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ABSTRACT
This is a conceptual position paper contrasting abstraction and
generation as two opposing AI paradigms. The success of current
AI systems can be attributed to their data-first paradigm. However,
data is mathematically a product of models, such as mathematical
structures, variables, and parameters, underlying these systems. In
fact, estimating models from data in AI is formalised as an inverse
problem in statistics. In this paper, we argue that the mismatch
between the data-first paradigm and this model-first approach is a
fundamental cause of various long-standing open problems such
as unifying logic and probability, unifying learning and reasoning,
unifying symbol grounding and inference grounding, and brain-like
AI. We overview abstractive AI as opposed to generative AI and
discuss promising future research directions.

KEYWORDS
Abstractive inference, Brain-like AI, Unifying logic and probability,
Unifying learning and reasoning, Unifying symbol grounding and
inference grounding, Neuroscience, Cognitive science

1 INTRODUCTION
It is widely accepted that AI research today adheres to a data-
first paradigm. Table 1 lists Turing Awards for AI research. Over
time, the focus of research has shifted from small-scale handcrafted
knowledge to large-scale raw data, particularly following the advent
of Internet technologies. From amathematical perspective, however,
modern AI research should be seen as a model-first approach rather
than data-first. Here, a model represents a mathematical hypothesis,
such as structures, variables, and parameters. Indeed, the problem of
estimating models from data can be regarded as an inverse problem
in statistics. In other words, it is assumed that data are derived
from models. For example, the statistical methods most widely used
to train machine learning models are maximum likelihood (ML)
estimation, maximum a posteriori (MAP) estimation, and Bayesian
estimation, defined as follows.

ℎ𝑀𝐿 = argmax
ℎ

𝑝 (𝒅 |ℎ)

ℎ𝑀𝐴𝑃 = argmax
ℎ

𝑝 (ℎ |𝒅) = argmax
ℎ

𝑝 (𝒅 |ℎ)𝑝 (ℎ)

𝑝 (ℎ |𝒅) = 𝑝 (𝒅 |ℎ)𝑝 (ℎ)
𝑝 (𝒅) =

𝑝 (𝒅 |ℎ)𝑝 (ℎ)∑
ℎ 𝑝 (𝒅 |ℎ)𝑝 (ℎ)

(1)

Given data, denoted by 𝒅, they infer a hypothesis, denoted by ℎ, or
its probability using the expressions on the right-hand side. The
likelihoods on the right-hand side indicate that the data result from
the hypothesis. They clearly reflect a model-first approach.

Table 1: Turing awards in AI [17], including the 2024 award

Year Rationale

1969-71 Foundations of the field based on representation
and reasoning

1994 Developing expert systems that encode human
knowledge to solve real-world problems

2011 Developing probabilistic reasoning techniques that
deal with uncertainty in a principled manner

2018 Making deep learning (multilayer neural networks),
a critical part of modern computing

2024 Developing the conceptual and algorithmic
foundations of reinforcement learning

We argue that the conflict between the data-first paradigm and
the model-first approach needs to be resolved, as it underlies several
fundamental challenges in AI, including unifying logic and proba-
bility, unifying learning and reasoning, unifying symbol grounding
and inference grounding, transparency, hallucinations, and brain-
like AI. Although current AI research has achieved remarkable
results in areas such as language, speech, and image processing,
these fundamental problems remain largely unsolved.

In this paper, we discuss a data-first approach to the data-first
paradigm. Specifically, we explore an alternative research direction
in which inherently abstract models are derived from inherently
concrete data through a process of abstraction, i.e., selective ig-
norance.1 We refer to the computational study of abstraction as
Computational Abstraction, which focuses on the opposite direc-
tion of the current generative paradigm, where data are derived
from models. For example, we use Bayes’ theorem as follows from
the abstraction perspective.

𝑝 (𝑑 |𝒉) = 𝑝 (𝒉|𝑑)𝑝 (𝑑)
𝑝 (𝒉) =

𝑝 (𝒉|𝑑)𝑝 (𝑑)∑
𝑑 𝑝 (𝒉|𝑑)𝑝 (𝑑)

(2)

Given hypotheses, denoted by 𝒉, this equation infers the probability
of a data point, denoted by 𝑑 , using the expression on the right-
hand side. The likelihoods on the right-hand side indicate that
the hypotheses result from the data point. This clearly reflects a
data-first approach.

Such abstractive inference cannot be categorised within the typ-
ical machine learning dichotomies of generative vs. discriminative
models or parametric vs. non-parametric models. Data are neither
generated nor discriminated, but rather they are what generate
1This reflects a materialistic view, consistent with 18th-century mathematicians, who
regarded the determination of unobservable forces from observable object trajectories
as a direct (or forward) problem [1].



Table 2: Full joint probability distribution

something more abstract. Equation (2) suggests a similarity to a
parametric model, as the hypotheses can be viewed as summaries of
the data, which are obtained by selectively ignoring certain aspects
of the data. At the same time, it also resembles a non-parametric
model, since it retains and uses all the data much like instance-based
andmemory-based learning. Abstractive inference, however, should
not be considered a non-parametric model, since non-parametric
models do not contradict the generative paradigm in which data
are generated from models.

In this paper, we contrast abstraction and generation as two op-
posing paradigms, and discuss several interesting insights emerging
from the former. In Section 2, we critically re-examine Bayesian
networks, the probabilistic foundation of generative models, from
the data-first perspective. In Section 3, we discuss an alternative
approach that begins probabilistic reasoning from the data distribu-
tion, which grounds the model distribution discussed during the era
of Bayesian networks. In Section 4, we discuss the future prospects
of the computational approach to abstraction as a computational
model of higher-level cognitive functions of the brain.

2 REVISITING THE CLASSIC
Probability theory underlies modern AI and plays a central role
in generative modelling. Bayesian networks (BNs) [14] have had a
major impact on the probabilistic approach to generative modelling.
To correctly understand BNs, it is important to understand prob-
abilistic inference with the full joint probability distribution that
was assumed before their development. Table 2 shows an example
of the full joint probability distribution over five discrete random
variables: 𝐶𝑙𝑜𝑢𝑑 , 𝑅𝑎𝑖𝑛, 𝐻𝑜𝑡 , 𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 , and𝑊𝑒𝑡 . These variables
respectively represent: ‘There are clouds’, ‘It is raining’, ‘It is hot’,
‘The sprinkler is on’, and ‘The grass is wet’.

𝜃𝑛 is a variable representing a probability value characterising
the distribution. Since this is a probability distribution, we have
𝜃32 = 1−∑31

𝑛=1 𝜃𝑛 . Namely, this distribution is characterised by 31(=
25−1) values. In principle, any probabilistic query can be answered
once the full joint probability distribution is available. However,
this approach is generally infeasible, as the computational costs, i.e.,
memory and time, grow exponentially with the number of random
variables. For example, given 30 binary random variables, the full
joint probability distribution is characterised by 1, 073, 741, 823(=
230 − 1) values. The same applies in continuous cases, where exact
calculations require multivariate integration.

This issue motivated the development of BNs, which use a di-
rected acyclic graph to encode independence and conditional in-
dependence of knowledge.2 Let 𝑋𝑖 (1 ≤ 𝑖 ≤ 𝐼 ) be discrete random
2The development of BNs was inspired by the top-down and bottom-up processing of
human perception in reading [15].

Figure 1: Bayesian network structure

variables. The semantics of BNs defines probabilistic reasoning as
follows.

𝑝 (𝑋1, ..., 𝑋𝐼 ) =
𝐼∏

𝑖=1
𝑝 (𝑋𝑖 |𝑋𝑖−1, ..., 𝑋1)

Def .
=

𝐼∏
𝑖=1

𝑝 (𝑋𝑖 |Parents(𝑋𝑖 ))

The second expression can be derived by repeatedly applying a valid
rule of probability theory, known as the product rule [2, 17]. The
third expression applies the semantics of BNs. It is thus important
to understand that the semantics of BNs is an approximation of
the valid rule of probability theory. For example, consider the BN
structure shown in Figure 1. Given this BN structure, the above
equations can be expanded as follows, where each random variable
is abbreviated by its first letter.

𝑝 (𝑊,𝑆, 𝐻, 𝑅,𝐶) = 𝑝 (𝑊 |𝑆, 𝐻, 𝑅,𝐶)𝑝 (𝑆 |𝐻, 𝑅,𝐶)𝑝 (𝐻 |𝑅,𝐶)𝑝 (𝑅 |𝐶)𝑝 (𝐶)
Def .
= 𝑝 (𝑊 |𝑆, 𝑅)𝑝 (𝑆 |𝑅)𝑝 (𝐻 |𝑅)𝑝 (𝑅 |𝐶)𝑝 (𝐶)

The last equation decomposes the full joint probability distribution
into the following conditional probability distributions.

The distributions are now characterised by 11 values, reduced from
31 values due to the semantics of BNs.

The impact of this semantics becomes significant as the scale
of the problem increases. Consider the 28 × 28-pixel images in the
MNIST database [4]. Let 𝐷𝑖𝑔𝑖𝑡 be a random variable taking values
in {0, 1, ..., 9}, representing the possible digits shown in each MNIST
image, and let 𝑃𝑖𝑥𝑒𝑙𝑖 be a random variable taking values in {0, 1},
representing the colour of pixel 𝑖 , black and white, respectively. The
full joint probability distribution, 𝑝 (𝐷𝑖𝑔𝑖𝑡 , 𝑃𝑖𝑥𝑒𝑙1,..., 𝑃𝑖𝑥𝑒𝑙28×28), is
thus characterised by 10 × 228×28 − 1(≈ 10237) values. Now, the
semantics of BNs defines a naive Bayes as follows.

𝑝 (𝐷𝑖𝑔𝑖𝑡, 𝑃𝑖𝑥𝑒𝑙1, ..., 𝑃𝑖𝑥𝑒𝑙28×28)
Def .
= 𝑝 (𝐷𝑖𝑔𝑖𝑡)

28×28∏
𝑖=1

𝑝 (𝑃𝑖𝑥𝑒𝑙𝑖 |𝐷𝑖𝑔𝑖𝑡)

The full joint probability distribution can now be decomposed into
the 1 + 28 × 28 conditional probability distributions shown below.

Note that 𝑝 (𝐷𝑖𝑔𝑖𝑡 = 9) = 1 −∑8
𝑗=1 𝑝 (𝐷𝑖𝑔𝑖𝑡 = 𝑗). The conditional

probability distributions are characterised by 7849(= 9 + 10 × 28 ×



Figure 2: This hierarchy shows that intrinsically abstract
propositional formulas (on the bottom layer) should be de-
rived from intrinsically concrete data (on the top layer) by
inference of abstraction, i.e., selective ignorance.

28(≈ 104)) values, a huge reduction from 10 × 228×28 − 1(≈ 10237)
due to the semantics of BNs.

However, the fundamental limitation of the semantics of BNs
is that independence and conditional independence are assump-
tions that are useful but unrealistic in practice. Indeed, the BN
structures maximising the likelihood almost always result in a fully
connected graph (see, e.g., p.745 [17]). Therefore, the independence
and conditional independence assumptions are incompatible with
the data-first paradigm. It is still important to studywhat constitutes
good BN structures and how to find them efficiently. In the future,
however, it will become increasingly important to ask whether a
structure is truly necessary and what alternative approaches can
realise structure-free yet computationally tractable probabilistic
reasoning.

3 ABSTRACTIVE INFERENCE
Generative models underpin the current AI paradigm. Its common
assumption is that data result from models (see Equation (1) again).
In this section, we focus on the direction opposite to the genera-
tive paradigm. The perspective we find in the reverse direction is
that intrinsically abstract models result from intrinsically concrete
data through a process of abstraction, i.e., selective ignorance (see
Equation (2) again). We refer to the computational approach in the
opposite direction as Computational Abstraction.

In this section, we explain the core idea of abstractive inference
[8–11], which is a recent success in Computational Abstraction.
Consider Table 2 again. Several entries represent unrealistic situa-
tions, such as (𝑅𝑎𝑖𝑛 = 1,𝑊 𝑒𝑡 = 0), (𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 = 1,𝑊 𝑒𝑡 = 0), and
(𝑅𝑎𝑖𝑛 = 1, 𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟 = 1). Empirically, this would result in 𝜃𝑛 = 0,
for all entries highlighted in grey, i.e., 𝑛 ∈ {5-16, 29-32}. The idea
of abstractive inference is straightforward. Instead of referring to
the full joint probability distribution, we directly use the observed
data. This approach is promising as the number of data increases
only linearly with the number of observations, whereas the size of
the full joint probability distribution increases exponentially with
the number of random variables.

The term ‘abstractive inference’ is justified when we consider
expressive formal languages, e.g., propositional logic. Figure 2 is an
illustration of abstractive inference with a propositional language.
The top, middle, and bottom layers represent a data distribution,
model distribution, and knowledge distribution, respectively. Note
that the middle layer is Table 2. We call the middle layer a model
distribution because each entry corresponds to a model in proposi-
tional logic, i.e., valuation. A valuation in propositional logic is a
function assigning a truth value, 0 or 1, to each of the five proposi-
tional variables. Intuitively, each valuation represents a different
state of the world. Each arrow indicates that its source supports its
target. For example, data 𝑑6 supports a model with probability 𝜃27.
We here assume that each data point supports a single model. The
assumption is natural because different models are incompatible,
and each model is a selective ignorance of certain aspects of more
concrete data. The model with probability 𝜃27 supports formula
¬𝑠𝑝𝑟𝑖𝑛𝑘𝑙𝑒𝑟∧𝑐𝑙𝑜𝑢𝑑 as this formula is true in the model. This support
relation conforms to the semantics of propositional logic.

Let𝑚 be a function that maps each data point to a corresponding
model, and𝑚𝑛 be a model with the probability 𝜃𝑛 . Let us evaluate
the probability of the formulas according to Figure 2 (see [8–11]
for rigorous definitions). We abbreviate each propositional variable
by its first letter. Using the sum rule [2] (marginalisation) and the
product rule [2] (conditioning), we have

𝑝 (¬𝑟 ∧𝑤,¬𝑠 ∧ 𝑐) =
32∑︁
𝑛=1

12∑︁
𝑘=1

𝑝 (¬𝑟 ∧𝑤,¬𝑠 ∧ 𝑐,𝑚𝑛, 𝑑𝑘 ) =

32∑︁
𝑛=1

12∑︁
𝑘=1

𝑝 (¬𝑟 ∧𝑤 |¬𝑠 ∧ 𝑐,𝑚𝑛, 𝑑𝑘 )𝑝 (¬𝑠 ∧ 𝑐 |𝑚𝑛, 𝑑𝑘 )𝑝 (𝑚𝑛 |𝑑𝑘 )𝑝 (𝑑𝑘 ).

Next, the semantics of propositional logic guarantees that formulas
are conditionally independent of data given a model.3 We thus have

=

32∑︁
𝑛=1

12∑︁
𝑘=1

𝑝 (¬𝑟 ∧𝑤 |¬𝑠 ∧ 𝑐,𝑚𝑛)𝑝 (¬𝑠 ∧ 𝑐 |𝑚𝑛)𝑝 (𝑚𝑛 |𝑑𝑘 )𝑝 (𝑑𝑘 ) .

For the same reason, formulas are conditionally independent of
each other given a model. We thus have

=

32∑︁
𝑛=1

12∑︁
𝑘=1

𝑝 (¬𝑟 ∧𝑤 |𝑚𝑛)𝑝 (¬𝑠 ∧ 𝑐 |𝑚𝑛)𝑝 (𝑚𝑛 |𝑑𝑘 )𝑝 (𝑑𝑘 ).

Note that this expression corresponds to the arrows in Figure 2.
Now, the model summation can be cancelled after swapping the
order of the summations. This is because each data point supports
a single model, i.e., 𝑝 (𝑚𝑛 |𝑑𝑘 ) = 0, for all𝑚𝑛 ≠𝑚(𝑑𝑘 ).

=

12∑︁
𝑘=1

𝑝 (𝑑𝑘 )
32∑︁
𝑛=1

𝑝 (¬𝑟 ∧𝑤 |𝑚𝑛)𝑝 (¬𝑠 ∧ 𝑐 |𝑚𝑛)𝑝 (𝑚𝑛 |𝑑𝑘 )

=

12∑︁
𝑘=1

𝑝 (𝑑𝑘 )𝑝 (¬𝑟 ∧𝑤 |𝑚(𝑑𝑘 ))𝑝 (¬𝑠 ∧ 𝑐 |𝑚(𝑑𝑘 ))

In the simplest case, we have the uniform probability 𝑝 (𝑑𝑘 ) = 1/12
and 𝑝 (𝑥 |𝑚(𝑑𝑘 )) = 1 iff propositional formula 𝑥 is true in the model

3In ordinary logic, once a model is given, the truth value of any formula is fully
determined and independent of any additional formulas or data (see, e.g., [8] for formal
proof).



𝑚(𝑑𝑘 ).4 As shown in Figure 2, 𝑝 (¬𝑟 ∧𝑤 |𝑚(𝑑𝑘 )) = 1 if 𝑘 ∈ {8, 12},
and 𝑝 (¬𝑠 ∧ 𝑐 |𝑚(𝑑𝑘 )) = 1 if 𝑘 ∈ {6-11}. Therefore, we have

=
1
12

∑︁
𝑘∈{8}

1 =
1
12

.

This is the essence of abstractive inference with a propositional
language. For conditional probabilities, the same procedure should
be applied to both the numerator and the denominator. For example,

𝑝 (¬𝑟 ∧𝑤 |¬𝑠 ∧ 𝑐) = 𝑝 (¬𝑟 ∧𝑤,¬𝑠 ∧ 𝑐)
𝑝 (¬𝑠 ∧ 𝑐) =

1
12

∑
𝑘∈{8} 1

1
12

∑
𝑘∈{6-11} 1

=
1
6

In sum, the natural combination of logical semantics and probability
theory provides a simple formalisation of the idea of abstraction,
i.e., selective ignorance.

Abstractive inference can be justified in terms of computation,
statistics, logic, and machine learning. First, given the function𝑚,
its computation scales essentially linearly with respect to the num-
ber of data. As discussed above, this is because we can cancel the
model summation that increases exponentially with the number
of propositional variables.5 Without the function 𝑚, its compu-
tation still scales essentially linearly with respect to the product
of the number of data and the number of propositional variables.
This is because we only need to determine the truth value of each
propositional variable under each data. Second, it is known that
abstractive inference over propositional and first-order formulas
generalises the logical consequence relations (see [9, 10]). Third,
the probability distribution over models derived by abstractive in-
ference is equivalent to maximum likelihood estimation (see [11]).
Fourth, abstractive inference over formulas can be seen as a sort of
Bayesian learning [17] with the following form (see [8]).

𝑝 (¬𝑟 ∧𝑤 |¬𝑠 ∧ 𝑐) =
12∑︁
𝑘=1

𝑝 (¬𝑟 ∧𝑤 |𝑑𝑘 )𝑝 (𝑑𝑘 |¬𝑠 ∧ 𝑐)

Here, the target of marginalisation is data. This is in contrast to
standard Bayesian learning, where the target of marginalisation
is parameters. The above equation shows that symbolic reasoning
is grounded in data in the sense that reasoning from symbols to
symbols is essentially reference to data. Finally, it is known that the
above equation serves as a general framework for various problems
across machine learning (e.g., MNIST [11]), probability (e.g., Markov
chains and hidden Markov models [8]) and logic (e.g., propositional
logic [10] and first-order logic [9]).

4 HUMAN-LIKE ABSTRACTIVE MACHINES
The past two sections motivate us to conceive Computational Ab-
straction as a potential computational theory of the human brain,
including higher-level cognitive functions. This at least offers a

4𝑝 (𝑥 |𝑚 (𝑑𝑘 ) ) ∈ [0.5, 1] is assumed in general. This gives a simple yet rigorous way
to avoid division by zero in conditional probability (i.e., the inability to reason from
impossible information) (see [8, 10]), to prevent the principle of explosion in ordinary
logic (i.e., the inability to reason from inconsistent information) (see [9, 10]), and to
mitigate overfitting in machine learning (see [11]).
5Independence and conditional independence needed to be introduced in Bayesian
networks because probabilistic reasoning was assumed to begin from the middle layer
in Figure 2. Researchers at that time did not overlook the top layer. It simply did
not exist in the 1980s, before the data-first paradigm. For the same reason, we think
logicians at the time did not find the abstractive relation between the middle and
bottom layers.

unique perspective as current prominent brain theories in neuro-
science and cognitive science fall within the generative paradigm.
For example, Bayesian brain hypothesis [12], predictive coding
[16], free-energy principle [7], hierarchical Bayesian inference [13],
and theory-based induction [18] commonly assume that biological
brains have a model of the world that explains concrete sensory
input. Moreover, most of them primarily target lower-level per-
ceptual functions of the brain, and there is very little research on
higher-level cognitive functions, except theory-based induction
[18] in cognitive science. While they focus on inference within a
given generative model, Computational Abstraction has the po-
tential to help the community understand how generative models
and their associated inference emerge through abstraction from
data. It could also provide a way to approach the problem from the
opposite perspective, in which low-level perceptual data serve as
the primary source of high-level cognitive functions (see Figure 2).

This research direction is highly relevant to the AI community
because biological brains hold the key to addressing difficult AI
problems, such as unifying logic and probability6, the separation
of learning and reasoning, the symbol grounding and inference
grounding problems, knowledge acquisition bottleneck, hallucina-
tions, blackboxness, and massive computational resources. Surpris-
ingly, none of them appear to be a problem for the brain. Moreover,
agents are expected to play a more active and creative role in sci-
ence and the arts in the near future. For creativity to be valuable,
agents should acquire and use concepts grounded in their own
experiences. They also need the ability to reason logically in order
to critically evaluate the value of creativity. At present, modern
language models are good at explaining how people tend to think,
but not very good at explaining how people ought to think in a
normative sense. Filling this gap is a fundamental challenge not
only for creative agents but also for moral agents, and abstractive
agents have the potential to contribute to this area.

There are several neuroscience findings that can be naturally ex-
plained by viewing the brain as an abstractive machine, not as a gen-
erative machine. For example, it is known that rats in a maze replay
and reverse-replay individual past experiences in their hippocam-
pus [3], seemingly previewing and reviewing their experiences. The
hippocampus might retain experiences as accurately as possible.
For prediction, a highly flexible and efficient mechanism should
decide what to replay and reverse-replay in the brain, because the
exact same experience never occurs twice. Here, abstraction may
play an important role in ignoring irrelevant details. Notably, the
replay and reverse-replay occur even for a single event [6]. Their
cognitive skill appears distinct from the inductive generalisation
approaches commonly studied in machine learning. It also cannot
be easily explained by standard generative models, which typically
require massive computational resources, including large datasets,
numerous parameters, and substantial energy. Moreover, reasoning
relies on the trained models themselves rather than on the data
used for training. By contrast, learning and reasoning in brains may
rely fundamentally on memory of past experiences and abstraction-
guided referencing of that memory. This perspective may suggest
a new direction in AI that does not rely on backpropagation, an AI
learning method often considered biologically implausible.

6This basic problem has remained mathematically unsolved for over 300 years [5].
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