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A B S T R A C T

Decarbonising residential heating is essential for the UK to meet its climate targets, as home heating remains a 
major carbon emitter. This study employs an agent-based model (ABM), integrating logistic regression and utility 
theory, to simulate UK household adoption of heat pumps from 2021 to 2050. The model captures economic, 
psychological, and social factors, calibrated with national survey data and historical adoption trends to align 
long-term diffusion trajectories. Under a business-as-usual scenario reflecting 2025 policies and prices, the model 
projects 8.7 million households (30.8 %) will adopt heat pumps by 2050. Increasing government grants to 
£11,500 could raise adoption to 54 %, while a 20 % electricity price reduction may yield a further 12.2 % in
crease. Logistic regression identifies homeownership, age, cost awareness, and social influence as key predictors. 
While financial incentives accelerate uptake, they are insufficient alone to meet net-zero targets. Policies must 
also address behavioural barriers—such as limited awareness, negative perceptions, or perceived hassle—and 
leverage social networks by promoting peer learning, showcasing early adopters, and supporting community 
initiatives. This research highlights the utility of ABM for designing decarbonisation strategies that integrate 
economic, behavioural, and social dimensions of household decision-making.

1. Introduction

The UK is in the midst of a critical energy transition aimed at 
reducing greenhouse gas emissions and meeting legally binding climate 
targets. Given that residential heating accounts for approximately 18 % 
of the UK’s total carbon emissions in 2021 (the most recent year for 
which data are available), the adoption of low-carbon heating technol
ogies is pivotal [1]. Heat pumps, such as air source or ground source heat 
pumps, are central to decarbonising the residential heating sector [2]. 
Heat pumps are also recognised as a cornerstone of international climate 
strategies, featuring prominently in the EU’s Fit for 55 package and the 
IEA’s Net Zero by 2050 roadmap [3]. Understanding the factors that 
influence consumer adoption of heat pumps is therefore not only crucial 
for the UK but also provides insights into global energy transition 
challenges, as public acceptability plays a major role in determining the 
effectiveness of environmental policies. Evaluating the impacts of 
various policy measures—including financial incentives such as sub
sidies, and regulatory frameworks such as building codes mandating 
low-carbon heating in new homes or phasing out gas boilers—is essen
tial to identify barriers and devise strategies that accelerate adoption 

[3]. This assessment is particularly important as the UK strives to ensure 
the economic feasibility, social acceptance, and environmental efficacy 
of its low-carbon heating transition [4].

Heat pump technology, which extracts ambient heat from the air, 
water, or ground to deliver space and water heating, represents a sus
tainable alternative to traditional fossil-fuel-based systems [5]. These 
systems have been commercially available for years and are seeing 
growing interest across Europe, North America, and Asia, where policy 
incentives and energy price structures have supported diffusion [3]. 
Recent data from the UK highlight a slow but steady increase in in
stallations, driven by government support schemes like the Boiler Up
grade Scheme, which offers financial assistance to homeowners who 
choose heat pumps [6]. Despite their environmental and efficiency ad
vantages, heat pumps currently account for a small fraction of heating 
systems in existing UK homes. Retrofitting older buildings remains a 
significant challenge, especially given the higher upfront and installa
tion costs associated with heat pumps [7]. Although recent policy de
velopments aim to increase the uptake of low-carbon heating in new 
housing—such as the planned ban on gas boilers in new homes from 
2025 under the Future Homes Standard—many new builds continue to 

* Corresponding author.
E-mail address: XuW20@cardiff.ac.uk (W. Xu). 

Contents lists available at ScienceDirect

Sustainable Futures

journal homepage: www.sciencedirect.com/journal/sustainable-futures

https://doi.org/10.1016/j.sftr.2025.101601
Received 26 June 2025; Received in revised form 8 December 2025; Accepted 8 December 2025  

Sustainable Futures 11 (2026) 101601 

Available online 19 December 2025 
2666-1888/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-1745-5699
https://orcid.org/0000-0002-1745-5699
mailto:XuW20@cardiff.ac.uk
www.sciencedirect.com/science/journal/26661888
https://www.sciencedirect.com/journal/sustainable-futures
https://doi.org/10.1016/j.sftr.2025.101601
https://doi.org/10.1016/j.sftr.2025.101601
http://creativecommons.org/licenses/by/4.0/


install gas boilers. Therefore, scaling up adoption in older, 
energy-inefficient homes remains critical to meeting national climate 
goals. Achieving widespread heat pump uptake is not only critical for 
the UK to reduce reliance on natural gas and achieve its 2030 and 2050 
emissions reduction targets [6], but also serves as a test case for how 
policy design in one country can inform adoption strategies in others 
with similar housing stock and institutional constraints.

The electrification of the heat sector through the large-scale 
deployment of heat pumps is influenced by a complex interplay of 
economic, social, and psychological factors. Governments across Europe 
are deploying a variety of policies to offset the financial burden and 
incentivise adoption [3]. The UK government, for instance, provides 
grants and low-interest loans to encourage the replacement of conven
tional boilers with heat pumps [8]. However, economic considerations 
alone do not fully explain the adoption dynamics. Households may be 
influenced by non-monetary factors such as perceived comfort, envi
ronmental awareness, and peer effects [9,10]. Additionally, technical 
barriers like the complexity of installation, property-specific suitability, 
and the disruption caused during the installation process can deter po
tential adopters [7]. Despite the urgency and policy interventions, there 
is still limited understanding of how these factors interact and shape 
heat pump adoption patterns, especially in the UK studies. This paper 
addresses this gap by firstly combining an ABM approach and logistic 
regression utility function to simulate and analyse the adoption de
cisions of UK households, with a particular focus on how different policy 
measures can influence diffusion and uptake rates.

The remainder of this paper is structured as follows: Section 2 pro
vides a comprehensive review of the literature on heat pump adoption 
and policy interventions. Section 3 describes the ABM approach, 
including the data sources and model development. Section 4 presents 
the simulation outcomes and policy scenarios analysis. Finally, Section 5
concludes with policy recommendations and suggests directions for 
future research.

2. Literature review

2.1. Policy promotion on heat pumps

Governments across Europe, North America, and Asia are imple
menting diverse policy instruments to accelerate heat pump adoption, 
including subsidies, tax incentives, and low- or zero-interest financing 
options [3]. These measures are typically aligned with national or 
regional climate targets that require rapid decarbonisation of residential 
heating. For instance, the European Union’s “Fit for 55″ initiative aims to 
reduce greenhouse gas emissions by 55 % by 2030, partly through 
increased heat pump deployment across member states [11].

The UK government has implemented several schemes to encourage 
households and businesses to adopt heat pumps, with the goal of phasing 
out gas boilers by 2050 [12]. One notable initiative is the Boiler Upgrade 
Scheme, which provided grants of £7500 for heat pump installations, 
targeting homeowners who switch from fossil-fuel-based heating sys
tems [13]. Additionally, the Green Homes Grant, which ran from 2020 
to 2021, offered vouchers for various home energy improvements, 
including heat pump installations [14]. These incentives are com
plemented by VAT reductions for energy-efficient technologies and 
support for heat pump installer training programmes.

Despite these efforts, the UK faces challenges in achieving significant 
uptake, especially in existing buildings where retrofitting can be costly 
and complex. Studies indicate that high upfront costs, installation dif
ficulties, and consumer awareness gaps are key barriers that existing 
policies have only partially addressed [15,16]. Additionally, while 
financial incentives have shown positive impacts, concerns remain 
about the long-term efficacy of these schemes, particularly as subsidies 
alone may not drive adoption at the required scale [17]. The UK gov
ernment continues to explore additional policy options, such as 
low-interest loans and regulatory mandates for new buildings, to bridge 

these gaps and accelerate the diffusion of heat pumps within both urban 
and rural areas. Understanding and addressing these challenges is crit
ical for aligning heat pump adoption with broader decarbonisation 
objectives.

2.2. Application of ABM to study heat pump adoption

Agent-based modelling (ABM) has become an increasingly promi
nent tool in the study of residential low-carbon technology adoption, 
particularly heat pumps. ABM is especially useful in this context due to 
its ability to simulate the diverse decision-making behaviours of indi
vidual households and capture the emergent effects of interactions 
among them. The technology adoption process is not purely econom
ic—it is shaped by social influence, attitudes, behavioural norms, and 
local policy contexts. ABM enables researchers to represent these com
plexities explicitly, making it well-suited to support policy evaluation 
and design.

2.2.1. Overview of recent ABM applications
In recent years, numerous studies have applied ABM to investigate 

heat pump adoption across various countries, including the UK, Ireland, 
Germany, Switzerland, the Netherlands, and China. These studies typi
cally model households as agents making decisions based on cost-benefit 
assessments, social influence, and behavioural predispositions. Most 
frameworks use utility-based decision rules, where the likelihood of 
adoption increases if the perceived benefits outweigh the costs. For 
example, Sachs et al. [18] and Meles and Ryan [19] use economic and 
behavioural data to represent how households assess financial in
centives and peer behaviour. Other studies, such as those by Snape et al. 
[20] and Nava-Guerrero et al. [21], integrate behavioural theories like 
the Theory of Planned Behaviour (TPB) or Bounded Rationality (BR) to 
better represent the psychological factors influencing decision-making.

A consistent finding across these models is the importance of finan
cial incentives and peer effects in driving adoption. Financial 
aspects—such as subsidies, renewable heat incentives, operational sav
ings, and payback periods—are shown to be major motivators. Several 
models simulate the role of these incentives in reducing adoption bar
riers and accelerating diffusion [22–24]. Meanwhile, the role of social 
influence is commonly operationalised through network models or 
spatial proximity, with studies demonstrating that households are more 
likely to adopt heat pumps when their peers or neighbours have done so 
[18,20,25]. Some studies, like Busch et al. [26], also explore group 
decision-making within homeowner associations or municipal bodies, 
revealing the impact of collective preferences and institutional 
dynamics.

ABMs also vary in terms of the spatial and temporal scales of anal
ysis. While some focus on neighbourhood or municipal levels, others 
model national-scale adoption under different policy or market sce
narios. Brodnicke et al. [24], for instance, simulate the diffusion of heat 
pumps across Switzerland under combined subsidy and carbon-tax 
policies, while Derkenbaeva et al. [25] apply the Consumat 
meta-model to examine household energy transitions in Amsterdam, 
capturing heterogeneity in decision heuristics. Similarly, van der Kam 
et al. [27] extend ABM applications to the co-adoption of low-carbon 
technologies in Switzerland, integrating affective and cognitive factors 
alongside economic and social dimensions to evaluate how policy mixes 
influence multi-technology uptake. Chen et al. [28] and Tabatabaei et al. 
[29] further demonstrate how ABMs can be coupled with predictive 
control and stochastic optimisation to simulate dynamic energy demand 
and technology diffusion, enhancing understanding of system-level 
interactions.

Data sources used to parameterise and validate ABMs differ across 
studies but commonly include household surveys, census data, energy 
consumption statistics, and historical adoption trends. For example, 
Sachs et al. [18] and Lee et al. [23] draw on detailed socio-demographic 
data and attitudinal surveys, while Snape et al. [20] use installation 
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records to validate predicted uptake. Studies often conduct sensitivity 
analyses or scenario comparisons to examine how changes in policy, 
market conditions, or social dynamics influence model outcomes. 
However, many ABMs remain context-specific and limited in scalability 

due to their reliance on localised data or simplified behavioural as
sumptions. Table 1 provides a summary of the above-mentioned 15 ABM 
applications in heat pump adoption research.

Table 1 
Recent ABM applications in heat pump adoption research (15 recent journals).

Article Research 
Purpose

Region Agent(s) Method for DMR Factor in DMR Data for DMR 
calibration/ 
validation

Theories 
under DMR

Model 
Application

Brodnicke 
et al. [24]

Residential 
adoption of HPs

Switzerland Households 
(buildings)

Utility-based 
probability 
function

Economic and 
social

Historical Swiss 
adoption data

– Policy 
evaluative, 
sensitivity 
analysis

van der Kam 
et al. [27]

Co-adoption of 
low-carbon 
techs

Switzerland Households Utility function Economic, social, 
psychological

Survey data Risks-as- 
feelings 
framework

Policy mix 
evaluation and 
scenario 
testing

Derkenbaeva 
et al. [25]

Homeowners’ 
energy 
efficiency 
decisions

Amsterdam Homeowners, 
tenants

Consumat meta- 
model decision 
rules

Economic, social, 
psychological

Dutch housing 
survey

– Policy 
evaluation, 
scenario 
analysis

​ ​ ​ ​ ​ ​ ​ ​ ​
Meles and 

Ryan [19]
Residential 
adoption of HPs

Ireland Households Utility function Economic, 
psychological, and 
social

National survey, 
historical adoption 
data, Secondary 
data for heating 
techniques

TPB Prediction, 
policy 
evaluation, 
and sensitivity 
analysis

Article Research 
Purpose

Region Agent(s) Method for DMR Factor in DMR Data for DMR 
calibration/ 
validation

Theories 
under DMR

Model 
Application

Nava- 
Guerrero 
et al. [30]

Group decision 
on HP adoption

The 
Netherlands

Individual 
households and 
those within HOAs

Utility function Economic, 
environmental, 
spatial and 
temporal

Secondary data for 
heating techniques

STS, CAS, 
and BR

Prediction, 
policy 
evaluation

Nava- 
Guerrero 
et al. [21]

Individual and 
group decision

The 
Netherlands

Individual 
households and 
those within HOAs

Lifetime cost 
calculations

Economic, social 
and technical

Secondary data for 
heating techniques

STS and 
CAS

Prediction, 
policy 
evaluation

Chen et al. 
[28]

Estimate 
electricity loads

China Households Stochastic 
probability 
function

Environmental and 
social

Survey data and 
real-time 
monitoring of heat 
usage

CAS Prediction

Hall and 
Geissler 
[31]

Load control Switzerland (Individual and 
cluster) buildings, 
and market 
coordinator

Optimisation 
function based on 
conditions of 
flexibility offers

Technical, energy 
loads, comfort from 
building 
temperature

Smart meter 
profiles, and 
secondary data on 
heating techniques

DSM Scenario-based 
prediction

Hall et al. [32] Load control Switzerland (Individual and 
cluster) buildings, 
and market 
coordinator

Optimisation 
function based on 
conditions of 
flexibility offers

Technical, energy 
loads, comfort from 
building 
temperature

Smart meter 
profiles, and 
secondary data on 
heating techniques

DSM Scenario-based 
prediction

Sachs et al. 
[18]

Low-carbon 
techniques 
adoption

The UK Consumer 
segments

Multi-objective 
functions

Economic, 
environmental, 
social, 
psychological

National surveys 
and reports

BR Prediction, 
sensitivity 
analysis

Felten et al. 
[22]

Load control Germany Flexible and 
inflexible 
consumers, 
producers, and grid 
operators

Predictive control 
mechanism

Economic, 
technical and 
psychological

Real grid data, 
secondary data on 
heating techniques

DSM Policy 
evaluation, 
sensitivity 
analysis

Article Research 
Purpose

Region Agent(s) Method for DMR Factor in DMR Data for DMR 
calibration/ 
validation

Theories 
under DMR

Model 
Application

Busch et al. 
[26]

Accelerate local 
energy 
infrastructure

The UK Local authorities, 
commercial 
developers, and 
community 
organisations

Muti-stage 
development 
process and 
distinct decision 
heuristics

Institutional, social 
and economic

Participatory 
workshops, 
statistical and 
geospatial data

STS Prediction, 
policy 
evaluation

Snape et al. 
[20]

Private adoption 
of HPs

The UK Households Utility function Economic, social 
and psychological

National surveys 
and reports

BR Sensitivity 
analysis

Lee et al. [23] Domestic energy 
reduction

The UK Homeowners Utility function Economic, 
Psychological and 
technical

National surveys BR Policy 
evaluation

Tabatabaei 
et al. [29]

Energy usage 
evaluation

The 
Netherlands

A heating agent 
and a thermostat 
agent

Customised 
mathematical 
equations

Environmental, and 
technical

Monitoring data 
from the test house

– Scenario-based 
evaluation

Table 1 summarises 15 recent agent-based modelling studies on heat pump adoption, including research context, agent characteristics, decision-making methods, data 
sources, and model applications.
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2.2.2. Our contributions
Building on this literature, our study makes several novel contribu

tions. First, we develop an ABM tailored specifically to the UK context, 
simulating household adoption of heat pumps from 2021 to 2050. Un
like many prior models that focus on short-term dynamics or regional 
case studies, our model provides long-term insights aligned with na
tional decarbonisation goals.

Second, our model features a three-dimensional decision-making 
framework that combines economic, psychological, and social utilities. 
These utilities are weighted using empirical data derived from a na
tionally representative UK survey and calibrated using logistic regres
sion analysis. This integration of statistical modelling with behavioural 
simulation enhances the robustness and realism of our adoption model.

Third, we calibrate our model against historical UK heat pump 
installation data (2009–2024) and validate its long-term trajectory using 
comparative adoption trends from Sweden. This dual calibration 
approach addresses the limitations of relying solely on early UK data, 
which predominantly reflects early adopters. By referencing a mature 
market like Sweden, we improve the plausibility of our long-term 
projections.

Fourth, we explicitly represent household heterogeneity in terms of 
income, housing type, social connectivity, and willingness to adopt. We 
also model peer influence through a social circle mechanism, reflecting 
the structure of real-world social networks. This allows us to simulate 
how adoption decisions are shaped by not only individual preferences 
but also broader community dynamics.

In summary, our work advances the application of ABM to heat pump 
adoption by integrating robust behavioural data, long-term calibration, 
and social network dynamics. It provides policymakers with a nuanced 
tool to explore the impacts of financial and behavioural interventions, 
identify adoption barriers, and design strategies that support equitable 
and widespread uptake.

3. Model description and materials

This section describes the agent-based model following the Overview 
(Sections 3.1–3.3), Design Concepts (Section 3.4), and Details (Sections 
3.5–3.8) (ODD) protocol [33].

3.1. Purpose

The model simulates the diffusion of residential heat pumps in the 
UK from 2021 to 2050. It examines how economic affordability, psy
chological attitudes, and social influence interact to shape household 
adoption decisions and how policy interventions (grants and electricity 
price changes) alter adoption trajectories.

Fig. 1 visualises the overall methodological framework of the study. 
The model is developed within the framework of the TPB (Section 
3.4.1). It begins with national household survey data as the primary 
input (Section 3.6), which informs the construction of household agents’ 
decision-making rules that incorporate economic, psychological, and 
social interaction utilities (Section 3.7). The agent-based model is cali
brated and validated using historical adoption data from the UK and 
Sweden (Section 3.8). Finally, the calibrated model is used to simulate 
heat pump adoption trajectories from 2021 to 2050 and to evaluate the 
impacts of varying grant levels and electricity prices on adoption out
comes (Section 4).

3.2. Entities, state variables, and scales

In our agent-based model, households are represented as agents that 
decide whether to install a heat pump in their homes. Agents are clas
sified as "adopters" if they have already installed a heat pump, while 
those still using gas, oil, resistive heaters, or solid fuels for heating are 

termed "potential adopters" [34]. Once an agent adopts a heat pump, we 
assume they will remain in that status, as the high initial investment is 
typically offset by long-term energy savings, making reversion unlikely 
and streamlining the model. A potential adopter will opt for a heat pump 
installation when the perceived benefits surpass a certain threshold.

Each agent is characterised by a set of attributes that directly reflect 
the ONS survey microdata (Section 3.6), including socio-demographic 
factors (gender, age, education), housing type (detached, semi- 
detached, terraced, flat), tenure status (own, rent, part-own), house
hold income, primary heating system, and psychological variables (at
titudes toward heating technologies and replacement intentions). Other 
state variables include social network connections (Section 3.4.2) and 
adopter status (e.g., adopter and non-adopter).

Our agent-based model is implemented using AnyLogic 8.9.3, a Java- 
based simulation platform [35]. Our simulation runs annually from 
2021 to 2050 (30 time steps).

3.3. Process overview and scheduling

At each annual time step t, each potential adopter evaluates whether 
to adopt a heat pump. First, the agent computes its economic, psycho
logical, and social interaction utilities. These are then combined into a 
total utility value. The agent’s total utility is compared against its 
adoption threshold, which is drawn from a normal distribution with a 
standard deviation 0.33 with means reflecting empirically observed 
group heterogeneity of willingness-to-adopt categories. Adoption occurs 
if the total utility exceeds the threshold and the annualised upfront cost 
does not exceed 50 % of the household’s disposable income (Section 
3.7). The model assumes zero residual value for existing heating sys
tems, because system age was not available in the survey dataset; 
therefore, adoption decisions are based solely on the comparative util
ities rather than equipment replacement cycles.

3.4. Design concepts

3.4.1. Theoretical foundation
The decision-making structure in this model is grounded in the 

Theory of Planned Behaviour (TPB) [36], which explains technology 
adoption behaviour across diverse contexts [19,37]. TPB posits that an 
individual’s intention to adopt a new technology is shaped by three 
components: attitude toward the behaviour, subjective norms, and 

Fig. 1. The model development progress.
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perceived behavioural control. These components map directly onto the 
psychological, social, and economic utilities in our agent-based model. 
The economic utility reflects perceived behavioural control and captures 
households’ perceived ease or difficulty of adopting a heat pump, pri
marily influenced by financial affordability and expected long-term 
operating costs. The psychological utility represents attitude toward 
the behaviour and reflects how households evaluate the desirability of 
heat pump adoption based on perceived benefits such as comfort, effi
ciency, and environmental impact, as well as perceived drawbacks such 
as installation disruption or uncertainty in performance. The social 
utility corresponds to subjective norms and captures the influence of an 
agent’s social network, whereby adoption becomes more likely when 
peers, neighbours, or acquaintances have already adopted. These in
teractions operate through information sharing, reduced uncertainty, 
and reinforcement of group norms (e.g., word-of-mouth diffusion and 
herd behaviour). Together, these three utility components determine 
each household’s adoption decision in the model (details in Section 3.7).

3.4.2. Agent interaction
In our model, agents influence each other through social circle 

models (see the model details on social interaction utility in Section 3.7). 
Social circle model is one of the common approaches to measure social 
interactions [38,39]. The model typically categorizes an individual’s 
social network into concentric circles, each representing different levels 
of closeness and influence, from immediate family and close friends to 
acquaintances and broader community members. This model allows for 
the assessment of how information, behaviours, and influences spread 
across these layers, highlighting the varying impact of interactions based 
on the strength and proximity of social ties. The approach has been 
adopted by Meles and Ryan [19] to construct social networks of 
household agents, assisting in investigating how social interactions can 
influence the decisions of Irish households to adopt a heat pump. 
Additionally, Hassouna [40] has applied the similar approach to study 
the influence of social interactions in customer retention in the UK 
mobile market.

3.4.3. Stochasticity
Stochasticity in the model arises primarily from this random 

assignment of social networks and the probabilistic nature of adoption 
decisions. Stochasticity also rises in adoption thresholds (normally 
distributed within behavioural groups) and simulation replications (30 
runs per scenario with different random number generator seeds).

3.5. Initialization

The simulation is initialised to reflect the empirical conditions 
observed in 2021. It starts by generating a population of 3706 household 
agents, each corresponding to a unique respondent from the 2021 ONS 
Public Attitude Tracker dataset [41]. Corresponding to the MCS UK heat 
pump installation statistics [42], 29 out of 3706 agents are assigned as 
initial adopters, while all others begin as potential adopters. As the agent 
population is directly initialised from the survey microdata, the empir
ical joint distribution of these variables is preserved. This ensures that 
correlations between attributes (e.g., income and homeownership, ed
ucation, and environmental attitudes) are maintained rather than arti
ficially imposed or assumed to be independent. Many of these agent 
attributes are treated as fixed throughout the simulation for simplifica
tion, though future extensions could incorporate dynamic 
socio-economic transitions.

The household agents are randomly distributed within the simula
tion environment to form a synthetic social network. Social connections 
between agents are modelled using a social circle approach, where the 
number of ties follows a normal distribution with a mean of 4 and a 
standard deviation of 2. The network distribution is consistent with the 
findings from Wave 3 of the Understanding Society Census, which re
ports that UK citizens typically have 2 to 6 close friends [43].

3.6. Input data

The model draws on multiple empirical data sources as summarised 
in Table 2.

These data listed are applied to parameterise agent characteristics, 
estimate heating costs, and to calibrate adoption dynamics. Household- 
level socio-demographic attributes, dwelling characteristics, heating 
systems, and attitudes toward heat pump installation are taken directly 
from the ONS Public Attitudes Tracker [41], which provides the 
microdata used to initialise agents and estimate the psychological utility 
component via logistic regression. Estimates of annual heating expen
diture for different fuel types are obtained from GOV.UK domestic en
ergy expenditure statistics [44] and are used to compute the economic 
utility. Model calibration uses MCS heat pump installation statistics for 
the UK (2009–2024) [42] to match the recent historical trend in adop
tion. To overcome the limited time span of UK data, long-term diffusion 
dynamics are validated against Swedish national heat pump adoption 
data (SKVP 1993–2022) [45], which provides a mature-market bench
mark. Grant levels and electricity price variations [46–50] enter the 
model as scenario-specific policy inputs. Details on the household survey 
data and distributions are provided in Appendix A for model outcome 
replications.

3.7. Submodels

3.7.1. Overall utility
The total utility for each household agent i at time t, represented as, 

Ui,t, is calculated as the sum of the weighted partial utilities associated 
with economic, psychological, and social interaction factors, as detailed 
below. 

Ui,t = wecon ∗ Uecon,i,t + wpsychology ∗ Upsychology,i,t + wnetwork ∗ Unetwork,i,t (1) 

where, 
∑

kwk = 1 for k ∈ {economic, psychology, social} and wk, 
Uk, i, t ∈ [0, 1]. The time index t reflects the annual evaluation of policy 
conditions and agent states throughout the simulation period 
(2021–2050).

The partial utility obtained from each of the three factors is 
normalized to lie within the [0, 1] range. As a result, the total utility for a 
potential adopter also falls within this interval. The weights wk assigned 
to the partial utilities of each factor are established through model 
calibration based on historical heat pump adoption data. In the 
following subsections, we describe the calculation of the utility for each 
of these three factors.

3.7.2. Economic utility
In our model’s economic decision-making process, each household 

agent compares the yearly heating costs of their current system with 

Table 2 
Input data sources and applications.

Source Application

ONS Public Attitudes Tracker (2021) [41] Agent attributes + psychological 
regression

GOV.UK domestic energy expenditure (2021) 
[44]

Operating cost estimates

MCS UK heat pump installation statistics 
(2009–2024) [42]

Calibration and short-term 
validation

SKVP Sweden heat pump statistics 
(1993–2022) [45]

Long-term diffusion pattern 
validation

Energy prices [46–49] Operating cost estimates +
sensitivity analysis

Grant amounts [50] Operating cost estimates +
sensitivity analysis

Table 2 provides an overview of empirical data sources used to parameterise 
agent attributes, estimate heating costs, and calibrate and validate the model 
adoption dynamics.
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those of a heat pump system at time t. These costs include annualized 
upfront investments with installation fees, applicable grants, and annual 
operating expenses. For their existing systems, the initial capital costs 
are treated as sunk costs. The annualized upfront cost of the heat pump 
system (ACHP,i,t) for agent i at time t is determined using Eq. (2), forming 
the quantitative basis for assessing whether the agent perceives adoption 
to be financially feasible. 

ACHP,i,t =

(
Ci,t − Granti,t

)
∗ r ∗ (1 + r)L

(1 + r)L
− 1

(2) 

Where, Ci,t represents the total upfront installation cost of a heat 
pump for household i at time t, which varies according to dwelling 
characteristics and system type. Granti,t denotes the financial support or 
subsidy available to household i at time t, which reduces the initial in
vestment. The parameter r is the discount rate used to annualise the 
capital cost over the system’s lifetime. In this model, we assume that 
households face no interest charges on the financing of installation costs, 
and therefore treat the loan as interest-free. A detailed justification of 
the variable values relevant to Eq. (2), as well as to the Eqs. 3(a) and 3(b)
below, have been provided in Appendix B.

In our analysis, we utilise the annual domestic energy bills indicating 
average expenditure each week on fuel per consuming household in the 
UK reported by GOV.UK [44], to estimate the operating costs of their 
current heating systems. We then compare these figures with the pro
jected annual costs of switching to a heat pump system using Eqs. (3a) 
and 3b

ACost HP,i,t = ACHP,i,t + (1 − bill saving) ∗ annual heating billi,t
∗
(
1 + %Δ in electricity pricei,t

) (3a) 

ACost exisiting system,i,t = annual heating billi,t ∗
(
1+%Δ in fuel pricei,t

)
(3b) 

Heat pump systems offer significantly lower annual operating costs 
compared to conventional fossil-fuel-based and resistive heating sys
tems, with potential cost savings reaching up to 70 % [19]. Empirical 
estimates suggest that ASHPs achieve average savings of approximately 
30 %, whereas GSHPs can realise savings of around 50 %. In this study, a 
mean value of 40 % bill savings is assumed for heat pumps relative to 
traditional heating systems. Because heat pump systems rely on elec
tricity to function, our cost calculations also include both the percentage 
change in electricity prices ( %Δ in electricity price) and in alternative 
fuel prices ( %Δ in fuel price).

In addition, we incorporate a prior technical assessment fee of £200 
for heat pumps [51]. Consequently, the economic partial utility for 
agent i at time t is derived as shown in Eq. (4). 

Uecon,i,t = ACost existing systemi,t

/
ACost HP,i,t (4) 

The economic utility value is scaled between zero and one, where a 
higher value signifies that the calculated costs of the current heating 
system are comparatively greater than those of a heat pump. This in
creases the likelihood that an agent will opt for installing a heat pump at 
home.

3.7.3. Psychological utility
In our agent-based model, we employ logistic regression analysis to 

interpret survey responses to statements assessing psychological con
structs, deriving parameters for the psychological partial utility. The 
survey gathered information on respondents’ intentions to replace their 
existing heating system and their primary considerations for doing so, 
such as saving money on heating bills, switching to a more environ
mentally friendly system, or opting for a more reliable one. Additionally, 
the survey explored respondents’ experiences with their current heating 
systems and the reasons they pay varying degrees of attention to heat 
usage—ranging from minimal to significant focus. Following Osborne’s 
(2015) methodology, the logistic regression model is expressed as Eq. 

(5): 

Pi,t(replacement= 1) = 1
/

1+ e− (β0+
∑n

k=1
βkXi,k,t) (5) 

Here, replacement represents respondents’ intention to replace their 
current heating system, with a value of 1 indicating “yes” and 0 indi
cating “no”. Pi,t(replacement = 1) denotes the probability that household 
agent i would consider replacing their current heating system at time t. 
Xi,k,t are the predictor variables k for agent i at time t (e.g., primary 
reasons for replacement and attention paid to heat usage), while βk are 
the coefficients derived from the survey data.

3.7.4. Social interaction utility
In our study, a social circle model is applied to construct the social 

networks for household agents. Consequently, the partial utility derived 
from social networks is calculated as follows: 

Usoc,i,t =
Nia,t

Ni
(6) 

Here, Ni represents the total number of peers connected to agent i, 
while Nia denotes the number of agent i’s peers who have adopted a heat 
pump at time t. As more peers adopt a heat pump, the influence of social 
networks becomes stronger, thereby increasing the probability that 
agent i will choose to install a heat pump at home.

3.7.5. Adoption decision
At time t, a potential adopter will decide to install a heat pump if the 

sum of the weighted partial utilities from the three factors, Ui,t, surpasses 
the adoption threshold θi, and the upfront cost remains within 50 % of 
the household’s annual disposable income. This condition can be rep
resented as: 

Ui,t > θi and ACHP,i,t ≤ 0.5⋅Incomei (7) 

The threshold is shaped by each agent’s willingness to adopt new 
technology. Some agents are early adopters, installing the technology 
when few others have done so, while others prefer to wait until a larger 
portion of the population has adopted it. Lower threshold values 
correspond to early adopters of heat pumps, whereas higher thresholds 
indicate those who adopt later, known as laggards [34]. We have 
included a detailed justification for defining agents’ adoption propensity 
and value distribution, as well as for setting the income threshold at 0.5, 
in Appendix B.

Household income plays a significant role in the adoption of energy- 
efficient and renewable technologies, as higher-income households are 
more likely to invest in these systems due to the substantial upfront and 
installation costs, which can be a major barrier for lower-income 
households [19]. To account for the influence of household disposable 
income on heat pump adoption decisions, we define upfront costs 
exceeding 50 % of a household’s annual disposal income as unafford
able. We set the threshold at 50 % for two reasons. First, it reflects the 
empirical context under study: the baseline upfront cost of £16,500 
(including installation) represents about half of the average annual 
disposable income midpoint of UK households (£32,349), yet national 
adoption rates remain below 1 % [42]. Second, we adopt 50 % as a 
conservative upper bound on willingness to pay, consistent with evi
dence that high capital costs are the primary barrier to low-carbon heat 
adoption [7]. Consequently, an agent will decide to adopt a heat pump if 
the utility of adoption exceeds their heterogeneous willingness-to-pay 
threshold, and the upfront cost remains within 50 % of the house
hold’s annual disposable income.

3.8. Calibration, validation, and sensitivity analysis

To calibrate the model parameters, we used historical heat pump 
sales data for the UK from the Microgeneration Certification Scheme 
[42]. Because the UK dataset (2009–2024) is relatively short, we 
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complemented it with Sweden’s long-term adoption data covering 
1993–2022 [45], following the comparative approach of Meles and 
Ryan [19]. The model assumes that the UK’s heat pump diffusion tra
jectory follows a similar pattern to Sweden’s more mature market. The 
model sets initial values of utility weights (economic 0.38, psychological 
0.27, and social interaction 0.35) same to Meles and Ryan [19]. Cali
bration was performed using AnyLogic’s OptQuest optimization engine. 
which systematically adjusted the three utility weights including eco
nomic, psychological, and social under the constraint that their sum 
equals one. The objective function minimized the root mean square error 
(RMSE) between the simulated adoption rates and observed UK data 
(2021–2024), while also aligning the long-term diffusion trend with the 
Swedish benchmark. The optimal weights identified (0.44 for economic, 
0.27 for psychological, and 0.29 for social utility) yielded model tra
jectories that closely matched both datasets. This hybrid empiri
cal–optimization calibration ensured that behavioural parameters were 
statistically grounded and that the model reproduced realistic adoption 
dynamics. Fig. 2 illustrates the calibration and validation process.

We run a single simulation over 30 time steps, where each step 
represents one year, based on the calibrated model. The simulation re
sults from time steps 0 to 30 correspond to the cumulative number of 
adopters in the UK from 2021 to 2050, with the initial number of 
adopters derived from the survey representing the total by the end of 
2021. To ensure statistical stability and reliability of the results, each 
simulation scenario was replicated 30 times, which represents a stan
dard practice for balancing stochastic variability and computational 
feasibility. This approach follows the guidance of Macal and North [52] 
and Railsback and Grimm [53], who emphasise that multiple replica
tions are essential to capture inherent stochasticity, even under identical 
model parameters and initial conditions. The output is collected and 
analysed using AnyLogic 8.9.3.

Table 3 presents the parameters used in both the baseline scenario 
and the sensitivity analysis. Since the data encompasses both ground 

source and air source heat pumps, we use midpoint values for key at
tributes of heat pumps in all of the scenarios: upfront cost (£17,500), bill 
savings (40 %), and lifespan (20 years). The baseline scenario in
corporates the UK government’s home grant of £7500 for heat pumps. 
To evaluate its impact on heat pump adoptions, we analyse scenarios 
where the grant is removed entirely (£0) or its amount varied at £5000, 
£9500 and £11,500. Additionally, we assess the sensitivity of the base
line scenario results to electricity price change. In the sensitivity analysis 
experiments, all other parameters are held constant at their baseline 
values, except for the variable of interest, which is modified 
individually.

4. Results

Section 4 presents and discusses both empirical findings from survey 
and historical datasets and model predictions generated through the 
agent-based simulations. The empirical data from the 2021 UK Public 
Attitudes Tracker [41] and historical heat pump sales [42] represent the 
current situation and serve as the baseline for model calibration. The 
simulated results represent projected adoption trajectories from 2025 to 
2050 under different policy and market scenarios.

Specifically, Section 4.1 presents the baseline simulation predicting 
future heat pump uptake under 2021 policy conditions (a £7500 grant 
and constant electricity prices). Section 4.2 reports empirical logistic 
regression results on household socio-demographic and psychological 
factors influencing adoption. Sections 4.3 and 4.4 explore model-based 
policy scenarios, testing how variations in grant levels and electricity 
prices, respectively, affect projected adoption outcomes.

4.1. Predicting adoption among sample households and calibration to UK 
households

This subsection presents the simulation results on predicted cumu
lative adoptions of heat pumps among the 3706 sample households 
(base scenario) and the corresponding up-scaling of these results to the 
28,119,000 UK households. Fig. 3 illustrates the average cumulative 
adoptions of heat pumps among sample and UK households across 30 
simulated time steps, representing the years 2021 to 2050. To account 
for stochastic variation inherent in agent-based modelling, primarily 
due to random initialisation of household attributes and social network 
formation, we performed 30 independent simulation runs using the 
same parameter settings. The results from these runs were averaged to 
reduce the influence of random noise and improve the robustness of 
predictions. At the final time step (2050), the simulation, as indicated by 
the blue dotted line, predicts that 1141 of the 3706 sample households 
will adopt heat pumps, with a standard deviation of 12 across the 30 
runs. These results were then proportionally up-scaled to the UK 
household population. As shown by the orange dotted line, the model 
estimates that approximately 8657,000 UK households—about 30.8 % 
of the total—will adopt heat pumps by 2050 under 2021 policy condi
tions (a £7500 grant and constant electricity prices), which assumes no 
additional policy interventions or incentives.Fig. 2. The model calibration and validation progress.

Table 3 
Parameter values for the baseline, policy and practical scenarios.

Variables Baseline Sensitivity Analysis

Grant amounts £7500 £0, £5000, £9500, £11,500
%Δ in electricity price 0 % − 20 %, − 10 %, +10 %, +20 %
Average weights for partial utilities:
Economic utility 0.44
Psychological utility 0.27
Social utility 0.29

Table 3 presents the model parameters that are applied in the baseline simula
tion and sensitivity scenarios, including grant levels, electricity price variations, 
and calibrated utility weightings.
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4.2. Impacts of consumer socio-demographics and psychological factors

This subsection presents empirical analysis derived from national 
household survey data, not simulation outputs. Logistic regression was 
applied to identify key socio-demographic and psychological factors 
associated with the intention to adopt heat pumps. The statistically 
significant variables (in Table 4) were subsequently incorporated as 
parameters in the psychological utility component of the model and to 
inform agent-level characteristics. Specifically, the regression co
efficients derived here are applied to estimate the probability that a 
household intends to replace its existing heating system, which in turn 
influences the agent’s psychological utility score within the ABM. The 
empirical results indicate that households living in detached, semi- 
detached, or terraced homes are more inclined to adopt a heat pump 
compared to those living in flats. Similarly, homeowners—whether 
outright or with a mortgage—are significantly more likely to consider 
adoption than renters. Females are found to be less likely to adopt heat 
pumps than males, and individuals aged over 25 show greater adoption 
intent than those aged 16–24.

Table 4 presents the logistic regression results showing socio- 
demographic and psychological predictors of household intention to 
replace existing heating systems, informing the psychological utility 
component of the model. Significant levels are denoted by *(0.1), ** 
(0.05) and ***(<0.01). Observations: 3706.

In terms of psychological motivations, the empirical results show 
that households primarily motivated by minimising environmental 
impact are less likely to adopt than those focused on reducing heating 
costs. Additionally, households that report paying little or no attention 
to their heat usage—either due to lack of control or disinterest—are less 
inclined to adopt a heat pump than those motivated by maintaining 
comfort. These behavioural insights provide critical empirical 
grounding for the ABM’s psychological and economic decision compo
nents. These empirically derived associations were used to construct the 
logistic function embedded in the agent-based model, thereby allowing 
agent decisions to reflect observed patterns in real-world adoption 
intent.

4.3. Policy scenario analysis: impact of grant variations

This subsection presents model-based simulations testing the sensi
tivity of household adoption to different grant levels. The empirical 

baseline reflects the UK Boiler Upgrade Scheme, which provides a £7500 
grant [6]. The simulations vary grant values from £5000 to £11,500 in 
£2000 increments. The scenario of no grant (£0) is also considered. Fig. 4
presents simulated cumulative adoption trajectories under each sce
nario. The starting point (220 thousand adoptions in 2021) represents 
observed cumulative installations in 2021 as reported by MCS [42].

Based on the model predictions, the current £7500 grant increases 
the percentage of heat pump adopters to 30.8 % in 2050, equating to 
approximately 8657,000 households, compared to 3.5 % without any 
grant. This indicates that a grant covering 42.9 % of the upfront cost 
boosts the average cumulative number of adopters in 2050 by 27.3 % 
relative to the no-grant scenario. We also examine the effects of different 
grant levels, increasing from £5000 to £11,500 in step of £2000. A grant 
of £5000 reduces the average number of heat pump adopters in 2050 to 
6601,000, compared to 8657,000 with the current £7500 grant. 
Conversely, grant amounts of £9500 and £11,500 increase the number of 
adopters in 2050 to approximately 39.7 % and 54.0 % of UK households 
(around 11,176,000 and 15,197,000 heat pumps), respectively, 
compared to 30.8 % with the £7500 grant.

4.4. Policy scenario analysis: impact of electricity price variations

Since heat pumps depend on electricity, this section presents simu
lation results assessing the influence of electricity price fluctuations 
relative to 2021 levels (the empirical baseline). Fig. 5 begins with 220 
thousand observed cumulative installations in 2021 [42] and then 
shows modelled adoption trajectories under ±10 % and ±20 % elec
tricity price scenarios. The model predicts that a 20 % reduction in 
electricity prices increases adoption by 12.2 percentage points (3.43 
million additional installations) by 2050 relative to the baseline sce
nario. Conversely, the simulation results indicate price increases slow 
the adoption rate. Thus, it can be concluded that lower electricity prices 
would significantly increase the average cumulative percentage of heat 
pump adopters by 2050.

5. Discussions and policy implications

This study applies an ABM approach, underpinned by logistic 
regression analysis and utility theory, to explore the multifactorial dy
namics of residential heat pump adoption in the UK from 2021 to 2050. 
By integrating economic, psychological, and social factors into 

Fig. 3. Cumulative heat pump adoptions among sample households and the UK households.
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household agents’ decision-making processes, and calibrating the model 
with national survey data and historical adoption trends, the simulation 
provides a robust representation of potential adoption pathways under 
varying policy and market conditions.

In the baseline scenario, where current (as of 2024) government 
subsidies and energy price levels are maintained, the model predicts that 
approximately 8.7 million UK households (30.8 %) could adopt heat 
pumps by 2050. However, the results reveal a high degree of sensitivity 
to both financial incentives and electricity price trends. Increasing the 
current £7500 grant to £11,500 could raise adoption to over 15 million 
households (54 % of households). In comparison, a 20 % reduction in 
electricity prices alone could boost adoption by a further 12.2 percent
age points, resulting in a total adoption rate of approximately 43.0 % 
(equivalent to around 12.1 million households). These findings under
line the pivotal role that economic levers, both direct subsidies and 
operational cost reductions, play in driving consumer transitions to low- 
carbon heating technologies. This finding is consistent with those of 

Brodnicke et al. [24], van der Kam et al. [27], Derkenbaeva et al. [25], 
Nava-Guerrero et al. [30,21], Felten et al. [22] and Busch et al. [26], 
who similarly demonstrate the strong effect of policy portfolios like 
subsidies and cost reductions on adoption.

Beyond financial considerations, psychological and social di
mensions are shown to be essential. Consumers who express stronger 
pro-environmental attitudes, greater control over heat usage, and 
motivation to save on heating bills are more likely to adopt heat pumps. 
Moreover, peer effects and social networks exert a meaningful influence, 
demonstrating that visibility of early adopters and community-based 
encouragement can accelerate diffusion. These behavioural insights 
align with previous findings of Meles and Ryan [19], Nava-Guerrero 
et al. [30,21] and Bale et al. [9], which suggest that a purely eco
nomic framing of policy may be insufficient to achieve widespread 
behavioural change. Our results on peer and social influence are also 
consistent with Sachs et al. [18] and Snape et al. [20], which find that 
adoption likelihood increases when peers have already installed heat 
pumps.

Six policy implications can be drawn from the research findings:
Expand and Tailor Financial Incentives: Increasing the Boiler 

Upgrade Scheme grant beyond £7500, particularly up to £9500– 
£11,500, could significantly increase adoption. In parallel, expanding 

Table 4 
Probability estimations of adopting a heat pump.

Variable type Variable and variable category Coefficient
(Standard 
Deviation)

Psychological and 
behavioural variables

Main reason for paying a lot attention on heat usage 
(reference: cost):
To minimise the environmental 
impact of the heat used

-1.878***

​ (.279)
Main reason for paying no attention on heat usage 
(reference: comfort):
I don’t feel I can control the 
amount of heat used

-.900*

​ (.480)
I’m just not interested in the 
amount of heat used

-.854*

​ (.501)
Socio-demographic 

variables
Accommodation type  
(reference: flat):
Detached .664***
​ (.188)
Semi-detached .426**
​ (.168)
Terraced .355**
​ (.170)
Tenure  
(reference: rent it):
Own outright 3.589***
​ (.158)
Own with a mortgage or loan 3.969***
​ (.182)
Part own and part rent 2.081***
​ (.410)
Live here rent free .895***
​ (.262)
Gender  
(reference: male):
Female -.384***
​ (.117)
Age  
(reference: between 16 and 24 years old):
65 years old and above 1.231***
​ (.246)
Between 45 and 64 years old 1.169***
​ (.222)
Between 25 and 44 years old 1.058***
​ (.223)
Constant -.396
​ (.436)
-2Log-likelihood 2096.441

Table 4 presents the logistic regression results showing socio-demographic and 
psychological predictors of household intention to replace existing heating 
systems, informing the psychological utility component of the model. Significant 
levels are denoted by *(0.1), **(0.05) and ***(<0.01). Observations: 3,706.

Fig. 4. Impacts of grant amounts on heat pump adoptions.

Fig. 5. Impact of electricity prices on heat pump adoptions.
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eligibility to lower-income households through additional interest-free 
loans or tiered subsidies could enhance equitable access. The recom
mendation to expand the Boiler Upgrade Scheme grant is directly 
grounded in our finding that increasing grants from £7500 to £11,500 
could raise adoption from 30.8 % to 54 % of households (from 
approximately 8657,000 to 15,197,000 adoptions) by 2050 (Fig. 4).

Reduce Operational Costs via Energy Pricing Reform: Lowering 
electricity tariffs for heat pump users, potentially through time-of-use 
pricing or green electricity discounts, could enhance the long-term 
cost-competitiveness of heat pumps and make them more attractive 
relative to fossil fuel systems. The suggestion to lower tariffs for heat 
pump users is supported by our result that a 20 % reduction in electricity 
prices boosts adoption by an additional 12.2 percentage points 
(3429,000 heat pumps in Fig. 5) by 2050.

Promote Social Norms and Community Initiatives: Public 
awareness campaigns should leverage social influence by showcasing 
early adopters and facilitating neighbourhood-scale transitions. Com
munity heat pump trials, endorsements by trusted local figures, and 
social comparison tools (e.g., “compare your energy savings”) can boost 
visibility and perceived legitimacy. The emphasis on peer influence 
derives from our social interaction utility modelling, which shows a 
positive weight in adoption decision.

Address Psychological Barriers: Educational efforts should focus 
on correcting misconceptions about the ease and reliability of heat pump 
installation and use. Demonstrating tangible co-benefits such as com
fort, safety, and control can help shift attitudes and perceived behav
ioural control, especially among hesitant groups. This recommendation 
is drawn from our logistic regression analysis, which showed that 
negative attitudes (e.g., disinterest in heat usage) significantly reduce 
adoption intent.

Targeted Support for Renters and Flat Dwellers: Since adoption is 
lower among those in rented accommodation or flats, targeted in
terventions such as landlord incentives, building-wide retrofits, and 
regulations mandating low-carbon systems in multi-family housing are 
needed to prevent a “retrofit divide”. Our finding that adoption likeli
hood is lower in rented accommodation or flats (Table 3) supports 
policies targeting landlords and multi-unit buildings.

Incorporate Behavioural Insights into Future Modelling: As the 
policy landscape and consumer attitudes evolve, future ABM efforts 
should incorporate dynamic adaptation of consumer preferences and 
more granular modelling of regional and housing-type variations.

In sum, achieving the UK’s net-zero targets will require a compre
hensive policy mix that goes beyond economic subsidies to include 
behavioural interventions, electricity market reform, and community 
engagement strategies. Agent-based modelling, by capturing the com
plex interplay between economic conditions, individual psychology, and 
social influence, offers a valuable tool for designing and evaluating such 
interventions.

Our research has made several contributions. Methodologically, the 
integration of logistic regression with ABM provides an empirically 
grounded weighting of economic, psychological, and social utilities. 
This hybrid approach advances existing ABM applications by combining 
statistical inference with behavioural simulation, thereby enhancing 
robustness and realism. Empirically, our long-term simulation 
(2021–2050), calibrated with both UK and Swedish adoption data, 
provides new insights into the trajectory of UK heat pump adoption 
under different policy scenarios. Our findings confirm prior evidence on 
the importance of financial incentives and social influence, while adding 
psychological attitudes (stronger pro-environmental attitudes, greater 
control over heat usage, and motivation to save on heating bills) as 
adoption drivers. Theoretically, this work explicitly connect the model 
to the Theory of Planned Behaviour, Diffusion of Innovations, and Utility 
Theory, showing how these frameworks guided the construction of 
adoption progress, utility weights, and agent heterogeneity. In turn, our 
results inform TPB by empirically demonstrating the relative weighting 
of economic versus psychological and social drivers, highlighting that 

financial incentives alone are insufficient to trigger mass adoption and 
quantifying the interplay of TPB constructs in long-term technology 
diffusion.

This research has several limitations. Firstly, it is confined to the 
context of the UK, which may limit the generalisability of the findings to 
other regions. Cross-national studies across different countries and cul
tural backgrounds are recommended to assess the broader applicability 
of the results. Secondly, variations in how TPB is operationalised in 
ABMs, such as differences in model architecture, equation structure, 
factor representation, and underlying data distributions, can affect 
outcomes. This limitation in a broader context of TPB-based ABM has 
been evidenced by Muelder and Filatova [54]. Future studies should 
therefore explore alternative approaches to assess robustness. Thirdly, 
more extensive stochastic exploration (e.g., sensitivity analysis of social 
network variations using Latin Hypercube Sampling or Monte Carlo 
experiments) could provide additional insights into model uncertainty. 
However, given computational constraints and the focus of this paper, 
we limited the stochastic analysis to the main adoption outcomes. 
Fourthly, key variables such as the discount rate, annual heating bills, 
and household socio-demographic and psychological characteristics are 
assumed to be static. System age and residential lifetime are not incor
porated. Further studies are encouraged to incorporate more dynamic 
variables into the model to better reflect real-world complexities. 
Fifthly, other sources of uncertainty can substantially influence heat 
pump adoption, such as technology cost trajectories (e.g., declining 
installation costs with market maturity or economies of scale), and 
policy landscape uncertainty and future regulatory requirements (e.g., 
building standards, gas boiler phase-out timelines). Subsequent studies 
should incorporate multiple interacting uncertainties to enhance the 
robustness of model-based policy insights. Lastly, our model assumption 
on direct proxies of survey respondents for household decision-maker 
agents may over-represent certain categories, especially younger re
spondents who may not yet be the primary decision-makers in their 
households. Although empirical calibrations of utility weights and 
adoption trends may reduce but cannot eliminate the bias. We recom
mend that future research should adjust survey-based ABM populations 
using household-level weighting schemes (e.g., linking microdata to 
household structure statistics).

6. Conclusion

This study develops a TPB-based agent-based model, integrated with 
logistic regression and utility function (incl. economic, psychological, 
and social interaction utilities), to explore residential heat pump adop
tion in the UK. By empirically calibrating utility weights using UK and 
Swedish adoption data, the model reproduces reliable diffusion dy
namics and projects future adoption trajectories by 2050 under varying 
policy and market conditions. The results confirm that grant amounts 
and electricity price reductions are key drivers of adoption, while atti
tudes, perceived control, and social norms, which are core constructs of 
TPB, also strongly influence household decisions. Effective decarbon
isation strategies should therefore combine financial support with 
behavioural interventions and social engagement initiatives. Beyond its 
empirical insights, this research advances TPB-informed ABM ap
proaches, offering a robust framework for assessing policy efficacy and 
supporting the UK’s transition toward low-carbon heating.
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