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ABSTRACT

Decarbonising residential heating is essential for the UK to meet its climate targets, as home heating remains a
major carbon emitter. This study employs an agent-based model (ABM), integrating logistic regression and utility
theory, to simulate UK household adoption of heat pumps from 2021 to 2050. The model captures economic,
psychological, and social factors, calibrated with national survey data and historical adoption trends to align
long-term diffusion trajectories. Under a business-as-usual scenario reflecting 2025 policies and prices, the model
projects 8.7 million households (30.8 %) will adopt heat pumps by 2050. Increasing government grants to
£11,500 could raise adoption to 54 %, while a 20 % electricity price reduction may yield a further 12.2 % in-
crease. Logistic regression identifies homeownership, age, cost awareness, and social influence as key predictors.
While financial incentives accelerate uptake, they are insufficient alone to meet net-zero targets. Policies must
also address behavioural barriers—such as limited awareness, negative perceptions, or perceived hassle—and
leverage social networks by promoting peer learning, showcasing early adopters, and supporting community
initiatives. This research highlights the utility of ABM for designing decarbonisation strategies that integrate
economic, behavioural, and social dimensions of household decision-making.

1. Introduction

The UK is in the midst of a critical energy transition aimed at
reducing greenhouse gas emissions and meeting legally binding climate
targets. Given that residential heating accounts for approximately 18 %
of the UK’s total carbon emissions in 2021 (the most recent year for
which data are available), the adoption of low-carbon heating technol-
ogies is pivotal [1]. Heat pumps, such as air source or ground source heat
pumps, are central to decarbonising the residential heating sector [2].
Heat pumps are also recognised as a cornerstone of international climate
strategies, featuring prominently in the EU’s Fit for 55 package and the
IEA’s Net Zero by 2050 roadmap [3]. Understanding the factors that
influence consumer adoption of heat pumps is therefore not only crucial
for the UK but also provides insights into global energy transition
challenges, as public acceptability plays a major role in determining the
effectiveness of environmental policies. Evaluating the impacts of
various policy measures—including financial incentives such as sub-
sidies, and regulatory frameworks such as building codes mandating
low-carbon heating in new homes or phasing out gas boilers—is essen-
tial to identify barriers and devise strategies that accelerate adoption
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[3]. This assessment is particularly important as the UK strives to ensure
the economic feasibility, social acceptance, and environmental efficacy
of its low-carbon heating transition [4].

Heat pump technology, which extracts ambient heat from the air,
water, or ground to deliver space and water heating, represents a sus-
tainable alternative to traditional fossil-fuel-based systems [5]. These
systems have been commercially available for years and are seeing
growing interest across Europe, North America, and Asia, where policy
incentives and energy price structures have supported diffusion [3].
Recent data from the UK highlight a slow but steady increase in in-
stallations, driven by government support schemes like the Boiler Up-
grade Scheme, which offers financial assistance to homeowners who
choose heat pumps [6]. Despite their environmental and efficiency ad-
vantages, heat pumps currently account for a small fraction of heating
systems in existing UK homes. Retrofitting older buildings remains a
significant challenge, especially given the higher upfront and installa-
tion costs associated with heat pumps [7]. Although recent policy de-
velopments aim to increase the uptake of low-carbon heating in new
housing—such as the planned ban on gas boilers in new homes from
2025 under the Future Homes Standard—many new builds continue to
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install gas boilers. Therefore, scaling up adoption in older,
energy-inefficient homes remains critical to meeting national climate
goals. Achieving widespread heat pump uptake is not only critical for
the UK to reduce reliance on natural gas and achieve its 2030 and 2050
emissions reduction targets [6], but also serves as a test case for how
policy design in one country can inform adoption strategies in others
with similar housing stock and institutional constraints.

The electrification of the heat sector through the large-scale
deployment of heat pumps is influenced by a complex interplay of
economic, social, and psychological factors. Governments across Europe
are deploying a variety of policies to offset the financial burden and
incentivise adoption [3]. The UK government, for instance, provides
grants and low-interest loans to encourage the replacement of conven-
tional boilers with heat pumps [8]. However, economic considerations
alone do not fully explain the adoption dynamics. Households may be
influenced by non-monetary factors such as perceived comfort, envi-
ronmental awareness, and peer effects [9,10]. Additionally, technical
barriers like the complexity of installation, property-specific suitability,
and the disruption caused during the installation process can deter po-
tential adopters [7]. Despite the urgency and policy interventions, there
is still limited understanding of how these factors interact and shape
heat pump adoption patterns, especially in the UK studies. This paper
addresses this gap by firstly combining an ABM approach and logistic
regression utility function to simulate and analyse the adoption de-
cisions of UK households, with a particular focus on how different policy
measures can influence diffusion and uptake rates.

The remainder of this paper is structured as follows: Section 2 pro-
vides a comprehensive review of the literature on heat pump adoption
and policy interventions. Section 3 describes the ABM approach,
including the data sources and model development. Section 4 presents
the simulation outcomes and policy scenarios analysis. Finally, Section 5
concludes with policy recommendations and suggests directions for
future research.

2. Literature review
2.1. Policy promotion on heat pumps

Governments across Europe, North America, and Asia are imple-
menting diverse policy instruments to accelerate heat pump adoption,
including subsidies, tax incentives, and low- or zero-interest financing
options [3]. These measures are typically aligned with national or
regional climate targets that require rapid decarbonisation of residential
heating. For instance, the European Union’s “Fit for 55" initiative aims to
reduce greenhouse gas emissions by 55 % by 2030, partly through
increased heat pump deployment across member states [11].

The UK government has implemented several schemes to encourage
households and businesses to adopt heat pumps, with the goal of phasing
out gas boilers by 2050 [12]. One notable initiative is the Boiler Upgrade
Scheme, which provided grants of £7500 for heat pump installations,
targeting homeowners who switch from fossil-fuel-based heating sys-
tems [13]. Additionally, the Green Homes Grant, which ran from 2020
to 2021, offered vouchers for various home energy improvements,
including heat pump installations [14]. These incentives are com-
plemented by VAT reductions for energy-efficient technologies and
support for heat pump installer training programmes.

Despite these efforts, the UK faces challenges in achieving significant
uptake, especially in existing buildings where retrofitting can be costly
and complex. Studies indicate that high upfront costs, installation dif-
ficulties, and consumer awareness gaps are key barriers that existing
policies have only partially addressed [15,16]. Additionally, while
financial incentives have shown positive impacts, concerns remain
about the long-term efficacy of these schemes, particularly as subsidies
alone may not drive adoption at the required scale [17]. The UK gov-
ernment continues to explore additional policy options, such as
low-interest loans and regulatory mandates for new buildings, to bridge
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these gaps and accelerate the diffusion of heat pumps within both urban
and rural areas. Understanding and addressing these challenges is crit-
ical for aligning heat pump adoption with broader decarbonisation
objectives.

2.2. Application of ABM to study heat pump adoption

Agent-based modelling (ABM) has become an increasingly promi-
nent tool in the study of residential low-carbon technology adoption,
particularly heat pumps. ABM is especially useful in this context due to
its ability to simulate the diverse decision-making behaviours of indi-
vidual households and capture the emergent effects of interactions
among them. The technology adoption process is not purely econom-
ic—it is shaped by social influence, attitudes, behavioural norms, and
local policy contexts. ABM enables researchers to represent these com-
plexities explicitly, making it well-suited to support policy evaluation
and design.

2.2.1. Overview of recent ABM applications

In recent years, numerous studies have applied ABM to investigate
heat pump adoption across various countries, including the UK, Ireland,
Germany, Switzerland, the Netherlands, and China. These studies typi-
cally model households as agents making decisions based on cost-benefit
assessments, social influence, and behavioural predispositions. Most
frameworks use utility-based decision rules, where the likelihood of
adoption increases if the perceived benefits outweigh the costs. For
example, Sachs et al. [18] and Meles and Ryan [19] use economic and
behavioural data to represent how households assess financial in-
centives and peer behaviour. Other studies, such as those by Snape et al.
[20] and Nava-Guerrero et al. [21], integrate behavioural theories like
the Theory of Planned Behaviour (TPB) or Bounded Rationality (BR) to
better represent the psychological factors influencing decision-making.

A consistent finding across these models is the importance of finan-
cial incentives and peer effects in driving adoption. Financial
aspects—such as subsidies, renewable heat incentives, operational sav-
ings, and payback periods—are shown to be major motivators. Several
models simulate the role of these incentives in reducing adoption bar-
riers and accelerating diffusion [22-24]. Meanwhile, the role of social
influence is commonly operationalised through network models or
spatial proximity, with studies demonstrating that households are more
likely to adopt heat pumps when their peers or neighbours have done so
[18,20,25]. Some studies, like Busch et al. [26], also explore group
decision-making within homeowner associations or municipal bodies,
revealing the impact of collective preferences and institutional
dynamics.

ABMs also vary in terms of the spatial and temporal scales of anal-
ysis. While some focus on neighbourhood or municipal levels, others
model national-scale adoption under different policy or market sce-
narios. Brodnicke et al. [24], for instance, simulate the diffusion of heat
pumps across Switzerland under combined subsidy and carbon-tax
policies, while Derkenbaeva et al. [25] apply the Consumat
meta-model to examine household energy transitions in Amsterdam,
capturing heterogeneity in decision heuristics. Similarly, van der Kam
et al. [27] extend ABM applications to the co-adoption of low-carbon
technologies in Switzerland, integrating affective and cognitive factors
alongside economic and social dimensions to evaluate how policy mixes
influence multi-technology uptake. Chen et al. [28] and Tabatabaei et al.
[29] further demonstrate how ABMs can be coupled with predictive
control and stochastic optimisation to simulate dynamic energy demand
and technology diffusion, enhancing understanding of system-level
interactions.

Data sources used to parameterise and validate ABMs differ across
studies but commonly include household surveys, census data, energy
consumption statistics, and historical adoption trends. For example,
Sachs et al. [18] and Lee et al. [23] draw on detailed socio-demographic
data and attitudinal surveys, while Snape et al. [20] use installation
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records to validate predicted uptake. Studies often conduct sensitivity
analyses or scenario comparisons to examine how changes in policy,
market conditions, or social dynamics influence model outcomes.

However, many ABMs remain context-specific and limited in scalability

Table 1

Recent ABM applications in heat pump adoption research (15 recent journals).
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due to their reliance on localised data or simplified behavioural as-
sumptions. Table 1 provides a summary of the above-mentioned 15 ABM
applications in heat pump adoption research.

Article

Brodnicke
et al. [24]

van der Kam
et al. [27]

Derkenbaeva
et al. [25]

Meles and
Ryan [19]

Article

Nava-
Guerrero
et al. [30]

Nava-
Guerrero
etal. [21]

Chen et al.
[28]

Hall and
Geissler
[31]

Hall et al. [32]

Sachs et al.
[18]

Felten et al.
[22]

Article

Busch et al.
[26]

Snape et al.
[20]
Lee et al. [23]

Tabatabaei
et al. [29]

Research
Purpose

Residential
adoption of HPs

Co-adoption of
low-carbon
techs

Homeowners’
energy
efficiency
decisions

Residential
adoption of HPs

Research
Purpose

Group decision
on HP adoption

Individual and
group decision

Estimate
electricity loads

Load control

Load control

Low-carbon
techniques
adoption

Load control

Research
Purpose

Accelerate local
energy
infrastructure

Private adoption
of HPs

Domestic energy
reduction

Energy usage
evaluation

Region

Switzerland

Switzerland

Amsterdam

Ireland

Region

The
Netherlands

The
Netherlands

China

Switzerland

Switzerland

The UK

Germany

Region

The UK

The UK

The UK

The
Netherlands

Agent(s)

Households
(buildings)

Households

Homeowners,
tenants

Households

Agent(s)

Individual
households and
those within HOAs

Individual
households and
those within HOAs
Households

(Individual and
cluster) buildings,
and market
coordinator
(Individual and
cluster) buildings,
and market
coordinator
Consumer
segments

Flexible and
inflexible
consumers,
producers, and grid
operators

Agent(s)

Local authorities,
commercial
developers, and
community
organisations
Households

Homeowners
A heating agent

and a thermostat
agent

Method for DMR

Utility-based
probability
function

Utility function

Consumat meta-
model decision
rules

Utility function

Method for DMR

Utility function

Lifetime cost
calculations

Stochastic
probability
function

Optimisation
function based on
conditions of
flexibility offers
Optimisation
function based on
conditions of
flexibility offers
Multi-objective
functions

Predictive control
mechanism

Method for DMR

Muti-stage
development
process and
distinct decision
heuristics
Utility function

Utility function
Customised

mathematical
equations

Factor in DMR

Economic and
social

Economic, social,
psychological

Economic, social,
psychological

Economic,
psychological, and
social

Factor in DMR

Economic,
environmental,
spatial and
temporal
Economic, social
and technical

Environmental and
social

Technical, energy
loads, comfort from
building
temperature
Technical, energy
loads, comfort from
building
temperature
Economic,
environmental,
social,
psychological
Economic,
technical and
psychological

Factor in DMR

Institutional, social
and economic

Economic, social
and psychological
Economic,
Psychological and
technical
Environmental, and
technical

Data for DMR
calibration/
validation
Historical Swiss
adoption data

Survey data

Dutch housing
survey

National survey,
historical adoption
data, Secondary
data for heating
techniques

Data for DMR
calibration/
validation
Secondary data for
heating techniques

Secondary data for
heating techniques

Survey data and
real-time
monitoring of heat
usage

Smart meter
profiles, and
secondary data on
heating techniques
Smart meter
profiles, and
secondary data on
heating techniques
National surveys
and reports

Real grid data,
secondary data on
heating techniques

Data for DMR
calibration/
validation
Participatory
workshops,
statistical and
geospatial data

National surveys
and reports
National surveys

Monitoring data
from the test house

Theories
under DMR

Risks-as-
feelings
framework

TPB

Theories
under DMR

STS, CAS,
and BR
STS and

CAS

CAS

DSM

DSM

BR

DSM

Theories
under DMR

STS

BR

BR

Model
Application

Policy
evaluative,
sensitivity
analysis
Policy mix
evaluation and
scenario
testing
Policy
evaluation,
scenario
analysis

Prediction,
policy
evaluation,
and sensitivity
analysis
Model
Application

Prediction,
policy
evaluation

Prediction,
policy

evaluation
Prediction

Scenario-based
prediction

Scenario-based
prediction

Prediction,
sensitivity
analysis

Policy
evaluation,
sensitivity
analysis

Model
Application

Prediction,
policy
evaluation

Sensitivity
analysis
Policy
evaluation

Scenario-based
evaluation

Table 1 summarises 15 recent agent-based modelling studies on heat pump adoption, including research context, agent characteristics, decision-making methods, data
sources, and model applications.
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2.2.2. Our contributions

Building on this literature, our study makes several novel contribu-
tions. First, we develop an ABM tailored specifically to the UK context,
simulating household adoption of heat pumps from 2021 to 2050. Un-
like many prior models that focus on short-term dynamics or regional
case studies, our model provides long-term insights aligned with na-
tional decarbonisation goals.

Second, our model features a three-dimensional decision-making
framework that combines economic, psychological, and social utilities.
These utilities are weighted using empirical data derived from a na-
tionally representative UK survey and calibrated using logistic regres-
sion analysis. This integration of statistical modelling with behavioural
simulation enhances the robustness and realism of our adoption model.

Third, we calibrate our model against historical UK heat pump
installation data (2009-2024) and validate its long-term trajectory using
comparative adoption trends from Sweden. This dual calibration
approach addresses the limitations of relying solely on early UK data,
which predominantly reflects early adopters. By referencing a mature
market like Sweden, we improve the plausibility of our long-term
projections.

Fourth, we explicitly represent household heterogeneity in terms of
income, housing type, social connectivity, and willingness to adopt. We
also model peer influence through a social circle mechanism, reflecting
the structure of real-world social networks. This allows us to simulate
how adoption decisions are shaped by not only individual preferences
but also broader community dynamics.

In summary, our work advances the application of ABM to heat pump
adoption by integrating robust behavioural data, long-term calibration,
and social network dynamics. It provides policymakers with a nuanced
tool to explore the impacts of financial and behavioural interventions,
identify adoption barriers, and design strategies that support equitable
and widespread uptake.

3. Model description and materials

This section describes the agent-based model following the Overview
(Sections 3.1-3.3), Design Concepts (Section 3.4), and Details (Sections
3.5-3.8) (ODD) protocol [33].

3.1. Purpose

The model simulates the diffusion of residential heat pumps in the
UK from 2021 to 2050. It examines how economic affordability, psy-
chological attitudes, and social influence interact to shape household
adoption decisions and how policy interventions (grants and electricity
price changes) alter adoption trajectories.

Fig. 1 visualises the overall methodological framework of the study.
The model is developed within the framework of the TPB (Section
3.4.1). It begins with national household survey data as the primary
input (Section 3.6), which informs the construction of household agents’
decision-making rules that incorporate economic, psychological, and
social interaction utilities (Section 3.7). The agent-based model is cali-
brated and validated using historical adoption data from the UK and
Sweden (Section 3.8). Finally, the calibrated model is used to simulate
heat pump adoption trajectories from 2021 to 2050 and to evaluate the
impacts of varying grant levels and electricity prices on adoption out-
comes (Section 4).

3.2. Entities, state variables, and scales

In our agent-based model, households are represented as agents that
decide whether to install a heat pump in their homes. Agents are clas-
sified as "adopters" if they have already installed a heat pump, while
those still using gas, oil, resistive heaters, or solid fuels for heating are
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f Data Inputs )
L empirical survey data )
4 Agent-based Model )

utility-based decision-making rule
incorporating economic, psychological,
and social interaction utilities,
\__8uided by theory of planned behaviour )

( Calibration & Validation A

historical adoption data
(e.g., UK, Sweden)

!

Simulations & Scenarios
prediction of adoption trajectories
analyse impacts of grant amounts
\ analyse impacts of electricity prices )

Fig. 1. The model development progress.

termed "potential adopters" [34]. Once an agent adopts a heat pump, we
assume they will remain in that status, as the high initial investment is
typically offset by long-term energy savings, making reversion unlikely
and streamlining the model. A potential adopter will opt for a heat pump
installation when the perceived benefits surpass a certain threshold.

Each agent is characterised by a set of attributes that directly reflect
the ONS survey microdata (Section 3.6), including socio-demographic
factors (gender, age, education), housing type (detached, semi-
detached, terraced, flat), tenure status (own, rent, part-own), house-
hold income, primary heating system, and psychological variables (at-
titudes toward heating technologies and replacement intentions). Other
state variables include social network connections (Section 3.4.2) and
adopter status (e.g., adopter and non-adopter).

Our agent-based model is implemented using AnyLogic 8.9.3, a Java-
based simulation platform [35]. Our simulation runs annually from
2021 to 2050 (30 time steps).

3.3. Process overview and scheduling

At each annual time step t, each potential adopter evaluates whether
to adopt a heat pump. First, the agent computes its economic, psycho-
logical, and social interaction utilities. These are then combined into a
total utility value. The agent’s total utility is compared against its
adoption threshold, which is drawn from a normal distribution with a
standard deviation 0.33 with means reflecting empirically observed
group heterogeneity of willingness-to-adopt categories. Adoption occurs
if the total utility exceeds the threshold and the annualised upfront cost
does not exceed 50 % of the household’s disposable income (Section
3.7). The model assumes zero residual value for existing heating sys-
tems, because system age was not available in the survey dataset;
therefore, adoption decisions are based solely on the comparative util-
ities rather than equipment replacement cycles.

3.4. Design concepts

3.4.1. Theoretical foundation

The decision-making structure in this model is grounded in the
Theory of Planned Behaviour (TPB) [36], which explains technology
adoption behaviour across diverse contexts [19,37]. TPB posits that an
individual’s intention to adopt a new technology is shaped by three
components: attitude toward the behaviour, subjective norms, and
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perceived behavioural control. These components map directly onto the
psychological, social, and economic utilities in our agent-based model.
The economic utility reflects perceived behavioural control and captures
households’ perceived ease or difficulty of adopting a heat pump, pri-
marily influenced by financial affordability and expected long-term
operating costs. The psychological utility represents attitude toward
the behaviour and reflects how households evaluate the desirability of
heat pump adoption based on perceived benefits such as comfort, effi-
ciency, and environmental impact, as well as perceived drawbacks such
as installation disruption or uncertainty in performance. The social
utility corresponds to subjective norms and captures the influence of an
agent’s social network, whereby adoption becomes more likely when
peers, neighbours, or acquaintances have already adopted. These in-
teractions operate through information sharing, reduced uncertainty,
and reinforcement of group norms (e.g., word-of-mouth diffusion and
herd behaviour). Together, these three utility components determine
each household’s adoption decision in the model (details in Section 3.7).

3.4.2. Agent interaction

In our model, agents influence each other through social circle
models (see the model details on social interaction utility in Section 3.7).
Social circle model is one of the common approaches to measure social
interactions [38,39]. The model typically categorizes an individual’s
social network into concentric circles, each representing different levels
of closeness and influence, from immediate family and close friends to
acquaintances and broader community members. This model allows for
the assessment of how information, behaviours, and influences spread
across these layers, highlighting the varying impact of interactions based
on the strength and proximity of social ties. The approach has been
adopted by Meles and Ryan [19] to construct social networks of
household agents, assisting in investigating how social interactions can
influence the decisions of Irish households to adopt a heat pump.
Additionally, Hassouna [40] has applied the similar approach to study
the influence of social interactions in customer retention in the UK
mobile market.

3.4.3. Stochasticity

Stochasticity in the model arises primarily from this random
assignment of social networks and the probabilistic nature of adoption
decisions. Stochasticity also rises in adoption thresholds (normally
distributed within behavioural groups) and simulation replications (30
runs per scenario with different random number generator seeds).

3.5. Initialization

The simulation is initialised to reflect the empirical conditions
observed in 2021. It starts by generating a population of 3706 household
agents, each corresponding to a unique respondent from the 2021 ONS
Public Attitude Tracker dataset [41]. Corresponding to the MCS UK heat
pump installation statistics [42], 29 out of 3706 agents are assigned as
initial adopters, while all others begin as potential adopters. As the agent
population is directly initialised from the survey microdata, the empir-
ical joint distribution of these variables is preserved. This ensures that
correlations between attributes (e.g., income and homeownership, ed-
ucation, and environmental attitudes) are maintained rather than arti-
ficially imposed or assumed to be independent. Many of these agent
attributes are treated as fixed throughout the simulation for simplifica-
tion, though future extensions could incorporate dynamic
socio-economic transitions.

The household agents are randomly distributed within the simula-
tion environment to form a synthetic social network. Social connections
between agents are modelled using a social circle approach, where the
number of ties follows a normal distribution with a mean of 4 and a
standard deviation of 2. The network distribution is consistent with the
findings from Wave 3 of the Understanding Society Census, which re-
ports that UK citizens typically have 2 to 6 close friends [43].
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3.6. Input data

The model draws on multiple empirical data sources as summarised
in Table 2.

These data listed are applied to parameterise agent characteristics,
estimate heating costs, and to calibrate adoption dynamics. Household-
level socio-demographic attributes, dwelling characteristics, heating
systems, and attitudes toward heat pump installation are taken directly
from the ONS Public Attitudes Tracker [41], which provides the
microdata used to initialise agents and estimate the psychological utility
component via logistic regression. Estimates of annual heating expen-
diture for different fuel types are obtained from GOV.UK domestic en-
ergy expenditure statistics [44] and are used to compute the economic
utility. Model calibration uses MCS heat pump installation statistics for
the UK (2009-2024) [42] to match the recent historical trend in adop-
tion. To overcome the limited time span of UK data, long-term diffusion
dynamics are validated against Swedish national heat pump adoption
data (SKVP 1993-2022) [45], which provides a mature-market bench-
mark. Grant levels and electricity price variations [46-50] enter the
model as scenario-specific policy inputs. Details on the household survey
data and distributions are provided in Appendix A for model outcome
replications.

3.7. Submodels

3.7.1. Overall utility

The total utility for each household agent i at time t, represented as,
Ui, is calculated as the sum of the weighted partial utilities associated
with economic, psychological, and social interaction factors, as detailed
below.

Ui.t = Wecon * Uecon.i‘t + Wpsychology * prychology,i.t + Whetwork * U network.i,t (1)

where, Y wi =1 for k e {economic, psychology, social} and wy,
Uy i ¢ € [0, 1]. The time index t reflects the annual evaluation of policy
conditions and agent states throughout the simulation period
(2021-2050).

The partial utility obtained from each of the three factors is
normalized to lie within the [0, 1] range. As a result, the total utility for a
potential adopter also falls within this interval. The weights wy assigned
to the partial utilities of each factor are established through model
calibration based on historical heat pump adoption data. In the
following subsections, we describe the calculation of the utility for each
of these three factors.

3.7.2. Economic utility
In our model’s economic decision-making process, each household
agent compares the yearly heating costs of their current system with

Table 2
Input data sources and applications.

Source Application

ONS Public Attitudes Tracker (2021) [41] Agent attributes + psychological
regression

GOV.UK domestic energy expenditure (2021)  Operating cost estimates
[44]

MCS UK heat pump installation statistics Calibration and short-term

(2009-2024) [42] validation
SKVP Sweden heat pump statistics Long-term diffusion pattern
(1993-2022) [45] validation

Energy prices [46-49] Operating cost estimates +
sensitivity analysis
Grant amounts [50] Operating cost estimates +

sensitivity analysis

Table 2 provides an overview of empirical data sources used to parameterise
agent attributes, estimate heating costs, and calibrate and validate the model
adoption dynamics.
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those of a heat pump system at time t. These costs include annualized
upfront investments with installation fees, applicable grants, and annual
operating expenses. For their existing systems, the initial capital costs
are treated as sunk costs. The annualized upfront cost of the heat pump
system (ACpp ;) for agent i at time ¢t is determined using Eq. (2), forming
the quantitative basis for assessing whether the agent perceives adoption
to be financially feasible.

(Ci.t — Granti_t) s (14 r)L

ACupi = (1 T r)L 1

@

Where, C;, represents the total upfront installation cost of a heat
pump for household i at time t, which varies according to dwelling
characteristics and system type. Grant;, denotes the financial support or
subsidy available to household i at time t, which reduces the initial in-
vestment. The parameter r is the discount rate used to annualise the
capital cost over the system’s lifetime. In this model, we assume that
households face no interest charges on the financing of installation costs,
and therefore treat the loan as interest-free. A detailed justification of
the variable values relevant to Eq. (2), as well as to the Egs. 3(a) and 3(b)
below, have been provided in Appendix B.

In our analysis, we utilise the annual domestic energy bills indicating
average expenditure each week on fuel per consuming household in the
UK reported by GOV.UK [44], to estimate the operating costs of their
current heating systems. We then compare these figures with the pro-
jected annual costs of switching to a heat pump system using Egs. (3a)
and 3b

= ACyp;. + (1 — bill saving) * annual heating bill;
#(1 + %A in electricity price;.)

ACOS[ HP,it (33)

Acost exisiting systemyie = annual heating bill;, * (1 + %A in fuel price;;) (3b)

Heat pump systems offer significantly lower annual operating costs
compared to conventional fossil-fuel-based and resistive heating sys-
tems, with potential cost savings reaching up to 70 % [19]. Empirical
estimates suggest that ASHPs achieve average savings of approximately
30 %, whereas GSHPs can realise savings of around 50 %. In this study, a
mean value of 40 % bill savings is assumed for heat pumps relative to
traditional heating systems. Because heat pump systems rely on elec-
tricity to function, our cost calculations also include both the percentage
change in electricity prices ( %A in electricity price) and in alternative
fuel prices ( %A in fuel price).

In addition, we incorporate a prior technical assessment fee of £200
for heat pumps [51]. Consequently, the economic partial utility for
agent i at time t is derived as shown in Eq. (4).

Uecon.i‘t = ACoxt existing system; ¢ /ACost HPit (4)

The economic utility value is scaled between zero and one, where a
higher value signifies that the calculated costs of the current heating
system are comparatively greater than those of a heat pump. This in-
creases the likelihood that an agent will opt for installing a heat pump at
home.

3.7.3. Psychological utility

In our agent-based model, we employ logistic regression analysis to
interpret survey responses to statements assessing psychological con-
structs, deriving parameters for the psychological partial utility. The
survey gathered information on respondents’ intentions to replace their
existing heating system and their primary considerations for doing so,
such as saving money on heating bills, switching to a more environ-
mentally friendly system, or opting for a more reliable one. Additionally,
the survey explored respondents’ experiences with their current heating
systems and the reasons they pay varying degrees of attention to heat
usage—ranging from minimal to significant focus. Following Osborne’s
(2015) methodology, the logistic regression model is expressed as Eq.
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P;,(replacement=1) = 1 / 14 e (Por Do Pikin) (5)

Here, replacement represents respondents’ intention to replace their
current heating system, with a value of 1 indicating “yes” and 0 indi-
cating “no”. P;,(replacement = 1) denotes the probability that household
agent i would consider replacing their current heating system at time t.
Xix. are the predictor variables k for agent i at time t (e.g., primary
reasons for replacement and attention paid to heat usage), while , are
the coefficients derived from the survey data.

3.7.4. Social interaction utility

In our study, a social circle model is applied to construct the social
networks for household agents. Consequently, the partial utility derived
from social networks is calculated as follows:

N; iat
N;

Usoc,i‘t = (6)

Here, N; represents the total number of peers connected to agent i,
while N;, denotes the number of agent i’s peers who have adopted a heat
pump at time t. As more peers adopt a heat pump, the influence of social
networks becomes stronger, thereby increasing the probability that
agent i will choose to install a heat pump at home.

3.7.5. Adoption decision

At time t, a potential adopter will decide to install a heat pump if the
sum of the weighted partial utilities from the three factors, U;,, surpasses
the adoption threshold 6;, and the upfront cost remains within 50 % of
the household’s annual disposable income. This condition can be rep-
resented as:

Ui, > 0; and ACpp;, < 0.5-Income; 7)

The threshold is shaped by each agent’s willingness to adopt new
technology. Some agents are early adopters, installing the technology
when few others have done so, while others prefer to wait until a larger
portion of the population has adopted it. Lower threshold values
correspond to early adopters of heat pumps, whereas higher thresholds
indicate those who adopt later, known as laggards [34]. We have
included a detailed justification for defining agents’ adoption propensity
and value distribution, as well as for setting the income threshold at 0.5,
in Appendix B.

Household income plays a significant role in the adoption of energy-
efficient and renewable technologies, as higher-income households are
more likely to invest in these systems due to the substantial upfront and
installation costs, which can be a major barrier for lower-income
households [19]. To account for the influence of household disposable
income on heat pump adoption decisions, we define upfront costs
exceeding 50 % of a household’s annual disposal income as unafford-
able. We set the threshold at 50 % for two reasons. First, it reflects the
empirical context under study: the baseline upfront cost of £16,500
(including installation) represents about half of the average annual
disposable income midpoint of UK households (£32,349), yet national
adoption rates remain below 1 % [42]. Second, we adopt 50 % as a
conservative upper bound on willingness to pay, consistent with evi-
dence that high capital costs are the primary barrier to low-carbon heat
adoption [7]. Consequently, an agent will decide to adopt a heat pump if
the utility of adoption exceeds their heterogeneous willingness-to-pay
threshold, and the upfront cost remains within 50 % of the house-
hold’s annual disposable income.

3.8. Calibration, validation, and sensitivity analysis

To calibrate the model parameters, we used historical heat pump
sales data for the UK from the Microgeneration Certification Scheme
[42]. Because the UK dataset (2009-2024) is relatively short, we
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complemented it with Sweden’s long-term adoption data covering
1993-2022 [45], following the comparative approach of Meles and
Ryan [19]. The model assumes that the UK’s heat pump diffusion tra-
jectory follows a similar pattern to Sweden’s more mature market. The
model sets initial values of utility weights (economic 0.38, psychological
0.27, and social interaction 0.35) same to Meles and Ryan [19]. Cali-
bration was performed using AnyLogic’s OptQuest optimization engine.
which systematically adjusted the three utility weights including eco-
nomic, psychological, and social under the constraint that their sum
equals one. The objective function minimized the root mean square error
(RMSE) between the simulated adoption rates and observed UK data
(2021-2024), while also aligning the long-term diffusion trend with the
Swedish benchmark. The optimal weights identified (0.44 for economic,
0.27 for psychological, and 0.29 for social utility) yielded model tra-
jectories that closely matched both datasets. This hybrid empiri-
cal-optimization calibration ensured that behavioural parameters were
statistically grounded and that the model reproduced realistic adoption
dynamics. Fig. 2 illustrates the calibration and validation process.

We run a single simulation over 30 time steps, where each step
represents one year, based on the calibrated model. The simulation re-
sults from time steps 0 to 30 correspond to the cumulative number of
adopters in the UK from 2021 to 2050, with the initial number of
adopters derived from the survey representing the total by the end of
2021. To ensure statistical stability and reliability of the results, each
simulation scenario was replicated 30 times, which represents a stan-
dard practice for balancing stochastic variability and computational
feasibility. This approach follows the guidance of Macal and North [52]
and Railsback and Grimm [53], who emphasise that multiple replica-
tions are essential to capture inherent stochasticity, even under identical
model parameters and initial conditions. The output is collected and
analysed using AnyLogic 8.9.3.

Table 3 presents the parameters used in both the baseline scenario
and the sensitivity analysis. Since the data encompasses both ground

/ Initial Setup I

household agents with
utility-based decision-making function
(0.38 for economic, 0.27 for
psychological, and 0.35 for social
interaction utilities) -

L

Parameter Space Exploration
adjust utility weights systematically
under the constraint economic +
\ psychological + social interaction =1 )

!

4 Comparison and Evaluation )
minimize RMSE between
simulated adoption rates against
observed UK (2021-2024) & validate
predicted adoption trend (2021-2050)
\_ against Sweden (1993-2022) )

Selection )
Choose optimal utility weights:
0.44 for economic, 0.27 for
psychological, and 0.29 for social
interaction utilities )

Fig. 2. The model calibration and validation progress.
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Table 3
Parameter values for the baseline, policy and practical scenarios.

Variables Baseline Sensitivity Analysis

Grant amounts £7500 £0, £5000, £9500, £11,500

%A in electricity price 0% —20 %, —10 %, +10 %, +20 %
Average weights for partial utilities:

Economic utility 0.44

Psychological utility 0.27

Social utility 0.29

Table 3 presents the model parameters that are applied in the baseline simula-
tion and sensitivity scenarios, including grant levels, electricity price variations,
and calibrated utility weightings.

source and air source heat pumps, we use midpoint values for key at-
tributes of heat pumps in all of the scenarios: upfront cost (£17,500), bill
savings (40 %), and lifespan (20 years). The baseline scenario in-
corporates the UK government’s home grant of £7500 for heat pumps.
To evaluate its impact on heat pump adoptions, we analyse scenarios
where the grant is removed entirely (£0) or its amount varied at £5000,
£9500 and £11,500. Additionally, we assess the sensitivity of the base-
line scenario results to electricity price change. In the sensitivity analysis
experiments, all other parameters are held constant at their baseline
values, except for the variable of interest, which is modified
individually.

4. Results

Section 4 presents and discusses both empirical findings from survey
and historical datasets and model predictions generated through the
agent-based simulations. The empirical data from the 2021 UK Public
Attitudes Tracker [41] and historical heat pump sales [42] represent the
current situation and serve as the baseline for model calibration. The
simulated results represent projected adoption trajectories from 2025 to
2050 under different policy and market scenarios.

Specifically, Section 4.1 presents the baseline simulation predicting
future heat pump uptake under 2021 policy conditions (a £7500 grant
and constant electricity prices). Section 4.2 reports empirical logistic
regression results on household socio-demographic and psychological
factors influencing adoption. Sections 4.3 and 4.4 explore model-based
policy scenarios, testing how variations in grant levels and electricity
prices, respectively, affect projected adoption outcomes.

4.1. Predicting adoption among sample households and calibration to UK
households

This subsection presents the simulation results on predicted cumu-
lative adoptions of heat pumps among the 3706 sample households
(base scenario) and the corresponding up-scaling of these results to the
28,119,000 UK households. Fig. 3 illustrates the average cumulative
adoptions of heat pumps among sample and UK households across 30
simulated time steps, representing the years 2021 to 2050. To account
for stochastic variation inherent in agent-based modelling, primarily
due to random initialisation of household attributes and social network
formation, we performed 30 independent simulation runs using the
same parameter settings. The results from these runs were averaged to
reduce the influence of random noise and improve the robustness of
predictions. At the final time step (2050), the simulation, as indicated by
the blue dotted line, predicts that 1141 of the 3706 sample households
will adopt heat pumps, with a standard deviation of 12 across the 30
runs. These results were then proportionally up-scaled to the UK
household population. As shown by the orange dotted line, the model
estimates that approximately 8657,000 UK households—about 30.8 %
of the total—will adopt heat pumps by 2050 under 2021 policy condi-
tions (a £7500 grant and constant electricity prices), which assumes no
additional policy interventions or incentives.
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Fig. 3. Cumulative heat pump adoptions among sample households and the UK households.

4.2. Impacts of consumer socio-demographics and psychological factors

This subsection presents empirical analysis derived from national
household survey data, not simulation outputs. Logistic regression was
applied to identify key socio-demographic and psychological factors
associated with the intention to adopt heat pumps. The statistically
significant variables (in Table 4) were subsequently incorporated as
parameters in the psychological utility component of the model and to
inform agent-level characteristics. Specifically, the regression co-
efficients derived here are applied to estimate the probability that a
household intends to replace its existing heating system, which in turn
influences the agent’s psychological utility score within the ABM. The
empirical results indicate that households living in detached, semi-
detached, or terraced homes are more inclined to adopt a heat pump
compared to those living in flats. Similarly, homeowners—whether
outright or with a mortgage—are significantly more likely to consider
adoption than renters. Females are found to be less likely to adopt heat
pumps than males, and individuals aged over 25 show greater adoption
intent than those aged 16-24.

Table 4 presents the logistic regression results showing socio-
demographic and psychological predictors of household intention to
replace existing heating systems, informing the psychological utility
component of the model. Significant levels are denoted by *(0.1), **
(0.05) and ***(<0.01). Observations: 3706.

In terms of psychological motivations, the empirical results show
that households primarily motivated by minimising environmental
impact are less likely to adopt than those focused on reducing heating
costs. Additionally, households that report paying little or no attention
to their heat usage—either due to lack of control or disinterest—are less
inclined to adopt a heat pump than those motivated by maintaining
comfort. These behavioural insights provide critical empirical
grounding for the ABM’s psychological and economic decision compo-
nents. These empirically derived associations were used to construct the
logistic function embedded in the agent-based model, thereby allowing
agent decisions to reflect observed patterns in real-world adoption
intent.

4.3. Policy scenario analysis: impact of grant variations

This subsection presents model-based simulations testing the sensi-
tivity of household adoption to different grant levels. The empirical

baseline reflects the UK Boiler Upgrade Scheme, which provides a £7500
grant [6]. The simulations vary grant values from £5000 to £11,500 in
£2000 increments. The scenario of no grant (£0) is also considered. Fig. 4
presents simulated cumulative adoption trajectories under each sce-
nario. The starting point (220 thousand adoptions in 2021) represents
observed cumulative installations in 2021 as reported by MCS [42].

Based on the model predictions, the current £7500 grant increases
the percentage of heat pump adopters to 30.8 % in 2050, equating to
approximately 8657,000 households, compared to 3.5 % without any
grant. This indicates that a grant covering 42.9 % of the upfront cost
boosts the average cumulative number of adopters in 2050 by 27.3 %
relative to the no-grant scenario. We also examine the effects of different
grant levels, increasing from £5000 to £11,500 in step of £2000. A grant
of £5000 reduces the average number of heat pump adopters in 2050 to
6601,000, compared to 8657,000 with the current £7500 grant.
Conversely, grant amounts of £9500 and £11,500 increase the number of
adopters in 2050 to approximately 39.7 % and 54.0 % of UK households
(around 11,176,000 and 15,197,000 heat pumps), respectively,
compared to 30.8 % with the £7500 grant.

4.4. Policy scenario analysis: impact of electricity price variations

Since heat pumps depend on electricity, this section presents simu-
lation results assessing the influence of electricity price fluctuations
relative to 2021 levels (the empirical baseline). Fig. 5 begins with 220
thousand observed cumulative installations in 2021 [42] and then
shows modelled adoption trajectories under +10 % and +20 % elec-
tricity price scenarios. The model predicts that a 20 % reduction in
electricity prices increases adoption by 12.2 percentage points (3.43
million additional installations) by 2050 relative to the baseline sce-
nario. Conversely, the simulation results indicate price increases slow
the adoption rate. Thus, it can be concluded that lower electricity prices
would significantly increase the average cumulative percentage of heat
pump adopters by 2050.

5. Discussions and policy implications

This study applies an ABM approach, underpinned by logistic
regression analysis and utility theory, to explore the multifactorial dy-
namics of residential heat pump adoption in the UK from 2021 to 2050.
By integrating economic, psychological, and social factors into
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Table 4
Probability estimations of adopting a heat pump.
Variable type Variable and variable category Coefficient
(Standard
Deviation)

Main reason for paying a lot attention on heat usage
(reference: cost):

To minimise the environmental
impact of the heat used

Psychological and
behavioural variables
-1.878%***

(.279)
Main reason for paying no attention on heat usage
(reference: comfort):
1 don’t feel I can control the -.900*
amount of heat used

(.480)

I'm just not interested in the -.854*

amount of heat used
(.501)

Socio-demographic Accommodation type
variables (reference: flat):

Detached 664 %+
(.188)

Semi-detached 426%*
(.168)

Terraced .355%*
(.170)

Tenure

(reference: rent it):

Own outright 3.589%**
(.158)

Own with a mortgage or loan 3.969%***
(.182)

Part own and part rent 2.081%**
(.410)

Live here rent free .895%**
(.262)

Gender

(reference: male):

Female -. 3845
(.117)

Age

(reference: between 16 and 24 years old):

65 years old and above 1.231%**
(.246)

Between 45 and 64 years old 1.169%**
(.222)

Between 25 and 44 years old 1.058%***
(.223)

Constant -.396
(.436)

-2Log-likelihood 2096.441

Table 4 presents the logistic regression results showing socio-demographic and
psychological predictors of household intention to replace existing heating
systems, informing the psychological utility component of the model. Significant
levels are denoted by *(0.1), **(0.05) and ***(<0.01). Observations: 3,706.

household agents’ decision-making processes, and calibrating the model
with national survey data and historical adoption trends, the simulation
provides a robust representation of potential adoption pathways under
varying policy and market conditions.

In the baseline scenario, where current (as of 2024) government
subsidies and energy price levels are maintained, the model predicts that
approximately 8.7 million UK households (30.8 %) could adopt heat
pumps by 2050. However, the results reveal a high degree of sensitivity
to both financial incentives and electricity price trends. Increasing the
current £7500 grant to £11,500 could raise adoption to over 15 million
households (54 % of households). In comparison, a 20 % reduction in
electricity prices alone could boost adoption by a further 12.2 percent-
age points, resulting in a total adoption rate of approximately 43.0 %
(equivalent to around 12.1 million households). These findings under-
line the pivotal role that economic levers, both direct subsidies and
operational cost reductions, play in driving consumer transitions to low-
carbon heating technologies. This finding is consistent with those of
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Brodnicke et al. [24], van der Kam et al. [27], Derkenbaeva et al. [25],
Nava-Guerrero et al. [30,21], Felten et al. [22] and Busch et al. [26],
who similarly demonstrate the strong effect of policy portfolios like
subsidies and cost reductions on adoption.

Beyond financial considerations, psychological and social di-
mensions are shown to be essential. Consumers who express stronger
pro-environmental attitudes, greater control over heat usage, and
motivation to save on heating bills are more likely to adopt heat pumps.
Moreover, peer effects and social networks exert a meaningful influence,
demonstrating that visibility of early adopters and community-based
encouragement can accelerate diffusion. These behavioural insights
align with previous findings of Meles and Ryan [19], Nava-Guerrero
et al. [30,21] and Bale et al. [9], which suggest that a purely eco-
nomic framing of policy may be insufficient to achieve widespread
behavioural change. Our results on peer and social influence are also
consistent with Sachs et al. [18] and Snape et al. [20], which find that
adoption likelihood increases when peers have already installed heat
pumps.

Six policy implications can be drawn from the research findings:

Expand and Tailor Financial Incentives: Increasing the Boiler
Upgrade Scheme grant beyond £7500, particularly up to £9500-
£11,500, could significantly increase adoption. In parallel, expanding



W. Xu and M. Qadrdan

eligibility to lower-income households through additional interest-free
loans or tiered subsidies could enhance equitable access. The recom-
mendation to expand the Boiler Upgrade Scheme grant is directly
grounded in our finding that increasing grants from £7500 to £11,500
could raise adoption from 30.8 % to 54 % of households (from
approximately 8657,000 to 15,197,000 adoptions) by 2050 (Fig. 4).

Reduce Operational Costs via Energy Pricing Reform: Lowering
electricity tariffs for heat pump users, potentially through time-of-use
pricing or green electricity discounts, could enhance the long-term
cost-competitiveness of heat pumps and make them more attractive
relative to fossil fuel systems. The suggestion to lower tariffs for heat
pump users is supported by our result that a 20 % reduction in electricity
prices boosts adoption by an additional 12.2 percentage points
(3429,000 heat pumps in Fig. 5) by 2050.

Promote Social Norms and Community Initiatives: Public
awareness campaigns should leverage social influence by showcasing
early adopters and facilitating neighbourhood-scale transitions. Com-
munity heat pump trials, endorsements by trusted local figures, and
social comparison tools (e.g., “compare your energy savings™) can boost
visibility and perceived legitimacy. The emphasis on peer influence
derives from our social interaction utility modelling, which shows a
positive weight in adoption decision.

Address Psychological Barriers: Educational efforts should focus
on correcting misconceptions about the ease and reliability of heat pump
installation and use. Demonstrating tangible co-benefits such as com-
fort, safety, and control can help shift attitudes and perceived behav-
ioural control, especially among hesitant groups. This recommendation
is drawn from our logistic regression analysis, which showed that
negative attitudes (e.g., disinterest in heat usage) significantly reduce
adoption intent.

Targeted Support for Renters and Flat Dwellers: Since adoption is
lower among those in rented accommodation or flats, targeted in-
terventions such as landlord incentives, building-wide retrofits, and
regulations mandating low-carbon systems in multi-family housing are
needed to prevent a “retrofit divide”. Our finding that adoption likeli-
hood is lower in rented accommodation or flats (Table 3) supports
policies targeting landlords and multi-unit buildings.

Incorporate Behavioural Insights into Future Modelling: As the
policy landscape and consumer attitudes evolve, future ABM efforts
should incorporate dynamic adaptation of consumer preferences and
more granular modelling of regional and housing-type variations.

In sum, achieving the UK’s net-zero targets will require a compre-
hensive policy mix that goes beyond economic subsidies to include
behavioural interventions, electricity market reform, and community
engagement strategies. Agent-based modelling, by capturing the com-
plex interplay between economic conditions, individual psychology, and
social influence, offers a valuable tool for designing and evaluating such
interventions.

Our research has made several contributions. Methodologically, the
integration of logistic regression with ABM provides an empirically
grounded weighting of economic, psychological, and social utilities.
This hybrid approach advances existing ABM applications by combining
statistical inference with behavioural simulation, thereby enhancing
robustness and realism. Empirically, our long-term simulation
(2021-2050), calibrated with both UK and Swedish adoption data,
provides new insights into the trajectory of UK heat pump adoption
under different policy scenarios. Our findings confirm prior evidence on
the importance of financial incentives and social influence, while adding
psychological attitudes (stronger pro-environmental attitudes, greater
control over heat usage, and motivation to save on heating bills) as
adoption drivers. Theoretically, this work explicitly connect the model
to the Theory of Planned Behaviour, Diffusion of Innovations, and Utility
Theory, showing how these frameworks guided the construction of
adoption progress, utility weights, and agent heterogeneity. In turn, our
results inform TPB by empirically demonstrating the relative weighting
of economic versus psychological and social drivers, highlighting that
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financial incentives alone are insufficient to trigger mass adoption and
quantifying the interplay of TPB constructs in long-term technology
diffusion.

This research has several limitations. Firstly, it is confined to the
context of the UK, which may limit the generalisability of the findings to
other regions. Cross-national studies across different countries and cul-
tural backgrounds are recommended to assess the broader applicability
of the results. Secondly, variations in how TPB is operationalised in
ABMs, such as differences in model architecture, equation structure,
factor representation, and underlying data distributions, can affect
outcomes. This limitation in a broader context of TPB-based ABM has
been evidenced by Muelder and Filatova [54]. Future studies should
therefore explore alternative approaches to assess robustness. Thirdly,
more extensive stochastic exploration (e.g., sensitivity analysis of social
network variations using Latin Hypercube Sampling or Monte Carlo
experiments) could provide additional insights into model uncertainty.
However, given computational constraints and the focus of this paper,
we limited the stochastic analysis to the main adoption outcomes.
Fourthly, key variables such as the discount rate, annual heating bills,
and household socio-demographic and psychological characteristics are
assumed to be static. System age and residential lifetime are not incor-
porated. Further studies are encouraged to incorporate more dynamic
variables into the model to better reflect real-world complexities.
Fifthly, other sources of uncertainty can substantially influence heat
pump adoption, such as technology cost trajectories (e.g., declining
installation costs with market maturity or economies of scale), and
policy landscape uncertainty and future regulatory requirements (e.g.,
building standards, gas boiler phase-out timelines). Subsequent studies
should incorporate multiple interacting uncertainties to enhance the
robustness of model-based policy insights. Lastly, our model assumption
on direct proxies of survey respondents for household decision-maker
agents may over-represent certain categories, especially younger re-
spondents who may not yet be the primary decision-makers in their
households. Although empirical calibrations of utility weights and
adoption trends may reduce but cannot eliminate the bias. We recom-
mend that future research should adjust survey-based ABM populations
using household-level weighting schemes (e.g., linking microdata to
household structure statistics).

6. Conclusion

This study develops a TPB-based agent-based model, integrated with
logistic regression and utility function (incl. economic, psychological,
and social interaction utilities), to explore residential heat pump adop-
tion in the UK. By empirically calibrating utility weights using UK and
Swedish adoption data, the model reproduces reliable diffusion dy-
namics and projects future adoption trajectories by 2050 under varying
policy and market conditions. The results confirm that grant amounts
and electricity price reductions are key drivers of adoption, while atti-
tudes, perceived control, and social norms, which are core constructs of
TPB, also strongly influence household decisions. Effective decarbon-
isation strategies should therefore combine financial support with
behavioural interventions and social engagement initiatives. Beyond its
empirical insights, this research advances TPB-informed ABM ap-
proaches, offering a robust framework for assessing policy efficacy and
supporting the UK’s transition toward low-carbon heating.
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