

Variable mnemonics are: [nGDP= real GDP per capita; InZ = scientists and engineers employed in the R&D sector; [nE = capital expenditure in
the R&D sector; InTFP = total factor productivity; InC = flow of exogenous technological innovations proxied by the patent filings of sample
countries; and, [nN = total employment. All variables are measured in natural logarithms. Numbers in parentheses are standard errors and those
within curly braces are p-values of Wald tests under the null that the estimated coefficient is zero, which are x2(1). Country fixed effects are
maintained in all estimations. Belarus, Cuba, and Pakistan do not have data on TFP. N [OBS] denotes the number countries [data points] of each
estimation. t;c denotes the Levin, Lin and Chu (ibid.) test of the null of non-cointegration (i.e., the non-stationarity of the error correction tem),
p-values reported.

5. Conclusion

This paper provides new theoretical and empirical insights on the long-debated issue of R&D scale
effects on the growth rates of technology and output. By conducting separate but parallel estimates
of scale effects across both the developed and the emerging country panels, we report significant
scale effects across emerging countries, and their complete insignificance across developed coun-
tries. Importantly, our results are based on a more realistic measure of the scale of R&D activities
than has been applied hitherto, as well as on an empirical method that addresses the issues of
unbalanced and spurious regressions. Specifically, R&D activities are captured by the joint use
of R&D labor and R&D capital expenditure of each sample country, which gives the true scale
of R&D. We elucidate that the theoretical prediction of scale effects implies a test equation that
is statistically unbalanced, relating stationary regressands to non-stationary covariates and hence
the potential problem of spurious regressions. We apply an appropriate estimator which addresses
these estimation issues.
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To analyze the dynamics of scale effects as a function of a country’s position on its transition
path to along run equilibrium, we propose an extension of Acemoglu’s (1998) endogenous growth
model with a production technology in the lines of Jones (1995a, b). We show that during the
course of transition to long-run equilibrium, scale effects of both R&D labor and R&D capital
tend to be large and prominent, but as a country approaches its long-run equilibrium, scale effects
deplete.

Our model predicts, among other things, that the long-run growth rates are driven by both
the rate of growth of technological innovations and the rate of growth of aggregate employment.
Empirical scrutiny of the long-run implications of our model reveals that all long-run relation-
ships implied by the model are validated, except for the long-run relationship between TFP and
labor in emerging economies. We argue that the latter is likely to be driven by transitional fac-
tors and structural rigidities, as these economies operate farther from their BGPs. To sum up,
this paper shows, both empirically and theoretically, that scale effects are present in emerging
economies undergoing growth transitions, but not in mature economies that operate near their
long-run equilibrium.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
$1365100525100801.
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Notes

1 A robust conclusion of the literature, as noted by Young (1998), is that the measurement of the effect of the scale on growth
requires production factors, which are used intensively in the innovation process. The reason the scale of the economy is
directly linked to innovation activity is the non-rivalrous nature of the latter, which allows technologies to be widespread in
the economy (see Romer, 1990a, b), as opposed to changes in other (general) factors of production which mainly affect certain
sectors.

2 E.g., see among others, Zachariadis (2003), Laincz and Peretto (2006), Ha and Howitt (2007).

3 Our augmented technology production function differs from the one used by Ha and Howitt (2007) for comparing and
testing second generation growth models.

4 Nadiri and Prucha (1996) provide evidence that R&D capital differs from other physical capital by estimating significantly
different depreciation rates for the two types of capital using U.S. data. This is consistent with the assumptions in our paper
as general capital may have a non-zero depreciation rate while R&D capital fully depreciates.

5 Rivera-Batiz and Romer (1991) and Bloom et al. (2020) embrace the inclusion of ’lab equipment’ in their R&D output
specifications.

6 For instance, consider a technological discovery which facilitates the fast and effective processing of speech recognition and
another technological discovery that identifies whether a Wi-Fi network is shared with neighbors. All sector research firms
have access to these technologies and can make further improvements to them, i.e., to maximize their effectiveness/quality.
However, only the firm that initially discovered the technology and was granted a patent, can build and sell a device that
incorporates the technology (e.g., to internet service providers in the case of the Wi-Fi identifier). All the other research firms
can only sell their output to the firm that owns the patent. Note that while the number of Wi-Fi identifier devices produced
enable the firm to control accessibility, and thus increase the speed of connection and operational efficiency, without the
technology embedded in each device, the devices on their own are of no use.

7 While we acknowledge that the PWT measure is derived from a production function that differs from the one used in
our theoretical model of the following section, we consider it a reasonable proxy for long-run technological progress. This is
especially the case in our context, where the emphasis is on long-term trends rather than short-run fluctuations, which are
likely to average out over time.

8 We implement a Fisher-type Phillip-Perron (PP) panel unit root test (Maddala and Wu, 1999), by setting a fixed lag length
of 3, that allows for heterogenous unit root processes across panel units. The tests confirm that InZ;; and InE;; are I(1),
whereas, gy, and grrpiy, are 1(0). Specifically, under the null of unit root, the p-values for InZ;; and InE;;, are 0.590 and
0.903 respectively, across the EME panel and 0.823 and 0.267 across the DE panel. Likewise, the respective p-values for gy,
and grrp,i¢, are 0.000 for both panels.

9 Kao’s Engle-Granger residual based panel test of cointegration decisively rejects the null of non-cointegration between
InZ and InE across both panels. Under the null of no cointegration, the test statistics are —2.70 (0.004) and —1.625 (0.052),
respectively for the EME and the DE panels; figures within parentheses are p-values. We allow for individual intercept and
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set a fixed lag length of 3 while calculating these test statistics; allowing for the automatic lag length selection improves the
precision of both test statics (p-values of 0.000).

10 Whereas Growiec et al. (2023) estimate the Ideas Production Function and “Idea TFP” using R&D labor and R&D capital
stock, we focus on modeling scale effects using R&D labor and real R&D capital expenditure as measures of R&D scale.

11 The estimated equations inclusive of spillover pools are:

g = 0.041 {0.110} In Z;; + 0.132 {0.002} In E;; + 0.065 {0.000} In s{ff_z,

grep = —0.048 {0.155} In Z;; + 0.088 {0.021} In E; ; + 0.030 {0.241} In s{'fﬁz,

where 8{'12 denotes the lagged foreign spillover pool weighted by bilateral machinery imports from OECD countries, and the
values in curly braces {.} represent p-values from the Wald test under the null hypothesis that the corresponding parameter
equals zero. We thank an anonymous reviewer for suggesting the inclusion of the international knowledge spillover pool in
our estimating equation.

12 Truncating the DE sample to 1988-2016 and making it exactly match the sample period of the EME panel also shows
no support for the scale effects across the DE panel. Furthermore, the significant scale effects observed for the EME panel
remain robust when China and India are excluded individually. Specifically, excluding China from the EME panel maintains
the significant scale effects of InE on gy;; and grpp;; while the parameter estimates of [nZ turns imprecise (insignificant
at 10%). The exclusion of India does not alter the significant scale effects on gy ;; but the parameter estimates of [nZ turns
imprecise for grrp,i.

13 One of the anonymous referees noted that some advanced countries may not have remained on their balanced growth
paths (BGPs) over the entire period and suggested measuring their distances from the BGP to assess the potential effect
on the R&D coefficient. We acknowledge this important point. Measuring each OECD country’s time-varying scale effect
requires time-varying parameter estimation within a time-series framework. However, our focus is on estimating average
scale effects across countries and time, which our approach adequately captures. Although countries may move on and off
their BGPs at different times (short run effects), we believe the average magnitude of the scale parameters is unlikely to differ
markedly from our estimates. Moreover, even if advanced economies are found to occasionally deviate from their BGPs,
calculating their distances from the BGP would merely complement the scale-effect estimates for OECD panel reported in
the last two columns of Table 1. It would neither affect (i) our robust scale-effect results for the EME panel nor (ii) our model
and its predictions that characterize the dynamics of scale effects in the transition toward the steady state. The advantage of
estimating an average scale effect is that it downplays short-run deviations of individual countries within the pool of countries.
Nevertheless, we consider the referee’s suggestion an insightful and intend to explore it in future research.

14 Note that ;ﬁl’g’ =3 gix/lzl,, = &7, which can be rewritten as dg“ f = EZ"—’f Using the latter, the elasticity of g, ;; with respect
Ogxit Zit __ Ex7Z Zit _ Exz . ™ . P
to Z;; is written as 57 i b = e T . Then, using the cross-time average growth rate for country i, the elasticity for

country i is written as g— Thus, the growth rate elasticity with respect to R&D labor for China is 0.045/0.082 ~ 0.55.

15 This condition further implies that in equilibrium general capital per capita depends on the level of technology that is,
K/N=(1-B)AYE )(r+6).

16 Researchers may also be included in aggregate labor N and receive a premium for their research work, in addition to
general salary, w. None of the results will be affected by this assumption.

17 This assumption is equivalent to Acemoglu’s (1998)assumption that small firms ignore their impact on the invention
probability of other firms working to improve the same machine.

18 Without compromising our findings, we have assumed that the growth rate of productivity C(¢) is time invariant.
Alternatively, we could have assumed that C(t) = el 8665 where gc(t) captures the fact that the magnitude of the impact
of each new idea on productivity varies over time. Whether gc is time invariant or not however does not have any effect on
our results. Hence, we simplify the model by assuming that gc is constant.

19 The fact that p(i) V(i) is subtracted from the right hand side of (3) is also consistent with Acemoglu’s (1998) assumption
that this term captures the rate that firm j loses its monopoly position.

20 The solutions for yj,c and yjn by way of structural parameters are provided in Online Appendix B.

21 If v > v then, y4,c < 0 and yan < 0 and as a consequence g4 < 0, which is infeasible since Q > 0, A > 0 and E > 0 imply
that g4 = A~ (=20 A=(=¢) QE* > 0. If v =7 then, gy = M% gc which contradicts the fact that both g¢ and gy
are strictly positive. If v < V then, ya,c > 0 and yan > 0 and thus g4 > 0.

22 Differentiating the growth rate of A with respect to time, using equation (2), allows us to obtain an equation that describes

the evolution of g4 that is, gA/gA =go + Age — (1 — ¢a)ga. It follows that when g4 < (gQ + AgE) /(1 — ¢4) then g;q/gA >0,
whereas when ga > (g +Agr) /(1 — ¢a) then g4 /g4 < 0. Likewise, differentiating the growth rate of Q with respect to time,
using equation (4), allows us to obtain an equation that describes the evolution of gq that is, go/g0 = gc + vgz — (1 — ¢)go-

It follows that when go < (g¢ + vgz) /(1 — ¢q) then go/gq > 0, whereas when go > (gc + vgz) /(1 — ¢q) then go/gq <O.
Therefore, g4 and gq always tend to converge towards their BGP, which explains the arrows of Figure 1.
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23 This calibration is chosen for expositional purposes only. It further implies that e4 g = 0.18%, £4,7 = 2.9309¢ — 05, e, =
0.25%, and e,z = 0.18%.

24 In terms of the mathematical expressions of the elasticities, at early stages of economic development since 6 and 6, are
close to unity, 0g(1 — 6g) and 64 (1 — 64) are close to zero. Likewise, for economies operating in the neighborhood of their
BGP, 0q(1 — 6g) and 64 (1 — 6,4) are close to zero because 6 and 64 are close to zero.

25 To show that (5) is reduced to (6), let g7 € Gj(g)), gc.r € Ge(ge), gy, € Gn(gn) where Gy, G¢ and Gy are the neighbor-
hoods of the corresponding BGP’s. Since the logarithmic first differences approximate growth rates, the BGP relationships
of equation (5) can be expressed in terms of the variables in log levels as InJ; — InJ,_1 = y;c[InC; — InC;—1] + yyn[InN; —
InN;_1], which can be re-arranged as InJ; — y;,clnCy — yynInNy = InJi—; — y;,cInCi—1 — yjNInN;—;. At the BGP, the latter can
be extended further to InJ; — y;,clnC; — yynInNy = Infi—y — y;,cInCi—1 — yyNInNi—1 = InJi1 — yy,clnCrpr — Yy NINNp =
Injiya — vy.clnCra — yynInNp2 = ... =InJipn — v1.clnCorpn — yNIEN L = . .

26 We recognize that patents, despite their wide usage, are a noisy measure of innovations, as they greatly differ in their
“universality” and “size” (Eaton et al., 1998), as well as in values (Battke et al., 2016). Nevertheless, patent flows are the only
consistent proxy of innovations that are available and in wide usage.

27 The Fisher-type PP panel unit root test (Maddala and Wu (ibid.)) confirm that InGDP, InZ, InE, InTFP, and InN are all
I(1) across both panels but the null of unit root is rejected for InC at the conventional significance levels of 10% or better.
However, ty, test decisively shows it to be I(1); hence, on balance, we treat [nC as I(1). The latter result is also widely reported
in the literature.
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Appendix A. Data sources and descriptive statistics

Table Al. Data sources and sample countries

Resident patent applications at national patent office—OECD and EME countries: Word Intellectual Property
Organlzat|0n (WIPO) Stat|st|cs Database https //www3 W|po |nt/|pstats/ https //www W|po |nt/|pstats/en/#resources

Employment at the R&D sector (Research scientists and engineers employed at the R&D Sector)—OECD countrles
Main Science and Technology Indicators (MSTI database): https://www.oecd.org/sti/msti.htm EME countries: UNESCO—
http //data UIS unesco. org/

Total R&D expendlture OECD countrles Total R&D expendlture on research and development in constant 2010 PPPS in
million. Source OECD MSTI. MSTI: https://www.oecd.org/sti/msti.htm EME countries: Total R&D expenditure on research
and development (GERD series) in national currency, UNESCO—http://data.uis.unesco.org/ R&D expenditure in 2011
PPPS our own calculat|on by usmg GDP deflator and PPP senes from the World Bank

R&D cap|tal expend|ture OECD countnes Total R&D capltal expend|ture in constant PPPS (2010) in m|ll|on Gross
domestic expenditure on R&D by sector of performance and type of expenditure (OECD R&D database):
https://www.oecd.org/sti/inno/researchand developmentstatisticsrds.htm EME countries: UNESCO
(http://data.uis.unesco.org/) by “type of cost series”. R&D Capital expenditure in 2011 PPPS, million, is our own calculation
by usmg GDP deflator and PPP data serles from the World Bank

Total factor productlwty (TFP) OECD and EME countrles Penn world table version 9 TFP |ndex 2011 = 1 Serles code o
rtfpna https //Www rug. nl/ggdc/product|V|ty/th/pwt releases/pwt9 0

GDP and GDP deflator—OECD countries: Gross domestic products in constant 2010 PPPS m|ll|on From World Bank WDI
dataset for all countries except Switzerland, for the latter is from OECD Economic Outlook 105. World Bank
WDI—https://databank.worldbank.org/source/world-development-indicators OECD Economic Outlook: OECD (2019),
“OECD Economic Outlook No. 105 (Edition 2019/1)”, OECD Economic Outlook: Statistics and Projections (database),
https://doi.org/10.1787/b8fe9e35-en

GDP deflator series are also from the same sources as GDP except for Canada, New Zealand and Switzerland. Deflator
series for these three countries are obtained from OECD Economic Outlook No. 105 (Edition 2019/1). EME countries: GDP in
2011 PPPS, millions. Our own calculation based on: GDP in national currency (series code: NY.GDP.MKTP.CN); GDP deflator
(series code NY.GDP.DEFL.ZS); PPPS (Series code PA.NUS.PPP) World Bank

Purchasmg power parlty, natlonal currency per USD OECD and EME countries: World Bank WDI—https: //databank wor
ldbank org/source/world development indicators

Employment OECD countries: Total employment in m|ll|on from OECD Economlc Outlook Nos 79 and 105 OECD
Economic Outlook: OECD (2019), “OECD Economic Outlook No. 105 (Edition 2019/1)”, OECD Economic Outlook: Statistics
and Projections (database), https://doi.org/10.1787/b8fe9e35-en EME countries: World Bank data series, “Employment to
population ratio, 15+, total (%)” (series code:SL.EMPTOTL.SP.ZS). We employ total population data to convert ratios to
absolute numbers. World Bank WDI—https://databank.worldbank.org/source/world-development-indicators
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Table Al. Continued.

Purchasing power parity, national currency per USD—OECD and EME countries: World Bank WDI—https://databank.wor
ldbank.org/source/world-development-indicators

Employment—OECD countries: Total employment in million from OECD Economic Outlook Nos. 79 and 105. OECD
Economic Outlook: OECD (2019), “OECD Economic Outlook No. 105 (Edition 2019/1)”, OECD Economic Outlook: Statistics
and Projections (database), https://doi.org/10.1787/b8fe9e35-en EME countries: World Bank data series, “Employment to
population ratio, 15+, total (%)” (series code:SL.EMPTOTL.SP.ZS). We employ total population data to convert ratios to
absolute numbers. World Bank WDI—https://databank.worldbank.org/source/world-development-indicators

Population: - OECD and EME countries: World Bank WDI—https://databank.worldbank.org/source/world-development
-indicators

Sample Countries:

Twenty-six countries of emerging (EME) Panel: Argentina, Belarus, Brazil, China, Colombia, Croatia, Cuba,
Czechoslovakia, Hong Kong, Hungary, India, Latvia, Malaysia, Mexico, Morocco, Pakistan, Poland, Russian Federation,
Singapore, Slovakia, Slovenia, South Africa, Thailand, Tunisia, Turkey, and Uruguay

Nineteen countries of developed (DE or OECD) Panel: Austria, Belgium, Canada, Denmark, Finland, France, Germany,
Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and
United States

Notes: Data on GDP, GDP per capita, total R&D expenditure, and R&D capital expenditure across sample countries are converted into constant (2010)
PPP US dollars. TFP is measured as index: 2011 = 1 for emerging countries and 2010 = 1 for developed countries at the source. R&D labor is the
full-time equivalent of research scientists and engineers employed in the R&D sector.

Total employment is the labor force employed (in millions). All data accessed in March 2019.

Table A2. Descriptive statistics (sample mean)*

x Patents R&D exp. R&D int. V4 Res. int. Res. prod. R&D-KEXP%
EME panel

Max 8.192f1 208.556f1 129505.5F1 1.898F4 976.787F1 1.03754 16.672f1 21.987
e
R
Ty
[ et s S OECDpanel
[
T o o S o e
S
1

*Reported sample means are calculated over the available data length for each country and each variable. gy is the average annual growth rate of
real per capita GDP (%); Patents refer to annual national filings in “000” R&D Exp. (expenditures) are in millions 2010 PPP$ (2011 PPPS$) for OECD
(EME) countries; R&D int. (intensity) refers to total R&D expenditure as percentage of GDP; Z refers to researchers, scientists and engineers in R&D
Sectorin “000” Research int. (intensity) refers R&D researchers as percentage of the total employment; Research prod. (productivity) refers to resident
patent applications per 100 researchers; and R&D — KEXP% refers to R&D capital expenditure as a percentage of total R&D expenditure. Superscripts:
E1 = China; E2 = Russain Federation; E3 = Uruguay; E4 = Singapore; E5 = Colombia; E6 = Pakistan; E7 = Poland; refer to the countries resum-
ing either the maximum or the minimum values of the corresponding measures in the emerging country panel. Likewise, subscripts: 1 = Ireland;
2 = Switzerland; 3 = USA; 4 = Portugal; 5 = Sweden; 6 = Finland; 7 = Japan; denote countries in the developed country panel.

Cite this article: Luintel K and Pourpourides P (2026). “New results and a model of scale effects on growth.” Macroeconomic
Dynamics 30(e10), 1-18. https://doi.org/10.1017/51365100525100801
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