# ASPECTS OF DEGRADATION OF MONOETHANOLAMINE SOLUTIONS DURING CO<sub>2</sub> ABSORPTION

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY

KALI-STELLA ZOANNOU, BENG, MSC

Institute of Sustainability and Environment, School of Engineering, Cardiff University

# **DECLARATION**

| This work has not previously been accepted in substance for any degree and is      |
|------------------------------------------------------------------------------------|
| not concurrently submitted in candidature for any degree.                          |
| Signed                                                                             |
| Signed                                                                             |
| Date                                                                               |
| STATEMENT 1                                                                        |
| This thesis is being submitted in partial fulfilment of the requirements for the   |
| degree of PhD.                                                                     |
|                                                                                    |
| Signed                                                                             |
| Date                                                                               |
| STATEMENT 2                                                                        |
| This thesis is the result of my own independent work/investigation, except where   |
| otherwise stated. Other sources are acknowledged by explicit references.           |
|                                                                                    |
| Signed                                                                             |
| Date                                                                               |
| STATEMENT 3                                                                        |
| I hereby give consent for my thesis, if accepted, to be available for photocopying |
| and for inter-library loan and for the title and summary to be made available to   |
| outside organisations.                                                             |
| <del>-</del>                                                                       |
| Signed                                                                             |
| Date                                                                               |

# SUMMARY OF THESIS

The most common technique for carbon dioxide removal from gaseous streams is amine scrubbing, a proven technology in the oil and gas industries. The use of this route in coal fired power plants is not fully understood and the likelihood of solvent degradation is high. Decreased absorption efficiency, undesirable byproducts, the environmental impact of their disposal and increased process costs are the main consequences.

In this study, two experimental rigs were designed and commissioned to explore the effects of gas composition and temperature on monoethanolamine degradation. Analytical procedures to detect and quantify its major thermal and oxidative degradation products were also developed.

It became apparent early on that solvent degradation, under actual plant conditions, is a slow phenomenon, thus, it was decided to focus on thermal degradation. The present study uniquely enabled the absorption/desorption behaviour of thermally degraded solvents to be evaluated. The major thermal degradation products were quantified.

After 14 full absorption/stripping cycles at the presence of 16% oxygen and 15% carbon dioxide, significant concentrations of nitrites and nitrates were detected in the samples. Thermal degradation at 160 °C for 8 weeks reduced monoethanolamine concentration by almost 95%, as evidenced by the chemical analysis, but the remaining solvent retained 22% of its capacity to remove carbon dioxide. Therefore, although not fully quantified, the requirement for monoethanolamine make-up may not be quite as serious as initially believed. There is some evidence to support that the rate of thermal degradation was enhanced as carbon dioxide loading increased and a 20% higher MEA loss was determined in the samples with the rich initial molar loading. A range of degradation products were quantified that correspond to those cited in the literature. 1-(2-hydroxyethyl)-2-imidazolidinone was indicated as the most stable MEA degradation product in the degraded samples at concentrations of up to 17% v/v.

## **ACKNOWLEDGEMENTS**

I would like to express my sincere appreciation to my supervisors, Prof. Tony Griffiths and in particular Prof. Keith Williams, for their continuous support and guidance at all levels throughout this period of study. Thank you.

I would also like to thank the British Coal Utilisation Research Association (BCURA) for the funding provided and express my appreciation to my industrial supervisor, Dr. Michael Whitehouse, for his constructive input to this project.

I would like to thank Jeff Rowlands and Ravi Mitha, as well as Julian Steer and Martin Griffiths, for all the help and assistance they provided me with in the CLEER laboratories throughout this study.

I would like to acknowledge the support and understanding I received from my dear friends Reza Ahmadian, Glykeria Eliopoulou, Jennifer Geroni, Doria Tichit and Patricia Xavier.

I would like to thank my fiancé Spyros for his dearest love, his caring advice and for accompanying me through this venture.

Finally, I express my deep gratitude to my father Ioannis and my "fighter" mother Amerissa for encouraging and supporting me by all available means to achieve my goals.

I would like to dedicate this thesis to my uncle Sotiris.

# TABLE OF CONTENTS

| LIST OF FIGURES                                                                         | IX              |
|-----------------------------------------------------------------------------------------|-----------------|
| LIST OF TABLES                                                                          | XI              |
|                                                                                         |                 |
| NOMENCLATURE                                                                            | XIII            |
| 1 INTRODUCTION                                                                          | 1               |
| 1.1 Introduction                                                                        | 1               |
| 1.2 THESIS AIMS - KEY QUESTION                                                          | 4               |
| 1.3 THESIS OVERVIEW                                                                     | 5               |
|                                                                                         |                 |
| 2 LITERATURE REVIEW                                                                     | 6               |
|                                                                                         |                 |
| 2.1 Introduction                                                                        | 6               |
| 2.2 AMINE SCRUBBING                                                                     | 7               |
| 2.2.1 INDUSTRIAL PROCEDURE                                                              | 7               |
| 2.2.2 DESIGN, TECHNICAL AND ECONOMIC OPERATION                                          | 9               |
| 2.3 AMINE SCRUBBING SOLVENTS                                                            | 12              |
| 2.3.1 PRIMARY AMINES                                                                    | 12              |
| 2.3.2 SECONDARY AMINES                                                                  | 12              |
| 2.3.3 TERTIARY AMINES                                                                   | 13              |
| 2.3.4 STERICALLY HINDERED AMINES                                                        | 13              |
| 2.3.5 RESEARCH ON AMINE SOLVENTS 2.4 MEA                                                | 13              |
| 2.4.1 PROCESS CHEMISTRY                                                                 | <b>18</b><br>18 |
| 2.4.1 PROCESS CHEMISTRY 2.4.2 SOLUBILITY OF CO <sub>2</sub> IN MEA                      | 19              |
| 2.4.2 SOLUBILITY OF CO <sub>2</sub> IN MEA  2.4.3 MEA LOSS IN AN AMINE SCRUBBING SYSTEM | 22              |
| 2.4.4 EFFECT OF MEA LOSS IN THE AMINE SCRUBBING SYSTEM                                  | 23              |
| 2.5 MEA DEGRADATION                                                                     | 25<br>25        |
| 2.5.1 OXIDATIVE DEGRADATION                                                             | 25              |
| 2.5.2 THERMAL DEGRADATION                                                               | 29              |
| 2.5.2.1 MEA loss                                                                        | 30              |
| 2.5.2.2 Degradation products and their concentrations                                   | 32              |
| 2.5.2.3 Pathways of formation of degradation products                                   | 34              |
| 2.5.2.4 Corrosion due to thermal degradation products                                   | 38              |
| 2.5.3 MIXED DEGRADATION – FLUE GAS STUDIES FROM ACTUAL PLANTS                           | 39              |
| 2.6 SUMMARY                                                                             | 46              |
| 2 EVDEDIMENTAL                                                                          | 40              |
| 3 EXPERIMENTAL                                                                          | 48              |
| 3.1 Introduction                                                                        | 48              |
| 3.2 MATERIALS                                                                           | 50              |
| 3.3 ANALYTICAL EQUIPMENT                                                                | 52              |
| 3.4 ABSORPTION/STRIPPING RIG                                                            | 53              |
| 3.4.1 ABSORPTION/STRIPPING RIG DEVELOPMENT                                              | 53              |

| 3.4.2 ABSORPTION/STRIPPING RIG DESCRIPTION AND EXPERIMENTAL PROTOCOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 3.4.3 ABSORPTION/STRIPPING RIG COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59                                                                                                                  |
| 3.5 THERMAL DEGRADATION RIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61                                                                                                                  |
| 3.5.1 THERMAL DEGRADATION RIG DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61                                                                                                                  |
| 3.5.1.1 Worst case scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62                                                                                                                  |
| 3.5.1.2 Iterative calculations with various CO <sub>2</sub> loadings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63                                                                                                                  |
| 3.5.1.3 Chosen experimental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67                                                                                                                  |
| 3.5.1.4 Pressure calculations for the chosen experimental conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68                                                                                                                  |
| 3.5.2 THERMAL DEGRADATION RIG DESCRIPTION AND OPERATING PROTOCOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                  |
| 3.5.3 THERMAL DEGRADATION RIG COMPONENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72                                                                                                                  |
| 3.6 MICROGC ANALYTICAL PROCEDURE AND RESULTS PROCESSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73                                                                                                                  |
| 3.7 INORGANIC CARBON MEASUREMENT FOR CO <sub>2</sub> CONTENT DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76                                                                                                                  |
| 3.8 COLORIMETRIC DETERMINATION OF IONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>78</b>                                                                                                           |
| 3.9 ION CHROMATOGRAPHY (IC) - ANALYTICAL PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                  |
| 3.9.1 METHOD DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80                                                                                                                  |
| 3.9.1.1 Major MEA oxidative degradation products analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                  |
| 3.9.1.2 Effect of background (MEA) in the IC analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85                                                                                                                  |
| 3.9.1.3 IC Column AS-11 HC CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87                                                                                                                  |
| 3.9.2 ION CHROMATOGRAPHY (IC) FINAL METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89                                                                                                                  |
| 3.9.3 CALIBRATION CURVES AND METHOD DETECTION LIMITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                                                  |
| 3.10 GC-MS ANALYTICAL PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                                                                                                  |
| 3.10.1 METHOD DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98                                                                                                                  |
| 3.10.1.1 Initial instrument set up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98                                                                                                                  |
| 3.10.1.2 Final instrument set up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 106                                                                                                                 |
| 3.10.2 GC-MS-FINAL METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108                                                                                                                 |
| 3.10.3 CALIBRATION CURVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109                                                                                                                 |
| 3.11 DETERMINATION OF THE EFFECT OF THERMAL DEGRADATION ON CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10)                                                                                                                 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112                                                                                                                 |
| ARSORPTION AND DESORPTION-BARPERIMENTAL PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113                                                                                                                 |
| ABSORPTION AND DESORPTION-EXPERIMENTAL PROCEDURE 3.12 SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113<br>115                                                                                                          |
| 3.12 SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113                                                                                                                 |
| 3.12 SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
| 3.12 SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115                                                                                                                 |
| 3.12 SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115                                                                                                                 |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 115<br>117                                                                                                          |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul><li>115</li><li>117</li><li>117</li></ul>                                                                       |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115<br>117<br>117<br>118                                                                                            |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115<br>117<br>117<br>118<br>118                                                                                     |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115<br>117<br>117<br>118<br>118<br>118                                                                              |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 Introduction 4.2 Non-Systematically Degraded Sample 4.2.1 Cardiff University analysis 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 Non-systematically degraded Dionex IC analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115<br>117<br>118<br>118<br>118<br>119                                                                              |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 Introduction 4.2 Non-Systematically Degraded Sample 4.2.1 Cardiff University analysis 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 Non-systematically degraded Dionex IC analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115<br>117<br>118<br>118<br>118<br>119<br>121                                                                       |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>121                                                                |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>121<br>122                                                         |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117<br>117<br>118<br>118<br>119<br>121<br>121<br>122<br>123                                                         |
| 3.12 SUMMARY  4 RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>121<br>122<br>123<br>126                                           |
| 4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O <sub>2</sub> /CO <sub>2</sub> MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC                                                                                                                                                                                                                                                                                                                                                                                            | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129                                           |
| 4.1 Introduction 4.2 Non-Systematically Degraded Sample 4.2.1 Cardiff University analysis 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 Non-Systematically Degraded Dionex IC analysis 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.3 Colorimetric analysis with HACH meter 4.3 Full Loading Experiments 4.4 14 Full Cycles of Absorption/Stripping with O <sub>2</sub> / CO <sub>2</sub> mixture 4.4.1 Solvent behaviour accessed with the microGC 4.4.2 Sample analysis with the GC-MS                                                                                                                                                                                                                                                                                                                                                        | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129<br>134                                    |
| 4.1 Introduction 4.1 Introduction 4.2 Non-Systematically Degraded Sample 4.2.1 Cardiff University analysis 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 Non-systematically degraded Dionex IC analysis 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.3 Colorimetric analysis with HACH meter 4.3 Full Loading Experiments 4.4 14 Full Cycles of Absorption/Stripping with O <sub>2</sub> /CO <sub>2</sub> mixture 4.4.1 Solvent behaviour accessed with the microgC 4.4.2 Sample analysis with the IC                                                                                                                                                                                                                                                                                                                                           | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129                                           |
| 4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O <sub>2</sub> /CO <sub>2</sub> MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC 4.4.2 SAMPLE ANALYSIS WITH THE GC-MS 4.4.3 SAMPLE ANALYSIS WITH THE IC 4.4.4 SULPHATE, NITRITE AND NITRATE ANIONS HACH METER MEASUREMENT                                                                                                                                                                                                                          | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>121<br>122<br>123<br>126<br>129<br>134<br>134<br>135               |
| 4. RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.1.3 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O <sub>2</sub> /CO <sub>2</sub> MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC 4.4.2 SAMPLE ANALYSIS WITH THE IC 4.4.3 SAMPLE ANALYSIS WITH THE IC 4.4.4 SULPHATE, NITRITE AND NITRATE ANIONS HACH METER MEASUREMENT 4.5 CO <sub>2</sub> SOLUBILITY EXPERIMENT AT 100 °C                                                                                  | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129<br>134<br>135<br>137                      |
| 4. RESULTS-DISCUSSION  4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O2/CO2 MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC 4.4.2 SAMPLE ANALYSIS WITH THE IC 4.4.3 SAMPLE ANALYSIS WITH THE IC 4.4.4 SULPHATE, NITRITE AND NITRATE ANIONS HACH METER MEASUREMENT 4.5 CO2 SOLUBILITY EXPERIMENT AT 100 °C 4.6 THERMAL DEGRADATION EXPERIMENT - LEAN INITIAL MOLAR LOADING                                                                                                                       | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129<br>134<br>135<br>137<br>144               |
| 4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O <sub>2</sub> /CO <sub>2</sub> MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC 4.4.2 SAMPLE ANALYSIS WITH THE GC-MS 4.4.3 SAMPLE ANALYSIS WITH THE IC 4.4.4 SULPHATE, NITRITE AND NITRATE ANIONS HACH METER MEASUREMENT 4.5 CO <sub>2</sub> SOLUBILITY EXPERIMENT AT 100 °C 4.6 THERMAL DEGRADATION EXPERIMENT - LEAN INITIAL MOLAR LOADING 4.6.1 PRESSURE CHANGES - THERMAL DEGRADATION RIG                                                     | 115<br>117<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129<br>134<br>134<br>135<br>137<br>144               |
| 4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O <sub>2</sub> /CO <sub>2</sub> MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC 4.4.2 SAMPLE ANALYSIS WITH THE IC 4.4.3 SAMPLE ANALYSIS WITH THE IC 4.4.4 SULPHATE, NITRITE AND NITRATE ANIONS HACH METER MEASUREMENT 4.5 CO <sub>2</sub> SOLUBILITY EXPERIMENT AT 100 °C 4.6 THERMAL DEGRADATION EXPERIMENT - LEAN INITIAL MOLAR LOADING 4.6.1 PRESSURE CHANGES – THERMAL DEGRADATION RIG 4.6.2 THERMAL DEGRADATION OF MEA USING CO <sub>2</sub> | 115<br>117<br>118<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129<br>134<br>135<br>137<br>144<br>144<br>147 |
| 4.1 INTRODUCTION 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE 4.2.1 CARDIFF UNIVERSITY ANALYSIS 4.2.1.1 GC-MS 4.2.1.2 IC 4.2.2 NON-SYSTEMATICALLY DEGRADED DIONEX IC ANALYSIS 4.2.2.1 Anion IC analysis 4.2.2.2 Cation IC analysis 4.2.2.2 Cation IC analysis 4.2.3 COLORIMETRIC ANALYSIS WITH HACH METER 4.3 FULL LOADING EXPERIMENTS 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O <sub>2</sub> /CO <sub>2</sub> MIXTURE 4.4.1 SOLVENT BEHAVIOUR ACCESSED WITH THE MICROGC 4.4.2 SAMPLE ANALYSIS WITH THE GC-MS 4.4.3 SAMPLE ANALYSIS WITH THE IC 4.4.4 SULPHATE, NITRITE AND NITRATE ANIONS HACH METER MEASUREMENT 4.5 CO <sub>2</sub> SOLUBILITY EXPERIMENT AT 100 °C 4.6 THERMAL DEGRADATION EXPERIMENT - LEAN INITIAL MOLAR LOADING 4.6.1 PRESSURE CHANGES - THERMAL DEGRADATION RIG                                                     | 115<br>117<br>118<br>118<br>119<br>121<br>122<br>123<br>126<br>129<br>134<br>134<br>135<br>137<br>144               |

| 4.6.3.5 Summary solvent's CO <sub>2</sub> uptake capacity - Lean loading 15(4.6.4 CORROSION 15) 4.6.6.5 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 15(4.7.1 PRESSURE CHANGES — THERMAL DEGRADATION RIG 16(4.7.1 PRESSURE CHANGES — THERMAL DEGRADATION RIG 16(4.7.2 EFECT OF DEGRADATION ON MEA CO <sub>2</sub> UPTAKE CAPACITY 16(4.7.2.1 1st Stripping 16(4.7.2.2 Absorption — Inorganic Carbon Content 16(4.7.2.3 Stripping 17(4.7.2.3 Stripping 17(4.7.2.3 Stripping 17(4.7.2.3 Stripping 17(4.7.2.3 Stripping 17(4.7.3.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 17(4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 17(4.7.3 SUMMARY 184) 4.7.3 SUMMARY 184  5 CONCLUSIONS — FUTURE RECOMMENDATIONS 186  REFERENCES 191  APPENDIX 1.1: IC CALIBRATION CURVES 200  APPENDIX 1.2: IC METHOD DETECTION LIMITS 201  APPENDIX 1.3: GC CONDITIONS — OLD SET UP 202  APPENDIX 1.4: GC CONDITIONS — OLD SET UP 203  APPENDIX 1.5: GC-MS SAMPLE RUNS — NEW SET UP 204  APPENDIX 1.6: GC CONDITIONS — FINAL SET UP 205  APPENDIX 1.7: MS CONDITIONS — FINAL SET UP 205  APPENDIX 1.8: GC-MS CALIBRATION CURVES — PURE ANALYTE IN DIETHYL ETHER 205  APPENDIX 1.8: GC-MS CALIBRATION CURVES — PURE ANALYTE IN DIETHYL ETHER 205  APPENDIX 2.2: MICROGC DATA — FULL LOADING EXPERIMENT — ABSORPTION 27(4)  APPENDIX 2.3: MICROGC DATA — 14 FULL CYCLES EXPERIMENT — ABSORPTION 27(4)  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT — ABSORPTION 27(4)  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION — LEAN SAMPLES 201  APPENDIX 2.6: MICROGC RAW DATA — 15 TSTRIPPING LEAN SAMPLES 27(4)  APPENDIX 2.6: MICROGC RAW DATA — 15 TSTRIPPING LEAN SAMPLES 27(4)  APPENDIX 2.6: MICROGC RAW DATA — LEAK INVESTIGATION — LEAN SAMPLES 27(4)  APPENDIX 2.1: MICROGC RAW DATA — LEAK INVESTIGATION — LEAN SAMPLES 27(4)  APPENDIX 2.1: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 27(4)  APPENDIX 2.1: MICROGC RAW DATA — LEAK INVESTIGATION — LEAN SAMPLES 27(4)  APPENDIX 2.1: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 27(4)  APPENDIX 2.1: MICROGC RAW DATA — STRIPPING L           | 4.6.3.3 Absorption – Inorganic Carbon Measurement (TOC instrument)       | 154         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|
| 4.6.4 CORROSIÓN 4.6.5 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 155 4.6.5 THERMAL DEGRADATION EXPERIMENT – RICH INITIAL MOLAR LOADING 166 4.7.1 PRESSURE CHANGES – THERMAL DEGRADATION RIG 4.7.2 EFFECT OF DEGRADATION ON MEA CO2 UPTAKE CAPACITY 163 4.7.2.1 1st Stripping 167 4.7.2.1 1st Stripping 167 4.7.2.1 Absorption – Inorganic Carbon Content 168 4.7.2.2 Absorption – Inorganic Carbon Content 168 4.7.2.3 Stripping 170 4.7.2.4 Summary solvent's CO2 uptake capacity 171 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 172 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 173 4.7.4 SUMMARY 184 5 CONCLUSIONS – FUTURE RECOMMENDATIONS 184 6 CONCLUSIONS – FUTURE RECOMMENDATIONS 184 6 APPENDIX 1.1: IC CALIBRATION CURVES 201 6 APPENDIX 1.2: IC METHOD DETECTION LIMITS 201 6 APPENDIX 1.3: GC CONDITIONS – OLD SET UP 201 6 APPENDIX 1.4: MS METHOD – OLD SET UP 201 6 APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: MC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 201 6 APPENDIX 2.6: MICROGC DATA – ABSORPTION CURVES – PURE ANALYTE IN DIETHYL ETHER 201 6 APPENDIX 2.6: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 201 6 APPENDIX 2.6: MICROGC RAW DATA – 167 STRIPPING LEAN SAMPLES 201 6 APPENDIX 2.6: MICROGC RAW DATA – 167 STRIPPING LEAN SAMPLES 201                                          | 4.6.3.4 Stripping                                                        | 155         |
| 4.6.5 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 159 4.7.1 PRESSURE CHANGES – THERMAL DEGRADATION EXPERIMENT – RICH INITIAL MOLAR LOADING 160 4.7.2 EFFECT OF DEGRADATION ON MEA CO <sub>2</sub> UPTAKE CAPACITY 167 4.7.2.1 1st Stripping 166 4.7.2.2 Absorption – Inorganic Carbon Content 168 4.7.2.3 Stripping 170 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 171 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 173 4.8 LEAN-RICH SAMPLE COMPARISON 175 4.9 SUMMARY 185 5 CONCLUSIONS – FUTURE RECOMMENDATIONS 186 REFERENCES 191 APPENDIX 1: EXPERIMENTAL 200 APPENDIX 1: EXPERIMENTAL 200 APPENDIX 1.2: IC METHOD DETECTION LIMITS 201 APPENDIX 1.4: MS METHOD – OLD SET UP 200 APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP 201 APPENDIX 1.5: GC CONDITIONS – FINAL SET UP 201 APPENDIX 1.7: MS CONDITIONS – FINAL SET UP 203 APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER APPENDIX 1.9: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER APPENDIX 2.2: MICROGC DATA – FULL LOADING EXPERIMENT – ABSORPTION 27 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES 27 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES 27 APPENDIX 2.6: MICROGC RAW DATA – 1st STRIPPING LEAN SAMPLES 27 APPENDIX 2.7: MICROGC RAW DATA – 1st STRIPPING LEAN SAMPLES 27 APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION – LEAN SAMPLES 27 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES 27 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES 28 APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.1: MICROG           | 4.6.3.5 Summary solvent's CO <sub>2</sub> uptake capacity - Lean loading | 156         |
| 4.7.1 PRESSURE CHANGES—THERMAL DEGRADATION RIG 4.7.2 PRESSURE CHANGES—THERMAL DEGRADATION RIG 4.7.2 PRESTORE CHANGES—THERMAL DEGRADATION RIG 4.7.2 IPECT OF DEGRADATION ON MEA CO <sub>2</sub> UPTAKE CAPACITY 4.7.2 Is Stripping 4.7.2.1 Is Stripping 4.7.2.2 Absorption—Inorganic Carbon Content 4.7.2.3 Stripping 4.7.2.3 Stripping 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 4.7.2.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 4.7 SUMMARY 4.7 SUMMARY 4.7 SUMMARY 4.8 LEAN-RICH SAMPLE COMPARISON 4.9 SUMMARY 4.9 SUMMARY 4.9 SUMMARY 4.9 SUMMARY 4.9 SUMMARY 4.0 CONCLUSIONS—FUTURE RECOMMENDATIONS 4.0 PREPADIX 1.1: IC CALIBRATION CURVES 4.1 CONCLUSIONS—FUTURE RECOMMENDATIONS 4.2 PREPADIX 1.2: IC METHOD DETECTION LIMITS 4.3 PREPADIX 1.3: GC CONDITIONS—OLD SET UP 4.4 SUMMARY 4.4 SUMMARY 4.5 CONDITIONS—OLD SET UP 4.6 PREPADIX 1.4: MS METHOD—OLD SET UP 4.7 PREPADIX 1.5: GC—MS SAMPLE RUNS—NEW SET UP 4.7 PREPADIX 1.6: GC CONDITIONS—FINAL SET UP 4.7 PREPADIX 1.7: MS CONDITIONS—FINAL SET UP 4.7 PREPADIX 1.8: GC—MS CALIBRATION CURVES—PURE ANALYTE IN DIETHYL ETHER 4.7 PREPADIX 2.8: MICROGC DATA—14 FULL LOADING EXPERIMENT—ABSORPTION 4.7 PREPADIX 2.1: MICROGC DATA—14 FULL CYCLES EXPERIMENT—ABSORPTION 4.7 PRESTORE CHANGES DURING THERMAL DEGRADATION—LEAN 5. SAMPLES 4.7 PRESTORE CHANGES DURING THERMAL DEGRADATION—LEAN 5. SAMPLES 4.7 PRESTORE CHANGES DURING THERMAL DEGRADATION—LEAN 5. SAMPLES 4.7 PRESTORE CHANGES THERMAL DEGRADATION—LEAN 5. SAMPLES 5. PRESSURE CHANGE                     | 4.6.4 CORROSION                                                          | 157         |
| 4.7.1 PRESSURE CHANGES — THERMAL DEGRADATION RIG 4.7.2 EFFECT OF DEGRADATION ON MEA CO <sub>2</sub> UPTAKE CAPACITY 4.7.2.1 1st Stripping 4.7.2.1 1st Stripping 4.7.2.2 Absorption — Inorganic Carbon Content 4.7.2.3 Stripping 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 17. 4.8 LEAN-RICH SAMPLE COMPARISON 4.9 SUMMARY 18 5 CONCLUSIONS — FUTURE RECOMMENDATIONS 18 6 CONCLUSIONS — FUTURE RECOMMENDATIONS 18 7 APPENDIX 1: EXPERIMENTAL 20 7 APPENDIX 1: IC CALIBRATION CURVES 20 8 APPENDIX 1.2: IC METHOD DETECTION LIMITS 20 8 APPENDIX 1.3: GC CONDITIONS — OLD SET UP 20 8 APPENDIX 1.4: MS METHOD — OLD SET UP 20 8 APPENDIX 1.5: GC-MS SAMPLE RUNS — NEW SET UP 21 22 APPENDIX 1.6: GC CONDITIONS — FINAL SET UP 23 APPENDIX 1.7: MS CONDITIONS — FINAL SET UP 24 APPENDIX 1.8: GC-MS CALIBRATION CURVES — PURE ANALYTE IN DIETHYL ETHER 26 APPENDIX 1.9: GC-MS CALIBRATION CURVES — PURE ANALYTE IN DIETHYL ETHER 27 8 APPENDIX 2.1: MICROGC DATA — 1st Full CYCLES EXPERIMENT — ABSORPTION 27 8 APPENDIX 2.3: MICROGC DATA — 1st Full CYCLES EXPERIMENT — ABSORPTION 27 8 APPENDIX 2.3: MICROGC DATA — 1st Full CYCLES EXPERIMENT — ABSORPTION 27 8 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT 28 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION — LEAN 8 SAMPLES 3 APPENDIX 2.7: MICROGC RAW DATA — 1st Stripping LEAN SAMPLES 3 APPENDIX 2.8: MICROGC RAW DATA — ABSORPTION LEAN SAMPLES 3 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT — ABSORPTION — LEAN 8 SAMPLES 4 APPENDIX 2.10: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 4 APPENDIX 2.10: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 4 APPENDIX 2.10: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 4 APPENDIX 2.10: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 5 APPENDIX 2.10: MICROGC RAW DATA — STRIPPING LEAN SAMPLES 5 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT — 8 ROPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT — 8 ROPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPE | 4.6.5 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION     | 159         |
| 4.7.2. EFFECT OF DEGRADATION ON MEA CO2 UPTAKE CAPACITY 4.7.2.1. 1stripping 4.7.2.2. Absorption – Inorganic Carbon Content 4.7.2.3. Stripping 4.7.2.4. Summary solvent's CO2 uptake capacity 4.7.3. THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 17. 4.8. LEAN-RICH SAMPLE COMPARISON 4.9. SUMMARY 4.9. SUMARY 4.9. SUMMARY 4.9. SUMMARY 4.9. SUMMARY 4.9. SUMMARY 4.9. SUMA                                         | 4.7 THERMAL DEGRADATION EXPERIMENT – RICH INITIAL MOLAR LOADING          | 166         |
| 4.7.2.1 Is Stripping 4.7.2.2 Absorption – Inorganic Carbon Content 4.7.2.3 Stripping 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 4.7.4 SUMMARY  18-  5 CONCLUSIONS – FUTURE RECOMMENDATIONS  186  REFERENCES  191  APPENDIX 1: EXPERIMENTAL  206  APPENDIX 1.2: IC CALIBRATION CURVES  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 1.9: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 2.1: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – 18T STRIPPING LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.1: MICROGC RAW DATA – BASORPTION LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1                     | 4.7.1 Pressure changes – Thermal degradation rig                         | 166         |
| 4.7.2.1 Is Stripping 4.7.2.2 Absorption – Inorganic Carbon Content 4.7.2.3 Stripping 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 4.7.4 SUMMARY  18-  5 CONCLUSIONS – FUTURE RECOMMENDATIONS  186  REFERENCES  191  APPENDIX 1: EXPERIMENTAL  206  APPENDIX 1.2: IC CALIBRATION CURVES  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 1.9: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 2.1: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – 18T STRIPPING LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.1: MICROGC RAW DATA – BASORPTION LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1                     | 4.7.2 EFFECT OF DEGRADATION ON MEA CO <sub>2</sub> UPTAKE CAPACITY       | 167         |
| 4.7.2.2 Absorption – Inorganic Carbon Content 4.7.2.3 Stripping 174 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 175 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 177 4.8 LEAN-RICH SAMPLE COMPARISON 176 4.9 SUMMARY 186 5 CONCLUSIONS – FUTURE RECOMMENDATIONS 187  EFFERENCES 191  APPENDIX 1: EXPERIMENTAL 200  APPENDIX 1: IC CALIBRATION CURVES APPENDIX 1.2: IC METHOD DETECTION LIMITS 201  APPENDIX 1.3: GC CONDITIONS – OLD SET UP 202  APPENDIX 1.4: MS METHOD – OLD SET UP 203  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 204  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP 205  APPENDIX 1.8: GC-MS SAMPLE RUNS – NEW SET UP 216  APPENDIX 1.9: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER 266  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA 267  APPENDIX 2.1: MICROGC DATA – TULL LOADING EXPERIMENT 268  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 278  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 279  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT 270  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN 280  APPENDIX 2.7: MICROGC RAW DATA – 18T STRIPPING LEAN SAMPLES 281  APPENDIX 2.8: MICROGC RAW DATA – 18T STRIPPING LEAN SAMPLES 282  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN 283  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION 284  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION 285  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION 286  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION 287  APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION 288  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 286  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 287  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 288  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 289  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 280  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 280  APPENDIX 2                     |                                                                          | 167         |
| 4.7.2.3 Stripping 176 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 171 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 172 4.8 LEAN-RICH SAMPLE COMPARISON 175 4.9 SUMMARY 184 5 CONCLUSIONS – FUTURE RECOMMENDATIONS 186  REFERENCES 191  APPENDIX 1.: IC CALIBRATION CURVES 206 APPENDIX 1.2: IC METHIOD DETECTION LIMITS 201 APPENDIX 1.3: GC CONDITIONS – OLD SET UP 202 APPENDIX 1.4: MS METHOD – OLD SET UP 204 APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP 214 APPENDIX 1.5: GC CONDITIONS – FINAL SET UP 214 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 214 APPENDIX 1.7: MS CONDITIONS – FINAL SET UP 225 APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA 266 APPENDIX 2.1: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277 APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277 APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT – ABSORPTION 277 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES 276 APPENDIX 2.6: MICROGC RAW DATA – 187 STRIPPING LEAN SAMPLES 276 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 276 APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION – LEAN SAMPLES 276 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES 287 APPENDIX 2.10: MICROGC RAW DATA – LEAK INVESTIGATION – LEAN SAMPLES 287 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 288 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 288 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 288 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 292                                                                                                                                                                                                                                                                 | *** •                                                                    | 169         |
| 4.7.2.4 Summary solvent's CO <sub>2</sub> uptake capacity 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 17.4.8 LEAN-RICH SAMPLE COMPARISON 17.4.9 SUMMARY 18.  5 CONCLUSIONS – FUTURE RECOMMENDATIONS 18.  6 CONCLUSIONS – FUTURE RECOMMENDATIONS 18.  7 CONCLUSIONS – FUTURE RECOMMENDATIONS 18.  8 CONCLUSIONS – FUTURE RECOMMENDATIONS 18.  8 CONCLUSIONS – FUTURE RECOMMENDATIONS 18.  8 APPENDIX 1: EXPERIMENTAL 20.  8 APPENDIX 1: IC CALIBRATION CURVES 20.  9 APPENDIX 1.2: IC METHOD DETECTION LIMITS 20.  9 APPENDIX 1.3: GC CONDITIONS – OLD SET UP 20.  9 APPENDIX 1.4: MIS METHOD – OLD SET UP 20.  9 APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP 20.  9 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 20.  9 APPENDIX 1.7: MS CONDITIONS – FINAL SET UP 20.  9 APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER 20.  9 APPENDIX 2.9: GC-MS CALIBRATION CURVES – MEA AND HEIA 20.  9 APPENDIX 2.1: MICROGC DATA – 14 FULL LOADING EXPERIMENT 20.  9 APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27  9 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27  9 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT 20 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  9 APPENDIX 2.6: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 21 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 22 APPENDIX 2.7: MICROGC RAW DATA – BESORPTION LEAN SAMPLES 23 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  9 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  9 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 28 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 29 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 29 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 29 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 29 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 29 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 29 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT 20 APPENDIX 2.11: P                     |                                                                          | 170         |
| 4.7.3 THERMAL DEGRADATION PRODUCTS IDENTIFICATION AND QUANTIFICATION 172 4.8 LEAN-RICH SAMPLE COMPARISON 173 4.9 SUMMARY 184 5 CONCLUSIONS – FUTURE RECOMMENDATIONS 186 REFERENCES 191  APPENDIX 1: EXPERIMENTAL 206  APPENDIX 1: EXPERIMENTAL 206  APPENDIX 1.2: IC METHOD DETECTION LIMITS 201 APPENDIX 1.3: GC CONDITIONS – OLD SET UP 206 APPENDIX 1.4: M5 METHOD – OLD SET UP 206 APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP 210 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 223 APPENDIX 1.7: MS CONDITIONS – FINAL SET UP 224 APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER 266 APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA 266 APPENDIX 2.1: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 275 APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 275 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 275 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT 274 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN 274 APPENDIX 2.6: MICROGC RAW DATA – 18T STRIPPING LEAN SAMPLES 275 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 275 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 275 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN 284 APPENDIX 2.10: MICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION – LEAN 284 APPENDIX 2.10: MICROGC RAW DATA – LEAK INVESTIGATION – LEAN 284 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 284 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 284 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 284 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 284 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 284 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 292                                                                                                                                                                                                                                                                                                                    |                                                                          | 171         |
| 4.8 LEAN-RICH SAMPLE COMPARISON 4.9 SUMMARY 184 5 CONCLUSIONS – FUTURE RECOMMENDATIONS 186 REFERENCES 191 APPENDIX 1: EXPERIMENTAL 206 APPENDIX 1: EXPERIMENTAL 207 APPENDIX 1.2: IC CALIBRATION CURVES APPENDIX 1.3: GC CONDITIONS – OLD SET UP 208 APPENDIX 1.4: MS METHOD — OLD SET UP 209 APPENDIX 1.4: MS METHOD — OLD SET UP 200 APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP 210 APPENDIX 1.6: GC CONDITIONS – FINAL SET UP 232 APPENDIX 1.7: MS CONDITIONS – FINAL SET UP 240 APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER APPENDIX 1.9: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER APPENDIX 2.1: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 275 APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING 276 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING 277 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES 276 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES APPENDIX 2.7: MICROGC RAW DATA – BESORPTION LEAN SAMPLES APPENDIX 2.8: MICROGC RAW DATA – BESORPTION LEAN SAMPLES APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES 286 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 287 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 288 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 289 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 280 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 281 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 284 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 285 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 286 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 287 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 286 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT 287 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 289 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT 292                                                                         |                                                                          |             |
| 4.9 SUMMARY  5 CONCLUSIONS – FUTURE RECOMMENDATIONS  180  REFERENCES  191  APPENDIX 1: EXPERIMENTAL  200  APPENDIX 1: EXPERIMENTAL  200  APPENDIX 1.2: IC CALIBRATION CURVES  APPENDIX 1.3: IC CALIBRATION CURVES  APPENDIX 1.4: MS METHOD DETECTION LIMITS  APPENDIX 1.5: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  210  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  260  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 275  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 18 <sup>T</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  280  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  281  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  282  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  284  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·                                                                      | 179         |
| 5   CONCLUSIONS - FUTURE RECOMMENDATIONS   180   REFERENCES   191   APPENDIX 1: EXPERIMENTAL   200   APPENDIX 1: EXPERIMENTAL   200   APPENDIX 1.2: IC METHOD DETECTION LIMITS   201   APPENDIX 1.3: GC CONDITIONS - OLD SET UP   200   APPENDIX 1.4: MS METHOD - OLD SET UP   200   APPENDIX 1.5: GC-MS SAMPLE RUNS - NEW SET UP   210   APPENDIX 1.6: GC CONDITIONS - FINAL SET UP   230   APPENDIX 1.7: MS CONDITIONS - FINAL SET UP   260   APPENDIX 1.8: GC-MS CALIBRATION CURVES - PURE ANALYTE IN DIETHYL ETHER   267   APPENDIX 1.9: GC-MS CALIBRATION CURVES - MEA AND HEIA   268   APPENDIX 2.1: MICROGC DATA - FULL LOADING EXPERIMENT   269   APPENDIX 2.2: MICROGC DATA - 14 FULL CYCLES EXPERIMENT - ABSORPTION 277   APPENDIX 2.3: MICROGC DATA - 14 FULL CYCLES EXPERIMENT - STRIPPING   275   APPENDIX 2.4: RAW DATA CO2 SOLUBILITY EXPERIMENT   276   APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION - LEAN SAMPLES   276   APPENDIX 2.6: MICROGC RAW DATA - 18 <sup>TS</sup> STRIPPING LEAN SAMPLES   277   APPENDIX 2.7: MICROGC RAW DATA - LEAK INVESTIGATION ABSORPTION/STRIPPING RIG   286   APPENDIX 2.9: INORGANIC CARBON MEASUREMENT - ABSORPTION - LEAN SAMPLES   287   APPENDIX 2.10: MICROGC RAW DATA - STRIPPING LEAN SAMPLES   288   APPENDIX 2.10: MICROGC RAW DATA - STRIPPING LEAN SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH SAMPLES   289   APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT - RICH                                  |                                                                          |             |
| APPENDIX 1: EXPERIMENTAL  APPENDIX 1: EXPERIMENTAL  APPENDIX 1.1: IC CALIBRATION CURVES APPENDIX 1.2: IC METHOD DETECTION LIMITS APPENDIX 1.3: GC CONDITIONS – OLD SET UP APPENDIX 1.4: MS METHOD – OLD SET UP APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP APPENDIX 1.6: GC CONDITIONS – FINAL SET UP APPENDIX 1.7: MS CONDITIONS – FINAL SET UP APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: MICROGC DATA – FULL LOADING EXPERIMENT APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 273 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES APPENDIX 2.6: MICROGC RAW DATA – 18 <sup>T</sup> STRIPPING LEAN SAMPLES APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES APPENDIX 2.1: MICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.1: NICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.1: NICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.1: NICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.1: NICROGC RAW DATA – STRIPPING LEAN SAMPLES APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  282 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 SOMMAN                                                                | 10.         |
| APPENDIX 1: EXPERIMENTAL  APPENDIX 1.1: IC CALIBRATION CURVES  APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  26' APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27' APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1ST STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 CONCLUSIONS – FUTURE RECOMMENDATIONS                                   | 186         |
| APPENDIX 1: EXPERIMENTAL  APPENDIX 1.1: IC CALIBRATION CURVES  APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  26' APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27' APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1ST STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |             |
| APPENDIX 1.1: IC CALIBRATION CURVES  APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 272  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING 273  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REFERENCES                                                               | 191         |
| APPENDIX 1.1: IC CALIBRATION CURVES  APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 272  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING 273  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.1: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |             |
| APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  267  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  269  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1st STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APPENDIX 1: EXPERIMENTAL                                                 | 200         |
| APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  267  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  269  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1st STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |             |
| APPENDIX 1.2: IC METHOD DETECTION LIMITS  APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  267  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  269  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 277  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1st STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | APPENDIX 1.1: IC CALIBRATION CURVES                                      | 200         |
| APPENDIX 1.3: GC CONDITIONS – OLD SET UP  APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 273  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – 18T STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          | 201         |
| APPENDIX 1.4: MS METHOD – OLD SET UP  APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  26: APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27: APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | 203         |
| APPENDIX 1.5: GC-MS SAMPLE RUNS – NEW SET UP  APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 273  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          | 206         |
| APPENDIX 1.6: GC CONDITIONS – FINAL SET UP  APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  26: APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  26: APPENDIX 2: RESULTS-DISCUSSION  26: APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  232  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |             |
| APPENDIX 1.7: MS CONDITIONS – FINAL SET UP  APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  26: APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  26: APPENDIX 2: RESULTS-DISCUSSION  26: APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 27: APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1st Stripping Lean Samples  APPENDIX 2.7: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  ABSORPTION/STRIPPING RIG  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  26: APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |             |
| APPENDIX 1.8: GC-MS CALIBRATION CURVES – PURE ANALYTE IN DIETHYL ETHER  267 APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  268  APPENDIX 2: RESULTS-DISCUSSION  269  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 277 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |             |
| APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 273  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1st Stripping Lean Samples  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  265  267  277  278  279  279  270  270  270  270  270  270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |             |
| APPENDIX 1.9: GC-MS CALIBRATION CURVES – MEA AND HEIA  APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – ABSORPTION 272  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT – STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AFFENDIA 1.0. GC-MS CALIBRATION CURVES - I UNE ANALITE IN DIETHTLE II    |             |
| APPENDIX 2: RESULTS-DISCUSSION  APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 272  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ADDENDIV 1 0. CC MS CALIDDATION CUDVES MEA AND HELA                      |             |
| APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 272  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APPENDIX 1.7: GC-MS CALIBRATION CURVES – MEA AND HETA                    | 200         |
| APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT  APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 272  APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING  APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A PREMIUM A PROMIUMO DIGONOGRAM                                          | 2.00        |
| APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 272 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING 273 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT 274 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES 276 APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES 278 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 281 APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION 285 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES 286 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 286 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPENDIX 2: RESULTS-DISCUSSION                                           | <u> 269</u> |
| APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION 272 APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING 273 APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT 274 APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES 276 APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES 278 APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES 281 APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION 285 APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES 286 APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES 286 APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |             |
| APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  273 274 275 276 277 277 277 277 277 277 277 277 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APPENDIX 2.1: MICROGC DATA – FULL LOADING EXPERIMENT                     | 269         |
| APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT  APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN  SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  274  285  286  287  287  287  288  289  289  289  289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | APPENDIX 2.2: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - ABSORPTION      | 272         |
| APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  276  287  288  289  289  289  289  289  289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APPENDIX 2.3: MICROGC DATA – 14 FULL CYCLES EXPERIMENT - STRIPPING       | 273         |
| SAMPLES  APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES  APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES  APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  276  287  288  289  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APPENDIX 2.4: RAW DATA CO <sub>2</sub> SOLUBILITY EXPERIMENT             | 274         |
| APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>ST</sup> STRIPPING LEAN SAMPLES APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 278 289 280 280 280 280 280 280 280 280 280 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APPENDIX 2.5: PRESSURE CHANGES DURING THERMAL DEGRADATION – LEAN         |             |
| APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION ABSORPTION/STRIPPING RIG APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 281 282 283 284 285 286 286 286 287 286 287 286 287 287 288 289 289 280 280 280 280 280 280 280 280 280 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLES                                                                  | 276         |
| APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION  ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN  SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  285  297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APPENDIX 2.6: MICROGC RAW DATA – 1 <sup>st</sup> Stripping Lean Samples  | 278         |
| ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  285 286 286 287 287 287 288 289 289 289 289 289 289 289 289 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APPENDIX 2.7: MICROGC RAW DATA – ABSORPTION LEAN SAMPLES                 | <b>281</b>  |
| ABSORPTION/STRIPPING RIG  APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN SAMPLES  APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES  285 286 286 287 287 287 288 289 289 289 289 289 289 289 289 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | APPENDIX 2.8: MICROGC RAW DATA – LEAK INVESTIGATION                      |             |
| SAMPLES APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 286 287 288 289 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ABSORPTION/STRIPPING RIG                                                 | 285         |
| SAMPLES APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 286 287 288 289 291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APPENDIX 2.9: INORGANIC CARBON MEASUREMENT – ABSORPTION – LEAN           |             |
| APPENDIX 2.10: MICROGC RAW DATA – STRIPPING LEAN SAMPLES  APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT –  RICH SAMPLES  289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          | 286         |
| APPENDIX 2.11: PRESSURE CHANGES THERMAL DEGRADATION EXPERIMENT – RICH SAMPLES 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | 289         |
| RICH SAMPLES 292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          | 292         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          | 357         |

| APPENDIX 2.13: INORGANIC CARBON MEASUREMENT – ABSORPTION – RICH |     |
|-----------------------------------------------------------------|-----|
| SAMPLES                                                         | 360 |
| APPENDIX 2.14: MICROGC RAW DATA – STRIPPING – RICH SAMPLES      | 363 |

# LIST OF FIGURES

| Figure 2.1   | Amine scrubbing plant schematic (Davidson 2007)                                                       | 9             |
|--------------|-------------------------------------------------------------------------------------------------------|---------------|
| Figure 2.2   | Primary amine                                                                                         | 12            |
| Figure 2.3   | Secondary amine                                                                                       | 12            |
| Figure 2.4   | Tertiary amine                                                                                        | 13            |
| Figure 2.5   | Process chemistry of CO <sub>2</sub> absorption by primary or secondary amines (Hook,                 | , 1997)<br>18 |
| Figure 2.6   | MEA thermal degradation pathway in the presence of CO <sub>2</sub> as proposed by                     |               |
| Polderman (  | 1955)                                                                                                 | 34            |
| Figure 2.7   | MEA thermal degradation pathway in the presence of CO <sub>2</sub> as proposed by                     |               |
| Yazvikova (  |                                                                                                       | 35            |
| Figure 2.8   | MEA thermal degradation pathway in the presence of CO <sub>2</sub> as proposed by Da                  |               |
| (2009)       |                                                                                                       | 36            |
| Figure 3.1   | Low flow gas apparatus at Austin                                                                      | 54            |
| Figure 3.2   | High gas flow apparatus in Austin                                                                     | 55            |
| Figure 3.3   | Wetted wall column for kinetic and volatility studies at Austin                                       | 56            |
| Figure 3.4   | Experimental apparatus for absorption and desorption studies at Austin                                | 56            |
| Figure 3.5   | Schematic of the Cardiff Absorption/Stripping Rig                                                     | 57            |
| Figure 3.6   | Photograph of the Cardiff Absorption/Stripping Rig in a Fume Cupboard                                 | 58            |
| Figure 3.7   | Experimental data for CO <sub>2</sub> partial pressure versus CO <sub>2</sub> molar loading presented |               |
|              | 95) for 100, 120 and 150 °C.                                                                          | 64            |
| Figure 3.8   | Experimental data for CO <sub>2</sub> partial pressure versus CO <sub>2</sub> molar loading presente  |               |
|              | 95) for 100, 120 and 150 °C and extrapolated data for 160 °C.                                         | 69            |
| Figure 3.9   | Two of the pressure vessels used for MEA degradation                                                  | 71            |
| Figure 3.10  | Acetic acid of concentration 1040 mg/L (a) in water and (b) 0.5 molal aqueo                           |               |
| MEA solution |                                                                                                       | 81            |
| Figure 3.11  | Formic acid of concentration 1220 mg/L (a) in water and (b) 0.5 molal aque                            |               |
| MEA solution |                                                                                                       | 82            |
| Figure 3.12  | Oxalic acid of concentration 1653 mg/L (a) in water and (b) 0.5 molal aqueo                           |               |
| MEA solution |                                                                                                       | 83            |
| Figure 3.13  | Potassium nitrite of concentration 999.9 mg/L (a) in water and (b) 0.5 molal                          |               |
| aqueous ME   |                                                                                                       | 84            |
| Figure 3.14  | Sodium nitrate of concentration 1996 mg/L (a) in water and (b) 0.5 molal aq                           | •             |
| MEA solution |                                                                                                       | 85            |
| Figure 3.15  | Aqueous MEA sample (a) not filtered and (b) filtered                                                  | 87            |
| Figure 3.16  | 7 anions standard solution run provided by the IC system's manufacturer                               | 87            |
| Figure 3.17  | 7 anions standard solution run in the Cardiff University IC system                                    | 89            |
| Figure 3.18  | Calibration curve for acetic ion produced by the IC system                                            | 91            |
| Figure 3.19  | Calibration curve for formic ion produced by the IC system                                            | 92            |
| Figure 3.20  | Calibration curve for oxalic ion produced by the IC system                                            | 92            |
| Figure 3.21  | Calibration curve for nitrate ion produced by the IC system                                           | 93            |
| Figure 3.22  | Calibration curve for nitrate ion produced by the IC system                                           | 93            |
| Figure 3.23  | GC-MS response for MEA in DCM                                                                         | 99            |
| Figure 3.24  | Chromatograph for MEA after using a solid phase extraction method                                     | 100           |
| Figure 3.25  | Mass Spectrum of MEA                                                                                  | 100           |
| Figure 3.26  | GC-MS response of 100 mg/L HEIA in 5 molal aqueous MEA solution                                       | 103           |
| Figure 3.27  | GC-MS Chromatograph of 100 mg/L HEEDA in 5 molal aqueous MEA solu                                     | 104           |
| Figure 3.28  | GC-MS Chromatograph of 100 mg/L 2-Oxazolidone in 5 molal aqueous ME                                   |               |
| solution     |                                                                                                       | 105           |
| Figure 3.29  | GC-MS responses for (a) MEA in ether (b) HEEDA in ether (c) 2-Oxazolido                               |               |
|              | HEIA in ether                                                                                         | 107           |
| Figure 3.30  | GC-MS responses for different concentrations of HEEDA in Diethyl Ether                                | 109           |
| Figure 3.31  | GC-MS responses for different concentrations of 2-Oxazolidone in Diethyl                              |               |
|              |                                                                                                       | 110           |

| Figure 3.32    | GC-MS responses for different concentrations of MEA extracted in Diethyl Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | her<br>111 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 3.33    | GC-MS responses for different concentrations of HEIA extracted in Diethyl Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Figure 4.1     | 5 molal aqueous MEA sample degraded in a non-systematic way (a) x10 dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| and (b) x100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120        |
| Figure 4.2     | Anionic analytes in the degraded sample analyzed by Dionex Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121        |
| Figure 4.3     | Cationic analytes of the degraded sample analyzed by Dionex Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123        |
| Figure 4.4     | CO <sub>2</sub> concentration with time in the laboratory absorption/stripping rig during th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| full loading e | , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128        |
| Figure 4.5     | CO <sub>2</sub> concentration during absorption with time in the laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|                | ripping rig for each of the 14 absorption-stripping cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132        |
| Figure 4.6     | CO <sub>2</sub> concentration during stripping with time in the laboratory absorption/stripp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| -              | 14 absorption-stripping cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133        |
| Figure 4.7     | IC chromatograph of the degraded MEA sample after 14 cycles of absorption-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| stripping      | The second secon | 135        |
| Figure 4.8     | Time to equilibrium during the CO <sub>2</sub> solubility experiments at 100°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138        |
| Figure 4.9     | Measured total pressure versus initial CO <sub>2</sub> molar loading of the MEA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 139        |
| Figure 4.10    | CO <sub>2</sub> partial pressure versus CO <sub>2</sub> loading for 30 % w/v aqueous MEA solution s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| 100 °C         | Z r · · · · r · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 141        |
| Figure 4.11    | Total pressure change versus time during the thermal degradation experiment a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 160 °C         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145        |
| Figure 4.12    | Schematic of the pathway of formation of MEA carbamate polymerization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| _              | (Davis, 2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 148        |
| Figure 4.13    | Cumulative CO <sub>2</sub> volume released during the 1 <sup>st</sup> stripping – "lean" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150        |
| Figure 4.14    | Volume of CO <sub>2</sub> absorbed by the degraded samples compared with a pure fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| -              | e of the same concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152        |
| Figure 4.15    | Cumulative volume of CO <sub>2</sub> absorbed – "lean" samples after thermal degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| C              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154        |
| Figure 4.16    | Cumulative CO <sub>2</sub> volume released - "lean" samples test compared with a pure f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | resh       |
| MEA sample     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156        |
| Figure 4.17    | GC-MS response for the 2 weeks degraded sample – "lean" loading test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 161        |
| Figure 4.18    | GC-MS response for the 3 weeks degraded sample – "lean" loading test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 162        |
| Figure 4.19    | GC-MS response for the 8 weeks degraded sample – "lean" loading test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 163        |
| Figure 4.20    | Total headspace pressure measured in two pressure vessels – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 166        |
| Figure 4.21    | Cumulative CO <sub>2</sub> volume released during the 1 <sup>st</sup> stripping – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 168        |
| Figure 4.22    | Cumulative volume of CO <sub>2</sub> absorbed – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 169        |
| Figure 4.23    | Cumulative volume of CO <sub>2</sub> released – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170        |
| Figure 4.24    | GC-MS response for the 2 weeks degraded sample – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173        |
| Figure 4.25    | GC-MS response for the 3 weeks degraded sample – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 174        |
| Figure 4.26    | GC-MS response for the 8 weeks degraded sample – "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175        |
| Figure 4.27    | Characteristic kinetic plot (a) "lean" sample – zero order reaction, (b) "rich"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| sample – zer   | o order, (c) "lean" sample – 1 <sup>st</sup> order, (d) "rich" sample 1 <sup>st</sup> order, (e) "lean" samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le –       |
|                | (f) "rich" sample - 2 <sup>nd</sup> order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 181        |
| Figure 4.28    | HEIA concentration versus time- Comparison between the "lean" and "rich"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| samples        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 182        |
| Figure 4.29    | MEA concentration during the thermal degradation experiment – Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| between the    | "lean" and "rich" samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 183        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

# LIST OF TABLES

| Table 2.1                                                                                      | Sample of available research literature on kinetics and thermodynamics for different                    | nt |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
| amine solvents                                                                                 |                                                                                                         |    |  |  |  |  |  |  |  |
| Table 2.2 Sample of available research literature on kinetics and thermodynamics for different |                                                                                                         |    |  |  |  |  |  |  |  |
| blends of so                                                                                   |                                                                                                         | 16 |  |  |  |  |  |  |  |
| Table 2.3                                                                                      | CO <sub>2</sub> partial pressures reported in the literature for 30% w/v aqueous MEA at                 |    |  |  |  |  |  |  |  |
| loadings up                                                                                    | to 1 mole CO <sub>2</sub> /mole MEA (Ma'mum et al. 2005)                                                | 22 |  |  |  |  |  |  |  |
| Table 2.4                                                                                      | Effects of O <sub>2</sub> on the MEA as reported in the literature                                      | 26 |  |  |  |  |  |  |  |
| Table 2.5                                                                                      | Detected MEA degradation products in the samples produced by the Esbjerg pilot                          |    |  |  |  |  |  |  |  |
| plant (Lepai                                                                                   | umier et al. 2011)                                                                                      | 28 |  |  |  |  |  |  |  |
| Table 2.6                                                                                      | Most commonly reported MEA oxidative degradation products.                                              | 29 |  |  |  |  |  |  |  |
| Table 2.7                                                                                      | Detected organic compounds from MEA reclaimer bottoms                                                   | 40 |  |  |  |  |  |  |  |
| Table 2.8                                                                                      | MEA degradation products found in reclaimer bottoms samples of a pilot plant                            |    |  |  |  |  |  |  |  |
| (Strazisar et                                                                                  |                                                                                                         | 41 |  |  |  |  |  |  |  |
| Table 2.9                                                                                      | Summary of the degradation products detected in samples that degraded at 350 kPa                        | a  |  |  |  |  |  |  |  |
| O <sub>2</sub> at 120°C                                                                        | for 135h (Bello and Idem, 2005)                                                                         | 43 |  |  |  |  |  |  |  |
| Table 2.10                                                                                     | Summary of the compounds found in the degraded samples in the                                           |    |  |  |  |  |  |  |  |
| MEA/H <sub>2</sub> O/0                                                                         | $O_2/CO_2$ system (Supap et al. 2006)                                                                   | 44 |  |  |  |  |  |  |  |
| Table 3.1                                                                                      | Chemicals and associated materials used and their sources                                               | 50 |  |  |  |  |  |  |  |
| Table 3.2                                                                                      | Calculated CO <sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial            |    |  |  |  |  |  |  |  |
| molar loadii                                                                                   | ng 0.25 and comparison with literature values.                                                          | 64 |  |  |  |  |  |  |  |
| Table 3.3                                                                                      | Calculated CO <sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial            |    |  |  |  |  |  |  |  |
| molar loadii                                                                                   | ng 0.30 and comparison with literature values.                                                          | 65 |  |  |  |  |  |  |  |
| Table 3.4                                                                                      | Calculated CO <sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial            |    |  |  |  |  |  |  |  |
| molar loadii                                                                                   | ng 0.40 and comparison with literature values.                                                          | 66 |  |  |  |  |  |  |  |
| Table 3.5                                                                                      | Calculated CO <sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial            |    |  |  |  |  |  |  |  |
| molar loadii                                                                                   | ng 0.50 and comparison with literature values.                                                          | 66 |  |  |  |  |  |  |  |
| Table 3.6                                                                                      | Calculated CO <sub>2</sub> partial pressures for a 30% w/v aqueous MEA solution with initial            |    |  |  |  |  |  |  |  |
| molar loadii                                                                                   | ng 0.25 and comparison with literature values.                                                          | 70 |  |  |  |  |  |  |  |
| Table 3.7                                                                                      |                                                                                                         | 88 |  |  |  |  |  |  |  |
| Table 3.8                                                                                      |                                                                                                         | 90 |  |  |  |  |  |  |  |
| Table 3.9                                                                                      | Instrument Detection limit for each of the analytes in the IC system                                    | 94 |  |  |  |  |  |  |  |
| Table 3.10                                                                                     |                                                                                                         | 94 |  |  |  |  |  |  |  |
| Table 3.11                                                                                     | Method detection limits for anions in the IC                                                            | 95 |  |  |  |  |  |  |  |
| Table 3.12                                                                                     | Retention time of each analyte in the GC-MS                                                             | 08 |  |  |  |  |  |  |  |
| Table 3.13                                                                                     |                                                                                                         | 12 |  |  |  |  |  |  |  |
| Table 4.1                                                                                      | Concentrations of the anionic analytes in the degraded sample as determined by                          |    |  |  |  |  |  |  |  |
| Dionex Ltd                                                                                     |                                                                                                         | 22 |  |  |  |  |  |  |  |
| Table 4.2                                                                                      | Anion quantification in the randomly degraded sample with $O_2$ , comparison of the                     |    |  |  |  |  |  |  |  |
| Dionex Ltd                                                                                     |                                                                                                         | 24 |  |  |  |  |  |  |  |
| Table 4.3                                                                                      | Anion quantification in the degraded MEA sample with the IC system and the                              |    |  |  |  |  |  |  |  |
| HACH mete                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                   | 36 |  |  |  |  |  |  |  |
| Table 4.4                                                                                      |                                                                                                         | 37 |  |  |  |  |  |  |  |
| Table 4.5                                                                                      |                                                                                                         | 38 |  |  |  |  |  |  |  |
| Table 4.6                                                                                      | Calculated mole fractions for MEA and H <sub>2</sub> O for each sample of the CO <sub>2</sub> loaded    |    |  |  |  |  |  |  |  |
| solutions                                                                                      | •                                                                                                       | 40 |  |  |  |  |  |  |  |
| Table 4.7                                                                                      | Calculated partial pressures for MEA and H <sub>2</sub> O for each sample of the CO <sub>2</sub> loaded |    |  |  |  |  |  |  |  |
| solutions                                                                                      | <u> </u>                                                                                                | 40 |  |  |  |  |  |  |  |
| Table 4.8                                                                                      | Calculated CO <sub>2</sub> partial pressures for MEA solutions with various CO <sub>2</sub> loadings at |    |  |  |  |  |  |  |  |
| 100 °C                                                                                         | · · ·                                                                                                   | 41 |  |  |  |  |  |  |  |
| Table 4.9                                                                                      | Comparison of the CO <sub>2</sub> solubility data at 100°C between the literature values and the        |    |  |  |  |  |  |  |  |
|                                                                                                |                                                                                                         | 42 |  |  |  |  |  |  |  |
| Table 4.10                                                                                     |                                                                                                         | 46 |  |  |  |  |  |  |  |
| Table 4.11                                                                                     |                                                                                                         | 51 |  |  |  |  |  |  |  |
| Table 4.12                                                                                     | CO <sub>2</sub> concentration, as measured by inorganic carbon content measurement, after               |    |  |  |  |  |  |  |  |
|                                                                                                |                                                                                                         | 52 |  |  |  |  |  |  |  |

| Table 4.13    | Absorption/Stripping behaviour of thermally degraded, "lean" samples after                         |      |
|---------------|----------------------------------------------------------------------------------------------------|------|
| removal of re | esidual CO <sub>2</sub>                                                                            | 156  |
| Table 4.14    | Analysis of metal content of the solids in the sample that degraded for 8 weeks                    | 157  |
| Table 4.15    | Analysis of metal content of the degraded samples compared with a sample of fi                     | resh |
| MEA.          |                                                                                                    | 157  |
| Table 4.16    | Corrosion rates of the high pressure vessels during the degradation experiments                    | of   |
| MEA           |                                                                                                    | 158  |
| Table 4.17    | Percentage of major elements of the high pressure vessels                                          | 159  |
| Table 4.18    | Degradation products found in the lean samples                                                     | 160  |
| Table 4.19    | MEA and its major thermal degradation products concentrations—"lean" samples                       | S    |
|               |                                                                                                    | 164  |
| Table 4.20    | Nitrogen balance in the degraded samples with lean initial molar loading, based                    | on   |
| the concentra | ations detected by the GC-MS                                                                       | 165  |
| Table 4.21    | Volumes of the degraded samples after the end of the degradation experiments                       | 167  |
| Table 4.22    | Volume of CO <sub>2</sub> released during 1 <sup>st</sup> stripping of the degraded "rich" samples | 168  |
| Table 4.23    | Absorption/Stripping behaviour of thermally degraded, rich samples after remove                    | val  |
| of residual C | $\mathrm{O}_2$                                                                                     | 171  |
| Table 4.24    | Degradation products found in the degraded samples with initial "rich" loading                     |      |
|               |                                                                                                    | 176  |
| Table 4.25    | MEA and its major thermal degradation products concentrations—"rich" samples                       | S    |
|               |                                                                                                    | 176  |
| Table 4.26    | Nitrogen balance in the degraded samples with lean initial molar loading, based                    | on   |
| the concentra | ations detected by the GC-MS                                                                       | 177  |
| Table 4.27    | Reaction order, rate law and rate constants (Langmuir, 1997)                                       | 180  |

# NOMENCLATURE

AMP 2-Amino-2-methyl-1-propanol

Capillary Electrophoresis – Diode Array

CE-DAD Detection

DCM Dichloromethane
DEA Diethanolamine
DGA Diglycolamine

DIPA Di-isopropylamine

ESA Electric Swing Adsorption
FGD Flue Gas Desulphurisation

Fourier Transform Ion Cyclotron

FT-ICR/MS

Resonance Mass Spectrometry

FT-IR Fourier Transform Infrared Spectroscopy

Gas Chromatography Mass

GC-MS Spectrometry

GHG Greenhouse Gases

HEEDA N-(2-hydroxyethyl)-ethylenediamine

HEF Hydroxyethyl-formamide

HEI 1-(2-Hydroxyethyl)-imidazole

HEIA 1-(2-hydroxyethyl)-2-imidazolidone

High Performance Liquid HPLC

Chromatography

High Performance Liquid

HPLC-RID Chromatography – Refractive Index

Detection

IC Ion Chromatography

IC-MS Ion Chromatography Mass Spectrometry

Inductively Coupled Plasma – Optical

ICP-OES Emission spectrometry

IDL Instrument Detection Limits

Intergovernmental Panel on Climate IPCC

Change

Liquid Chromatography Mass LC-MS

Spectrometry

\_\_\_\_\_

Low Voltage High Resolution Mass LVHRMS

Spectrometry

MDEA Methyldiethanolamine

MDL Method Detection Limits

MEA Monoethanolamine

microGC Micro Gas Chromatography
MTBE Methyl Tertiary Butyl Ether
NMR Nuclear Magnetic Resonance
PSA Pressure Swing Adsorption

PZ Piperazine

RSD Relative Standard Deviation

TC Total Carbon analyser

TEA Triethanolamine

TETA Triethylenetertamine

TOC Total Organic Carbon analyser
TSA Temperature Swing Adsorption

VLE Vapour Liquid Equilibrium

VOC Volatile Organic Compounds

# CHAPTER 1 INTRODUCTION

#### 1.1 INTRODUCTION

Carbon dioxide is one of the greenhouse gases that contribute to climate change. According to Chakravarti et al. (2001) about 60% of the CO<sub>2</sub> is emitted by utility or industrial power systems based on fossil fuel combustion in the USA. Currently, a few options are being considered to reduce CO<sub>2</sub> emissions produced by the combustion of fossil fuels. According to Herzog et al. (2009) these include post-combustion, pre-combustion, oxyfuel and chemical looping combustion, as well as a number of CO<sub>2</sub> separation methods such as absorption, adsorption, membranes and cryogenics separation, as potential CO<sub>2</sub> capture methods to currently uder research as potential methods to be used on large scale electricity production.

Amine scrubbing has been an established technology for acid gas removal in the chemical and oil industries, thus, it is considered that can be more easily implemented on large scale at existing power plants for CO<sub>2</sub> removal (Mangalapally et al., 2009). It is based on the reversible chemical reaction of the acid gas with amine family solvents. An important characteristic of the amine absorption process is the proper choice of solvent; the main characteristics of an appropriate solvent are the high CO<sub>2</sub> loading capacity and low heat of reaction with CO<sub>2</sub> according to Hermann, 2005. Aqueous solutions of 30 % w/v monoethanolamine are considered to be the reference solvents for such processes though as claimed by Moser et al. 2011.

Rochelle (2009) mention that hundreds of plants are used at the moment to remove CO<sub>2</sub> from natural gas, hydrogen and other gases with low oxygen, mainly using monoethanolamine. According to Rochelle (2009) only pilot scale plants operating to remove CO<sub>2</sub> from coal combustion, testing different solvents concerning their kinetics and thermodynamic properties as well as solvent degradation issues with MEA being considered the base case solvent for comparison. Four coal-fired power plants, with power outputs up to 30 MW,

separate CO<sub>2</sub> from the flue gas using 20% w/v MEA (Rochelle 2009) and just one (ABB Lummus / Kerr-McGee) operating with 15-20% MEA to remove up to 400 ton CO<sub>2</sub>/day from flue gas from coal fired power plant (Knudsen and Jensen, 2009). More than twenty pilot plants are using 30% w/v MEA to remove up to 330 ton CO<sub>2</sub>/day (Rochelle 2009). Finally, according to Knudsen and Jensen (2009) a large number of plants also use the Mitsubishi proprietary, sterically hindered amine, KS-1 to remove up to 450 ton CO<sub>2</sub>/day.

During the absorption-stripping process, considerable solvent losses occur. Amine solvents are very volatile and as a result are likely to evaporate from the liquid into the gas phase. MEA volatility, apart from the increase in the process costs because of the solvent make up and the need for additional water washes, it also has a significant environmental impact as MEA could move into the atmosphere and react producing environmentally hazardous compounds (Nguyen et al., 2011).

Moreover, the irreversible reactions which may occur during the process, that result in products from MEA that can not be recovered, are called degradation. Degradation causes MEA depletion from the system. Firstly, due to the presence of at least 5% of O<sub>2</sub> in the flue gas, MEA oxidation is caused in the absorber (Sexton and Rochelle, 2008). Oxidative degradation results in the formation of heat-stable salts and other by-products that decrease the system's efficiency. Secondly, thermal degradation at the presence of CO<sub>2</sub> which occurs in temperature encountered in the cross exchanger, stripper and the thermal reclaiming unit and causes the formation of large polymeric compounds (Davies, 2008). Finally, the presence of SO and SO<sub>2</sub> as well as NO<sub>x</sub> can also cause the formation of heat stable corrosive salts (Blakstad 2010) that can not be reclaimed. Finally, fly ash can cause degradation and foaming resulting in plugging of the process equipment. According to Brakstad et al. (2010) MEA degradation has been studied to some extent, although there still exist a number of unidentified degradation products from this amine and some of the degradation pathways are to a large extent stil uncertain.

According to Strazisar (2003) about 2.2 kg of MEA/ton CO<sub>2</sub> captured need replacement due to solvent degradation. Apart from solvent losses, degradation

products are believed to be responsible for equipment corrosion, foaming, fouling and an increase in the solvent's viscosity. Moreover, as the level of degradation products increases, the amine content of the solution decreases due to degradation and the solution losses its capacity to absorb acid gases as Abdi (1997) claim. Apart from solvent make up needed to maintain the system's efficiency, additional equipment is needed in order to remove the by-products generated during the procedure and these degradation products are disposed as hazardous chemical wastes Islam et al. (2011). Therefore, there is an impact on the process economics and the environmental impact of the disposal of the liquid and solid wastes recovered. The aforementioned conclusions illustrate the need for further research and understanding on the MEA degradation and the degradation products generated.

According to Brakstad et al. (2010) conclusive identification, by means of chemical analysis, of degradation products can be technically challenging. Therefore, the identification and quantification of the degradation products generated within the system, the chemistry of degradation and the degradation patways are the first research areas that need to be addressed. Methods for the accurate chemical analysis need to be developed for both to be able to assess the degradation products generated within a system but also for different amine screening and comparison to assess which solvent is less sensitive for a certain process. Accurate identification of degradation products would also help in developing methods to successfully reclaim them or to find appropriate inhibitors to avoid solvent losses due to degradation.

Moreover, the effect of the process parameters on solvent degradation needs to be assessed in order to control degradation and as a result reduce energy consumption and costs. The effect of degradation on the system's operation in terms of its CO<sub>2</sub> uptake capacity also needs to be assessed. Finally, understanding how oxidative and thermal degradation occurs may help in developing new absorber and especially stripper configurations, as Davis (2009) claim that stripping is the largest economic factor in the capture of CO<sub>2</sub>. Note here that thermal degradation occurs at stripper temperature conditions.

## 1.2 THESIS AIMS - KEY QUESTION

The key question that this thesis mainly aims to address is how thermal degradation affects the operational lifetime of the MEA solvent, which is the most common currently used solvent, in terms of its CO<sub>2</sub> uptake capacity deterioration and the generation of undesirable thermal degradation products.

As an attempt to answer this question the following objectives were set:

- design, build and commission a system capable of applying repeated cycles of absorption/stripping allowing the controlled contact of CO<sub>2</sub>laden gases with different amine solvents at conditions as close as possible to those expected in practice.
- determine the key parameters that affect the operational lifetime of the MEA solvent
- develop methods and procedures to be able to investigate the solvents'
   CO<sub>2</sub> uptake capability both during absorption and stripping
- develop methods and procedures to be able to detect, identify and quantify the range of MEA major degradation products that could contaminate the solvent and affect its operation
- design an experimental procedure facilitating the generation of thermally degraded samples within a reasonable timescale

#### 1.3 THESIS OVERVIEW

After introducing the thesis in Chapter 1, Chapter 2 presents a review of the literature. It presents the background and state of the art of the technology related to the work presented in the following chapters. More specifically it describes the amine scrubbing industrial procedure and the amine solvents used in general, focusing mainly on MEA. The process chemistry for MEA as well as the disadvantages of it when used in real conditions are presented. Finally, both oxidative and thermal degradation are discussed paying specific attention to the thermal degradation, which is the main focus of the present research work.

Chapter 3 describes the experimental procedures developed and used in order to assess the effects of thermal degradation on the MEA solvent's operational lifetime in terms of both CO<sub>2</sub> uptake capacity and degradation products generated. The designing, commissioning and development work of the MEA absorption/stripping rig and the thermal degradation rig are discussed. The analytical equipment along with the method development, detection limits and calibration curves produced for the analysis of the MEA major degradation products are described. Last but not least, any other equipment and the results processing procedures are also presented.

In Chapter 4 the results produced in the present research study as well as comments and discussion on them are presented. More specifically, some initial efforts performed to produce MEA degraded samples in the absorption/stripping system and their analysis for degradation products are presented. The results of the CO<sub>2</sub> solubility experiments, performed during the commissioning of the thermal degradation rig, are also discussed. Finally, the effects of thermal degradation on the solvent's CO<sub>2</sub> uptake capacity, as assessed from the 6 thermally degraded MEA samples with "lean" and "rich" initial molar loadings (0.19 and 0.37 moles of CO<sub>2</sub>/mole of MEA, respectively), are detailed.

Chapter 5 details the conclusions and future recommendations compiling from the present research study.

# CHAPTER 2 LITERATURE REVIEW

#### 2.1 INTRODUCTION

The following chapter presents a literature review on the subject of post combustion carbon capture using amine scrubbing. More specifically, the industrial procedure and the technical issues that still need to be addressed, before it is used in large scale to remove CO<sub>2</sub> from flue gases of coal fired power plants, are briefly presented. The different amine solvents available and researched at the moment as potential solvents in an amine scrubber are discussed, taking a more focused approach on monoethanolamine (MEA). The MEA solvent management and the key issues that still need to be addressed are presented, focusing on the solvent degradation and more specifically on thermal degradation and its impact on the plant operation.

#### 2.2 AMINE SCRUBBING

Amine scrubbing has been an established technology over the past several decades for removal of acid gases (such as CO<sub>2</sub> and H<sub>2</sub>S) from gaseous streams in the chemical and oil industries. It is based on the reversible chemical reaction of the acid gas with organic solvents such as amines. Its application to the CO<sub>2</sub> removal from the flue gases produced by the combustion of fossil fuels and/or biomass has attracted much attention over the past few years. This technology generally requires very large equipment because of the large amounts of gases that need to be treated and due to the small CO<sub>2</sub> partial pressures in the flue gas. There are certain key concerns such as the potentially large amount of energy to regenerate the amines, corrosion of the equipment and degradation of the amine with time.

## 2.2.1 Industrial procedure

In a typical amine scrubbing system, shown in Figure 2.1, the flue gas is cooled down before it enters the absorber. In the absorber  $CO_2$  comes into contact with the amine and, at temperatures of  $40\text{-}60^{\circ}\text{C}$ , gets chemically bound by it. After the absorption stage, the  $CO_2$  rich solvent is pumped up to the top of the stripper through a heat exchanger. In the stripper vessel the regeneration takes place at temperatures of up to 120-130~°C and at pressures close to atmospheric. Heat is supplied to the reboiler to maintain the temperature conditions in the stripper, which is usually supplied in the form of steam. After the regeneration process the amine is pumped back to the absorber through a heat exchanger and a cooler to get down to the absorber temperatures. The steam is recovered in a condenser and the  $CO_2$  gas leaves the stripper. Additional equipment and processes may be needed in order to maintain the solvent quality, such as filters, carbon beds and thermally operated reclaimers.

The absorber columns used in amine scrubbing systems are packed or tray columns that promote good gas-liquid contact between the CO<sub>2</sub> containing flue gas and the solvent. Like the absorber, the stripper is a packed or a tray column, the CO<sub>2</sub> rich solvent enters at the top of the stripper and flows down

countercurrent with the steam (stripping gas). Reclaimer is the unit used for the separation or reclaiming of the usable amine from its degradation products, these systems are used either to remove the contaminants from the solvent or to remove the solvent with or from the contaminant. The waste includes water, amines, amine degradation products, corrosion products and other chemicals.

Movagharnejad and Akbari (2011) present the typical conditions under which an amine scrubbing system operates as obtained by an amine scrubbing system used to remove CO<sub>2</sub> from the flue gas produced by a cement factory. Note here that these values differ from plant to plant as the flue gas, process design and conditions are different in different plants (see Section 2.2.2). According to this study, the inlet gas enters from the bottom of the absorber at flow rates of about 1.2e+06 kg/h and contains about 15% CO<sub>2</sub> its temperature is 50°C and it is under pressure of 150 kPa. The lean aqueous MEA solvent, with concentration of about 29% wt, enters from the top of the absorber at a temperature of 50°C and pressure of 150 kPa, its flow rate is about 6e+06 kg/h, with a remaining CO<sub>2</sub> content of about 4%. After the end of the absorption the CO<sub>2</sub> rich solvent (with CO<sub>2</sub> more than 50% of the maximum MEA loading) is heated at 90°C and enters from the top of the stripper, heat is provided by the reboiler in the form of steam and is about 1.8e+009 kJ/h. About 80% CO<sub>2</sub> then leaves the stripper for the condenser and the lean MEA at about 120°C leaves from the bottom of the stripper to return to the absorber via a heat exchanger.

According to Rochelle (2009), hundreds of plants remove CO<sub>2</sub> from natural gas, hydrogen and other gases with low oxygen. Four coal-fired power plants, with power outputs up to 30 MW, separate CO<sub>2</sub> from the flue gas using 20% w/v MEA and more than twenty using 30% w/v MEA. Furthermore, more than 10 plants use the Mitsubishi proprietary, sterically hindered amine, KS-1.

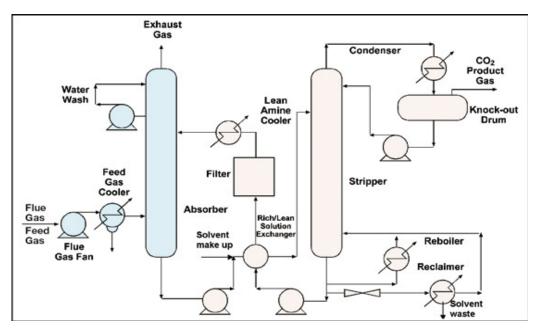



Figure 2.1 Amine scrubbing plant schematic (Davidson 2007)

## 2.2.2 Design, technical and economic operation

The key issues concerning the design and the technical and economic operation of an amine scrubbing system for a coal fired power plant include the selection of the appropriate solvent and its management for a specific system, the system's design characteristics and most importantly the energy requirements. According to Rochelle (2009), "The minimum work requirement to separate CO<sub>2</sub> from coal-fired flue gas and compress CO<sub>2</sub> to 150 bar is 0.11 megawatt-hours per metric ton of CO<sub>2</sub>. Process and solvent improvements should reduce the energy consumption to 0.2 megawatt-hour per ton of CO<sub>2</sub>".

#### Solvent selection and management

Since coal flue gases contain CO<sub>2</sub> at very low partial pressures and concentrations of about 15 % vol,(Chakravarti et al. 2001), aqueous amines are considered the most suitable absorption solvents as they are active enough (fast reaction rates) to recover dilute CO<sub>2</sub> from atmospheric pressure flue gas, as stated by Chapel et al. (1999). An important characteristic of the absorption process is the proper choice of solvent for the given process duty. The high CO<sub>2</sub> loading capacity and low heat of reaction with CO<sub>2</sub> (lower energy requirements for stripping) are important characteristics of the solvent chosen for atmospheric

flue gas CO<sub>2</sub> recovery (Hermann 2005). Last but not least, the solvent concentration is another key issue as low concentrations limit the amount of CO<sub>2</sub> that can be absorbed whereas high concentrations have been associated with corrosion problems encountered in existing plants' equipment (DuPart et al. 1993). Solvent volatility issues are also of great concern and can be addressed by adding water wash sections in parts of the equipment in order to avoid any amine vapours to be carried away by the pure CO<sub>2</sub> gas (McLees 2006). Furthermore, the flue gas contains O<sub>2</sub> and other impurities such as SO<sub>2</sub>, NO<sub>x</sub>, fly ash etc, therefore, the solvent chosen needs to have low by-product formation and low decomposition rates, to maintain solvent performance, limit the amount of waste materials produced and reduce the reclaiming needs.

#### Equipment design

The flue gas flow rate determines the size of the absorber and the stripper, which contributes to the overall costs. The desired degree of CO<sub>2</sub> removal is also a key issue. For higher CO<sub>2</sub> recovery a taller absorption column is needed, higher energy penalties, therefore, increased costs. In practice, typical CO<sub>2</sub> recoveries are between 80% and 90% (Mariz, 1998). Last but not least, the solvent flow rate is a fixed parameter for each system and determines the size of most equipment apart from the absorber. It also has to do with the required CO<sub>2</sub> concentrations (loadings, moles of CO<sub>2</sub> / mole of solvent) within the lean and the rich solutions.

#### Energy requirement

The energy consumption of the process is the sum of the thermal energy needed to regenerate the solvents and the electrical energy required to operate the pumps and the flue gas blower or fan. Abu-Zahra (2007) mentions that the thermal energy requirement of the absorption/stripping process is calculated to be around 4 GJ/ton CO<sub>2</sub>. According to Davis (2009) the steam needed for regeneration is approximately one third of the steam generated from the plant and this is translated in an 8-13% efficiency losses and it is the largest economic factor in the capture of CO<sub>2</sub>. Energy is also required to compress the CO<sub>2</sub> recovered to the final pressure required for transport and storage. Cooling is also needed to bring

the flue gas before the absorber and the solvent, after the end of stripping, down to temperatures required for efficient absorption of CO<sub>2</sub>. Moreover, the gas product from the stripper also requires cooling to recover steam from the stripping process.

#### 2.3 AMINE SCRUBBING SOLVENTS

Alkaloamines are the most commonly used solvents for the reversible acid gas removal from gaseous streams. They fall under three categories, primary, secondary and tertiary, according to the number of organic groups attached to the nitrogen atom. Sterically hindered amines, which are also discussed, are a special subcategory of primary and secondary amines.

## 2.3.1 Primary Amines

Primary amines (Figure 2.2) have an alkanol chain, R<sup>1</sup>, and two hydrogen atoms bonded to the nitrogen atom. They include MEA and diglycolamine (DGA).

Figure 2.2 Primary amine

Although they require high heat for regeneration and foaming and corrosivity problems are faced during their use, they have good reaction kinetics and work well with low CO<sub>2</sub> concentrations and low pressures.

#### 2.3.2 Secondary Amines

Secondary amines (Figure 2.3) have two alkanol chains,  $R^1$  and  $R^2$ , and one hydrogen atom bonded to the nitrogen atom. They include diethanolamine (DEA) and di-isopropylamine (DIPA).

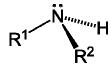



Figure 2.3 Secondary amine

They require less heat in the regeneration step than the primary amines. However, they have all the other problems of the primary amines.

## 2.3.3 Tertiary Amines

Tertiary amines (Figure 2.4) have three alkanol chains,  $R^1$ ,  $R^2$  and  $R^3$  (without any hydrogen atoms) bonded to the nitrogen atom. They include triethanolamine (TEA) and methyldiethanolamine (MDEA).

$$R^1$$

$$\begin{array}{c}
N_{m_m}R^3 \\
R^2
\end{array}$$

Figure 2.4 Tertiary amine

They require lower heat for CO<sub>2</sub> capture. They also have lower tendency to form degradation products, they are more easily regenerated and have lower corrosion rates. Their main drawback is their reaction rate which is slow, the weak bond they form with CO<sub>2</sub>, their tendency to foam at high concentrations and their cost.

## 2.3.4 Sterically hindered amines

Sterically hindered amines are chemical compounds containing an amine group surrounded by a crowded steric environment. In other words, they belong to a special class of primary/secondary amines in which the amino group is bonded with bulky groups of carbons (or is attached to a tertiary carbon atom) that shield the amine group from reacting with CO<sub>2</sub>. The formed carbamate is less stable, so they combine the high reaction rates of the primary/secondary amines with the higher absorption capacity and the lower heat of regeneration of the tertiary amines. One of the most common sterically hindered amines is 2-amino-2-methyl-1-propanol or AMP (a primary amine and more specifically the sterically hindered form of MEA).

#### 2.3.5 Research on amine solvents

From the mid 30's, numerous studies have been performed on the kinetic and thermodynamic properties of different solvents (mostly amines) that could be used in an amine scrubbing plant. Both experimental and modelling work has been performed aiming to compare different solvents, their CO<sub>2</sub> absorption and desorption rates, vapour liquid equilibrium (VLE) studies, equilibrium constants,

CO<sub>2</sub> solubilities into aqueous amine solutions, the optimum solvent concentrations and operating temperatures, the heats of absorption and desorption for each solvent, packing materials and design for absorbers and strippers, etc. The purpose of this literature review was to choose the optimum solvent, process and design configurations in order to build the gas-absorption stripping rig to perform studies on the solvent's absorption-stripping capacity on CO<sub>2</sub> uptake. A visit to the laboratories of the Department of Chemical Engineering in Texas University at Austin, just to see the systems and conditions used by other researchers in the same field, no experimental work was performed during that visit. This travel along with the literature review performed helped in gaining useful experience before building the gas absorption-stripping rig.

Table 2.1 and Table 2.2 present examples of the research performed on the kinetics and thermodynamics of different amines and blends of amines, respectively. In Table 2.1 a summary of the available research on the different solvents and their performance is presented, many solvents have been studied to assess how effective their potential use could be. From the mid thirties until 2010 in most of the studies MEA is one of the most commonly researched solvents and it is usually used to compare with different solvents.

Table 2.2 presents an example of the available studies performed on amine blends, as it can be seen a more focused interest on blends of amines started since the mid 90s and again MEA is one of the solvents researched in most studies. For example, if a small amount of a primary amine (such as MEA) is added to a solution of a tertiary amine can enhance the rate of absorption without affecting the stripping characteristics (as primary amines have high absorption rates but more energy is needed to release the CO<sub>2</sub> when compared to tertiary amines) as suggested by Liao and Li (2002).

Sample of available research literature on kinetics and thermodynamics for different amine solvents Table 2.1

| Year    | 1936                                                                         | 1964                                                                                             | 1969                                                                      | 1983                                                              | 1989                                                                      | 1996                                                                                  | 1997                                                                                                | 1999                                                                      | 2000                                                                                                  | 2000                                                                                      | 2001                                                                  | 2006                                                                                        | 2006                                                   | 2010                                                                                                                          |
|---------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Authors | Hirst L. L. and I. I. Pinkel                                                 | J. K. A. Clarke                                                                                  | Gustafson P. R. and R. R. Miller                                          | Santori G. and G. W. Savage                                       | Augsten D. M. PhD thesis University of Texas                              | Xu S. et al.                                                                          | R. J. Hook                                                                                          | Desideri U. and A. Paolucci                                               | Bishnoi R. and G Rochelle                                                                             | Ko J. J. and M. H. Li                                                                     | Yeh J. T. and H. W. Pennline                                          | Oyenekan B. A. and G. Rochelle                                                              | Al-Juaid M. and G. Rochelle                            | Kim I. and H. F. Svendsen                                                                                                     |
| Title   | Absorption of Carbon Dioxide by Amines Di- and Triethanolamine and Tetramine | Kinetics of Absorption of Carbon Dioxide in Monoethanolamine<br>Solutions at Short Contact Times | 3-(methylsulfonic)propylamine as a regenerative CO <sub>2</sub> absorbent | Sterically Hindered Amines for CO <sub>2</sub> Removal from Gases | A Model of Vapor-Liquid Equilibria for Acid Gas-Alkaloamine-Water Systems | Kinetics of the Reaction of Carbon Dioxide with 2-amino-2-methyl-1-propanol solutions | An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds | Performance Modelling of a Carbon Dioxide Removal System for Power Plants | Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility | Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water | Study of CO <sub>2</sub> Absorption and Desorption in a Packed Column | Energy Performance of Stripper Configurations for CO <sub>2</sub> Capture by Aqueous Amines | Absorption of CO <sub>2</sub> in Aqueous Diglycolamine | Comparative Study of the Heats of Absorption of Post-combustion $\mathrm{CO}_2$ absorbents                                    |
| Solvent | DEA, TEA and Tetramine                                                       | MEA                                                                                              | 3-(methylsulfonic)propylamine                                             | AMP                                                               | MEA, DEA, DGA and MDEA                                                    | AMP                                                                                   | MEA, AMP, Alkazid M. ( N-methylalanine)                                                             | MEA                                                                       | PZ                                                                                                    | MDEA                                                                                      | MEA and AMP                                                           | MEA and PZ                                                                                  | Diglycolamine (DGA)                                    | MEA, AMP, MDEA, N,N-diethylethanolamine, 1-(2-aminoethyl)aminoethanol, N-methyl-1,3-propanediamine, diethylenetriamine and PZ |

Sample of available research literature on kinetics and thermodynamics for different blends of solvents Table 2.2

| Year               | 1995                                                                                            | 1996                                                                  | 1998                                                                    | 2002                                                                    | 2002                                                                                                         | 2002                                                                   | 2006                                                                                  | 2006                                                                                                                                                                              | 2006                                                                                                                           | 2006                                                                                                 | 2009                                                                                                                                                      | 2009                                                                          |
|--------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Authors            | Hagewiesche D. P. et al.                                                                        | Posey M. L. PhD Thesis University of<br>Texas                         | Pacheco M. A. PhD thesis University of Texas                            | Bishnoi R. and G Rochelle                                               | Liao C. H. and M. H. Li                                                                                      | Bishnoi S and G. Rochelle                                              | Cullinane J. T. and G. Rochelle                                                       | Jamal A. et al.                                                                                                                                                                   | Ramachandran N. et al.                                                                                                         | Mandal B. P. and S. S. Bandyopadhyay                                                                 | Amann J. M. G. and C. Bouallou                                                                                                                            | Sakwattanapong R. et al.                                                      |
| Title              | Absorption of Carbon Dioxide into Aqueous Blends of Monoethanolamine and N-Methyldiethanolamine | Thermodynamic Model for Acid Gas Loaded Aqueous Alkaloamine Solutions | Mass Transfer, Kinetics and Rate-based Modelling of Reactive Absorption | Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine | Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine | Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Dioxide | Kinetics of Carbon Dioxide Absorption into Aqueous Potassium Carbonate and Piperazine | Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—I. Experimental apparatus and mathematical modelling | Kinetics of the Absorption of CO <sub>2</sub> into Mixed Aqueous Loaded Solutions of Monoethanolamine and Methyldiethanolamine | Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine | A New Aqueous Solvent Based on a Blend of N-MethylDiEthanolAmine and TriEthyleneTetrAmine for CO <sub>2</sub> Recovery in Post-Combustion: Kinetics Study | Reaction rate of $CO_2$ in aqueous MEA-AMP solution: Experiment and modelling |
| Blends of Solvents | Blends MEA and MDEA                                                                             | MDEA, DEA, MEA and their blends                                       | DGA and MDEA and their blends                                           | Blends piperazine (PZ)<br>and MDEA                                      | Blends of MEA and MDEA                                                                                       | Blends of PZ and MDEA                                                  | Blends K <sub>2</sub> CO <sub>3</sub> and PZ                                          | MEA, DEA, MDEA and AMP and their blends                                                                                                                                           | Blends of MEA and MDEA                                                                                                         | Blends 2-amino-2methyl-1-propanol (AMP) and MEA                                                      | Blends of MDEA and TETA                                                                                                                                   | Blends of MEA and AMP                                                         |

Sterically hindered amines, according to Santori and Savage (1983), offer advantages in absorption capacity, absorption rate, selectivity and degradation resistance when compared with conventional amines. The most commonly researched sterically hindered amine, at the moment, is AMP which is a primary amine. AMP has the same high loading capacity with MDEA (1 mole of CO<sub>2</sub>/mole of amine) but it has a higher reaction rate constant with CO<sub>2</sub> (Xu et al. 1995). Yeh and Pennline (2001) suggest that comparing MEA with AMP, the absorption rate of CO<sub>2</sub> to AMP was less than to MEA but its thermal regeneration was much easier. In terms of blends of AMP with other solvents, it was observed that if a small amount of MEA is added to AMP could result in a significant enhancement of the CO<sub>2</sub> absorption rates as suggested by Xiao J. et al. (2000).

Much interest has been observed recently in the use of piperazine (PZ) as a solvent or in blends with other amines. PZ is believed to demonstrate much higher rate of reaction with CO<sub>2</sub> when compared with conventional alkaloamines as stated by Bishnoi and Rochelle (2000) and Dugas and Rochelle (2009). PZ and MDEA blends, have demonstrated high rate of reaction with CO<sub>2</sub> due to a higher mass transfer capability that they exhibit according to Bishnoi and Rochelle (2002).

As it can be seen both in Table 2.1 and Table 2.2, MEA has been the most commonly researched solvent and possibly even the baseline solvent for comparison. Among all known amines, MEA is the most common currently used solvent for the removal of an acid gas from a gaseous stream. Liu et al. (1999) mention that in 1990 MEA comprised up to 40% of the market. It is a weak base with a low molecular weight; therefore it has high CO<sub>2</sub> absorption capacity on a molar basis. Furthermore, it has fast reaction kinetics which means that the CO<sub>2</sub> is bound in the liquid phase in the form of carbamate molecules that are quite stable (see Section 2.4.1). MEA has also a high CO<sub>2</sub> removal efficiency. It works well at low pressure and CO<sub>2</sub> concentrations. It has low price and it is highly water soluble. Its disadvantages are high heat of reaction, hence high energy consumption, high corrosivity, foaming and degradation problems.

#### 2.4 MEA

Monoethanolamine (MEA) is an organic compound that is both a primary amine and a primary alcohol, and acts as a weak base. Aqueous solutions of MEA are used to remove CO<sub>2</sub> from flue gas by weakly dissolving and neutralizing it to turn its molecules into an ionic form making them polar and considerably more soluble in a "cold" MEA solution therefore CO<sub>2</sub> remains bound to MEA. If an aqueous solution of a strong base was used, it would not readily release the CO<sub>2</sub> (weakly acidic gas) upon heating.

#### 2.4.1 Process chemistry

The process chemistry that occurs during the reaction of CO<sub>2</sub> with MEA is described. The general chemical mechanism is the same for primary and secondary amines but the description in this section is made for primary amines and it is shown in Figure 2.5 as presented by Hook, 2007.

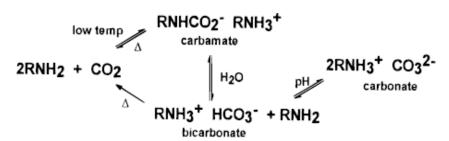



Figure 2.5 Process chemistry of CO<sub>2</sub> absorption by primary or secondary amines (Hook, 1997)

CO<sub>2</sub> reacts with aqueous solutions of primary (RNH<sub>2</sub>) amines reaching equilibrium of carbonate, bicarbonate and carbamate. The dissolved CO<sub>2</sub> first reacts with the free amine to form the carbamate (RNHCO<sub>2</sub><sup>-</sup> RNH<sub>3</sub><sup>+</sup>) with a 1:2 (CO<sub>2</sub>:amine) stoichiometry. The carbamate then can undergo hydrolysis to produce the bicarbonate (RNH<sub>3</sub><sup>+</sup> HCO<sub>3</sub><sup>-</sup>) and release a free amine. The lower the pH the more unstable the carbamate is and undergoes through hydrolysis to give bicarbonate (Park et al. 2003). The CO<sub>2</sub> loading of the MEA solution affects the pH, in other words the more CO<sub>2</sub> is absorbed by the MEA the lower the pH of the CO<sub>2</sub>-MEA-H<sub>2</sub>O solution.

The bicarbonate produced, if the pH conditions are suitable, is converted to produce the carbonate (RNH<sub>3</sub><sup>+</sup> CO<sub>3</sub><sup>2-</sup>). According to Park et al. (2003) the formation of carbonate ions is not likely to occur because the system pH is normally between 7 and 10 (low basicity) therefore the equilibrium reaction of carbonate-bicarbonate is shifted towards the bicarbonate side.

The maximum absorption of CO<sub>2</sub> is achieved when all of the absorbed carbon dioxide exists as bicarbonate, because the requirement of the carbamate and carbonate species is 2 mol of amine per mol of carbon dioxide reacted, while a one to one ratio exists for bicarbonate. So, maximum hydrolysis of the carbamate is desirable as Hook (2007) mention, however, due to the stability of the carbamate, this reversible reaction (hydrolysis of carbamate) does not occur at an appreciable rate.

For the regeneration stage the absorption by-products are thermally decomposed to release CO<sub>2</sub>. Hook (1997) mention that a solution with more bicarbonate, it is more easily regenerated, producing a "leaner" solution (lower total carbamate/bicarbonate/carbonate concentration). Similarly to absorption, the desorption rate of the amine depends on the pH of the solutions. Finally, pH relationship with the degree of crystal formation is important because possible crystallisation of the CO<sub>2</sub> containing ammonium salts can cause problems to the plant.

# 2.4.2 Solubility of CO<sub>2</sub> in MEA

During the present study, the design and development of a procedure to thermally degrade samples of MEA at elevated temperatures and for prolonged periods of time was deemed necessary (see Section 3.5). Of particular relevance to the thermal degradation rig design and operating protocols were the CO<sub>2</sub> solubility studies in other words the CO<sub>2</sub> partial pressure as a function of the CO<sub>2</sub> molar loading. Therefore, a literature review was performed to have a more clear idea of the CO<sub>2</sub> partial pressures developed above a 30% w/v aqueous MEA solution at elevated temperatures, close to the ones encountered in the stripper.

Shen and Li (1992) presented data of CO<sub>2</sub> solubility in 30 % w/v aqueous MEA solutions. For this study two vapour-liquid equilibrium apparatus were used, a batch equilibrium cell was used for CO<sub>2</sub> partial pressures above 200 kPa and up to 2000 kPa and for partial pressures lower than 200 kPa a vapour recirculation equilibrium cell. The former apparatus was filled by 350 mL of solvent and was purged with CO<sub>2</sub> to remove any O<sub>2</sub> and the partial pressure was adjusted to be between 200 and 2000 kPa; the system was then brought to the desired temperature and the equilibrium was assumed when the total pressure of the cell did not change for 4 hours. At equilibrium three liquid samples were analysed for CO<sub>2</sub> solubility with a titration method and the CO<sub>2</sub> partial pressure was obtained by subtracting the partial pressure of water, calculated by Raoult's law - from the total pressure.

Jou et al (1995) measured the CO<sub>2</sub> solubility in a 30 % w/v MEA solution at temperatures up to 150°C. 100 mL/min of gas was recirculated and bubbled through the liquid phase in an equilibrium cell mounted in an insulated air bath; the total volume of the system was 250 mL. A 100 mL solution of 30% w/v aqueous MEA was introduced to the evacuated cell and CO2 was bubbled and absorbed by the MEA. In order to maintain the pressure well above the atmospheric nitrogen was added. The liquid phase analysis was performed by a chromatographic technique and by a precipitation-titration method in which CO<sub>2</sub> was precipitated as BaCO<sub>3</sub>. The CO<sub>2</sub> partial pressure was calculated by subtracting the amine and water vapour pressures calculated according to Raoult's law. The data were correlated using the model of Deshmukh and Mather (1981), detailed description of the model is not presented here as only the experimental data produced by Jou et al. (1995) were used in the present study. The CO<sub>2</sub> solubility, in a 30 % w/v MEA solution at temperatures up to 150°C, was measured and the partial pressures of CO<sub>2</sub> were in the range of 0.001-20000 kPa.

The experimental data, as presented by Jou et al. (1995), were used to perform iterative calculations (see Sections 3.5.1.2 and 3.5.1.4), to have an idea of the  $CO_2$  partial pressures that could be developed in the system, before designing the new experimental set up to thermally degrade aqueous MEA solutions for

prolonged periods of time at elevated temperatures. For that reason the experimental data points of CO<sub>2</sub> partial pressure versus CO<sub>2</sub> molar loading, as reported by Jou et al. (1995), were used to compare data produced by iterative calculations performed for the experimental conditions intended to use in the present study (see Sections 3.5.1.2 and 3.5.1.4).

Jou et al (1994) presented data for the CO<sub>2</sub> partial pressure distribution of four mixtures of MEA and MDEA with measured CO<sub>2</sub> partial pressures ranging between 100 kPa - 20 MPa at temperatures up to 120 °C. The system used and the experimental procedure are described above. These experimental data can serve as a source of information for the modelling of blends of amines.

Ma'mum et al (2005) measured the partial pressures of CO<sub>2</sub> over solutions of 30 % w/v MEA with loadings from 0.16 to 0.42 moles of CO<sub>2</sub> / mole of MEA at 120 <sup>o</sup>C. The experiments were conducted in a vapour liquid equilibrium (VLE) apparatus - with recirculation of the gas phase – which consists of three 300 mL stainless steel cylinders designed to operate at pressures up to 700 kPa and temperatures up to 130 °C. 200 mL of loaded MEA solution were added to the first cell while cells two and three held 150 mL each. The cells were heated to the desired temperature by oil baths and, to avoid boiling and vaporization of the solvent, the initial system pressure was set at 300 kPa. When the desired temperature was reached a compressor increased the pressure up to 700 kPa and the vapour was circulated. Equilibrium was obtained when the temperature and the CO<sub>2</sub> concentration in the vapour phase were constant (approximately 2-3 hours including the heating up period). A liquid sample was withdrawn from cell 3, cooled to 10 °C and its CO<sub>2</sub> content was determined by IR analysis. The measured CO<sub>2</sub> partial pressures over solutions of 30 % w/v MEA with loadings from 0.16 to 0.42 at 120 °C were in the range 7 - 192 kPa.

In addition to the work pre-referenced above, several studies of the partial pressure of  $CO_2$  above its solutions in MEA have been performed, usually at temperatures below 100 °C. A wide range of data are reported as summarised in Table 2.3 for 30 % w/v MEA solutions in water with varying loadings up to 1 mole  $CO_2$ / mole MEA.

Table 2.3  $CO_2$  partial pressures reported in the literature for 30% w/v aqueous MEA at loadings up to 1 mole  $CO_2$ /mole MEA (Ma'mum et al. 2005)

| Author                          | Temperature       | CO <sub>2</sub> Partial Pressure |
|---------------------------------|-------------------|----------------------------------|
| Author                          | (°C)              | (kPa)                            |
| Lyudkovskaya and Leibush (1949) | 25, 50, 75        | 255.3-4124                       |
| Atadan (1954)                   | 30, 50, 70        | 103-3447                         |
| Goldman and Leibush (1959)      | 75, 100, 120, 140 | 0.5333-472.9                     |
| Lee et al. (1974)               | 40, 100           | 1.151-6616                       |
| Lee et al. (1976)               | 25-120            | 0.2-6616                         |
| Lawson and Garst (1976)         | 94                | 23-453                           |
| Nasir and Mather (1977)         | 100               | 0.0005-0.52                      |

The maximum loading capacity of MEA is 0.5 moles of CO<sub>2</sub>/mole of MEA but this number can be increased at higher CO<sub>2</sub> partial pressures due to free amine liberation from the hydrolysis of the carbamate ions (McLees 2006). After the literature review performed it was concluded that there are considerable differences at the partial pressures measured even at the same temperature and CO<sub>2</sub> molar loading. For example, Nasir and Mathed (1977) measured CO<sub>2</sub> partial pressures of up to 0.52 kPa at 100 °C and Lee et al. (1974) at the same conditions up to 6616. These differences are possibly mainly because different experimental setups and rigs were used to perform those experiments.

# 2.4.3 MEA loss in an amine scrubbing system

During the absorption-stripping process, considerable solvent losses occur. Amine solvents are very volatile and as a result are likely to evaporate from the liquid into the gas phase. MEA volatility, apart from the increase in the process costs because of the solvent losses, has a significant environmental impact as MEA could move into the atmosphere and react producing environmentally hazardous compounds.

Moreover, the irreversible reactions which may occur during the process, that result in products from MEA that can not be recovered, are called degradation. Degradation causes MEA depletion from the system. Firstly, due to the presence

of at least 5% of O<sub>2</sub> (e.g. Sexton, 2008) in the flue gas, MEA oxidation is caused in the absorber. Oxidative degradation results in the formation of heat-stable salts and other by-products that decrease the system's efficiency. Apart from solvent losses, they are responsible for equipment corrosion, foaming, fouling and an increase in the solvent's viscosity.

Secondly, thermal degradation which occurs in the cross exchanger, stripper and the thermal reclaiming unit (see Figure 2.1), causes the MEA to form higher molecular weight products. It is estimated that half of the thermal degradation products generated in an industrial unit are produced during the reclaiming process (Blake 1963). At temperatures below 200 °C and in the presence of CO<sub>2</sub> the thermal degradation occurs by a process termed carbamate polymerization (Davis 2009).

The presence of SO and SO<sub>2</sub> can cause the formation of heat stable corrosive salts that can not be reclaimed. However, the use of a desufurisation system could result in a gas stream that contains less than 70 ppm SO<sub>2</sub> (Abu-Zahran et.al, 2007, Oikawa et al. 2003) that can be installed before the absorber. The NO, also present in the flue gas acts as a inert gas, but NO<sub>2</sub> that is present but at very low concentrations can also form heat stable salts with MEA. Finally, fly ash can cause degradation and foaming resulting in plugging of the process equipment, therefore, wash sections are needed to reduce the fly ash content in the flue gas.

# 2.4.4 Effect of MEA loss in the amine scrubbing system

Additional equipment - such as reclaimers - are used in the process to remove the by-products generated during the procedure and these by-products are disposed as hazardous chemical wastes which increases the disposal and treatment costs. Solvent make-up is also needed in order to maintain the system's efficiency. Strazisar (2003) mention that due to the degradation of MEA approximately 2.2 kg of MEA per tonne of CO<sub>2</sub> captured require replacement. Additionally, amine solvents are corrosive and the degradation products and heat stable salts, possibly formed in the solvent, can further increase the corrosion rates. Therefore, there is

an impact on the process economics and the environmental impact of the disposal of the liquid and solid wastes from the reclaimer that illustrates the need for further research and understanding on the MEA degradation and the degradation products generated.

## 2.5 MEA DEGRADATION

In this section a literature review on MEA degradation is presented. The parameters that affect the solvent degradation are discussed along with their effects on the solvent, paying special attention to MEA thermal degradation. What it is termed as degradation is defined as the irreversible reactions which may occur during the carbon capture process that result in products, from MEA, that can not be recovered. Oxidative degradation is defined as the reactions of MEA, in the absence or presence of CO<sub>2</sub>, with O<sub>2</sub> at conditions that occur during the amine scrubbing process. Oxidative degradation occurs in the absorber. Thermal degradation is defined as the irreversible reactions of MEA with CO<sub>2</sub> that occur due to the elevated temperatures encountered in the stripper, the chemical reaction process is termed carbamate polymerisation. Thermal degradation of MEA itself at temperatures below 200°C is inconsiderable.

## 2.5.1 Oxidative degradation

A number of studies have been performed to assess the effect of  $O_2$ , present in the flue gas (approximately 5% Abu-Zahran et. al 2007), on different amine solvents. In this sub-section the effect of  $O_2$  on MEA is discussed, work performed by a number of researchers is presented as far as it concerns both the MEA "disappearance" and the formation of the oxidative degradation products. The focus is to understand the degradation conditions, the parameters that affect the MEA oxidation, identify the major oxidative degradation products and the methods and instruments used to detect and quantify them.

In Table 2.4 some of the studies performed on oxidative degradation are presented. In these studies the oxidative degradation rate is assessed as a function of the MEA concentration changes and NH<sub>3</sub> (ammonia) evolution. It needs to be noted that NH<sub>3</sub> is one of the volatile MEA oxidative degradation products.

Table 2.4 Effects of O<sub>2</sub> on the MEA as reported in the literature

| Authors                   | Parameter<br>measured     | Instrument                   | Observations                                                                                                                     |
|---------------------------|---------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Supap et al. (2001)       | MEA                       | GC-MS                        | Oxidation more sensitive to O <sub>2</sub> concentration increase than MEA concentration increase                                |
| Chi and Rochelle (2002)   | NH <sub>3</sub> evolution | FT-IR                        | CO <sub>2</sub> presence and MEA concentration increased oxidation                                                               |
| Goff and Rochelle (2004)  | NH <sub>3</sub> evolution | FT-IR                        | Oxidative degradation rate increased with agitation rate and CO <sub>2</sub> concentration                                       |
| Bello and Idem (2006)     | MEA                       | GC-MS                        | MEA concentration, temperature and O <sub>2</sub> increase the degradation rate, CO <sub>2</sub> loading has the opposite effect |
| Supap (2006)              | MEA                       | HPLC                         | O <sub>2</sub> and MEA concentration and temperature increases cause an increase in the degradation rates                        |
| Uyanga and Idem (2007)    | MEA                       | HPLC                         | CO <sub>2</sub> loading increase was proved to have an inhibition effect to degradation                                          |
| Lepaumier et al. (2009) C | MEA                       | GC-MS, FT-ICR/MS, IC and NMR | 20% MEA<br>oxidation, small<br>amounts of amino<br>acids observed                                                                |

A number of researchers have also performed studies to detect and quantify the generated oxidative degradation products and suggest pathways for their formation.

Sexton (2008) subjected to oxidative degradation aqueous amine solutions in glass jacketed reactors at both low (100ml/min  $98\%O_2$  and 2%  $CO_2$ ) and high gas rates (7.5 L/min  $15\%O_2$  and 2%  $CO_2$ ). Samples were analyzed for

degradation using ion chromatography (IC) and High Performance Liquid Chromatography (HPLC) with evaporative light scattering detection. A Fourier Transform Infrared Analyzer (FT-IR) collected continuous gas-phase data on amine volatility and volatile degradation products (such as NH<sub>3</sub>). Hydroxyethylformamide (HEF), hydroxyethylimidazole (HEI), oxalate, acetate, glycolate and formate were found to be the major carbon containing MEA oxidation products. NH<sub>3</sub> and nitrates/nitrites were also detected.

Lepaumier at al. (2010) performed a study to examine degradation of five tertiary polyamines in the presence of O<sub>2</sub> and compared them with MEA. The experiment was performed in a stainless steel 100 ml batch reactor at 140 °C under pure O<sub>2</sub> pressure of 2 MPa for 15 days. At the end of the experiment liquid samples were analysed for degradation products using a GC-MS (Gas Chromatograph Mass Spectrometer), an FT-ICR/MS (Fourier Transformation Ion Cyclotron Resonance coupled with a Mass Spectrometer), an IC and an NMR (Nuclear Magnetic Resonance) system. The presence of acetate, formate, oxalate and glycolate was verified in the MEA degraded samples at concentrations of over 100 ppm with highest being the formate concentration which was measured as 2660 ppm. The overall MEA loss due to oxidative throughout the experiment was 21%.

Lepaumier et al. (2011) performed a study to compare, thermal and oxidative degradation of MEA, in pilot-scale plant (Esbjerg plant) samples with samples produced by lab-scale experiments. A lab scale experiment representative of oxidative degradation in the presence of CO<sub>2</sub> and air at absorber conditions (30% w/v aqueous MEA solution with initial CO<sub>2</sub> molar loading of 0.4, sparged with air and CO<sub>2</sub> at 55°C) was performed. Liquid samples from different parts of the process were taken from the Esbjerg plant during a 20 week experiment with 30% wt aqueous MEA. An LC-MS (Liquid Chromatography Mass Spectrometer) and a GC-MS system were used for the identification and quantification of the main degradation products. In the laboratory experiments, MEA degraded 5.8% after 9 days and the three main degradation products observed were 2-oxazolidone, HEF and HEI. According to the author, the former is formed from the reaction of MEA with formic acid. The oxidative degradation

products found in the pilot plant samples are presented in Table 2.5. The presence of acetate, formate, oxalate and glycolate was not verified in any of the samples as no work was performed for the detection and quantification of those compounds. 2-Oxazolidone, which has never before been reported as an MEA oxidative degradation product, was also detected in the laboratory samples and a possible pathway of its formation is also presented.

Table 2.5 Detected MEA degradation products in the samples produced by the Esbjerg pilot plant (Lepaumier et al. 2011)

| Oxidative degradation product                        |  |  |
|------------------------------------------------------|--|--|
| 2-oxazolidone                                        |  |  |
| HEI                                                  |  |  |
| HEF                                                  |  |  |
| N-(2-hydroxyethyl)acetamide                          |  |  |
| 2-hydroxy-N-(2-hydroxyethyl)acetamide                |  |  |
| N,N'-bis(2-hydroxyethyl)oxalamide                    |  |  |
| 4-(2-hydroxyethyl)piperazine-2-one                   |  |  |
| N-(2-hydroxyethyl)-2-(2-hydroxyethylamino )acetamide |  |  |

Vevelstad et al. (2011) performed a theoretical study to verify the suggested mechanisms for oxidative degradation, with CO<sub>2</sub>, based on the stability of the degradation products generated during the process, in order to explore the possible reaction mechanisms. This was attempted by performing calculations for geometry optimization, frequency and solvation (creation of a compound using a solvent and a solute). It was suggested that oxalic acid, oxalamide and 1-(2-hydroxyethyl)-imidazole (HEI) were the most favourable MEA oxidative degradation products.

Overall, it was noted that an increase in MEA concentration, temperature and  $O_2$  concentration has a positive effect on MEA degradation rate in contrast with the  $CO_2$  molar loading which seems to decrease the MEA loss rate. According to the literature the measured MEA loss due to degradation was up to 20%. It needs to be noted here that in all the studies presented researchers have exposed MEA

samples to conditions to accelerate oxidative degradation (elevated oxygen concentrations, pressures and temperatures). The present study attempted to assess the effect of oxygen on the solvent at conditions as close as possible to an actual amine scrubbing plant. It was also attempted to link the formation of oxidation products with the number of absorption/stripping cycles applied to the solvent. In Table 2.6 the major oxidative degradation products that were detected, sometimes quantified as well, and were common in all the studies are shown in Table 2.6.

Table 2.6 Most commonly reported MEA oxidative degradation products.

| Oxidative degradation product         |  |  |
|---------------------------------------|--|--|
| NO <sub>2</sub> /NO <sub>3</sub> ions |  |  |
| NH <sub>3</sub>                       |  |  |
| Oxalate                               |  |  |
| Formate                               |  |  |
| Acetate                               |  |  |
| HEI                                   |  |  |
| HEF                                   |  |  |

## 2.5.2 Thermal degradation

In this section, studies performed to assess the effect of temperature - close to the ones encountered during the stripping and reclaiming - in the presence of CO<sub>2</sub> on MEA are presented. It needs to be noted here that according to Daubert et al. 1987 MEA, in the absence of CO<sub>2</sub>, does not decompose at temperatures lower than 350 °C. In addition, Lepaumier et al. (2009 (a) and (b)) as well as Eide-Haugmo et al. (2011) measured the MEA decomposition in the absence of CO<sub>2</sub> at 135° and suggest that it can be considered negligible. Davis (2009) mention that MEA thermal degradation in the presence of CO<sub>2</sub> occurs at stripper temperature conditions (above 100 °C). Work performed by a number of researchers on the MEA loss due to thermal degradation, degradation products, their pathways of formation and quantification and corrosion, that was observed due to their presence, is discussed.

#### 2.5.2.1 **MEA loss**

A number of researchers performed studies on the MEA loss due to carbamate polymerisation at temperatures below 200°C. Davis (2008 & 2009) loaded different MEA solutions with CO<sub>2</sub> and degraded them in sealed bombs in a forced convection oven at 100-150 °C. Amine loss and degradation products were quantified as a function of degradation time by means of IC, HPLC and IC/MS (Ion Chromatograph Mass Spectrometer). It was calculated that the MEA loss rate quadruples for every 17°C increase in the degradation temperature used during these experiments. More specifically when a 7 molal aqueous MEA solution, with 0.4 initial CO<sub>2</sub> molar loading, was heated for less than 4 weeks at 150 °C an MEA loss of approximately 64% occurred. The decrease of loading had a first order effect, in other words if the loading is reduced from 0.4 to 0.2 it could cause a similar decrease in the MEA degradation rate. After 8 weeks of thermal degradation at 135 °C, a 7 molal aqueous MEA solution with initial CO<sub>2</sub> molar loading of 0.2 lost 32% of its initial MEA, whereas when the initial loading was 0.5 the MEA loss was up to 65%. It was also noted that at the beginning of the experiments the MEA loss rate was faster and it slowed down as the experiments progressed.

Lepaumier et al. (2009 (a) and (b)) performed studies on the degradation of MEA in the presence of CO<sub>2</sub> in a 100 ml batch reactor at 140 °C for 15 days. The initial amine concentrations were 4 mol /kg and a CO<sub>2</sub> pressure of 2 MPa was maintained in the reactor. The conditions were chosen to be close to the stripper conditions as CO<sub>2</sub> induced degradation is more likely to occur at these temperature conditions in the stripper. At the end of the experiment liquid samples were analysed for degradation products using a GC-MS, an FT-ICR/MS and an NMR system. It was noted that thermal degradation of MEA in the absence of CO<sub>2</sub> was very low but 42% degradation was measured in the presence of CO<sub>2</sub>, which classifies MEA as one of the least stable amines. An aqueous MEA solution of the same concentration was degraded at the same conditions in the absence of CO<sub>2</sub> and its degradation was considered negligible when compared with the MEA loss due to degradation in the presence of CO<sub>2</sub>.

Lepaumier et al. (2010) performed a study to examine degradation of five tertiary polyamines in the presence of CO<sub>2</sub> and compared them with MEA. The experiment was performed in a stainless steel 100 ml batch reactor at 140 °C under CO<sub>2</sub> pressure of 2 MPa for 15 days. At the end of the experiment liquid samples were analysed for degradation products using a GC-MS, an FT-ICR/MS and an NMR system. The MEA loss due to degradation was measured 42%. A pressure drop in the batch reactor was observed during the experiments which could be attributed to leaks and also the CO<sub>2</sub> consumption by the MEA during the degradation reactions.

Lepaumier et al. (2011) performed a study to compare thermal degradation of MEA in samples produced by a pilot-scale plant (Esbjerg plant) with samples from lab-scale experiments. The pilot plant samples were taken from all the parts of the pilot plant during a 3360 h (20 weeks) test campaign running with 30% wt MEA. A lab scale experiments was performed representative of thermal degradation in the presence of CO<sub>2</sub> at stripper conditions (30% w/v aqueous MEA solution with initial CO<sub>2</sub> molar loading of 0.5 at 135°C). An LC-MS and a GC-MS system were used for the identification and quantification of the main degradation products. The pilot plant used for comparison was the Esbjerg plant in Denmark. In a 7 ml of a 30% w/v aqueous MEA solution sample with rich initial CO<sub>2</sub> molar loading of (0.5 moles of CO<sub>2</sub>/mole of MEA) after degrading at 135°C for 5 weeks in 316 stainless steel cylinders, 57.6% of MEA loss was measured. It was noted that the degradation rate was linear for the first 4 weeks and then it started slowing down. From the results of the pilot plant the contribution of thermal degradation was limited.

Eide-Haugmo et al. (2011) performed a study on the thermal and chemical stability of new solvents for CO<sub>2</sub> capture, including MEA. Samples of 30% w/v aqueous amine solvents loaded (0.5 moles CO<sub>2</sub>/ mole of amine) and in the absence of CO<sub>2</sub> were placed in either at 316 SS cylinders or in glass tubes and were degraded at 135°C. LC-MS was used to determine the degradation rate as a function of amine loss. The first conclusion of that work was that the selection of the container (glass or metal) did not seem to have any impact on the solvent degradation rates. It was again concluded that thermal degradation of the amine

in the absence of CO<sub>2</sub> can be considered negligible under the amine scrubbing process conditions. As far as it concerns MEA, it was measured that, when the sample was degraded for 5 weeks at 135°C in presence of CO<sub>2</sub> (0.50 initial CO<sub>2</sub> molar loading), the MEA loss due to degradation was 55%. However, it is claimed by the authors that loading plays a significant role in the thermal degradation rates, therefore it was concluded that the degradation rate could be much more considerable if the initial loadings were higher.

To sum up, the CO<sub>2</sub> loading, temperature and degradation time had a considerable effect on MEA loss. The most dramatic MEA loss was reported by Davis as 65% after 8 weeks of thermal degradation at 150°C. In practice MEA thermal degradation in the presence of CO<sub>2</sub> at stripper temperatures is a slow phenomenon and that is why the temperature conditions chosen were higher to accelerate the degradation. Both Davis (2008&2009) and Lepaumier (2011) noted that the MEA degradation rate was faster at the beginning of the experiment and it started slowing down as the experiment progressed.

## 2.5.2.2 Degradation products and their concentrations

A few of the studies performed to assess the effect of temperature on MEA in the presence of CO<sub>2</sub>, performed work on the quantification of MEA major degradation products. Where % of formation of degradation products is the degradation product concentration divided with the initial MEA concentration and multiplied by 100.

Davis (2008 & 2009) performed a study, as described in Section 2.5.2.1, and found 2-oxazolidone, N,N'-di(2-hydroxyethyl)urea, 1-(2-hydroxyethyl)-2-imidazolidone (HEIA) and N-(2-hydroxyethyl)-ethylenediamine (HEEDA) to be the MEA major thermal degradation products as they make up for the majority of total MEA loss until half the original MEA was degraded, based on a nitrogen balance performed which was used for the purposes of a mass balance. After half the initial MEA is lost, according to Davis (2009) larger polymeric products, which have not been quantified, started being produced at considerable concentrations. The percentage of formation of the degradation products is

dependant on temperature as it contributes to faster kinetics, CO<sub>2</sub> loading as more MEA carbamate is available in the samples and the MEA initial concentration. Last but not least, the effect of a decrease of 10% in the MEA initial concentration resulted in a slightly more than 10% decrease in the formation of the degradation products.

Lepaumier et al. (2009 (a)) also examined thermal degradation of MEA in the presence of CO<sub>2</sub> (conditions presented in Section 2.5.2.1). The main degradation proportions due to different reactions were reported to be imidazolidones with percentage of formation 30% (such as the HEIA production) and addition reactions with 5% percentage of formation (such as the 2-oxazolidone production).

Lepaumier et al. (2009 (b) and 2010) reported that the main degradation products identified in the MEA degraded samples were HEIA, monoethanolamine urea and HEEDA and their formation percentages were 12, 3 and 2.6 % respectively.

Lepaumier et al. (2011) compared thermal loss of MEA in samples from the Esbjerg pilot-scale plant in Denmark along with lab-scale experiments. 2-Oxazolidone, HEEDA and HEIA were again identified as the MEA major thermal degradation products in the presence of CO<sub>2</sub> at stripper conditions in the experiments performed in the laboratory (see Section 2.5.2.1). It was noticed that HEIA percentage of formation increased with time reaching approximately 50% after 5 weeks which is a sign of its stability. In contrast, the percentages of formation of 2-Oxazolidone and HEEDA remain stable, up to approximately 32% and 8%, respectively. This shows that they are probably intermediate products of MEA thermal degradation, undergoing further reactions. Very low concentrations of HEIA and no HEEDA were detected in the samples from the pilot plant.

To sum up, from the major degradation products HEIA was the one that was detected in all the samples with formation percentage of 50%, HEEDA was present in most studies, although it was not found in the pilot plant samples. Similar conclusions were drawn for 2-oxazolidone which was not either present

in the pilot plant samples and its formation rates were quite different between the different studies, probably due to the different experimental conditions used.

## 2.5.2.3 Pathways of formation of degradation products

Polderman et al. (1955) performed a study on MEA degradation products in the presence of CO<sub>2</sub> from gas treating plants. Chemical analysis of the degradation products and MEA contents was performed by means of titrations and other analytical procedures such as Kjeldahl and Van Slyke. It was observed that just by heating the carbonate salt, at temperatures encountered in scrubbing systems, MEA is converted into HEIA and HEEDA. A thermal degradation pathway for MEA, shown in Figure 2.6, was proposed according to which the first product generated is 2-Oxazolidone which then, if it reacts with another MEA, is converted into HEIA. HEIA then hydrolyses to give HEEDA. The equilibrium reaction of the HEIA hydrolysis to HEEDA is influenced by the temperature and CO<sub>2</sub> partial pressure. The HEEDA formed restores part of the lost alkalinity but because it is a stronger base than MEA is more difficult to be regenerated when it absorbs CO<sub>2</sub>.

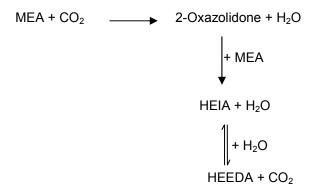



Figure 2.6 MEA thermal degradation pathway in the presence of CO<sub>2</sub> as proposed by Polderman (1955)

Yazvikova et al. (1975) performed a study on the pathways of MEA thermal degradation products in the presence of CO<sub>2</sub> at temperatures encountered in gas treating plants, the temperature used in this study was 200°C and chemical analysis was performed using an IR-spectroscopic method. It was observed that the overall rate of MEA degradation in the presence of CO<sub>2</sub> is limited by the slow rate of formation of 2-Oxazolidone. The reaction of 2-Oxazolidone with

MEA is very rapid and, consequently, it is the reaction that plays the key role in the losses of active MEA. It was noted that the reaction of 2-oxazolidone with MEA does not give as a immediate product HEIA but, a newly introduced product, called N,N'-di(hydroxyethyl)urea. Thereafter, its concentration starts to fall and it is converted to HEIA as an effect of temperature. HEIA then hydrolyses into HEEDA. The proposed pathway is shown in Figure 2.7.

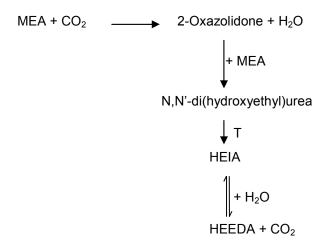



Figure 2.7 MEA thermal degradation pathway in the presence of CO<sub>2</sub> as proposed by Yazvikova (1975)

Davis (2008 & 2009) loaded aqueous MEA solutions with CO<sub>2</sub> and degraded them at temperatures of up to 150 °C and analysed them for degradation products by means of IC, HPLC and IC/MS. It was observed that as far as it concerns MEA, the mechanism for thermal degradation of MEA in the presence of CO<sub>2</sub> at temperatures below 200 °C is called carbamate polymerization. The pathway of formation of degradation products that can be seen in Figure 2.8 is proposed in his PhD thesis (2009). It was observed that the 2-oxazolidone production is a rate-limiting step in the carbamate polymerization procedure and that, contrary to what was previously reported by Polderman (1955) and Yavzikova (1975), HEEDA is a precursor of HEIA.

$$\begin{array}{c} \text{MEA} + \text{CO}_2 + \text{H}_2\text{O} & \Longrightarrow & \text{MEA carbamate + protonated MEA} \\ & \downarrow + \text{MEAH}^+ \\ & 2 - \text{Oxazolidone} & \Longrightarrow & \text{N,N'-di(2-hydroxyethyl)urea} \\ & \downarrow + \text{MEA} \\ & \downarrow + \text{MEADA} & \downarrow + \text{CO}_2 \\ & \downarrow + \text{CO}_2 & \text{HEIA} \\ & \downarrow + 2 - \text{Oxazolidone} \\ & \downarrow + \text{CO}_2 & \text{Cyclic Urea of Trimer} \\ & \downarrow \\ & \text{Further Polymeric Products} \\ \end{array}$$

Figure 2.8 MEA thermal degradation pathway in the presence of CO<sub>2</sub> as proposed by Davis (2009)

According to this pathway proposed by Davis (2009) the MEA carbamate can cyclise going through a dehydrolysis step and forms 2-oxazolidone. Another molecule of MEA can attack 2-oxazolidone - at the ketone group - and give MEA urea (N,N'-di(2-hydroxyethyl)urea). 2-Oxazolidone can also react with a molecule of MEA to form N-(2-hydroxyethyl)-ethylenediamine (HEEDA). If HEEDA reacts with a molecule of CO<sub>2</sub> gives a HEEDA carbamate (which like the MEA carbamate) can undergo through ring closure to form 1-(2-hydroxyethyl)-2-imidazolidone (HEIA). HEEDA can also attack 2-oxazolidone (the same way with MEA) to form N-(2-hydroxyethyl)-diethylenetriamine (MEA trimer). The polymerization procedure can be further continued to give other polymeric products.

Lepaumier (2009 (a), 2009 (b) and 2010) performed thermal degradation studies of 40 ml of 4 mol/kg aqueous MEA solutions in the presence of CO<sub>2</sub> (pressures of up to 2 MPa) at 140°C for 15 days in a 100 ml stainless steel batch reactor. The liquid samples were analysed for degradation products using a GC-MS, an FT-ICR/MS and an NMR system. The formation of 2-oxazolidone was observed which is considered to be sensitive and react easily with another amine to give additional products. For MEA the main degradation product is an imidazolidone (HEIA) which is a very stable product. HEEDA, is another degradation product of MEA, which by its structure is favourable to lead to imidazolidones in other words the pathway of formation of degradation products presented agrees with the one presented by Davis (2009), see Figure 2.8.

Lepaumier et al. (2011) performed lab-scale experiments of MEA thermal degradation in the presence of CO<sub>2</sub> at stripper conditions (30% w/v aqueous MEA solution with initial CO<sub>2</sub> molar loading of 0.5 at 135°C) and compared the thermal degradation pathways of MEA in samples from Esbjerg pilot plant in Denmark. An LC-MS and a GC-MS were used for the analysis of the degraded samples. In the samples from the lab-scale experiments 2-Oxazolidone, HEEDA and HEIA were again identified as the MEA major thermal degradation products in the presence of CO<sub>2</sub> at stripper conditions. It was noticed that HEIA concentration increased with time which is a sign of its stability, in contrast with the concentrations of 2-Oxazolidone and HEEDA that remain stable which shows that they are probably intermediate products of MEA thermal degradation, undergoing further reactions. A mechanism is proposed which comes into agreement with the degradation pathway proposed by Davis (2009); see Figure 2.8, for the major degradation products. In the pilot plant results, a very small concentration of HEIA was measured but no HEEDA was detected in the samples.

A theoretical study was performed by Vevelstad et al. (2011). This study was performed in order to verify the suggested mechanisms for thermal degradation with CO<sub>2</sub> based on the stability of the degradation products generated. This was attempted by performing calculations for geometry optimization, frequency and solvation (=creation of a compound using a solvent and a solute). It was suggested that for the thermal degradation of MEA in the presence of CO<sub>2</sub> the key primary degradation product is 2-oxazolidone, which then reacts to form further compounds. The total reaction mechanisms, suggested in this study, for MEA thermal degradation in the presence of CO<sub>2</sub> are, according to the author, energetically favourable.

To conclude, it is shown that the mechanism of formation of thermal degradation products of MEA in the presence of CO<sub>2</sub> below 200°C is carbamate polymerization. Some early studies performed, on the MEA thermal degradation pathways, claimed HEIA was a precursor of HEEDA. Recent studies agree on the contrary. Overall, the MEA major thermal degradation products identified are 2-oxazolidone, HEEDA and HEIA with HEIA presented, by most studies, as the

most stable degradation product and 2-oxazolidone as the first and key product that causes the MEA deactivation.

#### 2.5.2.4 Corrosion due to thermal degradation products

Polderman et al. (1955) suggest that the effect of HEIA production in the plant operation is that the viscosity of the solution increases and if its concentration reaches high levels, precipitation of residues in parts of the equipment could be caused. (HEIA can be removed by distillation). Also, studies were performed to assess the effect of HEEDA and HEIA in the corrosion of carbon steel equipment. 20% per wt pure aqueous MEA solutions or spiked with 0.5% HEEDA and HEIA were heated to temperatures up to 150 °C for 350 hours. It was observed that, in the presence of HEEDA, the average liquid phase penetration in inches per year was 0.048 (1.22 mm/year) as opposed to 0.031 (0.79 mm/year) observed in the pure MEA aqueous solutions. Overall it was observed that the CO<sub>2</sub> is the primary corroding agent in uncontaminated solutions.

According to the study performed by Yazvikova et al. (1975), urea, such as N,N'-di(hydroxyethyl)urea that has been reported as an MEA thermal degradation product in the presence of CO<sub>2</sub> at stripping conditions, and its derivatives are known to form complexes with transition metals such as iron, therefore it could be linked with corrosion signs of steel equipment that has been observed in gas treating plants.

According to DuPart et al. (1993) an increase in CO<sub>2</sub> loading, MEA concentration or temperature has a positive effect on corrosion rates of carbon steel (up to 45 microns/year), 304 SS (up to 10 microns/year) and 316 SS (up to 5 mocrons/year). The study was performed on equipment from pilot plants. It is also suggested that the presence of MEA carbamates - as viable intermediary salts - impacts the corrosivity of MEA.

Kongstein E. O. and B. Schmid (2010) investigated the corrosion rates of 316SS with 5 M aqueous MEA solution saturated with 10% CO<sub>2</sub> in N<sub>2</sub> in a laboratory

study at 135°C. A corrosion rate of 0.25 mm/year was measured in the first 10 hours of experimental time, decreasing to 0.15 by 50 hours. The effect of temperature is again highlighted as in the aforementioned studies.

During the years, considerable research has been performed to develop corrosion inhibitors and equipment to remove the degradation products and minimise their effect on the equipment. The most effective inhibitors are heavy metals such as arsenic or vanadium but the environmental concerns associated with them, have had an impact on their popularity.

Some recent studied have tested different additives considered to have an inhibition effect on MEA oxidation and the production of corrosive heat stable salts. Goff and Rochelle (2006) tested different additives to assess their effect on MEA oxidation and found that inhibitor A (a proprietary inorganic compound), Na<sub>2</sub>SO<sub>3</sub> (sodium sulphite) and formaldehyde significantly reduced MEA oxidation. Sexton and Rochelle (2009) claim that the proprietary inhibitors A and B as well as EDTA were effective oxidation inhibitors. Supap et al. (2011) investigated compounds such as sodium sulfite (Na<sub>2</sub>SO<sub>3</sub>), potassium sodium tartrate tetrahydrate (KNaC<sub>4</sub>H<sub>4</sub>O<sub>6</sub>.4H<sub>2</sub>O), ethylenediaminetetraacetic acid (EDTA), hydroxylamine (NH<sub>2</sub>OH) and blends of them which were found to effectively inhibit O<sub>2</sub> induced degradation of MEA during CO<sub>2</sub> capture from coal flue gases

# 2.5.3 Mixed degradation – Flue gas studies from actual plants

Strazisar et al. (2002) performed experiments to identify and quantify MEA degradation products found in a CO<sub>2</sub> capture plant from a coal-fired boiler used to produce electricity in Trona, California. Three different samples were obtained: virgin concentrated MEA, "lean" MEA (taken before the CO<sub>2</sub> absorption) and from the reclaimer bottoms, therefore after the MEA has been distilled for the degradation products removal. A combination of different analytical tools was used to identify and quantify the compounds present in solutions. A GC-MS along with a GC-FTIR system were used for the analysis of volatile organic compounds with two different GC columns in order to be able to

analyses products with different polarities, no information is given on the extraction method used, as water samples can not be imported to the GC. An LVHRMS (low voltage high-resolution mass spectrometry) was used to obtain precise molecular masses for the organic compounds analysed. Finally, an IC system was used for the detection and quantification of inorganic ionic compounds and an ICP-AES system to measure concentrations of metals.

It was observed that 2-oxazolidone and HEIA that are known MEA degradation products due to CO<sub>2</sub> presence and temperature were present in the samples from the reclaimer bottoms. Acetic, propionic and butyric acids, previously reported as oxidative degradation products, were also present. Finally, N-acetylethanolamine and N,N-diacetylethanolamine are presented by the author as products of the reaction of MEA with acetic acid and they are claimed to be the most abundant products. Seven metal cations were present in the analysed reclaimer solutions and it is believed that they manly originated from the coal. Finally, the nitrate and sulphate anions were present amongst others on the reclaimer bottoms samples. Table 2.7 presents the detected organic compounds in the samples taken from the reclaimer bottoms of the pilot plant. It is interesting to note that HEEDA was not present in this pilot plant samples. HEEDA was not detected in the pilot plant studies that Lepaumier et al. 2011 present either.

Table 2.7 Detected organic compounds from MEA reclaimer bottoms (Strazisar et al. 2002)

| Compound                    | Compound                  |  |
|-----------------------------|---------------------------|--|
| HEIA                        | $NH_3$                    |  |
| N-acetylethanolamine        | acetic acid               |  |
| 2-oxazolidone               | propionic acid            |  |
| N-glycylglycine             | 2,6-dimethyl-4-           |  |
| N-grycyrgrycille            | pyridinamine              |  |
| N-(hydroxyethyl)succinimide | 1-methyl-2-               |  |
| N-(nydroxyetnyr)succinimae  | imidazolecarboxaldehyde   |  |
| N,N-diacetylethanolamine    | 2-imidazolecarboxaldehyde |  |

Strazisar et al (2003) conducted a study to detect the MEA degradation products and their pathways of formation from samples of a CO<sub>2</sub> capture plant from a coal-fired boiler used to produce electricity in Trona, California. The samples were taken from the same parts of the process and the analytical tools were the same as described in Strazisar et al. 2002. In Table 2.8 the degradation products

detected in the samples from the reclaimer bottoms of the pilot plant are presented. In this study some new major MEA degradation products were observed. This indicates that there are chemical degradation reactions that occur in the real plant conditions that do not occur in the laboratory experiments where pure gases are used. A new mechanism was proposed according to which carbamate polymerisation (proposed for MEA thermal degradation in the presence of CO<sub>2</sub> at temperatures below 200 °C) is a minor pathway. According to the proposed pathway, N-acetylethanolamine is believed to be formed as a product of the reaction of acetic acid with MEA, N-acetylethanolamine then may react with another MEA to give 2-hydroxyethylamino-N-hydroxyethyl acetamide. This molecule may then form either 4-hydroxyethyl-2-piperizinone or 1-hydroxyethyl-2-piperazinone. Another similar mechanism starting with the reaction of propionic acid with MEA could justify the formation of 3hydroxyethylamino-N-hydroxy-ethyl propanamide and 1-hydroxyethyl-3homopiperazine.

Concerning the rest of the degradation products, 2-oxazolidone and HEIA are the degradation products form by carbamate polymerisation but they are reported as minor components and ammonia, acetic and propionic acid as oxidation products. Once again it is interesting to note again that HEEDA was not present in this pilot plant samples either as well as in the study by Lepaumier et al. 2011.

Table 2.8 MEA degradation products found in reclaimer bottoms samples of a pilot plant (Strazisar et al. 2003)

| Compound                        | Compound                      | Compound                |
|---------------------------------|-------------------------------|-------------------------|
| N-Formylethanolamine            | HEIA                          | NH <sub>3</sub>         |
| N-acetylethanolamine            | 1-hydroxyethyl-2-piperazinone | acetic acid             |
| 2-oxazolidone                   | 4-hydroxyethyl-2-piperizinone | propionic acid          |
| N-(hydroxyethyl)-lanthamide     | 3-hydroxyethylamino-N-        | 2,6-dimethyl-4-         |
|                                 | hydroxy-ethyl propanamide     | pyridinamine            |
| 1-hydroxyethyl-3-homopiperazine | 2-hydroxyethylamino-N-        | 1-methyl-2-             |
| 1-nydroxyednyi-3-nomopiperazme  | hydroxyethyl acetamide        | imidazolecarboxaldehyde |

Bello and Idem (2005) conducted experiments under absorption and desorption conditions (55-120 °C) with MEA in concentrations 5 and 7 mol/L, O<sub>2</sub> pressures 250-350 kPa and CO<sub>2</sub> loading 0-0.44 mol CO<sub>2</sub>/mol of MEA. The effects of

temperature, MEA concentration, O<sub>2</sub> pressure and CO<sub>2</sub> loading on degradation were examined. For this purpose, a stainless steel rotary-type autoclave reactor and GC/MS were used in order to perform these experiments. The GC-MS system used was equipped with a high polarity poly(ethylene glycol) column. The sample was injected in the column with an autosampler as reproducibility issues were faced during the analysis, problem that was observed in the present study as well. It is claimed that the GC-MS system used had an estimated error of about +/- 3%. Once again no information is given on the extraction method used to partition the organics from water samples into a different solvent, as water samples can not be imported in a GC system.

Table 2.9 presents the oxidative degradation products detected in the degraded samples at 120°C in the presence of O<sub>2</sub> after 135 h without CO<sub>2</sub>. As shown in Table 2.9 HEIA is presented as an oxidative degradation product. HEEDA and 2-oxazolidone were not detected in the samples that were degraded in the presence of CO<sub>2</sub>. In the experiment performed at similar conditions to the present study, the major degradation products detected in a 7 mol/L aqueous MEA solution at 120°C in the presence of CO<sub>2</sub> after 135 hours were 12-crown-4, 2-(2-ethoxyethoxy)ethanol and 1,4,7,10,13,16-hexaoxacyclooctadecane. These large polymeric compounds could have been formed due to carbamate polymerisation but, as the pathways of CO<sub>2</sub> induced degradation at stripper conditions have not been yet identified, it is difficult to draw a firm conclusion for their formation mechanism. Overall, it is claimed by the authors that the presence of CO<sub>2</sub> causes less oxidation products to be formed.

Table 2.9 Summary of the degradation products detected in samples that degraded at 350 kPa O<sub>2</sub> at 120°C for 135h (Bello and Idem, 2005)

| Compound                        | Compound                                        | Compound                   |
|---------------------------------|-------------------------------------------------|----------------------------|
| N-(2-hydroxyethyl) acetamide    | 2,2-dimethyl-3(2H)-<br>furanone                 | 4-methylmorpholine         |
| Formic acid                     | N-(2-hydroxyethyl) succinimide                  | HEIA                       |
| 1H-imidazole                    | 1-piperazineethanol                             | 3-methylpyridine           |
| N-formyl-N-<br>methylformamide  | diisopropanolamine                              | acetamide                  |
| 1,3-dioxane                     | (dimethylamino)<br>ethylene tetr-<br>butylamine | nitrosomethane             |
| uracil                          | 2-(2aminoethoxy)<br>ethanol                     | 2-(methylamino)<br>ethanol |
| 4-(hydrazinocarbonyl) imidazole | 2-methylpropanitrile                            | acetic acid                |
| 5-(hydrazinocarbonyl) imidazole | ethoxyethene                                    | 2-methyl-1H-imidazole      |

Supap et al. (2006) performed a comparative study between GC-MS, High Performance Liquid Chromatography-Refractive Index Detection (HPLC-RID) and Capillary-Electrophoresis-Diode Array Detection (CE-DAD) for the detection of MEA and its degradation products in systems of MEA/H<sub>2</sub>O/O<sub>2</sub>, MEA/H<sub>2</sub>O/O<sub>2</sub>/CO<sub>2</sub>, MEA/H<sub>2</sub>O/CO<sub>2</sub>. These experiments were conducted in a 600 ml stainless steel batch reactor using MEA concentrations of 5 kmol/m<sup>3</sup>, O<sub>2</sub> pressures of 250 kPa, degradation temperatures of 328 or 393 K and CO<sub>2</sub> loading 0.51 mol of CO<sub>2</sub>/mol of MEA for up to 350 hours. The GC-MS system used was equipped with three different columns, a high polarity, a medium polarity and a low polarity column, for the analysis of MEA and its degradation products. An autosampler/autoinjector was used again but no information was given on the extraction method used as no water samples can be imported in a GC-MS system. The same conditions were used to run the samples in all the three columns. The HPLC system was equipped with two different experimental set ups, enabling it to analyse MEA and the degradation products that had the ability to acquire positive charges under acidic conditions. Finally, the CE-CAD system was using a set ups and conditions capable of detecting MEA and its basic and acidic products.

It was found that the GC-MS was the most sensitive technique to detect the greatest number of MEA degradation products in the shortest time and that the

sample preparation needed was much less than that for the other methods used. Moreover, in the system that CO<sub>2</sub> was present, the MEA oxidative degradation rate was found to be lower than in the system with no CO<sub>2</sub>. Compounds such as HEIA, NH<sub>3</sub>, and formic, acitic and oxalic ions were present, amongst many others, in the samples analysed. In Table 2.10 a summary of the compounds found in the degraded samples and have been previously reported in the literature is presented. It is interesting to note that HEEDA and 2-oxazolidone were not detected in these samples either. The author is not classifying the compounds under the categories of thermal and oxidative degradation.

Table 2.10 Summary of the compounds found in the degraded samples in the  $MEA/H_2O/O_2/CO_2$  system (Supap et al. 2006)

| Compound                     | Compound                               | Compound                          | Compound             |
|------------------------------|----------------------------------------|-----------------------------------|----------------------|
| 1-methylazetidine            | N(2-hydroxyethyl) succimide            | 4,5 dimethyloxazole               | acetic acid          |
| imidazole                    | 1-amino-4-methyl piperazine            | 18-crown-6                        | pyrimidine           |
| D,L homoserine lactone       | 2-pyrolidinone                         | ethylurea                         | acetamide            |
| N-(2-hydroxyethyl) acetamide | N-methylene ethanamine                 | N-glycylgycine                    | acetamide            |
| 1,3-dioxane                  | 5-aminovaleric acid                    | dimethylhydrazone-2-<br>propanone | 2-methylaminoethanol |
| N-methyl formamide           | D,L-aspartic acid                      | HEIA                              | acetaldehyde         |
| 2-ethyl-1H-imidazole         | 2-[(2-<br>aminoethyl)amino]<br>ethanol | NH <sub>3</sub>                   | ethanol              |
| uracil                       | ethylamine                             | formic acid                       | oxalic acid          |

To conclude, a wide range of degradation products are presented both in the samples from a pilot plant and the samples produced by a lab procedure. The commonly reported known MEA oxidative degradation products were oxalic and formic acids and NH<sub>3</sub>, whereas from the known MEA thermal degradation products only HEIA was detected in all the samples. HEEDA was not detected in any of the samples and 2-oxazolidone in some of them, which could lead to the conclusion that at actual plant conditions different reactions may occur than those encountered in controlled laboratory experiments or that HEEDA is one of the intermediate degradation products in the carbamate polymerisation process as indicated by Davis 2009, Lepaumier (2009 (a), 2009 (b), 2010 and 2011) and as observed in the present study as well.

The presence of other gases in the actual plant inlet gas, such as SO,  $SO_2$  and  $NO_x$ , in combination with  $O_2$  and the elevated temperatures encountered in the stripper might cause different interactions between the degradation products and lead into different degradation pathways. Note also here that at the experiments performed in laboratory environments the conditions were accelerated to produce highly degraded samples within a reasonable timescale. Therefore, a need for further research to explore the pathways of formation of degradation products under actual plant conditions is illustrated as well as developing chemical analysis methods for the identification and quantification of the degradation products.

## 2.6 SUMMARY

Amine scrubbing has been an established technology over the past several decades for removal of acid gases (such as CO<sub>2</sub> and H<sub>2</sub>S) from gaseous streams in the chemical and oil industries. The key issues concerning the design and the technical and economic operation of an amine scrubbing system for a coal fired power plant, include the selection of the appropriate solvent and its management for a specific system, the system's design characteristics and the energy requirements that have a detrimental effect on the cost of the technology.

Primary, secondary, tertiary and sterically hindered amines are the most common solvents for CO<sub>2</sub> removal from gaseous streams but still MEA is the solvent of choice and the baseline solvent for comparison due to good characteristics over other amines and the experience developed due to its wide use. Issues such as solvent volatility losses, degradation due to the presence of CO<sub>2</sub> at elevated temperatures, O<sub>2</sub>, SO<sub>x</sub>, NO<sub>2</sub> and fly ash, that are addressed with additional equipment and solvent make up, cause the technology costs to rise and need further research because of the potential environmental impact of the disposal of the by-products generated.

The irreversible reactions which may occur during the carbon capture process that result in products, from MEA, that can not be recovered are called degradation. Oxidative degradation is defined as the reactions of MEA, in the absence or presence of CO<sub>2</sub>, with O<sub>2</sub> at absorber conditions. The O<sub>2</sub> effect on MEA is quite considerable with reported MEA losses due to oxidation up to 20%. The major MEA oxidation products reported in the literature are NO<sub>2</sub>/NO<sub>3</sub> ions, NH<sub>3</sub>, oxalate, formate, acetate, HEI and HEF.

Thermal degradation is defined as the irreversible reactions of MEA with CO<sub>2</sub> that occur due to the elevated temperatures encountered in the stripper, the chemical reaction process is termed carbamate polymerisation. The effect of CO<sub>2</sub> loading, temperature and degradation time had a considerable effect on MEA with reported MEA loss of up to 65%. The major MEA thermal degradation products, in the presence of CO<sub>2</sub> at temperatures below 200°C, reported are

HEIA, HEEDA and 2-oxazolidone. HEIA is reported as the most stable with formation percentages that reach 50% whereas 2-oxazolidone as the first step to MEA thermal degradation and its formation as a critical reaction. Some discussion on the pathways of formation due to some early studies that presented HEEDA as the MEA most stable degradation product and as a HEIA precursor are challenged by new studies that claim the opposite. Last but not least, some issues of corrosion of different types of steel due to temperature, MEA concentration and MEA degradation products presence are presented.

Finally, a few studies presenting a mixture of oxidative and thermal degradation are presented as well as some studies with analyses of samples from actual plants. Most of the major oxidative degradation products were present in those samples whereas HEEDA (major thermal degradation product) was not detected in any of the samples and 2-oxazolidone that was detected in a few cases. A wide list of degradation products detected by these studies is also presented.

# CHAPTER 3 EXPERIMENTAL

## 3.1 INTRODUCTION

In this chapter the materials, methods and systems used to perform this research work are discussed and the results processing procedures are detailed.

Section 3.2: The chemicals and materials used in the present study are presented.

Section 3.3: The analytical equipment used to perform the present study is described.

Section 3.4: The absorption/stripping rig built, capable of applying repeated cycles of absorption/stripping to different amine solvents, is presented. The important parameters, calculations and course of action taken to design and commission this rig are also detailed.

Section 3.5: The thermal treatment rig and the experimental procedure developed in order to thermally degrade MEA samples by exposing them to high temperatures for prolonged periods of time are presented. The parameters considered, the calculations, the design and process developed are also described.

Section 3.6: The procedure followed and the results processing to determine the CO<sub>2</sub> volume at the absorption/stripping rig's outlet by means of microGC is detailed.

Section 3.7: The inorganic carbon content measurement procedure, used to determine the CO<sub>2</sub> molar loading of MEA, and the results processing methods and calculations are described.

Section 3.8: The analytical procedure for the detection and quantification of the major oxidative degradation products of MEA is presented. The method development and final procedure are described along with the calibration curves and the method detection limits.

Section 3.9: The GC-MS available equipment is described along with the changes made on the instrument setups and the procedures followed in order to develop and apply the appropriate method for the analysis of the MEA and its major thermal degradation products. The calibration curves produced are also presented.

Section 3.10: Presents the description of the experimental procedure followed for the generation of thermally degraded samples and the procedure developed to assess the effect of thermal treatment on the solvent.

Section 3.11: The summary section of the experimental chapter.

# 3.2 MATERIALS

All the chemicals used in the laboratory work are listed in Table 3.1.

Table 3.1 Chemicals and associated materials used and their sources

| Chemical                                                         | Function                | Supplier and Cat. No.          |
|------------------------------------------------------------------|-------------------------|--------------------------------|
| Paraffin oil                                                     | Oil bath medium         | Fisher Scientific P/0320/17    |
| Ethanolamine 99.5%                                               | CO <sub>2</sub> solvent | Fisher Scientific<br>E/0701/17 |
| SulfaVer 4 pillows                                               | Sulphate analysis       | HACH® 2106769                  |
| NitraVer 5 pillows                                               | Nitrate analysis        | HACH® DR/890                   |
| NitriVer 2 pillows                                               | Nitrite analysis        | HACH® DR/890                   |
| OnGuard II H cartridges                                          | IC sample pre-treatment | Dionex 057086                  |
| TraceCERT  Nitrate standard                                      | Chemical analysis by IC | Sigma-Aldrich<br>74246-100mL   |
| TraceCERT  Nitrite standard                                      | Chemical analysis by IC | Sigma-Aldrich<br>67276-100mL   |
| Potassium nitrite 97%                                            | Chemical analysis by IC | Acros Organics<br>222702500    |
| Sodium nitrate                                                   | Chemical analysis by IC | Fisher Scientific S/5560/53    |
| Formic acid 98+%                                                 | Chemical analysis by IC | Fisher Scientific F/1850/PB08  |
| Acetic acid glacial 99.7%                                        | Chemical analysis by IC | Fisher Scientific A/040/PB08   |
| Oxalic acid 99.5-100.5%                                          | Chemical analysis by IC | Fisher Scientific O/0600/53    |
| 2-Oxazolidone<br>98%                                             | Product of degradation  | Sigma-Aldrich<br>09409-5G      |
| 1-(2-Hydroxyethyl)-2<br>-imidazolidinone 75% in H <sub>2</sub> O | Product of degradation  | Sigma-Aldrich<br>378658-250mL  |

| Chemical                                                         | Function               | Supplier and Cat. No. |
|------------------------------------------------------------------|------------------------|-----------------------|
| N,N-(2-Hydroxyethyl)                                             | Product of degradation | Sigma-Aldrich         |
| formamide                                                        | Troduct of degradation | S617296-1EA           |
| N-(2-Hydroxyethyl)                                               | Product of degradation | Sigma-Aldrich         |
| ethylenediamine                                                  | Froduct of degradation | 127582                |
| 17% O <sub>2</sub> , 15% CO <sub>2</sub> (w/w)/                  | Micro-GC calibration   | Scientific and        |
| 16% O <sub>2</sub> , 10% CO <sub>2</sub> (v/v) in N <sub>2</sub> | Where-Ge canoration    | Technical Gases       |
| Diethyl ether                                                    | GC-MS analysis         | Fisher Scientific     |

All aqueous dilutions where necessary were performed with deionised water.

## 3.3 ANALYTICAL EQUIPMENT

The analytical equipment and specifications for each instrument are listed below:

## 1. Ion Chromatography, IC

The IC system was used for the analysis of the major MEA oxidative degradation products. It was the Dionex ICS-2000 fitted with the IonPac AS11-HC anion exchange column with a conductivity-dependant detector.

## 2. Gas Chromatography – Mass Spectrometry, GC-MS

The GC-MS system was used for the analysis of MEA and its major thermal degradation products. All work was performed on a Perkin Elmer CLARUS 500 GC-MS. The GC columns used were the Elite-5MS by Perkin Elmer and the Rtx 5 Amine from Restek with different extraction methods and instrument conditions until good responses were obtained.

## 3. The Micro Gas Chromatograph, micro-GC

The micro-GC (Varian CP-4900 running Galaxie software with a thermal conductivity detector and the packed column M5A BF with helium as a carrier gas) was used to measure CO<sub>2</sub> concentrations at the exit of the gas absorption/desorption rig described in one of the following sections.

4. Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES
For the analysis of the corrosion products an ICP-OES system was used. The instrument used was the Perkin Elmer Optima 2100DV ICP-OES running the WinLab 32 software.

#### 5. Carbon Contents of Aqueous Solutions

The CO<sub>2</sub> molar loadings of the MEA samples were determined by means of the inorganic carbon measurement with a TOC instrument. These measurements were made with a Total Organic Carbon Analyser TOC-500(A) by Shimadzu using the TOC-control-V software.

## 6. Colorimetric Determinations of Anions

These were performed with the HACH portable data logging colorimeter DR/890

## 3.4 ABSORPTION/STRIPPING RIG

In this section the absorption stripping rig design and commissioning are described. The purpose of this system was to be able to apply repeated cycles of absorption/stripping to different amines using conditions as close as possible to the conditions used on an actual amine scrubber. The solvent behaviour, the parameters that affect its operational lifetime and its CO<sub>2</sub> loading capacity were assessed using this system. The system parts are also listed.

## 3.4.1 Absorption/stripping rig development

The design of the experimental rig involved the literature review, presented in Chapter 2, and a visit to the University of Texas to attend the Rochelle meeting in January 2008. Also present at the meeting were researchers from the University of Regina Canada and the NTNU University, Norway.

The salient points of the visit are presented here.

The subjects presented fell into four categories:

- Solvent Management
- Thermodynamics and Solvent Development
- Rates and Absorber Modelling
- System Modelling and Sequestration

The main area of interest in the current project is solvent management and in this category the subjects presented were as follows:

- Oxidative and thermal degradation of MEA, blends of MEA and aqueous Piperazine (PZ), and AMP.
- o Theoretical study of amine degradation using computational chemistry
- The oxidative degradation and oxidative reduction potential of the solvent ROC20.
- Degradation of the solvent ROC16 (which is a novel amine solvent) and on the solubility of potassium sulphate (K<sub>2</sub>SO<sub>4</sub>) in CO<sub>2</sub> - loaded MEA/PZ solutions.

 Environmental impacts and various aspects of the absorbents used for the carbon dioxide capture

The main purpose of the trip was to visit the laboratories used for the experiments. The first apparatus used for the oxidative degradation experiments is shown in Figure 3.1 and is called the "low gas flow" apparatus. In this system the  $O_2$  and  $CO_2$  mixture, which is controlled by a rotameter, is fed to the saturator.



Figure 3.1 Low flow gas apparatus at Austin

Then, the saturated mixture enters the reactor from the top and it is agitated to be mixed with the solvent. The system is stopped once a day to take samples. Analysis for amino acids and aldehydes are performed by IC and HPLC. The second system used for these sets of experiments is the "modified low gas flow" apparatus which is the same system but the reactor is fed with CO<sub>2</sub> and O<sub>2</sub> gases from different bottles. This is done because the pure O<sub>2</sub> speeds up the degradation. Finally, the third system used is the "high gas flow" apparatus which can be seen in Figure 3.2.



Figure 3.2 High gas flow apparatus in Austin

This system is again similar to the "low gas flow" system but the gas inlet is from the bottom of the glass reactor, the gas and the amine being mixed in the reactor. From the top of the reactor there is a heated line which takes samples at specific time intervals and transfers them to an FT-IR system. This apparatus is used for continuous measurements, so there is no need to stop the system to take samples. The main difference between the low and high gas systems is the gas flow rates, which are low and high respectively.

For the thermal degradation experiments, which are carried out under stripper conditions, high pressure sample containers of 316L stainless steel tubing and endcaps were used at Austin. These containers are put in a forced convection oven at constant temperature, so as to maintain the CO<sub>2</sub> loading at high temperature and pressure to accelerate the degradation. Two different sizes of containers are used; the 2 ml sample containers for the tests at 100°C and 150°C, and the 10 ml sample containers which are used for the 120°C and 135°C tests. A high pressure reactor could be used but this experimental design is simpler and allows for many samples to be tested in the same time. A combination of two different measuring devices is used because as it was claimed that:

i. with the GC results can be altered at the high temperatures, because of the high injection temperatures that the instrument is using to evaporate the sample before it is injected to the GC column.

- ii. with HPLC it is difficult to detect amines with standard detectors and
- iii. with cation ion chromatography (IC) it is not possible to detect non-ionic compounds

In order to conduct studies for kinetic and volatility data a wetted wall column was being used as can be seen in Figure 3.3.



Figure 3.3 Wetted wall column for kinetic and volatility studies at Austin

Around the external wall of the column paraffin oil flows to ensure that the temperature is kept constant and to enable experiments to be conducted both for absorption and desorption. The measuring system is as seen in Figure 3.4.

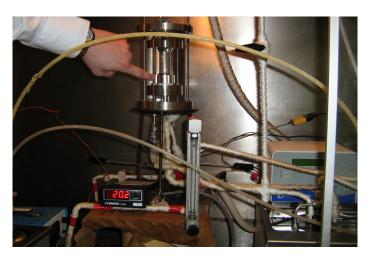



Figure 3.4 Experimental apparatus for absorption and desorption studies at Austin

## 3.4.2 Absorption/stripping rig description and experimental protocol

The constructed absorption/stripping rig at Cardiff is shown in diagrammatic form in Figure 3.5 and a photograph is shown in Figure 3.6 with the system placed in a fume cupboard. The system is capable of applying repeated cycles of absorption/stripping to different amine solvents using different inlet gas compositions. The initial purpose of this rig was to be able to assess the performance of different solvents and the key parameters that affect their operational lifetime. Exact details of the component parts are included in Section Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. (Rig Components) but the following gives an outline of the apparatus and initial experimental protocol.

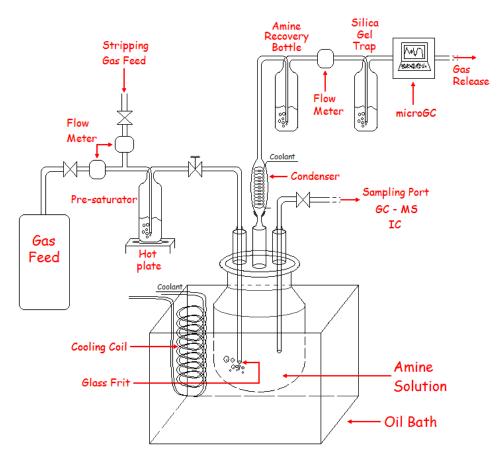



Figure 3.5 Schematic of the Cardiff Absorption/Stripping Rig



Figure 3.6 Photograph of the Cardiff Absorption/Stripping Rig in a Fume Cupboard

This experiment was a cyclic process of two stages, absorption and desorption. Unless otherwise stated, the procedure was as follows:

Absorption: The glass reactor filled with the aqueous MEA solution had to be at a stable temperature, so the oil bath temperature was raised at 50 °C. The gas feed valve was opened (at this point the stripping gas feed is closed) and the CO<sub>2</sub> gas was fed to the pre-saturator, through a flow controller, in order to maintain the water balance in the system. Then, it was bubbled to the glass reactor using a sintered gas distribution tube to ensure good distribution of the gas in the solvent. The excess gas was vented to the fume cupboard through a condenser and an amine recovery bottle to avoid the escape of any amine or water vapours from the system. Whilst the amine was being loaded, measurements of the excess gas flow rate and its CO<sub>2</sub> content were taken with a CO<sub>2</sub> rotameter and a microGC system, respectively. When the desired CO<sub>2</sub> molar loading was achieved, the valve of the CO<sub>2</sub> gas feed was closed.

<u>Desorption</u>: The oil bath temperature was raised to 120  $^{\circ}$ C. The stripping gas feed valve was opened and the  $N_2$  was fed to the glass reactor through the glass

frit to ensure good agitation. While the amine was releasing the captured CO<sub>2</sub>, which was vented to the fume cupboard through a condenser and an amine recovery bottle, measurements of the CO<sub>2</sub> content at the system's outlet were taken with a microGC system and an air/nitrogen flow meter gives the volumetric gas flow rate. A cooling coil was also available in order to cool down the oil bath and the reactor after the end of the stripping in order to reduce the experimental time and be able to perform more than one absorption/stripping cycles per day.

A Dreschel bottle filled with silica gel was also placed at the system's outlet in order to avoid any water vapours, carried by the gas, to be transferred to the microGC system. Samples of the amine were taken from the reactor in order to measure the amine losses and detect and quantify any degradation products generated from the process by means of Gas Chromatography Mass Spectrometry (GCMS) and Ion Chromatography (IC). The CO<sub>2</sub> molar loading was determined by means of inorganic carbon content measurement.

# 3.4.3 Absorption/stripping rig components

The principal components were all commercially sourced and are listed as follows:

- 1. A gas feed system with three large gas canisters for pure  $CO_2$ ,  $O_2$ -free  $N_2$  and air together with their regulators, and in the case of  $CO_2$  an in-line heater, purchased from BOC
- 2. 3 Pneumatic in line non-return valves, ¼" from RS (product no 486-8945)
- 3. Four rotameters, two for CO<sub>2</sub> and two for N<sub>2</sub>, purchased from Fischer Scientific Ltd with the following specifications:
  - Flow meter air/nitrogen variable 0.1-1.2 L/min Influx (product no FJC-625-035V)
  - Flow meter air/nitrogen variable 0.02-0.25 L/min Influx (product no FJC-625-015E)
  - Flow meter carbon dioxide variable 10-100 cm<sup>3</sup>/min Influx (product no ENGFIS1-CO<sub>2</sub>)

- Flow meter carbon dioxide variable 50-750 ml/min Influx (product no ENGFIS14-CO<sub>2</sub>)
- 4. Three gas wash bottles, Quickfit Dreschel borosilicate glass 250 ml (item no QWF-360-X) with bottle heads Quickfit Dreschel sintered (item no BTF-900-090K).
- A circulator oil bath Thermo Scientific Haake, DL30-W15/B purchased by Fisher Scientific (product no CLR-420-020N)
- 6. A glass reactor purchased from Fisher Scientific consisting of:
  - Vessel SLV reactor cylindrical borosilicate glass 1 L (product no SLV-110-110Y)
  - Lid SLV multipoint (product no SLV-110-050A)
  - Ring SLV sealing (product no SLV-110-230V)
  - Collar SLV for 100 mm flange (product no SLV-110-250P)
- 7. Gas distribution frit Pyrex with pore size 1, 14mm dia Fisher Scientific (item number TUL-410-020A)
- 8. A coil condenser, Pyrex glass 207 mm length and cone 40/38 (item no QCJ-240-J)
- 9. FEP tubing 10mm OD, 8mm ID purchased from RS (product no 486-8945)
- 10. Tubing silicone rubber translucent 6.5 mm x 1.5 mm purchased from Fisher Scientific (product no FB50869)
- 11. 9 <sup>1</sup>/<sub>4</sub>" BSP 10 mm Pneufit straight adaptors purchased from RS (product no 210-2316)
- 12. 1 male BSPT straight connector ¼" x 10 mm purchased from RS (product no 287-3327)
- 13. 1 Diff dia str push-in fitting 8 to 10 mm purchased from RS (product no 617-4078)
- 14. 2 Tee piece 10 mm OD from RS (product no 739-180)

## 3.5 THERMAL DEGRADATION RIG

During the course of this project, and after realising that it would not be feasible to produce degraded samples in the gas absorption/stripping rig within reasonable timescales, it was decided to focus on thermal degradation. For that reason, an extended literature review was performed and based on the information gathered during the visit to the University of Texas; it was decided to design a new experimental procedure and a thermal degradation process/rig to be able to thermally degrade samples quickly enough. The purpose of the new thermal degradation rig described in the following Sections was to produce thermally degraded samples, which would then be tested in the gas absorption/stripping rig to assess the solvent deterioration in CO<sub>2</sub> uptake capacity due to thermal degradation.

# 3.5.1 Thermal degradation rig development

The purpose of the thermal degradation rig development was to assess the behaviour of 500 ml of 5 molal aqueous MEA solution loaded with CO<sub>2</sub> if it is exposed to temperatures of 150 °C and above and for a long period of time (up to 8 weeks). The produced thermally degraded samples were then tested using the absorption / desorption rig (Figure 3.5) to investigate the solvent deterioration in CO<sub>2</sub> uptake against the performance of a known pure amine sample and to try to identify and quantify any degradation products. For that reason, 500 ml samples of solutions needed to be thermally degraded so as to be able to test them in the gas absorption/stripping rig.

The experimental design used by Davis (2008) was thought to be the most appropriate in order to degrade amine samples in an easy and quick way. Davis (2008) loaded with CO<sub>2</sub> amine solutions of different concentrations and thermally degraded them in 10 ml stainless steel pressure vessels in a forced convection oven. The only difference was that the sample volumes that needed to be prepared were 500 ml and that meant that the gas volumes absorbed by the amine would be much higher and as a result the pressures built would be much higher as well.

Therefore, before ordering any equipment for use in these experiments, for safety reasons, some initial calculations needed to be performed in order to estimate what kinds of pressures should be expected.

#### 3.5.1.1 Worst case scenario

The first step was to determine the worst case scenario, which means to calculate the  $\rm CO_2$  partial pressure developed in a 600 ml vessel if 590 ml of 5 molal MEA almost fully loaded with  $\rm CO_2$  were degraded at 150 °C for up to 8 weeks, i.e. if the available headspace was 10 ml. According to Davis J. and G. Rochelle (2008) if a 7 molal MEA solution with initial  $\rm CO_2$  loading of 0.4 moles of  $\rm CO_2$  / mole of MEA is degraded for 8 weeks at 150 °C the final MEA concentration will be 0.8 molal, in other words 89% of the MEA is lost.

Taking the aforementioned information into account, it was calculated that 590 ml of 5 molal MEA, if its initial loading is 0.4, can absorb 0.91 moles or 20.26 L of CO<sub>2</sub>. If then, 89 % of the MEA was lost, which means that the number of moles of MEA in the final solution would be 0.25, only 0.125 moles of CO<sub>2</sub> or 2.78 L could stay in solution. This means that 17.48 L of CO<sub>2</sub> could need to be in the 10 ml headspace. The CO<sub>2</sub> partial pressure was calculated, using the ideal gas law, to be 2743.451 bar (274.35 MPa). It is important to note here that CO<sub>2</sub> does not behave as an ideal gas. The ideal gas law was used to perform those calculations in order to have an estimation of the pressures that they were going to be built up. For more accurate calculations a CO<sub>2</sub> compressibility factor should have been used.

Of course, quite a considerable amount of this CO<sub>2</sub> would be absorbed by the water - at these pressure and temperature conditions (Dodds et al. 1956) - and HEEDA, which is being reported (Davis 2009, Lepaumier 2009 (a), Lepaumier 2009 (b), Leapumier 2010 and Lepaumier 2011) as one of the major thermal degradation products of MEA.

From these calculations, the possibility existed of extremely high pressures (274.35 MPa) to be developed in the vessel headspace. At this stage it was

decided to purchase the high pressure vessels and to carefully monitor any pressure increase and use it as a measure of degradation. The experiment would be terminated if the pressures approached safety limits.

## 3.5.1.2 Iterative calculations with various CO<sub>2</sub> loadings

In order to have a clearer idea of what pressures to expect a journal paper with similar experimental conditions, to those planed in the present work, was found in the literature for 150  $^{\circ}$ C by Jou et al (1995). It was assumed that the same CO<sub>2</sub> solubilities can be applied to less concentrated MEA solutions (5 molal) than the 30 % w/v (7 molal). Based on the information available, the CO<sub>2</sub> partial pressures versus the CO<sub>2</sub> loading were plotted and Excel was used for curve fitting for the results (Figure 3.7). The equation of the curve at 150  $^{\circ}$ C is Equation 3.1.

$$y = 8884.4x^{2.4688}$$
 Equation 3.1

where y is the CO<sub>2</sub> partial pressure and x is the CO<sub>2</sub> molar loading. All the calculations were performed for 590 ml of 5 molal aqueous MEA solution at 150 °C with 10 ml available headspace and for four different CO<sub>2</sub> loadings. Different numbers of moles were assumed to be released into the headspace, and then the resulting pressure build-up was calculated with the ideal gas law and compared with the values that resulted from the study of Jou et al (1995).

In Table 3.2 the results for initial loading 0.25 moles of  $CO_2$  / mole of MEA are shown, the total number of moles of  $CO_2$  in MEA is 0.5675 or 12.63 L. The partial pressure from the literature was calculated using the aforementioned Equation 3.1. In order to calculate the  $CO_2$  partial pressure in the headspace the Ideal Gas Equation 3.2 was used.

$$P_{CO2} = \frac{[molesofCO_2inheadspace] \times 0.08315 \times 423}{0.01}$$
 Equation 3.2

It should be noted here again that CO<sub>2</sub> does not behave as an ideal gas and the Ideal Gas Law was used as a tool to have a rough estimation of the pressures. As

already mentioned a CO<sub>2</sub> compressibility factor should have been used for more accurate results.

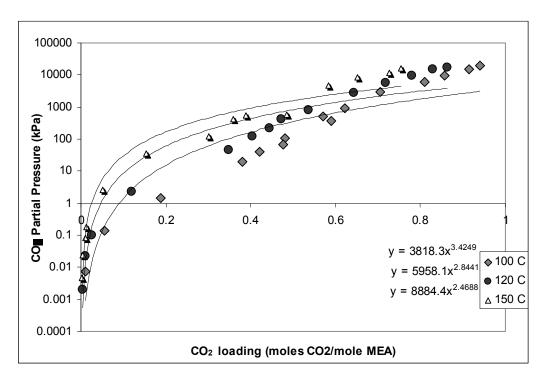



Figure 3.7 Experimental data for CO<sub>2</sub> partial pressure versus CO<sub>2</sub> molar loading presented by Jou et al. (1995) for 100, 120 and 150 °C.

Table 3.2 Calculated CO<sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial molar loading 0.25 and comparison with literature values.

| Assumed CO <sub>2</sub> released           | Calculations                               |                                  | Jou et al. (1995)      |
|--------------------------------------------|--------------------------------------------|----------------------------------|------------------------|
| in the headspace (moles*10 <sup>-5</sup> ) | Loading after the CO <sub>2</sub> released | P <sub>CO2</sub> headspace (kPa) | P <sub>CO2</sub> (kPa) |
| 80                                         | 0.249648                                   | 281.38                           | 288.9                  |
| 81                                         | 0.24964                                    | 284.9                            | 288.89                 |
| 82                                         | 0.249639                                   | 288.41                           | 288.88                 |
| 83                                         | 0.249634                                   | 291.93                           | 288.86                 |
| 84                                         | 0.24963                                    | 295.45                           | 288.85                 |

Note: 590 ml of 5 molal aqueous MEA solution, 10 ml available headspace, initial loading 0.25 moles  $CO_2$  / mole MEA, 0.5675 moles of  $CO_2$  initially in solution, temperature 150 °C

As the loading increases the CO<sub>2</sub> partial pressure in the headspace increases as well. The bold data refer to where agreement between the calculated values (based on the ideal gas law) and those reported by Jou et al. (1995) were obtained.

In Table 3.3 the  $CO_2$  partial pressure when the initial sample loading is 0.3 moles of  $CO_2$  / mole of MEA is shown, the total number of moles of  $CO_2$  absorbed by the MEA is 0.681 or 15.16 L. The results were calculated in the same way as described above. The bold data refer to agreement between the calculated values - based on Equation 3.2 - and those reported by Jou et al. (1995).

Table 3.3 Calculated CO<sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial molar loading 0.30 and comparison with literature values.

| Assumed CO <sub>2</sub> released           | Calculations                               |                                  | Jou et al. (1995)      |
|--------------------------------------------|--------------------------------------------|----------------------------------|------------------------|
| in the headspace (moles*10 <sup>-4</sup> ) | Loading after the CO <sub>2</sub> released | P <sub>CO2</sub> headspace (kPa) | P <sub>CO2</sub> (kPa) |
| 12.6                                       | 0.299445                                   | 443.17                           | 452.65                 |
| 12.7                                       | 0.299441                                   | 446.69                           | 452.63                 |
| 12.8                                       | 0.299436                                   | 450.21                           | 452.61                 |
| 12.9                                       | 0.299432                                   | 453.72                           | 452.60                 |
| 13                                         | 0.299427                                   | 457.24                           | 452.58                 |
| 13.1                                       | 0.299423                                   | 460.76                           | 452.56                 |

Note: 590 ml of 5 molal aqueous MEA solution, 10 ml available headspace, initial loading 0.30 moles  $CO_2$  / mole MEA, 0.681 moles of  $CO_2$  initially in solution, temperature 150 °C

As the loading increases the  $CO_2$  partial pressure in the headspace increases as well, so from 288.41 kPa became 452.72 kPa when the initial loading was increased by 0.05 moles of  $CO_2$  / mole of MEA.

Table 3.4 and Table 3.5 show the calculated values for MEA initial loadings 0.4 and 0.5 respectively. For initial loading 0.4 moles of  $CO_2$  / mole of MEA, the total number of moles of  $CO_2$  absorbed by the MEA is 0.908 or 20.21 L.

Table 3.4 Calculated CO<sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial molar loading 0.40 and comparison with literature values.

| Assumed CO <sub>2</sub> released           | Calculations                               |                                  | Jou et al. (1995)      |
|--------------------------------------------|--------------------------------------------|----------------------------------|------------------------|
| in the headspace (moles*10 <sup>-4</sup> ) | Loading after the CO <sub>2</sub> released | P <sub>CO2</sub> headspace (kPa) | P <sub>CO2</sub> (kPa) |
| 25.9                                       | 0.398859                                   | 910.97                           | 918.61                 |
| 26                                         | 0.398855                                   | 914.48                           | 918.58                 |
| 26.1                                       | 0.398850                                   | 918.00                           | 918.56                 |
| 26.2                                       | 0.398846                                   | 921.52                           | 918.53                 |
| 26.3                                       | 0.398841                                   | 925.04                           | 918.51                 |

Note: 590 ml of 5 molal aqueous MEA solution, 10 ml available headspace, initial loading 0.40 moles  $CO_2$  / mole MEA, 0.908 moles of  $CO_2$  initially in solution, temperature 150 °C

As can seen in Table 3.4 the  $CO_2$  partial pressure which could potentially be developed in the headspace is almost 3 times higher than the partial pressure developed when the initial loading is 0.25 or 0.30 moles of  $CO_2$  / mole of MEA. Finally, for the data shown in Table 3.5, the initial loading is 0.5 moles of  $CO_2$  / mole of MEA which means that in total there are 1.135 moles or 25.27 L of  $CO_2$  absorbed by the MEA.

Table 3.5 Calculated CO<sub>2</sub> partial pressures for a 5 molal aqueous MEA solution with initial molar loading 0.50 and comparison with literature values.

| Assumed CO <sub>2</sub> released           | Calculations                               |                                  | Jou et al. (1995)      |
|--------------------------------------------|--------------------------------------------|----------------------------------|------------------------|
| in the headspace (moles*10 <sup>-4</sup> ) | Loading after the CO <sub>2</sub> released | P <sub>CO2</sub> headspace (kPa) | P <sub>CO2</sub> (kPa) |
| 45                                         | 0.498018                                   | 1582.76                          | 1589.23                |
| 45.1                                       | 0.498013                                   | 1586.28                          | 1589.19                |
| 45.2                                       | 0.498009                                   | 1589.79                          | 1589.16                |
| 45.3                                       | 0.498004                                   | 1593.31                          | 1589.12                |
| 45.4                                       | 0.498000                                   | 1596.83                          | 1589.09                |

Note: 590 ml of 5 molal aqueous MEA solution, 10 ml available headspace, initial loading 0.50 moles  $CO_2$  / mole MEA, 1.135 moles of  $CO_2$  initially in solution, temperature 150 °C

Iterative calculations were performed with various CO<sub>2</sub> loadings to explore when agreement occurs between predicted headspace pressure and values reported in the literature. It was concluded that reasonable agreement is shown between the calculated data and those of Jou et al. (1995) at different loadings. From these calculations is shown that as the loading increases the CO<sub>2</sub> partial pressure in the

headspace increases rapidly and that not very much CO<sub>2</sub> release from a given loading is required to give the agreed pressures.

Due to the wide range of results found in the literature and the high calculated CO<sub>2</sub> partial pressures, it was decided to purchase 600 ml vessels with maximum working pressure 2950 psi (20 MPa) and temperature 350 °C. All three vessels have safety rupture disks which would burst if the pressure in the vessels exceeds 1800 psi (about 12 MPa). Therefore, overall, the calculated values gave some confidence that it was safe to perform the thermal degradation experiments as the predicted expected pressure was approximately 1.6 MPa which is much lower than the maximum operating pressure of the pressure vessels.

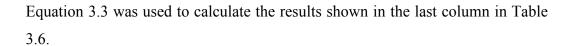
## 3.5.1.3 Chosen experimental conditions

During the literature review it was noted that there is a gap in systematic data for CO<sub>2</sub> solubility over aqueous MEA solutions of different concentrations at high temperatures, over 150 °C. For this reason too many assumptions needed to be made in order to design the thermal degradation experiment.

First of all, it was noted that there are no data available for 5 molal MEA solutions, so the next step was to decide to change the MEA concentration to 30 % w/v (approximately 7 molal) for the thermal degradation experiments.

Then, it was noted that most of the studies measured the CO<sub>2</sub> solubility over 30 % w/v aqueous MEA solutions at temperatures of up to 120 °C and only one study presented data at 150 °C. Due to the fact that the generation of thermally degraded samples needed to be accelerated, in the present work the experimental temperature was desired to be 160 °C (Davis 2009 observed that the major degradation products generated in the MEA as the temperature changes, but below 200 °C, are the same but their formation is accelerated as the temperature rises). In practice, this meant that data at different temperatures needed to be extrapolated. Thus, it was decided to repeat some of the CO<sub>2</sub> solubility experiments reported in the literature, to build confidence in the system before

starting the actual degradation experiments for which the vessels need to be left in the oven for long periods of time.


When the pressure vessels were eventually purchased, it was noted that, according to the manufacturer's guidelines for safe operation, the maximum volume of sample in the vessel must not exceed 400 ml. As a result, the sample volume needed to be reduced and the headspace needed to be increased from the 10 ml, used in the iterative calculations, to 200 ml which meant that more CO<sub>2</sub> could be released in a 200 ml headspace which would cause a drop in the pressures originally expected.

At this stage it was decided to operate the degradation experiments as a function of the total system pressure (or partial CO<sub>2</sub> pressure as it is the one that is changing) and not as a function of time as it was done in previous studies. It was decided that attempts would be made to assess whether the increase of pressure above the MEA solution, caused by the release of CO<sub>2</sub>, could be considered as a degradation indicator.

Finally, it was agreed that for the first set of degradation experiments the initial loading of the MEA would be about 0.25 moles of CO<sub>2</sub> / mole of MEA, in other words lean loading and for the second set of experiments the initial molar loading would be rich close to 0.50.

### 3.5.1.4 Pressure calculations for the chosen experimental conditions

For the thermal degradation of MEA 400 ml of 30 % w/v aqueous MEA solution were degraded at 160 °C. The initial loading was 0.25 moles of CO<sub>2</sub>/mole of MEA. As loading is expected to have an effect on the MEA thermal degradation, as suggested by Davis 2009 and Eide-Haugmo et al. 2011, higher loading experiments were also performed. 0.25 moles of CO<sub>2</sub>/mole of MEA initial loading means that in practice the MEA will initially have absorbed 0.44 moles of CO<sub>2</sub> or 9.80 L. The CO<sub>2</sub> partial pressure values as a function of the CO<sub>2</sub> loading for 160 °C were extrapolated from the data given by Jou et al. (1995). Using Excel to process the extrapolated values, (see Figure 3.8), the resulting



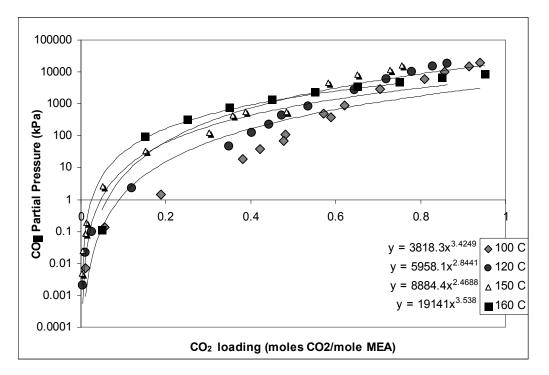



Figure 3.8 Experimental data for CO<sub>2</sub> partial pressure versus CO<sub>2</sub> molar loading presented by Jou et al. (1995) for 100, 120 and 150 °C and extrapolated data for 160 °C.

$$y = 19141x^{3.538}$$
 Equation 3.3

For the calculated CO<sub>2</sub> partial pressure, the Ideal Gas law was used and then the result was converted to kPa from bar. Note here that for more a more accurate estimations a CO<sub>2</sub> compressibility factor should have been used as CO<sub>2</sub> does not behave as an ideal gas.

$$P_{CO2} = \frac{[molesofCO_2inheadspace] \times 0.08315 \times 433}{0.2}$$
 Equation 3.4

As can be seen from Table 3.6 the  $CO_2$  partial pressure above a 30 % w/v aqueous MEA solution is almost half the calculated value for a 5 molal MEA solution (Table 3.2) with the same loading, because the headspace, the MEA concentration and the temperature have changed. Therefore, bearing in mind that a large number of assumptions were made, the calculated pressures were much

lower than the pressure vessels' operating pressures so it was deemed safe to use the vessels for the thermal degradation experiment under the described conditions. Part of the CO<sub>2</sub> solubility studies was decided to be repeated to build confidence with the designed system and its operation; the results are presented in Section 4.5.

Table 3.6 Calculated CO<sub>2</sub> partial pressures for a 30% w/v aqueous MEA solution with initial molar loading 0.25 and comparison with literature values.

| Assumed CO <sub>2</sub>                             | Calculation                                | ns                               | Literature             |
|-----------------------------------------------------|--------------------------------------------|----------------------------------|------------------------|
| released in the headspace (moles*10 <sup>-4</sup> ) | Loading after the CO <sub>2</sub> released | P <sub>CO2</sub> headspace (kPa) | P <sub>CO2</sub> (kPa) |
| 74                                                  | 0.24579                                    | 133.22                           | 133.6                  |
| 74.1                                                | 0.245789                                   | 133.4                            | 133.59                 |
| 74.2                                                | 0.245784                                   | 133.58                           | 133.58                 |
| 74.3                                                | 0.24577841                                 | 133.76                           | 133.57                 |
| 74.4                                                | 0.245773                                   | 133.94                           | 133.56                 |

Note: 400 ml of 30% w/v aqueous MEA solution, 200 ml available headspace, initial loading 0.25 moles  $CO_2$  / mole MEA, 0.44 moles of  $CO_2$  initially in solution, temperature 160 °C

# 3.5.2 Thermal degradation rig description and operating protocols

As already mentioned, three 600 ml vessels with maximum working pressure 2950 psi (20 MPa) and temperature 350 °C were purchased from the Parr Instrument Company. These are illustrated in Figure 3.9. All three have safety rupture disks which would burst if the pressure in the vessels exceeded 1800 psi (about 12 MPa). Initially just one of the vessels was equipped with a pressure gauge with range 0-2000 psi (0 – 14 MPa) and later on a digital pressure gauge was purchased and placed on the second vessel (description of all the equipment is presented in Section 3.5.3, Thermal Degradation Rig Components). These vessels, filled with 400 ml of a CO<sub>2</sub> loaded MEA solution, were placed in a forced convection oven which could reach temperatures up to 350 °C and the whole system was placed under a fan to extract any gas released if the rupture disk bursts.



Figure 3.9 Two of the pressure vessels used for MEA degradation

Before thermally treatment the samples were loaded with  $CO_2$  and this was done in the absorption/stripping rig. For that reason,1200 ml of a 30 % w/v aqueous MEA solution were loaded with  $CO_2$  in the gas absorption/stripping rig (Figure 3.5) with initial molar loading as determined by an inorganic carbon content measurement (method described in Section 3.7).

In order to be thermally treated, the CO<sub>2</sub> loaded MEA sample was distributed between the three vessels (400 ml in each), sealed and placed in the forced convection oven at 160 °C. In the first set of thermal treatment experiments, the pressure change inside one of the vessels was continuously monitored with an analogue pressure gauge for safety reasons; it was assumed, as the experimental conditions were the same, that the pressure changes were the same in all the three vessels. In the second set of experiments the analogue and a digital pressure gauge were used, therefore two out of the three vessels were equipped with a pressure measurement device. The vessels equipped with the pressure gauges came last out of the oven.

The samples were left inside the high pressure vessels in the oven sealed at 160 °C for 2, 3 and 8 weeks to thermally degrade. Each one of the samples was taken out of the oven and remained sealed at room temperature until the beginning of the absorption-stripping experiment. All the three samples were tested and compared against a pure known MEA sample of the same initial concentration

(30 % w/v) to determine how thermal degradation affects the solvent's CO<sub>2</sub> up take capacity.

# 3.5.3 Thermal degradation rig components

These vessels and associated equipment were designed in order to thermally degrade samples of different solvents quickly, meaning that it was necessary to operate at high temperatures and thus high pressures. The whole system consists of:

- 1. Three 0.6 L high pressure vessels with maximum working pressure of 20 MPa (2950 psi) and temperature range from -10 to 350 °C (product no 453HC3) all equipped with a rupture disk in case the pressure in the vessel exceeds 2000 psi (product no 526HCPF) purchased from Parr Instrument Company Ltd in the USA.
- 2. A needle pressure gauge 0-2000 psi (0 to 13.6 MPa) purchased from Parr Instrument Company Ltd (product no 593HCPF)
- 3. A digital pressure gauge purchased from OMEGA Ltd with the following specifications:
  - a. a pressure transducer with accuracy 0.08% and range 2500.0 psig (17 MPag) (part no PX419-2.5KG5V)
  - b. a 0-15.0 V voltage logger (part no OM-CP-VOLT101)
  - c. a USB interface cable/SW (part no OM-CP-IFC200)
  - d. OMEGASOFT for OM-CP series data logging software, version 2.02.5
- 4. A fan-assisted oven (Binder, see Figure 3.9) capable of maintaining temperatures up to  $300 \, ^{\circ}\text{C}$  +/-  $1 \, ^{\circ}\text{C}$ .

# 3.6 MICROGC ANALYTICAL PROCEDURE AND RESULTS PROCESSING

The microGC system available at Cardiff School of Engineering was used in order to measure the gas composition at the absorption/stripping rig outlet. The CO<sub>2</sub> concentration was then used to calculate the CO<sub>2</sub> volume at the system's outlet.

The system is a Varian CP-4900 microGC, operating with two channels enabling the simultaneous measurement of the gases of interest (O<sub>2</sub>, N<sub>2</sub>, and CO<sub>2</sub>). The system operates with an electric conductivity dependant detector.

The conditions under which the system runs were as follows:

- Sample line temperature 55 °C
- Cabinet T= 31 °C and P= 101.0 kPa
- Both channel 1 and channel 2 run under the same conditions.
   Injector T= 55.0 °C, column T= 105.0 °C and P= 103.4 kPa
- Channel 1 balance gas argon
- Channel 2 balance gas helium

From Channel 1 measurements of the percentage of  $O_2$  and  $N_2$  present in the flue gas were taken whereas Channel 2 was used to detect  $CO_2$ . The system was calibrated using a calibration gas which contained 10%  $CO_2$  and 16 %  $O_2$  (v/v) in  $N_2$ .

Unless otherwise stated the microGC results processing was as follows:

The initial plan was to examine the solvent behaviour during absorption using the microGC, but later in the project it was decided that the assessment of the solvent behaviour during absorption was going to be performed with the TOC instrument (the process is described in Section 3.7). At the stage of the project that the microGC was used to assess the solvent's behaviour during absorption a reading of the CO<sub>2</sub> concentration was taken along with a measurement of the exit flow rate every 20 minutes. A CO<sub>2</sub> flow meter was used at the system's outlet

when a changing mixture of air and CO<sub>2</sub> was released. For that reason a flow correction was needed and the Equation 3.5 was used to calculate the corrected flow.

$$Q_m = Q_{measured} \sqrt{\frac{\rho_{CO2}}{\rho_m}}$$
 Equation 3.5

where  $Q_{measured}$  = the flow meter reading and  $\rho_m$  is the density of the mixture of the gases. The density of the mixture of the gases was calculated using the Equation 3.6.

$$\rho_{m} = \frac{\rho_{CO2}V_{CO2} + \rho_{air}V_{air}}{V_{m}} = \rho_{CO2}\left(\frac{V_{CO2}}{V_{m}}\right) + \rho_{air}\left(\frac{V_{air}}{V_{m}}\right) = \rho_{CO2}\left(\frac{V_{CO2}}{V_{m}}\right) + \rho_{air}\left[\left(\frac{V_{m} - V_{CO2}}{V_{m}}\right)\right]$$
Equation 3.6

where  $V_m$  = the volume of the mixture = 1,  $V_{CO2}$  =  $CO_2$  volume = microGC response and  $V_{air}$  = air volume. Finally, the  $CO_2$  volume at the system's outlet was calculated by multiplying the microGC response with the corrected flow and the time for the twenty minute time intervals (Equation 3.7).

$$V_{CO2} = microGCresponse \times Q_m \times 20$$
 Equation 3.7

Similarly, during the course of the stripping experiments, as 200 ml/min of  $N_2$  were bubbled in the reactor, an air/nitrogen flow meter was used at the system's outlet. For that reason a flow correction was needed and Equation 3.8 was used to calculate the corrected flow.

$$Q_m = Q_{measured} \sqrt{\frac{\rho_{air}}{\rho_m}}$$
 Equation 3.8

where  $Q_{measured}$  = the flow meter reading and  $\rho_m$  is the density of the mixture of the gases. The density of the mixture of the gases was calculated using Equation 3.6 and the volume of  $CO_2$  for the twenty minute time intervals was calculated using Equation 3.7.

The readings of the volumetric flow and CO<sub>2</sub> concentration at the system's outlet were taken every 20 min; therefore, the CO<sub>2</sub> volumes absorbed and released were calculated assuming that the volume of CO<sub>2</sub> released or absorbed remained stable for 20 minutes. It needs to be noted here that the volume of CO<sub>2</sub> calculated using this integration might not be as accurate as a continuous measurement of the CO<sub>2</sub> volume at the system's outlet. Note also that observing the raw data during absorption the CO<sub>2</sub> concentrations and flows did not change considerably in twenty minutes, more gradual changes were observed. It was just at the beginning of the stripping experiment and for the first 30-40 minutes that the CO<sub>2</sub> concentrations had a more considerable increase.

# 3.7 INORGANIC CARBON MEASUREMENT FOR CO<sub>2</sub> CONTENT DETERMINATION

Before starting to measure unknown samples a calibration curve was created for the instrument (Shimadzu TOC-500(A)) and saved in the software used (TOC\_control\_V). Three different standards of concentrations 1, 10 and 100 mg of C/L were prepared. For the highest standard, 0.350 g of sodium hydrogen carbonate and 0.441 g of sodium carbonate were added in a 100 ml volumetric flask which was filled with DI water and the other two were prepared by 10 times dilution. The calibration curve was created and saved following the steps given by the software.

In order to make sure that the measurement of the unknown sample was accurate, before each measurement a DI water sample and a standard of concentration 100 mg/L in inorganic carbon were run. New standard solutions were prepared every week. Each sample was measured twice and if the difference between the two responses was more than 2%, the sample was automatically measured again. If the response for the standard was within 5% of the expected value it was considered to be accurate and then the unknown samples were measured.

For the unknown samples produced by the absorption/stripping rig, their CO<sub>2</sub> content was analysed using the TOC instrument for inorganic carbon measurement. Firstly, a pure MEA sample was measured to determine its inorganic carbon content. Then, each sample produced by the reactor was diluted by 100 and further diluted in the instrument by a factor of 10. The diluted sample was then analysed and compared against the saved calibration curve. It might be argued that the MEA releases some CO<sub>2</sub> on dilution but this is likely to be very small, also negated by the reduction in temperature with dilution. Moreover, according to the instrument manual the sample was introduced in a H<sub>3</sub>PO<sub>4</sub> solution which reverses the MEA + CO<sub>2</sub> reaction and releases the CO<sub>2</sub>, which is then detected by an NDIR sensor. According to Pacheco 1998, Chi 2000, Bishnoi 2000, Hilliard 2008 and Freeman et al. 2010 phosphoric acid can be used to acidify the CO<sub>2</sub> loaded amine samples to release aqueous CO<sub>2</sub>, carbamate and bicarbonate as gaseous CO<sub>2</sub>.

In order to calculate the CO<sub>2</sub> molar loading and the volume of CO<sub>2</sub> in a loaded solution from the instrument response the procedure was as follows:

- The instrument gave the responses in mg of inorganic carbon per L of solution. The responses needed to be multiplied by 100 as all the solutions were diluted by 100 (the dilution in the instrument was accounted by it). The result was then divided by 1000 to be converted into g/L
- The results were then converted into moles of carbon per L of solution by dividing the result above with the carbon atomic weight which is 12.011.
- Each CO<sub>2</sub> molecule contains one atom of carbon, therefore, the moles of C/L of solution equals the moles of CO<sub>2</sub> per L of solution.
- The moles of CO<sub>2</sub>/L were then multiplied by 0.4 to be converted into moles of CO<sub>2</sub> per 400 ml of solution (as the sample volume was 400 ml).
- The maximum theoretical MEA absorption capacity is 0.5 moles of CO<sub>2</sub>/mole of MEA or 0.98 moles of CO<sub>2</sub> in 400 ml of 30% w/v aqueous MEA solution.
- Thus, if 0.98 moles of CO<sub>2</sub> is 0.5 loading, then the molar loading of the unknown solution can be calculated.

After all the above calculations were performed the resulting Equation 3.9 was the one that was used to process all the values.

Molar Loading = 0.0017 x Instrument Response

Equation 3.9

## 3.8 COLORIMETRIC DETERMINATION OF IONS

The HACH portable data logging colorimeter DR/890 available at Cardiff School of Engineering was used to verify and quantify the presence of nitrite, nitrate and sulphate ions in some of the degraded samples (see Sections 4.2.3 and 4.4.4).

For the analysis of nitrite ions the method used was the ferrous sulphate for high range (0 to 150 mg/l NO<sub>2</sub><sup>-</sup>) with the method number 8153. The first step was to choose the stored program in the instrument for the analysis of nitrites, the program number was 59. According to that method, a sample cell (HACH meter equipment) was filled with 1

0 ml of 0.5 molal aqueous fresh MEA solution (not degraded); the cell was cleaned and placed in the HACH meter sample holder. The cap was placed on the instrument; when the measurement reading showed on its screen, the 0 button was pressed in order to perform an automatic reagent blank adjust. Thereafter, another cell was filled with 10 ml of the degraded sample. The contents of one NitriVer 2 nitrite reagent powder pillow were added and mixed with the sample in the cell. The sample was let to rest for 10 minutes, which is the reaction period of the sample with the powder added. After the end of the 10 minute period, the cell was gently inverted a couple of times, it was cleaned and placed into the HACH meter's sample holder. The cap was put on the instrument and the reading was taken.

The cadmium reduction method in the high range from 0 to 30 mg/L with method number 8039 was used for the analysis of nitrate ions. The first step, as described in the paragraph above, was to choose the stored program in the instrument which was program number 51. Then, a 10 ml blank sample, 5 molal aqueous MEA solution, was again used to perform an automatic reagent blank adjust. Thereafter, 10 ml of degraded sample were placed to one of the instrument cells and the contents of one NitraVer 5 nitrate reagent powder pillow were added to the sample and the contents of the cell were vigorously shaken for 1 minute. After 1 minute, the sample was left to rest for a five minute reaction

period and then, after it was cleaned, the sample cell was placed in the instruments cell holder. The cap is placed on the instrument and a reading was taken.

It was not originally expected to detect sulphate anions in the degraded sample but, as it was detected by Dionex was used the HACH portable data logging colorimeter was again used to analyse the sample in Cardiff to verify their presence. The SulfaVer 4 method (method number 8051) in the range from 0 to 70 mg/L was used for the analysis. Again the analysis program number (91) was selected and a blank of 0.5 molal aqueous MEA was used to perform an automatic reagent blank adjust. The contents of a SulfaVer 4 sulphate reagent powder pillow were added to the sample cell and it was mixed with 10 ml of sample. The sample was left to stand for five minutes; the cell was cleaned, placed in the instrument and measured.

# 3.9 ION CHROMATOGRAPHY (IC) - ANALYTICAL PROCEDURE

A considerable period of time during the present study was spent on development of analytical procedures for IC, for the analysis of the ionic oxidative degradation products of MEA. Work was performed to assess whether it was possible first to detect and then quantify them with the IC system available. It was decided to focus on the major MEA degradation products, in other words, the most commonly reported in the literature (Strazisar 2002, Strazisar 2003, Bello 2005, Supap 2006, Davis & Rochelle 2008, Lepaumier 2010 and Lepaumier 2011). Methods were developed to pre-process the samples to deactivate any MEA observed, produce calibration curves and calculate the method detection limits.

# 3.9.1 Method development

## 3.9.1.1 Major MEA oxidative degradation products analysis

The first step was to find in the literature the most commonly detected MEA oxidation products and purchase them. Potassium nitrite, sodium nitrate, formic acid, acetic acid and oxalic acid were analysed using the available system with the IC column IonPac AS11-HC anion exchange with a conductivity dependant detector. The operating conditions for the system were as follows:

- eluent potassium hydroxide 30 mM,
- flow rate 1.2 ml/min,
- temperature 30 °C,
- injection volume 10 μl and
- suppressor current 100 mA.

#### 1. Acetic Acid

A solution of acetic acid in DI water with concentration 1040 mg/L was prepared by adding 0.1 ml of acetic acid to 100 ml of water. Then, 5 ml of sample were taken and measured in the IC system under the conditions described above. Moreover, in order to assess the effect of the background, samples with the same concentrations were prepared in 0.5 molal aqueous MEA solutions. As for the water samples, 1 ml of acetic acid was added to 100 ml of a 5 molal aqueous MEA solution. The sample was further diluted by 10 (1 ml of sample into 9 ml of water) in order to avoid overloading of the IC column. Then, 5 ml of sample were introduced to the IC and measured under the same conditions (Described in Section 3.9.1.1). The resulting chromatographs are shown in Figure 3.10.

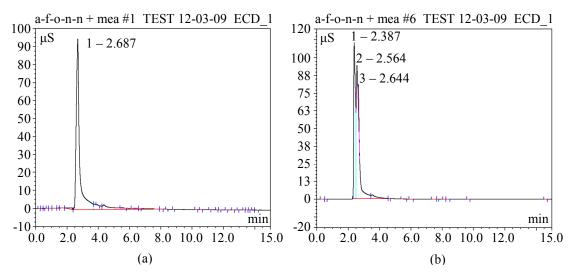



Figure 3.10 Acetic acid of concentration 1040 mg/L (a) in water and (b) 0.5 molal aqueous MEA solution

As shown in Figure 3.10 (a) a clear response was obtained for acetic acid in water. Figure 3.10 (b) shows the response for acetic acid in MEA, as it can be seen the peaks of MEA and acetic ion are almost overlapping. This means that in the degraded MEA samples when analysed with the IC it is difficult to identify acetic acid and quantify it from a similar response.

#### 2. Formic Acid

Samples of formic acid with concentration 1220 mg/L in water and in 0.5 molal aqueous MEA were prepared in a similar way to the acetic acid samples. For the first sample 0.1 ml of formic acid was added to 100 ml of DI water. For the second sample, 1 ml of formic acid was added to 100 ml of a 5 molal aqueous MEA solution. The second sample was further diluted by 10 (1 ml of sample into 9 ml of water). Then, 5 ml of each sample were run with the IC under the same conditions (Described in Section 3.9.1.1). Figure 3.11 presents the resulting chromatographs.

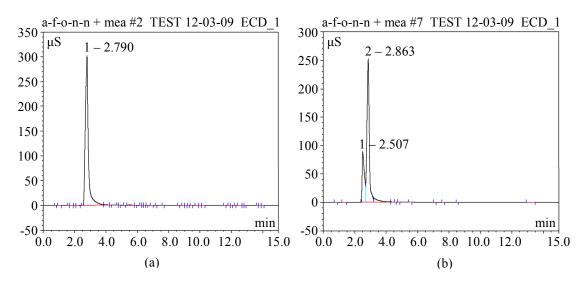



Figure 3.11 Formic acid of concentration 1220 mg/L (a) in water and (b) 0.5 molal aqueous MEA solution

A similar conclusion to the one drawn above for acetic acid can be drawn in the case of formic ion as well. In Figure 3.11 (a) a clear response was obtained for the aqueous solution of formic acid. Figure 3.11 (b), though shows the response for formic acid in an aqueous MEA solution, the retention times for MEA and the formic ion are very close again and as a result the peaks are almost overlapping again.

#### 3. Oxalic Acid

Samples of oxalic acid with concentration 1653 mg/L in water and in 0.5 molal aqueous MEA were prepared in a similar way to the acetic acid samples. For the first sample 0.1 ml of oxalic acid was added to 100 ml of water. For the second sample, 1 ml of oxalic acid was added to 100 ml of a 5 molal aqueous MEA solution. The second sample was further diluted by 10 (1 ml of sample in to 9 ml of water). Then, 5 ml of each sample were run with the IC under the same conditions (see in Section 3.9.1.1). In Figure 3.12 the IC response for the oxalic acid samples are shown.

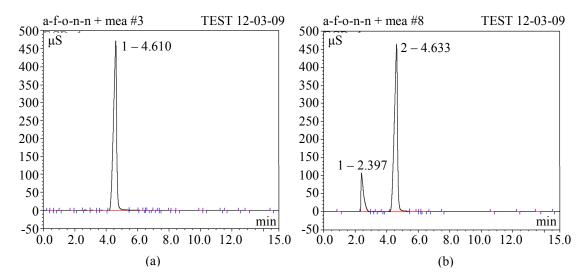



Figure 3.12 Oxalic acid of concentration 1653 mg/L (a) in water and (b) 0.5 molal aqueous MEA solution

As shown in both Figure 3.12 (a) and Figure 3.12 (b) clear responses are obtained for both the aqueous oxalic acid and oxalic acid in aqueous MEA samples.

## 4. Potassium Nitrite

Samples of potassium nitrite with concentration 999.9 mg/L in water and in 0.5 molal aqueous MEA were prepared. For the first sample 0.1 g of potassium nitrite was added to 100 ml of water. For the second sample, 1 g of potassium nitrite was added to 100 ml of 5 molal aqueous MEA solutions. The second sample was further diluted by 10 (1 ml of sample in to 9 ml of water). Then, 5 ml

of each sample were run with the IC under the same conditions (Described in Section 3.9.1.1). See Figure 3.13 for the IC chromatographs.

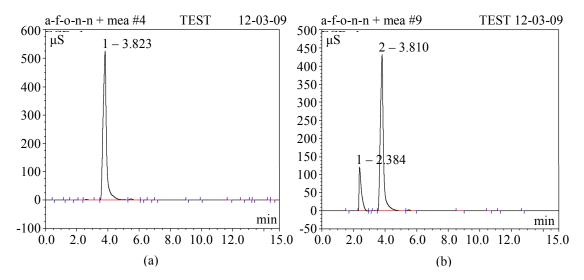



Figure 3.13 Potassium nitrite of concentration 999.9 mg/L (a) in water and (b) 0.5 molal aqueous MEA solution

It needs to be noted here that the concentrations were calculated considering the density of the final mixtures to be 1, as the mass of potassium nitrite was small compared to the volume of solvent (water and MEA - water mixture) in which it was diluted. Moreover, the density of MEA is 1.012 g/cm<sup>3</sup> which is close to the water density. As observed in Figure 3.13 (a) and Figure 3.13 (b) the peaks that resulted from the analysis of both solutions are clear and quantifiable.

#### 5. Sodium Nitrate

Samples of sodium nitrate with concentration 1996 mg/L in water and in 0.5 molal aqueous MEA were prepared in a similar way to the potassium nitrate. For the first sample 0.2 g of sodium nitrate was added to 100 ml of water. For the second sample, 2 g of sodium nitrate was added to 100 ml of 5 molal aqueous MEA solutions. The second sample was further diluted by 10 (1 ml of sample into 9 ml of water). Then, 5 ml of each sample were run with the IC under the same conditions (see Section 3.9.1.1). The resulting chromatographs are shown in Figure 3.14. For the concentration calculations the same assumptions as described for potassium nitrite were made.

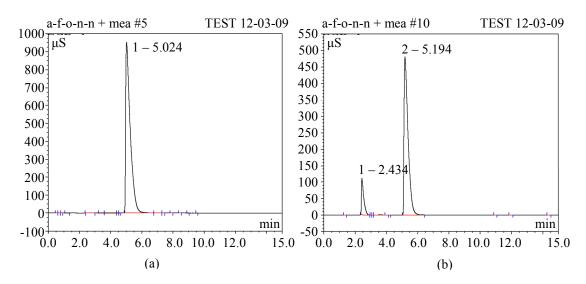



Figure 3.14 Sodium nitrate of concentration 1996 mg/L (a) in water and (b) 0.5 molal aqueous MEA solution

Figure 3.14 (a) and Figure 3.14 (b) presents quantifiable peak responses for both nitrate in water and nitrate in the aqueous MEA solution. As seen it can be seen in Figure 3.10, Figure 3.11, Figure 3.12, Figure 3.13 and Figure 3.14, the available IC system can give quantifiable peak responses for all good responses for all the MEA major oxidative degradation products. Figure 3.10 (b) and Figure 3.11 (b) show that MEA peak response almost overlaps with the other analytes present in solutions which in practice means that in the unknown samples it might be difficult to identify and quantify the peaks. Note here that an MEA response should not be taken at the available IC system, therefore further investigation was needed to assess the effect of MEA on the system.

## 3.9.1.2 Effect of background (MEA) in the IC analysis

As it is shown in Figure 3.10 (b), Figure 3.11 (b), Figure 3.12 (b), Figure 3.13 (b) and Figure 3.14 (b) a clear peak response was obtained for MEA in all the IC chromatographs where it was present. The column used at Cardiff for this study is an anionic column and as MEA acts as a weak base, it should not be detected by the current set up. Moreover, these peaks have a considerably high conductivity response which means that some other small peaks may appear like noise and affect the accuracy of the results. The presence of MEA could also cause the degradation of the IC column material. Most importantly, as shown in

Figure 3.10 (b) and Figure 3.11 (b), the MEA peak almost overlaps with the acetic and formic acid peaks, therefore, a positive identification of acetates and formates might not be possible with the current system.

For these reasons the Dionex On Guard II H cartridges 2.5 cc were purchased in order to pre-process the samples and deactivate the amine and its effect on the IC system. These cartridges have the effect of removing the large diffuse peaks that were present at low residence times on the IC chromatographs by selectively sorbing the MEA onto the solid resins in the column whilst leaving the anions of interest unaffected. The cartridge tube was fitted to the bottom of a 25 ml syringe. In order to clean the cartridge 15 ml of DI water, with flow of approximately 2 ml/min, were passed through the cartridge and discarded. Then, 10 ml of 5 molal aqueous MEA solution were passed through the cartridge the same way, the first 5 ml were discarded and the rest of the sample was analyzed in the IC and run under the conditions described in Section 3.9.1.1 Major MEA Oxidative Degradation Products.

Figure 3.15 (a) presents the IC response for a 0.5 molal aqueous MEA sample and Figure 3.15 (b) the response of an aqueous MEA solution after the use of the deactivation cartridge. It is clear that there is no clear peak response for MEA in Figure 3.15 (b), the peaks shown are background noise and the peak size is not bigger than 0.100  $\mu$ S. In Figure 3.15 (a) the peak height for the sample of 0.5 molal aqueous MEA was close to 110  $\mu$ S.

The effect of MEA in the analysis and the accuracy of the results after the use of the amine deactivation cartridges need to be further assessed. This is because the selective material which is used in these cartridges might also deactivate other degradation products generated from the system.

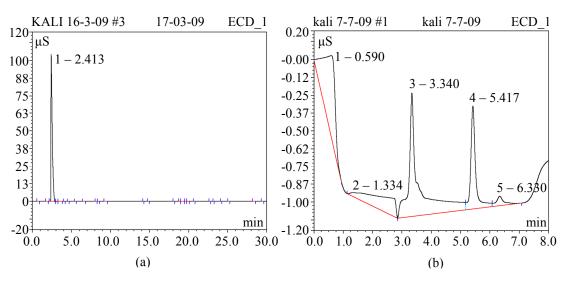



Figure 3.15 Aqueous MEA sample (a) not filtered and (b) filtered

### 3.9.1.3 IC Column AS-11 HC CHECK

It was noted that in the chromatographs generated by the IC system in Cardiff University, the peak retention times were different to the ones expected based on the information given by the manufacturers and contamination of the column was suspected. For this reason, it was decided to run a clean-up cycle of the column using 1M NaOH solution and then to run a 7 anion standard solution to check if the resulting chromatograph is close to the one given by the manufacturer (Figure 3.16).

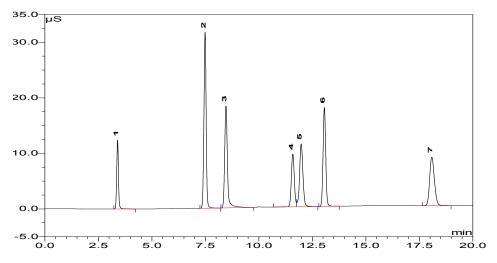



Figure 3.16 7 anions standard solution run provided by the IC system's manufacturer

For that reason a sample with the concentrations presented in Table 3.7 was prepared in DI water and run in the IC system.

Table 3.7 Expected results of the 7 anion standard solution

| Analyte           | Concentration (mg/L) | Expected Peak Height (µS) |
|-------------------|----------------------|---------------------------|
| Peak1: Fluoride   | 2.0                  | 8.0                       |
| Peak 2: Chloride  | 10.0                 | 20.0                      |
| Peak 3: Nitrite   | 10.0                 | 11.5                      |
| Peak 4: Bromide   | 10.0                 | 6.0                       |
| Peak 5: Nitrate   | 10.0                 | 7.0                       |
| Peak 6: Sulphate  | 10.0                 | 11.0                      |
| Peak 7: Phosphate | 20.0                 | 5.5                       |

The IC system and column used for the system check was as normal (IonPac AS11-HC anion exchange with a conductivity dependant detector) but the operating conditions were changed to the following:

- Flow rate 1.5 ml/min,
- Temperature 30 °C,
- Injection volume 10 μl and
- Suppressor current 150 mA.
- Experimental run time was 25 min
- Eluent used was potassium hydroxide but the concentration was changing as follows:

| Time (min) | Eluent Concentration (mM) |
|------------|---------------------------|
| -5.0       | 5.0                       |
| 0.0        | 5.0                       |
| 2.0        | 5.0                       |
| 13.0       | 30.0                      |
| 20.0       | 30.0                      |

Figure 3.17 presents the response obtained by the available IC system at Cardiff School of Engineering.

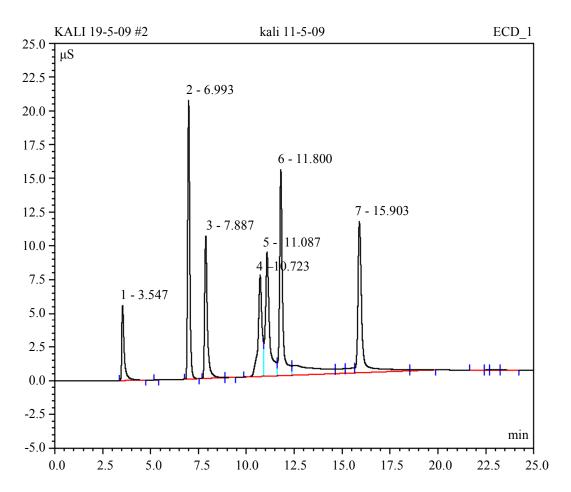



Figure 3.17 7 anions standard solution run in the Cardiff University IC system

It was concluded that the resulting chromatograph (Figure 3.17) was very close to the expected results presented in Table 3.7 in terms of their conductivity response and the retention times presented in Figure 3.16. Therefore, the system used is capable of detecting and quantifying accurately some of the compounds of interest namely nitrite, nitrate and sulphate.

# 3.9.2 Ion Chromatography (IC) final method

After extensive experimentation, mostly in collaboration with Dionex specialists in the UK and Switzerland, it was resolved to deactivate the MEA and its effect on the IC chromatographs and for that reason the Dionex On Guard II H cartridges (2.5 cc) were purchased in order to pre-process all the samples. The cartridge tube is fitted to the bottom of a 25 ml syringe. In order to clean the cartridge 15 ml of DI water, with flow of approximately 2 ml/min, were passed through the cartridge and discarded. Then, 10 ml of the aqueous MEA solutions

were passed through the cartridge, the first 5 ml are discarded and the rest of the sample is analysed in the IC using the following conditions:

- eluent potassium hydroxide, 30 mM,
- flow rate 1.2 ml/min,
- temperature 30 °C,
- injection volume 10 μl
- suppressor current 100 mA

## 3.9.3 Calibration curves and method detection limits

In Table 3.8 the retention times determined for the major oxidative degradation products when analysed with the available IC system can be seen.

Table 3.8 Retention times in the IC system for the major oxidative degradation products

| Analyte | Retention time (min) |
|---------|----------------------|
| Acetate | 2.56                 |
| Formate | 2.86                 |
| Oxalate | 4.63                 |
| Nitrite | 3.81                 |
| Nitrate | 5.19                 |
| Sulfate | 4.30                 |

Work was also performed to produce calibration curves and determine the detection limits of the IC system. Samples, of different concentrations of each compound in 5 molal MEA, were prepared. The samples were run in the IC system after being pre-processed to avoid the MEA effect on the chromatograms and run under the decided IC conditions, the procedure followed is described in the Section 3.9.2, Final Ion Chromatography (IC) method.

The calibration curves for acetic, formic, oxalic, nitrate and nitrite ions are plotted in Figure 3.18, Figure 3.19, Figure 3.20, Figure 3.21 and Figure 3.22, respectively and the raw data can be seen in *Appendix 1.1*. The calibration curves produced from the IC system gave an R<sup>2</sup> of over 0.97 and were considered quite linear over the range of concentrations examined. Note here that none of the

curves crosses zero, which means that the procedure used is not very accurate for very low concentrations close to zero. Moreover, if the highest concentration is excluded from the curves there is a slight increase to R<sup>2</sup>, which could be attributed to the fact that the IC column might get overloaded when high sample concentrations are passed through it. As at that stage of the project it was not clear what range of concentrations would be detected in the degraded samples, a calibration curve including a wider range of concentrations was considered more appropriate.

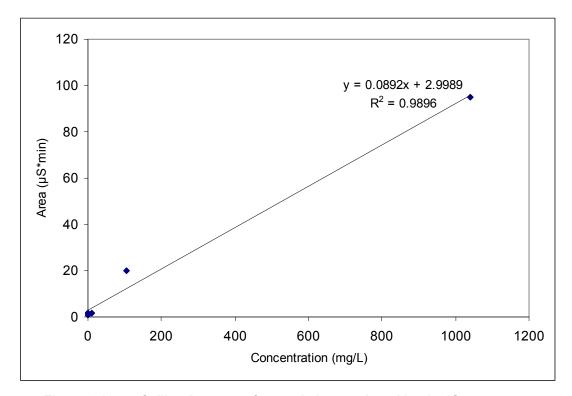



Figure 3.18 Calibration curve for acetic ion produced by the IC system

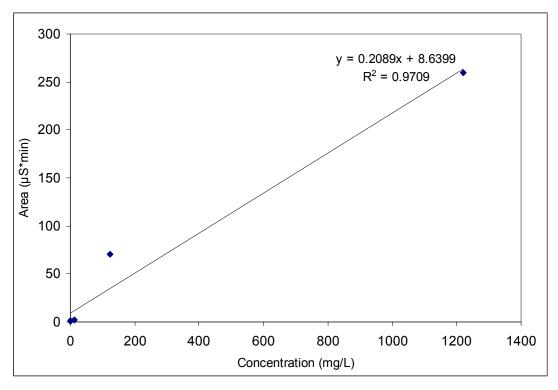



Figure 3.19 Calibration curve for formic ion produced by the IC system

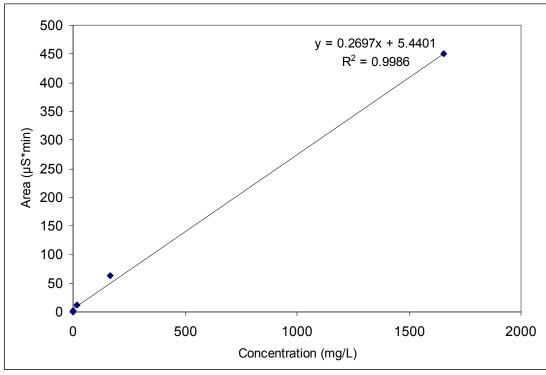



Figure 3.20 Calibration curve for oxalic ion produced by the IC system

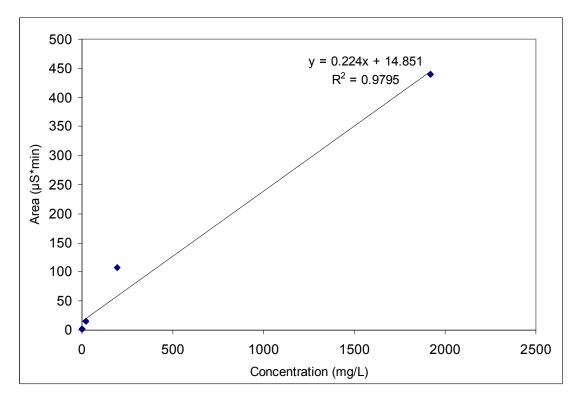



Figure 3.21 Calibration curve for nitrate ion produced by the IC system

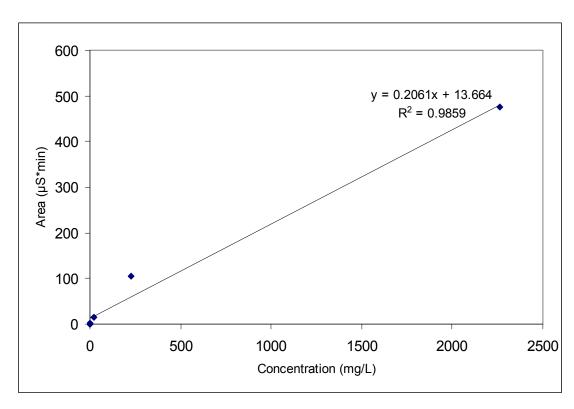



Figure 3.22 Calibration curve for nitrate ion produced by the IC system

The procedure followed to calculate the MDLs was the EPA method ["Definition and Procedure for the Determination of the Method Detection Limits" described in the Appendix B - Revision 1.11 of the part 136 "Guidelines establishing test procedures for the analysis of pollutants" in subchapter D "Water Programs"]. All the samples were preprocessed with the MEA deactivation cartridges and run using the method described in Section 3.8.2 Final Ion Chromatography (IC) method. According to the MDL used, the first step was to calculate the instrument detection limit (IDL). The IDL was calculated by filtering 10 samples of a 5 molal aqueous MEA samples with the MEA deactivation preprocessing cartridges and run the in the IC system. Thereafter, based on the retention times, the noise level for each compound was determined by measuring its response (if any) in the blank sample. The IDL is three times the standard deviation of the noise for each compound in the blank sample and can be seen in Table 3.9.

Table 3.9 Instrument Detection limit for each of the analytes in the IC system

| Analyte     | IDL (mg/L) |
|-------------|------------|
| Acetic ion  | 0.23       |
| Formic ion  | 0.19       |
| Oxalic ion  | 0.22       |
| Nitrite ion | 0.24       |
| Nitrate ion | 0.13       |

The next step was to run 7 samples of each analyte with concentration 5 times the instrument detection limit (approximately 1 mg/L) in the IC and calculate the relative standard deviation, RSD (which is the standard deviation divided by the average) from the instrument responses. The samples were prepared in a matrix of a 5 molal aqueous MEA solution and preprocessed with the MEA deactivation cartridges before run in the IC. The RSD for all compounds is shown in Table 3.10

Table 3.10 Relative standard deviation as calculated by the IC responses for each analyte

| Analyte     | RSD  |
|-------------|------|
| Acetic ion  | 0.19 |
| Formic ion  | 0.22 |
| Oxalic ion  | 0.29 |
| Nitrite ion | 0.13 |
| Nitrate ion | 0.21 |

Finally, the MDL was calculated by multiplying the RSD with the concentration (1mg/L) and the students' t value for a 99% confidence level with 6 degrees of freedom which was found from the one sided table to be 3.143. Table 3.11 shows the MDLs for all the inorganic ions analysed in the available IC system. The raw data and all the calculations procedure can be seen in *Appendix 1.2*.

Table 3.11 Method detection limits for anions in the IC

| Analyte     | MDL (mg/L) |
|-------------|------------|
| Acetic ion  | 0.6        |
| Formic ion  | 0.7        |
| Oxalic ion  | 0.9        |
| Nitrite ion | 0.4        |
| Nitrate ion | 0.7        |

The resulting MDL are all lower than 1 mg/L, especially for the acetic and nitrite ions.

#### 3.10 GC-MS ANALYTICAL PROCEDURE

In this section the work performed to detect and quantify the MEA major thermal degradation products is presented. HEIA, HEEDA and 2-oxazolidone were considered to be the MEA major thermal degradation products the most commonly encountered in the literature as reported by Strazisar 2002, Strazisar 2003, Bello 2005, Supap 2006, Davis & Rochelle 2008, Davis 2009, Lepaumier 2009 (a), Lepaumier 2009 (b), Lepaumier 2010 and Lepaumier 2011. Opinions differ on whether the GC-MS is the best analytical tool to measure thermal degradation products due to the fact that the high injection temperatures that can be experienced in a GC system might cause the MEA to thermally degrade. Saha et al. (1977) reported that alkaloamines do not undergo rapid thermal decomposition at injection temperatures up to 375°C, therefore, based on that information it was decided that the GC-MS was the most appropriate available piece of equipment for this work.

A GC-MS system combines a GC with an MS together; it is a very powerful piece of equipment when it comes to analysing organic compounds even at very low concentrations. Its use allows a much more accurate and precise detection of elements as combining the two methods together can minimise the possibility of two different compounds behaving exactly the same way in both the GC and MS.

During the present study, a few challenges were faced concerning the analysis of MEA and its major thermal degradation products with the GC-MS. Firstly, the samples needed to be analysed were aqueous MEA samples, either with pure fresh MEA or degraded MEA samples containing degradation products. Therefore, a selective method to partition MEA and its degradation products into an organic solvent, which could be introduced to the GC, was the first step to be taken. As MEA and most of its degradation products were ionic compounds and highly water soluble, quite a few solvents and a solid extraction method (as described in detail in Section 3.10.1) were used before finding the one that was more appropriate for the analysis in question.

At the same time, as samples of those compounds were analysed in the system, attempts to find the optimum conditions for the analysis of those specific compounds with the available set up for both the GC and MS needed to be found. For both the GC and MS analysis the conditions were changed based on the experience gained. Changing the conditions could result in enabling the system to detect a compound or could change the retention times or obtain more easily quantifiable peaks, for example:

- The initial and final oven temperatures as they need to be different as different compounds have different boiling points and physicochemical characteristic as well as the column material.
- The rate in which the temperature would increase in order to achieve clear responses for each compound.
- The split ratio, in other words the flow of carrier gas through the system, according to the sample concentration in order to get clearer peak responses, not to overload the column with highly concentrated samples or to improve tailing problems (not good quantifiable peaks).
- The experimental time to be long enough for the compounds in question to be eluted from the column and short enough to reduce the analysis time.

The MS conditions were also changed based on the experience gained, for example:

- The starting and final masses were changed in order to be able to analyse for compounds of different sizes and molecular weights depending on the accuracy that is needed to be achieved. For example if two compounds have mass specs very close to each other
- The experimental time also needed to be adapted to be at least as long as the GC experimental time in order to characterise the compounds that were exiting the GC system.

Finally, it was realised that the GC column used was not the appropriate one for the analysis that needed to be performed. As the column packing material needs to be selective for the analysis needed to be performed, studying the chemical characteristics of the compounds in question was important to make a selection between different kinds of columns based on the polarity and the family of chemical compounds that they belonged. The length and diameter of the GC column is another important factor as it plays a role in the selectivity and separation of the different components in the samples. In the following Section 3.10.1, a detailed explanation of the GC-MS method development based on the GC-MS responses and the experience gained during the present study is presented.

#### 3.10.1 Method development

#### 3.10.1.1 Initial instrument set up

The original GC system set up comprised of a low polarity (slightly acidic) column (the Elite-5MS by Perkin Elmer).

#### 1. MEA

The first step was to become familiar with the system and its operation and then run MEA samples until a clear MEA peak was obtained to be used as a starting reference point. For that reason, samples of 5 molal MEA aqueous solutions were analysed in the GC-MS. The methods chosen for the MEA analysis were the U.S. Environmental Protection Agency (EPA) method 8260B for volatile organic compounds (VOCs) with low boiling points below 200°C, GC\_VOC for the GC and MS VOC for the MS.

Due to the fact that water samples can not be introduced to the GC-MS, the samples needed to be pre-processed using a liquid to liquid extraction method. Therefore, a known volume of the sample was mixed with dichloromethane (DCM) in a separator flask, in order to partition the organics from the water sample to DCM (initially 50 ml of DCM and 50 ml of sample). Then, the water

phase was separated from the organic solvent phase and the DCM with the organics was evaporated down with a N<sub>2</sub> blow-down at 40 °C.

Then, the samples were run in the GC-MS but no peak was identified see Figure 3.23.

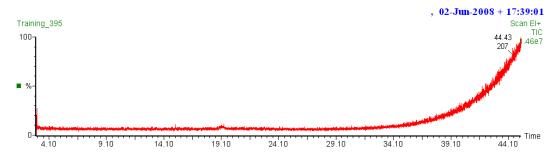



Figure 3.23 GC-MS response for MEA in DCM

MEA is a low molecular weight volatile compound, so it is possible that it could not be detected because the pre-processing method was not the appropriate one. It could be either that the MEA would not partition into DCM or that, because MEA is volatile, it evaporated during the concentration process where the N<sub>2</sub> blow-down was used. For that reason it was decided to use the headspace trap auto sampler (Heaspace Autosampler Turbomatrix 40 Trap Perkin Elmer). This way, an extraction method was not needed as the auto sampler was taking samples from the headspace, created inside the sampling vessels, above an aqueous MEA solution. The sample preparation technique provided by the EPA for the method 8260B is the 5030, which recommends purge and trap. The method chosen for the MEA analysis was again the U.S. Environmental Protection Agency (EPA) method 8260B for volatile organic compounds (VOCs) with low boiling points below 200°C, GC\_VOC for the GC and MS VOC for the MS. No Peak response was obtained using this method either.

For the next measurements a solid phase extraction method was used. In this method, a silica-based non-polar sorbent - Cyclohexyl CH(EC)a - was used for the extraction of basic compounds from aqueous solutions using non-polar interactions. Moreover, the method for the analysis was slightly changed based on information found in the literature. First of all, in the GC method the oven

starting temperature was changed from 100 °C to 40 °C. Moreover, the oven temperature was raised from 40 to 240 °C with heating rate 7 °C/min and it was held there, in contrast with the first method used, in which the starting temperature was 100 °C and in hold for 2 minutes and then raised to 310 °C and hold for another 4 min with heating rate 4 °C/min. Additionally, in the MS method the mass range was changed so as to start from 10 and not from 50 m/z because the MEA is a low molecular weight compound and volatile so the characteristic peak comes before 50 m/z.

The resulting chromatograph and mass spectrum are shown in Figure 3.24 and Figure 3.25, respectively.

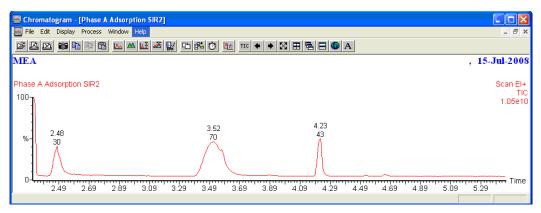



Figure 3.24 Chromatograph for MEA after using a solid phase extraction method

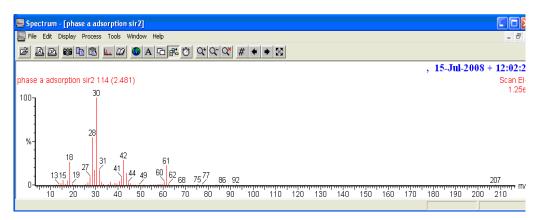



Figure 3.25 Mass Spectrum of MEA

When the same procedure was repeated, it was realised that it was not possible to reproduce the results and it was decided to work on developing a more appropriate method for the analysis of MEA.

In the next phase of the project it was decided to use a liquid to liquid extraction method but using different organic solvents. Therefore, the GC and MS conditions described in the paragraph above (used in the analysis of the samples that were processed with the solid extraction method) were used for the GC-MS analysis but using a different organic solvent for the liquid to liquid extraction. The solvents used were DCM, mixtures of DCM and methanol and acetone changing the solvent/samples ratios as well. All this work performed was inconclusive as no consistent clear quantifiable MEA peaks were produced.

The next step was to change the GC operating conditions (shown in *Appendix 1.3*) so parameters such as split ratio, oven initial and final temperatures, holding times and rate of temperature increase were changed and most of the times no considerable changes were applied to the MS method apart from the duration times (*Appendix 1.4*). The procedure followed was to change the conditions observing the GC-MS response when each sample was run. GC and MS conditions found in the literature were also used (Supap et al 2001, Strazizar et al. 2003 and Bello&Idem 2005) the systems and set ups were different between those studies and the system used in this study, but it was considered important to consult other studies to have a clearer idea of what conditions could the appropriate ones for the analysis. The same solvents described in the paragraph above were used for the liquid to liquid extractions but again no consistent MEA quantifiable (tailing problems) peaks were achieved.

At that stage it was concluded that the GC column used was not the appropriate one for the analysis needed. The column used was a neutral – slightly acidic column for compounds of higher molecular weights (large compounds). The MEA is a small compound and acts as a weak base and its thermal degradation products have different polarities and large variation in sizes. Therefore, after working for a while with MEA using the original system set up, it was decided to work on the analysis of its thermal degradation products using the available set up.

#### 2. HEIA (1-(2-hydroxyethyl)-2-imidazolidinone)

A large number of trials were performed to assess whether it was possible to detect and quantify HEIA with the available GC-MS set up as it was done for MEA as well. Solvents such as DCM, mixtures of DCM with ethanol, hexane, isopropanol and chloroform were used as solvents to perform the liquid to liquid extractions with and without a N<sub>2</sub> blow-down. All the GC and MS conditions used can be seen in the *Appendix 1.3* and *Appendix 1.4*, respectively. The procedure described below was the one followed in one of the successful attempts.

In order to measure using the GC-MS, a solution of 100 mg/L HEIA in 5 molal aqueous MEA was prepared; 0.013 ml of the 75% aqueous HEIA solution and 23.18 ml MEA were added to 76.82 ml of H<sub>2</sub>O. Due to the fact that water samples can not be introduced to the GC-MS, the organics were partitioned into DCM. For this reason 50 ml of the sample was mixed in a separating funnel with 50 ml of DCM. Then, the resulting sample of the DCM with the organics was evaporated down to volumes of approximately 2 ml, using a nitrogen blow-down at 40 °C.A second liquid to liquid extraction was performed on the water sample left after the first extraction in order to check if there is any HEIA remaining.

The sample was then introduced to the GC-MS and run at different GC conditions until a clear peak response was achieved using this GC method:

Experimental time 17.83 min Split ratio 20 ml/min Initial temperature 50 °C, hold for 0.50 min Final temperature 280 °C, hold for 2 min Rate 15°C/min.

The MS method is Kali6 that is shown in *Appendix 1.4*. Figure 3.26 presents the chromatograph showing the peak of HEIA from the first extraction. No peak at all was observed in the samples resulting from the second extraction.

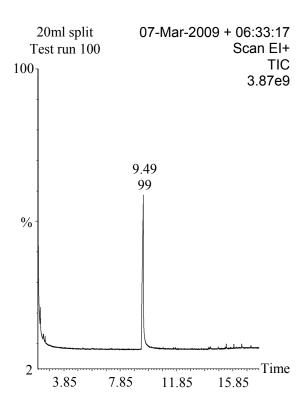



Figure 3.26 GC-MS response of 100 mg/L HEIA in 5 molal aqueous MEA solution

#### 3. HEEDA (N-(2-hydroxyethyl) ethylenediamine)

A similar process was followed for HEEDA. A sample of 100 mg/L HEEDA in 5 molal MEA was prepared by adding 0.09 ml of HEEDA in 99.9 ml of 5 molal aqueous MEA solution (23.2 ml MEA and 76.89 ml of H<sub>2</sub>O). A number of solvents were used in the liquid to liquid extractions such as DCM, DCM and ethanol mixtures, hexane, isopropanol and chloroform. It was noted that the best response was given when 50 ml of the sample was mixed in a separating funnel with 25 ml of DCM and 25 ml of isopropanol.

The sample was then introduced to the GC-MS and run at different GC (*Appendix 1.3*) and MS (*Appendix 1.4*) conditions until a clear peak response was achieved using the following conditions:

- experimental time 20 min
- split 50 ml/min
- initial temperature 50 °C

- final temperature 280 °C
- rate 20 °C/min.

The MS method is Kali6 that is shown in *Appendix 1.4*. The resulting response for the 100 mg/L HEEDA in 5 molal aqueous MEA is shown in Figure 3.27

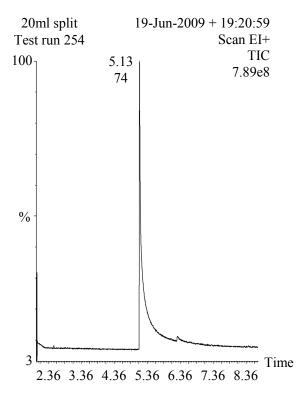



Figure 3.27 GC-MS Chromatograph of 100 mg/L HEEDA in 5 molal aqueous MEA solution

Unfortunately, the same problem that was faced with the MEA was faced with HEEDA in that no consistent peaks were achieved. This could be attributed to the fact that, as MEA, HEEDA is an amine as well and the available set up is not the appropriate for its detection and quantification.

#### 4. 2-Oxazolidone

Similarly to what it was described for HEEDA and HEIA (Figure 3.26 and Figure 3.27), work needed to be performed for 2-Oxazolidone as well for its detection and quantification with the GC-MS. A100 mg/L 2-Oxazolidone solution in 5 molal aqueous MEA was prepared by adding 10 mg of 2-Oxazolidone and 20.9

ml of MEA in 68.9 ml of  $H_2O$ . A liquid to liquid extraction was needed to partition the organics into a mixture of DCM and isopropanol (50:50). 50 ml of the sample was mixed in a separating funnel with 25 ml of DCM and 25 ml of isopropanol. The sample was then introduced to the GC-MS and run at different GC (*Appendix 1.3*) and MS (*Appendix 1.4*) conditions, until a clear peak response was achieved using the following GC conditions:

Experimental time was 17.83 min Split was 20 ml/min Initial temperature was 50 °C, hold for 0.50 min Final temperature was 280 °C, hold for 2 min Rate was 15 °C/min.

The MS method is Kali6 (*Appendix 1.4*). The resulting response for the 100 mg/L 2-Oxazolidone in 5 molal aqueous MEA is shown in Figure 3.28.

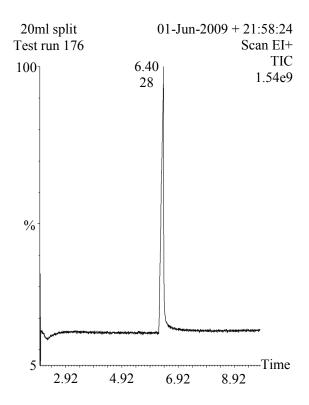



Figure 3.28 GC-MS Chromatograph of 100 mg/L 2-Oxazolidone in 5 molal aqueous MEA solution

#### 3.10.1.2 Final instrument set up

From all the previous work done by the author with the GC-MS for the analysis of MEA and its major thermal degradation products, it was concluded that it was not possible to identify and quantify them with the available set up. For that reason it was decided to purchase a different GC column (Rtx 5 Amine from Restek) more appropriate for the analysis needed to be performed.

With the new column it was initially necessary to conduct a systematic calibration exercise in the same way as was done for the previous column. Initially samples of pure MEA, HEEDA, HEIA and 2-Oxazolidone diluted in MTBE, DCM, toluene and acetone were run in the system. For the extractions, 50 ml of sample were mixed with 50 ml of the solvent in a separating funnel, the funnel was placed in a rotating bed for approximately 3 hours and then it was left to stand until the layers were clearly separated. Finally, about 2 ml of the organic solvent were taken and imported to the GC-MS system. The sample list can be seen in *Appendix 1.5* the conditions chosen can be seen in *Appendix 1.6* and *Appendix 1.7*, and the more appropriate conditions for the analysis of those compounds were found to be GC-MS.

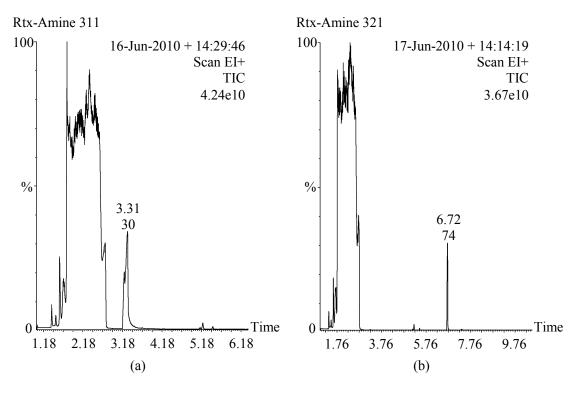
GC (method kz3 Appendix 1.6)

Experimental time 14.50 min

Split is 50 ml/min

Initial temperature 50 °C hold for 0.5 min, rate 20 °C/min to 320 °C hold for 0.5 min

MS (Method MEA4 Appendix 1.7)


Duration 17 min

Start mass 10 m/z

End mass 200 m/z

Armed with encouraging results from the DCM samples a programme of work was undertaken with a range of organic solvents to extract the target compounds from their aqueous solutions. DCM, acetone, toluene, MTBE and diethyl ether

were used to perform liquid to liquid extractions and it was found that diethyl ether was the solvent that gave the best responses for all the 4 compounds that needed to be analysed. The peak responses produced are presented in Figure 3.29.



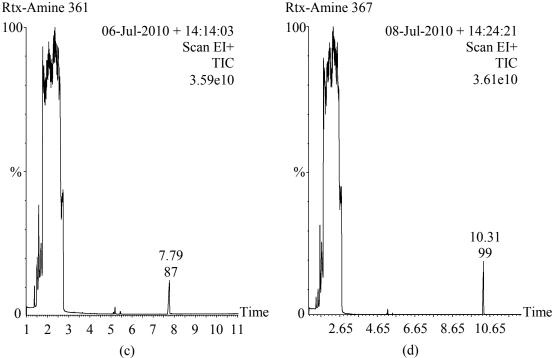



Figure 3.29 GC-MS responses for (a) MEA in ether (b) HEEDA in ether (c) 2-Oxazolidone in ether and (d) HEIA in ether

#### 3.10.2GC-MS-Final method

The experimental procedure that, after the extensive preliminary work, gave the best responses for all the 4 compounds of interest is described. The same procedure was used to produce the calibration curves for all analytes and to measure the unknown samples.

Due to the fact that aqueous samples could not be introduced to the GC-MS, the first step was to partition the organics from the water samples into diethyl ether. 50 ml of the sample were mixed in a volumetric flask with 50 ml of diethyl ether and shaken on a rotating bed for 2 days. 2 ml of the ether with the dissolved organics were then introduced to the GC-MS and run under the following conditions:

GC

Experimental time 14.50 min

Split is 50 ml/min

Initial temperature 50 °C hold for 0.5 min, rate 20 °C/min to 320 °C hold for 0.5 min

MS

Duration 17 min

Start mass 10 m/z

End mass 200 m/z

In Table 3.12 the retention times for MEA, HEEDA, HEIA and 2-Oxazolidone when analyzed with the available GC-MS system can be seen.

Table 3.12 Retention time of each analyte in the GC-MS

| Analyte       | Retention Time (min) |
|---------------|----------------------|
| MEA           | 3.31                 |
| HEEDA         | 6.72                 |
| HEIA          | 10.31                |
| 2-Oxazolidone | 7.79                 |

#### 3.10.3 Calibration curves

Good consistent responses were obtained for all compounds using the method described in Section 3.10.2, so the next step was to produce calibration curves for all the 4 compounds. Samples of different concentrations of each compound were prepared in diethyl ether (not extracted from water samples) and peak responses were integrated to produce the calibration curves reported in Figure 3.30 and Figure 3.31 for HEEDA and 2-Oxazolidone, respectively (raw data can be seen in *Appendix 1.8*). The calibration curves produced for all the four compounds were quite linear over the concentration range examined, with  $R^2$ =0.98 and above. It is important to note here that (0, 0) point was not used when the curves were plotted, none of the lines crosses zero which means that the method is not very accurate at very low concentrations close to 0.

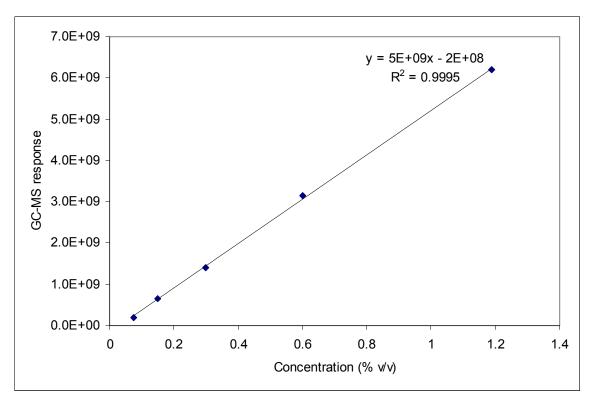



Figure 3.30 GC-MS responses for different concentrations of HEEDA in Diethyl Ether

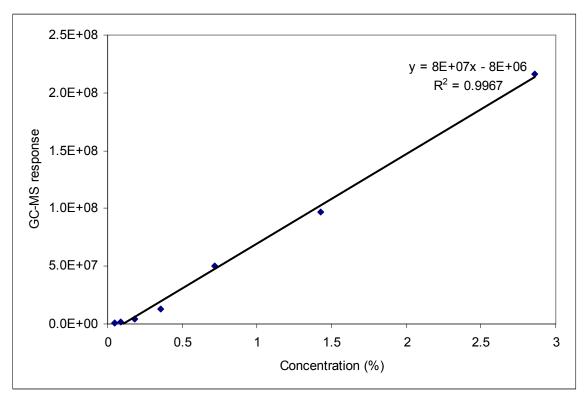



Figure 3.31 GC-MS responses for different concentrations of 2-Oxazolidone in Diethyl Ether

It was noted very early in this work that not all of the analytes were recovered by the liquid/liquid extraction process. At this point it was realised that it was important to perform more work in order to be able to quantify with more accuracy the MEA and HEIA which is considered the major MEA thermal degradation product (it accounts for most of the MEA loss) as reported in the literature (Davis 2009, Lepaumier 2009 B, Lepaumier 2009 A, Lepaumier 2010 and Lepaumier 2011). Therefore new calibration curves following the process described in Section 3.10.2 (GC-MS - final Method) were produced performing liquid to liquid extractions for every sample (raw data shown in *Appendix 1.9*). In total three calibration curves were produced for MEA and two for HEIA and the ones with the highest R<sup>2</sup> for each compound were used to determine the concentrations in the unknown samples. The produced calibration curves are shown in Figure 3.32 and Figure 3.33.

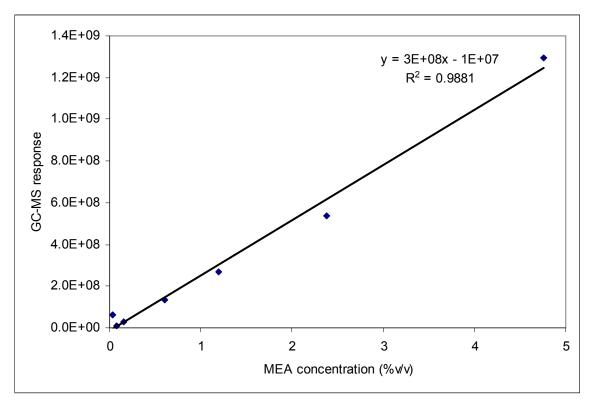



Figure 3.32 GC-MS responses for different concentrations of MEA extracted in Diethyl Ether

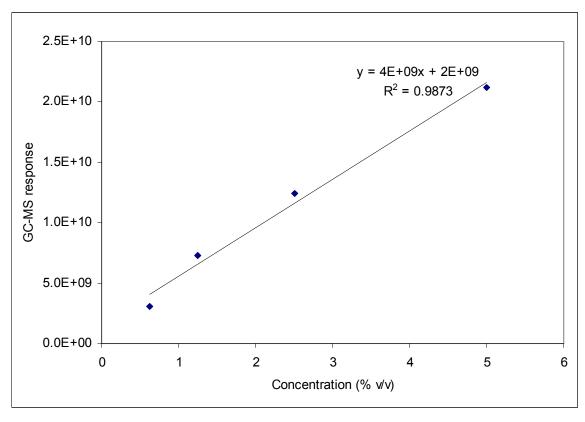



Figure 3.33 GC-MS responses for different concentrations of HEIA extracted in Diethyl Ether

It was necessary though to quantify the partitioning of HEEDA and 2-Oxazolidone into the diethyl ether and work with the calibration curves already produced. Solutions containing a known concentration of each of the two compounds (one sample for each compound) were prepared and the liquid/liquid extractions performed. The resulting solutions of the compounds in the diethyl ether were then measured by the GC-MS and the concentration determined from the calibration curve detailed in Figure 3.30 and Figure 3.31 (raw data and calculations presented in *Appendix 1.8*). The ratio of this concentration to the known concentration is termed the Partition Coefficient in the present work. Values of these coefficients expressed as a percentage for 2-oxazolidone and HEEDA are presented in Table 3.13.

Table 3.13 Partition coefficients for HEEDA and 2-oxazolidone into diethyl ether

| Analyte        | Partition Coefficient % |
|----------------|-------------------------|
| HEEDA          | 20                      |
| 2- oxazolidone | 100                     |

# 3.11 DETERMINATION OF THE EFFECT OF THERMAL DEGRADATION ON CO<sub>2</sub> ABSORPTION AND DESORPTION-EXPERIMENTAL PROCEDURE

Unless otherwise stated the procedure was as follows.

A volume of 1200 ml of 30% w/v aqueous MEA solution was contacted with pure CO<sub>2</sub> at a rate of 100 ml/min in the gas absorption/stripping rig (Figure 3.5), until the desired loading was achieved, as determined by the inorganic carbon content measurement performed by the TOC instrument (see Section 3.7).

The resulting sample was put into the three high pressure vessels (Figure 3.9), 400 ml in each, and then the vessels were placed in the oven to be thermally degraded at 160°C. The pressure change in two of the three vessels was continuously monitored, for safety reasons.

The vessels were removed from the oven at predetermined times, 2, 3 and 8 weeks. Repeated absorption/stripping cycles were applied to samples of pure MEA in the absorption/stripping apparatus (Figure 3.5) in order to determine the pure solvent's behaviour and its capacity for CO<sub>2</sub> uptake for a given period of time (approximately 6.5 hours for absorption and the same for stripping).

For the absorption: the temperature in the oil bath was raised to 50 °C and the feed gas inlet valve opened. 100 ml/min of pure CO<sub>2</sub> were bubbled into the reactor through a pre-saturator to maintain the water balance in the system. Any excess CO<sub>2</sub> gas that is not absorbed by the solvent is vented to a fume cupboard through a condenser and an amine recovery bottle. In order to determine the loading, samples of 0.1 ml were taken every 30 min and measured for their inorganic carbon content (see Section 3.7). After the absorption has finished the feed gas valve is closed.

For the stripping: the temperature in the oil bath was raised to 120 °C, the feed gas inlet valve opened and 200 ml/min of pure N<sub>2</sub> were bubbled into the reactor to ensure good agitation. At those conditions the CO<sub>2</sub> is released by the MEA

and is again vented to the fume cupboard through a condenser and an amine recovery bottle. The outlet gas flow and composition were measured every 20 to 30 min with a flow meter and microGC system (see Section 3.6). Repeated absorption/stripping cycles were then applied to the degraded samples so as to determine how thermal degradation affects the solvent's CO<sub>2</sub> uptake capacity. During the absorption the CO<sub>2</sub> loading of the sample was determined by measuring the carbon content of the sample with the TOC analyser (see Section 3.7). During stripping the microGC system was used to determine the CO<sub>2</sub> concentration at the outlet of absorption / stripping rig. The samples were analysed for thermal degradation products with the GC-MS (see Section 3.10.2).

#### 3.12 SUMMARY

The procedures followed to design and commission the absorption/stripping rig have been described in detail along with its operating protocols and details of its components. The system was designed to be capable of applying repeated cycles of absorption/stripping to different amine solvents and identifying the key parameters that affect the operational lifetime of the solvents. The screening of the solvent behaviour in terms of its CO<sub>2</sub> uptake capacity and how this is affected by solvent deterioration, though, was the most important use of that system.

After realising that solvent degradation was a very slow phenomenon at the chosen conditions and it would not be feasible to degrade MEA samples within a reasonable timescale, a second experimental procedure was designed. A more focused approach on the MEA thermal degradation was taken and a procedure to degrade samples of amines loaded with CO<sub>2</sub>, by exposing them to elevated temperatures for prolonged periods of time, was developed. Description of the system and information for its components has also been included in this chapter.

Descriptions of all the analytical equipment used to perform this research work were also presented in this chapter; a detailed description of the results processing tools and procedures is also included. As a the detection and quantification of MEA and its major degradation products was of utter importance for this research project, a considerable amount of time was spent to develop techniques and procedures to be able to perform the analysis needed by means of GC-MS and IC. The approach followed and the course of action taken to develop and improve the methods and analytical equipment setups has been discussed. The calibration curves were also presented for all the analytes tested. It can be concluded that with the systems and methods developed throughout this project, the identification and quantification of MEA and its major oxidative and thermal degradation products is feasible.

Last but not least, the procedure followed to thermally degrade samples and assess the effect of thermal degradation on the solvent operational lifetime was

detailed. This section links all the rigs, methods and procedures together and explains how these were used to assess the solvent deterioration.

## CHAPTER 4 RESULTS-DISCUSSION

#### 4.1 INTRODUCTION

In this chapter the results generated during this study are presented and discussed. This chapter is split into the following sections:

Section 4.2: Non-systematically degraded sample experiments, performed in order to get more familiar with the absorption/stripping rig equipment, try to degrade samples and detect any degradation products generated.

Section 4.3: MEA full loading experiment, to assess the solvent's behavior during absorption in the absorption/stripping rig.

Section 4.4: The 14 repeated full cycles experiment, as an initial systematic effort to degrade an MEA sample with mixtures of CO<sub>2</sub> and O<sub>2</sub> in the gas absorption/stripping rig, assess the solvent's behavior in terms of CO<sub>2</sub> uptake and detect and quantify any degradation products generated in it.

Section 4.5: After it was realized that it would not have been feasible to degrade samples within timescale in the existing rig, the CO<sub>2</sub> solubility experiments were performed in order to build confidence with the new designed experiment for MEA thermal degradation in the presence of CO<sub>2</sub>.

Sections 4.6 and 4.7: Thermal degradation experiments with lean and rich initial molar loading, respectively. The solvent behavior was assessed in terms of the effect of degradation on the solvent's CO<sub>2</sub> uptake capacity and thermal degradation products generation.

Section 4.8: A brief discussion of the effect of the initial molar loading on the solvent thermal degradation.

Section 4.9: A summary section of the results and discussion chapter.

#### 4.2 NON-SYSTEMATICALLY DEGRADED SAMPLE

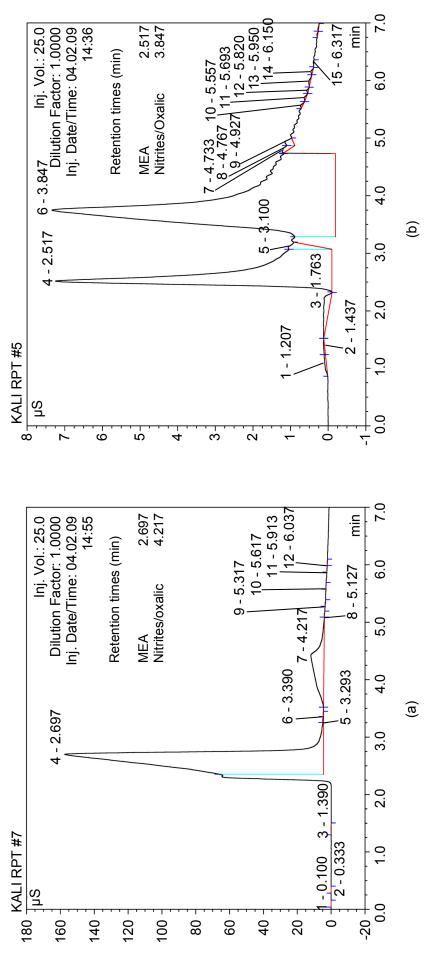
The first step in order to gain experience with the absorption/stripping rig (Figure 3.5) was to make an effort to degrade a sample of MEA. 500 ml of a 5 molal aqueous MEA solution was put in the absorption/stripping rig and degraded for about 5 days in a random fashion by bubbling air and CO<sub>2</sub> through it and at high temperatures (over 100°C), in order to expose the sample to conditions to accelerate the degradation. No record of the exact experimental conditions was kept as it was an initial effort to see how the absorption/stripping rig works and how fast samples can be degraded in that system. The degraded sample was then analyzed both in the GC-MS and in the IC in order to check if the sample contained any of the compounds reported in the literature as MEA major oxidative and thermal degradation products.

#### 4.2.1 Cardiff University analysis

After a certain experience was gained with the GC-MS and IC equipment the non-systematically degraded sample was analysed. It needs to be noted here that the methods described in Section 3.8.2 and Section 3.9.2 were not fully developed when this sample was generated. Therefore, the experimental procedures and results processing are as described in the following paragraphs.

#### 4.2.1.1 GC-MS

For the GC-MS measurements the old system set up was used (see Section 3.9.1.1), due to the fact that water samples can not be introduced to the GC-MS, the organics were partitioned in to DCM (dichloromethane) using the liquid to liquid extraction method. For this reason 50 ml of each solution were mixed in a separating funnel with 50 ml of DCM. Then, the resulting sample containing the DCM with the organics was evaporated down to volumes of approximately 2 ml, using a nitrogen blow down. The sample was run under different conditions changing the initial and final temperatures, the split ratio and the hold times but a clear peak response was not achieved (*Appendix 1.3* and *Appendix 1.4*). Thus, it was concluded that this sample did not contain any compounds which could be


detected with the set up available at the time in the lab or it contained lower concentrations than the minimum detectable concentrations from the available GC-MS system. As mentioned in Section 3.9.1, a modified procedure was developed at a later stage of the project.

#### 4.2.1.2 IC

For the IC measurements a uniform sample of 10 ml was taken from the reactor and it was diluted by 10 (1 ml of sample in 9 of water) and by 100 (1 ml of sample in to 99 of water) and they were measured in the IC, Figure 4.1 (a) and (b) respectively. The samples were not pre-processed with the amine deactivation cartridges; therefore the first peak observed is MEA (with retention time 2.697 min Figure 4.1 (a) in and 2.517 min in Figure 4.1 (b)) The IC conditions to run the samples were as follows:

- eluent potassium hydroxide, 30 mM,
- flow rate 1.2 ml/min,
- temperature 30 °C,
- injection volume 10 μl
- suppressor current 100 mA.

As shown in Figure 4.1 (a) and (b) the resulting chromatographs consist of two peaks. Based on information from the other sample runs the first peak seems to be MEA. For the second peak based on the retention times of the separate compound samples which were run, acetic, formic and nitrate anions are excluded. It could either be due to nitrite or oxalic anions. For this reason another method for the measurement of nitrite ions was used in order to detect if the sample contains nitrite anions see Section 4.2.3. It should be noted here that samples of 0.5 molal fresh aqueous MEA solutions have been run in the IC system (see Figure 3.14 (a)) and no considerable peaks close to the nitrite or oxalic retention times have been observed.



5 molal aqueous MEA sample degraded in a non-systematic way (a) x10 dilution and (b) x100 dilution Figure 4.1

#### 4.2.2 Non-systematically degraded Dionex IC analysis

#### 4.2.2.1 Anion IC analysis

The same degraded sample as was analyzed in Cardiff was also sent to Dionex Ltd in Switzerland to be analyzed in an IC system at their laboratories. An ICS-3000 system with a suppressed conductivity detector was used.

The anions were separated on an IonPac AS24 column and analyzed in 25 minutes using the following conditions:

- Eluent KOH 0.3 ml/min via eluent generator
- System pressure less than 2,800 psi
- Suppressor current 50 mA
- Temperature 15 °C
- Injection volume 25 μL.

The resulting chromatograph is shown in Figure 4.2.

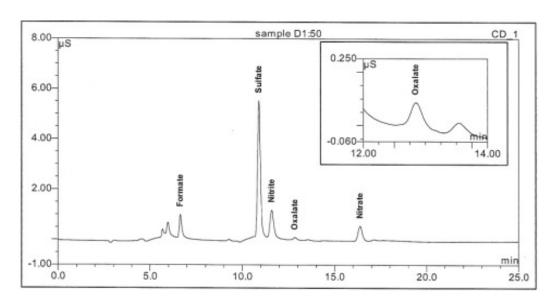



Figure 4.2 Anionic analytes in the degraded sample analyzed by Dionex Ltd

The concentrations of the anionic analytes in the original sample determined by Dionex are shown in Table 4.1.

Table 4.1 Concentrations of the anionic analytes in the degraded sample as determined by Dionex Ltd

| Analytes | Amount (mg/L) |
|----------|---------------|
| Formate  | 11.97         |
| Sulphate | 64.37         |
| Nitrite  | 18.23         |
| Oxalate  | 2.091         |
| Nitrate  | 14.44         |

The presence of 5 analytes was verified in the samples and the highest concentration observed was that of sulphate, with nitrite following. Nitrites were also detected by the IC system and the colorimetric method used at Cardiff School of Engineering. There is a difference in the measured values between laboratories and different equipment; more research would be needed to assess those differences. Moreover, peaks of formate, oxalate and nitrate were not observed in the IC chromatographs produced by the system used in this study. It should be noted here that the presence of sulphate ions was not expected but they were detected in the degraded samples. As no sulphate ions were detected in the pure MEA, the air used during the process came from a bottle and no obvious contamination source was noted in any part of the process, their presence could possibly be attributed to the dish-washer detergent used to wash all glassware used throughout the process. Note here that the glassware was rinsed with DI water before their use.

#### 4.2.2.2 Cation IC analysis

For the detection and analysis of the amines the IonPac CS17 column, using gradient elution in combination with a suppressed conductivity detector, was used by the Dionex Ltd laboratories in Switzerland. The chosen conditions for the analysis are as follows:

- Gradient MSA 0.3 ml/min via eluent generator
- System pressure less than 2,640 psi
- Suppressor current 40 mA
- Temperature 30 °C
- Injection volume 10 μL

sample 1:100 CD 1 80.0 0.400 μS 60.0 min 40.0-0.100 20.0 25.0 20.0 min -5.0-5.0 10.0 15.0 20.0 25.0 30.0 35.0

The resulting chromatograph is shown in Figure 4.3.

Figure 4.3 Cationic analytes of the degraded sample analyzed by Dionex Ltd

No analysis was performed to detect amines or any cationic products at Cardiff School of Engineering. The chromatograph shown in Figure 4.3 presents a peak response for MEA and no other identified cationic analyte is present in considerable amounts

#### 4.2.3 Colorimetric analysis with HACH meter

The HACH portable data logging colorimeter DR/890 available at Cardiff School of Engineering was used to verify and quantify the presence of nitrite, nitrate and sulphate ions in the non-systematically degraded sample, as they were detected in the sample that was analysed by Dionex (Section 4.2.2).

The first step was to determine if the second peak response present in the degraded sample's chromatograph (see Figure 4.1 (a) and Figure 4.1 (b)) was due to oxalic or nitrite ions. For that reason, the HACH meter was used for the analysis of nitrite ions with the ferrous sulphate method for high range (0 to 150 mg/l NO<sub>2</sub><sup>-</sup>) with the method 8153 (see Section 3.8). In the first measurement made, the sample was not diluted and it was noted that the reading was outside the range of the method, for that reason the measurement was repeated after the

sample was diluted by 10 (1 ml of degraded sample in 9 ml of DI water). The instrument reading was multiplied by 10 and it was determined that it contained 600 mg/L nitrite anions.

As nitrate anions were also detected in the sample in the Dionex laboratories, the HACH portable data logging colorimeter was used to analyse the sample and quantify any nitrates present in solution. The cadmium reduction method in the high range from 0 to 30 mg/L with method number 8039 was used (see Section 3.8). The presence of 8 mg/L nitrate anions was determined using this method.

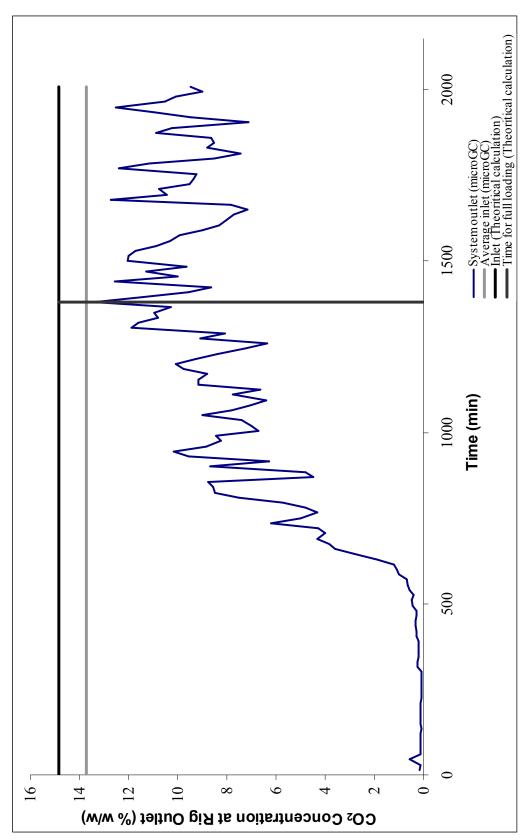
It was not originally expected to detect sulphate anions in the degraded sample but, as it was detected by Dionex in their system, another method was used in Cardiff to verify their presence. The HACH portable data logging colorimeter was again used to analyse the sample, with the SulfaVer 4 method (method number 8051) in the range from 0 to 70 mg/L (see Section 3.8). The first sample analysed was not diluted and the reading was outside the range of the method, therefore the sample was diluted by 10 and the measurement was repeated and the final instrument reading was multiplied by 10. It was determined that the sample contains 130 mg/L of sulphate anions.

Table 4.2 shows the concentrations of each analyte as measured by Dionex Ltd and the HACH meter at Cardiff University. The peaks identified in the sample analysed by the anion IC system used in this study, were not quantified as no calibration curve was available at the time that this sample was analysed. The calibration curves produced at a later stage of the project were prepared using a different procedure for the IC analysis.

Table 4.2 Anion quantification in the randomly degraded sample with  $O_2$ , comparison of the Dionex Ltd IC system and the HACH meter

|          | HACH meter Cardiff University | IC Dionex Ltd |
|----------|-------------------------------|---------------|
| Analytes | Concentration (mg/L)          |               |
| Formate  | -                             | 11.97         |
| Sulphate | 130                           | 64.37         |
| Nitrite  | 600                           | 18.23         |
| Oxalate  | -                             | 2.091         |
| Nitrate  | 8                             | 14.44         |

Clearly, there is a need for further work in order to explore the differences between results at different laboratories and using different equipment. However, there is clear demonstration that sulphate (unexpectedly and unexplained), nitrate and nitrite ions have been generated during this initial degradation process. As already mentioned in the case of the randomly degraded sample (Section 4.2.2.1), one possible source of sulphate contamination could be the dish-washer detergent, no other apparent source could be identified.


#### 4.3 FULL LOADING EXPERIMENTS

The next step for the commissioning of the absorption/stripping rig and to develop a method to assess the MEA behavior during the process was to attempt a full loading experiment in the developed system and with the chosen operating conditions.

It was theoretically calculated that 500 ml of a 5 molal aqueous MEA solution can absorb 27.83 L of CO<sub>2</sub> considering that the maximum loading that could be achieved is at absorber conditions is 0.5 moles of CO<sub>2</sub>/mole of MEA. The CO<sub>2</sub> inlet flow for this initial experimental run was chosen to be low, 20 ml/min and 180 ml/min of air. The CO<sub>2</sub> inlet flow was adjusted in such way so as the solvent could absorb all the CO<sub>2</sub> at the beginning of the experiment. In other words, the inlet flow was low so the CO<sub>2</sub> bubbled into the solvent would not reach the liquid surface. This was done in order to be able to assess the solvent's behavior in terms of CO<sub>2</sub> uptake. Taking into account the CO<sub>2</sub> inlet flow, it was calculated that the aforementioned MEA solution needs 23.2 hours until fully loaded. In order to check the system's behavior an experiment to fully load the amine was performed.

Samples of the outlet gas were taken every 15 minutes using the microGC system during the period of absorption (see Section 3.6 for the microGC procedure) it needs to be noted here that the data presented in this section are just CO<sub>2</sub> concentrations (% w/w) and not volumes of CO<sub>2</sub> (see *Appendix 2.1* for raw data). In Figure 4.4 the % (w/w) of CO<sub>2</sub> in the outlet gas over time during absorption can be seen. The vertical grey line shows the time where, according to the theoretical calculations, the loading is supposed to be finished (23 hours). The horizontal black line shows the CO<sub>2</sub> concentration (15.84 %) which was calculated from the inlet flow, whereas the grey horizontal line shows an average value of all the CO<sub>2</sub> inlet concentrations measured during the experimental time. From Figure 4.4 it can be concluded that the system operates as expected. For the first 8.5 hours the MEA seems to absorb all the CO<sub>2</sub>. After this and until the end of the 33<sup>rd</sup> hour the absorption rate falls but the CO<sub>2</sub> percentages fluctuate. It needs to be noted here that at this initial experiment, the gas flow rate at the

absorption/stripping rig's outlet was not measured; therefore the solution breakthrough capacity could not be calculated.



CO<sub>2</sub> concentration with time in the laboratory absorption/stripping rig during the full loading experiment Figure 4.4

### 4.4 14 FULL CYCLES OF ABSORPTION/STRIPPING WITH O<sub>2</sub>/CO<sub>2</sub> MIXTURE

After the full loading experiment was performed, a more systematic exercise to degrade a sample of MEA, by exposing it to repeated cycles of absorption/stripping at conditions as close as possible to a real amine scrubber, was attempted.

#### 4.4.1 Solvent behaviour accessed with the microGC

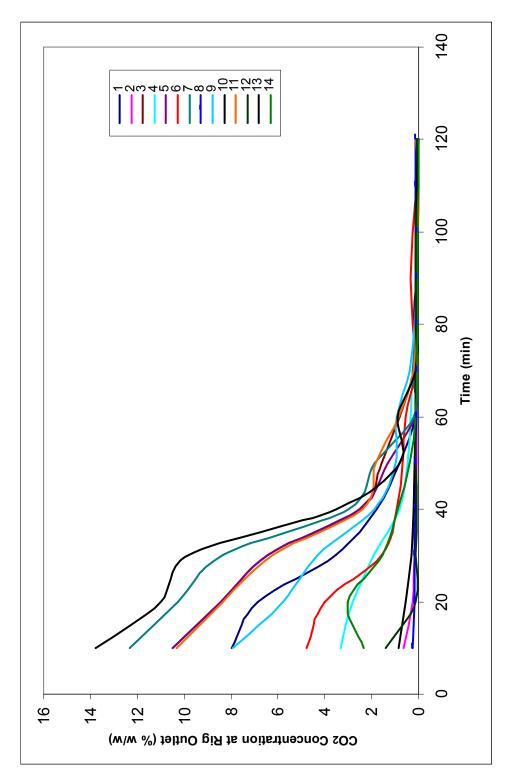
In order to assess the effect of the presence of  $O_2$  on the solvent and the system operation, 500 ml of 5 molal aqueous MEA solution was prepared and subjected to repeated cycles of absorption and stripping in the absorption/stripping rig, under such conditions to achieve MEA oxidation (Figure 3.5). The feed gas composition was 20 ml/min  $CO_2$  and 180 ml/min air or 66.4%  $N_2$ , 17.7%  $O_2$  and 15.84%  $CO_2$  % w/w. The microGC system was used at the rig's outlet to measure the gas composition with the method described in Section 3.6, the data presented are  $CO_2$  concentrations % w/w and not volumes of  $CO_2$ .

Each absorption cycle lasted 2 hours and stripping 1 hour, the system was run for 14 full (absorption-stripping) cycles. The experiments were run over a period of 7 days, which means that 2 full cycles were performed each day. The absorption temperature (50 °C) in the oil bath was reached in 10 minutes and the stripping temperature (from 50 to 120 °C) in 20 minutes.

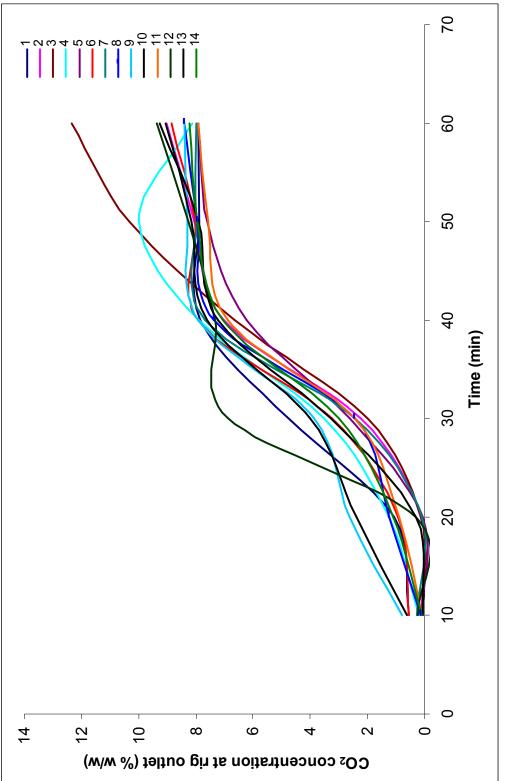
Samples of the outlet gas were taken every 10 minutes for all the period of absorption and stripping. The measurements were initiated after the desired temperature was achieved in the oil bath and they are plotted in Figure 4.5 and Figure 4.6 for absorption and stripping respectively. These graphs represent the CO<sub>2</sub> concentrations at the system's outlet (microGC response) over time. Due to technical difficulties some of the absorption values were missing (absorption 3, day 2, cycle 1 from 09:00:00 to 09:40:00 and absorption 5, day 3, cycle 1 from 09:00:00 to 09:50:00), these values were found by performing linear interpolation using the values from the other curves. This was done by

calculating the average values of the microGC responses obtained by the other cycles at the specific times missing (see *Appendix 2.2* and *Appendix 2.3*)

As already mentioned, it was theoretically calculated that 500 ml of a 5 molal aqueous MEA solution can absorb 27.83 L of CO<sub>2</sub> (see Figure 4.4). Taking into account that the inlet CO<sub>2</sub> flow for the experimental run was chosen to be 20 ml/min, it was also calculated that the aforementioned MEA solution needs at least 23.2 hours until fully loaded. Moreover, as it was also chosen to run the absorption experiments for 2 hours to be able to perform more than one cycles per day. Thus, based on theoretical calculations, the highest loading which could be achieved in 2 hours is up to 8.6 %.


From Figure 4.5, which shows the absorption curves resulting from all 14 cycles, it can be seen that at all the 14 runs the sample absorbs all the CO<sub>2</sub> after about 30 minutes and is still absorbing CO<sub>2</sub> till the end of the absorption experiment. It was therefore concluded that with the available system, being capable to achieve maximum loading of 8.6% in 2 hours, it would take a very long time to observe a difference in the MEA breakthrough curve, if no difference is observed after 14 full cycles. As shown in Figure 4.4, it took about 500 minutes to observe CO<sub>2</sub> exiting the system's outlet and in Figure 4.5 no CO<sub>2</sub> exits the system after 120 min when 14 cycles of absorption/stripping in the presence of O<sub>2</sub>. Therefore, it can be concluded that a measurable effect of MEA oxidation on the solvent's CO<sub>2</sub> uptake capacity would take a long time to be observed with the available system and conditions. It must also be noted here that these lines just represent CO<sub>2</sub> percentage at the system's outlet, in other words no measurement of the exit flow was taken, and thus not safe conclusions can be drawn on the CO<sub>2</sub> volumes absorbed.

During the stripping, as shown in Figure 4.6 the curves have similar trends which shows that the system has the expected behavior as far as stripping is concerned for all the 14 cycles. The system starts to almost fully release the CO<sub>2</sub> after approximately 40 minutes, which could be also attributed to the fact that the measurements started after the temperature in the oil bath reached the desirable


120 °C but the temperature inside the reactor takes longer to be reached. Overall, the curves are essentially identical within experimental error.

Therefore, it could be concluded that many more full cycles of absorption-stripping should be applied to the MEA in order to start observing the effect of  $O_2$  on the solvent  $CO_2$  uptake capacity at those conditions and in the available absorption/stripping rig. Note here again that a more accurate way to assess the effect of  $O_2$  on MEA and how it affects its capability to absorb the  $CO_2$  would be by performing mass balances in the system. This was not possible at this experiment as the  $CO_2$  volumetric flow at the system's outlet was not measured during these experiments. Moreover, the effect might have been more prominent at a later stage of the absorption process, when the solution has absorbed volumes closer to its maximum capacity. It would take a very long time though to perform full cycles of absorption/stripping as with the available rig took about 500 minutes to breakthrough (see .

Based on the literature review (see Section 2.5.1) the oxidative degradation rate is enhanced as the MEA and  $O_2$  concentrations are increased whereas there is a disagreement on whether the  $CO_2$  molar loading has an inhibition effect or increased the degradation rates. Therefore, it was concluded that many more full cycles of absorption/stripping should be applied to the MEA, or introduce higher  $O_2$  concentrations in order to start observing a more dramatic effect of  $O_2$  on the solvent.



CO<sub>2</sub> concentration during absorption with time in the laboratory absorption/stripping rig for each of the 14 absorption-stripping cycles Figure 4.5



CO<sub>2</sub> concentration during stripping with time in the laboratory absorption/stripping rig for all the 14 absorption-stripping cycles Figure 4.6

# 4.4.2 Sample analysis with the GC-MS

The MEA sample which resulted from the repeated absorption/stripping experiment described in the previous paragraph, was also analyzed in the GC-MS using different conditions -for both the GC and the MS (*Appendix 1.3* and *Appendix 1.4*) and organic solvents (DCM, hexane, isopropanol and chloroform) for the liquid to liquid extraction but no clear response was obtained for this sample. This means that the sample did not contain any of the compounds which can be detected with the available system setup (HEEDA, HEIA or 2-Oxazolidone) or that they were present at concentrations lower than the minimum detectable by this GC-MS system. It needs to be noted here that a more appropriate procedure for the analysis of those compounds was developed at a later stage of the project (see Section 3.9.1).

# 4.4.3 Sample analysis with the IC

The same sample was preprocessed with the MEA deactivation cartridges and was analyzed with the available IC system using the conditions described in Section 3.8.1.3.

The resulting chromatograph can be seen in Figure 4.7. In this chromatograph 4 clear peaks can be noted and based on the retention times for each of the compounds (See Table 3.8) it can be concluded that MEA, nitrite and nitrate anions were in the solution. Two of the peaks were quantified and the presence of 111 mg/L nitrites and 1350 mg/L nitrates was determined.

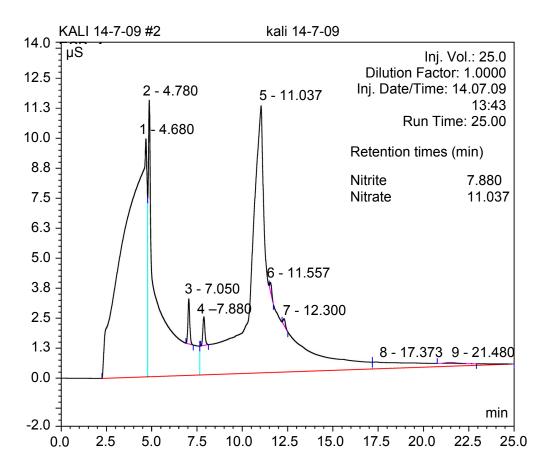



Figure 4.7 IC chromatograph of the degraded MEA sample after 14 cycles of absorption-stripping

As seen in Figure 4.7, the resulting chromatograph is not very good, the base line is slightly raised and there are two major peaks and other small ones. At 11.557 min a small peak (number 6) can be observed at the side the nitrates peak that could be sulphate (based on the retention times). Again as in the randomly degraded sample (see Section 4.2.1.2) it was not expected to detect sulphate anions but because they were detected in the previous sample (by both the Dionex IC system and Cardiff University analytical equipment) and there is a small peak observed in Figure 4.7, another method was used to verify their presence.

#### 4.4.4 Sulphate, nitrite and nitrate anions HACH meter measurement

The HACH portable colorimeter was again used to verify the IC results and to compare the values measured by the two instruments, as at this stage of the study the calibration curves and method detection limits had been produced for all the five analytes. The analytical procedure followed is described in Section 3.8.

The SulfaVer 4 method in the range from 0 to 70 mg/L was used again and it was determined that the sample contains 6 mg/L of sulphate anions. Nitrate anions were also detected in the sample by the IC and the HACH colorimeter with the cadmium reduction method in the range from 0 to 30 mg/L was also used to crosscheck the results. The presence of 560 mg/L nitrate anions was verified using also this method (the sample was diluted by 10 to perform this measurement). Finally, the ferrous sulphate method for high range (0 to 150 mg/L NO<sub>2</sub><sup>-</sup>) was used to verify the presence of nitrite ions. It was observed that the sample contains 29.6 mg/L nitrite anions. Table 4.3 presents a comparison of the measured analytes by the two different methods.

Table 4.3 Anion quantification in the degraded MEA sample with the IC system and the HACH meter.

|            | Nitrate (mg/L) | Nitrite (mg/L) | Sulphate (mg/L) |
|------------|----------------|----------------|-----------------|
| Anion IC   | 1350           | 111            | -               |
| HACH meter | 560            | 29.6           | 6               |

5 molal aqueous MEA after 14 cycles of absorption/stripping in the presence of  $O_2$ 

As clearly seen in Table 4.3, there are differences between the absolute values of concentrations found by the two instruments but the trends are similar. Reconciliation of these differences in absolute concentrations would require further analytical investigation work. However, these results confirm the earlier findings of the randomly degraded sample presented in Section 4.2.3. Note here that there were 1.92 moles of nitrogen in the initial MEA solution, therefore, according to the IC analysis, approximately 0.5% of the nitrogen was converted to nitrates and 0.041% was converted to nitrites.

# 4.5 CO<sub>2</sub> SOLUBILITY EXPERIMENT AT 100 °C

As concluded in Section 4.4.1, it would not have been feasible to degrade MEA samples in the absorption/stripping rig (Figure 3.5) within reasonable timescale in this study. For that reason a more focused approach on thermal degradation and a new set of experiments needed to be developed. For that reason, it was deemed necessary to repeat part of the CO<sub>2</sub> solubility experiments in order to get more familiar with the new system built (see Figure 3.9) and the new operating protocols as presented in Section 3.5.2.

Samples of 400 ml of 30% w/v aqueous MEA solutions were placed in the absorption/stripping rig (Figure 3.5) and were loaded with pure  $CO_2$ . Thereafter, the initial  $CO_2$  loading was determined (see Section 3.7) and each sample was placed in the high pressure vessel (the one equipped with the needle pressure gauge) shown in Figure 3.9. The measured inorganic carbon content for each sample can be seen in Table 4.4, the  $CO_2$  molar loading was determined using Equation 3.9 (see Section 3.7).

Table 4.4 CO<sub>2</sub> loading determination

| Date       | Measured Inorganic | Loading                          |
|------------|--------------------|----------------------------------|
| Date       | Carbon (mg/L)      | (molesCO <sub>2</sub> /mole MEA) |
| 02/03/2010 | 23.26              | 0.039                            |
| 03/03/2010 | 133.78             | 0.225                            |
| 04/03/2010 | 245.7              | 0.414                            |
| 05/03/2010 | 264.88             | 0.446                            |
| 09/03/2010 | 209                | 0.352                            |
| 18/03/2010 | 167.9              | 0.283                            |

400 ml of 30 % w/v aqueous MEA solution samples, loaded in the absorption-stripping rig at  $50^{\circ}$ C, 500 ml/min pure  $CO_2$ 

The vessel was sealed and placed in the oven at 100 °C until equilibrium was reached (it was assumed that equilibrium was reached when the pressure reading of the pressure gauge was stable for more than an hour). The measured total pressure and the time to reach equilibrium for each sample are presented in Table 4.5 (raw data presented in *Appendix 2.4: Raw Data CO<sub>2</sub> Solubility Experiment*).

Table 4.5 Total Pressure Data for MEA – CO<sub>2</sub> – Water system at 100 °C

| Initial Loading                  | Measured Total Pressure | Time to equilibrium |
|----------------------------------|-------------------------|---------------------|
| (molesCO <sub>2</sub> /mole MEA) | (kPa)                   | (hours)             |
| 0.039                            | 240.7                   | 3                   |
| 0.225                            | 275.08                  | 5                   |
| 0.283                            | 550.16                  | 6                   |
| 0.352                            | 584.54                  | 7                   |
| 0.414                            | 618.93                  | 8                   |
| 0.446                            | 861.85                  | 10                  |

400 ml of 30% w/v aqueous MEA solution, 200 ml available headspace, temperature 100 °C

The  $CO_2$  partial pressure was then calculated by subtracting from the total pressure the partial pressures of MEA,  $H_2O$  (both calculated using Raoult's law) and the air partial pressure (calculated assuming ideal gas behaviour). In Figure 4.8 the relationship between the initial  $CO_2$  loading and the time that it took for the system to reach equilibrium is shown and it can be seen that as the initial loading increases the time to equilibrium increases as well. Figure 4.9 presents the measured total pressure during the solubility experiments at 100 °C versus the  $CO_2$  initial molar loading.

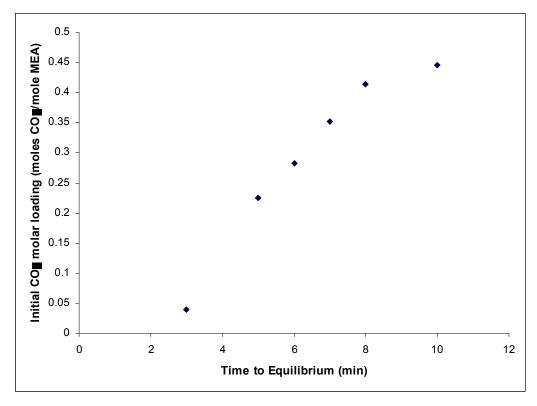



Figure 4.8 Time to equilibrium during the CO<sub>2</sub> solubility experiments at 100°C Equilibrium between 400 ml of 30 % w/v aqueous MEA solution and the CO<sub>2</sub> released in the

headspace of the pressure vessel versus the initial CO<sub>2</sub> molar loading of the MEA solution.

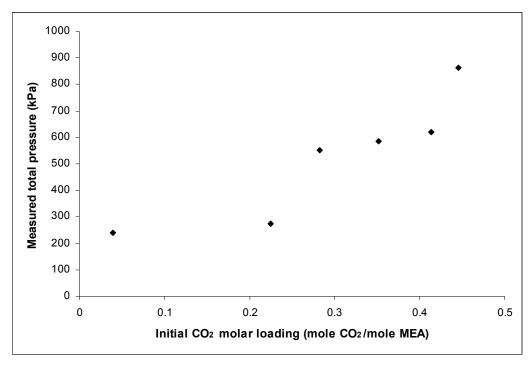



Figure 4.9 Measured total pressure versus initial CO<sub>2</sub> molar loading of the MEA.

Total pressure developed between 400 ml of 30 % w/v aqueous MEA solution and the CO<sub>2</sub> released on the headspace of the pressure vessel during CO<sub>2</sub> solubility experiments at 100 °C.

From this measured total pressure the  $CO_2$  partial pressure can be calculated using the method followed by Jou et al. (1995). Based on information found in the literature from Daubert et al (1987), the vapour pressure of the pure MEA at  $104.44~^{\circ}C$  is  $P^{o}_{MEA}$ = 8.010 kPa. Moreover, from the steam tables, the pressure of water at  $100~^{\circ}C$  is  $P^{o}_{H2O}$  = 101.35 kPa. In 400 ml of 30 % w/v aqueous MEA solution there are 1.964 moles of MEA and 15.62 moles of water. There were 0.008 moles of air in the 200 ml headspace at the beginning of the experiment, thus  $P^{o}_{AIR}$  = 373\*101.35/298= 126.86 kPa. The  $CO_2$  partial pressure was calculated by subtracting the water, MEA and the air partial pressures from the total measured pressure. The partial pressures are calculated by Raoult's law. So the formula used to calculate the  $CO_2$  partial pressure is:

$$P_{\text{total}} = P_{\text{H2O}} + P_{\text{MEA}} + P_{\text{CO2}} + P_{\text{AIR}}$$
 Equation 4.1

Where, P<sub>total</sub> is the measured pressure during the experiment,

$$P_{H2O} = X_{H2O} * P_{H2O}^{0}$$
 Equation 4.2

$$P_{MEA} = X_{MEA} * P_{MEA}^{o}$$
 Equation 4.3

where,  $X_{H2O}$  and  $X_{MEA}$  the mole fractions of water and MEA, respectively, in the initial solution. The calculated mole fractions and partial pressures for MEA and  $H_2O$  are presented in Table 4.6 and Table 4.7 (see *Appendix 2.4: Raw Data CO<sub>2</sub> Solubility Experiment*).

Table 4.6 Calculated mole fractions for MEA and  $H_2O$  for each sample of the  $CO_2$  loaded solutions

| Initial Loading (molesCO <sub>2</sub> /mole MEA) | $X_{MEA}$ | $X_{\rm H2O}$ |
|--------------------------------------------------|-----------|---------------|
| 0.039                                            | 0.111     | 0.884         |
| 0.225                                            | 0.109     | 0.866         |
| 0.283                                            | 0.108     | 0.861         |
| 0.352                                            | 0.107     | 0.855         |
| 0.414                                            | 0.107     | 0.849         |
| 0.446                                            | 0.106     | 0.846         |

Table 4.7 Calculated partial pressures for MEA and H<sub>2</sub>O for each sample of the CO<sub>2</sub> loaded solutions

| Initial Loading (molesCO <sub>2</sub> /mole MEA) | P <sub>MEA</sub> (kPa) | P <sub>H2O</sub> (kPa) |
|--------------------------------------------------|------------------------|------------------------|
| 0.039                                            | 0.000891               | 89.636                 |
| 0.225                                            | 0.000873               | 87.806                 |
| 0.283                                            | 0.000867               | 87.257                 |
| 0.352                                            | 0.000861               | 86.604                 |
| 0.414                                            | 0.000855               | 86.029                 |
| 0.446                                            | 0.000852               | 85.731                 |

In Table 4.8 the calculated  $CO_2$  partial pressures are shown. From the calculated  $CO_2$  partial pressures, the number of moles of  $CO_2$  that were released by the MEA at this temperature and moved to the headspace can be determined and as a result the  $CO_2$  loading when the system was in equilibrium can be calculated using the ideal gas law as a tool to have an approximate value (as  $CO_2$  is not behaving as an ideal gas therefore for more accurate results a correction factor would need to be used). In Table 4.8 the loadings during equilibrium are presented.

| Table 4.8 | Calculated CO <sub>2</sub> partial pressures for MEA solutions with various |
|-----------|-----------------------------------------------------------------------------|
|           | CO <sub>2</sub> loadings at 100 °C                                          |

| Initial Loading<br>(molesCO <sub>2</sub> /mole<br>MEA) | Total<br>Pressure<br>(kPa) | CO <sub>2</sub> Partial<br>Pressure<br>headspace (kPa) | CO <sub>2</sub><br>in the<br>headspace<br>(moles*10 <sup>-3</sup> ) | Loading during equilibrium (moles CO <sub>2</sub> /mole MEA) |
|--------------------------------------------------------|----------------------------|--------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
| 0.039                                                  | 240.7                      | 60.064                                                 | 3.874                                                               | 0.037                                                        |
| 0.225                                                  | 275.08                     | 96.274                                                 | 6.209                                                               | 0.222                                                        |
| 0.283                                                  | 550.16                     | 371.903                                                | 23.984                                                              | 0.270                                                        |
| 0.352                                                  | 584.54                     | 406.937                                                | 26.243                                                              | 0.338                                                        |
| 0.414                                                  | 618.93                     | 441.902                                                | 28.498                                                              | 0.399                                                        |
| 0.446                                                  | 861.85                     | 685.119                                                | 44.183                                                              | 0.423                                                        |

400 ml of 30% w/v aqueous MEA solution, 200 ml available headspace, temperature 100  $^{\circ}C$ 

In Figure 4.10 the graphical representation of the  $CO_2$  partial pressure versus the  $CO_2$  molar loading resulting from the experimental data is shown.

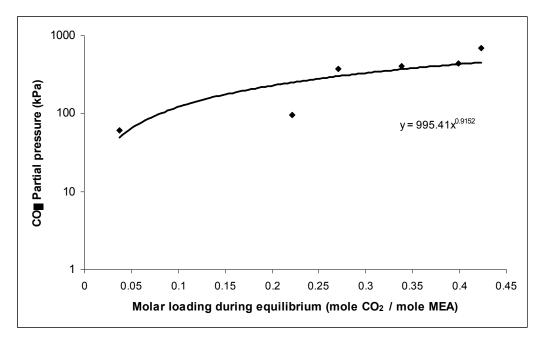



Figure 4.10 CO<sub>2</sub> partial pressure versus CO<sub>2</sub> loading for 30 % w/v aqueous MEA solution at 100 °C

An example of calculations of the  $CO_2$  compressibility factor ( $Z_{CO2}$ ), for the sample with the highest measured total pressure (see Table 4.8 last line), is presented. This was done in order to have an idea of how the  $CO_2$  molar loading during equilibrium would change if the compressibility factor was taken into account. According to Çengel Y. A. and M. A. Boles (2007) in order to calculate the compressibility factors for a mixture of non-ideal gases, the reduced pressure and temperature for  $CO_2$  need to be calculated. The reduced pressure was

calculated to be 0.117 by dividing the total measured pressure ( $P_m = 861.85 \text{ kPa}$ ) with the critical pressure of  $CO_2$  ( $P_{cr} = 7390 \text{ kPa}$ ). Similarly, the reduced temperature was calculated to be 1.23 by dividing the temperature, 373 K, with the critical temperature of  $CO_2$ ,  $T_{cr} = 304.2 \text{ K}$ . The compressibility factor was then determined using the Nelson-Obert generalised compressibility chart and it was found to be approximately 0.52. Then, the number of moles of  $CO_2$  in the vessel's headspace was recalculated to be 0.10 by dividing the calculated number of moles, as presented in Table 4.8, with the compressibility factor ( $Z_{CO2}$ ), thus, 0.044/0.52. Finally, the loading was calculated again to be 0.392 instead of 0.423 that was calculated without taking into account the compressibility factor. Therefore, it can be concluded that a smaller number of moles of  $CO_2$  is needed, under those experimental conditions, to cause the same pressure if a corrections factor is not used.

Table 4.9 shows a comparison between the experimental data generated in this work and experimental data found in the literature under the same conditions (30% w/v aqueous MEA solutions at 100 °C).

Table 4.9 Comparison of the CO<sub>2</sub> solubility data at 100°C between the literature values and the experimental data from the present study

| Presen  | t Study  | Shen & I | i (1992) | Jou et al | (1995)          | Ma'mum e | et al (2005) |
|---------|----------|----------|----------|-----------|-----------------|----------|--------------|
|         | $CO_2$   |          | $CO_2$   |           | CO <sub>2</sub> |          | $CO_2$       |
| Molar   | Partial  | Molar    | Partial  | Molar     | Partial         | Molar    | Partial      |
| Loading | Pressure | Loading  | Pressure | Loading   | Pressure        | Loading  | Pressure     |
|         | (kPa)    |          | (kPa)    |           | (kPa)           |          | (kPa)        |
| 0.039   | 60.064   | 0.227    | 2.8      | 0.0117    | 0.00724         | 0.155    | 7.354        |
| 0.225   | 96.274   | 0.279    | 8.5      | 0.0566    | 0.136           | 0.2326   | 19.62        |
| 0.283   | 371.903  | 0.305    | 19.9     | 0.188     | 1.43            | 0.2901   | 39.18        |
| 0.352   | 406.937  | 0.348    | 99.9     | 0.381     | 19              | 0.3594   | 92.79        |
| 0.414   | 441.902  | 0.427    | 379      | 0.422     | 39              | 0.38882  | 137.9        |
| 0.446   | 685.119  | 0.457    | 772      | 0.477     | 69              | 0.4182   | 191.9        |

30% w/v aqueous MEA solutions, temperatures 100  $^{o}C$ 

From the results of the present experiment (Figure 4.10 and Table 4.8), if compared with the data shown in the literature review (see Table 4.9) it can be concluded that the solubility data seem to differ when different rigs are used to obtain them. In general the data produced by this set of experiments show higher

 $CO_2$  partial pressures. The values obtained by the study performed by Shen and Li (1992) seem to come to close agreement with the data from the present work at high  $CO_2$  loadings. In all the literature studies presented the aqueous MEA solution volume was smaller than in this study as well as the total system volumes (description of the rigs and conditions used in these studies is presented in Section 2.4.2 of the literature review entitled Solubility of  $CO_2$  in MEA). Last but not least, it is possible that the pressure measurements – especially at the lower values – were not very accurate as they were estimated by eye. The needle pressure gauge used was numbered every 10 psi and it is noted that 1 psi = 6.895 kPa. Therefore, a second digital pressure gauge was purchased at a later stage of this project for more accuracy (see Section 3.5.2).

After comparing the CO<sub>2</sub> solubility data produced for 100°C with the values found in the literature and after recalculate the loading taking into account the compressibility factor, it was concluded that it was safe to place the high pressure vessels in the oven at 160°C for up to 8 weeks. The calculated pressures were within the operating limits of the pressure vessels purchased and at the higher end of the pressures reported in the literature at similar CO<sub>2</sub> solubility experiments.

# 4.6 THERMAL DEGRADATION EXPERIMENT - LEAN INITIAL MOLAR LOADING

The purpose of this experiment was to expose the CO<sub>2</sub>-loaded MEA sample to conditions to accelerate its thermal degradation in the presence of CO<sub>2</sub>. Then, the effect of thermal degradation on the solvent CO<sub>2</sub> uptake capacity as well as the build up of thermal degradation products was assessed. A detailed description of the entire procedure followed in this section is presented in Section 3.10. It needs to be noted here that the temperature was chosen to be 160 °C (higher than in an actual stripper) to accelerate the production of degraded samples. Polderman et al. (1955) suggests one mechanism of MEA thermal degradation in the presence of CO<sub>2</sub> below 200 °C, which is called carbamate polymerisation. Moreover, according to Davis & Rochelle (2008) and Lepaumier et al. (2009 & 2010) the MEA degradation products are the same at 100, 120, 135, 140 and 150°C; it is the rate of their production that increases with the temperature.

# 4.6.1 Pressure changes – Thermal degradation rig

For the degradation experiment, three 400 ml samples of 30 % w/v aqueous MEA solutions were loaded into the absorption/stripping rig (Figure 3.5) with initial molar loading of 0.19 (moles of CO<sub>2</sub>/mole of MEA) as determined by an inorganic carbon content measurement. The samples were sealed in the high pressure vessels (Figure 3.9) and placed in the oven at 160 °C. The pressure change inside one of the vessels was continuously monitored with an analogue pressure gauge with range 0-2000 psi (0 – 14 MPa) (see Section 3.5.3) for safety reasons; it was assumed – as the experimental conditions were the same – that the pressure changes were the same in all the three vessels. The vessel equipped with the pressure gauge came last out of the oven. The samples were left in the oven at 160 °C for 2, 3 and 8 weeks to thermally degrade. Each one of the samples was taken out of the oven and remained sealed at room temperature until the beginning of the absorption/stripping experiment.

The total pressure change versus time during the 8 weeks of the thermal degradation experiment can be seen in Figure 4.11 and the raw data in *Appendix* 2.5: Pressure Changes During Thermal Degradation – Lean Samples. As it can be

seen, the system reaches its highest pressure (3034 kPa) after 24 hours. The pressure then starts dropping at a fast rate initially and then slower until it stabilises at 965 kPa after 480 hours (20 days).

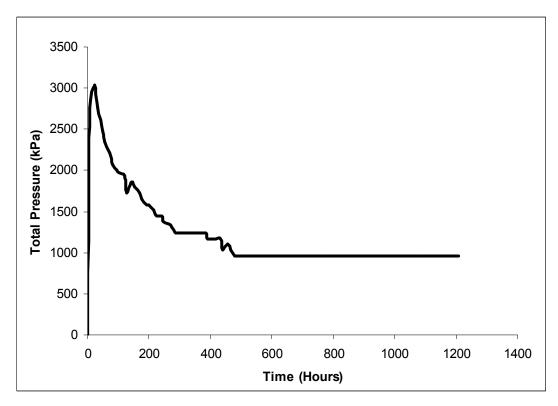



Figure 4.11 Total pressure change versus time during the thermal degradation experiment at 160 °C

400 ml of 30 % w/v aqueous MEA solution

The system's behaviour – in terms of pressure – was not as originally predicted from vapour pressure calculations. It was believed that as the MEA degrades the  $CO_2$  initially captured would have been released to the vessel's headspace. In practice, after the initial expected rapid increase, the pressure started dropping almost immediately and it kept dropping for 420 hours. Of course quite a considerable amount of it would have been absorbed by the water at these temperatures and pressures but this can not explain the constant pressure drop for 20 days.

The first thing that was checked to ensure that the pressure change was not affected by any external influence was the oven temperature. For this reason a mercury thermometer was used to verify that the oven temperature was actually at 160 °C and that the temperature was stable. Another reason which could have

caused the pressure drop would have been if there was a leak from the vessels. For that reason the first action taken after the samples were taken out of the oven - and before they were tested in the absorption-stripping rig – was to measure the sample volumes at room temperature using the same volumetric tube used to measure the initial sample volumes (400 ml). The measured volumes can be seen on Table 4.10.

Table 4.10 Volumes of the MEA samples before and after thermal degradation at 160 °C

| Sample | Initial Volume (ml) | Final Volume (ml) |
|--------|---------------------|-------------------|
| Week 2 | 400                 | 396               |
| Week 3 | 400                 | 398               |
| Week 8 | 400                 | 397               |

30 % w/v aqueous MEA solution

The volume changes are very small, and whilst not being conclusive proof that no leak has occurred, they do at least support the hypothesis that the pressure changes might be attributable to other effects as well. It is interesting to note that when one of the vessels was known to have leaked in another test a considerable volume of liquid escaped with the exhaust gases. It has also been verified that the vessels can indeed sustain the high pressures experienced in these tests and that the pressure gauge is working correctly. 400 ml of DI water were placed in the vessels and heated at 160°C; the pressure reading was the as expected from the steam tables and remained stable for approximately 8 hours.

Clearly, if it is considered that the system was not leaking, the considerable change in the vessel's total pressure was caused by the change in CO<sub>2</sub> partial pressure as the partial pressures of air and water remain the same (if the conditions are considered stable throughout the experiment) and the MEA partial pressure change was too small to have caused such a change in the total pressure. Therefore, another reason of this pressure change could also be explained by the fact that MEA uses CO<sub>2</sub> in order to degrade which can be seen in the schematic representation of the thermal degradation products proposed by Davis (2009) (see Figure 2.8).

Of course further investigation would be needed in order to be able to draw firm conclusions on what is the actual cause of this pressure change and it could, in fact ,be a combination of all the aforementioned explanations that resulted in that pressure drop. Lepaumier et al. (2010 and 2009 (b)) mention that CO<sub>2</sub> needed to be added in their system throughout the 15 days of their experiment due to the fact that MEA was using the CO<sub>2</sub> to degrade but also due to leaks from their equipment.

In Section 4.6.2 a conceptual model that could explain how the MEA uses CO<sub>2</sub> in order to degrade is presented.

# 4.6.2 Thermal degradation of MEA using CO<sub>2</sub>

At the beginning of the degradation experiment, the 400 ml sample of loaded MEA put in the reactor was comprised of MEA carbamate (MEA associated with CO<sub>2</sub>), some molecules of "free" MEA and water. When the temperature reached 160°C, the MEA carbamate was converted into MEA and CO<sub>2</sub> molecules (expected MEA behaviour during stripping) that accumulate in the vessel's headspace and that could explain the initial pressure built up that was observed. The high pressure developed in the vessel probably caused a considerable amount of the CO<sub>2</sub> from the headspace to be dissolved MEA and in the water. Carroll et al. (1991) presents experimental data from three sources at 160 °C and at CO<sub>2</sub> partial pressure of about 1 MPa (smaller than the one experienced during the experiments of the present study) with a measured CO<sub>2</sub> solubility of about 0.07 mol % in water.

Later on, when the system in the vessel would have normally reached equilibrium, the MEA started degrading and in order to explain how degradation might affect the CO<sub>2</sub> partial pressure in the headspace, the development of a conceptual model has been attempted. For this initial attempt at elucidating the mechanisms at play, the model of MEA degradation proposed by Davis (2009) has been used. The suggested pathway agrees with the thermal degradation pathways presented by Lepaumier (2009 (a) and (b), 2010 and 2011). Davis (2009) schematic representation of the degradation is presented in Figure 4.12.

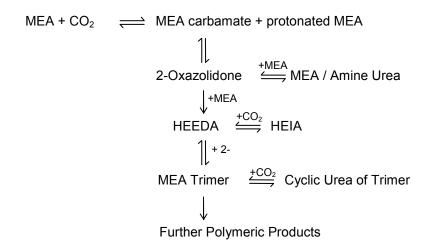



Figure 4.12 Schematic of the pathway of formation of MEA carbamate polymerization degradation (Davis, 2009)

According to this model the first step for the MEA degradation (at those conditions) is when the MEA carbamate reacts to form 2-Oxazolidone reversibly. The formation of 2-Oxazolidone causes the equilibrium of the MEA carbamate production to be displaced. This means that more MEA will react with CO<sub>2</sub> to form MEA carbamate in order to balance the equilibrium, for that reason molecules of CO<sub>2</sub> from the headspace will be used and this will cause its partial pressure to drop.

Consequently the 2-Oxazolidone produced is "used" to produce other degradation products, which cause the equilibrium of the carbamate formation to be shifted again. Therefore the available MEA reacts with more available molecules of CO<sub>2</sub> and the CO<sub>2</sub> partial pressure drops more. Other degradation products formed such as HEEDA and MEA Trimer also react with the available CO<sub>2</sub> and cause the pressure to drop more. At the beginning of the experiment the amounts of CO<sub>2</sub> and MEA available are higher so the reactions move faster. As a result the pressure drop in the beginning of the experiment is more dramatic.

As time passes the rate of 2-oxazolidone production (first step of MEA degradation) slows down as there is not that much available CO<sub>2</sub> and MEA. Davis (2009) also reports that "once the solution becomes more highly degraded, a compound effect of MEA loss starts to become important" which slows the overall MEA loss. If the MEA loss slows it probably means that not much CO<sub>2</sub> is

used irreversibly anymore for MEA degradation. This is consistent with the fact that the rate of pressure drop (after 300 hours) slowed until it stabilised or could not be measured with the available pressure gauge. A similar conclusion is drawn by Lepaumier et al. (2011) that states that "At 135 °C in the presence of CO<sub>2</sub>, MEA degraded 57.6 % after 5 weeks; the slope of the degradation rate was quite linear during the first four weeks, and then started to slow down".

It is believed that, some of the pressure drop during the course of the 8 weeks experiment could be attributed to the mechanism described above. If no CO<sub>2</sub> gas was used by the MEA then the MEA would not have degraded. Moreover, after the samples were taken out of the oven they were put in the absorption/stripping rig (Figure 3.5) to release any CO<sub>2</sub> left and all the three contained CO<sub>2</sub> (see Section 4.6.3.1). That means that even if there was a leak from the vessels, there was still CO<sub>2</sub> available in the sample for the MEA to degrade.

## 4.6.3 Effect of degradation on MEA CO<sub>2</sub> uptake capacity

All the three samples after having thermally degraded for 2, 3 and 8 weeks at  $160^{\circ}$ C were tested in the absorption-stripping rig (Figure 3.5) to assess the effect of degradation on the solvent's CO<sub>2</sub> uptake capacity when compared with a pure fresh MEA solution of the same concentration (for description of the experimental procedure see Section 3.10).

### 4.6.3.1 $1^{st}$ stripping

After the vessels were opened and the sample volume was measured, the next step was to release all the  $CO_2$  that was still in the solution. For that reason each sample was placed in the absorption/stripping rig and after 20 minutes, when the temperature in the oil bath reached  $120^{\circ}$ C, the stripping gas feed valve was opened and  $N_2$  (200 ml/min) was fed to the reactor for good agitation. The exit flow and the outlet gas composition were measured every 20 minutes with the microGC. The volume of  $CO_2$  was then calculated by multiplying the  $CO_2$  percentage with the exit flow rate and the time (20 minutes). A flow correction was needed as during the stripping the exit flow meter is calibrated for nitrogen when a mixture of  $CO_2$  and  $N_2$  is coming out of the system as a result of

displacement of the initial contents of the vessels and connecting lines (see Section 3.6).

In Figure 4.13 the cumulative  $CO_2$  volume released by the degraded samples at 160 °C can be seen (see raw data and calculations in *Appendix 2.6: MicroGC Raw Data – 1<sup>st</sup> Stripping Lean Samples*).

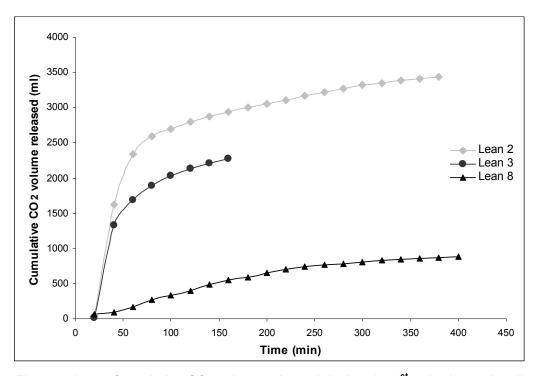



Figure 4.13 Cumulative CO<sub>2</sub> volume released during the 1<sup>st</sup> stripping – "lean" samples

Initial concentration 30% w/v aqueous MEA solution, 0.19 initial molar loading, degradation temperature 160  $^{\circ}C$ 

As shown in Figure 4.13, the longer the sample degraded the more CO<sub>2</sub> disappeared from the solution. This is consistent with the expectation that the formation of degradation products requires CO<sub>2</sub> (see Section 4.6.2) and even if a leak occurred during the experiment there was still CO<sub>2</sub> available for the MEA to degrade. Table 4.11 shows the volumes of CO<sub>2</sub> released by all the three degraded samples with initial concentration of 30% w/v aqueous MEA and initial molar loading of 0.19 after being kept at 160°C for the allocated times of 2, 3 and 8 weeks.

Table 4.11 Volume of CO<sub>2</sub> released during 1<sup>st</sup> stripping following degradation

| Sample | CO <sub>2</sub> volume released (L) | Experimental Time (min) |
|--------|-------------------------------------|-------------------------|
| Lean 2 | 3.4                                 | 380                     |
| Lean 3 | 2.3                                 | 180                     |
| Lean 8 | 0.9                                 | 400                     |

Initial concentration 30% w/v aqueous MEA solution, 0.19 initial molar loading, degradation temperature 160  $^{\rm o}C$ 

It should be noted here that the samples were initially loaded with 8.3 L of CO<sub>2</sub> and that CO<sub>2</sub> evolution was still happening when stripping was stopped for the 2 week and 3 week samples. What is clear is that the sample held in the oven for 8 weeks has "lost" 7.4 litres of CO<sub>2</sub>.

#### 4.6.3.2 Absorption - microGC

After the first stripping the samples were loaded with CO<sub>2</sub> in the absorption-stripping rig (Figure 3.5). For the absorption the temperature in the oil bath is raised to 50 °C and it takes up to 10 minutes for this temperature to be reached. At that point the inlet gas feed valve is opened and pure CO<sub>2</sub> is bubbled inside the reactor at a flow rate of 100 ml/min. The outlet gas composition and the exit flow rate were again measured every 20 minutes. The volume of CO<sub>2</sub> absorbed was calculated by subtracting the amount of CO<sub>2</sub> at the system's outlet from the amount of CO<sub>2</sub> put in the system. The flows needed again to be corrected as a pure CO<sub>2</sub> flow meter is used at the system's outlet when a mixture of air and CO<sub>2</sub> are coming out of the system.

In Figure 4.14 the graphical representation of the volume of CO<sub>2</sub> absorbed by the system versus time can be seen (raw data presented in *Appendix 2.7*). The degraded samples are compared with a pure fresh MEA sample of the same initial concentration (30%wt). The first observation that can be made is that the pure MEA continues to absorb consistently throughout the period whilst the sample held at 160°C for 8 weeks showed a distinct drop in performance at 300 minutes. The data are not quite as conclusive for the 2 and 3 week samples but it can be observed that the more degraded the samples are the less CO<sub>2</sub> they can absorb. Careful examination of the volumes of CO<sub>2</sub> calculated by this method

shows a considerable overestimate and loss of gas before entry to the absorber is suspected. This was investigated in the next phase of experimentation.

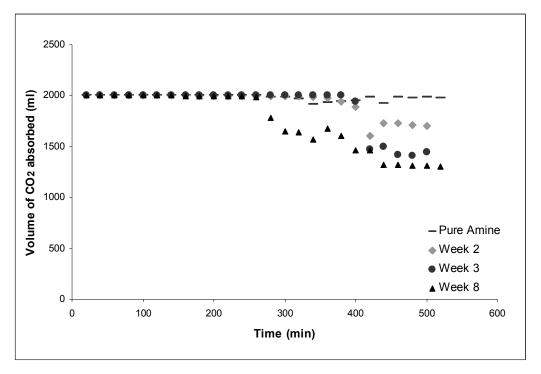



Figure 4.14 Volume of CO<sub>2</sub> absorbed by the degraded samples compared with a pure fresh MEA sample of the same concentration

400 ml 30% w/v aqueous MEA solution, initial molar loading 0.19, degradation temperature  $160^{\rm o}C$ 

After the absorption was finished the samples were measured in the TOC apparatus to determine the inorganic carbon content of the samples and calculate how much  $CO_2$  was absorbed. The results can be seen in Table 4.12.

Table 4.12  ${\rm CO_2}$  concentration, as measured by inorganic carbon content measurement, after absorption for the degraded and the pure MEA samples

| Sample   | Volume of CO <sub>2</sub> in solution (L) |
|----------|-------------------------------------------|
| Pure MEA | 9.3                                       |
| Lean 2   | 2.9                                       |
| Lean 3   | 2.8                                       |
| Lean 8   | 1.9                                       |

400 ml 30% w/v aqueous MEA solution, initial molar loading 0.19, degradation temperature  $160^{\circ}C$ 

The results from Table 4.12 support the conclusion that was drawn from the measurements performed with the microGC during absorption in the absorption-stripping rig, that the more degradation the sample undergoes, the less CO<sub>2</sub> it can

absorb. A loss of MEA of the order of 80% after 8 weeks is suggested by these data.

After performing those experiments it was realised it was not possible to perform a mass balance in the absorption/stripping rig during absorption. Further investigation was needed, therefore, it was deemed necessary to perform an experiment to assess the situation and investigate the possibility of a leak in the system.

For that purpose 400 ml of acidified DI water (pH= 5 approximately) were put in the absorption/stripping rig and an absorption cycle, as described in Section 3.4.2, was performed. The microGC was used to measure the CO<sub>2</sub> percentage at the rig's outlet (raw data shown in *Appendix 2.8*). It was noted that approximately 170 minutes passed before a volume of CO<sub>2</sub> exited from the rig and even at that point and until after 330 minutes the outlet volume was not equal with the inlet CO<sub>2</sub> volume. The next step was to investigate from which part of the system the CO<sub>2</sub> gas losses occurred. Therefore, while the rig was operating, as described above, the joints were sprayed with water and soap solution and it was observed whether bubbles were created. The activity started from the system's outlet and proceeded towards the inlet. During this test it was noted that there were leaks at the part in between the inlet (after the CO<sub>2</sub> flow meter) and the reactor. It was verified that the presence of the glass frit was causing a pressure built up which was resulting in gas escaping from the connections.

In the part of the system after the reactor and to the rig's outlet no leaks were observed that is why no problems were observed during the stripping. Thus, it was considered necessary to find a different way to assess the solvent behaviour during the absorption. The inorganic carbon measurement, using the TOC instrument, was determined to be the most appropriate to determine the  $CO_2$  content in a  $CO_2$  loaded amine solution. The procedure followed is as described in Section 3.7.

#### 4.6.3.3 Absorption – Inorganic Carbon Measurement (TOC instrument)

The CO<sub>2</sub> was released by the degraded samples and the loading was repeated using the inorganic carbon measurement to assess the solvent's behaviour during absorption in the absorption/stripping rig. For the absorption the temperature in the oil bath is raised to 50 °C and it takes up to 10 minutes for this temperature to be reached. At that point the inlet gas feed valve was opened and pure CO<sub>2</sub> was bubbled into the reactor at a flow rate of 100 ml/min. The amount of CO<sub>2</sub> captured by the MEA was determined by measuring the inorganic carbon content of the solution using the TOC instrument as described in Section 3.7. Figure 4.15 shows the graphical representation of the volume of CO<sub>2</sub> captured by the degraded samples over time for all three samples, *Appendix 2.9* shows all of the data.

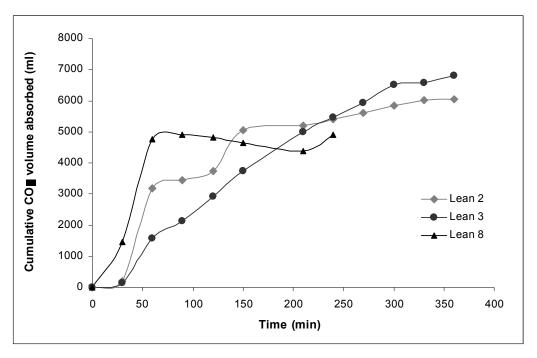



Figure 4.15 Cumulative volume of CO<sub>2</sub> absorbed – "lean" samples after thermal degradation

400 ml 30% w/v aqueous MEA solution, initial molar loading 0.19, degradation temperature  $160^{\rm o}C$ 

From Figure 4.15 it can be observed that the 8-week sample stops absorbing  $CO_2$  after approximately 1 hour of bubbling and it absorbs about 4.9 L of  $CO_2$ . Moreover, it can be observed that the 8 weeks "lean" sample seems to have a faster  $CO_2$  uptake than the other samples which could be explained if it is

considered that some of the degradation products, possibly present in higher concentrations in the highly degraded samples, might have the capability to absorb CO<sub>2</sub>. The samples after 2 and 3 weeks of thermal treatment seem to stop absorbing at almost the same time (after about 300 minutes). At this point it is important to consider the volumes of CO<sub>2</sub> that remained in the degraded samples after the first stripping. These were determined by TOC and were 2.7 L, 0.9 L and 0.9 L for the 2, 3 and 8 week degraded samples respectively

A pure MEA solution with 30% w/v initial concentration has the potential to absorb about 23 L of CO<sub>2</sub> and on this basis it is concluded that the "lean" solution after 8 weeks of thermal degradation has lost approximately 75% of its ability to absorb the gas i.e. 5.8 L of gas absorbed compared to a theoretical capacity of 23 L. According to Davis (2009) a 7 molal (30% w/v) aqueous MEA solution with initial molar loading of 0.25 after degrading for 8 weeks at 135 °C has an approximately 29% MEA loss. The MEA loss determined by the present study is much higher possibly due to the much higher temperature used.

#### **4.6.3.4** Stripping

After the end of the absorption, stripping was performed in the normal manner (see Section 4.6.3.1). In Figure 4.16 the cumulative CO<sub>2</sub> released from the three degraded samples is shown (see *Appendix 2.10* for raw data and calculations). The resulting curves are compared with the one produced for a 400 ml pure fresh 30% w/v aqueous MEA sample. The degraded samples release less CO<sub>2</sub> than the pure sample and this is especially shown for the sample that was degrading for 8 weeks. It can also be seen that the degraded samples are releasing the CO<sub>2</sub> at a faster rate than the pure MEA sample. The precise reason for the increase in stripping rate exhibited by the degraded samples needs to be further assessed.

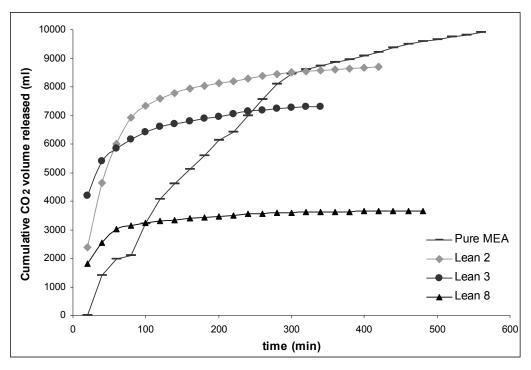



Figure 4.16 Cumulative CO<sub>2</sub> volume released - "lean" samples test compared with a pure fresh MEA sample

400 ml 30% w/v aqueous MEA solution, initial molar loading 0.19, degradation temperature  $160^{\circ}C$ 

#### 4.6.3.5 Summary solvent's CO<sub>2</sub> uptake capacity - Lean loading

Table 4.13 summarises the absorption and stripping results for the samples with "lean" loading after being subjected to the thermal degradation process.

Table 4.13 Absorption/Stripping behaviour of thermally degraded, "lean" samples after removal of residual CO<sub>2</sub>

| Sample and degradation time (weeks) | Volume of CO <sub>2</sub> absorbed in 400 min (L) | Volume of CO <sub>2</sub> stripped in 400 min (L) |
|-------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Pure MEA (no thermal treatment)     | 9.9*                                              | 9.9                                               |
| Lean 2                              | 8.8                                               | 8.7                                               |
| Lean 3                              | 7.8                                               | 7.3                                               |
| Lean 8                              | 5.8                                               | 3.7                                               |

400 ml 30% w/v aqueous MEA solution, initial molar loading 0.19, degradation temperature  $160^{\circ}\mathrm{C}$ 

In Table 4.13 it can be observed that there is a tendency for the CO<sub>2</sub> to be retained in solution during the stripping stage and that this trend is more prominent for the

<sup>\*</sup> Inferred – not measured

8 week sample. However it is recalled that the absorption data were obtained by TOC instrument measurement and the stripping by microGC, hence further cycles of absorption and stripping would be necessary to explore this phenomenon in more detail.

#### 4.6.4 Corrosion

After the end of the degradation experiment and when the pressure vessels were opened, it was noted that quite considerable amount of solids were present in all the 3 degraded samples. At that point after an inspection of the pressure vessels, corrosion was suspected. For that reason after the absorption-stripping experiment, all the three samples were filtered in order to be analysed for metals in the ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry).

As the amount of solids in solutions was not enough for the ICP-OES analysis (at least 0.10 gr of dried solids needed), only the solids from the sample of 8 weeks degradation was analysed, as well as liquid samples (not filtered) from the degraded samples of 2, 3 and 8 weeks. The entire volume of the 8 weeks sample was filtered passing it through as funnel with filter Whatman, 90 mm dia (product number 1440090), the filter was then dried in the oven at 100 °C for 2 days. 0.101 gr of dried solids were recovered from the sample and were then analysed with the ICP-OES. The results can be seen in

Table 4.14 for the solid sample and Table 4.15 for the liquid samples.

Table 4.14 Analysis of metal content of the solids in the sample that degraded for 8 weeks

| Sample name | Cr (g/Kg) | Fe (g/Kg) | Mn (g/Kg) | Mo (g/Kg) | Ni (g/Kg) |
|-------------|-----------|-----------|-----------|-----------|-----------|
| Lean 8      | 112.5     | 722       | 0.5       | 4.3       | 2.4       |

Sample of 0.101 g of dried solids filtered from the 400 ml of 30% w/v aqueous MEA solution with initial  $CO_2$  molar loading of 0.19 after degrading for 8 weeks at 160 °C in the pressure vessels.

Table 4.15 Analysis of metal content of the degraded samples compared with a sample of fresh MEA.

| Sample name | Cr (mg/L) | Fe (mg/L) | Mn (mg/L) | Mo (mg/L) | Ni (mg/L) |
|-------------|-----------|-----------|-----------|-----------|-----------|
| Fresh MEA   | 0         | 0         | 0         | 0.1       | 0         |
| Lean 2      | 16.6      | 19.7      | 0         | 20.0      | 149.3     |
| Lean 3      | 16.5      | 27.3      | 0         | 24.3      | 224.7     |
| Lean 8      | 20.4      | 366.2     | 0.4       | 67.6      | 929.2     |

400 ml 30% w/v aqueous MEA solutions with initial  $CO_2$  molar loading of 0.19 degraded for 2, 3 and 8 weeks at 160 °C compared with a 30% w/v aqueous fresh MEA, volume of the analysed sample 2 ml.

From the data shown in

Table 4.14 and Table 4.15, it can be concluded that the samples of loaded MEA are causing the stainless steel vessels to corrode. For the solid sample found in the 8 weeks degraded sample - as shown in

Table 4.14 – quite high concentrations of metals were measured. From the data shown in Table 4.15, it can be seen that the more the sample stays in the vessels, at these temperatures and pressures, the higher the amount of metals found in the analysed liquid samples.

The metal losses per unit area and per unit area over time of the degradation experiments, based on the liquid sample metal analysis shown in Table 4.15, were determined. These calculations were performed considering the vessel's surface area as 282.6 cm<sup>2</sup> and the time as the degradation experiment duration in days and are shown in Table 4.16.

Table 4.16 Corrosion rates of the high pressure vessels during the degradation experiments of MEA

|        | mg Cr/cm <sup>2</sup> | mg Cr/cm <sup>2</sup> /day |
|--------|-----------------------|----------------------------|
| Lean 2 | 0.023                 | 0.002                      |
| Lean 3 | 0.024                 | 0.001                      |
| Lean 8 | 0.029                 | 0.0005                     |
|        | mg Fe/cm <sup>2</sup> | mg Fe/cm <sup>2</sup> /day |
| Lean 2 | 0.028                 | 0.002                      |
| Lean 3 | 0.039                 | 0.0018                     |
| Lean 8 | 0.518                 | 0.0093                     |
|        | mg Mo/cm <sup>2</sup> | mg Mo/cm <sup>2</sup> /day |
| Lean 2 | 0.028                 | 0.002                      |
| Lean 3 | 0.034                 | 0.0016                     |
| Lean 8 | 0.096                 | 0.0017                     |
|        | mg Ni/cm <sup>2</sup> | mg Ni/cm <sup>2</sup> /day |
| Lean 2 | 0.211                 | 0.015                      |
| Lean 3 | 0.318                 | 0.015                      |
| Lean 8 | 1.315                 | 0.024                      |

400 ml 30% w/v aqueous MEA solutions with initial CO<sub>2</sub> molar loading of 0.19 degraded for 2, 3 and 8 weeks at 160 °C

As it can be seen in Table 4.16 the metal loss per surface area increased as the time progressed. It can also be concluded that the rate of metal loss remained almost stable throughout the time of the thermal degradation experiment, as shown in the 3<sup>rd</sup> column of Table 4.16 except for Fe and Ni in the lean 8 sample.

In Table 4.17 the nominal chemical composition of the pressure vessel materials is shown as provided by the manufacturer (Parr Instrument Company).

Table 4.17 Percentage of major elements of the high pressure vessels

| Material             | Fe (%) | Ni (%) | Cr (%) | Mo (%) | Mn (%) |
|----------------------|--------|--------|--------|--------|--------|
| T316 Stainless Steel | 65     | 12     | 17     | 2.5    | 2.0    |

In the 8 weeks lean sample (

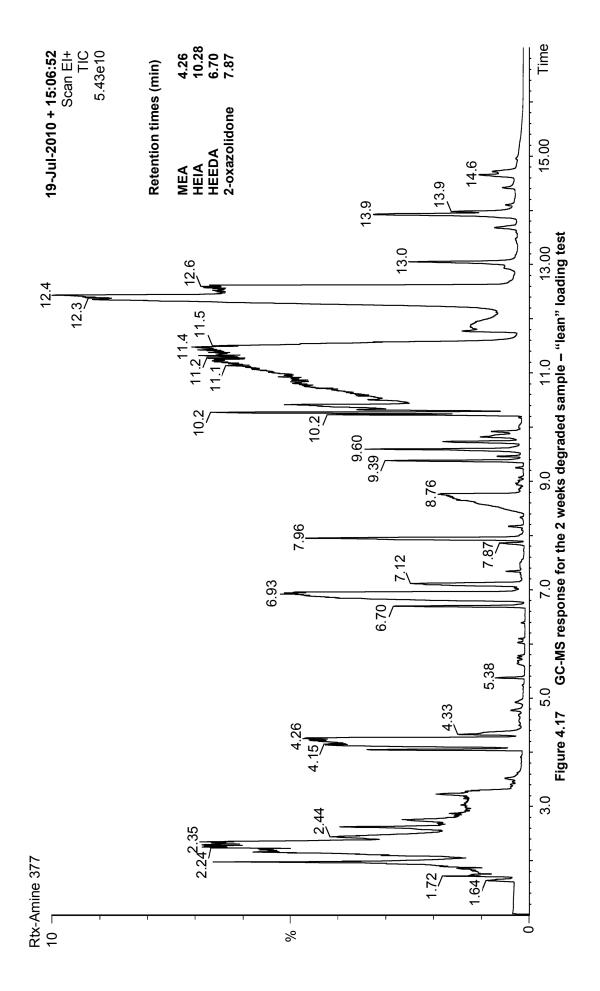
Table 4.14) high amounts of Fe and Cr were measured in the solid sample and a small concentration of Ni, whereas Ni and then Fe were the highest concentrations detected in the liquid samples (Table 4.15). Noticing the major elements of the high pressure vessels provided by the manufacturer, see Table 4.17, the highest metal percentages are those of Fe, Ni and then Cr. Thus, it seems that the vessels do not corrode uniformly.

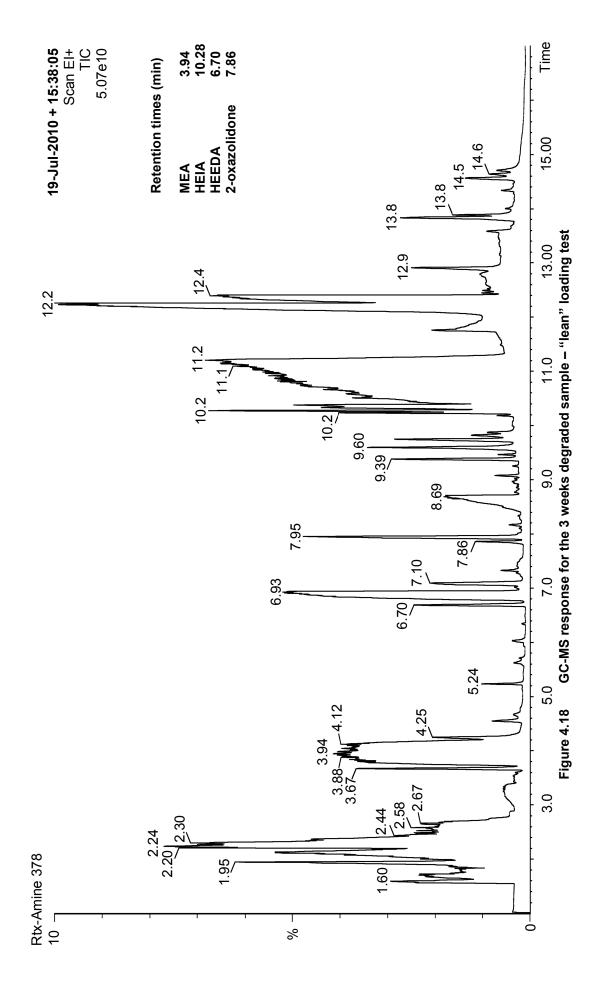
Kongstein and Schmid (2010) determined the corrosion rate and corrosion potential for bare 316 L Steel in 5 M MEA solution at 135 °C with 10 % CO<sub>2</sub>. The corrosion rate started at 0.35 mm/y and droped to 0.15 after 50 hours of experiment. Based on metal content in solution determined in the 8-weeks liquid sample (see Table 4.16) it is calculated that the overall corrosion rate in the present work is 1.95 mm/y, a value somewhat higher than theirs. This could be in part due to the operating temperature and also to differences in the stainless steels used in the studies.

### 4.6.5 Thermal degradation products identification and quantification

After the end of the tests to assess how degradation affects the solvent's CO<sub>2</sub> uptake and stripping capacity, the degraded samples were analysed in the GC-MS to identify and quantify any thermal degradation products generated. In addition to this the concentration of the MEA left in solution was also determined. Figure 4.17, Figure 4.18 and Figure 4.19 show the peak responses produced by the GC-MS when the samples that degraded for 2, 3 and 8 weeks were analysed.

In Table 4.18 all of the compounds present in the 3 samples, as determined by the GC-MS analysis, have been listed. The ones in bold have been previously reported in the literature as MEA degradation products (Strazisar B. R. et al. 2002, Strazisar B. R. et al. 2003, Supap T. et al. 2006, Davis PhD thesis 2009, Lawal O. et al. 2005, Bello A. et al. 2005).


Table 4.18 Degradation products found in the lean samples


| Degradation Product                | Lean 2 | Lean 3 | Lean 8 |
|------------------------------------|--------|--------|--------|
| HEEDA                              | +      | +      | +      |
| HEIA                               | +      | +      | +      |
| 2-oxazolidone                      | +      | +      |        |
| 1,2-ethanodiol                     | +      |        | +      |
| 1-amino-2-propanol                 |        |        | +      |
| piperazine                         | +      | +      | +      |
| 1-(2-aminoethyl)imidazole          |        |        | +      |
| 2-methylpiperazine                 |        |        | +      |
| 2,5-dimethylpiperazine             |        |        | +      |
| 2-methyl-3-oxazolidine             |        | +      | +      |
| 4-methylmorpholine                 |        |        | +      |
| 4-morpholineethanol                | +      | +      |        |
| diisopropanolamine                 | +      |        | +      |
| 2-imidazolidinone                  | +      |        | +      |
| 3-methyl-oxazolidone               | +      | +      |        |
| Tris(2-aminoethyl)amine            |        |        | +      |
| 1-piperazineethanol                |        |        | +      |
| 1,3-propanediame                   |        |        | +      |
| 1,4-bis(2-hydroxyethyl)piperazine  | +      | +      | +      |
| N,N'-bis(2-aminoethyl)-1,2-        | + +    |        | +      |
| ethanediamine                      |        |        |        |
| 1-(2-(2-                           | +      | +      | +      |
| hydroxyethoxy)ethyl)piperazine     | T      |        | T      |
| 3-(2-hydroxyethyl)-2-oxazolidinone | +      | +      | +      |

Initial concentration 30% w/v aqueous MEA solution, initial molar loading of 0.19, degradation temperature  $160^{\circ}C$ 

It is interesting to note that the present study has identified piperazine and other related compounds in all three of the degraded samples. Full quantification was not possible during the project but a preliminary determination of piperazine alone gave a concentration lower that 0.2% w/v.

The calibration curves and partition coefficients detailed in Section 3.9.3 were used to quantify MEA, HEIA, HEEDA and 2-oxazolidone.





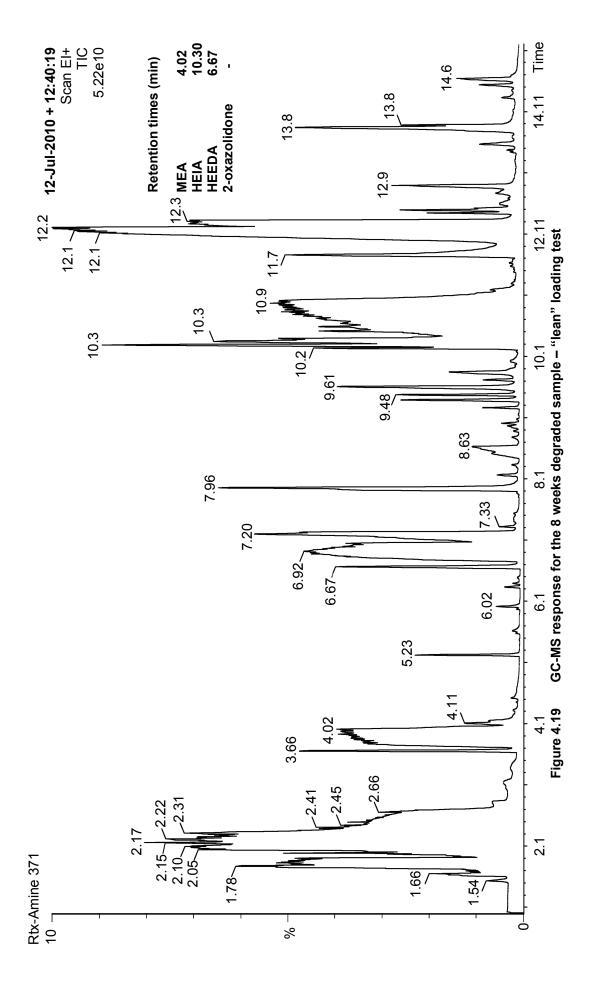



Table 4.19 shows the concentrations of MEA, HEIA, 2-oxazolidone and HEEDA in the three degraded samples with the "lean" initial loading (0.19 moles of  $CO_2$  / mole of MEA).

Table 4.19 MEA and its major thermal degradation products concentrations—
"lean" samples

| Compound       | Sample         |                |                |  |
|----------------|----------------|----------------|----------------|--|
| Compound       | Lean 2 (% v/v) | Lean 3 (% v/v) | Lean 8 (% v/v) |  |
| MEA            | 14.8           | 12.7           | 5.2            |  |
| HEIA           | 0.3            | 3.2            | 11.9           |  |
| HEEDA          | 0.3            | 0.3            | 0.9            |  |
| 2-Oxazolidone* | 1.6            | 0.9            | -              |  |

Initial concentration 30% w/v (or 29.6 % v/v) aqueous MEA solution, 0.19 initial molar loading, degradation temperature  $160^{\circ}C$ 

These data show that as the degradation experiment progresses, the MEA concentration decreases steadily from 29.6 % v/v to about 5% v/v. The 2-oxazolidone appears during the first two weeks and is then reduced over time, whereas HEEDA is almost stable for the first 3 weeks and then it slightly increases. According to Davis (2009) the first degradation product produced from MEA is 2-oxazolidone (see Figure 2.8). Lepaumier et al. (2009) suggests that oxazolidones react very easily with another amine to give addition products. Therefore, the absence of 2-oxazolidone from the 8 weeks sample is what would be expected from these previous studies. HEIA concentrations grew as the degradation time increases and it is the major product in the 8 week sample as also noted by Lepaumier et al. (2009, 2010 (a) and (b)) and Davis 2009.

For mass balance purposes for the GC-MS analysis of degradation products, a nitrogen balance was performed as  $N_2$  is more stable in solution according to Davis (2009) and Lepaumier et al. (2011). Table 4.20 presents the calculations done for the nitrogen balance between the initial number of N atoms in the fresh 400 ml of 30% w/v aqueous MEA solution and the N atoms in the 400 ml of degraded MEA, HEIA, HEEDA and 2-oxazolidone. The concentrations detected by the GC-MS were converted into ml of each analyte in the final volume of the degraded sample (see Table 4.10) and then into moles of each analyte in the final sample volume. Considering that 1 molecule of MEA contains 1 atom of N, 1

<sup>\*</sup>The 2-oxazolidone concentrations are in % w/v

molecule of HEIA contains 2 N atoms, 1 molecule of HEEDA contains 2 atoms of N and 1 molecule of 2-oxazolidone contains 1 N atom, the total N atoms in the degraded samples were calculated. Note that 400 ml of 30% w/v aqueous MEA solution contain in total 1.9 atoms of N.

Table 4.20 Nitrogen balance in the degraded samples with lean initial molar loading, based on the concentrations detected by the GC-MS

| Sample               | Volume of analyte (ml) | Moles of analyte | Nitrogen moles |  |
|----------------------|------------------------|------------------|----------------|--|
| MEA                  |                        |                  |                |  |
| Lean 2               | 59.2                   | 0.981            | 0.981          |  |
| Lean 3               | 50.8                   | 0.842            | 0.842          |  |
| Lean 8               | 20.8                   | 0.345            | 0.345          |  |
|                      | HE                     | EIA              |                |  |
| Lean 2               | 1.2                    | 0.011            | 0.022          |  |
| Lean 3               | 12.8                   | 0.117            | 0.234          |  |
| Lean 8               | 47.6                   | 0.435            | 0.870          |  |
|                      | HEI                    | EDA              |                |  |
| Lean 2               | 1.2                    | 0.012            | 0.024          |  |
| Lean 3               | 1.2                    | 0.012            | 0.024          |  |
| Lean 8               | 3.6                    | 0.036            | 0.071          |  |
|                      | 2-Oxaz                 | olidone          |                |  |
| Lean 2               | 6.4*                   | 0.075            | 0.075          |  |
| Lean 3               | 3.6*                   | 0.041            | 0.041          |  |
| Lean 8               | -                      | •                | -              |  |
| Total nitrogen moles |                        |                  |                |  |
|                      | Initial                | M                | Measured       |  |
| Lean 2               | 1.9                    |                  | 1.1            |  |
| Lean 3               | 1.9                    |                  | 1.2            |  |
| Lean 8               | 1.9                    |                  | 1.4            |  |

400 ml of aqueous MEA solution with initial concentration 30% w/v (or 29.6 % v/v), 0.19 initial molar loading, degradation temperature 160°C

Clearly only three of the MEA thermal degradation products (see Table 4.18) detected in the degraded samples were quantified. Therefore it was not possible to account for all the N, but based on the data shown in Table 4.20, HEIA seems to account for a considerable amount of the MEA loss (55%) in the 8 weeks degraded sample (total MEA loss approximately 83% or 1.64 moles of MEA loss). HEEDA follows accounting for 5% of the MEA loss but with no considerable changes in its concentration throughout the course of the experiment, which supports the claims by Davis (2008&2009) and Lepaumier (2008, 2009, 2010 (b)) that HEEDA is an intermediate MEA thermal degradation product and it is HEIA's precursor.

<sup>\* 2-</sup>Oxazolidone mass in gr

# 4.7 THERMAL DEGRADATION EXPERIMENT – RICH INITIAL MOLAR LOADING

The detailed description of the experimental procedure has been presented in Section 3.10.

# 4.7.1 Pressure changes – Thermal degradation rig

Three 400 ml samples of 30 % w/v aqueous MEA solutions were loaded in the absorption/stripping rig to an initial molar loading of 0.37 as determined by inorganic carbon content measurement. The pressure change inside two of the vessels was continuously monitored with an analogue pressure gauge (3-weeks sample vessel) and a digital gauge (8-weeks sample vessel) for safety reasons. The total pressure changes throughout the experiment are shown in Figure 4.20 (raw data can be seen in *Appendix 2.11*). The final pressure readings of both the gauges were quite close to each other, but it is interesting to note that the needle pressure gauge shows an initial rapid increase then a slight decrease in pressure until they converge after approximately 200 hours, this trend is similar, but of a much smaller magnitude, to that noted for the "lean" sample (see Figure 4.10).

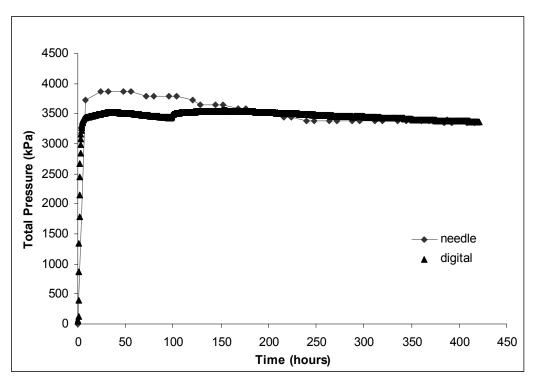



Figure 4.20 Total headspace pressure measured in two pressure vessels – "rich" samples

The samples were left in the oven sealed at 160 °C for 2, 3 and 8 weeks to thermally degrade. Each one of the samples was taken out of the oven and remained sealed at room temperature until the beginning of the absorption/stripping experiment.

After the end of the degradation experiment, each of the three samples was taken out of the high pressure vessels and its volume was measured at room temperature using the same volumetric tube used to measure the initial sample volumes (400 ml).

Table 4.21 Volumes of the degraded samples after the end of the degradation experiments

| Sample | Volume (ml) |
|--------|-------------|
| Rich 2 | 396         |
| Rich 3 | 399         |
| Rich 8 | 401         |

Initial volume 400 ml, initial concentration 30% w/v aqueous MEA solution, 0.37 initial molar loading, degradation temperature  $160\,^{\circ}\mathrm{C}$ 

The volumes were almost identical and showed little change compared to the initial value of 400 ml (see Table 4.21).

# 4.7.2 Effect of degradation on MEA CO<sub>2</sub> uptake capacity

# **4.7.2.1 1**<sup>st</sup> Stripping

The first step was to remove the  $CO_2$  left in the solutions and the microGC was used to determine the volume released by the samples (stripping procedure as done in Section 4.6.3.1). The  $CO_2$  volume was calculated described in Section 3.6 and in Figure 4.21 the cumulative  $CO_2$  volume released by the degraded samples can be seen. The raw data are shown in *Appendix 2.12: MicroGC Raw Data – 1st Stripping – Rich Samples*.

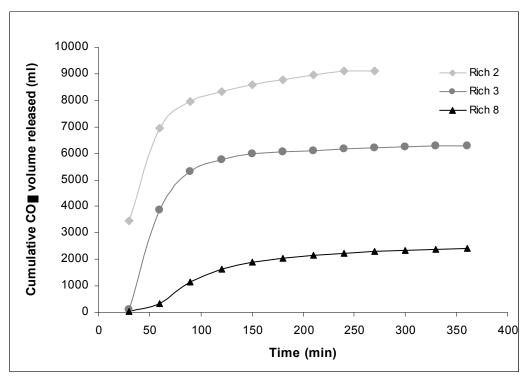



Figure 4.21 Cumulative CO<sub>2</sub> volume released during the 1<sup>st</sup> stripping – "rich" samples

Initial concentration 30% w/v aqueous MEA solution, 0.37 initial molar loading, degradation temperature 160  $^{\circ}C$ 

Once again it is observed that the longer the thermal treatment the less  $CO_2$  is released. In this case the pressure reduction in the vessels was very small and little if any  $CO_2$  could have been lost by leakage. The loss of  $CO_2$  probably corresponds to its uptake in forming the degradation products. Table 4.22 shows the volumes of  $CO_2$  released by the three degraded samples with initial concentration of 30% w/v aqueous MEA and initial rich molar loading of 0.37 after treatment at  $160^{\circ}C$ .

Table 4.22 Volume of CO<sub>2</sub> released during 1<sup>st</sup> stripping of the degraded "rich" samples

| Sample CO <sub>2</sub> volume released (L) |     | Experimental Time (min) |
|--------------------------------------------|-----|-------------------------|
| Lean 2                                     | 9.1 | 390                     |
| Lean 3                                     | 6.3 | 390                     |
| Lean 8                                     | 2.4 | 330                     |

Initial concentration 30% w/v aqueous MEA solution, 0.37 initial molar loading, degradation temperature 160  $^{\circ}C$ 

Note that the samples were initially loaded with 16.1 L of CO<sub>2</sub>; therefore quite a considerable amount of CO<sub>2</sub> is lost by the samples.

#### 4.7.2.2 Absorption – Inorganic Carbon Content

After the first stripping the samples were loaded with  $CO_2$  in the absorption/stripping rig, the procedures followed both during the experiment and the results processing is the same as followed for the lean sample, see Section 4.6.3.3. Figure 4.22 shows the graphical representation of the volume of  $CO_2$  captured by the degraded samples over time for all the three degraded samples (raw data in *Appendix 2.13: Inorganic Carbon Measurement – Absorption – Rich Samples*).

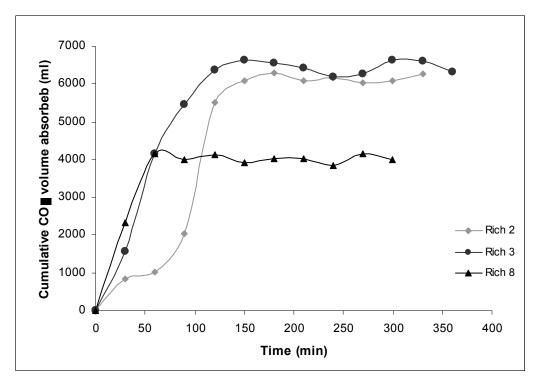



Figure 4.22 Cumulative volume of  $CO_2$  absorbed – "rich" samples Initial concentration 30% w/v aqueous MEA solution, 0.37 initial molar loading, degradation temperature 160 °C

The sample after 8 weeks of degradation (Rich 8) stops absorbing after about 50 minutes whereas the samples of 2 and 3 weeks duration continue absorbing for almost 150 min. Once again it is important to consider the volumes of CO<sub>2</sub> that remained in the degraded samples after the first stripping. These were determined by TOC and were 2.3 L, 1.1 L and 0.9 L for the 2, 3 and 8 weeks degraded samples respectively. As expected, Rich 8 absorbs less CO<sub>2</sub> than the other two, whereas the sample after 2 weeks of thermal treatment absorbs the

most CO<sub>2</sub> (see Table 4.23). Recalling that about 23 L of CO<sub>2</sub> could potentially be absorbed it is estimated that the "rich" solution after 8 weeks of thermal degradation has lost approximately 78 % of its ability to absorb the gas, a value slightly in excess of that found for the "lean" case.

#### 4.7.2.3 Stripping

After the end of the absorption, stripping was performed in the normal manner (Section 4.6.3.1). In Figure 4.23 the cumulative  $CO_2$  released from the three degraded samples when compared with a pure MEA sample of the same initial concentration can be seen (see *Appendix 2.14*).

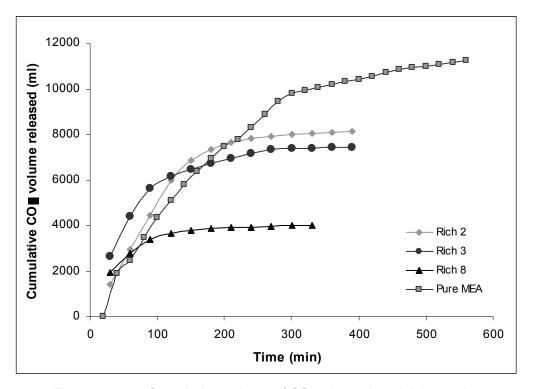



Figure 4.23 Cumulative volume of  $CO_2$  released – "rich" samples Initial concentration 30% w/v aqueous MEA solution, 0.37 initial molar loading, degradation temperature 160 °C

It is observed that the samples of 2 and 3 weeks degradation stop releasing  $CO_2$  almost at the same time, but the sample of 2 weeks releases a little more (see Table 4.23). The 8 weeks sample releases considerably less  $CO_2$  than the other two.

#### 4.7.2.4 Summary solvent's CO<sub>2</sub> uptake capacity

Table 4.23 summarises the absorption and stripping results for the degraded samples with rich initial molar loading.

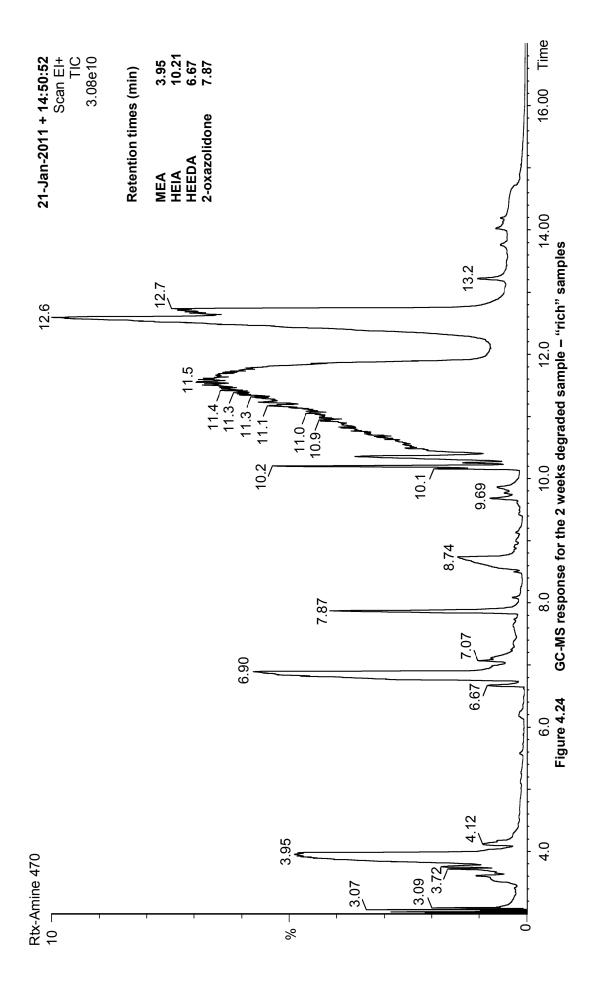
Table 4.23 Absorption/Stripping behaviour of thermally degraded, rich samples after removal of residual CO<sub>2</sub>

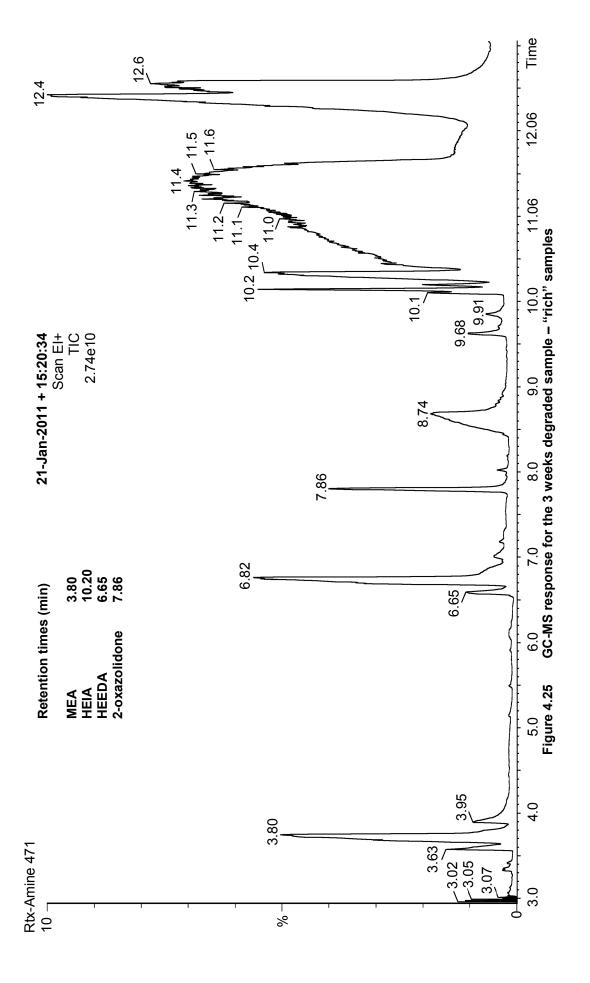
| Sample and degradation time (weeks) | Volume of CO <sub>2</sub> absorbed in 400 min (L) | Volume of CO <sub>2</sub> stripped in 400 min (L) |
|-------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Pure MEA (no thermal treatment)     | 9.9*                                              | 9.9                                               |
| Rich 2                              | 8.6                                               | 8.1                                               |
| Rich 3                              | 7.6                                               | 7.4                                               |
| Rich 8                              | 5.1                                               | 4.0                                               |

Initial concentration 30% w/v aqueous MEA solution, 0.37 initial molar loading, degradation temperature 160  $^{\rm o}C$ 

It is interesting to note that like the "lean" sample (Table 4.13) there is evidence of retention of CO<sub>2</sub> after absorption, suggesting a different mechanism than for pure MEA. More work is required to confirm this observation. However, it needs to be noted here that the data were obtained using two different pieces of equipment, i.e. the TOC instrument to determine the CO<sub>2</sub> concentration in the degraded solutions by measuring the inorganic carbon content during absorption and the microGC to determine volume of CO<sub>2</sub> released by the samples during stripping.

Recalling that about 23 L of CO<sub>2</sub> could potentially be absorbed it is estimated that the "rich" solution after 8 weeks of thermal degradation has lost approximately 78 % of its ability to absorb the gas, a value slightly in excess of that found for the "lean" case. It can be concluded here that, based on the solvent's CO<sub>2</sub> uptake capacity, the initial molar loading of the samples did not have a serious effect on their degradation on the highly degraded samples. However, the effect of loading was more prominent in the 2 and 3 weeks degraded samples.


<sup>\*</sup> Inferred – not measured


# 4.7.3 Thermal degradation products identification and quantification

After the end of the test to assess how degradation affects the solvent's CO<sub>2</sub> uptake capacity, the degraded samples were analysed in the GC-MS to identify and quantify any thermal degradation products generated. In addition to this the concentration of the MEA left in solution was also determined. Figure 4.24, Figure 4.25 and Figure 4.26 show the peak responses produced by the GC-MS when the samples that degraded for 2, 3 and 8 weeks were analysed, respectively.

In Table 4.24 all of the compounds detected by the GC-MS software in the 3 samples are listed. The ones in bold have been previously reported in the literature as MEA degradation products (Strazisar et al. 2002, Strazisar et al. 2003, Supap et al. 2006, Davis, PhD thesis 2009, Lawal et al. 2005, Bello et al. 2005, Lepaumier 2009, 2010 (a) and (b) and 2011)

As for the "lean" sample it is again interesting to note that this study has identified piperazine and other related compounds in all three of the degraded samples. Full quantification was not feasible during the project but a preliminary determination of piperazine alone gave concentration lower that the detection limit of 0.1% w/v. However, in view of the large molecular masses of some of these compounds, very small concentrations are sufficient to account for the carbon originally present in the MEA.





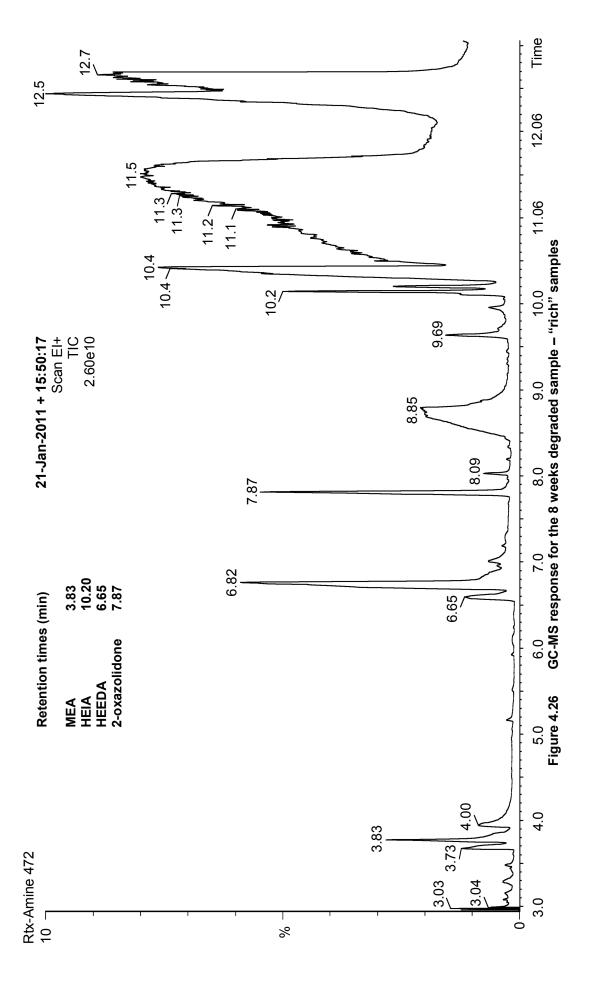



Table 4.24 Degradation products found in the degraded samples with initial "rich" loading

| Degradation Product                | Rich 2 | Rich 3 | Rich 8 |
|------------------------------------|--------|--------|--------|
| HEEDA                              | +      | +      | +      |
| HEIA                               | +      | +      | +      |
| 2-oxazolidone                      | +      | +      | +      |
| 1,2-ethanodiol                     |        | +      | +      |
| 1-amino-2-propanol                 | +      |        |        |
| piperazine*                        | +      | +      | +      |
| 1-(2-aminoethyl)imidazole          |        | +      | +      |
| 2-methyl-3-oxazolidine             | +      |        |        |
| 4-methylmorpholine                 |        |        | +      |
| diisopropanolamine                 |        |        | +      |
| 2-imidazolidinone                  | +      | +      | +      |
| 3-methyl-oxazolidone               |        | +      | +      |
| 1-piperazineethanol                |        |        | +      |
| 1,3-propanediame                   |        | +      | +      |
| 1,4-bis(2-hydroxyethyl)piperazine  | +      | +      | +      |
| N,N'-bis(2-aminoethyl)-1,2-        | +      | +      | +      |
| ethanediamine                      |        | Τ'     | Т      |
| 1-(2-(2-                           |        | +      | +      |
| hydroxyethoxy)ethyl)piperazine     |        |        |        |
| 3-(2-hydroxyethyl)-2-oxazolidinone |        | +      | +      |

Initial concentration 30% w/v aqueous MEA solution, initial molar loading of 0.37, degradation temperature  $160^{\circ}C$ 

Table 4.25 shows the concentration of MEA, HEIA, 2-oxazolidone and HEEDA determined in the three degraded samples with the "rich" initial loading (0.37 moles of  $CO_2$  / mole of MEA).

Table 4.25 MEA and its major thermal degradation products concentrations—
"rich" samples

| Compound       | Sample          |                 |                 |  |  |
|----------------|-----------------|-----------------|-----------------|--|--|
| Compound       | 2 weeks (% v/v) | 3 weeks (% v/v) | 8 weeks (% v/v) |  |  |
| MEA            | 9.3             | 4.6             | 0.6             |  |  |
| HEIA           | 2.0             | 4.5             | 17.0            |  |  |
| HEEDA          | 1.1             | 1.2             | 2.2             |  |  |
| 2-Oxazolidone* | 6.3             | 5.9             | 4.5             |  |  |

Initial concentration of 30% w/v (or 29.6 % v/v) aqueous MEA solution and 0.37 initial molar loading

The trends in this table are similar to those found for the "lean" sample and reported in Table 4.19. Of note are the very low final concentrations of MEA

<sup>\*</sup>The 2-oxazolidone concentrations are in % w/v

determined by the analysis procedure developed in the present work, showing degradations of the original amine in excess of 95% in 8 weeks at 160 °C. The absorption/stripping study suggested a somewhat lower degradation of the MEA as evidenced by the ability of the degraded solvents to remove CO<sub>2</sub> from the feed gas streams. However, this may be a reflection of the ability of some of the degradation products to absorb and release CO<sub>2</sub>. Despite this difference both approaches demonstrate that there is very significant destruction of MEA at this elevated temperature.

However, in order to add confidence to the stated analytical results a nitrogen balance was again performed for each of the degraded samples.

Table 4.26 Nitrogen balance in the degraded samples with lean initial molar loading, based on the concentrations detected by the GC-MS

| Sample               | Volume of analyte (ml | ) Moles of ana | alyte Nitrogen moles |  |  |
|----------------------|-----------------------|----------------|----------------------|--|--|
| MEA                  |                       |                |                      |  |  |
| Rich 2               | 45.2                  | 0.749          | 0.749                |  |  |
| Rich 3               | 38.4                  | 0.636          | 0.636                |  |  |
| Rich 8               | 6.4                   | 0.106          | 0.106                |  |  |
|                      |                       | HEIA           |                      |  |  |
| Rich 2               | 8                     | 0.073          | 0.146                |  |  |
| Rich 3               | 18                    | 0.165          | 0.329                |  |  |
| Rich 8               | 68                    | 0.622          | 1.244                |  |  |
|                      | I                     | HEEDA          |                      |  |  |
| Rich 2               | 4.4                   | 0.044          | 0.087                |  |  |
| Rich 3               | 4.4                   | 0.044          | 0.087                |  |  |
| Rich 8               | h 8 8.8 0.087         |                | 0.174                |  |  |
|                      | 2-O:                  | xazolidone     |                      |  |  |
| Rich 2               | 27.6*                 | 0.317          | 0.317                |  |  |
| Rich 3               | 23.6*                 | 0.271          | 0.271                |  |  |
| Rich 8               | 18*                   | 0.207          | 0.207                |  |  |
| Total nitrogen moles |                       |                |                      |  |  |
| Initial              |                       |                | Measured             |  |  |
| Rich 2               | 2 1.9                 |                | 1.3                  |  |  |
| Rich 3               | 3 1.9                 |                | 1.4                  |  |  |
| Rich 8               | 3 1.9                 |                | 1.7                  |  |  |

400 ml of aqueous MEA solution with initial concentration 30% w/v (or 29.6 % v/v), 0.19 initial molar loading, degradation temperature 160°C

As seen in Table 4.26, it was not possible in general to account for all the N initially present in the MEA by the limited number of compounds that were

<sup>\* 2-</sup>Oxazolidone mass in gr

quantified (see Table 4.24). On this basis it is entirely feasible that the thermal degradation products; 2-oxazolidone, HEEDA and HEIA represent the vast majority of the species in solution after intense degradation. In this case as in the case of the 8 weeks "lean" sample HEIA concentration accounts for most of the MEA loss (76%).

#### 4.8 LEAN-RICH SAMPLE COMPARISON

The main observation is that, although most of the MEA has almost "disappeared" (95%) from the samples after 8 weeks of thermal treatment according to the GC-MS measurements, the samples still retain their capacity to absorb and release a considerable amount of CO<sub>2</sub>, compared to what it was considered to be the case at the beginning of this study.

Moreover, there is an indication that both the "lean" and "rich" samples retained some of the CO<sub>2</sub> during stripping (Section 4.6.3.5 and Section 4.7.2.4), which could mean that some of the degradation products are capable of absorbing CO<sub>2</sub> but they can not be regenerated or they are regenerated at different conditions. According to Polderman et al. (1955) HEEDA, that is one of MEA thermal degradation products, is a stronger base than MEA is more difficult to be regenerated when it absorbs CO<sub>2</sub>.

It was estimated that the "rich" solution after 8 weeks of thermal degradation lost approximately 78 % of its ability to absorb the gas, which is slightly in higher that that found for the "lean" sample (see Figure 4.16 and Figure 4.22). Eide-Haugmo et al. (2011) claim in their study that CO<sub>2</sub> loading plays a significant role in the thermal degradation rates. Moreover, Davis (2009) states that "doubling the concentration of CO<sub>2</sub> from 0.2 to 0.4 roughly doubles the initial degradation rate" at 135°C which is a conclusion that does not quite agree with the findings of the present study. In the present work, both in the 2 and 3 weeks samples, a roughly 20% more MEA loss is observed in the "rich" samples when compared with the "lean". It seems that the temperature increase (135°C to 160°C in this work) has a more dramatic effect on the MEA loss than the initial CO<sub>2</sub> molar loading. Davis (2009) also suggests that an increase in the temperature by 15 °C, quadruples the MEA loss.

The integrated form of the rate equation was plotted based on the MEA concentrations, as determined by the GC-MS, in order to determine the order of the degradation reaction and obtain an estimate of the rate constants. The equations, as presented by Langmuir (1997), are shown in Table 4.27.

| Reaction<br>Order | Differential<br>Rate Law    | Integrated Rate Law               | Kinetic Plot           |
|-------------------|-----------------------------|-----------------------------------|------------------------|
| 0                 | $-\frac{d[A]}{dt} = k$      | $[A] = [A]_0 - kt$                | [A] vs $t$             |
| 1st               | $-\frac{d[A]}{dt} = k[A]$   | $[A] = [A]_0 e^{-kt}$             | ln [A] vs t            |
| 2nd               | $-\frac{d[A]}{dt} = k[A]^2$ | $[A] = \frac{[A]_0}{1 + kt[A]_0}$ | $\frac{1}{[A]}$ vs $t$ |

Table 4.27 Reaction order, rate law and rate constants (Langmuir, 1997)

where [A] the MEA concentration in % v/v, [A]<sub>0</sub> the initial MEA concentration = 29.6 % v/v, t the time in weeks and k the rate constant.

Based on Table 4.27 the characteristic kinetic plots were drawn in excel for the lean and rich samples for zero, first and second reaction order reactions, using the integrated rate law. The resulting lines are presented in Figure 4.27.

As shown in Figure 4.27 (d) and Figure 4.27 (e), based on the R<sup>2</sup> as calculated by excel, it seems that the "lean" sample has 2<sup>nd</sup> order kinetics whereas the "rich" sample has 1<sup>st</sup> order kinetics with respect to MEA. This could mean that there is a different reaction scheme between the two samples. Note that the line equation was given from only 4 data points; therefore, more work would be needed to be able to draw firm conclusions. The calculated rate constants are 0.0201 for the "lean" sample and 0.4779 for the "rich" sample.

Based on these data shown in Figure 4.27 (d) and Figure 4.27 (e), it seems that the change in the CO<sub>2</sub> initial concentration has an effect in the MEA thermal degradation pathway described by Davis (2009) (see Figure 4.12). This could be explained because, according to Davis (2009) at many different parts of the proposed pathway, equilibrium reactions of the produced degradation products with MEA or CO<sub>2</sub> occur. As a result a change in the initial CO<sub>2</sub> concentration could favour different degradation reactions, for example the reaction of MEA trimer with CO<sub>2</sub> to give cyclic urea of trimer or the reaction of 2-oxazolidone with MEA to give amine urea (see Figure 4.12).

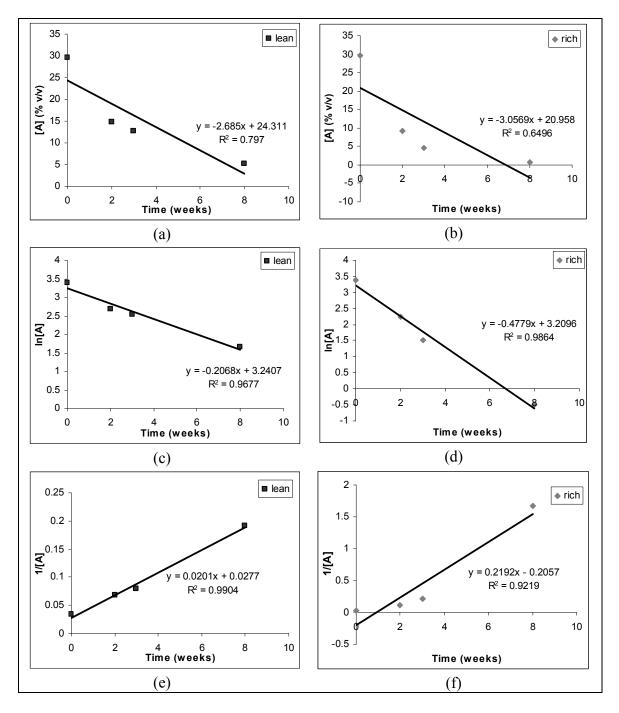



Figure 4.27 Characteristic kinetic plot (a) "lean" sample – zero order reaction, (b) "rich" sample – zero order, (c) "lean" sample – 1<sup>st</sup> order, (d) "rich" sample 1<sup>st</sup> order, (e) "lean" sample – 2<sup>nd</sup> order and (f) "rich" sample - 2<sup>nd</sup> order.

\* [A] = MEA Concentration in % v/v

400 ml of aqueous MEA solutions with initial concentration 29.6 % v/v, 0.19 "lean" and 0.37 "rich" initial molar loadings, degradation temperature 160°C

It needs to be noted here that, as evidence of the chemical analysis, the MEA major thermal degradation products (namely HEIA, HEEDA and 2-oxazolidone) were quantified in all the degraded samples at high concentrations. Moreover, no quantification was performed for any of the other degradation products

detected in the samples (see Table 4.18 and Table 4.24) so as to be able to draw more accurate conclusions.

Davis (2009) suggests that a 25% increase in the molar loading can cause the HEIA concentration to almost double. Figure 4.28 presents the increase in HEIA concentration over time for both the lean and rich samples, these graphs were drawn assuming that during the degradation experiments the conditions inside the three vessels were the same. As it can be seen HEIA concentration increased considerably but not as much as described in the literature, it is possible that the temperature has a more detrimental effect on the HEIA production than the  $\rm CO_2$  concentration.

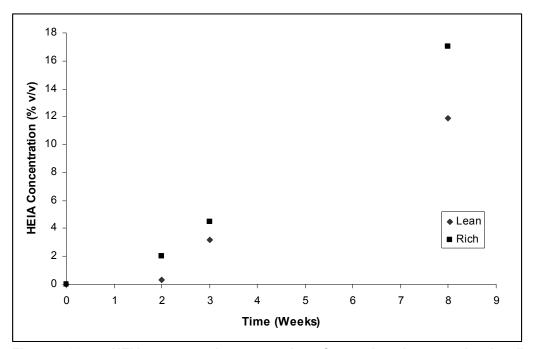



Figure 4.28 HEIA concentration versus time- Comparison between the "lean" and "rich" samples

According to Lepaumier et al. (2010 b), when a sample of 4 mol/kg (24.5 % w/v) aqueous MEA solution is degraded at 140 °C under 2 MPa of CO<sub>2</sub> pressure for 2 weeks 40 % MEA loss is observed. In the present study the MEA loss in the first two weeks in the "lean" sample is about 56% and 68.2% in the "rich" but with higher experimental temperature (160°C) and higher MEA initial concentration, therefore the MEA degradation is considered to be in the same range.

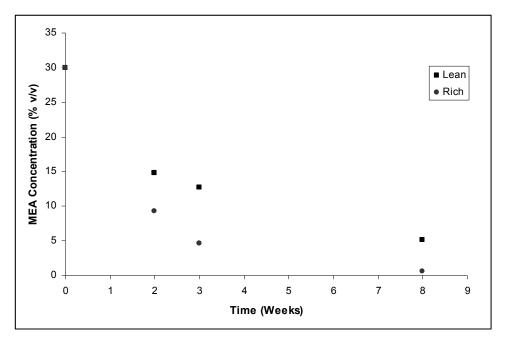



Figure 4.29 MEA concentration during the thermal degradation experiment – Comparison between the "lean" and "rich" samples

Davis (2009) also reports that "once the solution becomes more highly degraded, a compound effect of MEA loss starts to become important" which slows the overall MEA loss. Figure 4.29 presents a similar trend to that as at the beginning of the experiment the MEA concentration reduction is more dramatic than at the end. Lepaumier et al. (2011) also observed the same, it is mentioned in the study that it was noted that the degradation rate was linear for the first 4 weeks and then it started slowing down.

Last but not least, it is interesting to note here that, according to the literature, low concentrations of HEIA and 2-oxazolidone but no HEEDA were detected in samples from actual pilot plants as reported by Lepaumier et al. (2011), Strazisar et al. (2002), Strazisar et al. 2003. Bello and Idem (2005) only detected HEIA and Supap et al (2006) detected HEIA and 2-oxazolidone in some of the samples.

#### 4.9 SUMMARY

In this chapter the results produced for the MEA degradation in the present study are reported and discussed. Some initial experiments were performed to get familiar with the absorption/stripping rig equipment, assess the solvent behavior during absorption and the effect of O<sub>2</sub> on it by bubbling air and CO<sub>2</sub> through an aqueous MEA sample in a random fashion. In addition to this, the "degraded" MEA sample was analysed using the available IC system at Cardiff University, an IC system at another laboratory and a colorimetric method. The presence of nitrites, nitrates and sulphates was verified. Concentrations of the three analytes were detected by all methods in the samples but the differences in the values between laboratories and methods were considerable. Nitrites and nitrates are MEA oxidative degradation products previously reported in the literature but sulphates were not originally expected to be present and their origin is unclear.

The next step was to perform a more systematic exercise and attempt to degrade an aqueous MEA sample in the absorption/stripping rig with an air and CO<sub>2</sub> mixture. The gas concentration was continuously monitored with the microGC for 14 repeated cycles of absorption/stripping and the resulting sample was analysed with the GC-MS and IC systems and a colorimetric method. The resulting sample contained nitrite, nitrate and sulphate ions but again, although the trends were similar, considerable differences in the concentrations were observed between the different methods used. Therefore, further analytical work would be needed to investigate the differences between the absolute quantified concentrations. Another conclusion drawn was that the MEA degradation is a slow phenomenon because, despite having detected degradation products in the sample, no apparent trend was observed in the solvent's absorption and stripping behavior after 14 full cycles of absorption/stripping.

At that stage and in order to be able to degrade samples within a reasonable timescale, a more focused approach on thermal degradation was taken. A new set of experiments was designed and some initial experiments were performed to gain confidence with the equipment. The CO<sub>2</sub> partial pressure data versus the CO<sub>2</sub> molar loading of MEA indicated that the CO<sub>2</sub> solubility data are rig dependant. Moreover, the CO<sub>2</sub> partial pressures measured in this work are higher

than those reported in most studies with one study showing a close agreement with the measured values at high CO<sub>2</sub> molar loadings. Most importantly, it was concluded that it was safe to use the new rig to thermally degrade MEA samples for prolonged periods of time at elevated temperatures.

Samples of 30% w/v aqueous MEA solution with two different initial molar loadings (0.19 and 0.37 moles of CO<sub>2</sub>/mole of MEA) were thermally treated at 160 °C for 2, 3 and 8 weeks. The samples were assessed in terms of their CO<sub>2</sub> uptake capacity, absorption and stripping behavior, and the presence of degradation products in them. The first observation was that even though almost 95% MEA loss was measured (GC-MS in the Rich 8 sample), the solvent still retained 22% of its maximum capacity to absorb CO<sub>2</sub>. Moreover, it was noticed that in both the samples with "lean" and "rich" initial molar loading, the solvent after the stripping still retained some of the CO<sub>2</sub> that it had absorbed, especially observed in the 8 weeks samples in both cases (see Table 4.13 and Table 4.23), more cycles would be needed though to assess this observation.

The effect of the initial molar loading was more considerable in the 2 and 3 weeks samples as an approximately 20% higher MEA loss was measure for the "rich" samples. The effect was not as considerable as described in the literature and it is believed that this is due to the fact that temperature has a more detrimental effect in the production of degradation products. HEIA, HEEDA and 2-oxazolidone, previously reported in the literature as the major MEA thermal degradation products, were detected in all samples. Their concentrations and the nitrogen balance performed indicated that HEIA has the higher concentration of all degradation products and it increases with time, whereas 2-oxazolidone and HEEDA concentrations were almost stable throughout the experiment. Note here that it was not possible to account for all the nitrogen in the nitrogen balance as only 3 of the detected degradation products were quantified. Last but not least, signs of corrosion were observed in both "lean" and "rich" samples, ICP-OES was used to detect and quantify a considerable quantity of metals in the "lean" samples. Finally, there is some evidence that there might be a different reaction pathway that occurs, between the "lean" and "rich" case, but further investigation is needed to assess this observation.

# CHAPTER 5 CONCLUSIONS – FUTURE RECOMMENDATIONS

This chapter presents the conclusions drawn from this research study and some future recommendations.

#### Oxidative Degradation

Considerable degradation products concentrations of nitrites and nitrates in particular and also sulphates were detected by the IC and the HACH meter in both the samples, non-systematically degraded and the 14 full cycles even at limited exposure to O<sub>2</sub>. The differences in concentrations of ions between the different laboratories and analytical equipment noticed need to be further explored. The presence of sulphate anions detected both in the sample analysed by Dionex Ltd and by the HACH meter needs also further assessment as it was not expected.

The analysis performed with the GC-MS at that stage of the project was inconclusive; the samples though could have been analysed with the "new" analytical protocol developed for thermal degradation products.

In terms of the MEA CO<sub>2</sub> uptake capacity deterioration, after 14 full cycles of absorption/stripping in the presence of approximately 16% O<sub>2</sub> no considerable effect was observed for the CO<sub>2</sub> percentages of absorbed or released by the sample as measured with the microGC. Now that the equipment has been developed, this study could be extended to assess the effect of oxidative degradation and oxidative degradation products on the MEA CO<sub>2</sub> uptake capacity, by applying more cycles of absorption/stripping in the presence O<sub>2</sub> at possibly higher concentrations. Additionally, more gases, such as NO<sub>x</sub> or SO<sub>2</sub> or a synthetic flue gas could be added to assess their effect on MEA behaviour and degradation products.

#### CO<sub>2</sub> Solubility in MEA

The solubility data obtained at 100°C in 400 ml of 30% w/v aqueous MEA solutions seem to differ when different rigs are used to obtain them. In general the data produced in the present of experiments show higher CO<sub>2</sub> partial pressures at a given molar loading to those reported in the literature, apart from one study that show close agreement at higher CO<sub>2</sub> molar loadings.

#### Corrosion

An overall corrosion rate of 1.95 mm/y was calculated in the present work. It is somewhat higher that available literature values which could be attributed to the fact that higher temperatures were used during the degradation experiments and the different type of steel.

## Thermal degradation

From the  $1^{st}$  stripping after the thermal treatment experiment it was concluded that the more degraded the solution, the less  $CO_2$  was left in it. In all cases there was still  $CO_2$  available in the samples to use in the carbamate polymerisation process and thus continue degrading the MEA.

The 8 weeks sample with "lean" initial molar loading lost approximately 75% and the "rich" 78 % in terms of its CO<sub>2</sub> absorption capacity. The MEA concentration, as evidence of the GC-MS analysis, at the end of the 8 weeks thermal treatment was approximately 82 % and 95% less for the "lean" and "rich" samples, respectively. It can be concluded that, despite having lost most of their MEA, the samples still retained some of their capacity to remove CO<sub>2</sub>. This may indicate the ability of some of the degradation products to remove CO<sub>2</sub>. Therefore, the requirement for MEA make-up may not be quite as serious as initially believed. More work should be performed in order to quantify the MEA make-up needed to maintain the system's efficiency during the process as MEA is "lost" due to degradation.

Observing the deterioration in the CO<sub>2</sub> volume absorbed by the degraded samples after 8 weeks of thermal treatment (82 % "lean" and 95% "rich"), it can be concluded that the initial molar loading of the samples did not have such a serious effect as in both cases the MEA has almost disappeared. The effect of the initial molar loading was more considerable in the 2 and 3 weeks samples where roughly 20% more MEA loss was determined for the "rich" samples. The effect was not as considerable as described in the literature.

Observing the CO<sub>2</sub> volumes absorbed and released from both the "lean" and "rich" samples, there is evidence of retention of CO<sub>2</sub> after absorption, especially in the 8 weeks samples in both cases. This could be due to the fact that the some of the degradation products have the ability to absorb CO<sub>2</sub> and not release it or they release it but under different conditions. More absorption/stripping cycles are required though in order to confirm this observation.

In terms of the major MEA thermal degradation products, 2-oxazolidone, HEEDA and HEIA represent the vast majority of the species in solution after intense degradation based on the  $N_2$  balance performed for all samples. The MEA concentration loss is more dramatic at the beginning of the experiment which probably indicates that the degradation slows down as the sample degrades more.

Based on the calculated reaction rates, as estimated by the four experimental data points available for each sample ("lean" and "rich"), it seems that the "lean" sample has 2<sup>nd</sup> order kinetics and the "rich 1<sup>st</sup> order kinetics. It is therefore suggested that there might be a different reaction pathway occurring between the "lean" and "rich" initial molar loading. More work would be needed to assess this observation and draw firm conclusions.

In both the 8 weeks samples, HEIA concentration accounts for most of the MEA loss and seems to be the most stable degradation product based on the concentrations measured in both samples over time. The HEEDA and 2-oxazolidone concentrations had very little change over time, which indicates that they are intermediate products to HEIA.

Finally, it is interesting to note that, according to the literature, low concentrations of HEIA and 2-oxazolidone but no HEEDA were detected in the samples from pilot plants. Therefore, more work could be done to assess why in all the studies performed in laboratories for "controlled" thermal degradation by carbamate polymerisation, HEIA is the most stable degradation product and 2-Oxazolidone and HEEDA are always detected, whereas the same is not observed in samples from an actual plant. It could either mean that in the actual process thermal degradation by carbamate polymerisation is not as considerable or that the proposed pathway of thermal degradation at those conditions is not the one believed or that other interactions between the produced by products occur during the process.

Overall, the present study uniquely assessed the effect of thermal degradation on the solvent' operational lifetime. More specifically, it was found that even with an MEA loss of up to 95% due to thermal degradation, the sample still retained 22% of its capacity to remove and release CO<sub>2</sub>. In other words, although it has not been fully quantified, the requirement for monoethanolamine make-up may not be quite as serious as initially believed which in practice means lower solvent costs.

Moreover, there was some evidence to support some of the available literature that the rate of thermal degradation was enhanced as CO<sub>2</sub> loading increased and a 20% higher MEA loss was determined in the samples with the rich initial molar loading. The effect of loading on thermal degradation is important as, by slightly reducing the loading of the sample entering the stripper in an actual plant, MEA thermal degradation could potentially be controlled.

A range of degradation products were quantified that suggest a pathway of formation that verifies the one recently cited in the literature suggesting HEEDA as a precursor of HEIA. According to this pathway, 2-oxazolidone and HEEDA are intermediate products and HEIA is indicated as the most stable MEA thermal degradation product with measured concentrations of up to 17% v/v. Moreover, a few other degradation product reported in the literature were also detected in these samples. The description and verification of the thermal degradation

pathways is important for the actual plant to understand how the solvent deteriorates, how its degradation products interact between them, different solvents could be screened and compared in terms of degradation as well as the reclaimer wastes that need to be treated before disposed. Last but not least, the development of analysis methods for the detection and quantification of the major degradation products is very important as the chemical analysis of degraded samples has been a challenging issue in the field of solvent degradation.

#### This work could be further extended to:

- include other gases such as O<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub> or synthetic flue gas and degrade samples at elevated temperatures and pressures, then assess the effect on the solvent CO<sub>2</sub> uptake capacity and detect any additional degradation products generated.
- perform experiments with synthetic flue gas and conditions as close to the actual ones as possible and apply repeated cycles of absorption/stripping to assess how the MEA deterioration progresses with time and detect the degradation products generated.

# REFERENCES

**Abdi MA** (1997) Purification of partially degraded diethanolamine solutions, *PhD thesis, University of British Columbia, Canada* 

Abu-Zahra, M.R.M, Schneiders, L.H.J, Niederer, J.P.M, Feron, P.H.M & G.F. Versteeg (2007)  $CO_2$  capture from power plants Part I. A parametric study of the technical performance based on monoethanolamine, *International journal* of greenhouse gas control I, 37 - 46.

**Amann, J.-M. G. & C. Bouallou** (2009) A New Aqueous Solvent Based on a Blend of NmethylDiEthanolAmine and TriEthylene TetrAmine for CO<sub>2</sub>

Recovery in Post-Combustion: Kinetics Study, 9<sup>th</sup> International Conference on Greenhouse Gas Control Technologies, Energy Procedia 1, 901-908

**Austgen, D.M.** (1989) A Model of Vapor-Liquid Equilibria for Acid Gas-Alkanolamine –H<sub>2</sub>O Systems, *PhD thesis University of Texas at Austin* 

**Bello, A. & R. O. Idem** (2005) Pathways for the formation of products of the oxidative degradation of CO<sub>2</sub>-loaded concentrated aqueous monoethanolamine solutions during CO<sub>2</sub> absorption from flue gases. *Industrial and Engineering Chemistry Research*, 44, 945-969.

**Bello, A. & R. O. Idem** (2006) Comprehensive study of the kinetics of the oxidative degradation of CO<sub>2</sub> loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO<sub>2</sub> absorption from flue gases, *Industrial and Engineering Chemistry Research*, 45, 2569-2579.

**Bishnoi S. & G. T. Rochelle** (2002) Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine, *AIChE Journal*, 48 (12), 2788-2799

**Bishnoi, S.** (2000) Carbon Dioxide Absorption and Solution Equilibrium in Piperazine Activated Methyldiethanolamine, *PhD thesis University of Texas at Austin* 

**Bishnoi, S., & G.T. Rochelle** (2000) Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility, *Chem. Eng. Sci.*, 55, 5531-5543

- **Bishnoi, S., & G.T. Rochelle** (2002) Thermodynamics of Piperazine/Methyldiethanolamine/Water/ Carbon Dioxide, *Ind. Eng. Chem. Res.*, 41(3), 604-612
- **Blake, R. J.** (1963) Why reclaim monoethanolamine solutions? *Oil & Gas Journal*, 61 (36), 130-4
- **Brakstad, O. G., Silva, E. F. and T. Syversen** (2010) TCM Amine Project: Support on Input to environmental discharges, Evaluation to Degradation Components Version 3, report no SINTEF F16202
- Carroll, J. J., Slupsky J. D. & A. E. Mather (1991) The solubility of Carbon Dioxide in Water at Low Pressure, *J. Phys. Chem. Ref. Data*, 20 (6), 1201-1209
- **Çengel Y. A. & M. A. Boles** (2007) THERMODYNAMICS, An Engineering Approach 6<sup>th</sup> Edition, *published by Mc Graw Hill*, 705-709
- Chakravarti, S., Gupta A. & B. Hunek (2001) Advanced Technology for the Capture of Carbon Dioxide from Flue Gases, *First National Conference on Carbon Sequestration*, Washinghton DC
- **D. Chapel, J. Ernest and C. Mariz,** (1999), Recovery of CO<sub>2</sub> from Flue Gases: Commercial Trends, *Canadian Society of Chemical Engineers annual meeting*, 4-6 October 1999, Saskatoon, Saskatchewan, Canada
- Chi, S. & Rochelle, G. T. (2002) Oxidative degradation of monoethanolamine. *Industrial and Engineering Chemistry Research*, 41, 4178-4186.
- **Chi, S.** (2000) Oxidative Degeneration of Monoethanolamine, M. S. Thesis *University of Texas at Austin*
- Clarke, J.K.A., (1964) Kinetics of absorption of carbon dioxide in monoethanolamine solutions at short contact times. *Industrial and Engineering Chemistry Fundamentals*, 3, 239–245
- Cullinane, J. T. & G.T. Rochelle (2006) Kinetics of Carbon Dioxide Absorption into Aqueous Potassium Carbonate and Piperazine, *Ind. Eng. Chem. Res.*, 45 (8), 2531–2545
- **Daubert, T. E., Jalowka, J. W. & V. Doren** (1987) Vapor pressure of 22 pure industrial chemicals. *AICHE SYMP. SERIES*, 256, 83, 128-156.
- **Davis, J. & G. T. Rochelle** (2008) Thermal degradation of Monoethanolamine at stripper conditions. *9*<sup>th</sup> *International Conference on Greenhouse Gas Control Technologies*, Washington DC.

- **Davis, J.** (2009) Thermal degradation of Aqueous Amines Used for Carbon Dioxide Capture, *PhD thesis University of Texas at Austin*.
- **Davison, J.** (2007) Performance and costs of power plants with capture and storage of CO<sub>2</sub> *Energy*, 32, 1163–1176
- **Desideri, U. & A. Paolucci** (1999) Performance modelling of a carbon dioxide removal system for power plants, *Energy Conversion & Management*, 40, 1899–1915
- **DuPart, M. S., Bacon T. R., & D. J. Edwards** (1993) Understanding Corrosion in Alkanolamine Gas Treating Plants, *Hydrocarbon Processing, Part 1*, 75.
- Eide-Haugmo, I., Lepaumier, H., Einbu A., Vernstad Kai, da Silva E. F. & H. F. Svendsen (2011) Chemical stability and biodegradability of new solvents for CO<sub>2</sub> capture, 10<sup>th</sup> International Conference on Greenhouse Gas Control Technologies, Energy Procedia, 4, 1631-1636
- **Freeman, S. , Davis, J. & G. T. Rochelle** (2010) Degradation of aqueous piperazine in carbon dioxide capture, 10<sup>th</sup> International Conference on Greenhouse Gas Control Technologies, Energy Procedia, 4 (5), 756-761
- **Goff, G., and G.T. Rochelle** (2004) Oxidative Degradation of Aqueous Monoethanolamine in CO<sub>2</sub> Capture Controlled by the Physical Absorption of O<sub>2</sub>, *Ind. Eng. Chem. Res.*, 43, 6400-6408
- **Goff, G. and G.T. Rochelle** (2006) Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO<sub>2</sub> Capture Processes, *Industrial and Engineering Chemistry Research*, 45(8), 2513–2521
- Goldman, A. M. & A. G. Leibush, (1959) Study of the Equilibrium of Carbon Dioxide Desorption from Monoethanolamine Solutions in the Temperature Range 75-140 °C. *Tr. Gos. Nauchno-Issled. Proektn. Inst. Azotn. Promsti.*,10, 54-82
- **Gustafson P. R. and R. R. Miller** (1969) 3-(Methylsulfonyl)Propylamine as a Regenerative CO<sub>2</sub> Absorbent, *Industrial and engineering chemistry*, 8 (4), 412-414
- Hagewiesche, D. P., Ashour, S. S., Al-Ghawas, H. A. and O. C Sandall (1995) Absorption of Carbon Dioxide into Aqueous Blends of Monoethanolamine and N-Methyldiethanolamine, *Chemical Engineering Science*, 50 (7), 1071-1079

- **Hermann W.** (2005) An Assessment of Carbon Capture Technology and Research Opportunities", *Global Climate and Energy Project, Stanford University*
- Herzog, H., Meldon J. and A. Hatton, (2009), Advanced Post-Combustion CO2 Capture, prepared for the Clean Air Task Force under a grant from the Doris Duke Foundation, April 2009
- **Hilliard, M.** (2008) A Predictive Thermodynamic Model for an Aqueous Blend of Potassium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture from Flue Gas, *PhD thesis University of Texas at Austin*
- **Hirst, L. L. & I. I. Pinkel** (1936) Absorption of Carbon Dioxide by Amines Diand Triethanolamine and Tetramine,
- **Hook, R. J.** (1997) An Investigation of some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds, *Ind. Eng. Chem. Res.*, 36, 1779-1790
- Islam, M. S., Yusoffl R., Alil B. S., Islam M. N. and M. H. Chakrabarti (2011) *International Journal of the Physical Sciences*, 6 (25), 5877-5890
- **Jamal, A., Meisen, A. & J. C. Lim** (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—I. Experimental apparatus and mathematical modelling, *Chemical Engineering Science*, 61 (19), 6571-6589
- **Jou, F.-Y., Mather A. E. & F. D. Otto** (1995) The solubility of CO<sub>2</sub> in a 30 % mass percent Monoethanolamine solution. *The Canadian journal of chemical engineering*, 73, 140-147
- Jou, F.-Y., Otto, F. D. & A. E. Mather (1994) Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of Monoethanolamine and methyldiethanolamine. *Ind. Eng. Chem. Res.*, 33, 2002-2005
- **Kim, I. & H. F. Svendsen** (2010) Comparative Study of the Heats of Absorption of Post-combustion CO<sub>2</sub> absorbents, *International Journal of Greenhouse Gas Control*, 5 (3), 390-395
- Knudsen, J. N. & J. N. Jensen (2009) Experience with CASTOR/CESAR Pilot Plant, Presented in Workshop on Operating Flexibility of Power Plants with CCS at Imperial College, London

- **Ko, J. J. & M. H. Li** (2000) Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water. *Chemical Engineering Science*, 55, 4139-4147
- **Kongstein O. E. & B. Schmid** (2010) Corrosion of Stainless Steel in Amine solutions for Carbon Dioxide Capture, 218<sup>th</sup> ECS Meeting, Abstract 1249
- **Langmuir**, **D.** (1997) Aqueous Environmental Geochemistry, *Prentice Hall*, New Jersey, USA, ISBN 0203674121
- **Lawal, A. O. & R. O. Idem** (2006) Kinetics of the oxidative degradation of CO<sub>2</sub> loaded and concentrated aqueous MEA-MDEA blends during CO<sub>2</sub> absorption from flue gas streams. *Industrial and Engineering Chemistry Research*, 45, 2601-2607.
- **Lawson, J. D. & A. W. Garst** (1976) Gas Sweetening Data: Equilibrium solubility of hydrogen sulphide and carbon dioxide in aqueous Monoethanolamine and aqueous diethanolamine solutions. *Journal of Chemical and Engineering Data*, 21, 1, 20-30.
- Lee, J. I., Otto, F. D. & A. E. Mather (1976) Equilibrium between carbon dioxide and aqueous Monoethanolamine solutions. *J. appl. Chem. Biotechnol.*, 26, 541-549.
- **Lepaumier, H., Picq, D. & Carrette, P. L.** (2009 a) Degradation Study of new solvents for CO<sub>2</sub> capture in post-combustion. *GHGT-9 Energy Procedia*, 1, 893-900
- **Lepaumier, H., Picq, D. & Carrette, P. L.** (2009 b) New Amines for CO<sub>2</sub> Capture. I. Mechanisms of Amine Degradation in the Presence of CO<sub>2</sub>. *Ind. Eng. Res.*, 48, 9061-9067
- **Lepaumier, H., Picq, D. & Carrette, P. L.** (2009 c) New Amines for CO<sub>2</sub> Capture. II. New Amines for CO<sub>2</sub> Capture. II. Oxidative Degradation Mechanisms. *Ind. Eng. Re.*, 48, 9067-9075
- **Lepaumier, H., Picq, D. & Carrette, P. L.** (2010) New Amines for CO<sub>2</sub> Capture. III. Effect of Alkyl Chain Length between Amine Functions on Polyamines Degradation. *Ind. Eng. Re.*, 49, 4553-4560

Lepaumier, H., da Silva, E. F., Einbu, A., Grimstvedt, A., Knudsen, J. N., Zahlsen, K. & H. F. Svendsen (2011) Comparison of MEA degradation in pilot-scale with lab-scale experiments, 10th International Conference on Greenhouse Gas Control Technologies, Energy Procedia, 4, 1652-1659

**Liao, C. H. & Li, M. H.** (2002) Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine. *Chemical Engineering Science*, 57, 4569-4582

**Lyudkovskaya M. A. & A. G. Leibush** (1949) Solubility of Carbon Dioxide in Solutions of Ethanolamines under Pressure. *Zh. Prik. Khim.*, 22, 558.

Ma'mum, S., Nilsen, R. & H. F. Svendsen (2005) Solubility of carbon dioxide in 30 % Monoethanolamine and 50 % methyldiethanolamine solutions. *J. Chem. Eng. Data*, 50, 630-634.

Mandal, B. P. & S. S. Bandyopadhyay (2006) Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine. *Chemical Engineering Science*, 61, 5440-5447

Mangalapally, H. P., Notz, R., Hoch, S., Asprion, N., Sieder, G., Garcia, H. & H. Hasse (2009) Pilot Plant experimental studies of post combustion CO<sub>2</sub> capture by reactive absorption with MEA and new solvents *GHGT-9 Energy Procedia*, 1, 963-970

**Mariz** (1998) Carbon Dioxide Recovery: Large Scale Design Trends", *Journal* of Canadian Petroleum Technology, 37, 7

**McLees, J. A.** (2006) Vapor-Liquid Equilibrium of Monoethanolamine/ Piperazine/Water at 35 – 70 °C, *PhD thesis, University of Texas* 

Moser, P., Schmidt, S., Sieder, G., H. Garcia, Stoffregen T. & V. Stamatov (2011) The post-combustion capture pilot plant Niederaussem–Results of the first half of the testing programme *10th International Conference on Greenhouse Gas Control Technologies, Energy Procedia*, 4, 1310-1316

Movagharnejad, K. and M. Akbari, (2011), Simulation of CO2 Capture Process, *World Academy of Science, Engineering and Technology*, (58), 238-242 Nasir, P. and A. E. Mather (1977) The Measurement and Prediction of the Solubility of Gases in Monoethanolamine Solutions at Low Partial Pressures, *Can. J. Chem. Eng.*, 55,715-716

**Nguyen, T., Hilliard, M. and G. Rochelle** (2011) Volatility of aqueous amines in CO<sub>2</sub> capture, *GHGT-10, Energy Procedia*, 4, 1624-1630

**Oikawa K., Yongsirib C., Takeda K. and T. Harimotoa** (2003) Seawater Flue Gas Desulphurization: Its Technical Implications and Performance results, *Environmental Progress*, 22, 1, 67-73

**Oyeanekan, B. A. & G. T. Rochelle** (2006) Energy Performance of Stripper Configurations for CO<sub>2</sub> Capture by Aqueous Amines, *Ind. & Eng. Chem. Res.*, 45 (8), 2457-2464

**Pacheco, M.** (1998) Mass Transfer, Kinetics and Rate-Based Modeling of Reactive Absorption, *PhD thesis University of Texas at Austin* 

**Park, J. Y., S. J. Yoon, and H. Lee**, (2003), Effect of Steric Hindrance on Carbon Dioxide Absorption into New Amine Solutions: Thermodynamic and Spectroscopic Verification through Solubility and NMR Analysis, *Environmental Science and Technology*, 37(8), 1670–1675

**Polderman, L. D. & C.P. Dillon** (1955) Why monoethanolamine solution breaks down in gas treating service, *Proc. Gas Conditioning Conf.*, 49-56

**Posey, M.** (1996) Thermodynamic Model for Acid Gas Loaded Aqueous Alkanolamine Solutions, *PhD thesis University of Texas at Austin* 

Ramachandran, N., Aboudheir, A., Idem R. & P. Tontiwachwuthikul (2006) Kinetics of the absorption of CO<sub>2</sub> into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine. *Ind. Eng. Chem. Res.*, 45, 2608–2616

**Rochelle, G. T.** (2009) Amine Scrubbing for CO<sub>2</sub> Capture, *Science 325*, 1652-1654

Saha, A. K., Bishwas, A. K. & S. S. Bandyopadhyay (1999) Absorption of CO<sub>2</sub> in a Sterically Hindered Amines: modeling absorption in a mechanically agitated contactor. *Separation and Purification Technology*, 15, 101-112

**Sakwattanapong, R., Aroonwilas, A. & A. Veawab** (2009) Reaction rate of CO<sub>2</sub> in aqueous MEA-AMP solution: Experiment and modelling, 9th International Conference on Greenhouse Gas Control Technologies, Energy Procedia, 1 (1), 217-224

**Santori, G. and D. W. Savage** (1983) Sterically Hindered Amines for CO<sub>2</sub> Removal from Gases, *Ind. Eng. Chem. Fundam.*, 22, 239-249

- **Sexton, A. J. & Rochelle, G. T.** (2006) Oxidation products of amines in CO<sub>2</sub> capture. 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway.
- **Sexton, A. J. & Rochelle, G. T.** (2008) Catalysts and inhibitors for MEA oxidation. *9th International Conference on Greenhouse Gas Control Technologies*, Washington DC.
- **A.J. Sexton and G.T. Rochelle,** (2009), Catalysts and inhibitors for MEA oxidation, *Energy Procedia*, 1 (1), 1179-1185
- **Shen, K.-P. & M.-H. Li** (1992) Solubility of carbon dioxide in aqueous mixtures of Monoethanolamine with methyldiethanolamine. *J. Chem. Eng. Data*, 37, 96-100
- **Strazisar, B. R., Anderson, R. R. & C. M. White** (2002) Degradation of Monoethanolamine used in carbon dioxide capture from flue gas of a coal fired electric power generating station. *J. Energy & Environ. Res.*, 1 (1), 32-40.
- **Strazisar, B. R., Anderson, R. R. & White C. M.** (2003) Degradations pathways for monoethanolamine in a CO<sub>2</sub> capture facility, *Energy & Fuels*, 17, 1034-1039.
- Supap, T., Idem, R., Veawab, A., Aroonwilas, A., Tontiwachwuthikul, P., Chakma, A. & B. D. Kybett (2001) Kinetics of the Oxidative Degradation of Aqueous Monoethanolamine in Flue Gas Treating Unit. *Ind. Eng. Chem. Res.*, 40, 3445
- **Supap, T., Idem, R., Tontiwachwuthikul, P. & Saiwan, C.** (2006) Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. *Industrial and Engineering Chemistry Research*, 45, 2437-2451.
- **Supap, T., Idem, R., Tontiwachwuthikul, P. & Saiwan, C.** (2009) Kinetics of sulphur dioxide -and oxygen- induced degradation of monoethanolamine solution during CO<sub>2</sub> Absorption from Industrial Flue Gas Streams, *International Journal of Greenhouse Gas Control*, 3, 133-142.
- Supap, T., Idem, R., Tontiwachwuthikul, P. & C. Saiwanb (2011) Investigation of Degradation Inhibitors on CO<sub>2</sub> Capture Process, *Energy Procedia*, 4, 583-590

**United States Environmental Protection Agency (EPA)** (1996) Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Method 8260B, "Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry (GC/MS)", Revision 2 – December 1996

United States Environmental Protection Agency (EPA), Code of Federal Regulations (CFR) at Title 40, Part 136: Guidelines Establishing Test Procedures For the Analysis of Pollutants – Appendix B: Definition and Procedure for the Determination of the Method Detection Limit, Revision 1.11 – June 30, 1986

**Uyanga, I. J. & R. O. Idem** (2007) Studies of SO<sub>2</sub>- and O<sub>2</sub>- induced degradation of aqueous MEA during CO<sub>2</sub> capture from power plant flue gas streams, *Industrial and Engineering Chemistry Research*, 46(8), 2558-2566.

Vevelstad, S. J., Eide-Haugmo I., da Silva E.F. & H. F. Svendsen (2011) Degradation of MEA; a theoretical study, 10th International Conference on Greenhouse Gas Control Technologies, Energy Procedia, 4, 1608-1615

Xu, S., Wang, Y.-W., Otto, F. D. & A. E. Mather (1996) Kinetics of the Reaction of Carbon Dioxide with 2-amino-2-methyl-1-propanol solutions, *Chemical Engineering Science*, 51 (6), 841-850

Yavzikova N. V., Zelenskaya L. G. & L.V. Balyasnikova (1975) Mechanism of Side Reactions during Removal of Carbon Dioxide from Gases by Treatment with Monoethanolamine, *Journal of Applied Chemistry of the USSR*, 48, 674-676 Yeh, J. T. & W. H. Pennline (2001) Study of CO<sub>2</sub> Absorption and Desorption in a Packed Column, *Energy & Fuels*, 15, 274-278

### **APPENDIX 1: EXPERIMENTAL**

## **Appendix 1.1: IC Calibration Curves**

Raw data used to produce the calibration curves:

Samples of different concentrations (in mg/L) for each compound and the area response (in  $\mu S^*min$ ) in the IC. The samples were prepared in 5 molal aqueous MEA solutions and pre-processed with the cartridges.

| Acetic | e Acid | Form | ic Acid | Oxali | c Acid | Potassi | ium Nitrite | Sodiun | n Nitrate |
|--------|--------|------|---------|-------|--------|---------|-------------|--------|-----------|
| mg/L   | μS*min | mg/L | μS*min  | mg/L  | μS*min | mg/L    | μS*min      | mg/L   | μS*min    |
| 1040   | 95     | 1220 | 260     | 1653  | 450    | 1920    | 440         | 2260   | 475       |
| 104    | 20     | 122  | 70      | 165.3 | 62.5   | 192     | 108         | 226    | 105       |
| 10.4   | 1.8    | 12.2 | 1.75    | 16.53 | 12     | 19.2    | 15          | 22.6   | 15        |
| 1.04   | 1.75   | 1.22 | 1.25    | 1.653 | 1.75   | 1.92    | 2           | 2.26   | 2.5       |

#### **Appendix 1.2: IC Method Detection Limits**

IC method detection limits for all compounds raw data

#### o <u>IDL Calculation:</u>

Noise level response from 10 IC chromatograms (of a preprocessed 5 molal aqueous MEA solutions) for each compound, determined by measuring its response (if any) in the blank sample.

| Acetic | Formic | Oxalic | Nitrate | Nitrite |
|--------|--------|--------|---------|---------|
| 0.0065 | 0.0164 | 0.0254 | 0.0164  | 0.12    |
| 0.0828 | 0.031  | 0.1215 | 0.041   | 0.081   |
| 0.0765 | 0.119  | 0.097  | 0.0148  | 0.089   |
| 0.1515 | 0.0254 | 0.1232 | 0.0047  | 0.326   |
| 0.2173 | 0.2173 | 0.031  | 0.1272  | 0.1219  |
| 0.045  | 0.0431 | 0.072  | 0.0847  | 0.0452  |
| 0.05   | 0.0469 | 0.0008 | 0.0147  | 0.026   |
| 0.041  | 0.0354 | 0.301  | 0.0827  | 0.1066  |
| 0.0378 | 0.0401 | 0.1311 | 0.0022  | 0.0036  |
| 0.0354 | 0.325  | 0.0036 | 0.0956  | 0.1815  |

The IDL is three times the standard deviation of the noise for each compound in the blank sample

| Acetic   | Formic  | Oxalic   | Nitrate  | Nitrite  |
|----------|---------|----------|----------|----------|
|          |         | STD      |          |          |
| 0.063671 | 0.10267 | 0.089287 | 0.045116 | 0.091821 |

|          |          | IDL     |          |          |
|----------|----------|---------|----------|----------|
| Acetic   | Formic   | Oxalic  | Nitrate  | Nitrite  |
|          |          | 3*STD   |          |          |
| 0.191013 | 0.308011 | 0.26786 | 0.135348 | 0.275462 |

#### MDL calculation

7 Solutions with concentrations 5\*IDL (approximately 1 mg/L) for each compound were prepared in a 5 molal aqueous MEA solution matrixes and run in the IC:

| Acetic        | Formic        | Oxalic        | Nitrate     | Nitrite     |
|---------------|---------------|---------------|-------------|-------------|
| Area (µS*min) | Area (μS*min) | Area (μS*min) | Area μS*min | Area μS*min |
| 0.723         | 0.3994        | 1.2887        | 1.3361      | 1.2381      |
| 0.6019        | 0.2495        | 1.3026        | 1.375       | 1.249       |
| 0.783         | 0.2368        | 1.2933        | 1.3882      | 1.3639      |
| 0.932         | 0.3473        | 1.7           | 1.05        | 0.89        |
| 0.979         | 0.4226        | 1.55          | 1.2101      | 1.14        |
| 1.054         | 0.381         | 0.9088        | 1.1794      | 1.17        |
| 0.8803        | 0.3994        | 0.6322        | 0.6869      | 1.0447      |

The STD (Standard Deviation) was calculated along with the average and % RSD (Relative Standard Deviation). Finally, the MDL was calculated by multiplying the RSD with the concentration (1mg/L) and the students' t value for a 99% confidence level with 6 degrees of freedom which was found from the one sided table to be 3.143.

| Acetic      | Formic   | Oxalic      | Nitrate     | Nitrite     |
|-------------|----------|-------------|-------------|-------------|
| Average     |          |             |             |             |
| 0.850457143 | 21.63339 | 0.198179779 | 1.1751      | 1.156528571 |
| STD         |          |             |             |             |
| 0.157092986 | 0.075284 | 0.364221282 | 0.247158977 | 0.15395105  |
| % RSD       |          |             |             |             |
| 18.47159344 | 21.63339 | 29.38758098 | 21.03301652 | 13.31147829 |
| MDL (mg/L)  |          |             |             |             |
| 0.580008034 | 0.679288 | 0.922770043 | 0.660436719 | 0.417980418 |

# **Appendix 1.3: GC Conditions – Old Set Up**

#### **GC Conditions**

#### Kali method

Turbochrom Method File: C:\TURBOMASS\KALI.PRO\ACQUDB\Kali.mth

Created By : Mathew Edited By : Mathew

Number of Times Edited: 3 Number of Times Calibrated: 0

Run Time: 38.57 min

Oven Temperature Program:

Initial Temperature: 40 deg for 5.00 min

Ramp 1: 7.0 deg/min to 240 deg, hold for 5.00 min

# Kali 1 method

 $Turbochrom\ Method\ File: C:\ TURBOMASS\ KALl.PRO\ ACQUDB\ kali1.mth$ 

Created By : Mathew Edited By : Mathew

Number of Times Edited: 1 Number of Times Calibrated: 0

Run Time: 38.57 min

Oven Temperature Program:

Initial Temperature: 40 deg for 5.00 min

Ramp 1: 7.0 deg/min to 240 deg, hold for 5.00 min

# Kali 2 method

Turbochrom Method File: C:\TURBOMASS\KAL1.PRO\ACQUDB\kali2.mth

Created By: Mathew Edited By: Mathew Number of Times Edited: 1 Number of Times Calibrated: 0

Run Time: 20.00 min

Oven Temperature Program:

Initial Temperature: 100 deg for 1.00 min

Ramp 1: 10.0 deg/min to 240 deg, hold for 5.00 min

# Kali 3 method

Turbochrom Method File: C:\TURBOMASS\KALI.PRO\ACQUDB\kali3.mth

Created By : Mathew Edited By : Mathew

Number of Times Edited: 0 Number of Times Calibrated: 0

Run Time: 34.00 min

Oven Temperature Program:

Initial Temperature: 100 deg for 10.00 min

Ramp 1: 10.0 deg/min to 240 deg, hold for 10.00 min

#### Kali 4 method

Turbochrom Method File: C:\TURBOMASS\KALl.PRO\ACQUDB\kali4.mth

Created By : Mathew Edited By : Mathew

Number of Times Edited : 0 Number of Times Calibrated : 0

Run Time: 75.00 min

Oven Temperature Program:

Initial Temperature: 100 deg for 10.00 min

Ramp 1: 7.0 deg/min to 240 deg, hold for 45.00 min

# Kali 5 method

Turbochrom Method File: C:\TURBOMASS\KALl.PRO\ACQUDB\kali5.mth

Created By: Mathew Edited By: Mathew Number of Times Edited: 1 Number of Times Calibrated: 0 Run Time: 17.00 min

Oven Temperature Program:

Initial Temperature: 50 deg for 2.00 min

Ramp 1: 10.0 deg/min to 180 deg, hold for 2.00 min

#### Kali 6 method

Turbochrom Method File: C:\TURBOMASS\KALI.PRO\ACQUDB\kali6.mth

Created By : Mathew Edited By : Mathew

Number of Times Edited: 0 Number of Times Calibrated: 0

Run Time: 17.83 min

Oven Temperature Program:

Initial Temperature: 50 deg for 0.50 min

Ramp 1: 15.0 deg/min to 280 deg, hold for 2.00 min

# Appendix 1.4: MS method - Old Set Up

MS methods

# Kali 1 method

**Experiment Report** 

Experiment File: c:\turbomass\kali.pro\acqudb\kali 1.exp

Printed: Tue Nov 11 17:06:03 2008

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Mon 03 Nov 2008 17:54:03 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 39.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 2.0                      |
| Number Of Functions   | 1                        |

Function 1: MS Scan, Time 2.00 to 39.00, Mass 10.00 to 300.00 EI+

# Kali 2 method

**Experiment Report** 

Experiment File: c:\turbomass\kali.pro\acqudb\kali2.exp

Printed: Tue Nov 11 17:11:15 2008

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Fri 10 Oct 2008 14:22:07 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 21.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 2.0                      |
| Number Of Functions   | 1                        |

Function 1: MS Scan, Time 2.00 to 21.00, Mass 30.00 to 300.00 EI+

| Type        | MS Scan  |
|-------------|----------|
| Ion Mode    | EI+      |
| Data Format | Centroid |
| Start Mass  | 30.00    |
| End Mass    | 300.00   |

| Scan Time (sec)      | 0.20  |
|----------------------|-------|
| InterScan Time (sec) | 0.05  |
| Start Time (min)     | 2.00  |
| End Time (min)       | 21.00 |

#### Kali 3 method

**Experiment Report** 

Experiment File: c:\turbomass\kali.pro\acqudb\kali3.exp

Printed: Tue Nov 11 17:20:50 2008

Name Default Experiment
Creation Time Wed 08 Oct 2008 16:33:04

Instrument Identifier

Version Number 1.0 Duration (min) 34.0

No Solvent Delays Number Of Functions

Function 1: MS Scan, Time 0.00 to 34.00, Mass 30.00 to 300.00 EI+

Type MS Scan Ion Mode EI+ Data Format Centroid Start Mass 10.00 **End Mass** 300.00 Scan Time (sec) 0.20 InterScan Time (sec) 0.05 Start Time (min) 0.00 End Time (min) 34.00

# Kali 4 method

**Experiment Report** 

Experiment File: c:\turbomass\kali.pro\acqudb\kali4.exp

Printed: Tue Nov 11 17:21:21 2008

Name Default Experiment

Creation Time Wed 08 act 2008 17:10:59

Instrument Identifier

Version Number 1.0 Duration (min) 75.0

No Solvent Delays

Number Of Functions 1

Function 1: MS Scan, Time 0.00 to 75.00, Mass 10.00 to 300.00 EI+

Type MS Scan
Ion Mode EI+
Data Format Centroid
Start Mass 10.00
End Mass 300.00

| Scan Time (sec)      | 0.20  |
|----------------------|-------|
| InterScan Time (sec) | 0.05  |
| Start Time (min)     | 0.00  |
| End Time (min)       | 75.00 |

# Kali 5 method

**Experiment Report** 

Experiment File: c:\turbomass\kali.pro\acqudb\kali5.exp

Printed: Tue Nov 11 17:20:13 2008

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Fri 10 Oct 2008 14:35:52 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 17.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 2.0                      |
| Number Of Functions   | 1                        |
|                       |                          |

Function 1: MS Scan, Time 0.87 to 17.00, Mass 10.00 to 300.00 EI+

| Type                 | MS Scan  |
|----------------------|----------|
| Ion Mode             | EI+      |
| Data Format          | Centroid |
| Start Mass           | 10.00    |
| End Mass             | 300.00   |
| Scan Time (sec)      | 0.20     |
| InterScan Time (sec) | 0.05     |
| Start Time (min)     | 0.87     |
| End Time (min)       | 17.00    |

# Kali 6 method

**Experiment Report** 

Experiment File: c:\turbomass\kali.pro\acqudb\kali6.exp

Printed: Tue Nov 11 17:20:20 2008

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Fri 10 Oct 2008 15:13:29 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 18.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 1.0                      |
| Number Of Functions   | 1                        |

Function 1: MS Scan, Time 0.92 to 18.00, Mass 10.00 to 300.00 EI+

Type MS Scan Ion Mode EI+ Centroid

| Start Mass           | 10.00  |
|----------------------|--------|
| End Mass             | 300.00 |
| Scan Time (sec)      | 0.20   |
| InterScan Time (sec) | 0.05   |
| Start Time (min)     | 0.92   |
| End Time (min)       | 18.00  |

Appendix 1.5: GC-MS Sample Runs - New Set Up

GC-MS sample runs GC and MS conditions and sample description

TurboMass - Sample List

Sample List: C:\TURBOMASS\KALI.PRO\SampleDB\Test runs.SPL Printed: Tue Jul 26 16:23:57 2011

|    | File Name    | MS Method | GC Method | Sample ID   |
|----|--------------|-----------|-----------|-------------|
| ς- | Test Run 469 | Kali2     | kali6     | Isopropanol |
| 7  | Test Run 469 | kali2     | kali6     | Isopropanol |
| က  | Test Run 470 | kali2     | kali6     | DCM         |
| 4  | Test Run 471 | kali2     | kali6     | Oxazolidone |
| 2  | Test Run 472 | kali5     | kali6     | Oxazolidone |
| 9  | Test Run 473 | kali6     | kali6     | Oxazolidone |
| 7  | Test Run 474 | MEA 1     | MEA 1     | Isopropanol |
| œ  | Test Run 475 | MEA 1     | MEA 1     | DCM         |
| o  | Test Run 476 | MEA 1     | MEA 1     | HEIA        |
| 10 | Test Run 477 | MEA 1     | Kali1     | HEIA        |
| 11 | Test Run 478 | MEA 1     | kali2     | HEIA        |
| 12 | Test Run 479 | MEA 1     | Kali3     | HEIA        |
| 13 | Test Run 480 | MEA 1     | Kali4     | HEIA        |
| 14 | Test Run 481 | MEA 1     | Kali5     | HEIA        |
| 15 | Test Run 482 | MEA 1     | kali6     | HEIA        |
| 16 | Test Run 483 | kali6     | Kali1     | HEIA        |
| 17 | Test Run 484 | kali6     | kali2     | HEIA        |
| 18 | Test Run 485 | kali6     | Kali3     | HEIA        |
| 19 | Test Run 486 | kali6     | Kali4     | HEIA        |
| 20 | Test Run 487 | kali6     | kali5     | HEIA        |
| 7  | Test Run 488 | kali6     | kali6     | HEIA        |
| 22 | Test Run 489 | kali6     | Xali      | HEIA        |
| 23 | Test Run 490 | kali6     | MEA 1     | HEIA        |
| 24 | Test Run 491 | kali2     | Kali3     | Isopropanol |
| 25 | Test Run 492 | kali2     | kali3     | DCM         |
| 26 | Test Run 493 | kali2     | kali3     | HEEDA       |
| 27 | Test Run 494 | kali2     | kali6     | HEEDA       |
| 28 | Test Run 495 | kali2     | Kali      | HEEDA       |
| 29 | Test Run 496 | kali2     | kali1     | HEEDA       |
| 30 | Test Run 497 | kali2     | Kali1     | Isopropanol |
| 31 | Test Run 498 | kali5     | Xali      | DCM         |
| 32 | Test Run 499 | kali5     | 大ali      | DCM         |
| 33 | Test Run 500 | kali5     | Xali      | Isopropanol |
| 34 | Test Run 501 | kali5     | 大aii      | Oxazolidone |
| 35 | Run          | kali5     | kali1     | Oxazolidone |
| 36 | Run          | kali5     | kali2     | Oxazolidone |
| 37 | Run          | kali5     | kali3     | Oxazolidone |
| 38 | Run          | kali5     | Kali4     | Oxazolidone |
| 39 | Run          | kali5     | kali5     | Oxazolidone |
| 40 | Run          | kali5     | kali6     | Oxazolidone |
| 4  | Test Run 508 | kali6     | Xali      | Oxazolidone |

|            | File Name    | MS Method | GC Method | Sample ID   |
|------------|--------------|-----------|-----------|-------------|
| 42         | Run          | kali6     | kali1     | Oxazolidone |
| 43         | Run          | kali6     | kali2     | Oxazolidone |
| <b>4</b>   | Test Run 511 | kali6     | kali3     | Oxazolidone |
| 42         | Run          | kali6     | Kali4     | Oxazolidone |
| 46         | R.E.         | kali6     | Kaliō     | Oxazolidone |
| 47         | Run          | Kali6     | kali6     | Oxazolidone |
| 48         | Run          | MEA 1     | 大ali      | DCM         |
| 6          | Run          | MEA 1     | 大ali      | Isopropanol |
| 20         | RE           | MEA 1     | Xali      | Oxazolidone |
| 51         | R.H          | MEA 1     | kali 1    | Oxazolidone |
| 25         | Run          | MEA 1     | kali 2    | Oxazolidone |
| 23         | Run          | MEA 1     | kali3     | Oxazolidone |
| 24         | Run          | MEA 1     | Kali4     | Oxazolidone |
| 22         | Run          | MEA 1     | kali5     | Oxazolidone |
| 26         | Run          | MEA 1     | kali6     | Oxazolidone |
| 24         | Run          | Kali.mth  | Xali      | Oxazolidone |
| 28         | RUN          | Kali.mth  | Kali 1    | Oxazolidone |
| 29         | Run          | Kali.mth  | kali 2    | Oxazolidone |
| 9          | Run          | Kali.mth  | Kali3     | Oxazolidone |
| 61         | RUN          | Kali.mth  | Kali4     | Oxazolidone |
| 62         | Run          | Kali.mth  | kali5     | Oxazolidone |
| g          | Run          | Kali.mth  | kali6     | Oxazolidone |
| 64         | Run          | kali2     | ×ai       | Oxazolidone |
| 92         | Run          | kali2     | kali1     | Oxazolidone |
| 99         | Run          | kali2     | kali2     | Oxazolidone |
| 29         | Run          | kali2     | Kali3     | Oxazolidone |
| 89         | Run          | kali2     | kali4     | Oxazolidone |
| 69         | Run          | kali2     | kali5     | Oxazolidone |
| 2          | Run          | kali2     | kali6     | Oxazolidone |
| 71         | Run          | Kali3     | Xali      | DCM         |
| 72         | Run          | kali3     | Xali      | Isopropanol |
| 73         | Run          | kali3     | Kali      | Oxazolidone |
| 74         | Run          | kali3     | kali1     | Oxazolidone |
| 75         | Run          | kali3     | Kali 2    | Oxazolidone |
| 9/         | Run          | kali3     | kali3     | Oxazolidone |
| 11         | Run          | kali3     | Kali4     | Oxazolidone |
| 78         | Run          | kali3     | Kali5     | Oxazolidone |
| 5          | Run          | kali3     | kali6     | Oxazolidone |
| 8          | Run          | kali4     | Xali      | Oxazolidone |
| <u>م</u> و | Test Run 548 | Kali4     | Kali1     | Oxazolidone |
| 70         | 5            | Kall4     | Kall Z    | Oxazolidone |

|     | File Name    | MS Method | GC Method    | Sample ID   |
|-----|--------------|-----------|--------------|-------------|
| 83  | Zun          | kali4     | kali3        | Oxazolidone |
| 84  | Sun S        | kali4     | Kali4        | Oxazolidone |
| 82  | Yun.         | kali4     | kali5        | Oxazolidone |
| 8   | Zun Z        | kali4     | kali6        | Oxazolidone |
| 87  | SE           | Kali5     | 大ali         | DCM         |
| 88  | Sun Y        | Kali5     | 大 <u>ali</u> | Isopropanol |
| 8   | SE           | kali5     | Xali         | HEIA        |
| 8   | Sun Y        | Kali5     | kali1        | HEIA        |
| 9   | Yun.         | Kali5     | kali 2       | HEIA        |
| 92  | SE           | Kali5     | kali3        | HEIA        |
| 83  | Sun Y        | Kali5     | kali4        | HEIA        |
| 94  | S.E.         | Kali5     | kali5        | HEIA        |
| 8   | Zun Z        | Kali5     | kali6        | HEIA        |
| 96  | YLL<br>YLL   | Kali.mth  | Xali         | HEIA        |
| 97  | Zun          | Kali.mth  | kali1        | HEIA        |
| 8   | Y LI         | Kali.mth  | kali 2       | HEIA        |
| 66  | Sul.         | Kali.mth  | kali3        | HEIA        |
| 9   | Y nu         | Kali.mth  | kali4        | HEIA        |
| 101 | Sun S        | Kali.mth  | kali5        | HEIA        |
| 102 | Sun S        | Kali.mth  | kali6        | HEIA        |
| 103 | 2m           | kali2     | Xali         | HEIA        |
| 104 | Sun S        | kali2     | kali1        | HEIA        |
| 92  | S.H          | Kali2     | kali 2       | HEIA        |
| 106 | Sun 3        | kali2     | kali3        | HEIA        |
| 107 | Y.II         | Kali2     | kali4        | HEIA        |
| 108 | Sun S        | kali2     | kali5        | HEIA        |
| 109 | Test Run 576 | kali2     | kali6        | HEIA        |
| 110 | Sun Y        | Kali3     | Xali         | HEIA        |
| 111 | Sun Y        | Kali3     | kali1        | HEIA        |
| 112 | Yun.         | Kali3     | kali 2       | HEIA        |
| 113 | Z E          | Kali3     | kali3        | HEIA        |
| 114 | SE.          | kali3     | kali4        | HEIA        |
| 115 | Test Run 582 | Kali3     | kali5        | HEIA        |
| 116 | SE           | kali3     | kali6        | HEIA        |
| 117 | SE           | Kali4     | 天 <u>ai</u>  | HEIA        |
| 118 | S.E.         | Kali4     | kali1        | HEIA        |
| 119 | Test Run 586 | Kali4     | kali 2       | HEIA        |
| 120 | R.H.         | kali4     | Kali3        | HEIA        |
| 121 | Run          | Kali4     | Kali4        | HEIA        |
| 22  | Test Run 589 | Kali4     | Kali5        | HEIA        |
| 123 | S            | Kall4     | kali6        | HEIA        |

|        | File Name    | MS Method | GC Method          | Sample ID    |
|--------|--------------|-----------|--------------------|--------------|
| 124    | Test Run 591 | Kali5     | Xai.               | DCM          |
| 125    | Run          | Kali5     | Xali               | Isopropanol  |
| 126    | Test Run 593 | kali5     | Xali               | HEEDA        |
| 127    | Run          | kali5     | kali1              | HEEDA        |
| 128    | Run          | kali5     | kali 2             | HEEDA        |
| 129    | Run          | kali5     | Kali3              | HEEDA        |
| 130    | Test Run 597 | kali5     | kali4              | HEEDA        |
| 131    | Run          | kali5     | kali5              | HEEDA        |
| 132    | Run          | kali5     | kali6              | HEEDA        |
| 133    | Run          | kali6     | ×a≡                | HEEDA        |
| 134    | Test Run 601 | kali6     | kali1              | HEEDA        |
| 135    | Run          | kali6     | kali 2             | HEEDA        |
| 136    | Test Run 603 | kali6     | Kali3              | HEEDA        |
| 137    | Test Run 604 | kali6     | Kali4              | HEEDA        |
| 138    | Run          | kali6     | Kali5              | HEEDA        |
| 139    | Run          | kali6     | kali6              | HEEDA        |
| 140    | Run          | MEA 1     | <del>大</del> a≓    | DCM          |
| 141    | Test Run 608 | MEA 1     | Xali               | Isopropanol  |
| 142    | Run          | MEA 1     | 大ali               | HEEDA        |
| 143    | Test Run 610 | MEA 1     | kali1              | HEEDA        |
| 144    | Run          | MEA 1     | kali 2             | HEEDA        |
| 145    | Test Run 612 | MEA 1     | Kali3              | HEEDA        |
| 146    | Run          | MEA 1     | Kali4              | HEEDA        |
| 147    | Run          | MEA 1     | kali5              | HEEDA        |
| 148    | Test Run 615 | MEA 1     | kali6              | HEEDA        |
| 149    | Test Run 616 | Kali.mth  | Kali               | HEEDA        |
| 150    | Run          | Kali.mth  | kali1              | HEEDA        |
| 151    | Run          | Kali.mth  | kali2              | HEEDA        |
| 152    | Run          | Kali.mth  | kali3              | HEEDA        |
| 153    | Run          | Kali.mth  | Kali4              | HEEDA        |
| 154    | Run          | Kali.mth  | Kali5              | HEEDA        |
| 155    | est Run      | Kali.mth  | kali6              | HEEDA        |
| 156    | Run          | kali2     | 大ali               | HEEDA        |
| 157    | est Run      | kali2     | Xali 1             | HEEDA        |
| 158    | est Run      | kali2     | kali 2             | HEEDA        |
| 159    | Run          | kali2     | Kali3              | HEEDA        |
| 160    | est Run      | kali2     | Kali4              | HEEDA        |
| 161    | Run          | kali2     | Kali5              | HEEDA        |
| 162    | Ru           | kali2     | kali6              | HEEDA        |
| 6<br>8 | Test Run 630 | Kali3     | 太 7<br>2<br>2<br>3 | DCM          |
| 5      | ESI KUII     | Kallo     |                    | Isopiopalioi |

| Sample ID | HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>DCM<br>Isopropanol<br>HEEDA<br>HEEDA<br>HEEDA<br>1-0xazolidone<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEEDA<br>HEDA<br>H | MTBE Oxazol MEA in MTBE MTBE HEEDA MEA in MTBE MTBE HEIA MEA in MTBE DCM MEA in DCM DCM Oxazol MEA in DCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC Method | A Sail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kali2<br>Kali2<br>Kali2<br>Kali2<br>Kali2<br>Kali2<br>Kali2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MS Method | Kali3 Kali3 Kali3 Kali4 MS VOCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAMAMA MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMAMA<br>MAMA |
| File Name | 165       Test Run 633         167       Test Run 634         169       Test Run 636         170       Test Run 636         171       Test Run 637         172       Test Run 640         174       Test Run 641         175       Test Run 642         176       Test Run 644         177       Test Run 645         178       Test Run 646         180       Test Run 646         181       Test Run 650         182       Test Run 651         183       Test Run 651         184       Test Run 651         185       Test Run 651         186       Test Run 651         187       Test Run 651         188       Test Run 651         189       Test Run 651         189       Test Run 656         190       Test Run 657         191       Rb-Amine 1         192       Rb-Amine 3         193       Rb-Amine 3         194       Rb-Amine 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rty-Amine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 206 | File Name<br>Rbx-Amine 16 | MS Method MEA 1 | GC Method<br>kali2 | Sample ID DCM       |
|-----|---------------------------|-----------------|--------------------|---------------------|
| 207 |                           | MEA 1           | kali2              | HEEDA MEA in DCM    |
| 208 | Rtx-Amine 18              | MEA 1           | kali 2             | DCM                 |
| 209 | Rtx-Amine 19              | MEA 1           | kali2              | HEIA MEA in DCM     |
| 210 |                           | MEA 1           | kali2              | DCM                 |
| 211 |                           | MEA 1           | kali 2             | Toluene             |
| 212 |                           | MEA 1           | kali 2             | MEA in tolue        |
| 213 |                           | MEA 1           | kali 2             | Tolue               |
| 214 |                           | MEA 1           | kali 2             | Oxazol MEA in Tolue |
| 215 |                           | MEA 1           | kali 2             | Tolue               |
| 216 |                           | MEA 1           | kali 2             | HEEDA MEA in Tolue  |
| 217 |                           | MEA 1           | Kali 2             | Tolue               |
| 218 | Rtx-Amine 28              | MEA 1           | kali2              | HEIA MEA in Tolue   |
| 219 |                           | MEA 1           | kali 2             | Tolue               |
| 220 |                           | MEA 1           | kali5              | MTBE                |
| 221 | Rtx-Amine 31              | MEA 1           | kali5              | MEA in MTBE         |
| 222 | Rtx-Amine 32              | MEA 1           | kali5              | MTBE                |
| 223 | Rtx-Amine 33              | MEA 1           | kali5              | Oxazol MEA in MTBE  |
| 224 | Rtx-Amine 34              | MEA 1           | kali5              | MTBE                |
| 225 | Rtx-Amine 35              | MEA 1           | kali5              | HEEDA MEA in MTBE   |
| 226 | Rtx-Amine 36              | MEA 1           | kali5              | MTBE                |
| 227 | Rtx-Amine 37              | MEA 1           | kali5              | HEIA MEA in MTBE    |
| 228 | Rtx-Amine 38              | MEA 1           | kali5              | MTBE                |
| 229 | Rtx-Amine 39              | MEA 1           | kali5              | DCM                 |
| 230 | Rtx-Amine 40              | MEA 1           | Kali5              | MEA in DCM          |
| 231 | Rtx-Amine 41              | MEA 1           | kali5              | DCM                 |
| 232 | Rtx-Amine 42              | MEA 1           | kali5              | Oxazol MEA in DCM   |
| 233 | Rtx-Amine 43              | MEA 1           | kali5              | DCM                 |
| 234 | Rtx-Amine 44              | MEA 1           | kali5              | HEEDA MEA in DCM    |
| 235 | Rtx-Amine 45              | MEA 1           | kali5              | DOM                 |
| 236 | Rtx-Amine 46              | MEA 1           | kali5              | HEIA MEA in DCM     |
| 237 | Rtx-Amine 47              | MEA 1           | Kali5              | DCM                 |
| 238 | Rtx-Amine 48              | MEA 1           | kali5              | Toluene             |
| 239 | Rtx-Amine 49              | MEA 1           | kali5              | MEA in tolue        |
| 240 | Rtx-Amine 50              | MEA 1           | kali5              | Tolue               |
| 241 |                           | MEA 1           | Kali5              | Oxazol MEA in Tolue |
| 242 | Rtx-Amine 52              | MEA 1           | kali5              | Tolue               |
| 243 | Rtx-Amine 53              | MEA 1           | Kali5              | HEEDA MEA in Tolue  |
| 244 | Rtx-Amine 54              | MEA 1           | Kali5              | Tolue               |
| 245 | Rtx-Amine 55              | MEA 1           | kali5              | HEIA MEA in Tolue   |
| 246 | Rtx-Amine 56              | MEA 1           | kali5              | Tolue               |

|     | File Name    | MS Method | GC Method | Sample ID           |
|-----|--------------|-----------|-----------|---------------------|
| 247 | Rtx-Amine 57 | MEA 1     | kali6     | MTBE                |
| 248 | Rtx-Amine 58 | MEA 1     | kali6     | MEA in MTBE         |
| 249 | Rtx-Amine 59 | MEA 1     | kali6     | MTBE                |
| 250 | Rtx-Amine 60 | MEA 1     | kali6     | Oxazol MEA in MTBE  |
| 251 |              | MEA 1     | kali6     | MTBE                |
| 252 |              | MEA 1     | kali6     | HEEDA MEA in MTBE   |
| 253 | Rtx-Amine 63 | MEA 1     | kali6     | MTBE                |
| 254 |              | MEA 1     | kali6     | HEIA MEA in MTBE    |
| 255 | Rtx-Amine 65 | MEA 1     | kali6     | MTBE                |
| 256 | Rtx-Amine 66 | MEA 1     | kali6     | DCM                 |
| 257 | Rtx-Amine 67 | MEA 1     | kali6     | MEA in DCM          |
| 258 | Rtx-Amine 68 | MEA 1     | kali6     | DCM                 |
| 259 | Rtx-Amine 69 | MEA 1     | kali6     | Oxazol MEA in DCM   |
| 260 | Rtx-Amine 70 | MEA 1     | kali6     | DCM                 |
| 261 | Rtx-Amine 71 | MEA 1     | kali6     | HEEDA MEA in DCM    |
| 262 | Rtx-Amine 72 | MEA 1     | kali6     | DCM                 |
| 263 | Rtx-Amine 73 | MEA 1     | kali6     | HEIA MEA in DCM     |
| 264 | Rtx-Amine 74 | MEA 1     | kali6     | DCM                 |
| 265 | Rtx-Amine 75 | MEA 1     | kali6     | Toluene             |
| 266 | Rtx-Amine 76 | MEA 1     | kali6     | MEA in tolue        |
| 267 | Rtx-Amine 77 | MEA 1     | kali6     | Tolue               |
| 268 | Rtx-Amine 78 | MEA 1     | kali6     | Oxazol MEA in Tolue |
| 269 | Rtx-Amine 79 | MEA 1     | kali6     | Tolue               |
| 270 | Rtx-Amine 80 | MEA 1     | kali6     | HEEDA MEA in Tolue  |
| 271 | Rtx-Amine 81 | MEA 1     | kali6     | Tolue               |
| 272 | Rtx-Amine 82 | MEA 1     | kali6     | HEIA MEA in Tolue   |
| 273 | Rtx-Amine 83 | MEA 1     | kali6     | Tolue               |
| 274 | Rtx-Amine 84 | MEA 1     | kali3     | MTBE                |
| 275 | Rtx-Amine 85 | MEA 1     | kali3     | MEA in MTBE         |
| 276 | Rtx-Amine 86 | MEA 1     | Kali3     | MTBE                |
| 277 | Rtx-Amine 87 | MEA 1     | Kali3     | Oxazol MEA in MTBE  |
| 278 | Rtx-Amine 88 | MEA 1     | Kali3     | MTBE                |
| 279 | Rtx-Amine 89 | MEA 1     | kali3     | HEEDA MEA in MTBE   |
| 280 | Rtx-Amine 90 | MEA 1     | Kali3     | MTBE                |
| 281 | Rtx-Amine 91 | MEA 1     | Kali3     | HEIA MEA in MTBE    |
| 282 | 0            | MEA 1     | Kali3     | MTBE                |
| 283 |              | MEA 1     | Kali3     | DCM                 |
| 284 |              | MEA 1     | Kali3     | MEA in DCM          |
| 285 | Rtx-Amine 95 | MEA 1     | kali3     | DCM                 |
| 286 | Rtx-Amine 96 | MEA 1     | kali3     | Oxazol MEA in DCM   |
| 287 | Rtx-Amine 97 | MEA 1     | kali3     | DCM                 |

|     | File Name     | MS Method | GC Method | Sample ID           |
|-----|---------------|-----------|-----------|---------------------|
| 288 | Rtx-Amine 98  | MEA 1     | Kali3     | HEEDA MEA in DCM    |
| 588 | Rtx-Amine 99  | MEA 1     | kali3     | DCM                 |
| 290 |               | MEA 1     | kali3     | HEIA MEA in DCM     |
| 291 |               | MEA 1     | kali3     | DCM                 |
| 292 |               | MEA 1     | kali3     | Toluene             |
| 293 | Rtx-Amine 103 | MEA 1     | kali3     | MEA in tolue        |
| 294 | 0             | MEA 1     | kali3     | Tolue               |
| 295 | Rtx-Amine 105 | MEA 1     | kali3     | Oxazol MEA in Tolue |
| 296 |               | MEA 1     | kali3     | Tolue               |
| 297 |               | MEA 1     | kali3     | HEEDA MEA in Tolue  |
| 298 |               | MEA 1     | kali3     | Tolue               |
| 299 |               | MEA 1     | kali3     | HEIA MEA in Tolue   |
| 300 |               | MEA 1     | Kali 3    | Tolue               |
| 301 |               | MEA 1     | Kali4     | MTBE                |
| 302 | Rtx-Amine 112 | MEA 1     | kali4     | MEA in MTBE         |
| 303 | Rtx-Amine 113 | MEA 1     | Kali4     | MTBE                |
| 304 |               | MEA 1     | Kali4     | Oxazol MEA in MTBE  |
| 305 |               | MEA 1     | Kali4     | MTBE                |
| 306 | 7             | MEA 1     | kali4     | HEEDA MEA in MTBE   |
| 307 |               | MEA 1     | Kali4     | MTBE                |
| 308 |               | MEA 1     | kali4     | HEIA MEA in MTBE    |
| 308 |               | MEA 1     | Kali4     | MTBE                |
| 310 |               | MEA 1     | kali4     | DCM                 |
| 311 |               | MEA 1     | kali4     | MEA in DCM          |
| 312 |               | MEA 1     | kali4     | DCM                 |
| 313 |               | MEA 1     | kali4     | Oxazol MEA in DCM   |
| 314 |               | MEA 1     | Kali4     | DCM                 |
| 315 |               | MEA 1     | kali4     | HEEDA MEA in DCM    |
| 316 |               | MEA 1     | kali4     | DCM                 |
| 317 |               | MEA 1     | kali4     | HEIA MEA in DCM     |
| 318 |               | MEA 1     | Kall4     | DCM                 |
| 319 | ,             | MEA 1     | kali4     | Toluene             |
| 320 | _             | MEA 1     | kali4     | MEA in tolue        |
| 321 | 1             | MEA 1     | kali4     | Tolue               |
| 322 |               | MEA 1     | Kali4     | Oxazol MEA in Tolue |
| 323 | 1000          | MEA 1     | kali4     | Tolue               |
| 324 | Rtx-Amine 134 | MEA 1     | Kali4     | HEEDA MEA in Tolue  |
| 325 | Rtx-Amine 135 | MEA 1     | kali4     | Tolue               |
| 326 | Rtx-Amine 136 | MEA 1     | Kall4     | HEIA MEA IN LOIUE   |
| 32/ | Rtx-Amine 13/ | MEA       | Kall4     | -olue               |
| 328 | Ktx-Amine 138 | MEA 1     | MEA 1     | MIBE                |

| Sample ID | MEA in MTBE<br>MTDE                   | Oxazol MEA in MTBE | MTBE      | HEEDA MEA in MTBE | MTBE<br>UELA MEA IN MTBE | MTBE                                  | DCM       | MEA in DCM | DCM       | Oxazol MEA in DCM | HEEDA MEA IN DOM | DOM       | HEIA MEA in DCM | DCM       | Toluene   | MEA in tolue | Tolue     | Oxazol MEA in Tolue | Tolue     | HEEDA MEA in Tolue | Tolue     | HEIA MEA in Tolue | Tolue     | MTBE      | MEA in MTBE | MTBE      | Oxazol MEA in MTBE | MIBE      | HEEDA MEA IN MI BE | MTBE  | HEIA MEA IN MIBE<br>MTBE |           | MEA in DCM | DOM   | Oxazol MEA in DCM        | DCM                      | HEEDA MEA in DCM  |
|-----------|---------------------------------------|--------------------|-----------|-------------------|--------------------------|---------------------------------------|-----------|------------|-----------|-------------------|------------------|-----------|-----------------|-----------|-----------|--------------|-----------|---------------------|-----------|--------------------|-----------|-------------------|-----------|-----------|-------------|-----------|--------------------|-----------|--------------------|-------|--------------------------|-----------|------------|-------|--------------------------|--------------------------|-------------------|
| GC Method | M M M M M M M M M M M M M M M M M M M | MEA -              | MEA 1     | MEA 1             | MEA1                     | M M M M M M M M M M M M M M M M M M M | MEA 1     | MEA 1      | MEA 1     | MEA 1             | М<br>ПП<br>1     | MEA 1     | MEA 1           | MEA 1     | MEA 1     | MEA 1        | MEA 1     | MEA 1               | MEA 1     | MEA 1              | MEA 1     | MEA 1             | MEA 1     | kz1       | k21         | kz1       | . K21              | KZ 1      | KZ1                | , K21 | KZ 1                     | - 22 52   | 173        | k21   | kz1                      | K21                      | kz1               |
| MS Method | M M M M M M M M M M M M M M M M M M M | MEA 1              | MEA 1     | MEA 1             | Z MEA 1                  | MEA 1                                 | MEA 1     | MEA 1      | MEA 1     | MEA 1             | M                | MEA 1     | MEA 1           | MEA 1     | MEA 1     | MEA 1        | MEA 1     | MEA 1               | MEA 1     | MEA 1              | MEA 1     | MEA 1             | MEA 1     | MEA 1     | MEA 1       | MEA 1     | MEA 1              | . A∏N :   | MEA 1              | MEA 1 | MITA 1                   | MED -     | MFA 1      | MEA 1 | MEA 1                    | MEA 1                    | MEA 1             |
| File Name | 329 Rtx-Amine 139                     | 331 Rtx-Amine 141  | Rtx-Amine | Rtx-Amine         | 334 Rtx-Amine 144        | Rtx-Amine                             | Rtx-Amine | Rtx-Amine  | Rtx-Amine |                   | Rtx-Amine        | Rtx-Amine | Rtx-Amine       | Rtx-Amine | Rtx-Amine | Rtx-Amine    | Rtx-Amine | Rtx-Amine           | Rtx-Amine | Rtx-Amine          | Rtx-Amine | Rtx-Amine         | Rtx-Amine | Rtx-Amine | Rtx-Amine   | Rtx-Amine | Rtx-Amine          | Ktx-Amine |                    |       | 362 KTX-AMINE 1/2        | Rtx-Amine |            |       | <b>367</b> Rtx-Amine 177 | <b>368</b> Rtx-Amine 178 | 369 Rtx-Amine 179 |

| Sample ID | MEA + DCM : Kali         | MEA + HEEDA + DCM : Kali | MEA + HEEDA + TOLUENE : Kali | MEA + HEEDA + MTBE : Kali | mtbe      | kz1:1 drop each MEA + HEEDA in 100ml MTBE | Ξ.        | kz1:1 drop each MEA + HEEDA in 102ml MTBE | MEA in DCM Standard - no.8 | MEA in DCM Standard - no 7 | MEA in DCM Standard - no 6 | 200       | 200       | MEA in DCM Standard : no 3 | SO.       | 200       | DOM       | MEA in DCM std 12 | DCM std | DCM std   | MEA in DCM std 9 | std 21    | std 20    | std 19                   | std 18                   | std 17 | std 16    | std 21    | std 20    | std 19                   | std 18    | std 17   | std 16    | std 21    | std 20    | std 19    | std 18    | std 17    | std 16                   | std 28    | std 27                   |
|-----------|--------------------------|--------------------------|------------------------------|---------------------------|-----------|-------------------------------------------|-----------|-------------------------------------------|----------------------------|----------------------------|----------------------------|-----------|-----------|----------------------------|-----------|-----------|-----------|-------------------|---------|-----------|------------------|-----------|-----------|--------------------------|--------------------------|--------|-----------|-----------|-----------|--------------------------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------|-----------|--------------------------|
| GC Method | KZ2                      | kz2                      | kz2                          | kz2                       | kz2       | kz2                                       | kz2       | KZ2                                       | kz2                        | KZ2                        | kz2                        | kz2       | kz2       | kz2                        | kz2       | kz2       | kz2       | kz2               | kz2     | KZ2       | kz2              | KZ2       | kz2       | kz2                      | kz2                      | kz2    | kz2       | kz2       | kz2       | kz2                      | kz2       | kz2      | kz2       | KZ2       | KZ2       | kz2       | kz2       | KZ2       | kz2                      | KZ3       | k <b>z</b> 3             |
| MS Method | MEA 4                    | MEA 4                    | MEA 4                        | MEA 4                     | MEA 4     | MEA 4                                     | MEA 4     | MEA 4                                     | MEA 4                      | MEA 4                      | MEA 4                      | MEA 4     | MEA 4     | MEA 4                      | MEA 4     | MEA 4     | MEA 4     | MEA 4             | MEA 4   | MEA 4     | MEA 4            | MEA 4     | MEA 4     | MEA 4                    | MEA 4                    | MEA 4  | MEA 4     | MEA 4     | MEA 4     |                          | MEA 4     | MEA 4    |           | MEA 4                    | MEA 4     | MEA 4                    |
| File Name | <b>411</b> Rtx-Amine 221 | <b>412</b> Rtx-Amine 222 |                              | Rtx-Amine                 | Rtx-Amine | Rtx-Amine                                 | Rtx-Amine | Rtx-Amine                                 | Rtx-Amine                  | Rtx-Amine                  | Rtx-Amine                  | Rtx-Amine | Rtx-Amine | Rtx-Amine                  | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine         |         | Rtx-Amine | Rtx-Amine        | Rtx-Amine | Rtx-Amine | <b>434</b> Rtx-Amine 244 | <b>435</b> Rtx-Amine 245 | DOM:   | Rtx-Amine | Rtx-Amine | Rtx-Amine | <b>440</b> Rtx-Amine 250 | Rtx-Amine | 25.00.00 | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine | <b>449</b> Rtx-Amine 259 | Rtx-Amine | <b>451</b> Rtx-Amine 261 |

| 45.5 | ,             | MS Method | GC Method      | Sample ID                     |
|------|---------------|-----------|----------------|-------------------------------|
| 452  | KK-AIIIII     | WICA 4    | 7.7.3<br>7.3.3 | Sta 20<br>라스 25               |
| 454  | Rtx-Amine 263 | MED 4     | K73            | std 23                        |
| 455  |               | MEA 4     | KZ3            | std 23                        |
| 456  |               | MEA 4     | kz3            | std 35                        |
| 457  |               | MEA 4     | Kz3            | std 34                        |
| 458  | Rtx-Amine 268 | MEA 4     | KZ3            | std 33                        |
| 459  |               | MEA 4     | KZ3            | std 32                        |
| 460  |               | MEA 4     | KZ3            | std 31                        |
| 461  | Rtx-Amine 271 | MEA 4     | KZ3            | std 30                        |
| 462  | Rtx-Amine 272 | MEA 4     | KZ3            | std 29                        |
| 463  | Rtx-Amine 273 | MEA 4     | KZ3            | std 42                        |
| 464  | Rtx-Amine 274 | MEA 4     | K23            | std 41                        |
| 465  | Rtx-Amine 275 | MEA 4     | KZ3            | std 40                        |
| 466  | Rtx-Amine 276 | MEA 4     | KZ3            | std 39                        |
| 467  | Rtx-Amine 277 | MEA 4     | KZ3            | std 38                        |
| 468  | Rtx-Amine 278 | MEA 4     | KZ3            | std 37                        |
| 469  | Rtx-Amine 279 | MEA 4     | KZ3            | std 36                        |
| 470  | Rtx-Amine 280 | MEA 4     | KZ3            | MTBE                          |
| 471  | Rtx-Amine 281 | MEA 4     | KZ3            | MEA extract in MTBE (0.06%)   |
| 472  | Rtx-Amine 282 | MEA 4     | KZ3            | HEEDA extract in MTBE (0.06%) |
| 473  | Rtx-Amine 283 | MEA 4     | KZ4            | MEA extract in MTBE (0.06%)   |
| 474  | Rtx-Amine 284 | MEA 4     | KZ4            | HEEDA extract in MTBE (0.06%) |
| 475  | Rtx-Amine 285 | MEA 1     | Kali4          | std 33                        |
| 476  | Rtx-Amine 286 | MEA 4     | KZ3            | DCM                           |
| 477  | Rtx-Amine 287 | MEA 4     | KZ3            | MEA in DCM                    |
| 478  | Rtx-Amine 288 | MEA 4     | KZ3            | HEEDA in DCM                  |
| 479  | Rtx-Amine 289 | MEA 4     | kz3            | std 33                        |
| 480  |               | MEA 4     | KZ3            | MEA in DCM                    |
| 481  | Rtx-Amine 291 | MEA 4     | KZ3            | MEA in MTBE                   |
| 482  | Rtx-Amine 292 | MEA 4     | KZ3            | HEEDA in DCM                  |
| 483  | Rtx-Amine 293 | MEA 4     | K23            | HEEDA in MTBE                 |
| 484  | Rtx-Amine 294 | MEA 4     | KZ3            | MEA in MTBE - 2nd pre         |
| 485  |               | MEA 4     | KZ3            | HEEDA in MTBE - 2nd prep      |
| 486  | Rtx-Amine 296 | MEA 4     | KZ3            | MTBE                          |
| 487  |               | MEA 4     | KZ3            | HEEDA in MTBE - 3rd           |
| 488  |               | MEA 4     | KZ3            | MTBE                          |
| 489  |               | MEA 4     | KZ3            | MEA in MTBE - 3rd             |
| 490  | Rtx-Amine 300 | MEA 4     | kz3            | HEEDA in MTBE - 4th           |
| 491  | Rtx-Amine 301 | MEA 4     | KZ3            | diethylether                  |
| 492  | Rtx-Amine 302 | MEA 4     | kz3            | MEA in diethylether 1         |

| Sample ID | HEEDA in diethylether 1  | ETHER                    | std 49 MEA | std 48       | std 47       | std 46 | std 45 | std 44                   | std 43                   | diethylether             | MEA in diethylether | HEEDA in diethylether | ETHER                    | std 56 HEEDA | std 55 | std 54                   | std 53                   | std 52 | std 51    | std 50    | sample #57 - HEIA in ETHER | sample #58 - OXAZ in ETHER | sample #59 - HEIA in DCM | sample #60 - HEIA neat - from the bottle | #61 - HEIA (neat) + ETHER | #62 - HEIA (neat) + MTBE | #63 - HEIA - 10um + 2ml ETHER | Ether     | 0.06% Oxazol in ether 1st extraction | 0.06% HEIA in ether 1st extraction | Ether     | 0.06% Oxazol in ether 2 extraction | 0.06% HEIA in ether 2 extraction | Ether     | 0.06% Oxazol in ether 2nd extraction same sample | 0.06% HEIA in ether 2nd extraction same sample | ether        | std 70                   | std 69 | std 68                   | std 67 |
|-----------|--------------------------|--------------------------|------------|--------------|--------------|--------|--------|--------------------------|--------------------------|--------------------------|---------------------|-----------------------|--------------------------|--------------|--------|--------------------------|--------------------------|--------|-----------|-----------|----------------------------|----------------------------|--------------------------|------------------------------------------|---------------------------|--------------------------|-------------------------------|-----------|--------------------------------------|------------------------------------|-----------|------------------------------------|----------------------------------|-----------|--------------------------------------------------|------------------------------------------------|--------------|--------------------------|--------|--------------------------|--------|
| GC Method | KZ3                      | KZ3                      | KZ3        | k <b>z</b> 3 | k <u>z</u> 3 | KZ3    | KZ3    | k23                      | KZ3                      | KZ3                      | KZ3                 | KZ3                   | KZ3                      | KZ3          | KZ3    | KZ3                      | KZ3                      | KZ3    | KZ3       | kZ3       | KZ3                        | k <u>z</u> 3               | kZ3                      | KZ3                                      | KZ3                       | KZ3                      | KZ3                           | kZ3       | KZ3                                  | KZ3                                | KZ3       | kz3                                | k <b>z</b> 3                     | KZ3       | k <b>z</b> 3                                     | KZ3                                            | k <u>z</u> 3 | KZ3                      | KZ3    | KZ3                      | kz3    |
| MS Method | MEA 4                    | MEA 4                    | MEA 4      | MEA 4        | MEA 4        | MEA 4  | MEA 4  | MEA 4                    | MEA 4                    | MEA 4                    | MEA 4               | MEA 4                 | MEA 4                    | MEA 4        | MEA 4  | MEA 4                    | MEA 4                    | MEA 4  | MEA 4     | MEA 4     | MEA 4                      | MEA 4                      | MEA 4                    | MEA 4                                    | MEA 4                     | MEA 4                    | MEA 4                         | MEA 4     | MEA 4                                | MEA 4                              | MEA 4     | MEA 4                              | MEA 4                            | MEA 4     | MEA 4                                            | MEA 4                                          | MEA 4        | MEA 4                    | MEA 4  | MEA 4                    | MEA 4  |
| File Name | <b>493</b> Rtx-Amine 303 | <b>494</b> Rtx-Amine 304 | Rtx-Amine  | . Rtx-Amine  |              |        |        | <b>500</b> Rtx-Amine 310 | <b>501</b> Rtx-Amine 311 | <b>502</b> Rtx-Amine 312 | Rtx-Amine           |                       | <b>505</b> Rtx-Amine 315 | Rtx-Amine    |        | <b>508</b> Rtx-Amine 318 | <b>509</b> Rtx-Amine 319 |        | Rtx-Amine | Rtx-Amine | <b>513</b> Rtx-Amine 323   | Rtx-Amine                  | Rtx-Amine                | <b>516</b> Rtx-Amine 326                 |                           | Rtx-Amine                | Rtx-Amine                     | Rtx-Amine | <b>521</b> Rtx-Amine 331             | Rtx-Amine                          | Rtx-Amine | Rtx-Amine                          | Rtx-Amine                        | Rtx-Amine | Rtx-Amine                                        | Rtx-Amine                                      | Rtx-Amine    | <b>530</b> Rtx-Amine 340 |        | <b>532</b> Rtx-Amine 342 | 15 E)  |

| GC Method Sample ID | kz3 std 66    | kz3 std 65    | kz3 std 64    |               | kz3 0.06% HEIA in ether 1st extraction - repeat | kz3 #63 repeat - see abov e - after shaking vial |               |               |               | kz3 std 67 - after shaking |               | kz3 std 77 - oxozolidone |               | kz3 std 75    |               | kz3 std 73    | kz3 std 72    | kz3 std 71    | kz3 ether     |               |               |               |               |               |               | kz3 std 78    |               | Degraded sample 8 weeks | kz3 Degraded sample 8 weeks extr 1 bottle 2 | Ether         | Degraded sample 8 weeks | kz3 Degraded sample 8 weeks extr 2 bottle 2 |               |               | kz3 Degraded sample 3 weeks extr 1 bottle 2 50s/10e |               | kz3 DCM - repeat |               |               |               |
|---------------------|---------------|---------------|---------------|---------------|-------------------------------------------------|--------------------------------------------------|---------------|---------------|---------------|----------------------------|---------------|--------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------------------|---------------------------------------------|---------------|-------------------------|---------------------------------------------|---------------|---------------|-----------------------------------------------------|---------------|------------------|---------------|---------------|---------------|
| MS Method           | MEA 4                                           | MEA 4                                            | MEA 4         | MEA 4         | MEA 4         | MEA 4                      | MEA 4         | MEA 4                    | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         |               | MEA 4                   | MEA 4                                       | MEA 4         | MEA 4                   | MEA 4                                       | MEA 4         | MEA 4         | MEA 4                                               | MEA 4         | MEA 4            | MEA 4         | MEA 4         | MEA 4         |
| File Name           | Rtx-Amine 344 | Rtx-Amine 345 | Rtx-Amine 346 | Rtx-Amine 347 | Rtx-Amine 348                                   | Rtx-Amine 349                                    | Rtx-Amine 350 | Rtx-Amine 351 | Rtx-Amine 352 | Rtx-Amine 353              | Rtx-Amine 354 | Rtx-Amine 355            | Rtx-Amine 356 | Rtx-Amine 357 | Rtx-Amine 358 | Rtx-Amine 359 | Rtx-Amine 360 | Rtx-Amine 361 | Rtx-Amine 362 | Rtx-Amine 363 | Rtx-Amine 364 | Rtx-Amine 365 | Rtx-Amine 366 | Rtx-Amine 367 | Rtx-Amine 368 | Rtx-Amine 369 | Rtx-Amine 370 | Rtx-Amine 371           | Rtx-Amine 372                               | Rtx-Amine 373 | Rtx-Amine 374           |                                             | Rtx-Amine 376 | Rtx-Amine 377 | Rtx-Amine 378                                       | Rtx-Amine 379 | Rtx-Amine 380    | Rtx-Amine 381 | Rtx-Amine 382 | Rtx-Amine 383 |

| 575<br>576<br>577<br>577<br>580<br>581<br>582<br>583<br>588<br>588<br>588 | File Name  Rtx-Amine 385 Rtx-Amine 386 Rtx-Amine 387 Rtx-Amine 389 Rtx-Amine 390 Rtx-Amine 391 Rtx-Amine 393 Rtx-Amine 394 Rtx-Amine 394 Rtx-Amine 395 Rtx-Amine 395 Rtx-Amine 396 Rtx-Amine 396 Rtx-Amine 396 Rtx-Amine 399 | M S M ethod  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4  M E A 4 | GC Method  KZ3  KZ3  KZ3  KZ3  KZ3  KZ3  KZ3  KZ     | Sample ID  Ether Degraded 2 weeks lean loading 10s/50e Ether Ether Degraded 3 weeks lean loading 10s/50e Ether Ether Ether Std 90 std 89 std 88 std 87 std 86 std 86                                                                                                                                                          |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 591<br>592<br>594<br>595<br>597<br>597                                    | Rtx-Amine 400<br>Rtx-Amine 401<br>Rtx-Amine 402<br>Rtx-Amine 403<br>Rtx-Amine 405<br>Rtx-Amine 405<br>Rtx-Amine 407                                                                                                          | ΜΕΆ4<br>ΜΕΆ4<br>ΜΕΆ4<br>ΜΕΆ4<br>ΜΕΆ4<br>Α                                                                                                                                                                                                                                                                                              | 73<br>73<br>73<br>73<br>73                           | Ether Degraded 2 weeks lean loading 25/25 Ether Degraded 3 weeks lean loading 25/25 Ether Degraded 8 weeks lean loading 25/25 Ether Ether                                                                                                                                                                                     |
| 600<br>600<br>601<br>603<br>604<br>605                                    | RK-Alling 408<br>RK-Amine 409<br>RK-Amine 410<br>RK-Amine 411<br>RK-Amine 411<br>RK-Amine 413<br>RK-Amine 414                                                                                                                | M M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                  | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                | Degraded 2 weeks lean loading 25/25 2days<br>Ether<br>Degraded 3 weeks lean loading 25/25 2days<br>Ether<br>Degraded 8 weeks lean loading 25/25 2days<br>Ether                                                                                                                                                                |
| 606<br>607<br>608<br>610<br>611<br>612<br>613                             | Rtx-Amine 415 Rtx-Amine 416 Rtx-Amine 417 Rtx-Amine 418 Rtx-Amine 420 Rtx-Amine 421 Rtx-Amine 421 Rtx-Amine 422                                                                                                              | МЕА4<br>МЕА4<br>МЕА4<br>МЕА4<br>МЕА4<br>МЕА4<br>МЕА4<br>МЕА4                                                                                                                                                                                                                                                                           | K23<br>K23<br>K23<br>K23<br>K23<br>K23<br>K23<br>K23 | Degraded 2 weeks lean loading 25/25 5days oe Ether Degraded 3 weeks lean loading 25/25 5days oe Ether Degraded 8 weeks lean loading 25/25 5days oe Ether Degraded 2 weeks lean loading 25/25 5days, 2e+1s Ether Degraded 3 weeks lean loading 25/25 5days, 2e+1s Ether Degraded 3 weeks lean loading 25/25 5days, 2e+1s Ether |

| 657<br>658<br>669<br>660 | File Name Rtx-Amine 464 Rtx-Amine 465 Rtx-Amine 466 Rtx-Amine 467                                                   | MS Method MEA 4 MEA 4 MEA 4 MEA 4 MEA 4            | GC Method<br>K23<br>K23<br>K23<br>K23<br>K23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID oxazolidone in ether1 oxazolidone in ether2 oxazolidone in ether3 oxazolidone in ether4    |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                          | 4444                                                                                                                | MEA 4<br>MEA 4<br>MEA 4<br>MEA 4                   | kz 3<br>kz 3<br>kz 3<br>kz 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oxazolidone in ether5<br>ether<br>2 w Rich 1+2<br>3 w Rich 1+2                                       |
|                          | Rbc-Amine 472<br>Rbc-Amine 473<br>Rbc-Amine 474<br>Rbc-Amine 475<br>Rbc-Amine 476                                   | MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4          | K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 K 2 3 | 8 w Rich 1+2<br>std mea heia heeda oxazol<br>oxazolidone in ether<br>oxazolidone in ether<br>Ether   |
|                          | Rtx-Amine 477<br>Rtx-Amine 478<br>Rtx-Amine 479<br>Rtx-Amine 481<br>Rtx-Amine 482<br>Rtx-Amine 482                  | MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4          | 723<br>723<br>723<br>723<br>723<br>723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HEIA 1.25% ether HEIA 2.5% ether HEIA 5% ether HEIA 10% ether Ether HEIA 1.25% ether HEIA 2.5% ether |
|                          | Rb-Amine 484<br>Rb-Amine 485<br>Rb-Amine 486<br>Rb-Amine 487<br>Rb-Amine 488<br>Rb-Amine 489                        | MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4          | 73<br>73<br>73<br>73<br>73<br>73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEIA 5% ether<br>HEIA 10% ether<br>ether<br>HEIA 1.25% ether<br>ether2<br>HEIA 2.5% ether            |
|                          | Rix-Amine 490<br>Rix-Amine 491<br>Rix-Amine 492<br>Rix-Amine 494<br>Rix-Amine 495<br>Rix-Amine 495                  | MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4 | 733<br>733<br>733<br>733<br>733<br>733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ether4 HEIA 5% ether ether6 ether6 HEIA 10% ether ether8 ether HEIA 1.25% ether                      |
|                          | Rtx-Amine 497<br>Rtx-Amine 498<br>Rtx-Amine 500<br>Rtx-Amine 501<br>Rtx-Amine 502<br>Rtx-Amine 503<br>Rtx-Amine 503 | MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4<br>MEA 4 | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ether2<br>HEIA 2.5% ether<br>ether4<br>HEIA 5% ether<br>ether6<br>HEIA 10% ether<br>ether8           |

|     | kZ3                 | 7.5.5<br>7.2.3 | k23                 | KZ3 | KZ3 | kZ3  | XZ .    | KZ3        | 5.25<br>5.75 | K73 V   | ) E Z X | k <u>7</u> 3 | k23 | KZ3 | kz3     | kZ3     | 7 K73   | XZ X       | K73                 | K23<br>K73 | K23     | k <u>z</u> 3 | kZ3                 | KZ3     | k23 | k23     | , kz3   | KZ 3                | 7. 7. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 7Z 3<br>KZ 3 | k23 | kz3 | KZ3     | KZ3     | kZ3     | kz3     | KZ3                 |
|-----|---------------------|----------------|---------------------|-----|-----|------|---------|------------|--------------|---------|---------|--------------|-----|-----|---------|---------|---------|------------|---------------------|------------|---------|--------------|---------------------|---------|-----|---------|---------|---------------------|-------------------------------------------------|--------------|-----|-----|---------|---------|---------|---------|---------------------|
| MSM | Rtx-Amine 505 MEA 4 | 507 MEA        | Rtx-Amine 508 MEA 4 | 509 | 510 | A≡Σ. | 012 MEA | MEA<br>MIN | A [X-A]      | MEA MEA | 517 MEA | 518          | 519 | 520 | 521 MEA | 522 MEA | 523 MEA | NEA<br>NEA | Ktx-Amine 525 MEA 4 | MEA MEA    | 528 MEA | 529          | Rtx-Amine 530 MEA 4 | 531 MEA |     | 533 MEA | 534 MEA | KTX-AMINE 535 MEA 4 | 250<br>524<br>MEA                               | 538 MEA      | 539 | 540 | 541 MEA | 542 MEA | 543 MEA | 544 MEA | Ktx-Amine 545 MEA 4 |

| od Sample ID | ether2                   | ether2                   | ether     | HEID 5%   | ether?                                  | ether     | ether2    | ether2                   | ether7    | ether7    | 8weeks rich 1/100        | ether7    | ether7    | ether7      | ether7    | ether7                   | 8 weeks rich             | ether8                   | ether8    | ether8                   | ether8                   | ether8    | ether8                   | ether7                   | ether7                   | 8weeks rich 1/100 | ether7                   | ether7    | ether7                   | ether7    | ether7                   | 8 weeks rich             | ether8    | ether8                   | ether8    | ether8            | ether8                   | ether8                   | 8 weeks rich             | ether10                  | 2 2 2 2 |
|--------------|--------------------------|--------------------------|-----------|-----------|-----------------------------------------|-----------|-----------|--------------------------|-----------|-----------|--------------------------|-----------|-----------|-------------|-----------|--------------------------|--------------------------|--------------------------|-----------|--------------------------|--------------------------|-----------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|-----------|--------------------------|-----------|--------------------------|--------------------------|-----------|--------------------------|-----------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|
| GC Method    | KZ3                      | kz3                      | k73       | 123       | 5 K 7 K 7 K 7 K 7 K 7 K 7 K 7 K 7 K 7 K | K73       | KZ3       | KZ3                      | kz3       | KZ3       | kz3                      | KZ3       | KZ3       | KZ3         | KZ3       | KZ3                      | kZ3                      | KZ3                      | kZ3       | KZ3                      | KZ3                      | KZ3       | KZ3                      | KZ3                      | KZ3                      | kz3               | KZ3                      | KZ3       | KZ3                      | KZ3       | KZ3                      | kz3                      | KZ3       | KZ3                      | kz3       | KZ3               | KZ3                      | KZ3                      | KZ3                      | k73                      | 3       |
| MS Method    | MEA 4                    | MEA 4                    | MFA 4     | MEAA      | MFA 4                                   | MEA 4     | MEA 4     | MEA 4                    | MEA 4     | MEA 4     | MEA 4                    | MEA 4     | MEA 4     | MEA 4       | MEA 4     | MEA 4                    | MEA 4                    | MEA 4                    | MEA 4     | MEA 4                    | MEA 4                    | MEA 4     | MEA 4                    | MEA 4                    | MEA 4                    | MEA 4             | MEA 4                    | MEA 4     | MEA 4                    | MEA 4     | MEA 4                    | MEA 4                    | MEA 4     | MEA 4                    | MEA 4     | MEA 4             | MEA 4                    | MEA 4                    | MEA 4                    | MFA 4                    |         |
| File Name    | <b>739</b> Rtx-Amine 546 | <b>740</b> Rtx-Amine 547 | Rtx-Amine | Ptv-Amine | Rtx-Amine                               | Rtx-Amine | Rtx-Amine | <b>746</b> Rtx-Amine 553 | Rtx-Amine | Rtx-Amine | <b>749</b> Rtx-Amine 556 | Rtx-Amine | Rtx-Amine | : Rtx-Amine | Rtx-Amine | <b>754</b> Rtx-Amine 561 | <b>755</b> Rtx-Amine 562 | <b>756</b> Rtx-Amine 563 | Rtx-Amine | <b>758</b> Rtx-Amine 565 | <b>759</b> Rtx-Amine 566 | Rtx-Amine | <b>761</b> Rtx-Amine 568 | <b>762</b> Rtx-Amine 569 | <b>763</b> Rtx-Amine 570 | Rtx-Amine         | <b>765</b> Rtx-Amine 572 | Rtx-Amine | <b>767</b> Rtx-Amine 574 | Rtx-Amine | <b>769</b> Rtx-Amine 576 | <b>770</b> Rtx-Amine 577 | Rtx-Amine | <b>772</b> Rtx-Amine 579 | Rtx-Amine | 774 Rtx-Amine 581 | <b>775</b> Rtx-Amine 582 | <b>776</b> Rtx-Amine 583 | <b>777</b> Rtx-Amine 584 | <b>778</b> Rtx-Amine 585 |         |

| GC Method Sample ID | kz3 ether 12  | kz3 ether 12  | kz3 ether 12  | kz3 ether 12 | kz3 ether 12  | kz3 ether 13  |       |       | kz3 ether 13  | kz3 ether 13  |               |               |               | kz3 ether 17 | kz3 ether 18  | kz3 ether 19  | kz3 ether 20  | kz3 ether 21  |       |       | kz3 ether 24 |               | kz3 ether 26  | kz3 ether 27  | kz3 piperazine 0.1% 2 |               | kz3 ether 30  | kz3 ether 31  |               | kz3 piperazine 0.5% 2 | kz3 oxazolidone in ether | kz3 oxazolidone in ether |               |               | kz3 ether     | kz3 ehter     | kz3 MEA 2 calibration extr |               | kz3 ehter     | kz3 ether     |
|---------------------|---------------|---------------|---------------|--------------|---------------|---------------|-------|-------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|---------------|---------------|-------|-------|--------------|---------------|---------------|---------------|-----------------------|---------------|---------------|---------------|---------------|-----------------------|--------------------------|--------------------------|---------------|---------------|---------------|---------------|----------------------------|---------------|---------------|---------------|
| MS Method           | MEA 4         | MEA 4         | MEA 4         | MEA 4        | MEA 4         | MEA 4         | MEA 4 | MEA 4 | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4        | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4 | MEA 4 | MEA 4        | MEA 4         | MEA 4         | MEA 4         | MEA 4                 | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4                 | MEA 4                    | MEA 4                    | MEA 4         | MEA 4         | MEA 4         | MEA 4         | MEA 4                      | MEA 4         | MEA 4         | MEA 4         |
| File Name           | Rtx-Amine 587 | Rtx-Amine 588 | Rtx-Amine 589 |              | Rtx-Amine 591 | Rtx-Amine 592 |       |       | Rtx-Amine 595 | Rtx-Amine 596 | Rtx-Amine 597 | Rtx-Amine 598 | Rtx-Amine 599 |              | Rtx-Amine 601 | Rtx-Amine 602 | Rtx-Amine 603 | Rtx-Amine 604 |       |       |              | Rtx-Amine 608 | Rtx-Amine 609 | Rtx-Amine 610 | Rtx-Amine 611         | Rtx-Amine 612 | Rtx-Amine 613 | Rtx-Amine 614 | Rtx-Amine 615 | Rtx-Amine 616         | Rtx-Amine 617            | Rtx-Amine 618            | Rtx-Amine 619 | Rtx-Amine 620 | Rtx-Amine 621 | Rtx-Amine 622 | Rtx-Amine 623              | Rtx-Amine 624 | Rtx-Amine 625 | Rtx-Amine 626 |

| Sample ID | ether                    | ehter                    | ether     | ehter     | MEA 4 calibration extr | ehter                    | ether     | ehter     | ether     | ether     | ether     | ehter     | MEA 1 calibration extr | ether     | ehter     | MEA 2 calibration extr | ether     | ehter     | ether     | MEA 3 calibration extr | ether     | ehter     | ether     | ehter     | MEA 4 calibration extr | ehter                    | ether     | ehter                    |
|-----------|--------------------------|--------------------------|-----------|-----------|------------------------|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------------------|-----------|-----------|------------------------|-----------|-----------|-----------|------------------------|-----------|-----------|-----------|-----------|------------------------|--------------------------|-----------|--------------------------|
| GC Method | kz3                      | kz3                      | KZ3       | KZ3       | KZ3                    | KZ3                      | KZ3       | KZ3       | kz3       | KZ3       | kz3       | KZ3       | KZ3                    | KZ3       | KZ3       | KZ3                    | kz3       | kz3       | KZ3       | kz3                    | KZ3       | KZ3       | KZ3       | kz3       | KZ3                    | KZ3                      | KZ3       | kZ3                      |
| MS Method | MEA 4                    | MEA 4                    | MEA 4     | MEA 4     | MEA 4                  | MEA 4                    | MEA 4     | MEA 4     | MEA 4     | MEA 4     | MEA 4     | MEA 4     | MEA 4                  | MEA 4     | MEA 4     | MEA 4                  | MEA 4     | MEA 4     | MEA 4     | MEA 4                  | MEA 4     | MEA 4     | MEA 4     | MEA 4     | MEA 4                  | MEA 4                    | MEA 4     | MEA 4                    |
| File Name | <b>821</b> Rtx-Amine 628 | <b>822</b> Rtx-Amine 629 | Rtx-Amine | Rtx-Amine | Rtx-Amine              | <b>826</b> Rtx-Amine 633 | Rtx-Amine              | Rtx-Amine | Rtx-Amine | Rtx-Amine              | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine              | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine | Rtx-Amine              | <b>846</b> Rtx-Amine 653 | Rtx-Amine | <b>848</b> Rtx-Amine 655 |

# Appendix 1.6: GC Conditions – Final Set Up

# GC conditions for the new system set up

# Method: Kali

Instrument Conditions

Instrument Control Method Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

## **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 38.57 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### **Autosampler Method**

 Syringe Capacity
 : 5.0 µL

 Injection Speed
 : Normal

 Viscosity Delay
 : 0

 Pre-injection Solvent Washes
 : 2

 Post-injection Solvent Washes (A)
 : 4

## **Carriers Parameters**

26/07/2011 16:18:00 Method: C:\TurboMass\Kali.PRO\ACQUDB\Kali.mth

 Carrier A control
 : PFlow - He

 Column A length
 : 30.00 m

 Vacuum Compensation
 : ON

 Split Flow
 : 200.0 mL/min

 Initial Setpoint
 : 1.00 ML/MIN

Diameter : 250 µm

Initial Hold : 999.00 min

### **Auxiliary Pneumatics**

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

# Valve configuration and settings

Valve 1 : SPLIT On
Valve 3 : VALVE Off
Valve 5 : NONE

Valve 2 : NONE
Valve 4 : NONE
Valve 6 : NONE

#### **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            |            |

#### Heated Zones Injector A: PSSI

Initial Setpoint : 250°C

Injector B: NONE Setpoint : OFF Initial Hold : 999.00 min

# 26/07/2011 16:18:00 Method: C:\TurboMass\Kali.PRO\ACQUDB\Kali.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 5.00 min Total Run Time : 38.57 min Maximum Temp : 350°C Equilibration Time : 0.5 min

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

## Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 50 at 1.00 min

# Method: Kali1

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kali1.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:21:10

 Created by
 : Mathew
 on: 07/10/2008
 16:25:10

 Edited by
 : Mathew
 on: 07/10/2008
 16:26:50

Number of Times Edited : 1
Number of Times Calibrated : 0

Description: kali1

#### Instrument Conditions

## Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 38.57 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### Autosampler Method

 Syringe Capacity
 : 5.0 μL

 Injection Speed
 : Normal

 Viscosity Delay
 : 0

 Pre-injection Solvent Washes
 : 2

 Post-injection Solvent Washes (A)
 : 4

#### **Carriers Parameters**

# 26/07/2011 16:21:10 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali1.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Vacuum Compensation : ON Split Flow : 20.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

Injection Volume

Sample Pumps

Diameter

Wash/Waste Vial Set

Pre-injection Sample Washes

: 250 um

: 1.0 µL

: 6

: 1

: 4

## Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

# Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

#### **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            |            |

## **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

Injector B: NONE Setpoint : OFF

# 26/07/2011 16:21:10 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali1.mth

Total Run Time

Maximum Temp

Equilibration Time

: 38.57 min

: 350°C

: 0.5 min

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 5.00 min

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

## Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 20 at 1.00 min

# Method: Kali2

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kali2.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:20:37

 Created by
 : Mathew
 on: 08/10/2008
 14:11:07

 Edited by
 : Mathew
 on: 08/10/2008
 15:48:11

 Number of Times Edited
 : 1

Number of Times Edited : 1
Number of Times Calibrated : 0

Description: kali2

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 20.00 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

## Autosampler Method

Syringe Capacity : 5.0 µL Injection Volume
Injection Speed : Normal Sample Pumps
Viscosity Delay : 0 Wash/Waste Vial Set
Pre-injection Solvent Washes : 2 Pre-injection Solvent Washes (A) : 4

: 1.0 µL

: 6

: 1

: 250 µm

Diameter

## **Carriers Parameters**

26/07/2011 16:20:37 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali2.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Column A length : 30.00 m

Vacuum Compensation : ON

Split Flow : 73.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

## Auxiliary Pneumatics

| Number | Type         | Setpoint |  |
|--------|--------------|----------|--|
| 1      | Press - PSIG | 0.0 PSIG |  |

# Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

### Detector Parameters

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            |            |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

Injector B: NONE Setpoint : OFF

## 26/07/2011 16:20:37 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali2.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program

Cryogenics : Off
Initial Temp : 100°C
Initial Hold : 1.00 min Total Run Time : 20.00 min Maximum Temp : 350°C Equilibration Time : 0.5 min

Ramp 1 : 10.0 0/min to 240°, hold for 5.00 min

## Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 73 at 1.00 min

# Method: Kali3

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kali3.mth

 Printed by
 : Mathew
 on: 26/07/2011 16:20:10

 Created by
 : Mathew
 on: 08/10/2008 16:29:27

 Edited by
 : Mathew
 on: 08/10/2008 16:29:27

Number of Times Edited : 0
Number of Times Calibrated : 0

Description: kali3

#### Instrument Conditions

## Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### Channel Parameters

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 34.00 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### **Autosampler Method**

 Syringe Capacity
 : 5.0 μL

 Injection Speed
 : Normal

 Viscosity Delay
 : 0

 Pre-injection Solvent Washes
 : 2

 Post-injection Solvent Washes (A)
 : 4

 Injection Volume
 : 1.0 µL

 Sample Pumps
 : 6

 Wash/Waste Vial Set
 : 1

 Pre-injection Sample Washes
 : 4

: 250 um

Diameter

## **Carriers Parameters**

### 26/07/2011 16:20:10 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali3.mth

Carrier A control : PFlow - He

Column A length : 30.00 m
Vacuum Compensation : ON
Split Flow : 10.3 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

## Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

# Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

#### **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            |            |

## Heated Zones

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

Injector B: NONE Setpoint : OFF

# 26/07/2011 16:20:10 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali3.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 100°C
Initial Hold : 10.00 min : 34.00 min : 350°C Total Run Time Maximum Temp Equilibration Time : 0.5 min

Ramp 1 : 10.0 0/min to 240°, hold for 10.00 min

# Timed Events

SPL1 set to 20 at 1.00 min

# Method: Kali4

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kali4.mth

 Printed by
 : Mathew
 on: 26/07/2011 16:19:33

 Created by
 : Mathew
 on: 08/10/2008 16:42:19

 Edited by
 : Mathew
 on: 08/10/2008 16:42:19

 Number of Times Edited
 : 0

Number of Times Edited : 0
Number of Times Calibrated : 0

Description: kali4

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 75.00 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

# Autosampler Method

 Syringe Capacity
 : 5.0 μL

 Injection Speed
 : Normal

 Viscosity Delay
 : 0

 Pre-injection Solvent Washes
 : 2

 Post-injection Solvent Washes (A)
 : 4

**Carriers Parameters** 

26/07/2011 16:19:33 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali4.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Vacuum Compensation : ON Split Flow : 30.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

Injection Volume

Sample Pumps

Diameter

Valve 2 : NONE

Valve 4

Valve 6

: NONE

: NONE

Wash/Waste Vial Set

Pre-injection Sample Washes

: 250 µm

: 1.0 µL

: 6

: 1

Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

## Valve configuration and settings

Valve 1 : SPLIT On Valve 3 : VALVE Off Valve 5 : NONE

**Detector Parameters** 

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            | _          |

**Heated Zones** 

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:19:33 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali4.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 100°C
Initial Hold : 10.00 min : 75.00 min Total Run Time Maximum Temp Equilibration Time : 350°C : 0.5 min

Ramp 1 : 7.0 0/min to 240°, hold for 45.00 min

# Timed Events

SPL1 set to 20 at 1.00 min

# Method: Kali5

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kali5.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:18:58

 Created by
 : Mathew
 on: 10/10/2008
 14:32:17

 Edited by
 : Mathew
 on: 10/10/2008
 14:32:17

 Number of Times Edited
 : 0
 10/10/2008
 14:32:17

Number of Times Edited : 0
Number of Times Calibrated : 0

Description: kali5

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 17.00 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

# Autosampler Method

Syringe Capacity : 5.0 µL Injection Volume
Injection Speed : Normal Sample Pumps
Viscosity Delay : 0 Wash/Waste Vial Set
Pre-injection Solvent Washes : 0 Pre-injection Sample Washes
Post-injection Solvent Washes (A) : 2

: 1.0 µL

: 6

: 1

: 250 µm

Diameter

# **Carriers Parameters**

26/07/2011 16:18:58 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali5.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Vacuum Compensation : ON

Split Flow : 58.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

# Auxiliary Pneumatics

| Number | Type         | Setpoint |
|--------|--------------|----------|
| 1      | Press - PSIG | 0.0 PSIG |

#### Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      | -          | -          |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:18:58 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali5.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 50°C
Initial Hold : 2.00 min : 17.00 min Total Run Time Maximum Temp Equilibration Time : 350°C : 2.0 min

Ramp 1 : 10.0 0/min to 180°, hold for 2.00 min

# Timed Events

There are no timed events in the method

# Method: Kali6

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kali6.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:18:32

 Created by
 : Mathew
 on: 10/10/2008
 14:58:58

 Edited by
 : Mathew
 on: 10/10/2008
 14:58:58

Number of Times Edited : 0
Number of Times Calibrated : 0

Description: kali6

#### Instrument Conditions

# Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 17.83 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### **Autosampler Method**

 Syringe Capacity
 : 5.0 µL
 Injection Volume

 Injection Speed
 : Normal
 Sample Pumps

 Viscosity Delay
 : 0
 Wash/Waste Vial Set

 Pre-injection Solvent Washes
 : 0
 Pre-injection Sample Washes

 Post-injection Solvent Washes (A)
 : 2
 Pre-injection Solvent Washes

: 1.0 µL

: 6

: 1

: 2

#### **Carriers Parameters**

26/07/2011 16:18:32 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali6.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Vacuum Compensation : ON

Split Flow : 10.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

Diameter

: 250 µm

# Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

## Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

#### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:18:32 Method: C:\TurboMass\Kali.PRO\ACQUDB\kali6.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 50°C
Initial Hold : 0.50 min : 17.83 min Total Run Time Maximum Temp Equilibration Time : 350°C : 2.0 min

Ramp 1 : 15.0 0/min to 280°, hold for 2.00 min

# Timed Events

There are no timed events in the method

# Method: KZ1

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kz1.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:17:24

 Created by
 : Mathew
 on: 15/04/2010
 10:40:18

 Edited by
 : Mathew
 on: 11/05/2010
 16:43:06

 Number of Times Edited
 : 6

Number of Times Edited : 6 Number of Times Calibrated : 0

Description: kz2

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 14.50 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

# Autosampler Method

Syringe Capacity : 5.0 µL
Injection Speed : Normal
Viscosity Delay : 0
Pre-injection Solvent Washes : 2
Post-injection Solvent Washes (A) : 4

# **Carriers Parameters**

26/07/2011 16:17:24 Method: C:\TurboMass\Kali.PRO\ACQUDB\kz1.mth

 Carrier A control
 : PFlow - He

 Column A length
 : 30.00 m

 Vacuum Compensation
 : ON

Split Flow : 100.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

Injection Volume

Sample Pumps

Diameter

Valve 2

Valve 4

Valve 6

: NONE

: NONE

: NONE

Wash/Waste Vial Set

Pre-injection Sample Washes

: 250 µm

: 1.0 µL

: 6

: 1

# Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

# Valve configuration and settings

 Valve 1
 : SPLIT On

 Valve 3
 : VALVE Off

 Valve 5
 : NONE

### **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            | _          |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:17:24 Method: C:\TurboMass\Kali.PRO\ACQUDB\kz1.mth

Total Run Time

Maximum Temp

Equilibration Time

: 14.50 min

: 350°C

: 0.5 min

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program

Cryogenics : Off
Initial Temp : 50°C
Initial Hold : 0.50 min

Ramp 1 : 20.0 0/min to 320°, hold for 0.50 min

# Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 20 at 1.00 min

# Method: KZ2

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kz2.mth

: Mathew on: 26/07/2011 16:16:52 Printed by Created by : Mathew on: 14/05/2010 12:13:16 Edited by : Mathew on: 14/05/2010 12:13:16

Number of Times Edited : 0 Number of Times Calibrated : 0

Description: kz2

#### Instrument Conditions

# Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### Channel Parameters

Data will be collected from channel B **Delay Time** : 0.00 min Run Time : 16.33 min Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### Autosampler Method

Syringe Capacity : 5.0 µL Injection Volume Injection Speed : Normal Sample Pumps Viscosity Delay : 0 Wash/Waste Vial Set Pre-injection Solvent Washes : 2 Pre-injection Sample Washes Post-injection Solvent Washes (A)

: 1.0 µL

: 6

: 1

: 4

#### **Carriers Parameters**

26/07/2011 16:16:52 Method: C:\TurboMass\Kali.PRO\ACQUDB\kz2.mth

Carrier A control : PFlow - He Column A length : 30.00 m

Diameter : 250 µm : ON

Vacuum Compensation : 50.0 mL/min Split Flow

: 1.00 ML/MIN Initial Hold : 999.00 min Initial Setpoint

# Auxiliary Pneumatics

Number Type Setpoint Press - PSIG 0.0 PSIG

## Valve configuration and settings

Valve 1 : SPLIT On Valve 2 : NONE : VALVE Off Valve 4 : NONE Valve 5 : NONE Valve 6

# **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            |            |

#### **Heated Zones**

Injector A: PSSI

: 300°C Initial Hold : 999.00 min Initial Setpoint

# 26/07/2011 16:16:52 Method: C:\TurboMass\Kali.PRO\ACQUDB\kz2.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program

Cryogenics : Off
Initial Temp : 50°C
Initial Hold : 0.50 min Total Run Time : 16.33 min Maximum Temp : 350°C Equilibration Time : 2.0 min

Ramp 1 : 15.0 0/min to 280°, hold for 0.50 min

# Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 20 at 1.00 min

# Method: KZ3

Turbochrom Method File C:\TURBOMASS\KALI.PRO\ACQUDB\kz3.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:12:18

 Created by
 : Mathew
 on: 14/05/2010
 14:47:57

 Edited by
 : Mathew
 on: 22/02/2011
 15:14:59

 Number of Times Edited
 : 6

Number of Times Edited : 6
Number of Times Calibrated : 0

Description: kz3\_2

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 14.50 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

# Autosampler Method

Syringe Capacity : 5.0 µL Injection Volume
Injection Speed : Normal Sample Pumps
Viscosity Delay : 0 Wash/Waste Vial Set
Pre-injection Solvent Washes : 2 Pre-injection Sample Washes
Post-injection Solvent Washes (A) : 4

: 1.0 µL

: 6

: 1

# **Carriers Parameters**

26/07/2011 16:12:18 Method: C:\TURBOMASS\KALI.PRO\ACQUDB\kz3.mth

Carrier A control : PFlow - He

Column A length : 30.00 m Diameter : 250  $\mu m$ 

Vacuum Compensation : ON Split Flow : 100.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

## Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            | _          |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:12:18 Method: C:\TURBOMASS\KALI.PRO\ACQUDB\kz3.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

# Oven Program

 Cryogenics
 : Off
 Total Run Time
 : 14.50 min

 Initial Temp
 : 50°C
 Maximum Temp
 : 350°C

 Initial Hold
 : 0.50 min
 Equilibration Time
 : 2.0 min

Ramp 1 : 20.0 0/min to 320°, hold for 0.50 min

# Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 20 at 1.00 min

# Method: KZ4

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\kz4.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:16:12

 Created by
 : Mathew
 on: 20/05/2010
 13:47:02

 Edited by
 : Mathew
 on: 20/05/2010
 13:47:02

Number of Times Edited : 0
Number of Times Calibrated : 0

Description: kz4

#### Instrument Conditions

# Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### Channel Parameters

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 16.33 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### Autosampler Method

 Syringe Capacity
 : 5.0 µL
 Injection Volume

 Injection Speed
 : Normal
 Sample Pumps

 Viscosity Delay
 : 0
 Wash/Waste Vial Set

 Pre-injection Solvent Washes
 : 2
 Pre-injection Sample Washes

 Post-injection Solvent Washes (A)
 : 4
 Pre-injection Solvent Washes

: 1.0 µL

: 6

: 1

: 4

#### **Carriers Parameters**

26/07/2011 16:16:12 Method: C:\TurboMass\Kali.PRO\ACQUDB\kz4.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Vacuum Compensation : ON

Split Flow : 10.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

Diameter

: 250 µm

# Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

## Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      |            |            |

#### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 300°C Initial Hold : 999.00 min

# 26/07/2011 16:16:12 Method: C:\TurboMass\Kali.PRO\ACQUDB\kz4.mth

Total Run Time

Maximum Temp

Equilibration Time

: 16.33 min

: 350°C

: 2.0 min

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program

Cryogenics : Off
Initial Temp : 50°C
Initial Hold : 0.50 min

Ramp 1 : 15.0 0/min to 280°, hold for 0.50 min

# Timed Events

SPL1 set to 0 at -1.00 min SPL1 set to 20 at 1.00 min

# Method: MEA1.100

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\MEA 1.100.mth

 Printed by
 : Mathew
 on: 26/07/2011 16:15:34

 Created by
 : Mathew
 on: 26/02/2009 15:21:41

 Edited by
 : Mathew
 on: 26/02/2009 15:21:41

 Number of Times Edited
 : 0

Number of Times Edited : 0
Number of Times Calibrated : 0

Description: MEA 1.100

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 38.57 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 m\/   | 5.0 m\/   |

# Autosampler Method

Syringe Capacity : 5.0 uL Injection Volume : 1.0 µL Injection Speed : Normal Sample Pumps : 6 : 0 Wash/Waste Vial Set : 1 Viscosity Delay Pre-injection Solvent Washes : 0 Pre-injection Sample Washes Post-injection Solvent Washes (A)

: 250 µm

# **Carriers Parameters**

26/07/2011 16:15:34 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 1.100.mth

 Carrier A control
 : PFlow - He

 Column A length
 : 30.00 m
 Diameter

Vacuum Compensation : ON
Split Flow : 100.0 mL/min
Initial Setpoint : 1.00 ML/MIN

tial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

# Auxiliary Pneumatics

 Number
 Type
 Setpoint

 1
 Press - PSIG
 0.0 PSIG

## Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

| Detector A | Detector B       |
|------------|------------------|
| NONE       | NONE             |
| 1          | 1                |
| 200        | 200              |
| ON         | ON               |
| -          |                  |
|            | NONE<br>1<br>200 |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:15:34 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 1.100.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 5.00 min : 38.57 min : 350°C : 2.0 min Total Run Time Maximum Temp Equilibration Time

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

# Timed Events

There are no timed events in the method

# Method: MEA1

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\MEA 1.mth

 Printed by
 : Mathew
 on: 26/07/2011 16:14:59

 Created by
 : Mathew
 on: 07/10/2008 09:40:55

 Edited by
 : Mathew
 on: 07/10/2008 09:56:47

 Number of Times Edited
 : 2

Number of Times Edited : 2 Number of Times Calibrated : 0

Description:

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 38.57 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 m\/   | 5.0 mV    |

# Autosampler Method

 Syringe Capacity
 : 5.0 µL
 Injection Volume

 Injection Speed
 : Normal
 Sample Pumps

 Viscosity Delay
 : 0
 Wash/Waste Vial Set

 Pre-injection Solvent Washes
 : 0
 Pre-injection Sample Washes

 Post-injection Solvent Washes (A)
 : 2

# **Carriers Parameters**

26/07/2011 16:14:59 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 1.mth

Carrier A control : PFlow - He
Column A length : 30.00 m
Vacuum Compensation : ON

Vacuum Compensation : ON Split Flow : 20.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

: 1.0 µL

: 6

: 1

: 250 µm

Diameter

# Auxiliary Pneumatics

| Number | Type         | Setpoint |
|--------|--------------|----------|
| 1      | Press - PSIG | 0.0 PSIG |

#### Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

| Detector A | Detector B |
|------------|------------|
| NONE       | NONE       |
| 1          | 1          |
| 200        | 200        |
| ON         | ON         |
| _          | _          |
|            | 1 200      |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:14:59 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 1.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 5.00 min : 38.57 min : 350°C Total Run Time Maximum Temp Equilibration Time : 2.0 min

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

# Timed Events

There are no timed events in the method

# Method: MEA2

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\MEA 2.mth

: Mathew on: 26/07/2011 16:14:17 Printed by Created by : Mathew on: 10/10/2008 09:18:52 Edited by : Mathew on: 10/10/2008 09:18:52

Number of Times Edited : 0 Number of Times Calibrated : 0

Description: MEA 2

#### Instrument Conditions

# Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B **Delay Time** : 0.00 min Run Time : 38.57 min : 1.5625 pts/s Sampling Rate

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### **Autosampler Method**

Syringe Capacity : 5.0 µL Injection Volume Injection Speed : Normal Sample Pumps Viscosity Delay : 0 Wash/Waste Vial Set Pre-injection Solvent Washes : 0 Pre-injection Sample Washes Post-injection Solvent Washes (A) : 2

#### **Carriers Parameters**

26/07/2011 16:14:17 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 2.mth

Carrier A control : PFlow - He

Column A length : 30.00 m

Vacuum Compensation : ON

: 60.0 mL/min Split Flow : 1.00 ML/MIN

Initial Hold : 999.00 min Initial Setpoint

Diameter

Valve 2 : NONE

: NONE

Valve 4

Valve 6

: 250 µm

: 1.0 µL

: 6

: 1

: 2

# Auxiliary Pneumatics

Number Type Setpoint Press - PSIG 0.0 PSIG

# Valve configuration and settings

Valve 1 : SPLIT On : VALVE Off Valve 5 : NONE

# **Detector Parameters**

Detector A Detector B Detector NONE NONE Range 200 Time Constant 200 Autozero ON ON Polarity

#### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:14:17 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 2.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 5.00 min : 38.57 min : 350°C Total Run Time Maximum Temp Equilibration Time : 2.0 min

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

# Timed Events

There are no timed events in the method

# Method: MEA3

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\MEA 3.mth

: Mathew on: 26/07/2011 16:13:44 Printed by Created by : Mathew on: 10/10/2008 09:43:02 Edited by : Mathew on: 10/10/2008 09:43:02

Number of Times Edited : 0 Number of Times Calibrated : 0

Description: MEA 3

#### Instrument Conditions

# Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### Channel Parameters

Data will be collected from channel B **Delay Time** : 0.00 min Run Time : 38.57 min : 1.5625 pts/s Sampling Rate

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

#### Autosampler Method

Syringe Capacity : 5.0 µL Injection Volume Injection Speed : Normal Sample Pumps Viscosity Delay : 0 Wash/Waste Vial Set Pre-injection Solvent Washes : 0 Pre-injection Sample Washes Post-injection Solvent Washes (A) : 2

: 1.0 µL

: 6

: 1

: 2

Diameter

Initial Hold

: 250 µm

: 999.00 min

: NONE

#### **Carriers Parameters**

26/07/2011 16:13:44 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 3.mth

Carrier A control : PFlow - He Column A length : 30.00 m

Vacuum Compensation : ON

: 30.0 mL/min Split Flow : 1.00 ML/MIN Initial Setpoint

# Auxiliary Pneumatics

Number Type Setpoint Press - PSIG 0.0 PSIG

## Valve configuration and settings

Valve 1 : SPLIT On Valve 2 : NONE : VALVE Off Valve 4 Valve 5 : NONE Valve 6

# **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      | -          |            |

#### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:13:44 Method: C:\TurboMass\Kali.PRO\ACQUDB\MEA 3.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program
Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 5.00 min : 38.57 min : 350°C Total Run Time Maximum Temp Equilibration Time : 2.0 min

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

# Timed Events

There are no timed events in the method

# Method: VOCs

Turbochrom Method File C:\TurboMass\Kali.PRO\ACQUDB\VOCs.mth

 Printed by
 : Mathew
 on: 26/07/2011
 16:13:14

 Created by
 : Mathew
 on: 07/09/2007
 09:04:03

 Edited by
 : Mathew
 on: 17/11/2009
 14:24:19

 Number of Times Edited
 : 9

Number of Times Edited : 9
Number of Times Calibrated : 0

Description: VOCs

#### Instrument Conditions

#### Instrument Control Method

Instrument Name : inst1

Instrument Type : PE AutoSystem GC with built-in Autosampler

#### **Channel Parameters**

Data will be collected from channel B
Delay Time : 0.00 min
Run Time : 35.57 min
Sampling Rate : 1.5625 pts/s

|               | Channel A | Channel B |
|---------------|-----------|-----------|
| Signal Source | DetA      | DetB      |
| Analog Output | INT       | INT       |
| Attenuation   | 0         | 0         |
| Offset        | 5.0 mV    | 5.0 mV    |

# Autosampler Method

Syringe Capacity : 5.0 µL Injection Volume
Injection Speed : Normal Sample Pumps
Viscosity Delay : 0 Wash/Waste Vial Set
Pre-injection Solvent Washes : 2 Pre-injection Sample Washes
Post-injection Solvent Washes (A) : 3

: 1.0 µL

: 6

: 1

: 250 µm

Diameter

# **Carriers Parameters**

26/07/2011 16:13:14 Method: C:\TurboMass\Kali.PRO\ACQUDB\VOCs.mth

Carrier A control : PFlow - He
Column A length : 30.00 m

Vacuum Compensation : ON Split Flow : 30.0 mL/min

Initial Setpoint : 1.00 ML/MIN Initial Hold : 999.00 min

# Auxiliary Pneumatics

| Number | Type         | Setpoint |
|--------|--------------|----------|
| 1      | Press - PSIG | 0.0 PSIG |

#### Valve configuration and settings

 Valve 1
 : SPLIT On
 Valve 2
 : NONE

 Valve 3
 : VALVE Off
 Valve 4
 : NONE

 Valve 5
 : NONE
 Valve 6
 : NONE

# **Detector Parameters**

|               | Detector A | Detector B |
|---------------|------------|------------|
| Detector      | NONE       | NONE       |
| Range         | 1          | 1          |
| Time Constant | 200        | 200        |
| Autozero      | ON         | ON         |
| Polarity      | -          | -          |

### **Heated Zones**

Injector A: PSSI

Initial Setpoint : 250°C Initial Hold : 999.00 min

# 26/07/2011 16:13:14 Method: C:\TurboMass\Kali.PRO\ACQUDB\VOCs.mth

 Detector A
 : 0°C

 Detector B
 : 0°C

 Auxiliary (NONE)
 : 0°C

Oven Program

Cryogenics : Off
Initial Temp : 40°C
Initial Hold : 2.00 min : 35.57 min : 350°C Total Run Time Maximum Temp Equilibration Time : 0.5 min

Ramp 1 : 7.0 0/min to 240°, hold for 5.00 min

# Timed Events

SPL1 set to 20 at 1.00 min

# Appendix 1.7: MS Conditions – Final Set Up

# MS conditions new set up

# Method: Kali

#### **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\kali.mth.exp

Printed: Tue Jul 26 16:11:29 2011

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Wed 14 Apr 2010 15:35:09 |
| Instrument Identifier | -                        |
| Version Number        | 1.0                      |
| Duration (min)        | 49.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 2.0                      |
| Number Of Functions   | 1                        |

#### Function 1: MS Scan, Time 2.00 to 48.57, Mass 10.00 to 300.00 EI+

| MS Scan  |
|----------|
| EI+      |
| Centroid |
| 10.00    |
| 300.00   |
| 0.20     |
| 0.05     |
| 2.00     |
| 48.57    |
|          |

# Method: Kali3

## **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\kali3.exp

Printed: Tue Jul 26 16:10:19 2011

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Mon 16 Nov 2009 14:13:04 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 34.0                     |
| No Solvent Delays     |                          |
| Number Of Functions   | 1                        |

### Function 1: MS Scan, Time 0.00 to 34.00, Mass 30.00 to 300.00 EI+

| Type                 | MS Scar  |
|----------------------|----------|
| Ion Mode             | EI+      |
| Data Format          | Centroid |
| Start Mass           | 30.00    |
| End Mass             | 300.00   |
| Scan Time (sec)      | 0.20     |
| InterScan Time (sec) | 0.05     |
| Start Time (min)     | 0.00     |
| End Time (min)       | 34.00    |

# Method: Kali2

#### **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\kali2.exp

Printed: Tue Jul 26 16:10:56 2011

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Mon 16 Nov 2009 06:42:03 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 21.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 2.0                      |
| Number Of Functions   | 1                        |

#### Function 1: MS Scan, Time 0.00 to 21.00, Mass 30.00 to 300.00 EI+

| Туре                 | MS Scan  |
|----------------------|----------|
| Ion Mode             | EI+      |
| Data Format          | Centroid |
| Start Mass           | 30.00    |
| End Mass             | 300.00   |
| Scan Time (sec)      | 0.20     |
| InterScan Time (sec) | 0.05     |
| Start Time (min)     | 0.00     |
| End Time (min)       | 21.00    |

# Method: Kali4

# **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\kali4.exp

Printed: Tue Jul 26 16:09:36 2011

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Tue 17 Nov 2009 01:35:27 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 75.0                     |
| No Solvent Delays     |                          |
| Number Of Functions   | 1                        |

# Function 1: MS Scan, Time 0.00 to 75.00, Mass 10.00 to 300.00 El+

| Type                 | MS Scar  |
|----------------------|----------|
| Ion Mode             | EI+      |
| Data Format          | Centroid |
| Start Mass           | 10.00    |
| End Mass             | 300.00   |
| Scan Time (sec)      | 0.20     |
| InterScan Time (sec) | 0.05     |
| Start Time (min)     | 0.00     |
| End Time (min)       | 75.00    |

# Method: Kali5

#### **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\kali5.exp

Printed: Tue Jul 26 16:08:55 2011

 Name
 Default Experiment

 Creation Time
 Sun 15 Nov 2009 05:20:30

 Instrument Identifier
 1.0

 Version Number
 1.7.0

 Solvent Delay Start 1
 0.0

 Solvent Delay End 1
 2.0

 Number Of Functions
 1

#### Function 1: MS Scan, Time 0.87 to 17.00, Mass 10.00 to 300.00 EI+

 Type
 MS Scan

 Ion Mode
 EI+

 Data Format
 Centroid

 Start Mass
 10.00

 End Mass
 300.00

 Scan Time (sec)
 0.20

 InterScan Time (sec)
 0.05

 Start Time (min)
 0.87

 End Time (min)
 17.00

# Method: MEA1

### **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\mea 1.exp

Printed: Tue Jul 26 16:07:31 2011

 Name
 Default Experiment

 Creation Time
 Thu 20 May 2010 14:44:13

 Instrument Identifier
 Instrument Identifier

 Version Number
 1.0

 Duration (min)
 39.0

 Solvent Delay Start 1
 0.0

 Solvent Delay End 1
 2.0

 Number Of Functions
 1

# Function 1: MS Scan, Time 2.00 to 39.00, Mass 10.00 to 300.00 EI+

 Type
 MS Scan

 Ion Mode
 EI+

 Data Format
 Centroid

 Start Mass
 10.00

 End Mass
 300.00

 Scan Time (sec)
 0.20

 InterScan Time (sec)
 0.05

 Start Time (min)
 2.00

 End Time (min)
 39.00

# Method: Kali6

## **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\kali6.exp

Printed: Tue Jul 26 16:08:16 2011

 Name
 Default Experiment

 Creation Time
 Sun 15 Nov 2009 10:38:36

 Instrument Identifier
 In 0

 Version Number
 1.0

 Duration (min)
 18.0

 Solvent Delay Start 1
 0.0

 Solvent Delay End 1
 1.0

 Number Of Functions
 1

#### Function 1: MS Scan, Time 0.92 to 18.00, Mass 10.00 to 300.00 EI+

Type Ion Mode MS Scan EI+ Data Format Centroid Start Mass 10.00 End Mass 300.00 Scan Time (sec) InterScan Time (sec) 0.20 0.05 Start Time (min) 0.92 18.00 End Time (min)

# Method: MEA2

### Experiment Report

Experiment File: c:\turbomass\kali.pro\acqudb\mea 2.exp

Printed : Tue Jul 26 16:06:42 2011

 Name
 Default Experiment

 Creation Time
 Tue 11 May 2010 10:54:04

 Instrument Identifier
 Version Number

 Version Number
 1.0

 Duration (min)
 17.0

 Solvent Delay Start 1
 0.0

 Solvent Delay End 1
 2.0

 Number Of Functions
 1

# Function 1: MS Scan, Time 0.87 to 17.00, Mass 10.00 to 300.00 EI+

 Type
 MS Scan

 Ion Mode
 EI+

 Data Format
 Centroid

 Start Mass
 10.00

 End Mass
 300.00

 Scan Time (sec)
 0.20

 InterScan Time (sec)
 0.05

 Start Time (min)
 0.87

 End Time (min)
 17.00

# Method: MEA3

# Method: MS VOCs

# **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\mea 3.exp

Printed: Tue Jul 26 16:06:05 2011

# **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\ms\_vocs.exp

Printed: Tue Jul 26 16:05:29 2011

| Name                  | Default Experiment       |
|-----------------------|--------------------------|
| Creation Time         | Tue 11 May 2010 13:00:57 |
| Instrument Identifier |                          |
| Version Number        | 1.0                      |
| Duration (min)        | 17.0                     |
| Solvent Delay Start 1 | 0.0                      |
| Solvent Delay End 1   | 1.0                      |
| Number Of Functions   | 1                        |
|                       |                          |

Default Experiment Wed 18 Nov 2009 18:23:43 Name Creation Time Instrument Identifier

1.0 36.0 Version Number Duration (min) No Solvent Delays 1 Number Of Functions

# Function 1: MS Scan, Time 0.00 to 17.00, Mass 10.00 to 200.00 EI+

Type Ion Mode Data Format MS Scan EI+ Centroid 10.00 200.00 Start Mass End Mass Scan Time (sec) InterScan Time (sec) 0.20 0.05 Start Time (min) 0.00 End Time (min) 17.00

# Function 1: MS Scan, Time 0.00 to 35.57, Mass 40.00 to 300.00 EI+

Type Ion Mode MS Scan EI+ Centroid 40.00 Data Format Start Mass 300.00 0.20 End Mass Scan Time (sec) InterScan Time (sec) Start Time (min) 0.05 0.00 End Time (min) 35.57

# Method: MEA4

### **Experiment Report**

Experiment File: c:\turbomass\kali.pro\acqudb\mea 4.exp

Printed: Tue Jul 26 16:02:25 2011

Name Creation Time Default Experiment Thu 28 Apr 2011 20:57:30 Instrument Identifier

Version Number Duration (min)

CATurboMass\Arrash Shirani.PRO\ACQUDB\031110.cal 0.0 3.0

Calibration Filename Solvent Delay Start 1 Solvent Delay End 1 Number Of Functions

## Function 1: MS Scan, Time 0.00 to 17.00, Mass 10.00 to 200.00 EI+

Type Ion Mode Data Format Start Mass MS Scan El+ Centroid 10.00 Start Mass
End Mass
Scan Time (sec)
InterScan Time (sec)
Start Time (min)
End Time (min) 200.00 0.20 0.05 0.00 17.00

Appendix 1.8: GC-MS Calibration Curves - Pure Analyte in Diethyl Ether

Raw data - Calibration Curves GC-MS for HEEDA, 2-Oxazolidone, MEA and HEIA produced by adding pure chemicals into diethyl ether

| 2-Oxazolidone | GC-MS response      | 216254992  | 97231120    | 50049128    | 12910669    | 4722824   | 1603088    | 494287      |
|---------------|---------------------|------------|-------------|-------------|-------------|-----------|------------|-------------|
| 2-Oxa         | Concentration w/v % | 2.857      | 1.4285      | 0.71425     | 0.357125    | 0.1785625 | 0.08928125 | 0.044640625 |
| HEIA          | GC-MS response      | 6727352832 | 12259343360 | 17425025024 | 23485288448 |           |            |             |
| H             | Concentration % v/v | 1.25       | 2.5         | 5           | 10          |           |            |             |
| HEEDA         | GC-MS response      | 6201298432 | 3155166464  | 1402861952  | 657810944   | 205217984 |            |             |
| H             | Concentration % v/v | 1.19       | 9.0         | 0.3         | 0.15        | 0.074     |            |             |
| MEA           | GC-MS response      | 989277376  | 1353606144  | 1861499008  | 3399958272  |           |            |             |
| ~             | Concentration % v/v | 0.625      | 1.25        | 2.5         | 5           |           |            |             |

One extraction using diethyl ether was performed for 2-Oxazolidone and HEEDA and the measured GC-MS response was used to calculate the partition coefficient by dividing the measured value with the value calculated from the calibration curve.

|               | Coefficient (%) | 101.5019126 |       | Coefficient (%) | 19.700336  |
|---------------|-----------------|-------------|-------|-----------------|------------|
| ā             | Measured        | 174829072   |       | Measured        | 867376128  |
| 2-Oxazolidone | Calibration     | 152000000   | HEEDA | Calibration     | 4800000000 |
|               | Concentration   | 2%  w/v     |       | Concentration   | 1 % v/v    |

# Appendix 1.9: GC-MS Calibration Curves – MEA and HEIA

Raw data calibration curves for MEA and HEIA performed after extracting the organics from all samples using diethyl ether.

| MEA                    |                | HEIA                  |                |  |  |  |  |  |  |
|------------------------|----------------|-----------------------|----------------|--|--|--|--|--|--|
| concentrations (% v/v) | GC-MS response | Concentration (% v/v) | GC-MS response |  |  |  |  |  |  |
| 4.76                   | 1296848000     | 0.625                 | 3056281321     |  |  |  |  |  |  |
| 2.38                   | 534595360      | 1.25                  | 7284248064     |  |  |  |  |  |  |
| 1.19                   | 268528640      | 2.5                   | 12379062272    |  |  |  |  |  |  |
| 0.6                    | 135665680      | 5                     | 21206726656    |  |  |  |  |  |  |
| 0.03                   | 63556244       | 10                    | 27449561088    |  |  |  |  |  |  |
| 0.15                   | 26870438       |                       |                |  |  |  |  |  |  |
| 0.074                  | 10658771       |                       |                |  |  |  |  |  |  |

# **APPENDIX 2: RESULTS-DISCUSSION**

# **Appendix 2.1: MicroGC Data – Full Loading Experiment**

Raw data for the full loading experiment

| CO2          |           | Calibr Gas 15%        |                   |
|--------------|-----------|-----------------------|-------------------|
| Time minutes | Area (GC) | Area Calibration (GC) | CO2 at outlet w/v |
|              | ` ,       | Day 1                 |                   |
| 15           | 24.1      | 2134.3                | 0.169376376       |
| 30           | 18.3      | 2134.3                | 0.128613597       |
| 45           | 77.1      | 2134.3                | 0.541863843       |
| 60           | 16.4      | 2134.3                | 0.115260273       |
| 75           | 14.3      | 2134.3                | 0.100501335       |
| 90           | 15.6      | 2134.3                | 0.10963782        |
| 105          | 15.5      | 2134.3                | 0.108935014       |
| 120          | 15.4      | 2134.3                | 0.108232207       |
| 135          | 13.4      | 2134.3                | 0.094176076       |
| 150          | 14.6      | 2134.3                | 0.102609755       |
| 165          | 15.9      | 2134.3                | 0.11174624        |
| 180          | 16.7      | 2134.3                | 0.117368692       |
| 195          | 17.8      | 2134.3                | 0.125099564       |
| 210          | 16.3      | 2134.3                | 0.114557466       |
| 225          | 12        | 2134.3                | 0.084336785       |
| 240          | 11.2      | 2134.3                | 0.078714333       |
| 255          | 11.6      | 2134.3                | 0.081525559       |
| 270          | 11.3      | 2134.3                | 0.079417139       |
| 285          | 11.9      | 2134.3                | 0.083633978       |
| 300          | 11        | 2134.3                | 0.077308719       |
|              |           | Day 2                 |                   |
| 315          | 35.8      | 2107.6                | 0.254792181       |
| 330          | 33.9      | 2107.6                | 0.241269691       |
| 345          | 27.8      | 2107.6                | 0.197855381       |
| 360          | 25.8      | 2107.6                | 0.18362118        |
| 375          | 26.6      | 2107.6                | 0.189314861       |
| 390          | 27.4      | 2107.6                | 0.195008541       |
| 405          | 37.5      | 2107.6                | 0.266891251       |
| 420          | 39.6      | 2107.6                | 0.281837161       |
| 435          | 42.8      | 2107.6                | 0.304611881       |
| 450          | 43.3      | 2107.6                | 0.308170431       |
| 465          | 38.7      | 2107.6                | 0.275431771       |
| 480          | 36.7      | 2107.6                | 0.261197571       |
| 495          | 63.2      | 2107.6                | 0.449800721       |
| 510          | 70        | 2107.6                | 0.498197001       |
| 525          | 57.3      | 2107.6                | 0.407809831       |
| 540          | 79.8      | 2107.6                | 0.567944582       |
| 555          | 89.2      | 2107.6                | 0.634845322       |
| 570          | 93        | 2107.6                | 0.661890302       |
|              |           | Day 3                 |                   |
| 585          | 136       | 2054                  | 0.993184031       |
| 600          | 148.9     | 2054                  | 1.087390458       |
| 615          | 162.6     | 2054                  | 1.187439143       |
| 630          | 259.7     | 2054                  | 1.89654333        |
| 645          | 388.4     | 2054                  | 2.836416748       |
|              |           |                       |                   |

| 660  | 490.3  | 2054   | 3.580574489 |
|------|--------|--------|-------------|
| 675  | 526.9  | 2054   | 3.847857838 |
| 690  | 593.05 | 2054   | 4.33093963  |
| 705  | 548.8  | 2054   | 4.007789679 |
| 720  | 584.5  | 2054   | 4.268500487 |
| 735  | 850.6  | 2054   | 6.211781889 |
| 750  | 683.3  | 2054   | 4.990019474 |
| 765  | 589.5  | 2054   | 4.305014606 |
| 780  | 658.5  | 2054   | 4.808909445 |
| 795  | 782.9  | 2054   | 5.717380721 |
| 810  | 1028   | 2054   | 7.507302824 |
| 825  | 1159.9 | 2054   | 8.470545278 |
| 840  | 1172.5 | 2054   | 8.562560857 |
| 855  | 1202.1 | 2054   | 8.77872444  |
|      |        | Day 4  |             |
| 870  | 700.5  | 2335.1 | 4.499807289 |
| 885  | 747.2  | 2335.1 | 4.799794441 |
| 900  | 1349   | 2335.1 | 8.665581774 |
| 915  | 976.1  | 2335.1 | 6.270181149 |
| 930  | 1486.5 | 2335.1 | 9.548841591 |
| 945  | 1583.7 | 2335.1 | 10.17322599 |
| 960  | 1376.6 | 2335.1 | 8.842876108 |
| 975  | 1285.2 | 2335.1 | 8.255749218 |
| 990  | 1315.4 | 2335.1 | 8.449745193 |
| 1005 | 1048   | 2335.1 | 6.732045737 |
| 1020 | 1087.3 | 2335.1 | 6.984497452 |
| 1035 | 1153   | 2335.1 | 7.406535052 |
| 1050 | 1403.2 | 2335.1 | 9.013746735 |
| 1065 | 1216.9 | 2335.1 | 7.817009978 |
| 1080 | 1097.1 | 2335.1 | 7.047449788 |
| 1095 | 997.7  | 2335.1 | 6.408933236 |
| 1110 | 1209.4 | 2335.1 | 7.76883217  |
| 1125 | 1035.2 | 2335.1 | 6.649822277 |
| 1140 | 1427.6 | 2335.1 | 9.170485204 |
| 1155 | 1427.7 | 2335.1 | 9.171127575 |
| 1170 | 1370.7 | 2335.1 | 8.804976232 |
| 1185 | 1517.3 | 2335.1 | 9.746691791 |
| 1200 | 1567.7 | 2335.1 | 10.07044666 |
| 1215 | 1445.1 | 2335.1 | 9.28290009  |
| 1230 | 1306.7 | 2335.1 | 8.393858935 |
| 1245 | 1126.8 | 2335.1 | 7.238233909 |
|      |        | Day 5  |             |
| 1260 | 871.1  | 2055   | 6.358394161 |
| 1275 | 1244.7 | 2055   | 9.08540146  |
| 1290 | 1108.2 | 2055   | 8.089051095 |
| 1305 | 1627.1 | 2055   | 11.87664234 |
| 1320 | 1588.1 | 2055   | 11.5919708  |
| 1335 | 1479.1 | 2055   | 10.79635036 |
| 1350 | 1504.1 | 2055   | 10.97883212 |
| 1365 | 1405.9 | 2055   | 10.2620438  |
| 1380 | 1833.4 | 2055   | 13.38248175 |
| 1395 | 1569.4 | 2055   | 11.45547445 |
| 1410 | 1310.8 | 2055   | 9.567883212 |
| 1425 | 1186.3 | 2055   | 8.659124088 |
|      |        |        |             |

| 1440 | 1718.1 | 2055                | 12.54087591 |
|------|--------|---------------------|-------------|
| 1455 | 1372.4 | 2055                | 10.01751825 |
|      |        |                     |             |
| 1470 | 1544.9 | 2055                | 11.27664234 |
| 1485 | 1322.7 | 2055                | 9.654744526 |
| 1500 | 1647.7 | 2055                | 12.0270073  |
| 1515 | 1644.2 | 2055                | 12.00145985 |
| 1530 | 1607.9 | 2055                | 11.73649635 |
| 1545 | 1488   | 2055                | 10.86131387 |
|      |        |                     |             |
| 1560 | 1414.3 | 2055                | 10.32335766 |
| 1575 | 1357.9 | 2055                | 9.911678832 |
| 1590 | 1232.4 | 2055                | 8.995620438 |
| 1605 | 1139.4 | 2055                | 8.316788321 |
| 1620 | 1100.5 | 2055                | 8.032846715 |
| 1635 | 1057.4 | 2055                | 7.718248175 |
| 1650 | 982.3  | 2055                | 7.170072993 |
| 1000 | 902.3  |                     | 7.170072993 |
|      |        | Day 6               |             |
| 1665 | 1064.8 | 2040.4              | 7.827876887 |
| 1680 | 1730.7 | 2040.4              | 12.72324054 |
| 1695 | 1421.7 | 2040.4              | 10.45162713 |
| 1710 | 1461.9 | 2040.4              | 10.74715742 |
| 1725 | 1293.7 | 2040.4              | 9.51063517  |
|      |        |                     |             |
| 1740 | 1271.4 | 2040.4              | 9.346696726 |
| 1755 | 1256.2 | 2040.4              | 9.234953931 |
| 1770 | 1686.9 | 2040.4              | 12.40124485 |
| 1785 | 1517.1 | 2040.4              | 11.1529602  |
| 1800 | 1161   | 2040.4              | 8.535091159 |
| 1815 | 1012   | 2040.4              | 7.439717702 |
|      |        |                     |             |
| 1830 | 1196.4 | 2040.4              | 8.795334248 |
| 1845 | 1157.7 | 2040.4              | 8.51083121  |
| 1860 | 1175.9 | 2040.4              | 8.644628504 |
| 1875 | 1480.8 | 2040.4              | 10.88610076 |
| 1890 | 1390.2 | 2040.4              | 10.22005489 |
|      |        | Day 7               |             |
| 1905 | 973.8  | 2049.5              | 7.127104172 |
|      |        |                     |             |
| 1920 | 1297.9 | 2049.5              | 9.499146133 |
| 1935 | 1499   | 2049.5              | 10.97096853 |
| 1950 | 1710.2 | 2049.5              | 12.51671139 |
| 1965 | 1435.7 | 2049.5              | 10.5076848  |
| 1980 | 1375.6 | 2049.5              | 10.06782142 |
| 1995 | 1230.4 | 2049.5              | 9.005123201 |
| 2010 | 1296.9 | 2049.5              | 9.491827275 |
|      |        |                     |             |
| 2025 | 1370.4 | 2049.5              | 10.02976336 |
| 2040 | 1273.8 | 2049.5              | 9.322761649 |
| 2055 | 1107.4 | 2049.5              | 8.104903635 |
| 2070 | 998.6  | 2049.5              | 7.308611857 |
| 2085 | 801.26 | 2049.5              | 5.864308368 |
| 2100 | 633.1  | 2049.5              | 4.633569163 |
| 2100 | 000.1  | ۵۰ <del>۱</del> ۵.۵ | 4.033308103 |

Appendix 2.2: MicroGC Data - 14 Full Cycles Experiment - Absorption

Raw microGC data from the 14 full cycles experiment, absorption

|            | Day 3 Day 4 Day 5 Day 6 | ption                     | 10.629 12.34 7.92 10.32 | 8.4035 10.28 5.8 8.35 | 6.6975 8.35 4.3 6.24 | 2.574 3 1.88 2.4 | .316666667 1.86 1.82 | 0.18 0.22 0.92 0.86 | 0.16 0.27 0.38 0.2 | 0.13 0.1 0.15 0.11 | 0.11 0.09 0.12 0.09 | 0.1 0.06 0.08 0.03 | 0.09 0.12 0.04 0 | 0.04 0.02 0.14 | nd absorption 2nd absorption 2nd absorption | 4.8 0.24 0.86 1.4 | 4 0.19 0.54 0.13 | 1.6 0.16 0.32 0.12 | 0.93 0.13 0.2 0.1 | 0.67 0.11 0.16 0.11 | 0.54 0.1 0.13 0.11 | 0.13 0.09 0.11 0.1 | 0.27 0.08 0.08 0.11 | 0.33 0.07 0.06 0.12 | 0.27 0.07 0.07 0.12 | 0.08 0.14 0.09 0.09 |      |
|------------|-------------------------|---------------------------|-------------------------|-----------------------|----------------------|------------------|----------------------|---------------------|--------------------|--------------------|---------------------|--------------------|------------------|----------------|---------------------------------------------|-------------------|------------------|--------------------|-------------------|---------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|------|
|            | Pay 3                   | ption 1rst absorption 1rs | 10.629                  | 8.4035                | 6.6975               | 2.574            | .316666667           | 0.18                | 0.16               | 0.13               | 0.11                | 0.1                | 0.00             | 0.12           | nd absorption 2nd                           | 4.8               | 4                | 1.6                | 0.93              | 0.67                | 0.54               | 0.13               | 0.27                | 0.33                | 0.27                | 0.08                | 200  |
|            | Day 1 Day               | rst absorption 1rs        | œ                       | 68.9                  | 3.56                 | <b>.</b><br>8.   | 0.8                  | 0.12                | 0.18               | 0.2                | 0.1                 | 0.08               | 0.04             | 0.01           | ind absorpt                                 | 99.0              | 0.27             | 0.17               | 0.13              | 0.09                | 0.08               | 0.0                | 90.0                | 90.0                | 90.0                | 0.02                | c    |
| Absorption | -                       | Time Time (min)           | 10                      | 09:20:00 20           | 30:00:00             | 09:40:00 40      | 00 20                | 10:00:00 60         | 00 70              | 10:20:00 80        | 10:30:00            | 00 100             | 00 110           | 00 120         | Time (min)                                  | 00 10             | 00 20            | 13:40:00 30        | 00 40             | 00 20               | 14:10:00 60        | 00 20              | 14:30:00 80         | 14:40:00 90         | 14:50:00 100        | 5:00:00 110         | 00.0 |

Appendix 2.3: MicroGC Data - 14 Full Cycles Experiment - Stripping

Raw microGC data from the 14 full cycles experiment, stripping

|             | Day 7 | 1rst stripping | 90.0     | 0.3      | 3.28     | 7.21     | 7.93     | 9.27     |             | 2nd stripping | 0.12     | 1.12     | 3.01     | 7.06     | 7.95     | 8.24     |
|-------------|-------|----------------|----------|----------|----------|----------|----------|----------|-------------|---------------|----------|----------|----------|----------|----------|----------|
|             | Day 6 | 1rst stripping | 0.12     | 0.89     | 2.46     | 6.87     | 7.56     | 7.92     |             | 2nd stripping | 0.25     | 0.32     | 6.87     | 7.32     | 8.26     | 9.37     |
|             | Day 5 | 1rst stripping | 0.8      | 2.62     | 3.87     | 7.93     | 8.31     | 8.39     |             | 2nd stripping | 0.61     | 2.37     | 4.01     | 7.62     | 8.15     | 9.05     |
|             |       |                |          | 0.12     |          |          |          |          |             | 2nd           |          |          |          |          | 7.96     |          |
| Stripping 1 | Day 3 | 1rst stripping | 0.09     | 90.0     | 2.62     | 6.22     | 7.62     | 7.9      | Stripping 2 | 2nd stripping | 0.54     | 0.92     | 3.26     | 7.9      | 8.01     | 8.86     |
|             | Day 2 | 1rst stripping | 0.07     | 0.14     | 2.02     | 6.64     | 10.32    | 12.34    |             | 2nd stripping | 0.21     | 1.24     | 3.52     | 7.89     | 96.6     | 8.12     |
|             | Day 1 | 1rst stripping | 0.54     | 1.06     | 4.76     | 7.86     | 7.88     | 7.92     |             | 2nd stripping | 0.12     | 0.14     | 2.25     | 7.01     | 8.05     | 9.01     |
|             |       | Time (min)     | 10       | 20       | 30       | 40       | 20       | 09       |             | Time (min)    | 10       | 20       | 30       | 40       | 20       | 09       |
|             |       | Time           | 11:20:00 | 11:30:00 | 11:40:00 | 11:50:00 | 12:00:00 | 12:10:00 |             | Time          | 15:30:00 | 15:40:00 | 15:50:00 | 16:00:00 | 16:10:00 | 16:20:00 |

Appendix 2.4: Raw Data  ${\rm CO_2}$  Solubility Experiment Raw data and calculations  ${\rm CO_2}$  solubility

|                      |             |             |             |             |             |             |                                           |                                      |              |             |             |             |             |             | $Pco_2$                                               | kPa                     | 60.06422961 | 96.27357618 | 441.9015428 | 685.1190352 |
|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------------------------------------|--------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------------------------------------------------|-------------------------|-------------|-------------|-------------|-------------|
|                      |             |             |             |             |             |             |                                           | $X_{water}$                          | 0.88441806   | 0.866368267 | 0.848825429 | 0.845890131 | 0.854499141 | 0.860943793 |                                                       | Raoult's law            | 0.000891    | 0.000873    | 0.000855    | 0.000852    |
| re kPa               | 7.0         | 80:         | .93         | .85         | .54         | .16         | Raoults law                               | $X_{ m mea}$                         | 0.1111197253 | 0.108927866 | 0.106722217 | 0.106353164 | 0.107435569 | 0.108245851 | Partial Pressure MEA 104.44 °C                        | tables kPa              | 0.00801     | 0.00801     | 0.00801     | 0.00801     |
| librium pressure kPa | 240.7       | 275.08      | 618.93      | 861.85      | 584.54      | 550.16      |                                           | total number of<br>moles in solution | 17.66803119  | 18.03612444 | 18.40888048 | 18.47276058 | 18.28664901 | 18.14976308 | Partial Pressure                                      | table                   | 0.0         | 0.0         | 0.00        | 0.0         |
| time to equilibrium  | 3           | 5           | ~           | 10          | 7           | 9           |                                           | moles of CO2                         | 0.075        | 0.446       | 0.818       | 0.882       | 969.0       | 0.559       |                                                       |                         |             |             |             |             |
| Loading              | 0.039162245 | 0.225241837 | 0.413678571 | 0.445971429 | 0.351887755 | 0.282688776 |                                           | moles of water                       | 15.63        | 15.63       | 15.63       | 15.63       | 15.63       | 15.63       |                                                       | Raoult's law            | 89.63577039 | 87.80642382 | 86.02845722 | 85.73096479 |
| FOC response         | 23.26       | 133.78      | 245.7       | 264.88      | 209         | 167.9       | 400 ml<br>30% w/v MEA                     | moles of MEA                         | 1.965        | 1.965       | 1.965       | 1.965       | 1.965       | 1.965       |                                                       |                         |             |             |             |             |
| TOC                  |             | 02/03/2010  |             | 04/03/2010  | 05/03/2010  | 09/03/2010  |                                           | mole $CO_2$<br>/mole MEA             | 0.0392       | 0.225       | 0.414       | 0.446       | 0.352       | 0.283       | bles 100 °C                                           | Ра                      |             |             |             |             |
|                      | 25/0        | 07/0        | 0/80        | 04/0        | 0/20        | 0/60        | 1.965                                     | mole CO <sub>2</sub>                 | 0.0775       | 0.446       | 0.818       | 0.882       | 969.0       | 0.559       | $H_2O$ steam ta                                       | steam tables 100 °C kPa | 101.35      | 101.35      | 101.35      | 101.35      |
|                      |             |             |             |             |             |             | 100 °C<br>mole MEA in<br>400ml 30%<br>w/v | Loading                              | 25/02/2010   | 02/03/2010  | 03/03/2010  | 04/03/2010  | 05/03/2010  | 09/03/2010  | Partial Pressure H <sub>2</sub> O steam tables 100 °C | steam t                 |             |             |             |             |

| 406.936512  | 371.9033466 |
|-------------|-------------|
| 0.000861    | 0.000867    |
| 0.00801     | 0.00801     |
| 86.60348795 | 87.25665344 |
| 101.35      | 101.35      |

**Appendix 2.5: Pressure Changes During Thermal Degradation – Lean Samples** 

Pressure changes during thermal degradation experiment – Lean initial molar loading

| Time (hours) | Total Pressure (psi) | Total Pressure (kPa) |
|--------------|----------------------|----------------------|
| 0<br>8       | 0<br>400             | 0<br>2757,902917     |
| 24           | 440                  | 3033,693209          |
| 32           | 400                  | 2757,902917          |
| 48           | 360                  | 2482,112626          |
| 56           | 340                  | 2344,21748           |
| 72           | 320                  | 2206,322334          |
| 80           | 300                  | 2068,427188          |
| 96           | 290                  | 1999,479615          |
| 104          | 285                  | 1965,005829          |
| 120          | 280                  | 1930,532042          |
| 128          | 250                  | 1723,689323          |
| 144          | 270                  | 1861,584469          |
| 152          | 260                  | 1792,636896          |
| 168          | 250                  | 1723,689323          |
| 176          | 240                  | 1654,74175           |
| 192          | 230                  | 1585,794177          |
| 200          | 230                  | 1585,794177          |
| 216          | 220                  | 1516,846604          |
| 224          | 210                  | 1447,899032          |
| 240          | 210                  | 1447,899032          |
| 248          | 200                  | 1378,951459          |
| 264          | 195                  | 1344,477672          |
| 272          | 190                  | 1310,003886          |
| 288          | 180                  | 1241,056313          |
| 296          | 180                  | 1241,056313          |
| 312          | 180                  | 1241,056313          |
| 320          | 180                  | 1241,056313          |
| 336          | 180                  | 1241,056313          |
| 344          | 180                  | 1241,056313          |
| 360          | 180                  | 1241,056313          |
| 368          | 180                  | 1241,056313          |
| 384          | 180                  | 1241,056313          |
| 392          | 170                  | 1172,10874           |
| 408          | 170                  | 1172,10874           |
| 416          | 170                  | 1172,10874           |
| 432          | 170                  | 1172,10874           |
| 440          | 150                  | 1034,213594          |
| 456          | 160                  | 1103,161167          |
| 464          | 150                  | 1034,213594          |
| 480          | 140                  | 965,266021           |
| 488          | 140                  | 965,266021           |
| 504          | 140                  | 965,266021           |
| 512          | 140                  | 965,266021           |
| 528          | 140                  | 965,266021           |
| 536          | 140                  | 965,266021           |
| 552          | 140                  | 965,266021           |
| 560          | 140                  | 965,266021           |
| 576          | 140                  | 965,266021           |
| 584          | 140                  | 965,266021           |

| 600                    | 140                  | 965,266021           |
|------------------------|----------------------|----------------------|
| Time (hours)           | Total Pressure (psi) | Total Pressure (kPa) |
| 608                    | 140                  | 965,266021           |
| 624                    | 140                  | 965,266021           |
| 632                    | 140                  | 965,266021           |
| 648                    | 140                  | 965,266021           |
| 656                    | 140                  | 965,266021           |
| 672                    | 140                  | 965,266021           |
| 680                    | 140                  | 965,266021           |
| 696                    | 140                  | 965,266021           |
| 704                    | 140                  | 965,266021           |
| 70 <del>4</del><br>720 | 140                  |                      |
| 728                    | 140                  | 965,266021           |
|                        |                      | 965,266021           |
| 744                    | 140                  | 965,266021           |
| 752                    | 140                  | 965,266021           |
| 768                    | 140                  | 965,266021           |
| 776                    | 140                  | 965,266021           |
| 792                    | 140                  | 965,266021           |
| 800                    | 140                  | 965,266021           |
| 816                    | 140                  | 965,266021           |
| 824                    | 140                  | 965,266021           |
| 840                    | 140                  | 965,266021           |
| 848                    | 140                  | 965,266021           |
| 864                    | 140                  | 965,266021           |
| 872                    | 140                  | 965,266021           |
| 888                    | 140                  | 965,266021           |
| 896                    | 140                  | 965,266021           |
| 912                    | 140                  | 965,266021           |
| 920                    | 140                  | 965,266021           |
| 936                    | 140                  | 965,266021           |
| 944                    | 140                  | 965,266021           |
| 960                    | 140                  | 965,266021           |
| 968                    | 140                  | 965,266021           |
| 984                    | 140                  | 965,266021           |
| 992                    | 140                  | 965,266021           |
| 1008                   | 140                  | 965,266021           |
| 1016                   | 140                  | 965,266021           |
| 1032                   | 140                  |                      |
| 1040                   | 140                  | 965,266021           |
|                        |                      | 965,266021           |
| 1056                   | 140                  | 965,266021           |
| 1064                   | 140                  | 965,266021           |
| 1080                   | 140                  | 965,266021           |
| 1088                   | 140                  | 965,266021           |
| 1104                   | 140                  | 965,266021           |
| 1112                   | 140                  | 965,266021           |
| 1128                   | 140                  | 965,266021           |
| 1136                   | 140                  | 965,266021           |
| 1152                   | 140                  | 965,266021           |
| 1160                   | 140                  | 965,266021           |
| 1176                   | 140                  | 965,266021           |
| 1184                   | 140                  | 965,266021           |
| 1200                   | 140                  | 965,266021           |
| 1208                   | 140                  | 965,266021           |
|                        |                      | •                    |

Appendix 2.6: MicroGC Raw Data – 1st Stripping Lean Samples

1st Stripping raw data and calculations – Lean initial molar loading

| Š |
|---|
| ē |
| ø |
| ≥ |
| 2 |

| Cumulative ${\sf CO}_2$ volume (ml)                   | 36,9547214  | 1617,556501 | 2336,365044 | 2596,320584 | 2699,357723 | 2795,130866 | 2872,818573 | 2943,015359 | 3000,187562 | 3054,977384 | 3109,767206 | 3164,557027 | 3219,346849 | 3274,136671 | 3316,418845 | 3352,374653 | 3386,031811 | 3416,732409 | 3443,014005 |
|-------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $CO_2$ Volume = $Corrected flow*Concentration*20 min$ | 36,9547214  | 1580,601779 | 718,8085437 | 259,9555395 | 103,0371388 | 95,77314306 | 77,68770789 | 70,1967852  | 57,17220344 | 54,78982173 | 54,78982173 | 54,78982173 | 54,78982173 | 54,78982173 | 42,28217434 | 35,95580819 | 33,65715762 | 30,70059855 | 26,28159539 |
| Flow Corrected                                        | 391,3814055 | 271,8538858 | 283,6730439 | 290,1833165 | 194,4667463 | 194,5715858 | 194,8328558 | 194,9411762 | 195,1296588 | 195,1641547 | 195,1641547 | 195,1641547 | 195,1641547 | 195,1641547 | 195,345361  | 195,4370794 | 195,4704154 | 195,5133011 | 195,5774176 |
| Flow                                                  | 400         | 300         | 300         | 300         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         |
| CO <sub>2</sub> Concentration % v/v 9.75              | 0,472106248 | 29,07079614 | 12,66966599 | 4,479160668 | 2,649222574 | 2,461128707 | 1,993701411 | 1,800460697 | 1,464979845 | 1,403685574 | 1,403685574 | 1,403685574 | 1,403685574 | 1,403685574 | 1,082241578 | 0,919881946 | 0,860927152 | 0,785128131 | 0,671897495 |
| microGC<br>Area<br>2083.8                             | 100,9       | 6213,1      | 2707,8      | 957,3       | 566,2       | 526         | 426,1       | 384,8       | 313,1       | 300         | 300         | 300         | 300         | 300         | 231,3       | 196,6       | 184         | 167,8       | 143,6       |
| Run number                                            | က           | 4           | 2           | 9           | 7           | 8           | 0           | 10          | 1           | 12          | ı           | ı           | ı           | ı           | 13          | 4           | 15          | 16          | 17          |
| Time                                                  | 09:20       | 09:40       | 10:00       | 10:20       | 10:40       | 11:00       | 11:20       | 11:40       | 12:00       | 12:20       | 12:40       | 13:00       | 13:20       | 13:40       | 14:00       | 14:20       | 14:40       | 15:00       | 15:20       |
| Date 19/7/2010                                        | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   | 19/7/2010   |

| Cumulative<br>CO <sub>2</sub> volume | (ml)                                |           | 10,96657221 | 1332,093325 | 1688,647226 | 1892,866398 | 2028,993224 | 2132,215158 | 2207,698539 | 2274,601917 |
|--------------------------------------|-------------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume =             | Corrected flow*Concentration*20 min |           | 10,96657221 | 1321,126753 | 356,5539014 | 204,2191721 | 136,1268253 | 103,2219347 | 75,48338068 | 66,90337805 |
| Flow<br>Corrected                    | (ml/min)                            |           | 391,7589373 | 275,3565868 | 190,8434515 | 241,9976245 | 242,9776868 | 243,4527253 | 243,8539047 | 243,9781308 |
| Flow                                 | (ml/min)                            |           | 400         | 300         | 200         | 250         | 250         | 250         | 250         | 250         |
| CO <sub>2</sub>                      | Concentration<br>% v/v              | 9,75      | 0,13996582  | 23,98937988 | 9,34152832  | 4,219445801 | 2,801220703 | 2,119958496 | 1,547717285 | 1,37109375  |
| microGC                              | Area                                | 2048      | 29,4        | 5039        | 1962,2      | 886,3       | 588,4       | 445,3       | 325,1       | 288         |
| Run<br>number                        |                                     | 7         | က           | 4           | 2           | 9           | 7           | œ           | 6           | 10          |
| Time                                 |                                     |           | 10:00       | 10:20       | 10:40       | 11:00       | 11:20       | 11:40       | 12:00       | 12:20       |
| Date                                 |                                     | 12/7/2010 | 12/7/2010   | 12/7/2010   | 12/7/2010   | 12/7/2010   | 12/7/2010   | 12/7/2010   | 12/7/2010   | 12/7/2010   |

| Cumulative<br>CO <sub>2</sub> volume | (m)                                 |          | 59,9841575  | 95,49254111 | 170,8435702 | 266,7441471 | 333,766156  | 401,3598106 | 481,3209362 | 545,5184455 | 591,3708141 | 647,2184429 | 699,6804502 | 739,4758765 | 768,0499747 | 784,3920375 | 806,3425953 | 826,59203   | 839,6295911 | 854,6834674 | 867,8552057 | 880,0229222 |
|--------------------------------------|-------------------------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume =             | Corrected flow*Concentration*20 min |          | 59,9841575  | 35,50838362 | 75,35102907 | 95,90057692 | 67,02200887 | 67,59365467 | 79,96112557 | 64,19750924 | 45,85236866 | 55,84762877 | 52,46200732 | 39,7954263  | 28,57409816 | 16,34206287 | 21,9505578  | 20,24943464 | 13,03756108 | 15,05387634 | 13,17173831 | 12,16771648 |
| Flow<br>Corrected                    | (ml/min)                            |          | 146,0998028 | 195,4435677 | 145,8778642 | 194,569746  | 145,9981153 | 145,9898589 | 194,7999936 | 195,0279708 | 146,3042033 | 195,1488373 | 195,1978665 | 195,3814082 | 146,5545044 | 146,7319631 | 195,6402782 | 195,6649738 | 146,7799407 | 195,7404183 | 195,7677559 | 195,7823407 |
| Flow                                 | (ml/min)                            |          | 150         | 200         | 150         | 200         | 150         | 150         | 200         | 200         | 150         | 200         | 200         | 200         | 150         | 150         | 200         | 200         | 150         | 200         | 200         | 200         |
| $CO_2$                               | Concentration % v/v                 | 9,75     | 2,052848681 | 0,90840502  | 2,582675222 | 2,464426738 | 2,295303906 | 2,315011987 | 2,052390354 | 1,645853899 | 1,567021577 | 1,430898322 | 1,343816105 | 1,01840361  | 0,974862502 | 0,556867861 | 0,560992808 | 0,517451699 | 0,444119306 | 0,384536737 | 0,336412354 | 0,310746016 |
| microGC                              | Area                                | 2127,3   | 447,9       | 198,2       | 563,5       | 537,7       | 500,8       | 505,1       | 447,8       | 359,1       | 341,9       | 312,2       | 293,2       | 222,2       | 212,7       | 121,5       | 122,4       | 112,9       | 6'96        | 83,9        | 73,4        | 8,79        |
| Run<br>number                        |                                     | 2        | ဇ           | 4           | 2           | 9           | 7           | ∞           | 0           | 10          | 1           | 12          | 13          | 41          | 15          | 16          | 17          | 18          | 19          | 20          | 21          | 22          |
| Time                                 |                                     |          | 08:30       | 09:20       | 10:10       | 10:30       | 10:50       | 11:10       | 11:30       | 11:50       | 12:10       | 12:30       | 12:50       | 13:10       | 13:30       | 13:50       | 14:10       | 14:30       | 14:50       | 15:10       | 15:30       | 15:50       |
| Date                                 |                                     | 5/7/2010 | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    | 5/7/2010    |

Appendix 2.7: MicroGC Raw Data - Absorption Lean Samples

Absorption raw data and calculations – Lean initial molar loading Pure MEA

| Cumulative CO <sub>2</sub>       | Volume<br>Absorbed (L) |           | 2           | 4         | 9           | ∞         | 10        | 12        | 4         | 16        | 18        | 20        | 22        | 24          | 26          | 27,98608178 | 29,97632321 | 31,94510402 | 33,8606086  | 35,79028518 | 37,73454418 | 39,68720769 | 41,66863193 | 43,59632682 | 45,58227785 |
|----------------------------------|------------------------|-----------|-------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> at inlet         | Ē                      |           | 2000        | 2000      | 2000        | 2000      | 2000      | 2000      | 2000      | 2000      | 2000      | 2000      | 2000      | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        |
| CO <sub>2</sub> Volume at outlet | Cor. flow*concent*time |           | 0           | 0         | 0           | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0           | 13,91822074 | 9,758565924 | 31,21918964 | 84,49542478 | 70,32341687 | 55,74100124 | 47,3364908  | 18,57576257 | 72,3051044  | 14,04897642 |
| Corrected flow                   | (ml/min)               |           | 0           | 0         | 0           | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 12,83549765 | 12,83549765 | 12,61217366 | 12,67850288 | 12,34008173 | 24,33963769 | 24,55786245 | 24,78454051 | 24,91616944 | 25,37206117 | 24,52722497 | 25,44458482 |
| Flow                             | (ml/min)               |           | 0           | 0         | 0           | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 10          | 10          | 10          | 10          | 10          | 20          | 20          | 20          | 20          | 20          | 20          | 20          |
| CO <sub>2</sub>                  | Concentration (% v/v)  | 9,75      | 0,034474737 | 0         | 0,025856053 | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0           | 5,517772402 | 3,84846934  | 12,64950684 | 17,35757653 | 14,31790267 | 11,24511492 | 9,499150926 | 3,660672746 | 14,73976459 | 2,760700661 |
| $CO_2$                           | Area                   | 2149,4    | 2,6         | 0         | 2,5         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0           | 1216,4      | 848,4       | 2788,6      | 3826,5      | 3156,4      | 2479        | 2094,1      | 807         | 3249,4      | 9'809       |
| Run<br>number                    |                        | 7         | က           | 4         | 2           | 9         | 7         | œ         | 6         | 10        | 7         | 12        | 13        | 14          | 15          | 16          | 17          | 48          | 19          | 20          | 21          | 22          | 23          | 24          | 25          |
| Time                             |                        |           | 10:20       | 10:40     | 11:00       | 11:20     | 11:40     | 12:00     | 12:20     | 12:40     | 13:00     | 13:20     | 13:40     | 14:00       | 14:20       | 14:40       | 15:00       | 15:20       | 15:40       | 16:00       | 16:20       | 16:40       | 17:00       | 17:20       | 17:40       |
| Date                             |                        | 20/6/2010 | 20/6/2010   | 20/6/2010 | 20/6/2010   | 20/6/2010 | 20/6/2010 | 20/6/2010 | 20/6/2010 | 20/6/2010 | 20/6/2010 | 20/6/2010 | 20/6/2010 | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   | 20/6/2010   |

| 47,55626346<br>49,53799397<br>51,51824607 |         | Cumulative CO <sub>2</sub>       | Volume<br>Absorbed (L) |           | 5         | 3,999958777 | 5,999958777 | 7,999958777 | 9,999958777 | 11,99995878 | 13,99991448 | 15,99956712 | 17,99839898 | 19,99714704 | 21,99589511 | 23,99339125 | 25,99088739 | 27,98784336 | 29,98479933 | 31,97562926 | 33,96547067 | 35,93877236 | 37,88100306 | 39,77361392 | 41,38042751 |
|-------------------------------------------|---------|----------------------------------|------------------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 2000<br>2000<br>2000                      |         | CO <sub>2</sub> at inlet         | E                      |           | 2000      | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        |
| 26,014384<br>18,2694938<br>19,74789688    |         | CO <sub>2</sub> Volume at outlet | Cor. flow*concent*time |           | 0         | 0,041222918 | 0           | 0           | 0           | 0           | 0,044298911 | 0,347357779 | 1,1681441   | 1,251931878 | 1,251931878 | 2,503863755 | 2,503863755 | 3,044027396 | 3,044027396 | 9,170072649 | 10,15859121 | 26,69830422 | 57,76929845 | 107,3891392 | 393,1864144 |
| 50,92260971<br>38,21189117<br>38,18815075 |         | Corrected flow                   | (ml/min)               |           | 0         | 6,417081565 | 0           | 0           | 6,417748826 | 6,417748826 | 6,417031778 | 6,412128436 | 6,398867351 | 6,397515176 | 6,397515176 | 12,79503035 | 12,79503035 | 12,78631704 | 12,78631704 | 12,68791542 | 12,67210879 | 12,41059265 | 11,93437726 | 11,21431762 | 32,66425174 |
| 40<br>30<br>30<br>80                      |         | Flow                             | (ml/min)               |           | 0         | 2           | 0           | 0           | 2           | 2           | 2           | 2           | 2           | 2           | 2           | 10          | 10          | 10          | 10          | 10          | 10          | 10          | 10          | 10          | 30          |
| 2,554305853<br>2,390550851<br>2,585605285 |         | $CO_2$                           | Concentration % v/v    | 9,75      | 0         | 0,032119677 | 0           | 0           | 0           | 0           | 0,034516668 | 0,270859967 | 0,912774117 | 0,978451667 | 0,978451667 | 0,978451667 | 0,978451667 | 1,190345658 | 1,190345658 | 3,613703412 | 4,008248107 | 10,75625676 | 24,20289606 | 47,88037172 | 60,18604337 |
| 563,1<br>527<br>570                       |         | $\frac{1}{2}$                    | Area                   | 2033,8    | 0         | 6,7         | 0           | 0           | 0           | 0           | 6,3         | 7,2         | 56,5        | 190,4       | 204,1       | 204,1       | 204,1       | 204,1       | 248,3       | 753,8       | 836,1       | 2243,7      | 5048,6      | 9,7866      | 12554,5     |
| 26<br>27<br>28                            |         | Run                              |                        | 7         | က         | 4           | 2           | 9           | 7           | ∞           | တ           | 10          | 7           | 12          | 13          |             | •           |             | 4           | 15          | 16          | 17          | 18          | 19          | 20          |
| 18:00<br>18:20<br>18:40                   |         | Time                             |                        |           | 09:10     | 06:30       | 09:60       | 10:10       | 10:30       | 10:50       | 11:10       | 11:30       | 11:50       | 12:10       | 12:30       | 12:50       | 13:10       | 13:30       | 13:50       | 14:10       | 14:30       | 14:50       | 15:10       | 15:30       | 15:50       |
| 20/6/2010<br>20/6/2010<br>20/6/2010       | 2 Weeks | Date                             |                        | 20/7/2010 | 20/7/2010 | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   | 20/7/2010   |

| 43,1121603<br>44,83997122<br>46,55289331<br>48,25117301  |         | Cumulative CO <sub>2</sub>       | Volume<br>Absorbed (L) |           | 1,999944161 | 3,999944161 | 5,999944161 | 7,999944161 | 9,999944161 | 11,99994416 | 13,99994416 | 15,99994416 | 17,99994416 | 19,99994416 | 21,99994416 | 23,99992231 | 25,9998956  | 27,99987375 | 29,99985189 | 31,99980819 | 33,9996006  | 35,99925099 | 37,99925099 | 39,93892643 |
|----------------------------------------------------------|---------|----------------------------------|------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 2000<br>2000<br>2000<br>2000                             |         | CO <sub>2</sub> at inlet         | Ē                      |           | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        |
| 268,2672106<br>272,1890776<br>287,0779163<br>301,7202953 |         | CO <sub>2</sub> Volume at outlet | Cor. flow*concent*time |           | 0,055839251 | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0,021852617 | 0,026708591 | 0,021852617 | 0,021852617 | 0,043705234 | 0,207587466 | 0,349612968 | 0           | 60,32455577 |
| 21,69313004<br>21,64030894<br>21,44114761<br>21,24738577 |         | Corrected flow                   | (ml/min)               |           | 6,416844992 | 6,417748826 | 6,417748826 | 6,417748826 | 6,417748826 | 6,417748826 | 6,417748826 | 6,417748826 | 6,417748826 | 6,417748826 | 12,83549765 | 12,83514392 | 12,83506531 | 12,83514392 | 12,83514392 | 25,67028784 | 38,50313278 | 51,33633156 | 51,34199061 | 37,54236902 |
| 20<br>20<br>20<br>20                                     |         | Flow                             | (ml/min)               |           | 2           | 2           | 2           | 2           | 2           | 2           | 2           | 2           | 2           | 2           | 10          | 10          | 10          | 10          | 10          | 20          | 30          | 40          | 40          | 30          |
| 61,83229669<br>62,88936965<br>66,9455758<br>71,0017455   |         | CO <sub>2</sub>                  | Concentration % v/v    | 9,75      | 0,043509895 | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0,008512806 | 0,01040454  | 0,008512806 | 0,008512806 | 0,008512806 | 0,026957218 | 0,034051222 | 0           | 8,03419674  |
| 12897,9<br>13118,4<br>13964,5<br>14810,6                 |         | $CO_2$                           | Area                   | 2061,6    | 9,2         | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 1,8         | 2,2         | 1,8         | 1,8         | 1,8         | 2,7         | 7,2         | 0           | 1698,8      |
| 22<br>23<br>24                                           |         | Run<br>number                    |                        | 7         | က           | 4           | 2           | 9           | 7           | œ           | တ           | 10          | 7           | 12          | 13          | ,           | •           |             | 4           | 15          | 16          | 17          | 18          | 19          |
| 16:10<br>16:30<br>16:50<br>17:10                         |         | Time                             |                        |           | 09:10       | 06:30       | 09:60       | 10:10       | 10:30       | 10:50       | 11:10       | 11:30       | 11:50       | 12:10       | 12:30       | 12:50       | 13:10       | 13:30       | 13:50       | 14:10       | 14:30       | 14:50       | 15:10       | 15:30       |
| 20/7/2010<br>20/7/2010<br>20/7/2010<br>20/7/2010         | 3 Weeks | Date                             |                        | 15/7/2010 | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   | 15/7/2010   |

| 41,41311687<br>42,91302753<br>44,3308468<br>45,74338226<br>47,18427977 |         | Cumulative CO <sub>2</sub>       | Volume<br>Absorbed (L) | •        | 1,999939088 | 3,999908032 | 5,999908032 | 7,999908032 | 9,999774266 | 11,99957005 | 13,99892526 | 15,99800123 | 17,99436384 | 19,99254515 | 21,98799841 | 23,98345168 | 25,97257262 | 27,750789   | 29,39628548 | 31,04021657 | 32,61292625 | 34,2866086  | 35,88783649 |
|------------------------------------------------------------------------|---------|----------------------------------|------------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 2000<br>2000<br>2000<br>2000<br>2000                                   |         | CO <sub>2</sub> at inlet         | Ē                      |          | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        | 2000        |
| 525,809562<br>500,0893442<br>582,1807274<br>587,4645369<br>559,1024956 |         | CO <sub>2</sub> Volume at outlet | Cor. flow*concent*time |          | 0,060912239 | 0,031055637 | 0           | 0           | 0,133766039 | 0,204213933 | 0,644789996 | 0,92403627  | 3,637387097 | 1,818693549 | 4,546733871 | 4,546733871 | 10,8790552  | 221,783625  | 354,5035211 | 356,0689039 | 427,2903256 | 326,317645  | 398,7721107 |
| 43,53119354<br>43,8810695<br>42,77568825<br>42,70566609<br>43,08311673 |         | Corrected flow                   | (ml/min)               |          | 6,416762885 | 6,417246133 | 12,83549765 | 12,83549765 | 12,8333325  | 12,83219237 | 25,66055989 | 25,65604183 | 25,61218263 | 12,80609131 | 32,01522828 | 32,01522828 | 25,49549464 | 28,69883047 | 26,85929899 | 26,83842969 | 32,20601381 | 33,58484446 | 32,58868032 |
| 4 4 4 4<br>0 0 0 0                                                     |         | Flow                             | (ml/min)               |          | 2           | 2           | 10          | 10          | 10          | 10          | 20          | 20          | 20          | 10          | 25          | 25          | 20          | 25          | 25          | 25          | 30          | 30          | 30          |
| 60,39457218<br>56,98235594<br>68,050422<br>68,78063155<br>64,88649593  |         | $CO_2$                           | Concentration % v/v    | 9,75     | 0,04746337  | 0,024197012 | 0           | 0           | 0,052116642 | 0,079570944 | 0,125638333 | 0,180081611 | 0,710089247 | 0,710089247 | 0,710089247 | 0,710089247 | 2,133525032 | 38,63983678 | 65,99269794 | 66,33564406 | 66,33704004 | 48,58108624 | 61,18261108 |
| 12770,2<br>12048,7<br>14389<br>14543,4<br>13720                        |         | $CO_2$                           | Area                   | 2095,3   | 10,2        | 5,2         | 0           | 0           | 11,2        | 17,1        | 27          | 38,7        | 152,6       | 152,6       | 152,6       | 152,6       | 458,5       | 8303,8      | 14182       | 14255,7     | 14256       | 10440,2     | 13148,3     |
| 20<br>22<br>23<br>24                                                   |         | Run<br>number                    |                        | 7        | က           | 4           | 2           | 9           | 7           | œ           | 6           | 10          | 11          |             |             |             | 12          | 13          | 4           | 15          | 16          | 17          | 18          |
| 15:50<br>16:10<br>16:30<br>16:50<br>17:10                              |         | Time                             |                        |          | 09:50       | 09:40       | 10:00       | 10:20       | 10:40       | 11:00       | 11:20       | 11:40       | 12:00       | 12:20       | 12:40       | 13:00       | 13:20       | 13:40       | 14:00       | 14:20       | 14:40       | 15:00       | 15:20       |
| 15/7/2010<br>15/7/2010<br>15/7/2010<br>15/7/2010                       | 8 Weeks | Date                             |                        | 6/7/2010 | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    | 6/7/2010    |

| 37,3526598<br>38,81400945<br>40,13636302<br>41,45439163<br>42,76810378<br>44,07750792<br>45,38261246  |
|-------------------------------------------------------------------------------------------------------|
| 2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                          |
| 535,1766942<br>538,6503487<br>677,6464293<br>681,9713882<br>686,2878526<br>690,5958621<br>694,8954561 |
| 43,40457699<br>43,35773239<br>54,13879892<br>54,08062051<br>54,02262926<br>53,96482416<br>53,90720423 |
| 40<br>40<br>50<br>50<br>50<br>50                                                                      |
| 61,64979955<br>62,11698802<br>62,58417649<br>63,05136496<br>63,51855343<br>63,9857419<br>64,45293037  |
| 13248,7<br>13349,1<br>13449,5<br>13549,9<br>13650,3<br>13750,7                                        |
| 19<br>22<br>23<br>24<br>25<br>25                                                                      |
| 15:40<br>16:00<br>16:20<br>16:40<br>17:20<br>17:20                                                    |
| 6/7/2010<br>6/7/2010<br>6/7/2010<br>6/7/2010<br>6/7/2010<br>6/7/2010                                  |

Appendix 2.8: MicroGC Raw Data – Leak Investigation Absorption/Stripping Rig

Leak investigation – Water with low pH

| CO <sub>2</sub> at inlet         | Ē                      |            | 3000        | 3000        | 3000        | 3000        | 3000        | 3000        | 3000        | 3000        | 3000        | 3000        | 3000        |
|----------------------------------|------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume at outlet | Cor. flow*concent*time |            | 1,150116868 | 2,581036475 | 3,512762911 | 34,49910938 | 34,49910938 | 18,99301624 | 104,8005051 | 233,6274728 | 929,7980951 | 1118,763464 | 1126,777042 |
| Corrected flow                   | (ml/min)               |            | 38,4816776  | 38,47864935 | 64,13959089 | 63,80626526 | 63,80626526 | 63,97284927 | 63,05648069 | 61,70576296 | 54,92308849 | 53,22993261 | 53,15949652 |
| Flow                             | (ml/min)               |            | 30          | 30          | 20          | 20          | 20          | 20          | 20          | 20          | 20          | 20          | 20          |
| $CO_2$                           | Concentration<br>% v/v | 9,75       | 0,199249    | 0,22359     | 0,182558    | 1,802284    | 1,802284    | 0,989639    | 5,540034    | 12,62051    | 56,43031    | 70,05854    | 70,65386    |
| $CO_2$                           | Area                   | 2803,9     | 57,3        | 64,3        | 52,5        | 518,3       | 518,3       | 284,6       | 1593,2      | 3629,4      | 16228,2     | 20147,4     | 20318,6     |
| Run<br>number                    |                        | 7          | က           | 4           | ß           | 9           | 7           | ∞           | တ           | 19          | Ξ           | 12          | 13          |
| Time                             |                        |            | 11:30       | 12:00       | 12:30       | 13:00       | 13:30       | 14:00       | 14:30       | 15:00       | 15:30       | 16:00       | 16:30       |
| Date                             |                        | 22/11/2010 | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  | 22/11/2010  |

Appendix 2.9: Inorganic Carbon Measurement - Absorption - Lean Samples

Absorption inorganic carbon measurement with TOC instrument - Lean initial molar loading

2 Weeks

| Cumulative CO <sub>2</sub> volume | ( <del>-</del> | 0           | 0,199691    | 3,188815    | 3,45715     | 3,727045    | 5,062478    | 5,182604    | 5,407257    | 5,591347    | 5,848761    | 6,004769    |
|-----------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| L of CO2                          |                | 2,709868    | 2,909559    | 5,898683    | 6,167018    | 6,436913    | 7,772346    | 7,892472    | 8,117125    | 8,301215    | 8,558629    | 8,714637    |
| gr of CO2                         |                | 5,35741     | 5,752199    | 11,6617     | 12,19219    | 12,72578    | 15,36593    | 15,60342    | 16,04756    | 16,4115     | 16,92041    | 17,22884    |
| atoms of C                        |                | 0,1217317   | 0,1307021   | 0,2649783   | 0,2770324   | 0,2891565   | 0,3491463   | 0,3545426   | 0,3646343   | 0,3729039   | 0,3844674   | 0,3914755   |
| C Content                         | in 330 ml (g)  | 1,460779817 | 1,568425076 | 3,179740061 | 3,324388379 | 3,469877676 | 4,189755352 | 4,254510703 | 4,375611621 | 4,474847095 | 4,613608563 | 4,697706422 |
| C Concentration after dilution    | (mg/L)         | 4426,605505 | 4752,803262 | 9635,575943 | 10073,90418 | 10514,78084 | 12696,22834 | 12892,45668 | 13259,42915 | 13560,14271 | 13980,63201 | 14235,47401 |
| TOC response                      | (mg/L)         | 4,426605505 | 4,752803262 | 9,635575943 | 10,07390418 | 10,51478084 | 12,69622834 | 12,89245668 | 13,25942915 | 13,56014271 | 13,98063201 | 14,23547401 |
| Time                              | (min)          | 0           | 30          | 09          | 6           | 120         | 150         | 210         | 240         | 270         | 300         | 330         |
| Sample                            |                | Initial     | _           | 7           | က           | 4           | Ŋ           | 9           | 7           | œ           | တ           | 10          |

| Cumulative<br>SO <sub>2</sub> volume | ( <u></u>     | 0           | 1,227499234 | 4,059734122 | 5,118593111 | 6,679913336 | 8,309363897 | 10,77624985 | 11,7045257  | 12,64131783 | 13,7881785  | 13,92727794 | 14.38431895 |
|--------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Cum<br>CO <sub>2</sub>               |               |             | 1,227       | 4,059       | 5,118       | 6,679       | 8,309       | 10,77       | 11,70       | 12,64       | 13,78       | 13,92       | 14.38       |
| L of CO2                             |               | 0,936490597 | 1,094582616 | 2,527174871 | 3,062763636 | 3,852505783 | 4,676709405 | 5,924501998 | 6,394039601 | 6,86788489  | 7,447986394 | 7,51834524  | 7,749524305 |
| gr of CO2                            |               | 1,85144191  | 2,163989831 | 4,996224719 | 6,055083708 | 7,616403933 | 9,245854494 | 11,71274045 | 12,64101629 | 13,57780843 | 14,7246691  | 14,86376854 | 15.32080955 |
| atoms of C                           |               | 0,042068664 | 0,049170412 | 0,113524761 | 0,13758427  | 0,173060757 | 0,21008531  | 0,266138161 | 0,287230545 | 0,308516438 | 0,334575531 | 0,337736163 | 0.348121099 |
| C Content                            | in 310 ml (g) | 0,50482397  | 0,590044944 | 1,362297129 | 1,651011236 | 2,076729089 | 2,52102372  | 3,193657928 | 3,446766542 | 3,702197253 | 4,014906367 | 4,052833958 | 4,177453184 |
| C Concentration after dilution       | (mg/L)        | 1628,464419 | 1903,370787 | 4394,506866 | 5325,842697 | 6699,126092 | 8132,334582 | 10302,12235 | 11118,60175 | 11942,57179 | 12951,31086 | 13073,65793 | 13475.65543 |
| TOC response                         | (mg/L)        | 1,628464419 | 1,903370787 | 4,394506866 | 5,325842697 | 6,699126092 | 8,132334582 | 10,30212235 | 11,11860175 | 11,94257179 | 12,95131086 | 13,07365793 | 13,47565543 |
| Time                                 | (min)         | 0           | 30          | 09          | 6           | 120         | 150         | 210         | 240         | 270         | 300         | 330         | 360         |
| Sample                               |               | Initial     | _           | 7           | က           | 4           | 2           | 9           | 7           | ∞           | 0           | 10          | 7           |

| Cumulative<br>CO <sub>2</sub> volume | (L)           | 0           | 1,451747251 | 4,760462515 | 4,892347355 | 4,821332441 | 4,640171947 | 4,3735037   | 4,892347355 |
|--------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| L of CO2                             |               | 0,927976515 | 2,379724251 | 5,688439515 | 5,820324355 | 5,749309441 | 5,568148947 | 5,3014807   | 5,820324355 |
| gr of CO2                            |               | 1,83460957  | 4,704714844 | 11,24604492 | 11,50678125 | 11,36638477 | 11,00823047 | 10,48102734 | 11,50678125 |
| atoms of C                           |               | 0,041686198 | 0,106901042 | 0,255533854 | 0,261458333 | 0,258268229 | 0,250130208 | 0,238151042 | 0,261458333 |
| C Content                            | in 310 ml (g) | 0,500234375 | 1,2828125   | 3,06640625  | 3,1375      | 3,09921875  | 3,0015625   | 2,8578125   | 3,1375      |
| C Concentration after dilution       | (mg/L)        | 1563,232422 | 4008,789063 | 9582,519531 | 9804,6875   | 9685,058594 | 9379,882813 | 8930,664063 | 9804,6875   |
| TOC response                         | (mg/L)        | 1,563232422 | 4,008789063 | 9,582519531 | 9,8046875   | 9,685058594 | 9,379882813 | 8,930664063 | 9,8046875   |
| Time                                 | (min)         | 0           | 30          | 09          | 06          | 120         | 150         | 210         | 240         |
| Sample                               |               | Initial     | _           | 7           | က           | 4           | 2           | 9           | 7           |

Appendix 2.10: MicroGC Raw Data - Stripping Lean Samples

Stripping raw data and calculations - Lean initial molar loading

2 Weeks

| Cumulative $CO_2$                | Volume (ml)            |           | 2390,330388 | 4640,266586 | 6008,566782 | 6921,88649  | 7323,847681 | 7598,927367 | 7773,318653 | 7933,408159 | 8038,706496 | 8114,698924 | 8190,691351 | 8292,014589 | 8393,337826 | 8444,41364  | 8493,301741 | 8538,189157 | 8577,888297 | 8606,98913  | 8635,07951  | 8662,846503 | 8690,290088 |
|----------------------------------|------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume at outlet | Cor. flow*concent*time |           | 2390,330388 | 2249,936198 | 1368,300196 | 913,3197077 | 401,9611918 | 275,0796858 | 174,391286  | 160,0895058 | 105,298337  | 75,99242783 | 75,99242783 | 101,3232371 | 101,3232371 | 51,07581437 | 48,88810139 | 44,88741571 | 39,69914029 | 29,10083244 | 28,0903802  | 27,76699287 | 27,44358487 |
| Corrected flow                   | (ml/min)               |           | 358,7009954 | 311,7713563 | 225,8605141 | 232,0290137 | 239,1741741 | 240,9819678 | 242,4264488 | 242,6323325 | 145,4463212 | 145,8686081 | 145,8686081 | 194,4914775 | 194,4914775 | 195,2179443 | 195,2496357 | 195,3076033 | 195,3828041 | 146,5468676 | 146,561518  | 146,566207  | 146,5708965 |
| Flow                             | (ml/min)               |           | 400         | 350         | 250         | 250         | 250         | 250         | 250         | 250         | 150         | 150         | 150         | 200         | 200         | 200         | 200         | 200         | 200         | 150         | 150         | 150         | 150         |
| CO <sub>2</sub>                  | Concentration<br>% v/v | 9,75      | 33,31926059 | 36,08311271 | 30,29082356 | 19,68115308 | 8,403106089 | 5,70747447  | 3,596787538 | 3,299014278 | 3,619835004 | 2,604824603 | 2,604824603 | 2,604824603 | 2,604824603 | 1,308174168 | 1,251938351 | 1,149146653 | 1,0159323   | 0,992884834 | 0,958313635 | 0,947250851 | 0,936188067 |
| $\frac{1}{2}$                    | Area                   | 2115,2    | 7228,4      | 7828        | 6571,4      | 4269,7      | 1823        | 1238,2      | 780,3       | 715,7       | 785,3       | 565,1       | 565,1       | 565,1       | 565,1       | 283,8       | 271,6       | 249,3       | 220,4       | 215,4       | 207,9       | 205,5       | 203,1       |
| Run<br>number                    |                        | 7         | က           | 4           | 2           | 9           | 7           | ∞           | <b>o</b>    | 10          | 7           | 12          | ı           |             | ı           | 13          | 4           | 15          | 16          | 17          | 18          | 19          | 20          |
| Time                             |                        |           | 09:50       | 09:40       | 10:00       | 10:20       | 10:40       | 11:00       | 11:20       | 11:40       | 12:00       | 12:20       | 12:40       | 13:00       | 13:20       | 13:40       | 14:00       | 14:20       | 14:40       | 15:00       | 15:20       | 15:40       | 16:00       |
| Date                             |                        | 21/7/2010 | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   | 21/7/2010   |

| Cumulative $CO_2$               | Volume (ml)            |           | 4187,921443 | 5381,845203 | 5843,849352 | 6173,137835 | 6421,239507 | 6589,569465 | 6704,266984 | 6801,172863 | 6884,183997 | 6967,19513  | 7050,206264 | 7133,217398 | 7176,00237  | 7227,586439 | 7273,825589 | 7294,744365 | 7314,315951 |
|---------------------------------|------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume released | Cor. flow*concent*time |           | 4187,921443 | 1193,923759 | 462,0041491 | 329,2884833 | 248,1016724 | 168,3299571 | 114,6975198 | 96,90587892 | 83,01113357 | 83,01113357 | 83,01113357 | 83,01113357 | 42,78497246 | 51,58406932 | 46,23915005 | 20,91877519 | 19,57158625 |
| Corrected flow                  | (ml/min)               |           | 335,7281987 | 277,091291  | 189,356745  | 240,2079078 | 241,3681379 | 242,5136841 | 243,2869494 | 243,5440153 | 243,7449661 | 243,7449661 | 243,7449661 | 243,7449661 | 195,3380734 | 195,2105824 | 195,2880155 | 97,67590282 | 97,6954321  |
| Flow                            | (ml/min)               |           | 400         | 300         | 200         | 250         | 250         | 250         | 250         | 250         | 250         | 250         | 250         | 250         | 200         | 200         | 200         | 100         | 100         |
| CO <sub>2</sub>                 | Concentration<br>% v/v | 9,75      | 62,37071327 | 21,54387016 | 12,19930532 | 6,854239029 | 5,139486816 | 3,470524925 | 2,357247688 | 1,989494154 | 1,70282765  | 1,70282765  | 1,70282765  | 1,70282765  | 1,095151901 | 1,321241622 | 1,183870652 | 1,070825791 | 1,001663324 |
| $CO_2$                          | Area                   | 2044,1    | 13076,1     | 4516,7      | 2557,6      | 1437        | 1077,5      | 727,6       | 494,2       | 417,1       | 357         | 357         | 357         | 357         | 229,6       | 277         | 248,2       | 224,5       | 210         |
| Run<br>number                   |                        | 7         | က           | 4           | 2           | 9           | 7           | œ           | တ           | 10          | 7           | 12          |             |             |             | 13          | 4           | 15          | 16          |
| Time                            |                        |           | 09:60       | 10:10       | 10:30       | 10:50       | 11:10       | 11:30       | 11:50       | 12:10       | 12:30       | 12:50       | 13:10       | 13:30       | 13:50       | 14:10       | 14:30       | 14:50       | 15:10       |
| Date                            |                        | 16/7/2010 | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   | 16/7/2010   |

| Cumulative<br>CO <sub>2</sub>   | Volume (ml)            |          | 1794,386365 | 2541,370884 | 3023,3172   | 3153,024973 | 3231,729863 | 3296,699193 | 3345,1988   | 3385,011948 | 3424,825097 | 3464,638245 | 3504,451393 | 3544,264541 | 3561,849699 | 3583,398155 | 3599,357884 | 3608,361603 | 3613,069136 | 3618,984462 | 3625,082337 | 3636,597494 | 3648,715771 | 3648,790283 | 3648,830585 | 3648,85964  |
|---------------------------------|------------------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $\mathrm{CO}_2$ Volume released | Cor. flow*concent*time |          | 1794,386365 | 746,9845197 | 481,9463157 | 129,7077728 | 78,7048899  | 64,96933055 | 48,49960674 | 39,8131482  | 39,8131482  | 39,8131482  | 39,8131482  | 39,8131482  | 17,58515837 | 21,5484553  | 15,9597291  | 9,003719356 | 4,707532379 | 5,915326365 | 6,097874771 | 11,51515709 | 12,1182776  | 0,074511523 | 0,040301886 | 0,029054897 |
| Corrected flow                  | (ml/min)               |          | 171,5980332 | 136,5090072 | 140,1288491 | 96,11178779 | 96,84190331 | 97,0394894  | 97,27694309 | 97,4024166  | 97,4024166  | 97,4024166  | 97,4024166  | 97,4024166  | 146,7139188 | 146,656404  | 146,7375133 | 146,8385288 | 146,900953  | 146,8834009 | 146,8807482 | 146,8020496 | 146,7932904 | 146,9683012 | 97,97900372 | 97,97916725 |
| Flow                            | (ml/min)               |          | 200         | 150         | 150         | 100         | 100         | 100         | 100         | 100         | 100         | 100         | 100         | 100         | 150         | 150         | 150         | 150         | 150         | 150         | 150         | 150         | 150         | 150         | 100         | 100         |
| CO <sub>2</sub>                 | Concentration % v/v    | 9,75     | 52,28458425 | 27,3602649  | 17,19654157 | 6,747755703 | 4,063576159 | 3,347571744 | 2,492862399 | 2,043745401 | 2,043745401 | 2,043745401 | 2,043745401 | 2,043745401 | 0,599300957 | 0,734657837 | 0,543818985 | 0,306585725 | 0,160228109 | 0,201361295 | 0,207579102 | 0,392200147 | 0,41276674  | 0,002534952 | 0,002056659 | 0,001482708 |
| $CO_2$                          | Area                   | 2038,5   | 10931,5     | 5720,4      | 3595,4      | 1410,8      | 849,6       | 6,669       | 521,2       | 427,3       | 427,3       | 427,3       | 427,3       | 427,3       | 125,3       | 153,6       | 113,7       | 64,1        | 33,5        | 42,1        | 43,4        | 85          | 86,3        | 0,53        | 0,43        | 0,31        |
| Run<br>number                   |                        | 7        | က           | 4           | 2           | 9           | 7           | ∞           | တ           | 10          |             |             |             | •           | 7           | 12          | 13          | 4           | 15          | 16          | 17          | 18          | 19          | 20          | 21          | 22          |
| Time                            |                        |          | 09:60       | 10:10       | 10:30       | 10:50       | 11:10       | 11:30       | 11:50       | 12:10       | 12:30       | 12:50       | 13:10       | 13:30       | 13:50       | 14:10       | 14:30       | 14:50       | 15:10       | 15:30       | 15:50       | 16:10       | 16:30       | 16:50       | 17:10       | 17:30       |
| Date                            |                        | 7/7/2010 | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    | 7/7/2010    |

**Appendix 2.11: Pressure Changes Thermal Degradation Experiment – Rich Samples** 

Pressure changes during degradation experiment at 160  $^{\circ}\text{C}$  – Rich initial molar loading Needle pressure gauge

| Time (min) | Total Pressure | Total Pressure<br>(kPa) |
|------------|----------------|-------------------------|
| 0          | (psi)<br>0     | (KFa)<br>0              |
| 8          | 540            | 3723.168938             |
| 24         | 560            | 3861.064084             |
| 32         | 560            | 3861.064084             |
| 48         | 560            | 3861.064084             |
| 56         | 560            | 3861.064084             |
| 72         | 550            | 3792.116511             |
| 80         | 550            | 3792.116511             |
| 96         | 550            | 3792.116511             |
| 104        | 550            | 3792.116511             |
| 120        | 540            | 3723.168938             |
| 128        | 530            | 3654.221365             |
| 144        | 530            | 3654.221365             |
| 152        | 530            | 3654.221365             |
| 168        | 520            | 3585.273792             |
| 176        | 520            | 3585.273792             |
| 192        | 510            | 3516.32622              |
| 200        | 510            | 3516.32622              |
| 216        | 500            | 3447.378647             |
| 224        | 500            | 3447.378647             |
| 240        | 490            | 3378.431074             |
| 248        | 490            | 3378.431074             |
| 264        | 490            | 3378.431074             |
| 272        | 490            | 3378.431074             |
| 288        | 490            | 3378.431074             |
| 296        | 490            | 3378.431074             |
| 312        | 490            | 3378.431074             |
| 320        | 490            | 3378.431074             |
| 336        | 490            | 3378.431074             |
| 344        | 490            | 3378.431074             |
| 360        | 490            | 3378.431074             |
| 368        | 490            | 3378.431074             |
| 384        | 485            | 3343.957287             |
| 392        | 485            | 3343.957287             |
| 408        | 485            | 3343.957287             |

| Time (min) | Pressure (psi) | Pressure (kPa) |
|------------|----------------|----------------|
| 0          | 5.741961254    | 39.58942923    |
| 15         | 9.237068105    | 63.68734268    |
| 30         | 18.47413621    | 127.3746854    |
| 45         | 57.66926303    | 397.6155719    |
|            |                |                |
| 60<br>75   | 125.0748951    | 862.3610455    |
| 75         | 194.4777312    | 1340.876755    |
| 90         | 257.8889555    | 1778.081757    |
| 105        | 311.5638107    | 2148.156856    |
| 120        | 354.7533453    | 2445.938215    |
| 135        | 386.9582584    | 2667.983275    |
| 150        | 412.9219093    | 2846.996346    |
| 165        | 432.644298     | 2982.977429    |
| 180        | 447.6233273    | 3086.254201    |
| 195        | 458.8575994    | 3163.71178     |
| 210        | 467.5953665    | 3223.956563    |
| 225        | 474.0862792    | 3268.709831    |
| 240        | 477.5813861    | 3292.807745    |
| 255        | 481.3261434    | 3318.626938    |
| 270        | 484.5715998    | 3341.003572    |
| 285        | 487.0681047    | 3358.216367    |
| 300        | 488.8156581    | 3370.265324    |
| 315        | 490.5632115    | 3382.31428     |
| 330        | 492.3107649    | 3394.363237    |
| 345        | 493.8086679    | 3404.690914    |
| 360        | 494.5576193    | 3409.854753    |
| 375        | 495.3065708    | 3415.018591    |
| 390        | 495.8058718    | 3418.46115     |
| 405        | 496.3051728    | 3421.90371     |
| 420        | 497.0541242    | 3427.067548    |
| 435        | 497.0541242    | 3427.067548    |
|            | 497.3037747    |                |
| 450<br>465 |                | 3428.788828    |
| 465        | 497.5534252    | 3430.510107    |
| 480        | 497.8030757    | 3432.231387    |
| 495        | 498.3023767    | 3435.673946    |
| 510        | 498.3023767    | 3435.673946    |
| 525        | 498.5520272    | 3437.395225    |
| 540        | 498.5520272    | 3437.395225    |
| 555        | 498.8016777    | 3439.116505    |
| 570        | 499.0513281    | 3440.837784    |
| 585        | 499.0513281    | 3440.837784    |
| 600        | 499.3009786    | 3442.559064    |
| 615        | 499.5506291    | 3444.280343    |
| 630        | 499.8002796    | 3446.001623    |
| 645        | 499.8002796    | 3446.001623    |
| 660        | 499.8002796    | 3446.001623    |
| 675        | 500.0499301    | 3447.722902    |
| 690        | 500.2995806    | 3449.444182    |
| 705        | 500.2995806    | 3449.444182    |
| 720        | 500.5492311    | 3451.165462    |
| 735        | 500.7988816    | 3452.886741    |
| 750        | 500.7988816    | 3452.886741    |
| 765        | 501.0485321    | 3454.608021    |
| 780        | 501.2981825    | 3456.3293      |
| 100        | 301.2301023    | J-JU.J23J      |

| 795          | 501.547833                 | 3458.05058                 |
|--------------|----------------------------|----------------------------|
| 810          | 501.547833                 | 3458.05058                 |
| 825          | 501.7974835                | 3459.771859                |
| 840          | 501.7974835                | 3459.771859                |
| 855          | 502.047134                 | 3461.493139                |
| 870          | 502.2967845                | 3463.214418                |
| 885          | 502.2967845                | 3463.214418                |
| 900          | 502.2967845                | 3463.214418                |
| 915          | 502.546435                 | 3464.935698                |
| 930          | 502.7960855                | 3466.656977                |
| 945          | 502.546435                 | 3464.935698                |
| 960          | 502.7960855                | 3466.656977                |
| 975          | 503.045736                 | 3468.378257                |
| 990          | 503.045736                 | 3468.378257                |
| 1005         | 503.2953865                | 3470.099536                |
| 1020         | 503.5450369                | 3471.820816                |
| 1035         | 503.5450369                | 3471.820816                |
| 1050         | 503.7946874                | 3473.542095                |
| 1065         | 503.7946874                | 3473.542095                |
| 1080         | 503.7946874                | 3473.542095                |
| 1095         | 504.2939884                | 3476.984655                |
| 1110         | 504.2939884                | 3476.984655                |
| 1125         | 504.5436389                | 3478.705934                |
| 1140         | 504.5436389                | 3478.705934                |
| 1155         | 504.7932894                | 3480.427214                |
| 1170         | 505.0429399                | 3482.148493                |
| 1185         | 505.0429399                | 3482.148493                |
| 1200         | 505.2925904                | 3483.869773                |
| 1215         | 505.2925904                | 3483.869773                |
| 1230         | 505.2925904                | 3483.869773                |
| 1245         | 505.2925904                | 3483.869773                |
| 1260         | 505.7918914                | 3487.312332                |
| 1275         | 505.7918914                | 3487.312332                |
| 1290         | 506.0415418                | 3489.033611                |
| 1305         | 506.0415418                | 3489.033611                |
| 1320         | 506.2911923                | 3490.754891                |
| 1335         | 506.2911923                | 3490.754891                |
| 1350         | 506.5408428                | 3492.47617                 |
| 1365         | 506.7904933                | 3494.19745                 |
| 1380         | 507.0401438                | 3495.918729                |
| 1395         | 506.5408428                | 3492.47617                 |
| 1410         | 506.5408428                | 3492.47617                 |
| 1425         | 506.5408428                | 3492.47617                 |
| 1440         | 506.7904933                | 3494.19745                 |
| 1455         | 506.7904933                | 3494.19745                 |
| 1470         | 507.5394448                | 3499.361288                |
| 1485         | 507.7890953                | 3501.082568                |
| 1500         | 507.5394448                | 3499.361288                |
| 1515         | 507.5394448                | 3499.361288                |
| 1530<br>1545 | 507.7890953<br>508.0387458 | 3501.082568<br>3502.803848 |
|              |                            | 3506.246407                |
| 1560<br>1575 | 508.5380467<br>508.5380467 | 3506.246407                |
| 1575         | 508.2883962                | 3504.525127                |
| 1605         | 508.2883962                | 3504.525127                |
| 1620         | 508.2883962                | 3504.525127                |
| 1020         | JUU.200J8U2                | JJU4.JZU1Z <i>I</i>        |

| 1635         | 508.5380467                | 3506.246407                |
|--------------|----------------------------|----------------------------|
| 1650         | 508.7876972                | 3507.967686                |
| 1665         | 509.0373477                | 3509.688966                |
| 1680         | 509.0373477                | 3509.688966                |
| 1695         | 509.2869982                | 3511.410245                |
| 1710         | 509.2869982                | 3511.410245                |
| 1725         | 509.5366487                | 3513.131525                |
| 1740         | 509.7862992                | 3514.852804                |
| 1755         | 509.7862992                | 3514.852804                |
| 1770         | 510.0359497                | 3516.574084                |
| 1785         | 510.0359497                | 3516.574084                |
| 1800         | 510.5352506                | 3520.016643                |
| 1815         | 510.7849011                | 3521.737922                |
| 1830         | 510.7849011                | 3521.737922                |
| 1845         | 510.7849011                | 3521.737922                |
| 1860         | 511.0345516                | 3523.459202                |
| 1875<br>1890 | 511.2842021<br>511.2842021 | 3525.180481<br>3525.180481 |
| 1905         | 511.2842021                | 3525.180481                |
| 1905         | 511.2842021                | 3525.180481                |
| 1935         | 511.2842021                | 3525.180481                |
| 1950         | 511.5338526                | 3526.901761                |
| 1965         | 511.5338526                | 3526.901761                |
| 1980         | 511.5338526                | 3526.901761                |
| 1995         | 511.2842021                | 3525.180481                |
| 2010         | 511.5338526                | 3526.901761                |
| 2025         | 511.5338526                | 3526.901761                |
| 2040         | 511.5338526                | 3526.901761                |
| 2055         | 511.5338526                | 3526.901761                |
| 2070         | 511.5338526                | 3526.901761                |
| 2085         | 511.5338526                | 3526.901761                |
| 2100         | 511.2842021                | 3525.180481                |
| 2115         | 511.5338526                | 3526.901761                |
| 2130         | 511.5338526                | 3526.901761                |
| 2145         | 511.7835031                | 3528.62304                 |
| 2160         | 511.5338526                | 3526.901761                |
| 2175         | 511.5338526                | 3526.901761                |
| 2190         | 511.7835031                | 3528.62304                 |
| 2205         | 511.5338526                | 3526.901761                |
| 2220         | 511.2842021                | 3525.180481                |
| 2235         | 511.0345516                | 3523.459202                |
| 2250<br>2265 | 511.0345516<br>511.0345516 | 3523.459202<br>3523.459202 |
| 2280         | 511.0345516                | 3523.459202                |
| 2295         | 511.0345516                | 3523.459202                |
| 2310         | 510.7849011                | 3521.737922                |
| 2325         | 510.7849011                | 3521.737922                |
| 2340         | 510.7849011                | 3521.737922                |
| 2355         | 510.7849011                | 3521.737922                |
| 2370         | 510.7849011                | 3521.737922                |
| 2385         | 510.7849011                | 3521.737922                |
| 2400         | 510.7849011                | 3521.737922                |
| 2415         | 510.7849011                | 3521.737922                |
| 2430         | 510.5352506                | 3520.016643                |
| 2445         | 510.5352506                | 3520.016643                |
| 2460         | 510.5352506                | 3520.016643                |
|              |                            |                            |

| 0.475 | 540 5050500 | 0500 040040 |
|-------|-------------|-------------|
| 2475  | 510.5352506 | 3520.016643 |
| 2490  | 510.5352506 | 3520.016643 |
| 2505  | 510.2856002 | 3518.295363 |
| 2520  | 510.2856002 | 3518.295363 |
| 2535  | 510.2856002 | 3518.295363 |
| 2550  | 510.2856002 | 3518.295363 |
| 2565  | 510.0359497 | 3516.574084 |
| 2580  | 510.0359497 | 3516.574084 |
|       |             |             |
| 2595  | 510.0359497 | 3516.574084 |
| 2610  | 509.7862992 | 3514.852804 |
| 2625  | 510.0359497 | 3516.574084 |
| 2640  | 509.7862992 | 3514.852804 |
| 2655  | 509.5366487 | 3513.131525 |
| 2670  | 510.0359497 | 3516.574084 |
| 2685  | 509.5366487 | 3513.131525 |
| 2700  | 509.7862992 | 3514.852804 |
| 2715  | 509.5366487 | 3513.131525 |
| 2730  | 509.5366487 | 3513.131525 |
|       |             | 3513.131525 |
| 2745  | 509.5366487 |             |
| 2760  | 509.2869982 | 3511.410245 |
| 2775  | 509.2869982 | 3511.410245 |
| 2790  | 509.2869982 | 3511.410245 |
| 2805  | 509.2869982 | 3511.410245 |
| 2820  | 509.2869982 | 3511.410245 |
| 2835  | 509.2869982 | 3511.410245 |
| 2850  | 509.5366487 | 3513.131525 |
| 2865  | 509.0373477 | 3509.688966 |
| 2880  | 509.2869982 | 3511.410245 |
|       |             |             |
| 2895  | 509.2869982 | 3511.410245 |
| 2910  | 509.2869982 | 3511.410245 |
| 2925  | 509.0373477 | 3509.688966 |
| 2940  | 508.7876972 | 3507.967686 |
| 2955  | 508.7876972 | 3507.967686 |
| 2970  | 508.7876972 | 3507.967686 |
| 2985  | 508.5380467 | 3506.246407 |
| 3000  | 508.7876972 | 3507.967686 |
| 3015  | 508.5380467 | 3506.246407 |
| 3030  | 508.5380467 | 3506.246407 |
| 3045  | 508.5380467 | 3506.246407 |
|       | 508.5380467 |             |
| 3060  |             | 3506.246407 |
| 3075  | 508.2883962 | 3504.525127 |
| 3090  | 508.5380467 | 3506.246407 |
| 3105  | 508.2883962 | 3504.525127 |
| 3120  | 508.2883962 | 3504.525127 |
| 3135  | 508.0387458 | 3502.803848 |
| 3150  | 508.2883962 | 3504.525127 |
| 3165  | 508.0387458 | 3502.803848 |
| 3180  | 508.2883962 | 3504.525127 |
| 3195  | 508.5380467 | 3506.246407 |
| 3210  | 508.2883962 | 3504.525127 |
|       |             |             |
| 3225  | 508.2883962 | 3504.525127 |
| 3240  | 508.2883962 | 3504.525127 |
| 3255  | 508.0387458 | 3502.803848 |
| 3270  | 508.0387458 | 3502.803848 |
| 3285  | 508.0387458 | 3502.803848 |
| 3300  | 508.0387458 | 3502.803848 |
|       |             |             |

| 2215 | 508.0387458  | 3502.803848    |
|------|--------------|----------------|
| 3315 |              |                |
| 3330 | 508.0387458  | 3502.803848    |
| 3345 | 508.0387458  | 3502.803848    |
| 3360 | 508.0387458  | 3502.803848    |
| 3375 | 507.7890953  | 3501.082568    |
| 3390 | 507.7890953  | 3501.082568    |
| 3405 | 507.5394448  | 3499.361288    |
| 3420 | 507.5394448  | 3499.361288    |
|      |              |                |
| 3435 | 507.5394448  | 3499.361288    |
| 3450 | 507.5394448  | 3499.361288    |
| 3465 | 507.2897943  | 3497.640009    |
| 3480 | 507.2897943  | 3497.640009    |
| 3495 | 507.2897943  | 3497.640009    |
| 3510 | 507.2897943  | 3497.640009    |
| 3525 | 507.2897943  | 3497.640009    |
| 3540 | 507.0401438  | 3495.918729    |
| 3555 | 507.0401438  | 3495.918729    |
| 3570 | 506.7904933  | 3494.19745     |
| 3585 | 507.0401438  | 3495.918729    |
|      |              | 3494.19745     |
| 3600 | 506.7904933  |                |
| 3615 | 506.7904933  | 3494.19745     |
| 3630 | 506.5408428  | 3492.47617     |
| 3645 | 506.5408428  | 3492.47617     |
| 3660 | 506.5408428  | 3492.47617     |
| 3675 | 506.2911923  | 3490.754891    |
| 3690 | 506.2911923  | 3490.754891    |
| 3705 | 506.0415418  | 3489.033611    |
| 3720 | 506.2911923  | 3490.754891    |
| 3735 | 506.0415418  | 3489.033611    |
| 3750 | 506.0415418  | 3489.033611    |
| 3765 | 506.0415418  | 3489.033611    |
| 3780 | 505.5422409  | 3485.591052    |
|      |              |                |
| 3795 | 506.0415418  | 3489.033611    |
| 3810 | 505.7918914  | 3487.312332    |
| 3825 | 505.5422409  | 3485.591052    |
| 3840 | 505.5422409  | 3485.591052    |
| 3855 | 505.2925904  | 3483.869773    |
| 3870 | 505.2925904  | 3483.869773    |
| 3885 | 505.2925904  | 3483.869773    |
| 3900 | 505.2925904  | 3483.869773    |
| 3915 | 505.2925904  | 3483.869773    |
| 3930 | 505.2925904  | 3483.869773    |
| 3945 | 505.0429399  | 3482.148493    |
| 3960 | 505.2925904  | 3483.869773    |
|      |              |                |
| 3975 | 505.0429399  | 3482.148493    |
| 3990 | 504.7932894  | 3480.427214    |
| 4005 | 504.7932894  | 3480.427214    |
| 4020 | 504.7932894  | 3480.427214    |
| 4035 | 504.5436389  | 3478.705934    |
| 4050 | 504.5436389  | 3478.705934    |
| 4065 | 504.5436389  | 3478.705934    |
| 4080 | 504.5436389  | 3478.705934    |
| 4095 | 504.2939884  | 3476.984655    |
| 4110 | 504.2939884  | 3476.984655    |
| 4125 | 504.2939884  | 3476.984655    |
| 4140 | 504.0443379  | 3475.263375    |
| 7170 | JUT.UTTJJI J | J-1 J. 20001 D |

| 4155         | 504.0443379 | 3475.263375 |
|--------------|-------------|-------------|
| 4170         | 503.7946874 | 3473.542095 |
|              |             |             |
| 4185         | 504.0443379 | 3475.263375 |
| 4200         | 503.7946874 | 3473.542095 |
| 4215         | 503.7946874 | 3473.542095 |
| 4230         | 503.7946874 | 3473.542095 |
| 4245         | 503.7946874 | 3473.542095 |
| 4260         | 503.5450369 | 3471.820816 |
| 4275         | 503.2953865 | 3470.099536 |
| 4290         | 503.5450369 | 3471.820816 |
| 4305         | 503.2953865 | 3470.099536 |
| 4320         | 503.2953865 | 3470.099536 |
| 4335         | 503.2953865 | 3470.099536 |
|              |             |             |
| 4350         | 503.2953865 | 3470.099536 |
| 4365         | 503.2953865 | 3470.099536 |
| 4380         | 503.045736  | 3468.378257 |
| 4395         | 503.045736  | 3468.378257 |
| 4410         | 503.045736  | 3468.378257 |
| 4425         | 502.7960855 | 3466.656977 |
| 4440         | 503.045736  | 3468.378257 |
| 4455         | 502.7960855 | 3466.656977 |
| 4470         | 502.7960855 | 3466.656977 |
| 4485         | 502.7960855 | 3466.656977 |
| 4500         | 502.7960855 | 3466.656977 |
| 4500<br>4515 | 502.7960855 | 3466.656977 |
|              |             |             |
| 4530         | 502.546435  | 3464.935698 |
| 4545         | 502.546435  | 3464.935698 |
| 4560         | 502.546435  | 3464.935698 |
| 4575         | 502.546435  | 3464.935698 |
| 4590         | 502.546435  | 3464.935698 |
| 4605         | 502.546435  | 3464.935698 |
| 4620         | 502.546435  | 3464.935698 |
| 4635         | 502.546435  | 3464.935698 |
| 4650         | 502.546435  | 3464.935698 |
| 4665         | 502.546435  | 3464.935698 |
| 4680         | 502.546435  | 3464.935698 |
| 4695         | 502.546435  | 3464.935698 |
| 4710         | 502.2967845 | 3463.214418 |
| 4710         | 502.2967845 | 3463.214418 |
|              |             |             |
| 4740         | 502.2967845 | 3463.214418 |
| 4755         | 502.2967845 | 3463.214418 |
| 4770         | 502.047134  | 3461.493139 |
| 4785         | 502.047134  | 3461.493139 |
| 4800         | 502.2967845 | 3463.214418 |
| 4815         | 502.047134  | 3461.493139 |
| 4830         | 502.047134  | 3461.493139 |
| 4845         | 502.047134  | 3461.493139 |
| 4860         | 501.7974835 | 3459.771859 |
| 4875         | 501.7974835 | 3459.771859 |
| 4890         | 501.7974835 | 3459.771859 |
| 4905         | 501.547833  | 3458.05058  |
| 4920         | 501.547833  | 3458.05058  |
| 4920         | 501.547833  | 3458.05058  |
|              |             |             |
| 4950         | 501.547833  | 3458.05058  |
| 4965         | 501.2981825 | 3456.3293   |
| 4980         | 501.0485321 | 3454.608021 |
|              |             |             |

| 4995         | 501.0485321 | 3454.608021         |
|--------------|-------------|---------------------|
|              |             |                     |
| 5010         | 501.0485321 | 3454.608021         |
| 5025         | 501.0485321 | 3454.608021         |
| 5040         | 501.0485321 | 3454.608021         |
| 5055         | 500.7988816 | 3452.886741         |
| 5070         | 500.5492311 | 3451.165462         |
| 5085         | 500.5492311 | 3451.165462         |
| 5100         | 500.5492311 | 3451.165462         |
|              | 500.5492311 | 3451.165462         |
| 5115         |             |                     |
| 5130         | 500.5492311 | 3451.165462         |
| 5145         | 500.2995806 | 3449.444182         |
| 5160         | 500.5492311 | 3451.165462         |
| 5175         | 500.2995806 | 3449.444182         |
| 5190         | 500.0499301 | 3447.722902         |
| 5205         | 500.2995806 | 3449.444182         |
| 5220         | 500.0499301 | 3447.722902         |
| 5235         | 500.0499301 | 3447.722902         |
| 5250         | 499.8002796 | 3446.001623         |
|              |             |                     |
| 5265         | 499.8002796 | 3446.001623         |
| 5280         | 499.8002796 | 3446.001623         |
| 5295         | 499.8002796 | 3446.001623         |
| 5310         | 499.8002796 | 3446.001623         |
| 5325         | 499.8002796 | 3446.001623         |
| 5340         | 499.8002796 | 3446.001623         |
| 5355         | 499.8002796 | 3446.001623         |
| 5370         | 499.5506291 | 3444.280343         |
| 5385         | 499.5506291 | 3444.280343         |
|              | 499.3009786 |                     |
| 5400         |             | 3442.559064         |
| 5415         | 499.3009786 | 3442.559064         |
| 5430         | 499.5506291 | 3444.280343         |
| 5445         | 499.3009786 | 3442.559064         |
| 5460         | 499.0513281 | 3440.837784         |
| 5475         | 499.0513281 | 3440.837784         |
| 5490         | 499.0513281 | 3440.837784         |
| 5505         | 498.8016777 | 3439.116505         |
| 5520         | 498.8016777 | 3439.116505         |
| 5535         | 498.8016777 | 3439.116505         |
| 5550         | 498.5520272 | 3437.395225         |
|              |             | 3437.395225         |
| 5565         | 498.5520272 |                     |
| 5580         | 498.5520272 | 3437.395225         |
| 5595         | 498.8016777 | 3439.116505         |
| 5610         | 498.8016777 | 3439.116505         |
| 5625         | 498.5520272 | 3437.395225         |
| 5640         | 498.5520272 | 3437.395225         |
| 5655         | 498.3023767 | 3435.673946         |
| 5670         | 498.3023767 | 3435.673946         |
| 5685         | 498.3023767 | 3435.673946         |
| 5700         | 498.0527262 | 3433.952666         |
| 5700<br>5715 | 498.3023767 | 3435.673946         |
|              |             |                     |
| 5730         | 498.3023767 | 3435.673946         |
| 5745         | 498.3023767 | 3435.673946         |
| 5760         | 498.0527262 | 3433.952666         |
| 5775         | 498.3023767 | 3435.673946         |
| 5790         | 498.0527262 | 3433.952666         |
| 5805         | 498.0527262 | 3433.952666         |
| 5820         | 498.3023767 | 3435.673946         |
|              |             | 2 . 2 2 . 0 . 0 . 0 |

|      | 400 0505000 |             |
|------|-------------|-------------|
| 5835 | 498.0527262 | 3433.952666 |
| 5850 | 498.0527262 | 3433.952666 |
| 5865 | 498.0527262 | 3433.952666 |
|      |             |             |
| 5880 | 498.3023767 | 3435.673946 |
| 5895 | 500.2995806 | 3449.444182 |
| 5910 | 502.2967845 | 3463.214418 |
| 5925 | 503.2953865 | 3470.099536 |
|      |             |             |
| 5940 | 504.2939884 | 3476.984655 |
| 5955 | 505.0429399 | 3482.148493 |
| 5970 | 505.2925904 | 3483.869773 |
| 5985 | 505.5422409 | 3485.591052 |
|      |             |             |
| 6000 | 505.7918914 | 3487.312332 |
| 6015 | 506.2911923 | 3490.754891 |
| 6030 | 506.5408428 | 3492.47617  |
| 6045 | 506.7904933 | 3494.19745  |
| 6060 | 506.7904933 | 3494.19745  |
|      |             |             |
| 6075 | 507.2897943 | 3497.640009 |
| 6090 | 507.2897943 | 3497.640009 |
| 6105 | 507.7890953 | 3501.082568 |
| 6120 | 507.7890953 | 3501.082568 |
|      |             |             |
| 6135 | 507.7890953 | 3501.082568 |
| 6150 | 508.0387458 | 3502.803848 |
| 6165 | 508.0387458 | 3502.803848 |
| 6180 | 508.0387458 | 3502.803848 |
| 6195 | 508.2883962 | 3504.525127 |
|      |             |             |
| 6210 | 508.2883962 | 3504.525127 |
| 6225 | 508.5380467 | 3506.246407 |
| 6240 | 508.5380467 | 3506.246407 |
| 6255 | 508.5380467 | 3506.246407 |
| 6270 | 509.0373477 | 3509.688966 |
|      |             |             |
| 6285 | 509.0373477 | 3509.688966 |
| 6300 | 509.0373477 | 3509.688966 |
| 6315 | 509.2869982 | 3511.410245 |
| 6330 | 509.2869982 | 3511.410245 |
| 6345 | 509.2869982 | 3511.410245 |
|      |             |             |
| 6360 | 509.5366487 | 3513.131525 |
| 6375 | 509.5366487 | 3513.131525 |
| 6390 | 509.7862992 | 3514.852804 |
| 6405 | 509.5366487 | 3513.131525 |
| 6420 | 509.7862992 | 3514.852804 |
|      |             |             |
| 6435 | 509.7862992 | 3514.852804 |
| 6450 | 509.7862992 | 3514.852804 |
| 6465 | 510.0359497 | 3516.574084 |
| 6480 | 509.7862992 | 3514.852804 |
| 6495 | 510.0359497 | 3516.574084 |
|      |             |             |
| 6510 | 510.2856002 | 3518.295363 |
| 6525 | 510.0359497 | 3516.574084 |
| 6540 | 510.5352506 | 3520.016643 |
| 6555 | 510.2856002 | 3518.295363 |
|      |             |             |
| 6570 | 510.2856002 | 3518.295363 |
| 6585 | 510.5352506 | 3520.016643 |
| 6600 | 510.5352506 | 3520.016643 |
| 6615 | 510.5352506 | 3520.016643 |
| 6630 | 510.7849011 | 3521.737922 |
| 6645 | 510.5352506 | 3520.016643 |
|      |             |             |
| 6660 | 510.7849011 | 3521.737922 |
|      |             |             |

| 6675<br>6690 | 510.7849011<br>510.7849011 | 3521.737922<br>3521.737922 |
|--------------|----------------------------|----------------------------|
| 6705<br>6720 | 510.5352506<br>510.5352506 | 3520.016643<br>3520.016643 |
| 6735         | 510.5352506                | 3520.016643                |
| 6750         | 510.5352506                | 3520.016643                |
| 6765         | 510.7849011                | 3521.737922                |
| 6780<br>6795 | 510.7849011<br>510.7849011 | 3521.737922<br>3521.737922 |
| 6810         | 510.7849011                | 3521.737922                |
| 6825         | 510.7849011                | 3521.737922                |
| 6840         | 510.7849011                | 3521.737922                |
| 6855         | 510.7849011                | 3521.737922                |
| 6870<br>6885 | 510.7849011<br>510.7849011 | 3521.737922<br>3521.737922 |
| 6900         | 510.7849011                | 3521.737922                |
| 6915         | 510.7849011                | 3521.737922                |
| 6930         | 510.7849011                | 3521.737922                |
| 6945         | 510.7849011                | 3521.737922                |
| 6960         | 511.0345516                | 3523.459202                |
| 6975<br>6990 | 511.0345516<br>511.0345516 | 3523.459202<br>3523.459202 |
| 7005         | 511.0345516                | 3523.459202                |
| 7020         | 510.7849011                | 3521.737922                |
| 7035         | 511.0345516                | 3523.459202                |
| 7050         | 511.2842021                | 3525.180481                |
| 7065         | 511.0345516                | 3523.459202                |
| 7080<br>7095 | 511.2842021<br>511.2842021 | 3525.180481<br>3525.180481 |
| 7110         | 511.2842021                | 3525.180481                |
| 7125         | 511.2842021                | 3525.180481                |
| 7140         | 511.5338526                | 3526.901761                |
| 7155         | 511.5338526                | 3526.901761                |
| 7170<br>7105 | 511.5338526                | 3526.901761                |
| 7185<br>7200 | 511.5338526<br>511.5338526 | 3526.901761<br>3526.901761 |
| 7215         | 511.5338526                | 3526.901761                |
| 7230         | 511.5338526                | 3526.901761                |
| 7245         | 511.7835031                | 3528.62304                 |
| 7260         | 511.5338526                | 3526.901761                |
| 7275<br>7200 | 511.7835031                | 3528.62304<br>3528.62304   |
| 7290<br>7305 | 511.7835031<br>512.0331536 | 3530.34432                 |
| 7320         | 511.7835031                | 3528.62304                 |
| 7335         | 512.0331536                | 3530.34432                 |
| 7350         | 511.7835031                | 3528.62304                 |
| 7365         | 512.0331536                | 3530.34432                 |
| 7380<br>7395 | 511.7835031<br>512.0331536 | 3528.62304<br>3530.34432   |
| 7393<br>7410 | 512.0331536                | 3530.34432                 |
| 7425         | 512.0331536                | 3530.34432                 |
| 7440         | 512.0331536                | 3530.34432                 |
| 7455         | 512.0331536                | 3530.34432                 |
| 7470<br>7405 | 512.2828041                | 3532.0656                  |
| 7485<br>7500 | 512.5324546<br>512.2828041 | 3533.786879<br>3532.0656   |
| 7 300        | J 12.2020U4 I              | 3532.0050                  |

| 7515         | 512.2828041                | 3532.0656                  |
|--------------|----------------------------|----------------------------|
| 7530         | 512.2828041                | 3532.0656                  |
| 7545         | 512.2828041                | 3532.0656                  |
| 7560         | 512.2828041                | 3532.0656                  |
| 7575         | 512.5324546                | 3533.786879                |
| 7590         | 512.5324546                | 3533.786879                |
| 7605         | 512.2828041                | 3532.0656                  |
| 7620         | 512.5324546                | 3533.786879                |
| 7635         | 512.5324546                | 3533.786879                |
| 7650         | 512.7821051                | 3535.508159                |
| 7665         | 512.7821051                | 3535.508159                |
| 7680<br>7695 | 512.7821051<br>512.7821051 | 3535.508159<br>3535.508159 |
| 7095<br>7710 | 512.7821051                | 3535.508159                |
| 7775         | 513.0317555                | 3537.229438                |
| 7740         | 512.7821051                | 3535.508159                |
| 7755         | 513.0317555                | 3537.229438                |
| 7770         | 513.0317555                | 3537.229438                |
| 7785         | 512.7821051                | 3535.508159                |
| 7800         | 512.7821051                | 3535.508159                |
| 7815         | 513.0317555                | 3537.229438                |
| 7830         | 513.281406                 | 3538.950718                |
| 7845         | 512.7821051                | 3535.508159                |
| 7860         | 512.7821051                | 3535.508159                |
| 7875         | 512.7821051                | 3535.508159                |
| 7890         | 513.0317555                | 3537.229438                |
| 7905         | 513.0317555                | 3537.229438                |
| 7920<br>7035 | 513.0317555                | 3537.229438                |
| 7935<br>7950 | 513.0317555<br>513.0317555 | 3537.229438<br>3537.229438 |
| 7950<br>7965 | 513.0317555                | 3537.229438                |
| 7980         | 513.0317555                | 3537.229438                |
| 7995         | 513.0317555                | 3537.229438                |
| 8010         | 513.0317555                | 3537.229438                |
| 8025         | 512.7821051                | 3535.508159                |
| 8040         | 513.0317555                | 3537.229438                |
| 8055         | 513.0317555                | 3537.229438                |
| 8070         | 512.7821051                | 3535.508159                |
| 8085         | 513.0317555                | 3537.229438                |
| 8100         | 513.0317555                | 3537.229438                |
| 8115         | 513.0317555                | 3537.229438                |
| 8130         | 513.281406                 | 3538.950718                |
| 8145         | 513.0317555                | 3537.229438                |
| 8160<br>8175 | 512.7821051<br>513.0317555 | 3535.508159<br>3537.229438 |
| 8190         | 513.0317555                | 3537.229438                |
| 8205         | 512.7821051                | 3535.508159                |
| 8220         | 513.0317555                | 3537.229438                |
| 8235         | 513.0317555                | 3537.229438                |
| 8250         | 512.7821051                | 3535.508159                |
| 8265         | 513.0317555                | 3537.229438                |
| 8280         | 513.0317555                | 3537.229438                |
| 8295         | 513.0317555                | 3537.229438                |
| 8310         | 513.0317555                | 3537.229438                |
| 8325         | 513.0317555                | 3537.229438                |
| 8340         | 513.0317555                | 3537.229438                |

| 8355                                                 | 512.7821051                                                                                           | 3535.508159                                                                            |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 8370                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8385                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8400                                                 | 512.7821051                                                                                           | 3535.508159                                                                            |
| 8415                                                 | 512.7821051                                                                                           | 3535.508159                                                                            |
| 8430                                                 | 512.7821051                                                                                           | 3535.508159                                                                            |
| 8445                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8460                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8475                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8490                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8505                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8520                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8535                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8550                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8565                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8580                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8595                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8610                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8625                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8640                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8655                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8670                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8685                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8700                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8715                                                 | 513.0317555                                                                                           | 3537.229438                                                                            |
| 8730                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8745                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8760                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8775                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8790<br>8805<br>8820<br>8835<br>8850<br>8865<br>8880 | 514.0303575<br>514.0303575<br>514.0303575<br>514.0303575<br>514.0303575<br>514.0303575<br>514.0303575 | 3544.114556<br>3544.114556<br>3544.114556<br>3544.114556<br>3544.114556<br>3544.114556 |
| 8895                                                 | 513.780707                                                                                            | 3542.393277                                                                            |
| 8910                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8925                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8940                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8955                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 8970                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 8985                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 9000                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 9015                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 9030                                                 | 513.281406                                                                                            | 3538.950718                                                                            |
| 9045                                                 | 513.5310565                                                                                           | 3540.671997                                                                            |
| 9060                                                 | 513.780707                                                                                            | 3542.393277                                                                            |
| 9075                                                 | 514.280008                                                                                            | 3545.835836                                                                            |
| 9090                                                 | 514.280008                                                                                            | 3545.835836                                                                            |
| 9105                                                 | 514.280008                                                                                            | 3545.835836                                                                            |
| 9120                                                 | 514.280008                                                                                            | 3545.835836                                                                            |
| 9135                                                 | 514.280008                                                                                            | 3545.835836                                                                            |
| 9150                                                 | 514.280008                                                                                            | 3545.835836                                                                            |
| 9165                                                 | 514.5296585                                                                                           | 3547.557115                                                                            |
| 9180                                                 | 514.280008                                                                                            | 3545.835836                                                                            |

| 0405  | E4.4.000000 | 2545 025020               |
|-------|-------------|---------------------------|
| 9195  | 514.280008  | 3545.835836               |
| 9210  | 514.280008  | 3545.835836               |
| 9225  | 514.280008  | 3545.835836               |
| 9240  | 514.280008  | 3545.835836               |
| 9255  | 514.280008  | 3545.835836               |
| 9270  | 514.280008  | 3545.835836               |
| 9285  | 514.280008  | 3545.835836               |
| 9300  | 514.280008  | 3545.835836               |
| 9315  | 514.280008  | 3545.835836               |
|       |             |                           |
| 9330  | 514.280008  | 3545.835836               |
| 9345  | 514.280008  | 3545.835836               |
| 9360  | 514.280008  | 3545.835836               |
| 9375  | 514.0303575 | 3544.114556               |
| 9390  | 514.280008  | 3545.835836               |
| 9405  | 514.280008  | 3545.835836               |
| 9420  | 513.780707  | 3542.393277               |
| 9435  | 513.5310565 | 3540.671997               |
| 9450  | 513.5310565 | 3540.671997               |
| 9465  | 513.281406  | 3538.950718               |
| 9480  | 513.281406  | 3538.950718               |
|       |             | 3538.950718               |
| 9495  | 513.281406  |                           |
| 9510  | 513.281406  | 3538.950718               |
| 9525  | 513.281406  | 3538.950718               |
| 9540  | 513.281406  | 3538.950718               |
| 9555  | 513.281406  | 3538.950718               |
| 9570  | 513.281406  | 3538.950718               |
| 9585  | 513.281406  | 3538.950718               |
| 9600  | 513.281406  | 3538.950718               |
| 9615  | 513.281406  | 3538.950718               |
| 9630  | 513.281406  | 3538.950718               |
| 9645  | 513.281406  | 3538.950718               |
| 9660  | 513.0317555 | 3537.229438               |
|       |             | 3538.950718               |
| 9675  | 513.281406  |                           |
| 9690  | 513.0317555 | 3537.229438               |
| 9705  | 513.0317555 | 3537.229438               |
| 9720  | 513.0317555 | 3537.229438               |
| 9735  | 513.281406  | 3538.950718               |
| 9750  | 513.0317555 | 3537.229438               |
| 9765  | 513.281406  | 3538.950718               |
| 9780  | 513.0317555 | 3537.229438               |
| 9795  | 513.0317555 | 3537.229438               |
| 9810  | 513.0317555 | 3537.229438               |
| 9825  | 513.281406  | 3538.950718               |
| 9840  | 513.0317555 | 3537.229438               |
| 9855  | 513.0317555 | 3537.229438               |
|       |             |                           |
| 9870  | 513.0317555 | 3537.229438               |
| 9885  | 513.0317555 | 3537.229438               |
| 9900  | 513.281406  | 3538.950718               |
| 9915  | 512.7821051 | 3535.508159               |
| 9930  | 513.0317555 | 3537.229438               |
| 9945  | 513.0317555 | 3537.229438               |
| 9960  | 513.0317555 | 3537.229438               |
| 9975  | 513.0317555 | 3537.229438               |
| 9990  | 513.0317555 | 3537.229438               |
| 10005 | 513.0317555 | 3537.229438               |
| 10020 | 513.0317555 | 3537.229438               |
| 10020 | 010.0017000 | JJJ1 .ZZJ <del>4</del> JO |

| 10035          | 513.281406                 | 3538.950718                |
|----------------|----------------------------|----------------------------|
| 10050          | 513.0317555                | 3537.229438                |
| 10065          | 513.0317555                | 3537.229438                |
| 10080          | 513.0317555                | 3537.229438                |
| 10095          | 513.0317555                | 3537.229438                |
| 10110          | 513.0317555                | 3537.229438                |
| 10125          | 512.7821051                | 3535.508159                |
| 10140          | 512.7821051                | 3535.508159                |
| 10155          | 512.7821051                | 3535.508159                |
| 10170          | 513.5310565                | 3540.671997                |
| 10185          | 513.5310565                | 3540.671997                |
| 10200          | 513.281406                 | 3538.950718                |
| 10215          | 513.5310565                | 3540.671997                |
| 10230<br>10245 | 513.5310565<br>513.5310565 | 3540.671997<br>3540.671997 |
| 10245          | 513.5310565                | 3540.671997                |
| 10200          | 513.5310565                | 3540.671997                |
| 10273          | 513.5310565                | 3540.671997                |
| 10305          | 513.5310565                | 3540.671997                |
| 10320          | 513.5310565                | 3540.671997                |
| 10335          | 513.5310565                | 3540.671997                |
| 10350          | 513.0317555                | 3537.229438                |
| 10365          | 512.7821051                | 3535.508159                |
| 10380          | 512.2828041                | 3532.0656                  |
| 10395          | 512.7821051                | 3535.508159                |
| 10410          | 512.7821051                | 3535.508159                |
| 10425          | 512.5324546                | 3533.786879                |
| 10440          | 513.281406                 | 3538.950718                |
| 10455          | 513.5310565                | 3540.671997                |
| 10470          | 513.281406                 | 3538.950718                |
| 10485          | 513.5310565                | 3540.671997                |
| 10500          | 513.5310565                | 3540.671997                |
| 10515          | 513.0317555                | 3537.229438                |
| 10530          | 512.7821051                | 3535.508159                |
| 10545          | 512.5324546<br>512.5324546 | 3533.786879                |
| 10560<br>10575 | 512.5324546                | 3533.786879<br>3533.786879 |
| 10575          | 512.5324546                | 3535.508159                |
| 10605          | 512.7821031                | 3533.786879                |
| 10620          | 512.5324546                | 3533.786879                |
| 10635          | 512.5324546                | 3533.786879                |
| 10650          | 512.2828041                | 3532.0656                  |
| 10665          | 512.5324546                | 3533.786879                |
| 10680          | 512.2828041                | 3532.0656                  |
| 10695          | 512.2828041                | 3532.0656                  |
| 10710          | 512.5324546                | 3533.786879                |
| 10725          | 512.2828041                | 3532.0656                  |
| 10740          | 512.5324546                | 3533.786879                |
| 10755          | 512.5324546                | 3533.786879                |
| 10770          | 512.2828041                | 3532.0656                  |
| 10785          | 512.2828041                | 3532.0656                  |
| 10800          | 512.2828041                | 3532.0656                  |
| 10815          | 512.5324546                | 3533.786879                |
| 10830<br>10845 | 512.2828041<br>512.5324546 | 3532.0656<br>3533.786879   |
| 10845          | 512.5324546                | 3532.0656                  |
| 10000          | J 12.2020041               | JJJZ.0000                  |

| 40075 | E40 0000044 | 0500 0050   |
|-------|-------------|-------------|
| 10875 | 512.2828041 | 3532.0656   |
| 10890 | 512.2828041 | 3532.0656   |
| 10905 | 512.2828041 | 3532.0656   |
| 10920 | 512.0331536 | 3530.34432  |
|       |             |             |
| 10935 | 512.2828041 | 3532.0656   |
| 10950 | 512.0331536 | 3530.34432  |
| 10965 | 512.0331536 | 3530.34432  |
| 10980 | 512.2828041 | 3532.0656   |
|       |             |             |
| 10995 | 512.2828041 | 3532.0656   |
| 11010 | 512.0331536 | 3530.34432  |
| 11025 | 512.0331536 | 3530.34432  |
| 11040 | 512.0331536 | 3530.34432  |
| 11055 | 512.0331536 | 3530.34432  |
|       |             |             |
| 11070 | 512.0331536 | 3530.34432  |
| 11085 | 512.2828041 | 3532.0656   |
| 11100 | 512.2828041 | 3532.0656   |
| 11115 | 512.0331536 | 3530.34432  |
| 11130 | 512.0331536 | 3530.34432  |
|       |             |             |
| 11145 | 512.0331536 | 3530.34432  |
| 11160 | 512.0331536 | 3530.34432  |
| 11175 | 512.0331536 | 3530.34432  |
| 11190 | 511.7835031 | 3528.62304  |
|       |             |             |
| 11205 | 511.7835031 | 3528.62304  |
| 11220 | 511.7835031 | 3528.62304  |
| 11235 | 511.7835031 | 3528.62304  |
| 11250 | 511.7835031 | 3528.62304  |
| 11265 | 511.7835031 | 3528.62304  |
| 11280 | 511.7835031 | 3528.62304  |
| 11295 | 511.7835031 | 3528.62304  |
|       |             |             |
| 11310 | 511.5338526 | 3526.901761 |
| 11325 | 511.5338526 | 3526.901761 |
| 11340 | 511.5338526 | 3526.901761 |
| 11355 | 511.5338526 | 3526.901761 |
| 11370 | 511.5338526 | 3526.901761 |
| 11385 | 511.5338526 | 3526.901761 |
|       |             |             |
| 11400 | 511.5338526 | 3526.901761 |
| 11415 | 511.2842021 | 3525.180481 |
| 11430 | 511.2842021 | 3525.180481 |
| 11445 | 511.2842021 | 3525.180481 |
| 11460 | 511.2842021 | 3525.180481 |
| 11475 | 511.2842021 | 3525.180481 |
|       |             |             |
| 11490 | 511.2842021 | 3525.180481 |
| 11505 | 511.2842021 | 3525.180481 |
| 11520 | 511.5338526 | 3526.901761 |
| 11535 | 511.0345516 | 3523.459202 |
| 11550 | 511.0345516 | 3523.459202 |
| 11565 | 510.7849011 | 3521.737922 |
|       |             |             |
| 11580 | 510.7849011 | 3521.737922 |
| 11595 | 510.7849011 | 3521.737922 |
| 11610 | 510.7849011 | 3521.737922 |
| 11625 | 510.7849011 | 3521.737922 |
| 11640 | 510.5352506 | 3520.016643 |
| 11655 | 510.7849011 | 3521.737922 |
|       |             |             |
| 11670 | 510.5352506 | 3520.016643 |
| 11685 | 510.7849011 | 3521.737922 |
| 11700 | 510.7849011 | 3521.737922 |
|       |             |             |

| 44745            | F40 7040044 | 0504 707000 |
|------------------|-------------|-------------|
| 11715            | 510.7849011 | 3521.737922 |
| 11730            | 510.5352506 | 3520.016643 |
| 11745            | 510.7849011 | 3521.737922 |
| 11760            | 510.7849011 | 3521.737922 |
| 11775            | 510.5352506 | 3520.016643 |
| 11790            | 510.5352506 | 3520.016643 |
| 11805            | 510.5352506 | 3520.016643 |
| 11820            | 510.5352506 | 3520.016643 |
| 11835            | 510.7849011 | 3521.737922 |
| 11850            | 510.7849011 | 3521.737922 |
| 11865            | 510.7849011 | 3521.737922 |
|                  |             |             |
| 11880            | 510.7849011 | 3521.737922 |
| 11895            | 510.7849011 | 3521.737922 |
| 11910            | 511.0345516 | 3523.459202 |
| 11925            | 511.2842021 | 3525.180481 |
| 11940            | 511.2842021 | 3525.180481 |
| 11955            | 511.0345516 | 3523.459202 |
| 11970            | 511.2842021 | 3525.180481 |
| 11985            | 511.2842021 | 3525.180481 |
| 12000            | 511.0345516 | 3523.459202 |
| 12015            | 511.0345516 | 3523.459202 |
| 12030            | 511.0345516 | 3523.459202 |
| 12045            | 511.0345516 | 3523.459202 |
| 12043            | 510.7849011 | 3521.737922 |
|                  |             |             |
| 12075            | 510.7849011 | 3521.737922 |
| 12090            | 510.7849011 | 3521.737922 |
| 12105            | 510.7849011 | 3521.737922 |
| 12120            | 510.7849011 | 3521.737922 |
| 12135            | 510.7849011 | 3521.737922 |
| 12150            | 510.7849011 | 3521.737922 |
| 12165            | 510.7849011 | 3521.737922 |
| 12180            | 510.7849011 | 3521.737922 |
| 12195            | 510.7849011 | 3521.737922 |
| 12210            | 510.7849011 | 3521.737922 |
| 12225            | 510.7849011 | 3521.737922 |
| 12240            | 510.7849011 | 3521.737922 |
| 12255            | 510.7849011 | 3521.737922 |
| 12270            | 510.7849011 | 3521.737922 |
| 12285            | 510.7849011 | 3521.737922 |
| 12300            | 510.7849011 | 3521.737922 |
| 12315            | 510.7849011 | 3521.737922 |
| 12330            | 510.5352506 | 3520.016643 |
| 12345            | 510.2856002 | 3518.295363 |
| 12343            |             |             |
|                  | 510.0359497 | 3516.574084 |
| 12375            | 510.0359497 | 3516.574084 |
| 12390            | 509.7862992 | 3514.852804 |
| 12405            | 510.0359497 | 3516.574084 |
| 12420            | 510.0359497 | 3516.574084 |
| 12435            | 509.7862992 | 3514.852804 |
| 12450            | 509.7862992 | 3514.852804 |
| 12465            | 509.5366487 | 3513.131525 |
| 12480            | 509.5366487 | 3513.131525 |
| 12495            | 509.5366487 | 3513.131525 |
| 12510            | 509.5366487 | 3513.131525 |
| 12525            | 509.5366487 | 3513.131525 |
| 12540            | 509.7862992 | 3514.852804 |
| - · <del>-</del> |             |             |

| 40555 | 500 700000  | 0544.050004 |
|-------|-------------|-------------|
| 12555 | 509.7862992 | 3514.852804 |
| 12570 | 509.5366487 | 3513.131525 |
| 12585 | 509.5366487 | 3513.131525 |
| 12600 | 509.2869982 | 3511.410245 |
|       | 509.5366487 | 3513.131525 |
| 12615 |             |             |
| 12630 | 509.2869982 | 3511.410245 |
| 12645 | 509.2869982 | 3511.410245 |
| 12660 | 509.2869982 | 3511.410245 |
| 12675 | 509.0373477 | 3509.688966 |
| 12690 | 509.2869982 | 3511.410245 |
|       |             |             |
| 12705 | 509.0373477 | 3509.688966 |
| 12720 | 509.0373477 | 3509.688966 |
| 12735 | 509.0373477 | 3509.688966 |
| 12750 | 509.2869982 | 3511.410245 |
| 12765 | 508.7876972 | 3507.967686 |
| 12780 | 509.0373477 | 3509.688966 |
| 12795 | 509.0373477 | 3509.688966 |
|       |             |             |
| 12810 | 508.7876972 | 3507.967686 |
| 12825 | 509.0373477 | 3509.688966 |
| 12840 | 508.7876972 | 3507.967686 |
| 12855 | 508.7876972 | 3507.967686 |
| 12870 | 508.7876972 | 3507.967686 |
| 12885 | 508.5380467 | 3506.246407 |
|       |             |             |
| 12900 | 508.7876972 | 3507.967686 |
| 12915 | 508.7876972 | 3507.967686 |
| 12930 | 508.7876972 | 3507.967686 |
| 12945 | 508.7876972 | 3507.967686 |
| 12960 | 508.5380467 | 3506.246407 |
| 12975 | 508.5380467 | 3506.246407 |
| 12990 | 508.5380467 | 3506.246407 |
|       |             |             |
| 13005 | 508.5380467 | 3506.246407 |
| 13020 | 508.5380467 | 3506.246407 |
| 13035 | 508.5380467 | 3506.246407 |
| 13050 | 508.5380467 | 3506.246407 |
| 13065 | 508.5380467 | 3506.246407 |
| 13080 | 508.2883962 | 3504.525127 |
| 13095 | 508.5380467 | 3506.246407 |
|       |             |             |
| 13110 | 508.5380467 | 3506.246407 |
| 13125 | 508.2883962 | 3504.525127 |
| 13140 | 508.5380467 | 3506.246407 |
| 13155 | 508.5380467 | 3506.246407 |
| 13170 | 508.2883962 | 3504.525127 |
| 13185 | 508.2883962 | 3504.525127 |
| 13200 | 508.2883962 | 3504.525127 |
|       |             |             |
| 13215 | 508.2883962 | 3504.525127 |
| 13230 | 508.2883962 | 3504.525127 |
| 13245 | 508.2883962 | 3504.525127 |
| 13260 | 508.2883962 | 3504.525127 |
| 13275 | 508.2883962 | 3504.525127 |
| 13290 | 508.2883962 | 3504.525127 |
| 13305 | 508.2883962 | 3504.525127 |
|       |             |             |
| 13320 | 508.2883962 | 3504.525127 |
| 13335 | 508.0387458 | 3502.803848 |
| 13350 | 508.0387458 | 3502.803848 |
| 13365 | 508.0387458 | 3502.803848 |
| 13380 | 508.0387458 | 3502.803848 |
|       | <del></del> |             |

| 13395 | 508.0387458   | 3502.803848  |
|-------|---------------|--------------|
| 13410 | 508.0387458   | 3502.803848  |
| 13425 | 508.0387458   | 3502.803848  |
|       |               |              |
| 13440 | 508.0387458   | 3502.803848  |
| 13455 | 508.0387458   | 3502.803848  |
| 13470 | 508.0387458   | 3502.803848  |
|       |               |              |
| 13485 | 508.0387458   | 3502.803848  |
| 13500 | 507.7890953   | 3501.082568  |
| 13515 | 507.7890953   | 3501.082568  |
| 13530 | 508.0387458   | 3502.803848  |
| 13545 | 508.0387458   | 3502.803848  |
|       |               |              |
| 13560 | 507.7890953   | 3501.082568  |
| 13575 | 508.0387458   | 3502.803848  |
| 13590 | 508.0387458   | 3502.803848  |
| 13605 | 507.5394448   | 3499.361288  |
|       |               |              |
| 13620 | 507.7890953   | 3501.082568  |
| 13635 | 507.7890953   | 3501.082568  |
| 13650 | 507.7890953   | 3501.082568  |
| 13665 | 507.5394448   | 3499.361288  |
|       |               |              |
| 13680 | 507.5394448   | 3499.361288  |
| 13695 | 507.5394448   | 3499.361288  |
| 13710 | 507.5394448   | 3499.361288  |
| 13725 | 507.5394448   | 3499.361288  |
|       |               |              |
| 13740 | 507.5394448   | 3499.361288  |
| 13755 | 507.5394448   | 3499.361288  |
| 13770 | 507.5394448   | 3499.361288  |
| 13785 | 507.5394448   | 3499.361288  |
| 13800 | 507.5394448   | 3499.361288  |
|       |               |              |
| 13815 | 507.2897943   | 3497.640009  |
| 13830 | 507.2897943   | 3497.640009  |
| 13845 | 507.2897943   | 3497.640009  |
| 13860 | 507.2897943   | 3497.640009  |
| 13875 | 507.2897943   | 3497.640009  |
|       |               |              |
| 13890 | 507.2897943   | 3497.640009  |
| 13905 | 507.0401438   | 3495.918729  |
| 13920 | 507.0401438   | 3495.918729  |
| 13935 | 507.2897943   | 3497.640009  |
|       |               |              |
| 13950 | 507.0401438   | 3495.918729  |
| 13965 | 507.0401438   | 3495.918729  |
| 13980 | 507.0401438   | 3495.918729  |
| 13995 | 507.0401438   | 3495.918729  |
| 14010 | 507.0401438   | 3495.918729  |
|       |               |              |
| 14025 | 507.0401438   | 3495.918729  |
| 14040 | 507.0401438   | 3495.918729  |
| 14055 | 506.7904933   | 3494.19745   |
| 14070 | 506.7904933   | 3494.19745   |
|       |               |              |
| 14085 | 506.7904933   | 3494.19745   |
| 14100 | 507.0401438   | 3495.918729  |
| 14115 | 506.5408428   | 3492.47617   |
| 14130 | 506.7904933   | 3494.19745   |
| 14145 | 506.5408428   | 3492.47617   |
| _     |               |              |
| 14160 | 506.5408428   | 3492.47617   |
| 14175 | 506.5408428   | 3492.47617   |
| 14190 | 506.5408428   | 3492.47617   |
| 14205 | 506.5408428   | 3492.47617   |
| 14220 | 506.2911923   | 3490.754891  |
| 14220 | 000.29 I 1923 | J49U./ J4891 |

| 14235 | 506.2911923  | 3490.754891               |
|-------|--------------|---------------------------|
| 14250 | 506.2911923  | 3490.754891               |
| 14265 | 506.2911923  | 3490.754891               |
|       |              |                           |
| 14280 | 506.2911923  | 3490.754891               |
| 14295 | 506.2911923  | 3490.754891               |
| 14310 | 506.0415418  | 3489.033611               |
| 14325 | 506.2911923  | 3490.754891               |
|       |              |                           |
| 14340 | 505.7918914  | 3487.312332               |
| 14355 | 505.7918914  | 3487.312332               |
| 14370 | 506.0415418  | 3489.033611               |
| 14385 | 505.7918914  | 3487.312332               |
|       | 505.5422409  | 3485.591052               |
| 14400 |              |                           |
| 14415 | 505.5422409  | 3485.591052               |
| 14430 | 505.5422409  | 3485.591052               |
| 14445 | 505.5422409  | 3485.591052               |
| 14460 | 505.5422409  | 3485.591052               |
|       |              |                           |
| 14475 | 505.5422409  | 3485.591052               |
| 14490 | 505.5422409  | 3485.591052               |
| 14505 | 505.5422409  | 3485.591052               |
| 14520 | 505.2925904  | 3483.869773               |
| 14535 | 505.2925904  | 3483.869773               |
|       |              |                           |
| 14550 | 505.2925904  | 3483.869773               |
| 14565 | 505.2925904  | 3483.869773               |
| 14580 | 505.2925904  | 3483.869773               |
| 14595 | 505.2925904  | 3483.869773               |
| 14610 | 505.0429399  | 3482.148493               |
|       |              |                           |
| 14625 | 505.2925904  | 3483.869773               |
| 14640 | 505.2925904  | 3483.869773               |
| 14655 | 505.2925904  | 3483.869773               |
| 14670 | 505.2925904  | 3483.869773               |
|       |              |                           |
| 14685 | 505.0429399  | 3482.148493               |
| 14700 | 505.0429399  | 3482.148493               |
| 14715 | 505.0429399  | 3482.148493               |
| 14730 | 505.0429399  | 3482.148493               |
| 14745 | 504.7932894  | 3480.427214               |
| 14760 | 505.2925904  | 3483.869773               |
|       |              |                           |
| 14775 | 505.0429399  | 3482.148493               |
| 14790 | 505.0429399  | 3482.148493               |
| 14805 | 504.7932894  | 3480.427214               |
| 14820 | 505.0429399  | 3482.148493               |
| 14835 | 504.7932894  | 3480.427214               |
|       |              |                           |
| 14850 | 505.0429399  | 3482.148493               |
| 14865 | 505.0429399  | 3482.148493               |
| 14880 | 504.7932894  | 3480.427214               |
| 14895 | 504.7932894  | 3480.427214               |
| 14910 | 504.7932894  | 3480.427214               |
|       |              |                           |
| 14925 | 505.0429399  | 3482.148493               |
| 14940 | 504.7932894  | 3480.427214               |
| 14955 | 504.7932894  | 3480.427214               |
| 14970 | 504.7932894  | 3480.427214               |
| 14985 | 504.7932894  | 3480.427214               |
|       |              |                           |
| 15000 | 504.5436389  | 3478.705934               |
| 15015 | 504.5436389  | 3478.705934               |
| 15030 | 504.5436389  | 3478.705934               |
| 15045 | 504.2939884  | 3476.984655               |
| 15060 | 504.5436389  | 3478.705934               |
| 10000 | 50-10-T00000 | 5-1 5.1 6530 <del>1</del> |

| 15075 | 504.5436389 | 3478.705934 |
|-------|-------------|-------------|
|       |             |             |
| 15090 | 504.2939884 | 3476.984655 |
| 15105 | 504.2939884 | 3476.984655 |
| 15120 | 504.5436389 | 3478.705934 |
| 15135 | 504.2939884 | 3476.984655 |
| 15150 | 504.5436389 | 3478.705934 |
| 15165 | 504.5436389 | 3478.705934 |
| 15180 | 504.2939884 | 3476.984655 |
| 15195 | 504.2939884 | 3476.984655 |
| 15210 | 504.2939884 | 3476.984655 |
| 15225 | 504.2939884 | 3476.984655 |
| 15240 | 504.2939884 | 3476.984655 |
|       |             |             |
| 15255 | 504.2939884 | 3476.984655 |
| 15270 | 504.0443379 | 3475.263375 |
| 15285 | 504.0443379 | 3475.263375 |
| 15300 | 504.0443379 | 3475.263375 |
| 15315 | 504.0443379 | 3475.263375 |
| 15330 | 503.7946874 | 3473.542095 |
| 15345 | 504.0443379 | 3475.263375 |
| 15360 | 503.7946874 | 3473.542095 |
| 15375 | 504.0443379 | 3475.263375 |
| 15390 | 504.0443379 | 3475.263375 |
| 15405 | 503.7946874 | 3473.542095 |
|       |             |             |
| 15420 | 503.7946874 | 3473.542095 |
| 15435 | 503.7946874 | 3473.542095 |
| 15450 | 503.7946874 | 3473.542095 |
| 15465 | 503.5450369 | 3471.820816 |
| 15480 | 503.7946874 | 3473.542095 |
| 15495 | 503.5450369 | 3471.820816 |
| 15510 | 503.5450369 | 3471.820816 |
| 15525 | 503.5450369 | 3471.820816 |
| 15540 | 503.5450369 | 3471.820816 |
| 15555 | 503.2953865 | 3470.099536 |
| 15570 | 503.2953865 | 3470.099536 |
| 15585 | 503.2953865 | 3470.099536 |
| 15600 | 503.2953865 | 3470.099536 |
|       | 000.200000  |             |
| 15615 | 503.2953865 | 3470.099536 |
| 15630 | 503.2953865 | 3470.099536 |
| 15645 | 503.2953865 | 3470.099536 |
| 15660 | 503.2953865 | 3470.099536 |
| 15675 | 503.2953865 | 3470.099536 |
| 15690 | 503.045736  | 3468.378257 |
| 15705 | 502.7960855 | 3466.656977 |
| 15720 | 502.7960855 | 3466.656977 |
| 15735 | 503.045736  | 3468.378257 |
| 15750 | 503.045736  | 3468.378257 |
| 15765 | 503.045736  | 3468.378257 |
| 15780 | 502.7960855 | 3466.656977 |
| 15795 | 502.7960855 | 3466.656977 |
|       |             |             |
| 15810 | 502.7960855 | 3466.656977 |
| 15825 | 502.7960855 | 3466.656977 |
| 15840 | 502.7960855 | 3466.656977 |
| 15855 | 502.7960855 | 3466.656977 |
| 15870 | 503.045736  | 3468.378257 |
| 15885 | 503.045736  | 3468.378257 |
| 15900 | 502.546435  | 3464.935698 |
|       |             |             |

| 45045 | E00 E4040E  | 0404 005000              |
|-------|-------------|--------------------------|
| 15915 | 502.546435  | 3464.935698              |
| 15930 | 502.546435  | 3464.935698              |
| 15945 | 502.546435  | 3464.935698              |
| 15960 | 502.546435  | 3464.935698              |
| 15975 | 502.7960855 | 3466.656977              |
| 15990 | 502.7960855 | 3466.656977              |
| 16005 | 502.546435  | 3464.935698              |
| 16020 | 502.7960855 | 3466.656977              |
| 16035 |             | 3464.935698              |
|       | 502.546435  |                          |
| 16050 | 502.7960855 | 3466.656977              |
| 16065 | 502.7960855 | 3466.656977              |
| 16080 | 502.546435  | 3464.935698              |
| 16095 | 502.546435  | 3464.935698              |
| 16110 | 502.546435  | 3464.935698              |
| 16125 | 502.546435  | 3464.935698              |
| 16140 | 502.546435  | 3464.935698              |
| 16155 | 502.546435  | 3464.935698              |
| 16170 | 502.546435  | 3464.935698              |
| 16185 | 502.546435  | 3464.935698              |
| 16200 | 502.2967845 | 3463.214418              |
|       |             |                          |
| 16215 | 502.546435  | 3464.935698              |
| 16230 | 502.546435  | 3464.935698              |
| 16245 | 502.546435  | 3464.935698              |
| 16260 | 502.546435  | 3464.935698              |
| 16275 | 502.2967845 | 3463.214418              |
| 16290 | 502.546435  | 3464.935698              |
| 16305 | 502.2967845 | 3463.214418              |
| 16320 | 502.2967845 | 3463.214418              |
| 16335 | 502.2967845 | 3463.214418              |
| 16350 | 502.2967845 | 3463.214418              |
| 16365 | 502.546435  | 3464.935698              |
| 16380 | 502.2967845 | 3463.214418              |
|       |             |                          |
| 16395 | 502.2967845 | 3463.214418              |
| 16410 | 502.047134  | 3461.493139              |
| 16425 | 502.047134  | 3461.493139              |
| 16440 | 502.047134  | 3461.493139              |
| 16455 | 502.047134  | 3461.493139              |
| 16470 | 502.2967845 | 3463.214418              |
| 16485 | 502.047134  | 3461.493139              |
| 16500 | 502.047134  | 3461.493139              |
| 16515 | 502.047134  | 3461.493139              |
| 16530 | 502.2967845 | 3463.214418              |
| 16545 | 502.047134  | 3461.493139              |
| 16560 | 502.047134  | 3461.493139              |
| 16575 | 502.047134  | 3461.493139              |
|       |             |                          |
| 16590 | 502.2967845 | 3463.214418              |
| 16605 | 502.2967845 | 3463.214418              |
| 16620 | 502.2967845 | 3463.214418              |
| 16635 | 502.2967845 | 3463.214418              |
| 16650 | 502.047134  | 3461.493139              |
| 16665 | 502.047134  | 3461.493139              |
| 16680 | 502.047134  | 3461.493139              |
| 16695 | 502.047134  | 3461.493139              |
| 16710 | 502.047134  | 3461.493139              |
| 16725 | 502.2967845 | 3463.214418              |
| 16740 | 502.047134  | 3461.493139              |
| 10170 | JUZ.UT/ 1J4 | 0701. <del>7</del> 30108 |

| 16755 | 501.7974835 | 3459.771859 |
|-------|-------------|-------------|
| 16770 | 502.047134  | 3461.493139 |
| 16785 | 502.047134  | 3461.493139 |
|       |             |             |
| 16800 | 501.7974835 | 3459.771859 |
| 16815 | 501.7974835 | 3459.771859 |
| 16830 | 501.7974835 | 3459.771859 |
|       |             |             |
| 16845 | 501.7974835 | 3459.771859 |
| 16860 | 501.547833  | 3458.05058  |
| 16875 | 501.7974835 | 3459.771859 |
| 16890 | 501.547833  | 3458.05058  |
| 16905 | 501.7974835 | 3459.771859 |
|       |             |             |
| 16920 | 501.7974835 | 3459.771859 |
| 16935 | 501.547833  | 3458.05058  |
| 16950 | 501.547833  | 3458.05058  |
| 16965 | 501.2981825 | 3456.3293   |
|       |             |             |
| 16980 | 501.547833  | 3458.05058  |
| 16995 | 501.2981825 | 3456.3293   |
| 17010 | 501.2981825 | 3456.3293   |
| 17025 | 501.0485321 | 3454.608021 |
| 17040 | 501.2981825 | 3456.3293   |
|       |             |             |
| 17055 | 501.0485321 | 3454.608021 |
| 17070 | 501.0485321 | 3454.608021 |
| 17085 | 501.0485321 | 3454.608021 |
| 17100 | 501.0485321 | 3454.608021 |
| 17115 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17130 | 501.0485321 | 3454.608021 |
| 17145 | 500.7988816 | 3452.886741 |
| 17160 | 501.0485321 | 3454.608021 |
| 17175 | 500.7988816 | 3452.886741 |
|       |             | 3452.886741 |
| 17190 | 500.7988816 |             |
| 17205 | 500.7988816 | 3452.886741 |
| 17220 | 500.7988816 | 3452.886741 |
| 17235 | 500.5492311 | 3451.165462 |
| 17250 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17265 | 500.5492311 | 3451.165462 |
| 17280 | 500.5492311 | 3451.165462 |
| 17295 | 500.2995806 | 3449.444182 |
| 17310 | 500.2995806 | 3449.444182 |
| 17325 | 500.2995806 | 3449.444182 |
|       | 500.2995806 |             |
| 17340 |             | 3449.444182 |
| 17355 | 499.8002796 | 3446.001623 |
| 17370 | 499.8002796 | 3446.001623 |
| 17385 | 500.5492311 | 3451.165462 |
| 17400 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17415 | 500.7988816 | 3452.886741 |
| 17430 | 500.7988816 | 3452.886741 |
| 17445 | 500.7988816 | 3452.886741 |
| 17460 | 501.2981825 | 3456.3293   |
| 17475 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17490 | 500.7988816 | 3452.886741 |
| 17505 | 501.0485321 | 3454.608021 |
| 17520 | 500.7988816 | 3452.886741 |
| 17535 | 501.0485321 | 3454.608021 |
| 17550 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17565 | 501.0485321 | 3454.608021 |
| 17580 | 501.0485321 | 3454.608021 |
|       |             |             |

| 17595 | 501.0485321 | 3454.608021 |
|-------|-------------|-------------|
| 17610 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17625 | 501.0485321 | 3454.608021 |
| 17640 | 501.0485321 | 3454.608021 |
| 17655 | 500.7988816 | 3452.886741 |
| 17670 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17685 | 501.0485321 | 3454.608021 |
| 17700 | 500.7988816 | 3452.886741 |
| 17715 | 500.7988816 | 3452.886741 |
| 17730 | 500.7988816 | 3452.886741 |
|       |             |             |
| 17745 | 500.7988816 | 3452.886741 |
| 17760 | 500.7988816 | 3452.886741 |
| 17775 | 500.7988816 | 3452.886741 |
| 17790 | 500.7988816 | 3452.886741 |
| 17805 | 500.5492311 | 3451.165462 |
|       |             |             |
| 17820 | 500.7988816 | 3452.886741 |
| 17835 | 500.5492311 | 3451.165462 |
| 17850 | 500.5492311 | 3451.165462 |
| 17865 | 500.5492311 | 3451.165462 |
|       |             |             |
| 17880 | 500.5492311 | 3451.165462 |
| 17895 | 500.5492311 | 3451.165462 |
| 17910 | 500.5492311 | 3451.165462 |
| 17925 | 500.5492311 | 3451.165462 |
| 17940 | 500.5492311 | 3451.165462 |
|       |             |             |
| 17955 | 500.5492311 | 3451.165462 |
| 17970 | 500.5492311 | 3451.165462 |
| 17985 | 500.0499301 | 3447.722902 |
| 18000 | 500.2995806 | 3449.444182 |
| 18015 |             |             |
|       | 500.5492311 | 3451.165462 |
| 18030 | 500.2995806 | 3449.444182 |
| 18045 | 500.2995806 | 3449.444182 |
| 18060 | 500.2995806 | 3449.444182 |
| 18075 | 500.2995806 | 3449.444182 |
|       |             |             |
| 18090 | 500.2995806 | 3449.444182 |
| 18105 | 500.2995806 | 3449.444182 |
| 18120 | 500.2995806 | 3449.444182 |
| 18135 | 500.0499301 | 3447.722902 |
| 18150 | 500.0499301 | 3447.722902 |
|       |             |             |
| 18165 | 500.0499301 | 3447.722902 |
| 18180 | 500.0499301 | 3447.722902 |
| 18195 | 500.0499301 | 3447.722902 |
| 18210 | 499.8002796 | 3446.001623 |
| 18225 | 500.0499301 | 3447.722902 |
|       |             |             |
| 18240 | 499.8002796 | 3446.001623 |
| 18255 | 500.0499301 | 3447.722902 |
| 18270 | 499.8002796 | 3446.001623 |
| 18285 | 499.8002796 | 3446.001623 |
| 18300 | 499.8002796 | 3446.001623 |
|       |             |             |
| 18315 | 499.8002796 | 3446.001623 |
| 18330 | 499.8002796 | 3446.001623 |
| 18345 | 499.8002796 | 3446.001623 |
| 18360 | 499.8002796 | 3446.001623 |
|       |             |             |
| 18375 | 499.8002796 | 3446.001623 |
| 18390 | 499.8002796 | 3446.001623 |
| 18405 | 499.8002796 | 3446.001623 |
| 18420 | 499.8002796 | 3446.001623 |
|       |             | 3 3.55      |

| 18435 | 499.8002796 | 3446.001623 |
|-------|-------------|-------------|
| 18450 | 499.8002796 | 3446.001623 |
|       |             |             |
| 18465 | 499.8002796 | 3446.001623 |
| 18480 | 499.5506291 | 3444.280343 |
| 18495 | 499.5506291 | 3444.280343 |
|       |             |             |
| 18510 | 499.3009786 | 3442.559064 |
| 18525 | 499.3009786 | 3442.559064 |
| 18540 | 499.3009786 | 3442.559064 |
|       |             |             |
| 18555 | 499.3009786 | 3442.559064 |
| 18570 | 499.5506291 | 3444.280343 |
| 18585 | 499.5506291 | 3444.280343 |
| 18600 | 499.5506291 | 3444.280343 |
|       |             |             |
| 18615 | 499.3009786 | 3442.559064 |
| 18630 | 499.5506291 | 3444.280343 |
| 18645 | 499.3009786 | 3442.559064 |
|       |             |             |
| 18660 | 499.0513281 | 3440.837784 |
| 18675 | 498.5520272 | 3437.395225 |
| 18690 | 498.5520272 | 3437.395225 |
| 18705 | 498.5520272 | 3437.395225 |
|       |             |             |
| 18720 | 498.8016777 | 3439.116505 |
| 18735 | 498.8016777 | 3439.116505 |
| 18750 | 498.8016777 | 3439.116505 |
|       |             |             |
| 18765 | 498.3023767 | 3435.673946 |
| 18780 | 498.3023767 | 3435.673946 |
| 18795 | 498.3023767 | 3435.673946 |
| 18810 | 498.3023767 | 3435.673946 |
|       |             |             |
| 18825 | 498.0527262 | 3433.952666 |
| 18840 | 498.3023767 | 3435.673946 |
| 18855 | 498.3023767 | 3435.673946 |
| 18870 | 498.0527262 | 3433.952666 |
|       |             |             |
| 18885 | 498.0527262 | 3433.952666 |
| 18900 | 498.0527262 | 3433.952666 |
| 18915 | 498.0527262 | 3433.952666 |
| 18930 | 498.3023767 | 3435.673946 |
|       |             |             |
| 18945 | 498.3023767 | 3435.673946 |
| 18960 | 498.3023767 | 3435.673946 |
| 18975 | 498.3023767 | 3435.673946 |
| 18990 | 498.3023767 | 3435.673946 |
|       |             |             |
| 19005 | 498.3023767 | 3435.673946 |
| 19020 | 498.3023767 | 3435.673946 |
| 19035 | 498.3023767 | 3435.673946 |
|       |             |             |
| 19050 | 498.0527262 | 3433.952666 |
| 19065 | 498.3023767 | 3435.673946 |
| 19080 | 498.0527262 | 3433.952666 |
| 19095 | 498.0527262 | 3433.952666 |
|       |             |             |
| 19110 | 498.0527262 | 3433.952666 |
| 19125 | 498.0527262 | 3433.952666 |
| 19140 | 498.0527262 | 3433.952666 |
| 19155 | 498.0527262 | 3433.952666 |
|       |             |             |
| 19170 | 498.0527262 | 3433.952666 |
| 19185 | 498.0527262 | 3433.952666 |
| 19200 | 498.0527262 | 3433.952666 |
| 19215 | 497.8030757 | 3432.231387 |
|       |             |             |
| 19230 | 497.8030757 | 3432.231387 |
| 19245 | 497.8030757 | 3432.231387 |
| 19260 | 497.5534252 | 3430.510107 |
|       |             | 3.23.0.0101 |

| 40075 | 107 0000757 | 0400 004007 |
|-------|-------------|-------------|
| 19275 | 497.8030757 | 3432.231387 |
| 19290 | 497.5534252 | 3430.510107 |
| 19305 | 497.8030757 | 3432.231387 |
| 19320 | 497.5534252 | 3430.510107 |
| 19335 | 497.5534252 | 3430.510107 |
| 19350 | 497.5534252 | 3430.510107 |
|       |             |             |
| 19365 | 497.5534252 | 3430.510107 |
| 19380 | 497.5534252 | 3430.510107 |
| 19395 | 497.5534252 | 3430.510107 |
| 19410 | 497.3037747 | 3428.788828 |
| 19425 | 497.5534252 | 3430.510107 |
| 19440 | 497.5534252 | 3430.510107 |
| 19455 | 497.3037747 | 3428.788828 |
|       |             |             |
| 19470 | 497.5534252 | 3430.510107 |
| 19485 | 497.3037747 | 3428.788828 |
| 19500 | 497.5534252 | 3430.510107 |
| 19515 | 497.0541242 | 3427.067548 |
| 19530 | 497.0541242 | 3427.067548 |
| 19545 | 497.3037747 | 3428.788828 |
| 19560 | 497.3037747 | 3428.788828 |
|       |             |             |
| 19575 | 497.3037747 | 3428.788828 |
| 19590 | 497.3037747 | 3428.788828 |
| 19605 | 497.3037747 | 3428.788828 |
| 19620 | 497.3037747 | 3428.788828 |
| 19635 | 497.0541242 | 3427.067548 |
| 19650 | 497.3037747 | 3428.788828 |
| 19665 | 497.0541242 | 3427.067548 |
|       |             |             |
| 19680 | 497.0541242 | 3427.067548 |
| 19695 | 497.0541242 | 3427.067548 |
| 19710 | 497.0541242 | 3427.067548 |
| 19725 | 497.0541242 | 3427.067548 |
| 19740 | 497.0541242 | 3427.067548 |
| 19755 | 497.0541242 | 3427.067548 |
| 19770 | 497.0541242 | 3427.067548 |
| 19785 | 497.0541242 | 3427.067548 |
| 19800 | 497.0541242 | 3427.067548 |
|       |             |             |
| 19815 | 497.0541242 | 3427.067548 |
| 19830 | 496.8044737 | 3425.346269 |
| 19845 | 496.8044737 | 3425.346269 |
| 19860 | 496.8044737 | 3425.346269 |
| 19875 | 496.8044737 | 3425.346269 |
| 19890 | 496.8044737 | 3425.346269 |
| 19905 | 497.0541242 | 3427.067548 |
|       |             |             |
| 19920 | 496.8044737 | 3425.346269 |
| 19935 | 496.8044737 | 3425.346269 |
| 19950 | 496.5548232 | 3423.624989 |
| 19965 | 496.8044737 | 3425.346269 |
| 19980 | 496.5548232 | 3423.624989 |
| 19995 | 496.5548232 | 3423.624989 |
| 20010 | 496.5548232 | 3423.624989 |
| 20025 | 496.5548232 | 3423.624989 |
|       |             |             |
| 20040 | 496.5548232 | 3423.624989 |
| 20055 | 496.5548232 | 3423.624989 |
| 20070 | 496.5548232 | 3423.624989 |
| 20085 | 496.3051728 | 3421.90371  |
| 20100 | 496.3051728 | 3421.90371  |
|       |             |             |

| 20115 | 496.5548232 | 3423.624989 |
|-------|-------------|-------------|
| 20130 | 496.3051728 | 3421.90371  |
|       |             |             |
| 20145 | 496.3051728 | 3421.90371  |
| 20160 | 496.8044737 | 3425.346269 |
| 20175 | 497.0541242 | 3427.067548 |
| 20190 | 497.0541242 | 3427.067548 |
|       |             |             |
| 20205 | 496.8044737 | 3425.346269 |
| 20220 | 496.5548232 | 3423.624989 |
| 20235 | 496.5548232 | 3423.624989 |
| 20250 | 496.8044737 | 3425.346269 |
|       |             |             |
| 20265 | 497.0541242 | 3427.067548 |
| 20280 | 497.0541242 | 3427.067548 |
| 20295 | 497.0541242 | 3427.067548 |
| 20310 | 497.0541242 | 3427.067548 |
| 20325 | 497.0541242 | 3427.067548 |
|       |             |             |
| 20340 | 497.0541242 | 3427.067548 |
| 20355 | 497.0541242 | 3427.067548 |
| 20370 | 497.0541242 | 3427.067548 |
| 20385 | 497.0541242 | 3427.067548 |
|       |             |             |
| 20400 | 497.0541242 | 3427.067548 |
| 20415 | 496.5548232 | 3423.624989 |
| 20430 | 496.5548232 | 3423.624989 |
| 20445 | 496.8044737 | 3425.346269 |
| 20460 | 496.8044737 | 3425.346269 |
|       |             |             |
| 20475 | 496.5548232 | 3423.624989 |
| 20490 | 496.5548232 | 3423.624989 |
| 20505 | 496.5548232 | 3423.624989 |
| 20520 | 496.5548232 | 3423.624989 |
| 20535 | 496.3051728 | 3421.90371  |
|       |             |             |
| 20550 | 496.5548232 | 3423.624989 |
| 20565 | 494.8072698 | 3411.576032 |
| 20580 | 494.8072698 | 3411.576032 |
| 20595 | 494.8072698 | 3411.576032 |
| 20610 | 494.8072698 | 3411.576032 |
|       |             |             |
| 20625 | 494.8072698 | 3411.576032 |
| 20640 | 494.8072698 | 3411.576032 |
| 20655 | 494.5576193 | 3409.854753 |
| 20670 | 494.5576193 | 3409.854753 |
| 20685 | 494.8072698 | 3411.576032 |
|       |             |             |
| 20700 | 494.5576193 | 3409.854753 |
| 20715 | 494.3079688 | 3408.133473 |
| 20730 | 494.3079688 | 3408.133473 |
| 20745 | 494.5576193 | 3409.854753 |
| 20760 |             | 3408.133473 |
|       | 494.3079688 |             |
| 20775 | 494.3079688 | 3408.133473 |
| 20790 | 494.0583184 | 3406.412194 |
| 20805 | 494.0583184 | 3406.412194 |
| 20820 | 494.0583184 | 3406.412194 |
|       |             | 3406.412194 |
| 20835 | 494.0583184 |             |
| 20850 | 494.3079688 | 3408.133473 |
| 20865 | 493.8086679 | 3404.690914 |
| 20880 | 493.8086679 | 3404.690914 |
| 20895 | 493.8086679 | 3404.690914 |
|       |             |             |
| 20910 | 494.0583184 | 3406.412194 |
| 20925 | 494.0583184 | 3406.412194 |
| 20940 | 493.5590174 | 3402.969635 |
|       |             |             |

| 20955 | 493.5590174 | 3402.969635 |
|-------|-------------|-------------|
| 20970 | 493.8086679 | 3404.690914 |
|       |             |             |
| 20985 | 493.8086679 | 3404.690914 |
| 21000 | 493.5590174 | 3402.969635 |
| 21015 | 493.5590174 | 3402.969635 |
|       |             |             |
| 21030 | 493.5590174 | 3402.969635 |
| 21045 | 493.5590174 | 3402.969635 |
| 21060 | 493.5590174 | 3402.969635 |
|       |             |             |
| 21075 | 493.3093669 | 3401.248355 |
| 21090 | 493.3093669 | 3401.248355 |
| 21105 | 493,3093669 | 3401.248355 |
|       |             |             |
| 21120 | 493.3093669 | 3401.248355 |
| 21135 | 493.3093669 | 3401.248355 |
| 21150 | 493.0597164 | 3399.527076 |
| 21165 | 493.0597164 | 3399.527076 |
|       |             |             |
| 21180 | 493.0597164 | 3399.527076 |
| 21195 | 492.8100659 | 3397.805796 |
| 21210 | 492.8100659 | 3397.805796 |
|       |             |             |
| 21225 | 493.0597164 | 3399.527076 |
| 21240 | 492.8100659 | 3397.805796 |
| 21255 | 493.0597164 | 3399.527076 |
|       |             |             |
| 21270 | 492.8100659 | 3397.805796 |
| 21285 | 493.0597164 | 3399.527076 |
| 21300 | 492.8100659 | 3397.805796 |
| 21315 | 492.8100659 | 3397.805796 |
|       |             |             |
| 21330 | 492.8100659 | 3397.805796 |
| 21345 | 492.5604154 | 3396.084517 |
| 21360 | 492.5604154 | 3396.084517 |
|       |             |             |
| 21375 | 492.5604154 | 3396.084517 |
| 21390 | 492.5604154 | 3396.084517 |
| 21405 | 492.3107649 | 3394.363237 |
| 21420 | 492.5604154 | 3396.084517 |
| _     |             |             |
| 21435 | 492.5604154 | 3396.084517 |
| 21450 | 492.3107649 | 3394.363237 |
| 21465 | 492.5604154 | 3396.084517 |
| 21480 | 492.3107649 | 3394.363237 |
|       |             |             |
| 21495 | 492.3107649 | 3394.363237 |
| 21510 | 492.0611144 | 3392.641957 |
| 21525 | 492.3107649 | 3394.363237 |
|       |             |             |
| 21540 | 492.3107649 | 3394.363237 |
| 21555 | 492.0611144 | 3392.641957 |
| 21570 | 492.3107649 | 3394.363237 |
|       |             |             |
| 21585 | 492.3107649 | 3394.363237 |
| 21600 | 492.3107649 | 3394.363237 |
| 21615 | 492.3107649 | 3394.363237 |
| 21630 | 492.3107649 | 3394.363237 |
|       |             |             |
| 21645 | 492.0611144 | 3392.641957 |
| 21660 | 492.0611144 | 3392.641957 |
| 21675 | 492.0611144 | 3392.641957 |
|       |             |             |
| 21690 | 492.0611144 | 3392.641957 |
| 21705 | 492.0611144 | 3392.641957 |
| 21720 | 492.0611144 | 3392.641957 |
| 21735 | 492.3107649 | 3394.363237 |
|       |             |             |
| 21750 | 492.0611144 | 3392.641957 |
| 21765 | 492.0611144 | 3392.641957 |
| 21780 | 492.0611144 | 3392.641957 |
|       |             | 5552.511007 |

| 21795 | 492.0611144 | 3392.641957 |
|-------|-------------|-------------|
| 21810 | 492.3107649 | 3394.363237 |
|       |             |             |
| 21825 | 492.3107649 | 3394.363237 |
| 21840 | 492.0611144 | 3392.641957 |
| 21855 | 492.0611144 | 3392.641957 |
| 21870 | 491.811464  | 3390.920678 |
|       |             |             |
| 21885 | 492.0611144 | 3392.641957 |
| 21900 | 492.0611144 | 3392.641957 |
| 21915 | 491.811464  | 3390.920678 |
| 21930 | 492.0611144 | 3392.641957 |
| 21945 | 492.0611144 |             |
|       |             | 3392.641957 |
| 21960 | 492.0611144 | 3392.641957 |
| 21975 | 492.3107649 | 3394.363237 |
| 21990 | 492.3107649 | 3394.363237 |
| 22005 | 492.3107649 | 3394.363237 |
| 22020 | 492.3107649 | 3394.363237 |
|       |             |             |
| 22035 | 492.3107649 | 3394.363237 |
| 22050 | 492.3107649 | 3394.363237 |
| 22065 | 492.0611144 | 3392.641957 |
| 22080 | 492.3107649 | 3394.363237 |
| 22095 | 492.3107649 |             |
|       |             | 3394.363237 |
| 22110 | 492.3107649 | 3394.363237 |
| 22125 | 492.3107649 | 3394.363237 |
| 22140 | 492.3107649 | 3394.363237 |
| 22155 | 492.0611144 | 3392.641957 |
| 22170 | 492.3107649 | 3394.363237 |
| 22185 | 492.0611144 | 3392.641957 |
| 22200 | 492.0611144 | 3392.641957 |
|       |             |             |
| 22215 | 492.3107649 | 3394.363237 |
| 22230 | 492.0611144 | 3392.641957 |
| 22245 | 492.3107649 | 3394.363237 |
| 22260 | 492.0611144 | 3392.641957 |
| 22275 | 492.3107649 | 3394.363237 |
| 22290 | 492.0611144 | 3392.641957 |
| 22305 | 492.0611144 | 3392.641957 |
|       |             |             |
| 22320 | 492.0611144 | 3392.641957 |
| 22335 | 491.811464  | 3390.920678 |
| 22350 | 491.811464  | 3390.920678 |
| 22365 | 491.811464  | 3390.920678 |
| 22380 | 491.811464  | 3390.920678 |
| 22395 | 491.5618135 | 3389.199398 |
| 22410 | 491.811464  | 3390.920678 |
|       |             |             |
| 22425 | 491.811464  | 3390.920678 |
| 22440 | 491.811464  | 3390.920678 |
| 22455 | 491.811464  | 3390.920678 |
| 22470 | 491.5618135 | 3389.199398 |
| 22485 | 491.5618135 | 3389.199398 |
| 22500 | 491.5618135 | 3389.199398 |
|       |             |             |
| 22515 | 491.312163  | 3387.478119 |
| 22530 | 491.0625125 | 3385.756839 |
| 22545 | 491.0625125 | 3385.756839 |
| 22560 | 491.312163  | 3387.478119 |
| 22575 | 491.0625125 | 3385.756839 |
| 22590 | 491.0625125 | 3385.756839 |
| 22605 | 490.812862  | 3384.03556  |
| 22620 | 491.0625125 |             |
| ZZ0ZU | 491.0023123 | 3385.756839 |

| 22635 | 491.0625125 | 3385.756839 |
|-------|-------------|-------------|
| 22650 | 491.0625125 | 3385.756839 |
|       |             |             |
| 22665 | 491.0625125 | 3385.756839 |
| 22680 | 491.0625125 | 3385.756839 |
| 22695 | 491.0625125 | 3385.756839 |
|       |             |             |
| 22710 | 490.812862  | 3384.03556  |
| 22725 | 491.0625125 | 3385.756839 |
| 22740 | 490.812862  | 3384.03556  |
| 22755 | 490.812862  | 3384.03556  |
|       |             |             |
| 22770 | 490.812862  | 3384.03556  |
| 22785 | 490.812862  | 3384.03556  |
| 22800 | 491.0625125 | 3385.756839 |
| 22815 | 490.812862  | 3384.03556  |
|       |             |             |
| 22830 | 490.812862  | 3384.03556  |
| 22845 | 490.812862  | 3384.03556  |
| 22860 | 490.812862  | 3384.03556  |
|       |             |             |
| 22875 | 490.5632115 | 3382.31428  |
| 22890 | 490.5632115 | 3382.31428  |
| 22905 | 490.5632115 | 3382.31428  |
| 22920 | 490.5632115 | 3382.31428  |
|       |             |             |
| 22935 | 490.5632115 | 3382.31428  |
| 22950 | 490.5632115 | 3382.31428  |
| 22965 | 490.5632115 | 3382.31428  |
| 22980 | 490.5632115 | 3382.31428  |
|       |             |             |
| 22995 | 490.812862  | 3384.03556  |
| 23010 | 490.812862  | 3384.03556  |
| 23025 | 490.812862  | 3384.03556  |
| 23040 | 490.5632115 | 3382.31428  |
|       |             |             |
| 23055 | 490.5632115 | 3382.31428  |
| 23070 | 490.5632115 | 3382.31428  |
| 23085 | 490.5632115 | 3382.31428  |
| 23100 | 490.313561  | 3380.593001 |
| 23115 | 490.5632115 | 3382.31428  |
|       |             |             |
| 23130 | 490.313561  | 3380.593001 |
| 23145 | 490.5632115 | 3382.31428  |
| 23160 | 490.5632115 | 3382.31428  |
| 23175 | 491.0625125 | 3385.756839 |
|       |             |             |
| 23190 | 491.0625125 | 3385.756839 |
| 23205 | 491.0625125 | 3385.756839 |
| 23220 | 491.312163  | 3387.478119 |
| 23235 | 491.312163  | 3387.478119 |
|       |             |             |
| 23250 | 491.312163  | 3387.478119 |
| 23265 | 491.0625125 | 3385.756839 |
| 23280 | 491.0625125 | 3385.756839 |
| 23295 | 490.812862  | 3384.03556  |
|       |             |             |
| 23310 | 490.812862  | 3384.03556  |
| 23325 | 490.5632115 | 3382.31428  |
| 23340 | 490.5632115 | 3382.31428  |
| 23355 | 490.812862  | 3384.03556  |
|       |             |             |
| 23370 | 490.5632115 | 3382.31428  |
| 23385 | 490.5632115 | 3382.31428  |
| 23400 | 491.0625125 | 3385.756839 |
| 23415 | 491.0625125 | 3385.756839 |
| 23430 | 491.0625125 | 3385.756839 |
|       |             |             |
| 23445 | 491.0625125 | 3385.756839 |
| 23460 | 491.0625125 | 3385.756839 |
|       |             |             |

| 23475 | 490.812862   | 3384.03556   |
|-------|--------------|--------------|
| 23490 | 491.0625125  | 3385.756839  |
|       |              |              |
| 23505 | 491.0625125  | 3385.756839  |
| 23520 | 491.0625125  | 3385.756839  |
| 23535 | 491.0625125  | 3385.756839  |
|       |              |              |
| 23550 | 491.0625125  | 3385.756839  |
| 23565 | 490.812862   | 3384.03556   |
| 23580 | 490.812862   | 3384.03556   |
| 23595 | 490.812862   | 3384.03556   |
| 23610 | 490.812862   | 3384.03556   |
|       |              |              |
| 23625 | 490.5632115  | 3382.31428   |
| 23640 | 490.812862   | 3384.03556   |
| 23655 | 490.5632115  | 3382.31428   |
| 23670 | 490.5632115  | 3382.31428   |
|       |              | 3382.31428   |
| 23685 | 490.5632115  |              |
| 23700 | 490.5632115  | 3382.31428   |
| 23715 | 490.812862   | 3384.03556   |
| 23730 | 490.5632115  | 3382.31428   |
| 23745 | 490.313561   | 3380.593001  |
|       |              |              |
| 23760 | 490.313561   | 3380.593001  |
| 23775 | 490.313561   | 3380.593001  |
| 23790 | 490.313561   | 3380.593001  |
| 23805 | 490.313561   | 3380.593001  |
| 23820 | 490.313561   | 3380.593001  |
|       |              |              |
| 23835 | 490.313561   | 3380.593001  |
| 23850 | 490.313561   | 3380.593001  |
| 23865 | 490.313561   | 3380.593001  |
| 23880 | 490.313561   | 3380.593001  |
|       |              |              |
| 23895 | 490.313561   | 3380.593001  |
| 23910 | 490.313561   | 3380.593001  |
| 23925 | 490.313561   | 3380.593001  |
| 23940 | 490.0639105  | 3378.871721  |
| 23955 | 490.0639105  | 3378.871721  |
| 23970 | 490.313561   |              |
|       |              | 3380.593001  |
| 23985 | 490.0639105  | 3378.871721  |
| 24000 | 490.0639105  | 3378.871721  |
| 24015 | 489.81426    | 3377.150442  |
| 24030 | 490.0639105  | 3378.871721  |
|       |              | 3378.871721  |
| 24045 | 490.0639105  |              |
| 24060 | 489.81426    | 3377.150442  |
| 24075 | 490.0639105  | 3378.871721  |
| 24090 | 489.81426    | 3377.150442  |
| 24105 | 490.0639105  | 3378.871721  |
|       |              |              |
| 24120 | 490.0639105  | 3378.871721  |
| 24135 | 489.81426    | 3377.150442  |
| 24150 | 490.0639105  | 3378.871721  |
| 24165 | 490.0639105  | 3378.871721  |
| 24180 | 489.81426    | 3377.150442  |
|       |              |              |
| 24195 | 489.81426    | 3377.150442  |
| 24210 | 489.81426    | 3377.150442  |
| 24225 | 489.81426    | 3377.150442  |
| 24240 | 489.81426    | 3377.150442  |
| 24255 | 489.81426    | 3377.150442  |
|       |              |              |
| 24270 | 489.5646095  | 3375.429162  |
| 24285 | 489.5646095  | 3375.429162  |
| 24300 | 489.5646095  | 3375.429162  |
|       | <del>-</del> | <del>-</del> |

| 24315 | 489.81426   | 3377.150442 |
|-------|-------------|-------------|
| 24330 | 489.5646095 | 3375.429162 |
| 24345 | 489.5646095 | 3375.429162 |
| 24360 | 489.5646095 | 3375.429162 |
| 24375 | 489.5646095 | 3375.429162 |
|       |             |             |
| 24390 | 489.3149591 | 3373.707883 |
| 24405 | 489.3149591 | 3373.707883 |
| 24420 | 489.5646095 | 3375.429162 |
| 24435 | 489.5646095 | 3375.429162 |
| 24450 | 489.5646095 | 3375.429162 |
|       |             |             |
| 24465 | 489.3149591 | 3373.707883 |
| 24480 | 489.3149591 | 3373.707883 |
| 24495 | 489.3149591 | 3373.707883 |
| 24510 | 489.3149591 | 3373.707883 |
| 24525 | 489.3149591 | 3373.707883 |
| 24540 | 489.3149591 | 3373.707883 |
| 24555 | 489.0653086 | 3371.986603 |
| 24570 | 489.0653086 | 3371.986603 |
|       |             |             |
| 24585 | 489.0653086 | 3371.986603 |
| 24600 | 489.3149591 | 3373.707883 |
| 24615 | 489.0653086 | 3371.986603 |
| 24630 | 489.0653086 | 3371.986603 |
| 24645 | 489.0653086 | 3371.986603 |
| 24660 | 489.0653086 | 3371.986603 |
| 24675 | 488.8156581 | 3370.265324 |
|       |             |             |
| 24690 | 488.8156581 | 3370.265324 |
| 24705 | 488.8156581 | 3370.265324 |
| 24720 | 488.8156581 | 3370.265324 |
| 24735 | 488.5660076 | 3368.544044 |
| 24750 | 488.8156581 | 3370.265324 |
| 24765 | 488.8156581 | 3370.265324 |
| 24780 | 488.5660076 | 3368.544044 |
| 24795 | 488.5660076 | 3368.544044 |
|       |             |             |
| 24810 | 488.5660076 | 3368.544044 |
| 24825 | 488.5660076 | 3368.544044 |
| 24840 | 488.5660076 | 3368.544044 |
| 24855 | 488.5660076 | 3368.544044 |
| 24870 | 488.5660076 | 3368.544044 |
| 24885 | 488.5660076 | 3368.544044 |
| 24900 | 488.3163571 | 3366.822764 |
| 24915 | 488.3163571 | 3366.822764 |
|       |             |             |
| 24930 | 488.3163571 | 3366.822764 |
| 24945 | 488.5660076 | 3368.544044 |
| 24960 | 488.3163571 | 3366.822764 |
| 24975 | 488.3163571 | 3366.822764 |
| 24990 | 488.3163571 | 3366.822764 |
| 25005 | 488.3163571 | 3366.822764 |
| 25020 | 488.3163571 | 3366.822764 |
| 25035 | 488.3163571 | 3366.822764 |
|       |             |             |
| 25050 | 488.3163571 | 3366.822764 |
| 25065 | 488.0667066 | 3365.101485 |
| 25080 | 488.0667066 | 3365.101485 |
| 25095 | 488.0667066 | 3365.101485 |
| 25110 | 488.3163571 | 3366.822764 |
| 25125 | 488.0667066 | 3365.101485 |
| 25140 | 488.0667066 | 3365.101485 |
| _00   | .30.0007000 | 200001100   |

| 25155 | 488.0667066 | 3365.101485 |
|-------|-------------|-------------|
| 25170 | 487.8170561 |             |
|       |             | 3363.380205 |
| 25185 | 487.8170561 | 3363.380205 |
| 25200 | 488.0667066 | 3365.101485 |
| 25215 | 487.8170561 | 3363.380205 |
| 25230 | 488.0667066 | 3365.101485 |
|       |             |             |
| 25245 | 487.8170561 | 3363.380205 |
| 25260 | 487.5674056 | 3361.658926 |
| 25275 | 487.8170561 | 3363.380205 |
| 25290 | 488.0667066 | 3365.101485 |
| 25305 | 487.8170561 | 3363.380205 |
|       |             |             |
| 25320 | 487.5674056 | 3361.658926 |
| 25335 | 487.8170561 | 3363.380205 |
| 25350 | 487.8170561 | 3363.380205 |
| 25365 | 487.5674056 | 3361.658926 |
| 25380 | 487.5674056 | 3361.658926 |
| 25395 | 487.5674056 | 3361.658926 |
|       |             |             |
| 25410 | 487.5674056 | 3361.658926 |
| 25425 | 487.5674056 | 3361.658926 |
| 25440 | 487.5674056 | 3361.658926 |
| 25455 | 487.5674056 | 3361.658926 |
| 25470 | 487.5674056 | 3361.658926 |
|       |             |             |
| 25485 | 487.3177551 | 3359.937646 |
| 25500 | 487.3177551 | 3359.937646 |
| 25515 | 487.3177551 | 3359.937646 |
| 25530 | 487.3177551 | 3359.937646 |
| 25545 | 487.5674056 | 3361.658926 |
| 25560 | 487.3177551 | 3359.937646 |
| 25575 | 487.0681047 | 3358.216367 |
|       |             |             |
| 25590 | 487.3177551 | 3359.937646 |
| 25605 | 487.0681047 | 3358.216367 |
| 25620 | 487.0681047 | 3358.216367 |
| 25635 | 487.0681047 | 3358.216367 |
| 25650 | 487.0681047 | 3358.216367 |
| 25665 | 486.8184542 | 3356.495087 |
| 25680 | 486.8184542 | 3356.495087 |
|       |             |             |
| 25695 | 486.8184542 | 3356.495087 |
| 25710 | 487.0681047 | 3358.216367 |
| 25725 | 486.8184542 | 3356.495087 |
| 25740 | 486.8184542 | 3356.495087 |
| 25755 | 487.0681047 | 3358.216367 |
| 25770 | 486.8184542 | 3356.495087 |
|       |             |             |
| 25785 | 486.8184542 | 3356.495087 |
| 25800 | 486.5688037 | 3354.773808 |
| 25815 | 486.8184542 | 3356.495087 |
| 25830 | 486.8184542 | 3356.495087 |
| 25845 | 486.8184542 | 3356.495087 |
| 25860 | 486.5688037 | 3354.773808 |
| 25875 |             |             |
|       | 486.5688037 | 3354.773808 |
| 25890 | 486.5688037 | 3354.773808 |
| 25905 | 486.5688037 | 3354.773808 |
| 25920 | 486.5688037 | 3354.773808 |
| 25935 | 486.5688037 | 3354.773808 |
| 25950 | 486.5688037 | 3354.773808 |
| 25965 | 486.8184542 | 3356.495087 |
| 25980 | 486.5688037 | 3354.773808 |
|       |             |             |

| 25995 | 486.5688037 | 3354.773808 |
|-------|-------------|-------------|
|       |             |             |
| 26010 | 486.3191532 | 3353.052528 |
| 26025 | 486.5688037 | 3354.773808 |
| 26040 | 486.5688037 | 3354.773808 |
| 26055 | 486.5688037 | 3354.773808 |
| 26070 | 486.5688037 | 3354.773808 |
| 26085 | 486.5688037 | 3354.773808 |
| 26100 | 486.5688037 | 3354.773808 |
| 26115 | 486.5688037 | 3354.773808 |
| 26130 | 486.5688037 | 3354.773808 |
| _0.00 |             |             |
| 26145 | 486.8184542 | 3356.495087 |
| 26160 | 486.8184542 | 3356.495087 |
| 26175 | 486.5688037 | 3354.773808 |
| 26190 | 486.8184542 | 3356.495087 |
| 26205 | 486.8184542 | 3356.495087 |
| 26220 | 486.5688037 | 3354.773808 |
| 26235 | 486.5688037 | 3354.773808 |
| 26250 | 486.8184542 | 3356.495087 |
| 26265 | 486.5688037 | 3354.773808 |
| 26280 | 486.5688037 | 3354.773808 |
| 26295 | 486.5688037 |             |
|       |             | 3354.773808 |
| 26310 | 486.5688037 | 3354.773808 |
| 26325 | 486.5688037 | 3354.773808 |
| 26340 | 486.8184542 | 3356.495087 |
| 26355 | 486.5688037 | 3354.773808 |
| 26370 | 486.5688037 | 3354.773808 |
| 26385 | 486.5688037 | 3354.773808 |
| 26400 | 486.5688037 | 3354.773808 |
| 26415 | 486.5688037 | 3354.773808 |
| 26430 | 486.3191532 | 3353.052528 |
| 26445 | 486.5688037 | 3354.773808 |
| 26460 | 486.5688037 | 3354.773808 |
| 26475 | 486.5688037 |             |
|       |             | 3354.773808 |
| 26490 | 486.5688037 | 3354.773808 |
| 26505 | 486.3191532 | 3353.052528 |
| 26520 | 486.5688037 | 3354.773808 |
| 26535 | 486.0695027 | 3351.331249 |
| 26550 | 486.0695027 | 3351.331249 |
| 26565 | 486.0695027 | 3351.331249 |
| 26580 | 486.0695027 | 3351.331249 |
| 26595 | 486.0695027 | 3351.331249 |
| 26610 | 486.0695027 | 3351.331249 |
| 26625 | 486.0695027 | 3351.331249 |
| 26640 | 486.0695027 | 3351.331249 |
|       |             |             |
| 26655 | 486.0695027 | 3351.331249 |
| 26670 | 486.0695027 | 3351.331249 |
| 26685 | 486.0695027 | 3351.331249 |
| 26700 | 486.0695027 | 3351.331249 |
| 26715 | 486.0695027 | 3351.331249 |
| 26730 | 486.0695027 | 3351.331249 |
| 26745 | 486.0695027 | 3351.331249 |
| 26760 | 486.0695027 | 3351.331249 |
| 26775 | 486.0695027 | 3351.331249 |
| 26790 | 486.0695027 | 3351.331249 |
| 26805 | 485.8198522 | 3349.609969 |
|       |             |             |
| 26820 | 485.8198522 | 3349.609969 |

| 26835 | 486.0695027 | 3351.331249 |
|-------|-------------|-------------|
| 26850 | 485.8198522 | 3349.609969 |
|       |             |             |
| 26865 | 485.5702017 | 3347.88869  |
| 26880 | 485.8198522 | 3349.609969 |
| 26895 | 485.8198522 | 3349.609969 |
|       |             |             |
| 26910 | 485.5702017 | 3347.88869  |
| 26925 | 485.5702017 | 3347.88869  |
| 26940 | 485.5702017 | 3347.88869  |
| 26955 | 485.3205512 | 3346.16741  |
| 26970 | 485.3205512 | 3346.16741  |
|       |             |             |
| 26985 | 485.3205512 | 3346.16741  |
| 27000 | 485.3205512 | 3346.16741  |
| 27015 | 485.3205512 | 3346.16741  |
| 27030 | 485.3205512 | 3346.16741  |
|       |             |             |
| 27045 | 485.3205512 | 3346.16741  |
| 27060 | 485.0709007 | 3344.446131 |
| 27075 | 485.0709007 | 3344.446131 |
| 27090 | 485.3205512 | 3346.16741  |
| 27105 | 485.3205512 | 3346.16741  |
|       |             |             |
| 27120 | 485.0709007 | 3344.446131 |
| 27135 | 485.0709007 | 3344.446131 |
| 27150 | 484.8212502 | 3342.724851 |
| 27165 | 484.8212502 | 3342.724851 |
|       |             |             |
| 27180 | 485.0709007 | 3344.446131 |
| 27195 | 484.8212502 | 3342.724851 |
| 27210 | 484.8212502 | 3342.724851 |
| 27225 | 484.8212502 | 3342.724851 |
| 27240 | 484.8212502 | 3342.724851 |
|       |             |             |
| 27255 | 484.8212502 | 3342.724851 |
| 27270 | 484.8212502 | 3342.724851 |
| 27285 | 484.8212502 | 3342.724851 |
| 27300 | 485.0709007 | 3344.446131 |
| 27315 | 485.3205512 | 3346.16741  |
|       |             |             |
| 27330 | 485.5702017 | 3347.88869  |
| 27345 | 485.5702017 | 3347.88869  |
| 27360 | 485.8198522 | 3349.609969 |
| 27375 | 485.8198522 | 3349.609969 |
| 27390 | 485.8198522 | 3349.609969 |
|       |             |             |
| 27405 | 486.0695027 | 3351.331249 |
| 27420 | 486.0695027 | 3351.331249 |
| 27435 | 486.0695027 | 3351.331249 |
| 27450 | 486.0695027 | 3351.331249 |
| 27465 | 486.0695027 | 3351.331249 |
|       |             |             |
| 27480 | 486.0695027 | 3351.331249 |
| 27495 | 486.0695027 | 3351.331249 |
| 27510 | 485.8198522 | 3349.609969 |
| 27525 | 486.0695027 | 3351.331249 |
| 27540 | 486.0695027 | 3351.331249 |
|       |             |             |
| 27555 | 486.3191532 | 3353.052528 |
| 27570 | 486.0695027 | 3351.331249 |
| 27585 | 486.0695027 | 3351.331249 |
| 27600 | 486.0695027 | 3351.331249 |
|       |             |             |
| 27615 | 486.0695027 | 3351.331249 |
| 27630 | 486.0695027 | 3351.331249 |
| 27645 | 486.0695027 | 3351.331249 |
| 27660 | 486.0695027 | 3351.331249 |
|       |             | •           |

| 27675 | 486.0695027 | 3351.331249 |
|-------|-------------|-------------|
| 27690 | 486.0695027 | 3351.331249 |
|       |             |             |
| 27705 | 485.8198522 | 3349.609969 |
| 27720 | 486.0695027 | 3351.331249 |
| 27735 | 485.8198522 | 3349.609969 |
|       |             |             |
| 27750 | 486.0695027 | 3351.331249 |
| 27765 | 485.8198522 | 3349.609969 |
| 27780 | 486.0695027 | 3351.331249 |
| 27795 | 486.0695027 | 3351.331249 |
| 27810 | 485.8198522 | 3349.609969 |
|       |             |             |
| 27825 | 486.0695027 | 3351.331249 |
| 27840 | 485.8198522 | 3349.609969 |
| 27855 | 485.8198522 | 3349.609969 |
| 27870 | 485.8198522 | 3349.609969 |
|       |             |             |
| 27885 | 485.5702017 | 3347.88869  |
| 27900 | 485.8198522 | 3349.609969 |
| 27915 | 485.8198522 | 3349.609969 |
| 27930 | 485.5702017 | 3347.88869  |
| 27945 | 485.5702017 | 3347.88869  |
|       |             |             |
| 27960 | 485.8198522 | 3349.609969 |
| 27975 | 485.8198522 | 3349.609969 |
| 27990 | 485.5702017 | 3347.88869  |
| 28005 | 485.3205512 | 3346.16741  |
|       |             |             |
| 28020 | 485.5702017 | 3347.88869  |
| 28035 | 485.5702017 | 3347.88869  |
| 28050 | 485.5702017 | 3347.88869  |
| 28065 | 485.5702017 | 3347.88869  |
| 28080 | 485.5702017 | 3347.88869  |
| 28095 | 485.5702017 | 3347.88869  |
|       |             |             |
| 28110 | 485.5702017 | 3347.88869  |
| 28125 | 485.3205512 | 3346.16741  |
| 28140 | 485.3205512 | 3346.16741  |
| 28155 | 485.5702017 | 3347.88869  |
| 28170 | 485.3205512 | 3346.16741  |
|       |             |             |
| 28185 | 485.3205512 | 3346.16741  |
| 28200 | 485.3205512 | 3346.16741  |
| 28215 | 485.3205512 | 3346.16741  |
| 28230 | 485.3205512 | 3346.16741  |
| 28245 | 485.3205512 | 3346.16741  |
|       |             |             |
| 28260 | 485.3205512 | 3346.16741  |
| 28275 | 485.0709007 | 3344.446131 |
| 28290 | 485.0709007 | 3344.446131 |
| 28305 | 485.0709007 | 3344.446131 |
| 28320 | 485.0709007 | 3344.446131 |
|       |             |             |
| 28335 | 485.0709007 | 3344.446131 |
| 28350 | 484.8212502 | 3342.724851 |
| 28365 | 484.8212502 | 3342.724851 |
| 28380 | 484.5715998 | 3341.003572 |
| 28395 | 484.3219493 | 3339.282292 |
|       |             |             |
| 28410 | 484.3219493 | 3339.282292 |
| 28425 | 484.3219493 | 3339.282292 |
| 28440 | 484.3219493 | 3339.282292 |
| 28455 | 484.3219493 | 3339.282292 |
|       |             |             |
| 28470 | 484.3219493 | 3339.282292 |
| 28485 | 484.3219493 | 3339.282292 |
| 28500 | 484.3219493 | 3339.282292 |
|       |             |             |

| 28515 | 484.0722988  | 3337.561012 |
|-------|--------------|-------------|
| 28530 | 484.0722988  | 3337.561012 |
|       |              |             |
| 28545 | 484.0722988  | 3337.561012 |
| 28560 | 484.0722988  | 3337.561012 |
| 28575 | 484.0722988  | 3337.561012 |
| 28590 | 484.0722988  | 3337.561012 |
| 28605 | 483.8226483  | 3335.839733 |
|       |              |             |
| 28620 | 483.8226483  | 3335.839733 |
| 28635 | 483.8226483  | 3335.839733 |
| 28650 | 483.8226483  | 3335.839733 |
| 28665 | 483.5729978  | 3334.118453 |
| 28680 | 483.5729978  | 3334.118453 |
| 28695 | 483.5729978  | 3334.118453 |
|       |              |             |
| 28710 | 483.5729978  | 3334.118453 |
| 28725 | 483.5729978  | 3334.118453 |
| 28740 | 484.0722988  | 3337.561012 |
| 28755 | 484.0722988  | 3337.561012 |
| 28770 | 484.0722988  | 3337.561012 |
|       | 484.0722988  |             |
| 28785 |              | 3337.561012 |
| 28800 | 484.3219493  | 3339.282292 |
| 28815 | 484.3219493  | 3339.282292 |
| 28830 | 484.5715998  | 3341.003572 |
| 28845 | 484.3219493  | 3339.282292 |
| 28860 | 484.3219493  | 3339.282292 |
|       |              |             |
| 28875 | 484.5715998  | 3341.003572 |
| 28890 | 484.5715998  | 3341.003572 |
| 28905 | 484.5715998  | 3341.003572 |
| 28920 | 484.5715998  | 3341.003572 |
| 28935 | 484.8212502  | 3342.724851 |
| 28950 | 484.8212502  | 3342.724851 |
| 28965 | 484.8212502  | 3342.724851 |
|       |              |             |
| 28980 | 485.0709007  | 3344.446131 |
| 28995 | 484.8212502  | 3342.724851 |
| 29010 | 484.8212502  | 3342.724851 |
| 29025 | 484.8212502  | 3342.724851 |
| 29040 | 484.8212502  | 3342.724851 |
| 29055 | 484.5715998  | 3341.003572 |
|       |              |             |
| 29070 | 484.5715998  | 3341.003572 |
| 29085 | 484.5715998  | 3341.003572 |
| 29100 | 484.5715998  | 3341.003572 |
| 29115 | 484.3219493  | 3339.282292 |
| 29130 | 484.3219493  | 3339.282292 |
| 29145 | 484.3219493  | 3339.282292 |
|       |              |             |
| 29160 | 484.3219493  | 3339.282292 |
| 29175 | 484.3219493  | 3339.282292 |
| 29190 | 484.3219493  | 3339.282292 |
| 29205 | 484.3219493  | 3339.282292 |
| 29220 | 484.3219493  | 3339.282292 |
| 29235 | 484.0722988  | 3337.561012 |
|       | 484.3219493  |             |
| 29250 |              | 3339.282292 |
| 29265 | 484.0722988  | 3337.561012 |
| 29280 | 484.3219493  | 3339.282292 |
| 29295 | 484.0722988  | 3337.561012 |
| 29310 | 484.0722988  | 3337.561012 |
| 29325 | 484.0722988  | 3337.561012 |
| 29340 | 484.0722988  | 3337.561012 |
| 20070 | TUT.U1 22300 | 3337.301012 |

| 29355 | 483.8226483 | 3335.839733 |
|-------|-------------|-------------|
| 29370 | 483.8226483 | 3335.839733 |
| 29385 | 483.8226483 | 3335.839733 |
|       |             |             |
| 29400 | 483.8226483 | 3335.839733 |
| 29415 | 483.8226483 | 3335.839733 |
| 29430 | 483.8226483 | 3335.839733 |
| 29445 | 483.5729978 | 3334.118453 |
|       |             |             |
| 29460 | 483.5729978 | 3334.118453 |
| 29475 | 483.3233473 | 3332.397174 |
| 29490 | 483.3233473 | 3332.397174 |
| 29505 | 483.3233473 | 3332.397174 |
| 29520 | 483.3233473 | 3332.397174 |
|       |             |             |
| 29535 | 483.3233473 | 3332.397174 |
| 29550 | 483.3233473 | 3332.397174 |
| 29565 | 483.3233473 | 3332.397174 |
| 29580 | 483.3233473 | 3332.397174 |
| 29595 | 483.3233473 | 3332.397174 |
|       |             |             |
| 29610 | 483.0736968 | 3330.675894 |
| 29625 | 483.0736968 | 3330.675894 |
| 29640 | 483.3233473 | 3332.397174 |
| 29655 | 482.8240463 | 3328.954615 |
| 29670 | 483.0736968 | 3330.675894 |
|       |             |             |
| 29685 | 482.8240463 | 3328.954615 |
| 29700 | 482.8240463 | 3328.954615 |
| 29715 | 482.5743958 | 3327.233335 |
| 29730 | 482.5743958 | 3327.233335 |
| 29745 | 482.5743958 | 3327.233335 |
| 29760 | 482.5743958 | 3327.233335 |
|       |             |             |
| 29775 | 482.5743958 | 3327.233335 |
| 29790 | 482.5743958 | 3327.233335 |
| 29805 | 482.8240463 | 3328.954615 |
| 29820 | 482.8240463 | 3328.954615 |
| 29835 | 482.5743958 | 3327.233335 |
| 29850 | 482.3247454 | 3325.512056 |
|       | 482.5743958 | 3327.233335 |
| 29865 |             |             |
| 29880 | 482.5743958 | 3327.233335 |
| 29895 | 482.3247454 | 3325.512056 |
| 29910 | 482.3247454 | 3325.512056 |
| 29925 | 482.3247454 | 3325.512056 |
| 29940 | 482.0750949 | 3323.790776 |
|       |             | 3325.512056 |
| 29955 | 482.3247454 |             |
| 29970 | 482.0750949 | 3323.790776 |
| 29985 | 482.3247454 | 3325.512056 |
| 30000 | 482.3247454 | 3325.512056 |
| 30015 | 482.3247454 | 3325.512056 |
| 30030 | 482.0750949 | 3323.790776 |
|       |             |             |
| 30045 | 482.0750949 | 3323.790776 |
| 30060 | 482.0750949 | 3323.790776 |
| 30075 | 482.0750949 | 3323.790776 |
| 30090 | 482.0750949 | 3323.790776 |
| 30105 | 481.8254444 | 3322.069497 |
| 30120 | 482.0750949 | 3323.790776 |
|       |             | 3323.790776 |
| 30135 | 482.0750949 |             |
| 30150 | 482.0750949 | 3323.790776 |
| 30165 | 482.0750949 | 3323.790776 |
| 30180 | 482.3247454 | 3325.512056 |
|       |             |             |

| 30195 | 482.8240463 | 3328.954615 |
|-------|-------------|-------------|
| 30210 | 483.0736968 | 3330.675894 |
|       |             |             |
| 30225 | 482.5743958 | 3327.233335 |
| 30240 | 482.5743958 | 3327.233335 |
| 30255 | 482.8240463 | 3328.954615 |
| 30255 |             |             |
| 30270 | 483.0736968 | 3330.675894 |
| 30285 | 482.8240463 | 3328.954615 |
|       |             |             |
| 30300 | 483.0736968 | 3330.675894 |
| 30315 | 483.0736968 | 3330.675894 |
| 30330 | 483.3233473 | 3332.397174 |
|       |             |             |
| 30345 | 483.3233473 | 3332.397174 |
| 30360 | 483.3233473 | 3332.397174 |
| 30375 | 483.3233473 | 3332.397174 |
|       |             |             |
| 30390 | 483.3233473 | 3332.397174 |
| 30405 | 483.3233473 | 3332.397174 |
| 30420 | 483.3233473 | 3332.397174 |
| 30435 | 483.0736968 |             |
|       |             | 3330.675894 |
| 30450 | 483.3233473 | 3332.397174 |
| 30465 | 483.3233473 | 3332.397174 |
| 30480 | 483.0736968 | 3330.675894 |
|       |             |             |
| 30495 | 483.3233473 | 3332.397174 |
| 30510 | 483.0736968 | 3330.675894 |
| 30525 | 483.3233473 | 3332.397174 |
|       |             |             |
| 30540 | 483.3233473 | 3332.397174 |
| 30555 | 483.3233473 | 3332.397174 |
| 30570 | 483.3233473 | 3332.397174 |
|       |             |             |
| 30585 | 483.3233473 | 3332.397174 |
| 30600 | 483.3233473 | 3332.397174 |
| 30615 | 482.8240463 | 3328.954615 |
| 30630 | 482.8240463 | 3328.954615 |
|       |             |             |
| 30645 | 482.8240463 | 3328.954615 |
| 30660 | 482.5743958 | 3327.233335 |
| 30675 | 482.8240463 | 3328.954615 |
|       |             |             |
| 30690 | 482.5743958 | 3327.233335 |
| 30705 | 482.3247454 | 3325.512056 |
| 30720 | 482.3247454 | 3325.512056 |
|       |             |             |
| 30735 | 482.5743958 | 3327.233335 |
| 30750 | 482.5743958 | 3327.233335 |
| 30765 | 482.5743958 | 3327.233335 |
|       |             |             |
| 30780 | 482.3247454 | 3325.512056 |
| 30795 | 482.5743958 | 3327.233335 |
| 30810 | 482.0750949 | 3323.790776 |
| 30825 | 482.3247454 | 3325.512056 |
|       |             |             |
| 30840 | 482.0750949 | 3323.790776 |
| 30855 | 482.0750949 | 3323.790776 |
| 30870 | 481.8254444 | 3322.069497 |
|       |             |             |
| 30885 | 482.0750949 | 3323.790776 |
| 30900 | 481.8254444 | 3322.069497 |
| 30915 | 481.8254444 | 3322.069497 |
| 30930 | 481.5757939 | 3320.348217 |
|       |             |             |
| 30945 | 481.5757939 | 3320.348217 |
| 30960 | 481.5757939 | 3320.348217 |
| 30975 | 481.5757939 | 3320.348217 |
|       |             |             |
| 30990 | 481.8254444 | 3322.069497 |
| 31005 | 481.5757939 | 3320.348217 |
| 31020 | 481.3261434 | 3318.626938 |
| J.U=U | .0          | 30.3.02000  |

| 31035                                                                                  | 481.3261434                                                                                                                                                       | 3318.626938                                                                                                                                                       |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31050                                                                                  | 481.5757939                                                                                                                                                       | 3320.348217                                                                                                                                                       |
| 31065                                                                                  | 481.3261434                                                                                                                                                       | 3318.626938                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31080                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
| 31095                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
| 31110                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31125                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
| 31140                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
| 31155                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
| 31170                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31185                                                                                  | 480.8268424                                                                                                                                                       | 3315.184379                                                                                                                                                       |
| 31200                                                                                  | 481.0764929                                                                                                                                                       | 3316.905658                                                                                                                                                       |
| 31215                                                                                  | 480.8268424                                                                                                                                                       | 3315.184379                                                                                                                                                       |
| 31230                                                                                  | 480.8268424                                                                                                                                                       | 3315.184379                                                                                                                                                       |
| 31245                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31260                                                                                  | 480.8268424                                                                                                                                                       | 3315.184379                                                                                                                                                       |
| 31275                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31290                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31305                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31320                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31335                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31350                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31365                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31380                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31395                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31410                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31425                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31440                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31455                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31470                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31485                                                                                  | 480.077891                                                                                                                                                        | 3310.02054                                                                                                                                                        |
| 31500                                                                                  | 480.077891                                                                                                                                                        | 3310.02054                                                                                                                                                        |
| 31515                                                                                  | 480.077891                                                                                                                                                        | 3310.02054                                                                                                                                                        |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31530                                                                                  | 480.077891                                                                                                                                                        | 3310.02054                                                                                                                                                        |
| 31545                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31560                                                                                  | 480.077891                                                                                                                                                        | 3310.02054                                                                                                                                                        |
| 31575                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31590                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   |                                                                                                                                                                   |
| 31605                                                                                  | 480.3275414                                                                                                                                                       | 3311.741819                                                                                                                                                       |
| 31620                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31635                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
| 31650                                                                                  | 480.5771919                                                                                                                                                       | 3313.463099                                                                                                                                                       |
|                                                                                        |                                                                                                                                                                   | 3313.463099                                                                                                                                                       |
| 31665                                                                                  | 480.5771919                                                                                                                                                       |                                                                                                                                                                   |
| 31680                                                                                  |                                                                                                                                                                   |                                                                                                                                                                   |
| 31000                                                                                  | 480.8268424                                                                                                                                                       | 3315.184379                                                                                                                                                       |
| 31695                                                                                  |                                                                                                                                                                   |                                                                                                                                                                   |
| 31695                                                                                  | 480.8268424<br>481.0764929                                                                                                                                        | 3315.184379<br>3316.905658                                                                                                                                        |
| 31695<br>31710                                                                         | 480.8268424<br>481.0764929<br>481.3261434                                                                                                                         | 3315.184379<br>3316.905658<br>3318.626938                                                                                                                         |
| 31695<br>31710<br>31725                                                                | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939                                                                                                          | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217                                                                                                          |
| 31695<br>31710<br>31725<br>31740                                                       | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434                                                                                           | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938                                                                                           |
| 31695<br>31710<br>31725<br>31740<br>31755                                              | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434                                                                            | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938                                                                            |
| 31695<br>31710<br>31725<br>31740                                                       | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434                                                                                           | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938                                                                                           |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770                                     | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434                                                                            | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938                                                             |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770<br>31785                            | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434<br>481.3261434                                                             | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938                                                             |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770<br>31785<br>31800                   | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434                               | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938                               |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770<br>31785<br>31800<br>31815          | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.5757939                | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938                |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770<br>31785<br>31800                   | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434                               | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938                               |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770<br>31785<br>31800<br>31815          | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.5757939                | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938                |
| 31695<br>31710<br>31725<br>31740<br>31755<br>31770<br>31785<br>31800<br>31815<br>31830 | 480.8268424<br>481.0764929<br>481.3261434<br>481.5757939<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.3261434<br>481.5757939<br>481.8254444 | 3315.184379<br>3316.905658<br>3318.626938<br>3320.348217<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3318.626938<br>3320.348217<br>3322.069497 |

| 31875  | 481.8254444 | 3322.069497 |
|--------|-------------|-------------|
| 31890  | 481.8254444 | 3322.069497 |
|        |             |             |
| 31905  | 481.8254444 | 3322.069497 |
| 31920  | 481.5757939 | 3320.348217 |
| 31935  | 481.3261434 | 3318.626938 |
| 31950  | 481.3261434 | 3318.626938 |
|        |             |             |
| 31965  | 481.5757939 | 3320.348217 |
| 31980  | 481.3261434 | 3318.626938 |
| 31995  | 481.0764929 | 3316.905658 |
|        |             |             |
| 32010  | 481.3261434 | 3318.626938 |
| 32025  | 481.3261434 | 3318.626938 |
| 32040  | 481.3261434 | 3318.626938 |
| 32055  | 481.3261434 | 3318.626938 |
|        |             |             |
| 32070  | 481.3261434 | 3318.626938 |
| 32085  | 481.0764929 | 3316.905658 |
| 32100  | 481.0764929 | 3316.905658 |
|        |             |             |
| 32115  | 481.0764929 | 3316.905658 |
| 32130  | 481.0764929 | 3316.905658 |
| 32145  | 480.8268424 | 3315.184379 |
| 32160  | 480.8268424 | 3315.184379 |
|        |             |             |
| 32175  | 480.8268424 | 3315.184379 |
| 32190  | 480.5771919 | 3313.463099 |
| 32205  | 480.8268424 | 3315.184379 |
|        |             |             |
| 32220  | 480.5771919 | 3313.463099 |
| 32235  | 480.5771919 | 3313.463099 |
| 32250  | 480.5771919 | 3313.463099 |
| 32265  | 480.5771919 | 3313.463099 |
| 32280  | 480.5771919 | 3313.463099 |
|        |             |             |
| 32295  | 480.5771919 | 3313.463099 |
| 32310  | 480.5771919 | 3313.463099 |
| 32325  | 480.5771919 | 3313.463099 |
| 32340  | 480.5771919 | 3313.463099 |
|        |             |             |
| 32355  | 480.5771919 | 3313.463099 |
| 32370  | 480.5771919 | 3313.463099 |
| 32385  | 480.5771919 | 3313.463099 |
| 32400  | 480.5771919 | 3313.463099 |
|        |             |             |
| 32415  | 480.3275414 | 3311.741819 |
| 32430  | 480.3275414 | 3311.741819 |
| 32445  | 480.5771919 | 3313.463099 |
| 32460  | 480.3275414 | 3311.741819 |
|        |             |             |
| 32475  | 480.3275414 | 3311.741819 |
| 32490  | 480.077891  | 3310.02054  |
| 32505  | 480.3275414 | 3311.741819 |
| 32520  | 480.3275414 | 3311.741819 |
|        |             |             |
| 32535  | 480.077891  | 3310.02054  |
| 32550  | 480.3275414 | 3311.741819 |
| 32565  | 480.3275414 | 3311.741819 |
| 32580  | 480.3275414 | 3311.741819 |
|        |             |             |
| 32595  | 480.077891  | 3310.02054  |
| 32610  | 480.077891  | 3310.02054  |
| 32625  | 480.077891  | 3310.02054  |
| 32640  | 480.077891  | 3310.02054  |
|        |             |             |
| 32655  | 479.8282405 | 3308.29926  |
| 32670  | 480.077891  | 3310.02054  |
| 32685  | 480.077891  | 3310.02054  |
| 32700  | 479.8282405 | 3308.29926  |
| J2. 00 | 110.0202-00 | 0000.20020  |

| 32715          | 479.8282405                | 3308.29926                 |
|----------------|----------------------------|----------------------------|
| 32730          | 479.8282405                | 3308.29926                 |
|                |                            |                            |
| 32745          | 479.8282405                | 3308.29926                 |
| 32760          | 479.8282405                | 3308.29926                 |
| 32775          | 479.8282405                | 3308.29926                 |
|                |                            |                            |
| 32790          | 479.57859                  | 3306.577981                |
| 32805          | 479.57859                  | 3306.577981                |
| 32820          | 479.57859                  | 3306.577981                |
| 32835          | 479.57859                  | 3306.577981                |
|                |                            |                            |
| 32850          | 479.3289395                | 3304.856701                |
| 32865          | 479.57859                  | 3306.577981                |
| 32880          | 479.3289395                | 3304.856701                |
| 32895          | 479.57859                  | 3306.577981                |
|                |                            |                            |
| 32910          | 479.3289395                | 3304.856701                |
| 32925          | 479.3289395                | 3304.856701                |
| 32940          | 479.3289395                | 3304.856701                |
| 32955          | 479.3289395                | 3304.856701                |
|                |                            |                            |
| 32970          | 479.079289                 | 3303.135422                |
| 32985          | 479.3289395                | 3304.856701                |
| 33000          | 479.079289                 | 3303.135422                |
| 33015          | 479.079289                 | 3303.135422                |
|                |                            |                            |
| 33030          | 479.3289395                | 3304.856701                |
| 33045          | 479.079289                 | 3303.135422                |
| 33060          | 479.3289395                | 3304.856701                |
| 33075          | 479.3289395                | 3304.856701                |
|                |                            |                            |
| 33090          | 479.57859                  | 3306.577981                |
| 33105          | 479.57859                  | 3306.577981                |
| 33120          | 479.8282405                | 3308.29926                 |
| 33135          | 480.077891                 | 3310.02054                 |
|                |                            |                            |
| 33150          | 480.077891                 | 3310.02054                 |
| 33165          | 480.077891                 | 3310.02054                 |
| 33180          | 480.077891                 | 3310.02054                 |
| 33195          | 480.3275414                | 3311.741819                |
| 33210          | 480.5771919                | 3313.463099                |
|                |                            |                            |
| 33225          | 480.5771919                | 3313.463099                |
| 33240          | 480.8268424                | 3315.184379                |
| 33255          | 480.5771919                | 3313.463099                |
| 33270          | 480.5771919                | 3313.463099                |
|                |                            |                            |
| 33285          | 480.8268424                | 3315.184379                |
| 33300          | 480.8268424                | 3315.184379                |
| 33315          | 480.8268424                | 3315.184379                |
| 33330          | 480.5771919                | 3313.463099                |
|                |                            |                            |
| 33345          | 480.8268424                | 3315.184379                |
| 33360          | 480.8268424                | 3315.184379                |
| 33375          | 480.8268424                | 3315.184379                |
| 33390          | 480.5771919                | 3313.463099                |
|                |                            |                            |
| 33405          | 480.5771919                | 3313.463099                |
| 33420          | 480.5771919                | 3313.463099                |
| 33435          | 480.5771919                | 3313.463099                |
| 33450          | 480.5771919                | 3313.463099                |
| 33465          | 480.5771919                | 3313.463099                |
|                |                            |                            |
| 33480          | 480.8268424                | 3315.184379                |
| 33495          |                            |                            |
| 00 100         | 480.5771919                | 3313.463099                |
|                |                            |                            |
| 33510          | 480.3275414                | 3311.741819                |
| 33510<br>33525 | 480.3275414<br>480.3275414 | 3311.741819<br>3311.741819 |
| 33510          | 480.3275414                | 3311.741819                |

| 33555 | 480.3275414 | 3311.741819  |
|-------|-------------|--------------|
| 33570 | 480.077891  | 3310.02054   |
| 33585 | 480.077891  | 3310.02054   |
|       |             |              |
| 33600 | 480.077891  | 3310.02054   |
| 33615 | 480.077891  | 3310.02054   |
| 33630 | 480.077891  | 3310.02054   |
| 33645 | 480.077891  | 3310.02054   |
| 33660 | 480.077891  | 3310.02054   |
|       |             |              |
| 33675 | 480.077891  | 3310.02054   |
| 33690 | 480.077891  | 3310.02054   |
| 33705 | 480.077891  | 3310.02054   |
| 33720 | 479.8282405 | 3308.29926   |
| 33735 | 479.8282405 | 3308.29926   |
| 33750 | 479.8282405 | 3308.29926   |
|       |             |              |
| 33765 | 479.8282405 | 3308.29926   |
| 33780 | 479.57859   | 3306.577981  |
| 33795 | 479.57859   | 3306.577981  |
| 33810 | 479.57859   | 3306.577981  |
| 33825 | 479.57859   | 3306.577981  |
| 33840 | 479.57859   | 3306.577981  |
| 33855 | 479.3289395 | 3304.856701  |
|       |             |              |
| 33870 | 479.57859   | 3306.577981  |
| 33885 | 479.3289395 | 3304.856701  |
| 33900 | 479.3289395 | 3304.856701  |
| 33915 | 479.3289395 | 3304.856701  |
| 33930 | 479.57859   | 3306.577981  |
| 33945 | 479.3289395 | 3304.856701  |
| 33960 | 479.57859   | 3306.577981  |
|       |             |              |
| 33975 | 479.57859   | 3306.577981  |
| 33990 | 479.3289395 | 3304.856701  |
| 34005 | 479.3289395 | 3304.856701  |
| 34020 | 479.079289  | 3303.135422  |
| 34035 | 478.8296385 | 3301.414142  |
| 34050 | 479.079289  | 3303.135422  |
| 34065 | 479.079289  | 3303.135422  |
|       |             |              |
| 34080 | 479.079289  | 3303.135422  |
| 34095 | 478.8296385 | 3301.414142  |
| 34110 | 479.079289  | 3303.135422  |
| 34125 | 478.8296385 | 3301.414142  |
| 34140 | 478.8296385 | 3301.414142  |
| 34155 | 479.079289  | 3303.135422  |
|       | 478.8296385 |              |
| 34170 |             | 3301.414142  |
| 34185 | 478.8296385 | 3301.414142  |
| 34200 | 478.8296385 | 3301.414142  |
| 34215 | 478.8296385 | 3301.414142  |
| 34230 | 478.579988  | 3299.692863  |
| 34245 | 478.579988  | 3299.692863  |
| 34260 | 478.8296385 | 3301.414142  |
| 34275 | 478.3303375 | 3297.971583  |
|       |             |              |
| 34290 | 478.3303375 | 3297.971583  |
| 34305 | 478.579988  | 3299.692863  |
| 34320 | 478.3303375 | 3297.971583  |
| 34335 | 478.579988  | 3299.692863  |
| 34350 | 478.3303375 | 3297.971583  |
| 34365 | 478.080687  | 3296.250304  |
| 34380 | 478.3303375 | 3297.971583  |
| J-300 | 770.0000070 | JE31.31 1JUJ |

| 0.400= | 4=0.00000=  |             |
|--------|-------------|-------------|
| 34395  | 478.080687  | 3296.250304 |
| 34410  | 478.080687  | 3296.250304 |
| 34425  | 478.080687  | 3296.250304 |
| 34440  | 478.080687  | 3296.250304 |
| 34455  | 478.080687  | 3296.250304 |
| 34470  | 478.080687  | 3296.250304 |
|        |             |             |
| 34485  | 477.8310365 | 3294.529024 |
| 34500  | 477.8310365 | 3294.529024 |
| 34515  | 477.8310365 | 3294.529024 |
| 34530  | 477.8310365 | 3294.529024 |
| 34545  | 477.8310365 | 3294.529024 |
| 34560  | 477.8310365 | 3294.529024 |
|        |             |             |
| 34575  | 477.8310365 | 3294.529024 |
| 34590  | 477.8310365 | 3294.529024 |
| 34605  | 477.8310365 | 3294.529024 |
| 34620  | 477.8310365 | 3294.529024 |
| 34635  | 477.8310365 | 3294.529024 |
| 34650  | 477.8310365 | 3294.529024 |
| 34665  | 477.8310365 | 3294.529024 |
|        |             |             |
| 34680  | 477.8310365 | 3294.529024 |
| 34695  | 477.8310365 | 3294.529024 |
| 34710  | 477.8310365 | 3294.529024 |
| 34725  | 477.8310365 | 3294.529024 |
| 34740  | 477.8310365 | 3294.529024 |
| 34755  | 477.8310365 | 3294.529024 |
| 34770  | 477.8310365 | 3294.529024 |
|        |             |             |
| 34785  | 477.8310365 | 3294.529024 |
| 34800  | 477.8310365 | 3294.529024 |
| 34815  | 477.8310365 | 3294.529024 |
| 34830  | 477.8310365 | 3294.529024 |
| 34845  | 477.8310365 | 3294.529024 |
| 34860  | 477.8310365 | 3294.529024 |
| 34875  | 477.8310365 | 3294.529024 |
|        |             |             |
| 34890  | 477.8310365 | 3294.529024 |
| 34905  | 477.8310365 | 3294.529024 |
| 34920  | 477.8310365 | 3294.529024 |
| 34935  | 477.5813861 | 3292.807745 |
| 34950  | 477.8310365 | 3294.529024 |
| 34965  | 477.8310365 | 3294.529024 |
| 34980  | 477.8310365 | 3294.529024 |
|        |             |             |
| 34995  | 477.8310365 | 3294.529024 |
| 35010  | 477.8310365 | 3294.529024 |
| 35025  | 477.8310365 | 3294.529024 |
| 35040  | 477.5813861 | 3292.807745 |
| 35055  | 477.8310365 | 3294.529024 |
| 35070  | 477.8310365 | 3294.529024 |
| 35085  | 477.3317356 | 3291.086465 |
| 35100  | 477.5813861 | 3292.807745 |
|        |             |             |
| 35115  | 477.5813861 | 3292.807745 |
| 35130  | 477.5813861 | 3292.807745 |
| 35145  | 477.3317356 | 3291.086465 |
| 35160  | 477.3317356 | 3291.086465 |
| 35175  | 477.5813861 | 3292.807745 |
| 35190  | 477.3317356 | 3291.086465 |
| 35205  | 477.3317356 | 3291.086465 |
|        |             |             |
| 35220  | 477.3317356 | 3291.086465 |

| 35235 | 477.3317356 | 3291.086465 |
|-------|-------------|-------------|
| 35250 | 477.5813861 | 3292.807745 |
| 35265 | 477.3317356 | 3291.086465 |
|       |             |             |
| 35280 | 477.3317356 | 3291.086465 |
| 35295 | 477.3317356 | 3291.086465 |
| 35310 | 477.3317356 | 3291.086465 |
| 35325 | 477.3317356 | 3291.086465 |
|       |             |             |
| 35340 | 477.3317356 | 3291.086465 |
| 35355 | 477.3317356 | 3291.086465 |
| 35370 | 477.3317356 | 3291.086465 |
| 35385 | 477.0820851 | 3289.365186 |
|       |             |             |
| 35400 | 477.0820851 | 3289.365186 |
| 35415 | 477.3317356 | 3291.086465 |
| 35430 | 477.3317356 | 3291.086465 |
| 35445 | 477.0820851 | 3289.365186 |
| 35460 |             |             |
|       | 477.0820851 | 3289.365186 |
| 35475 | 477.0820851 | 3289.365186 |
| 35490 | 477.0820851 | 3289.365186 |
| 35505 | 476.8324346 | 3287.643906 |
| 35520 | 476.8324346 | 3287.643906 |
|       |             | 0_00.000    |
| 35535 | 476.8324346 | 3287.643906 |
| 35550 | 476.8324346 | 3287.643906 |
| 35565 | 477.0820851 | 3289.365186 |
| 35580 | 476.8324346 | 3287.643906 |
| 35595 | 476.5827841 | 3285.922626 |
|       |             |             |
| 35610 | 476.5827841 | 3285.922626 |
| 35625 | 476.5827841 | 3285.922626 |
| 35640 | 476.8324346 | 3287.643906 |
| 35655 | 476.5827841 | 3285.922626 |
|       |             |             |
| 35670 | 476.5827841 | 3285.922626 |
| 35685 | 476.5827841 | 3285.922626 |
| 35700 | 476.5827841 | 3285.922626 |
| 35715 | 476.3331336 | 3284.201347 |
| 35730 | 476.5827841 | 3285.922626 |
| 35745 | 476.5827841 | 0_00.0_00   |
|       |             | 3285.922626 |
| 35760 | 476.5827841 | 3285.922626 |
| 35775 | 476.3331336 | 3284.201347 |
| 35790 | 476.3331336 | 3284.201347 |
| 35805 | 476.3331336 | 3284.201347 |
|       |             |             |
| 35820 | 476.0834831 | 3282.480067 |
| 35835 | 476.3331336 | 3284.201347 |
| 35850 | 476.3331336 | 3284.201347 |
| 35865 | 476.3331336 | 3284.201347 |
| 35880 | 476.3331336 | 3284.201347 |
|       |             |             |
| 35895 | 476.3331336 | 3284.201347 |
| 35910 | 476.3331336 | 3284.201347 |
| 35925 | 476.0834831 | 3282.480067 |
| 35940 | 476.0834831 | 3282.480067 |
| 35955 | 476.0834831 | 3282.480067 |
|       |             |             |
| 35970 | 476.0834831 | 3282.480067 |
| 35985 | 475.8338326 | 3280.758788 |
| 36000 | 476.0834831 | 3282.480067 |
| 36015 | 476.0834831 | 3282.480067 |
| 36030 | 476.0834831 | 3282.480067 |
|       |             |             |
| 36045 | 476.0834831 | 3282.480067 |
| 36060 | 476.0834831 | 3282.480067 |
|       |             |             |

| 36075 | 476.0834831     | 3282.480067 |
|-------|-----------------|-------------|
| 36090 | 476.0834831     | 3282.480067 |
| 36105 | 476.0834831     | 3282.480067 |
| 36120 | 476.0834831     | 3282.480067 |
|       |                 |             |
| 36135 | 476.0834831     | 3282.480067 |
| 36150 | 476.0834831     | 3282.480067 |
| 36165 | 476.0834831     | 3282.480067 |
| 36180 | 476.0834831     | 3282.480067 |
| 36195 | 476.0834831     | 3282.480067 |
| 36210 | 476.0834831     | 3282.480067 |
|       |                 |             |
| 36225 | 476.0834831     | 3282.480067 |
| 36240 | 476.0834831     | 3282.480067 |
| 36255 | 476.0834831     | 3282.480067 |
| 36270 | 475.8338326     | 3280.758788 |
| 36285 | 476.0834831     | 3282.480067 |
| 36300 | 476.0834831     | 3282.480067 |
|       | 475.8338326     |             |
| 36315 | 0.00000_0       | 3280.758788 |
| 36330 | 476.0834831     | 3282.480067 |
| 36345 | 476.0834831     | 3282.480067 |
| 36360 | 476.0834831     | 3282.480067 |
| 36375 | 476.0834831     | 3282.480067 |
| 36390 | 476.0834831     | 3282.480067 |
|       | 476.0834831     | 3282.480067 |
| 36405 |                 | 0_0         |
| 36420 | 476.0834831     | 3282.480067 |
| 36435 | 476.0834831     | 3282.480067 |
| 36450 | 476.0834831     | 3282.480067 |
| 36465 | 476.0834831     | 3282.480067 |
| 36480 | 476.0834831     | 3282.480067 |
| 36495 | 476.0834831     | 3282.480067 |
|       | 476.0834831     |             |
| 36510 |                 | 3282.480067 |
| 36525 | 475.8338326     | 3280.758788 |
| 36540 | 475.8338326     | 3280.758788 |
| 36555 | 475.8338326     | 3280.758788 |
| 36570 | 476.0834831     | 3282.480067 |
| 36585 | 475.8338326     | 3280.758788 |
| 36600 | 475.8338326     | 3280.758788 |
| 36615 | 475.8338326     | 3280.758788 |
|       |                 |             |
| 36630 | 475.8338326     | 3280.758788 |
| 36645 | 475.8338326     | 3280.758788 |
| 36660 | 475.8338326     | 3280.758788 |
| 36675 | 475.5841821     | 3279.037508 |
| 36690 | 475.5841821     | 3279.037508 |
| 36705 | 475.5841821     | 3279.037508 |
| 36720 | 475.5841821     | 3279.037508 |
|       |                 |             |
| 36735 | 475.8338326     | 3280.758788 |
| 36750 | 475.5841821     | 3279.037508 |
| 36765 | 475.5841821     | 3279.037508 |
| 36780 | 475.5841821     | 3279.037508 |
| 36795 | 475.5841821     | 3279.037508 |
| 36810 | 475.5841821     | 3279.037508 |
| 36825 | 475.5841821     | 3279.037508 |
|       |                 |             |
| 36840 | 475.5841821     | 3279.037508 |
| 36855 | 475.5841821     | 3279.037508 |
| 36870 | 475.5841821     | 3279.037508 |
| 36885 | 475.3345317     | 3277.316229 |
| 36900 | 475.5841821     | 3279.037508 |
|       | · <del></del> · |             |

| 36915 | 475.3345317 | 3277.316229 |
|-------|-------------|-------------|
|       |             |             |
| 36930 | 475.3345317 | 3277.316229 |
| 36945 | 475.5841821 | 3279.037508 |
| 36960 | 475.5841821 | 3279.037508 |
| 36975 | 475.5841821 | 3279.037508 |
| 36990 | 475.3345317 | 3277.316229 |
|       |             |             |
| 37005 | 475.3345317 | 3277.316229 |
| 37020 | 475.3345317 | 3277.316229 |
| 37035 | 475.0848812 | 3275.594949 |
| 37050 | 475.3345317 | 3277.316229 |
|       |             |             |
| 37065 | 475.0848812 | 3275.594949 |
| 37080 | 475.3345317 | 3277.316229 |
| 37095 | 475.3345317 | 3277.316229 |
| 37110 | 475.3345317 | 3277.316229 |
| 37125 | 475.3345317 | 3277.316229 |
|       | 475.3345317 | 3277.316229 |
| 37140 |             |             |
| 37155 | 475.3345317 | 3277.316229 |
| 37170 | 475.0848812 | 3275.594949 |
| 37185 | 475.3345317 | 3277.316229 |
| 37200 | 475.3345317 | 3277.316229 |
|       |             |             |
| 37215 | 475.0848812 | 3275.594949 |
| 37230 | 475.0848812 | 3275.594949 |
| 37245 | 475.0848812 | 3275.594949 |
| 37260 | 475.0848812 | 3275.594949 |
| 37275 | 475.0848812 | 3275.594949 |
| 37290 | 475.0848812 | 3275.594949 |
| 37305 | 475.0848812 | 3275.594949 |
|       |             |             |
| 37320 | 475.0848812 | 3275.594949 |
| 37335 | 475.0848812 | 3275.594949 |
| 37350 | 475.0848812 | 3275.594949 |
| 37365 | 475.0848812 | 3275.594949 |
| 37380 | 475.0848812 | 3275.594949 |
| 37395 | 475.3345317 | 3277.316229 |
|       |             |             |
| 37410 | 469.0932694 | 3234.284241 |
| 37425 | 375.9736369 | 2592.246975 |
| 37440 | 366.2372678 | 2525.117073 |
| 37455 | 380.9666467 | 2626.672566 |
| 37470 | 395.9456761 | 2729.949338 |
| 37485 | 409.4268025 | 2822.898432 |
|       |             | 2896.913452 |
| 37500 | 420.1617735 |             |
| 37515 | 428.4002397 | 2953.715677 |
| 37530 | 434.6415019 | 2996.747665 |
| 37545 | 439.8841622 | 3032.894535 |
| 37560 | 444.377871  | 3063.877567 |
| 37575 | 448.3722788 | 3091.418039 |
| 37590 |             | 3117.237232 |
|       | 452.1170361 |             |
| 37605 | 455.8617935 | 3143.056425 |
| 37620 | 459.3569003 | 3167.154339 |
| 37635 | 463.3513082 | 3194.694811 |
| 37650 | 466.347114  | 3215.350166 |
| 37665 | 469.0932694 | 3234.284241 |
| 37680 | 471.3401238 | 3249.775756 |
|       |             |             |
| 37695 | 473.5869782 | 3265.267272 |
| 37710 | 475.3345317 | 3277.316229 |
| 37725 | 476.8324346 | 3287.643906 |
| 37740 | 477.8310365 | 3294.529024 |
| -     |             |             |

| 37755 | 478.8296385 | 3301.414142 |
|-------|-------------|-------------|
| 37770 | 479.8282405 | 3308.29926  |
| 37785 | 480.5771919 | 3313.463099 |
|       |             |             |
| 37800 | 481.0764929 | 3316.905658 |
| 37815 | 481.3261434 | 3318.626938 |
| 37830 | 481.8254444 | 3322.069497 |
| 37845 | 482.0750949 | 3323.790776 |
|       |             |             |
| 37860 | 482.5743958 | 3327.233335 |
| 37875 | 483.0736968 | 3330.675894 |
| 37890 | 483.0736968 | 3330.675894 |
| 37905 | 483.3233473 | 3332.397174 |
| 37920 | 483.5729978 | 3334.118453 |
|       |             |             |
| 37935 | 483.8226483 | 3335.839733 |
| 37950 | 483.5729978 | 3334.118453 |
| 37965 | 484.0722988 | 3337.561012 |
| 37980 | 484.0722988 | 3337.561012 |
| 37995 | 484.0722988 | 3337.561012 |
|       |             |             |
| 38010 | 484.0722988 | 3337.561012 |
| 38025 | 484.3219493 | 3339.282292 |
| 38040 | 484.0722988 | 3337.561012 |
| 38055 | 484.3219493 | 3339.282292 |
| 38070 | 484.5715998 | 3341.003572 |
| 38085 | 484.3219493 | 3339.282292 |
|       |             |             |
| 38100 | 484.5715998 | 3341.003572 |
| 38115 | 484.5715998 | 3341.003572 |
| 38130 | 484.8212502 | 3342.724851 |
| 38145 | 484.5715998 | 3341.003572 |
| 38160 | 484.3219493 | 3339.282292 |
| 38175 | 484.5715998 | 3341.003572 |
| 38190 | 484.5715998 | 3341.003572 |
|       |             | 3341.003572 |
| 38205 | 484.5715998 |             |
| 38220 | 484.5715998 | 3341.003572 |
| 38235 | 484.8212502 | 3342.724851 |
| 38250 | 484.8212502 | 3342.724851 |
| 38265 | 484.8212502 | 3342.724851 |
| 38280 | 485.0709007 | 3344.446131 |
|       | 484.8212502 | 3342.724851 |
| 38295 |             |             |
| 38310 | 484.8212502 | 3342.724851 |
| 38325 | 484.5715998 | 3341.003572 |
| 38340 | 484.5715998 | 3341.003572 |
| 38355 | 484.5715998 | 3341.003572 |
| 38370 | 484.5715998 | 3341.003572 |
| 38385 | 484.3219493 | 3339.282292 |
|       |             |             |
| 38400 | 484.3219493 | 3339.282292 |
| 38415 | 484.3219493 | 3339.282292 |
| 38430 | 484.5715998 | 3341.003572 |
| 38445 | 484.3219493 | 3339.282292 |
| 38460 | 484.3219493 | 3339.282292 |
| 38475 | 484.3219493 | 3339.282292 |
|       |             |             |
| 38490 | 484.3219493 | 3339.282292 |
| 38505 | 484.0722988 | 3337.561012 |
| 38520 | 484.0722988 | 3337.561012 |
| 38535 | 484.0722988 | 3337.561012 |
| 38550 | 484.0722988 | 3337.561012 |
| 38565 | 484.0722988 | 3337.561012 |
|       | .55         | 5551.50101Z |
| 38580 | 484.0722988 | 3337.561012 |

| 38595 | 484.0722988 | 3337.561012 |
|-------|-------------|-------------|
| 38610 | 483.8226483 | 3335.839733 |
|       |             |             |
| 38625 | 484.0722988 | 3337.561012 |
| 38640 | 483.8226483 | 3335.839733 |
| 38655 | 483.8226483 | 3335.839733 |
|       | 483.8226483 | 3335.839733 |
| 38670 |             |             |
| 38685 | 484.0722988 | 3337.561012 |
| 38700 | 483.5729978 | 3334.118453 |
| 38715 | 483.8226483 | 3335.839733 |
|       |             |             |
| 38730 | 483.8226483 | 3335.839733 |
| 38745 | 483.8226483 | 3335.839733 |
| 38760 | 483.5729978 | 3334.118453 |
| 38775 | 483.5729978 | 3334.118453 |
|       |             |             |
| 38790 | 483.5729978 | 3334.118453 |
| 38805 | 483.8226483 | 3335.839733 |
| 38820 | 483.8226483 | 3335.839733 |
|       |             |             |
| 38835 | 484.0722988 | 3337.561012 |
| 38850 | 484.3219493 | 3339.282292 |
| 38865 | 484.3219493 | 3339.282292 |
| 38880 | 484.3219493 | 3339.282292 |
|       |             |             |
| 38895 | 483.8226483 | 3335.839733 |
| 38910 | 483.8226483 | 3335.839733 |
| 38925 | 483.3233473 | 3332.397174 |
| 38940 | 483.8226483 | 3335.839733 |
|       |             |             |
| 38955 | 484.3219493 | 3339.282292 |
| 38970 | 484.0722988 | 3337.561012 |
| 38985 | 483.5729978 | 3334.118453 |
| 39000 | 483.8226483 | 3335.839733 |
|       |             |             |
| 39015 | 483.3233473 | 3332.397174 |
| 39030 | 483.5729978 | 3334.118453 |
| 39045 | 483.5729978 | 3334.118453 |
| 39060 | 483.8226483 | 3335.839733 |
|       |             |             |
| 39075 | 483.5729978 | 3334.118453 |
| 39090 | 483.8226483 | 3335.839733 |
| 39105 | 483.8226483 | 3335.839733 |
| 39120 | 484.5715998 | 3341.003572 |
|       |             |             |
| 39135 | 484.5715998 | 3341.003572 |
| 39150 | 484.5715998 | 3341.003572 |
| 39165 | 483.8226483 | 3335.839733 |
| 39180 | 483.3233473 | 3332.397174 |
|       |             |             |
| 39195 | 484.0722988 | 3337.561012 |
| 39210 | 483.8226483 | 3335.839733 |
| 39225 | 484.0722988 | 3337.561012 |
| 39240 | 484.8212502 | 3342.724851 |
|       |             |             |
| 39255 | 483.8226483 | 3335.839733 |
| 39270 | 483.5729978 | 3334.118453 |
| 39285 | 483.8226483 | 3335.839733 |
| 39300 | 483.3233473 | 3332.397174 |
|       |             |             |
| 39315 | 483.5729978 | 3334.118453 |
| 39330 | 483.8226483 | 3335.839733 |
| 39345 | 483.8226483 | 3335.839733 |
| 39360 | 483.8226483 | 3335.839733 |
| 39375 | 483.5729978 | 3334.118453 |
|       |             |             |
| 39390 | 483.8226483 | 3335.839733 |
| 39405 | 483.5729978 | 3334.118453 |
| 39420 | 483.8226483 | 3335.839733 |
| -     |             |             |

| 39435 | 483.8226483 | 3335.839733 |
|-------|-------------|-------------|
| 39450 | 483.8226483 | 3335.839733 |
|       |             |             |
| 39465 | 483.8226483 | 3335.839733 |
| 39480 | 483.8226483 | 3335.839733 |
| 39495 | 483.5729978 | 3334.118453 |
| 39510 | 483.8226483 | 3335.839733 |
|       |             |             |
| 39525 | 483.8226483 | 3335.839733 |
| 39540 | 483.5729978 | 3334.118453 |
| 39555 | 483.5729978 | 3334.118453 |
| 39570 | 483.8226483 | 3335.839733 |
|       |             |             |
| 39585 | 483.8226483 | 3335.839733 |
| 39600 | 483.5729978 | 3334.118453 |
| 39615 | 483.5729978 | 3334.118453 |
| 39630 | 483.5729978 | 3334.118453 |
| 39645 | 483.5729978 | 3334.118453 |
|       |             |             |
| 39660 | 483.3233473 | 3332.397174 |
| 39675 | 483.3233473 | 3332.397174 |
| 39690 | 483.3233473 | 3332.397174 |
| 39705 | 483.3233473 | 3332.397174 |
|       |             |             |
| 39720 | 483.5729978 | 3334.118453 |
| 39735 | 483.3233473 | 3332.397174 |
| 39750 | 483.3233473 | 3332.397174 |
| 39765 | 483.0736968 | 3330.675894 |
| 39780 | 482.8240463 | 3328.954615 |
|       |             |             |
| 39795 | 482.8240463 | 3328.954615 |
| 39810 | 482.5743958 | 3327.233335 |
| 39825 | 482.5743958 | 3327.233335 |
| 39840 | 482.3247454 | 3325.512056 |
|       |             |             |
| 39855 | 482.3247454 | 3325.512056 |
| 39870 | 482.3247454 | 3325.512056 |
| 39885 | 482.3247454 | 3325.512056 |
| 39900 | 482.0750949 | 3323.790776 |
| 39915 | 482.0750949 | 3323.790776 |
|       |             |             |
| 39930 | 482.3247454 | 3325.512056 |
| 39945 | 482.0750949 | 3323.790776 |
| 39960 | 481.8254444 | 3322.069497 |
| 39975 | 482.0750949 | 3323.790776 |
| 39990 | 481.8254444 | 3322.069497 |
|       |             |             |
| 40005 | 481.8254444 | 3322.069497 |
| 40020 | 481.8254444 | 3322.069497 |
| 40035 | 482.0750949 | 3323.790776 |
| 40050 | 481.5757939 | 3320.348217 |
| 40065 | 481.8254444 | 3322.069497 |
|       |             | 3322.069497 |
| 40080 | 481.8254444 |             |
| 40095 | 481.5757939 | 3320.348217 |
| 40110 | 481.5757939 | 3320.348217 |
| 40125 | 481.5757939 | 3320.348217 |
| 40140 | 481.5757939 | 3320.348217 |
|       |             |             |
| 40155 | 481.5757939 | 3320.348217 |
| 40170 | 481.5757939 | 3320.348217 |
| 40185 | 481.5757939 | 3320.348217 |
| 40200 | 481.5757939 | 3320.348217 |
| 40215 | 481.5757939 | 3320.348217 |
|       |             |             |
| 40230 | 481.5757939 | 3320.348217 |
| 40245 | 481.3261434 | 3318.626938 |
| 40260 | 481.5757939 | 3320.348217 |
|       |             |             |

| 40275 | 481.8254444 | 3322.069497 |
|-------|-------------|-------------|
| 40290 | 481.8254444 | 3322.069497 |
|       |             |             |
| 40305 | 482.0750949 | 3323.790776 |
| 40320 | 482.0750949 | 3323.790776 |
| 40335 | 482.5743958 | 3327.233335 |
| 40350 | 483.0736968 | 3330.675894 |
|       |             |             |
| 40365 | 483.0736968 | 3330.675894 |
| 40380 | 483.3233473 | 3332.397174 |
| 40395 | 483.3233473 | 3332.397174 |
| 40410 | 483.0736968 | 3330.675894 |
| 40425 | 483.3233473 | 3332.397174 |
|       |             |             |
| 40440 | 483.5729978 | 3334.118453 |
| 40455 | 483.8226483 | 3335.839733 |
| 40470 | 483.3233473 | 3332.397174 |
| 40485 | 482.8240463 | 3328.954615 |
| 40500 | 482.8240463 | 3328.954615 |
|       |             |             |
| 40515 | 482.5743958 | 3327.233335 |
| 40530 | 482.5743958 | 3327.233335 |
| 40545 | 482.5743958 | 3327.233335 |
| 40560 | 483.0736968 | 3330.675894 |
|       |             |             |
| 40575 | 483.0736968 | 3330.675894 |
| 40590 | 483.3233473 | 3332.397174 |
| 40605 | 483.8226483 | 3335.839733 |
| 40620 | 483.5729978 | 3334.118453 |
| 40635 | 483.5729978 | 3334.118453 |
|       |             |             |
| 40650 | 483.3233473 | 3332.397174 |
| 40665 | 483.3233473 | 3332.397174 |
| 40680 | 483.3233473 | 3332.397174 |
| 40695 | 483.3233473 | 3332.397174 |
| 40710 | 483.0736968 | 3330.675894 |
|       |             |             |
| 40725 | 483.3233473 | 3332.397174 |
| 40740 | 483.3233473 | 3332.397174 |
| 40755 | 483.3233473 | 3332.397174 |
| 40770 | 483.3233473 | 3332.397174 |
| 40785 | 483.3233473 | 3332.397174 |
| 40800 | 483.3233473 | 3332.397174 |
|       | 483.3233473 | 3332.397174 |
| 40815 |             |             |
| 40830 | 483.3233473 | 3332.397174 |
| 40845 | 483.3233473 | 3332.397174 |
| 40860 | 483.3233473 | 3332.397174 |
| 40875 | 483.3233473 | 3332.397174 |
| 40890 | 483.3233473 | 3332.397174 |
|       |             |             |
| 40905 | 483.3233473 | 3332.397174 |
| 40920 | 483.3233473 | 3332.397174 |
| 40935 | 483.0736968 | 3330.675894 |
| 40950 | 483.0736968 | 3330.675894 |
| 40965 | 483.0736968 | 3330.675894 |
| 40980 | 483.0736968 | 3330.675894 |
|       |             |             |
| 40995 | 483.0736968 | 3330.675894 |
| 41010 | 482.8240463 | 3328.954615 |
| 41025 | 482.8240463 | 3328.954615 |
| 41040 | 483.0736968 | 3330.675894 |
| 41055 | 482.8240463 | 3328.954615 |
|       |             |             |
| 41070 | 482.8240463 | 3328.954615 |
| 41085 | 482.5743958 | 3327.233335 |
| 41100 | 482.8240463 | 3328.954615 |
|       |             |             |

| 41115 | 482.8240463 | 3328.954615 |
|-------|-------------|-------------|
| 41130 | 482.5743958 | 3327.233335 |
|       |             |             |
| 41145 | 482.8240463 | 3328.954615 |
| 41160 | 482.5743958 | 3327.233335 |
| 41175 |             |             |
| _     | 482.5743958 | 3327.233335 |
| 41190 | 482.5743958 | 3327.233335 |
| 41205 | 482.5743958 | 3327.233335 |
|       |             |             |
| 41220 | 482.3247454 | 3325.512056 |
| 41235 | 482.3247454 | 3325.512056 |
| 41250 | 482.5743958 | 3327.233335 |
|       |             |             |
| 41265 | 482.3247454 | 3325.512056 |
| 41280 | 482.3247454 | 3325.512056 |
| 41295 | 482.3247454 | 3325.512056 |
| 41310 | 482.3247454 | 3325.512056 |
|       |             |             |
| 41325 | 482.3247454 | 3325.512056 |
| 41340 | 481.8254444 | 3322.069497 |
| 41355 | 481.0764929 | 3316.905658 |
|       |             |             |
| 41370 | 481.3261434 | 3318.626938 |
| 41385 | 481.0764929 | 3316.905658 |
| 41400 | 481.0764929 | 3316.905658 |
|       |             |             |
| 41415 | 480.8268424 | 3315.184379 |
| 41430 | 480.8268424 | 3315.184379 |
| 41445 | 480.5771919 | 3313.463099 |
|       |             |             |
| 41460 | 480.8268424 | 3315.184379 |
| 41475 | 480.8268424 | 3315.184379 |
| 41490 | 480.5771919 | 3313.463099 |
|       | 480.5771919 | 3313.463099 |
| 41505 |             |             |
| 41520 | 480.5771919 | 3313.463099 |
| 41535 | 480.5771919 | 3313.463099 |
| 41550 | 480.5771919 | 3313.463099 |
|       |             |             |
| 41565 | 480.5771919 | 3313.463099 |
| 41580 | 480.5771919 | 3313.463099 |
| 41595 | 480.5771919 | 3313.463099 |
|       |             | 3313.463099 |
| 41610 | 480.5771919 |             |
| 41625 | 480.5771919 | 3313.463099 |
| 41640 | 480.5771919 | 3313.463099 |
| 41655 | 480.5771919 | 3313.463099 |
|       |             |             |
| 41670 | 480.5771919 | 3313.463099 |
| 41685 | 480.5771919 | 3313.463099 |
| 41700 | 480.5771919 | 3313.463099 |
|       |             |             |
| 41715 | 480.5771919 | 3313.463099 |
| 41730 | 480.8268424 | 3315.184379 |
| 41745 | 481.3261434 | 3318.626938 |
| 41760 | 481.5757939 | 3320.348217 |
|       |             |             |
| 41775 | 482.0750949 | 3323.790776 |
| 41790 | 482.0750949 | 3323.790776 |
| 41805 | 481.8254444 | 3322.069497 |
|       |             |             |
| 41820 | 481.8254444 | 3322.069497 |
| 41835 | 482.0750949 | 3323.790776 |
| 41850 | 482.0750949 | 3323.790776 |
|       | 481.8254444 |             |
| 41865 |             | 3322.069497 |
| 41880 | 482.0750949 | 3323.790776 |
| 41895 | 481.8254444 | 3322.069497 |
| 41910 | 482.3247454 | 3325.512056 |
|       |             |             |
| 41925 | 482.5743958 | 3327.233335 |
| 41940 | 482.5743958 | 3327.233335 |
|       |             |             |

| 41955 | 482.8240463 | 3328.954615 |
|-------|-------------|-------------|
| 41970 | 483.0736968 | 3330.675894 |
| 41985 | 482.5743958 | 3327.233335 |
|       |             |             |
| 42000 | 482.8240463 | 3328.954615 |
| 42015 | 482.8240463 | 3328.954615 |
| 42030 | 482.5743958 | 3327.233335 |
| 42045 | 482.8240463 | 3328.954615 |
|       |             |             |
| 42060 | 482.5743958 | 3327.233335 |
| 42075 | 482.3247454 | 3325.512056 |
| 42090 | 482.0750949 | 3323.790776 |
| 42105 | 482.3247454 | 3325.512056 |
| 42120 | 482.3247454 | 3325.512056 |
|       |             | 0020.0.2000 |
| 42135 | 482.0750949 | 3323.790776 |
| 42150 | 482.0750949 | 3323.790776 |
| 42165 | 482.0750949 | 3323.790776 |
| 42180 | 482.0750949 | 3323.790776 |
| 42195 | 482.3247454 | 3325.512056 |
|       |             |             |
| 42210 | 482.3247454 | 3325.512056 |
| 42225 | 482.3247454 | 3325.512056 |
| 42240 | 482.0750949 | 3323.790776 |
| 42255 | 482.3247454 | 3325.512056 |
| 42270 | 482.3247454 | 3325.512056 |
|       |             |             |
| 42285 | 482.0750949 | 3323.790776 |
| 42300 | 482.0750949 | 3323.790776 |
| 42315 | 482.3247454 | 3325.512056 |
| 42330 | 482.0750949 | 3323.790776 |
| 42345 | 482.0750949 | 3323.790776 |
| 42360 | 482.0750949 | 3323.790776 |
| 42375 | 481.8254444 | 3322.069497 |
|       |             |             |
| 42390 | 482.0750949 | 3323.790776 |
| 42405 | 481.8254444 | 3322.069497 |
| 42420 | 482.0750949 | 3323.790776 |
| 42435 | 481.8254444 | 3322.069497 |
| 42450 | 481.8254444 | 3322.069497 |
| 42465 | 481.8254444 | 3322.069497 |
| 42480 | 481.8254444 | 3322.069497 |
|       |             |             |
| 42495 | 482.0750949 | 3323.790776 |
| 42510 | 481.5757939 | 3320.348217 |
| 42525 | 481.5757939 | 3320.348217 |
| 42540 | 481.5757939 | 3320.348217 |
| 42555 | 481.8254444 | 3322.069497 |
|       |             |             |
| 42570 | 481.5757939 | 3320.348217 |
| 42585 | 481.5757939 | 3320.348217 |
| 42600 | 481.5757939 | 3320.348217 |
| 42615 | 481.5757939 | 3320.348217 |
| 42630 | 481.5757939 | 3320.348217 |
| 42645 | 481.3261434 | 3318.626938 |
|       |             |             |
| 42660 | 481.5757939 | 3320.348217 |
| 42675 | 481.3261434 | 3318.626938 |
| 42690 | 481.3261434 | 3318.626938 |
| 42705 | 481.3261434 | 3318.626938 |
| 42720 | 481.3261434 | 3318.626938 |
| 42735 | 481.3261434 | 3318.626938 |
|       |             |             |
| 42750 | 481.0764929 | 3316.905658 |
| 42765 | 481.3261434 | 3318.626938 |
| 42780 | 481.3261434 | 3318.626938 |
|       |             |             |

| 4070 <i>E</i> | 404 0764000 | 2246 005650 |
|---------------|-------------|-------------|
| 42795         | 481.0764929 | 3316.905658 |
| 42810         | 481.0764929 | 3316.905658 |
| 42825         | 481.3261434 | 3318.626938 |
| 42840         | 481.0764929 | 3316.905658 |
| 42855         | 480.8268424 | 3315.184379 |
| 42870         | 480.5771919 | 3313.463099 |
| 42885         | 481.0764929 | 3316.905658 |
|               |             |             |
| 42900         | 481.0764929 | 3316.905658 |
| 42915         | 480.8268424 | 3315.184379 |
| 42930         | 480.5771919 | 3313.463099 |
| 42945         | 480.8268424 | 3315.184379 |
| 42960         | 480.8268424 | 3315.184379 |
| 42975         | 480.5771919 | 3313.463099 |
| 42990         | 480.5771919 | 3313.463099 |
|               |             |             |
| 43005         | 480.8268424 | 3315.184379 |
| 43020         | 480.8268424 | 3315.184379 |
| 43035         | 480.5771919 | 3313.463099 |
| 43050         | 480.8268424 | 3315.184379 |
| 43065         | 480.8268424 | 3315.184379 |
| 43080         | 480.8268424 | 3315.184379 |
| 43095         | 480.5771919 | 3313.463099 |
| 43110         | 480.8268424 | 3315.184379 |
|               |             | 3315.184379 |
| 43125         | 480.8268424 |             |
| 43140         | 480.8268424 | 3315.184379 |
| 43155         | 480.8268424 | 3315.184379 |
| 43170         | 481.0764929 | 3316.905658 |
| 43185         | 481.3261434 | 3318.626938 |
| 43200         | 481.0764929 | 3316.905658 |
| 43215         | 481.5757939 | 3320.348217 |
| 43230         | 481.0764929 | 3316.905658 |
| 43245         | 481.3261434 | 3318.626938 |
| 43260         | 481.0764929 | 3316.905658 |
|               |             |             |
| 43275         | 481.0764929 | 3316.905658 |
| 43290         | 481.0764929 | 3316.905658 |
| 43305         | 481.0764929 | 3316.905658 |
| 43320         | 481.0764929 | 3316.905658 |
| 43335         | 481.3261434 | 3318.626938 |
| 43350         | 481.3261434 | 3318.626938 |
| 43365         | 481.3261434 | 3318.626938 |
| 43380         | 481.3261434 | 3318.626938 |
| 43395         | 481.0764929 |             |
|               |             | 3316.905658 |
| 43410         | 481.0764929 | 3316.905658 |
| 43425         | 481.5757939 | 3320.348217 |
| 43440         | 481.5757939 | 3320.348217 |
| 43455         | 481.3261434 | 3318.626938 |
| 43470         | 481.3261434 | 3318.626938 |
| 43485         | 481.5757939 | 3320.348217 |
| 43500         | 481.8254444 | 3322.069497 |
| 43515         | 481.8254444 | 3322.069497 |
|               |             |             |
| 43530         | 481.5757939 | 3320.348217 |
| 43545         | 481.8254444 | 3322.069497 |
| 43560         | 481.5757939 | 3320.348217 |
| 43575         | 481.8254444 | 3322.069497 |
| 43590         | 481.8254444 | 3322.069497 |
| 43605         | 481.8254444 | 3322.069497 |
| 43620         | 481.0764929 | 3316.905658 |
| .0020         | .0 0 1020   | 30.0.00000  |

| 40005 | 101 0001101 | 0040 000000 |
|-------|-------------|-------------|
| 43635 | 481.3261434 | 3318.626938 |
| 43650 | 481.5757939 | 3320.348217 |
| 43665 | 481.5757939 | 3320.348217 |
| 43680 | 481.5757939 | 3320.348217 |
| 43695 | 481.5757939 | 3320.348217 |
| 43710 | 481.8254444 |             |
|       |             | 3322.069497 |
| 43725 | 481.5757939 | 3320.348217 |
| 43740 | 481.8254444 | 3322.069497 |
| 43755 | 481.8254444 | 3322.069497 |
| 43770 | 481.8254444 | 3322.069497 |
| 43785 | 481.8254444 | 3322.069497 |
| 43800 | 481.8254444 | 3322.069497 |
| 43815 | 481.8254444 | 3322.069497 |
|       |             |             |
| 43830 | 481.5757939 | 3320.348217 |
| 43845 | 481.5757939 | 3320.348217 |
| 43860 | 481.5757939 | 3320.348217 |
| 43875 | 481.5757939 | 3320.348217 |
| 43890 | 481.8254444 | 3322.069497 |
| 43905 | 481.5757939 | 3320.348217 |
| 43920 | 481.5757939 | 3320.348217 |
|       |             |             |
| 43935 | 481.8254444 | 3322.069497 |
| 43950 | 481.8254444 | 3322.069497 |
| 43965 | 481.5757939 | 3320.348217 |
| 43980 | 481.5757939 | 3320.348217 |
| 43995 | 481.3261434 | 3318.626938 |
| 44010 | 481.5757939 | 3320.348217 |
| 44025 | 481.5757939 | 3320.348217 |
| 44040 | 481.5757939 |             |
|       |             | 3320.348217 |
| 44055 | 481.5757939 | 3320.348217 |
| 44070 | 481.5757939 | 3320.348217 |
| 44085 | 481.5757939 | 3320.348217 |
| 44100 | 481.5757939 | 3320.348217 |
| 44115 | 481.5757939 | 3320.348217 |
| 44130 | 481.3261434 | 3318.626938 |
| 44145 | 481.5757939 | 3320.348217 |
| 44160 | 481.3261434 | 3318.626938 |
|       | 481.3261434 |             |
| 44175 |             | 3318.626938 |
| 44190 | 481.3261434 | 3318.626938 |
| 44205 | 481.3261434 | 3318.626938 |
| 44220 | 481.3261434 | 3318.626938 |
| 44235 | 481.3261434 | 3318.626938 |
| 44250 | 481.3261434 | 3318.626938 |
| 44265 | 481.3261434 | 3318.626938 |
| 44280 | 481.3261434 | 3318.626938 |
|       |             |             |
| 44295 | 481.3261434 | 3318.626938 |
| 44310 | 481.3261434 | 3318.626938 |
| 44325 | 481.3261434 | 3318.626938 |
| 44340 | 481.0764929 | 3316.905658 |
| 44355 | 481.0764929 | 3316.905658 |
| 44370 | 481.0764929 | 3316.905658 |
| 44385 | 481.0764929 | 3316.905658 |
|       |             |             |
| 44400 | 481.3261434 | 3318.626938 |
| 44415 | 480.8268424 | 3315.184379 |
| 44430 | 481.0764929 | 3316.905658 |
| 44445 | 480.8268424 | 3315.184379 |
| 44460 | 481.0764929 | 3316.905658 |
|       |             |             |

| 44475 | 480.8268424 | 3315.184379 |
|-------|-------------|-------------|
| 44490 | 480.5771919 | 3313.463099 |
| 44505 | 480.5771919 | 3313.463099 |
|       |             |             |
| 44520 | 480.8268424 | 3315.184379 |
| 44535 | 480.8268424 | 3315.184379 |
| 44550 | 480.5771919 | 3313.463099 |
| 44565 | 480.5771919 | 3313.463099 |
|       |             |             |
| 44580 | 480.5771919 | 3313.463099 |
| 44595 | 480.5771919 | 3313.463099 |
| 44610 | 480.5771919 | 3313.463099 |
| 44625 | 480.5771919 | 3313.463099 |
| 44640 | 480.5771919 | 3313.463099 |
| 44655 | 480.5771919 | 3313.463099 |
|       |             |             |
| 44670 | 480.3275414 | 3311.741819 |
| 44685 | 480.5771919 | 3313.463099 |
| 44700 | 480.5771919 | 3313.463099 |
| 44715 | 480.5771919 | 3313.463099 |
| 44730 | 480.5771919 | 3313.463099 |
| 44745 | 480.5771919 | 3313.463099 |
|       |             |             |
| 44760 | 480.5771919 | 3313.463099 |
| 44775 | 480.5771919 | 3313.463099 |
| 44790 | 480.5771919 | 3313.463099 |
| 44805 | 480.5771919 | 3313.463099 |
| 44820 | 480.5771919 | 3313.463099 |
| 44835 | 480.3275414 | 3311.741819 |
|       |             |             |
| 44850 | 480.5771919 | 3313.463099 |
| 44865 | 480.5771919 | 3313.463099 |
| 44880 | 480.5771919 | 3313.463099 |
| 44895 | 480.5771919 | 3313.463099 |
| 44910 | 480.5771919 | 3313.463099 |
| 44925 | 480.3275414 | 3311.741819 |
| 44940 | 480.5771919 | 3313.463099 |
|       |             |             |
| 44955 | 480.3275414 | 3311.741819 |
| 44970 | 480.3275414 | 3311.741819 |
| 44985 | 480.3275414 | 3311.741819 |
| 45000 | 480.3275414 | 3311.741819 |
| 45015 | 480.5771919 | 3313.463099 |
| 45030 | 480.5771919 | 3313.463099 |
| 45045 | 480.3275414 | 3311.741819 |
|       |             |             |
| 45060 | 480.077891  | 3310.02054  |
| 45075 | 480.3275414 | 3311.741819 |
| 45090 | 480.3275414 | 3311.741819 |
| 45105 | 480.3275414 | 3311.741819 |
| 45120 | 480.3275414 | 3311.741819 |
| 45135 | 480.3275414 | 3311.741819 |
|       | 480.3275414 |             |
| 45150 |             | 3311.741819 |
| 45165 | 480.077891  | 3310.02054  |
| 45180 | 480.077891  | 3310.02054  |
| 45195 | 480.077891  | 3310.02054  |
| 45210 | 479.8282405 | 3308.29926  |
| 45225 | 480.077891  | 3310.02054  |
| 45240 | 480.077891  | 3310.02054  |
|       |             |             |
| 45255 | 480.077891  | 3310.02054  |
| 45270 | 480.077891  | 3310.02054  |
| 45285 | 480.077891  | 3310.02054  |
| 45300 | 479.8282405 | 3308.29926  |
|       |             |             |

| 45315 | 480.3275414 | 3311.741819 |
|-------|-------------|-------------|
| 45330 | 479.8282405 | 3308.29926  |
|       |             | 3311.741819 |
| 45345 | 480.3275414 |             |
| 45360 | 479.8282405 | 3308.29926  |
| 45375 | 480.077891  | 3310.02054  |
| 45390 | 480.077891  | 3310.02054  |
|       |             |             |
| 45405 | 480.077891  | 3310.02054  |
| 45420 | 480.077891  | 3310.02054  |
| 45435 | 479.57859   | 3306.577981 |
| 45450 | 479.57859   | 3306.577981 |
|       |             |             |
| 45465 | 479.57859   | 3306.577981 |
| 45480 | 479.57859   | 3306.577981 |
| 45495 | 479.57859   | 3306.577981 |
| 45510 | 479.57859   | 3306.577981 |
|       |             |             |
| 45525 | 479.57859   | 3306.577981 |
| 45540 | 479.57859   | 3306.577981 |
| 45555 | 479.57859   | 3306.577981 |
| 45570 | 479.57859   | 3306.577981 |
| 45585 |             |             |
|       | 479.57859   | 3306.577981 |
| 45600 | 479.8282405 | 3308.29926  |
| 45615 | 479.57859   | 3306.577981 |
| 45630 | 479.3289395 | 3304.856701 |
|       |             |             |
| 45645 | 479.57859   | 3306.577981 |
| 45660 | 479.57859   | 3306.577981 |
| 45675 | 479.57859   | 3306.577981 |
| 45690 | 479.3289395 | 3304.856701 |
| 45705 | 479.3289395 | 3304.856701 |
|       |             |             |
| 45720 | 479.3289395 | 3304.856701 |
| 45735 | 479.3289395 | 3304.856701 |
| 45750 | 479.3289395 | 3304.856701 |
| 45765 | 479.57859   | 3306.577981 |
| 45780 | 479.57859   | 3306.577981 |
|       |             |             |
| 45795 | 479.079289  | 3303.135422 |
| 45810 | 479.3289395 | 3304.856701 |
| 45825 | 479.079289  | 3303.135422 |
| 45840 | 479.3289395 | 3304.856701 |
|       |             |             |
| 45855 | 479.3289395 | 3304.856701 |
| 45870 | 479.3289395 | 3304.856701 |
| 45885 | 479.3289395 | 3304.856701 |
| 45900 | 479.079289  | 3303.135422 |
| 45915 | 479.3289395 | 3304.856701 |
|       |             |             |
| 45930 | 479.079289  | 3303.135422 |
| 45945 | 479.079289  | 3303.135422 |
| 45960 | 479.3289395 | 3304.856701 |
| 45975 | 479.079289  | 3303.135422 |
| 45990 | 479.079289  | 3303.135422 |
|       |             |             |
| 46005 | 479.079289  | 3303.135422 |
| 46020 | 479.079289  | 3303.135422 |
| 46035 | 478.8296385 | 3301.414142 |
| 46050 | 479.079289  | 3303.135422 |
|       |             |             |
| 46065 | 479.079289  | 3303.135422 |
| 46080 | 478.8296385 | 3301.414142 |
| 46095 | 478.8296385 | 3301.414142 |
| 46110 | 478.8296385 | 3301.414142 |
| 46125 | 479.079289  | 3303.135422 |
|       |             |             |
| 46140 | 479.079289  | 3303.135422 |
|       |             |             |

| 46155 | 478.8296385 | 3301.414142 |
|-------|-------------|-------------|
| 46170 | 479.079289  | 3303.135422 |
| 46185 | 478.8296385 | 3301.414142 |
| 46200 | 478.8296385 | 3301.414142 |
|       |             |             |
| 46215 | 478.8296385 | 3301.414142 |
| 46230 | 479.079289  | 3303.135422 |
| 46245 | 478.8296385 | 3301.414142 |
| 46260 | 479.079289  | 3303.135422 |
| 46275 | 478.8296385 | 3301.414142 |
| 46290 | 478.8296385 | 3301.414142 |
|       |             |             |
| 46305 | 478.8296385 | 3301.414142 |
| 46320 | 478.8296385 | 3301.414142 |
| 46335 | 478.8296385 | 3301.414142 |
| 46350 | 478.8296385 | 3301.414142 |
| 46365 | 478.8296385 | 3301.414142 |
| 46380 | 478.8296385 | 3301.414142 |
| 46395 | 479.079289  | 3303.135422 |
|       |             |             |
| 46410 | 478.8296385 | 3301.414142 |
| 46425 | 478.579988  | 3299.692863 |
| 46440 | 479.079289  | 3303.135422 |
| 46455 | 478.8296385 | 3301.414142 |
| 46470 | 478.8296385 | 3301.414142 |
| 46485 | 479.079289  | 3303.135422 |
| 46500 | 478.8296385 | 3301.414142 |
| 46515 | 478.8296385 | 3301.414142 |
|       |             |             |
| 46530 | 478.8296385 | 3301.414142 |
| 46545 | 478.8296385 | 3301.414142 |
| 46560 | 478.579988  | 3299.692863 |
| 46575 | 479.079289  | 3303.135422 |
| 46590 | 478.8296385 | 3301.414142 |
| 46605 | 478.8296385 | 3301.414142 |
| 46620 | 478.579988  | 3299.692863 |
| 46635 | 478.8296385 | 3301.414142 |
| 46650 | 478.579988  | 3299.692863 |
|       |             |             |
| 46665 | 478.579988  | 3299.692863 |
| 46680 | 478.579988  | 3299.692863 |
| 46695 | 478.3303375 | 3297.971583 |
| 46710 | 478.579988  | 3299.692863 |
| 46725 | 478.3303375 | 3297.971583 |
| 46740 | 478.579988  | 3299.692863 |
| 46755 | 478.3303375 | 3297.971583 |
|       | 478.3303375 |             |
| 46770 |             | 3297.971583 |
| 46785 | 478.3303375 | 3297.971583 |
| 46800 | 478.3303375 | 3297.971583 |
| 46815 | 478.3303375 | 3297.971583 |
| 46830 | 478.080687  | 3296.250304 |
| 46845 | 478.080687  | 3296.250304 |
| 46860 | 478.080687  | 3296.250304 |
| 46875 | 478.3303375 | 3297.971583 |
| 46890 | 478.3303375 | 3297.971583 |
|       |             |             |
| 46905 | 478.3303375 | 3297.971583 |
| 46920 | 478.3303375 | 3297.971583 |
| 46935 | 478.080687  | 3296.250304 |
| 46950 | 478.080687  | 3296.250304 |
| 46965 | 478.3303375 | 3297.971583 |
| 46980 | 478.080687  | 3296.250304 |
|       | 5.00000     | 1_100001    |

|       | 4=0.00000=  |             |
|-------|-------------|-------------|
| 46995 | 478.080687  | 3296.250304 |
| 47010 | 478.080687  | 3296.250304 |
| 47025 | 478.080687  | 3296.250304 |
|       |             |             |
| 47040 | 477.8310365 | 3294.529024 |
| 47055 | 478.080687  | 3296.250304 |
| 47070 | 477.8310365 | 3294.529024 |
| 47085 | 478.080687  | 3296.250304 |
|       |             |             |
| 47100 | 477.8310365 | 3294.529024 |
| 47115 | 478.080687  | 3296.250304 |
| 47130 | 478.080687  | 3296.250304 |
| 47145 | 477.8310365 | 3294.529024 |
| 47160 | 477.8310365 | 3294.529024 |
|       |             |             |
| 47175 | 477.8310365 | 3294.529024 |
| 47190 | 477.8310365 | 3294.529024 |
| 47205 | 477.8310365 | 3294.529024 |
| 47220 | 477.8310365 | 3294.529024 |
| 47235 | 477.8310365 | 3294.529024 |
|       |             |             |
| 47250 | 477.8310365 | 3294.529024 |
| 47265 | 477.8310365 | 3294.529024 |
| 47280 | 477.8310365 | 3294.529024 |
| 47295 | 477.8310365 | 3294.529024 |
|       |             |             |
| 47310 | 477.5813861 | 3292.807745 |
| 47325 | 477.8310365 | 3294.529024 |
| 47340 | 477.3317356 | 3291.086465 |
| 47355 | 477.8310365 | 3294.529024 |
| 47370 | 477.5813861 | 3292.807745 |
|       |             |             |
| 47385 | 477.3317356 | 3291.086465 |
| 47400 | 477.5813861 | 3292.807745 |
| 47415 | 477.5813861 | 3292.807745 |
| 47430 | 477.5813861 | 3292.807745 |
| 47445 | 477.5813861 | 3292.807745 |
| 47460 | 477.5813861 | 3292.807745 |
|       |             |             |
| 47475 | 477.8310365 | 3294.529024 |
| 47490 | 477.8310365 | 3294.529024 |
| 47505 | 477.8310365 | 3294.529024 |
| 47520 | 477.8310365 | 3294.529024 |
| 47535 | 478.080687  | 3296.250304 |
| 47550 | 478.080687  | 3296.250304 |
|       |             |             |
| 47565 | 478.3303375 | 3297.971583 |
| 47580 | 478.3303375 | 3297.971583 |
| 47595 | 478.579988  | 3299.692863 |
| 47610 | 478.579988  | 3299.692863 |
| 47625 | 478.579988  | 3299.692863 |
| 47640 | 478.8296385 | 3301.414142 |
|       |             |             |
| 47655 | 478.8296385 | 3301.414142 |
| 47670 | 478.8296385 | 3301.414142 |
| 47685 | 478.8296385 | 3301.414142 |
| 47700 | 479.079289  | 3303.135422 |
| 47715 | 479.079289  | 3303.135422 |
| 47730 | 479.079289  | 3303.135422 |
|       |             |             |
| 47745 | 479.3289395 | 3304.856701 |
| 47760 | 477.8310365 | 3294.529024 |
| 47775 | 477.8310365 | 3294.529024 |
| 47790 | 477.8310365 | 3294.529024 |
| 47805 | 477.8310365 | 3294.529024 |
| 47820 | 477.8310365 | 3294.529024 |
| 7/020 | 411.0010000 | 3234.323024 |

| 47835 | 477.8310365 | 3294.529024 |
|-------|-------------|-------------|
| 47850 | 477.8310365 | 3294.529024 |
| 47865 | 478.080687  | 3296.250304 |
|       |             |             |
| 47880 | 478.3303375 | 3297.971583 |
| 47895 | 478.579988  | 3299.692863 |
| 47910 | 479.079289  | 3303.135422 |
| 47925 | 479.3289395 | 3304.856701 |
| 47940 | 479.079289  | 3303.135422 |
| 47955 | 479.57859   | 3306.577981 |
|       |             |             |
| 47970 | 479.3289395 | 3304.856701 |
| 47985 | 479.3289395 | 3304.856701 |
| 48000 | 479.3289395 | 3304.856701 |
| 48015 | 479.3289395 | 3304.856701 |
| 48030 | 479.3289395 | 3304.856701 |
| 48045 | 479.3289395 | 3304.856701 |
|       |             |             |
| 48060 | 479.3289395 | 3304.856701 |
| 48075 | 479.3289395 | 3304.856701 |
| 48090 | 479.3289395 | 3304.856701 |
| 48105 | 479.3289395 | 3304.856701 |
| 48120 | 479.079289  | 3303.135422 |
| 48135 | 479.079289  | 3303.135422 |
| 48150 | 479.079289  | 3303.135422 |
|       |             |             |
| 48165 | 479.079289  | 3303.135422 |
| 48180 | 479.079289  | 3303.135422 |
| 48195 | 479.079289  | 3303.135422 |
| 48210 | 479.079289  | 3303.135422 |
| 48225 | 479.079289  | 3303.135422 |
| 48240 | 479.079289  | 3303.135422 |
| 48255 | 479.079289  | 3303.135422 |
|       |             |             |
| 48270 | 478.8296385 | 3301.414142 |
| 48285 | 478.8296385 | 3301.414142 |
| 48300 | 479.079289  | 3303.135422 |
| 48315 | 478.579988  | 3299.692863 |
| 48330 | 478.8296385 | 3301.414142 |
| 48345 | 478.8296385 | 3301.414142 |
| 48360 | 478.8296385 | 3301.414142 |
|       | 478.8296385 | 3301.414142 |
| 48375 |             |             |
| 48390 | 478.579988  | 3299.692863 |
| 48405 | 478.8296385 | 3301.414142 |
| 48420 | 478.8296385 | 3301.414142 |
| 48435 | 478.579988  | 3299.692863 |
| 48450 | 478.579988  | 3299.692863 |
| 48465 | 478.579988  | 3299.692863 |
| 48480 | 478.579988  | 3299.692863 |
|       |             | 3299.692863 |
| 48495 | 478.579988  |             |
| 48510 | 478.579988  | 3299.692863 |
| 48525 | 478.3303375 | 3297.971583 |
| 48540 | 478.3303375 | 3297.971583 |
| 48555 | 478.3303375 | 3297.971583 |
| 48570 | 478.579988  | 3299.692863 |
| 48585 | 478.3303375 | 3297.971583 |
|       |             |             |
| 48600 | 478.3303375 | 3297.971583 |
| 48615 | 478.3303375 | 3297.971583 |
| 48630 | 478.3303375 | 3297.971583 |
| 48645 | 478.080687  | 3296.250304 |
| 48660 | 478.080687  | 3296.250304 |
|       |             |             |

| 48675 | 478.080687  | 3296.250304 |
|-------|-------------|-------------|
| 48690 | 478.3303375 | 3297.971583 |
| 48705 | 478.080687  | 3296.250304 |
|       |             |             |
| 48720 | 478.080687  | 3296.250304 |
| 48735 | 478.080687  | 3296.250304 |
| 48750 | 478.3303375 | 3297.971583 |
| 48765 | 478.080687  | 3296.250304 |
| 48780 | 478.080687  | 3296.250304 |
| 48795 | 478.080687  | 3296.250304 |
|       |             |             |
| 48810 | 478.080687  | 3296.250304 |
| 48825 | 478.080687  | 3296.250304 |
| 48840 | 477.8310365 | 3294.529024 |
| 48855 | 478.080687  | 3296.250304 |
| 48870 | 478.080687  | 3296.250304 |
| 48885 | 478.080687  | 3296.250304 |
| 48900 | 478.3303375 | 3297.971583 |
|       |             |             |
| 48915 | 478.3303375 | 3297.971583 |
| 48930 | 478.3303375 | 3297.971583 |
| 48945 | 478.579988  | 3299.692863 |
| 48960 | 477.8310365 | 3294.529024 |
| 48975 | 478.579988  | 3299.692863 |
| 48990 | 478.3303375 | 3297.971583 |
| 49005 | 478.3303375 |             |
|       |             | 3297.971583 |
| 49020 | 478.3303375 | 3297.971583 |
| 49035 | 478.8296385 | 3301.414142 |
| 49050 | 478.3303375 | 3297.971583 |
| 49065 | 478.3303375 | 3297.971583 |
| 49080 | 478.080687  | 3296.250304 |
| 49095 | 478.3303375 | 3297.971583 |
| 49110 | 478.3303375 | 3297.971583 |
|       |             |             |
| 49125 | 478.3303375 | 3297.971583 |
| 49140 | 478.3303375 | 3297.971583 |
| 49155 | 478.3303375 | 3297.971583 |
| 49170 | 478.579988  | 3299.692863 |
| 49185 | 478.3303375 | 3297.971583 |
| 49200 | 478.579988  | 3299.692863 |
| 49215 | 478.3303375 | 3297.971583 |
|       |             |             |
| 49230 | 478.3303375 | 3297.971583 |
| 49245 | 479.079289  | 3303.135422 |
| 49260 | 479.079289  | 3303.135422 |
| 49275 | 478.8296385 | 3301.414142 |
| 49290 | 479.079289  | 3303.135422 |
| 49305 | 478.8296385 | 3301.414142 |
| 49320 | 478.579988  | 3299.692863 |
| 49335 | 478.8296385 | 3301.414142 |
|       |             |             |
| 49350 | 479.079289  | 3303.135422 |
| 49365 | 478.8296385 | 3301.414142 |
| 49380 | 478.3303375 | 3297.971583 |
| 49395 | 478.3303375 | 3297.971583 |
| 49410 | 478.080687  | 3296.250304 |
| 49425 | 478.3303375 | 3297.971583 |
|       |             |             |
| 49440 | 478.3303375 | 3297.971583 |
| 49455 | 478.080687  | 3296.250304 |
| 49470 | 478.080687  | 3296.250304 |
| 49485 | 478.080687  | 3296.250304 |
| 49500 | 478.080687  | 3296.250304 |
| -     |             |             |

| 49515 | 478.080687  | 3296.250304 |
|-------|-------------|-------------|
| 49530 | 478.080687  | 3296.250304 |
| 49545 | 478.080687  | 3296.250304 |
|       |             |             |
| 49560 | 477.8310365 | 3294.529024 |
| 49575 | 477.8310365 | 3294.529024 |
| 49590 | 477.8310365 | 3294.529024 |
| 49605 | 477.8310365 | 3294.529024 |
|       |             |             |
| 49620 | 477.8310365 | 3294.529024 |
| 49635 | 477.8310365 | 3294.529024 |
| 49650 | 477.8310365 | 3294.529024 |
| 49665 | 477.8310365 | 3294.529024 |
| 49680 | 477.8310365 | 3294.529024 |
|       |             |             |
| 49695 | 477.8310365 | 3294.529024 |
| 49710 | 477.8310365 | 3294.529024 |
| 49725 | 477.8310365 | 3294.529024 |
| 49740 | 477.8310365 | 3294.529024 |
| 49755 | 477.8310365 | 3294.529024 |
|       |             |             |
| 49770 | 477.8310365 | 3294.529024 |
| 49785 | 477.5813861 | 3292.807745 |
| 49800 | 477.5813861 | 3292.807745 |
| 49815 | 477.8310365 | 3294.529024 |
| 49830 | 477.5813861 | 3292.807745 |
|       |             |             |
| 49845 | 477.5813861 | 3292.807745 |
| 49860 | 477.5813861 | 3292.807745 |
| 49875 | 477.5813861 | 3292.807745 |
| 49890 | 477.8310365 | 3294.529024 |
| 49905 | 477.5813861 | 3292.807745 |
| 49920 | 477.8310365 | 3294.529024 |
|       |             |             |
| 49935 | 477.5813861 | 3292.807745 |
| 49950 | 477.3317356 | 3291.086465 |
| 49965 | 477.3317356 | 3291.086465 |
| 49980 | 477.5813861 | 3292.807745 |
| 49995 | 477.3317356 | 3291.086465 |
| 50010 | 477.3317356 | 3291.086465 |
| 50025 | 477.5813861 | 3292.807745 |
|       |             |             |
| 50040 | 477.5813861 | 3292.807745 |
| 50055 | 477.3317356 | 3291.086465 |
| 50070 | 477.0820851 | 3289.365186 |
| 50085 | 477.3317356 | 3291.086465 |
| 50100 | 477.0820851 | 3289.365186 |
| 50115 | 477.0820851 | 3289.365186 |
|       |             |             |
| 50130 | 477.0820851 | 3289.365186 |
| 50145 | 477.0820851 | 3289.365186 |
| 50160 | 477.3317356 | 3291.086465 |
| 50175 | 477.0820851 | 3289.365186 |
| 50190 | 477.0820851 | 3289.365186 |
| 50205 | 476.8324346 | 3287.643906 |
|       |             |             |
| 50220 | 476.8324346 | 3287.643906 |
| 50235 | 477.0820851 | 3289.365186 |
| 50250 | 477.0820851 | 3289.365186 |
| 50265 | 476.8324346 | 3287.643906 |
| 50280 | 477.0820851 | 3289.365186 |
|       | 476.8324346 |             |
| 50295 |             | 3287.643906 |
| 50310 | 477.5813861 | 3292.807745 |
| 50325 | 477.8310365 | 3294.529024 |
| 50340 | 478.080687  | 3296.250304 |
|       |             |             |

| 50355 | 477.8310365 | 3294.529024 |
|-------|-------------|-------------|
|       |             |             |
| 50370 | 477.8310365 | 3294.529024 |
| 50385 | 477.8310365 | 3294.529024 |
| 50400 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50415 | 477.8310365 | 3294.529024 |
| 50430 | 477.8310365 | 3294.529024 |
| 50445 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50460 | 477.8310365 | 3294.529024 |
| 50475 | 477.8310365 | 3294.529024 |
| 50490 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50505 | 477.8310365 | 3294.529024 |
| 50520 | 478.080687  | 3296.250304 |
| 50535 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50550 | 477.8310365 | 3294.529024 |
| 50565 | 477.8310365 | 3294.529024 |
| 50580 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50595 | 477.8310365 | 3294.529024 |
| 50610 | 478.3303375 | 3297.971583 |
| 50625 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50640 | 478.080687  | 3296.250304 |
| 50655 | 478.579988  | 3299.692863 |
| 50670 | 479.079289  | 3303.135422 |
| 50685 | 478.080687  | 3296.250304 |
|       |             |             |
| 50700 | 478.080687  | 3296.250304 |
| 50715 | 477.8310365 | 3294.529024 |
| 50730 | 477.5813861 | 3292.807745 |
|       |             |             |
| 50745 | 477.8310365 | 3294.529024 |
| 50760 | 477.8310365 | 3294.529024 |
| 50775 | 477.8310365 | 3294.529024 |
|       |             |             |
| 50790 | 478.080687  | 3296.250304 |
| 50805 | 478.3303375 | 3297.971583 |
| 50820 | 478.579988  | 3299.692863 |
|       | 478.579988  |             |
| 50835 |             | 3299.692863 |
| 50850 | 478.579988  | 3299.692863 |
| 50865 | 478.579988  | 3299.692863 |
| 50880 | 478.3303375 | 3297.971583 |
|       |             |             |
| 50895 | 478.3303375 | 3297.971583 |
| 50910 | 478.080687  | 3296.250304 |
| 50925 | 478.080687  | 3296.250304 |
|       |             |             |
| 50940 | 478.080687  | 3296.250304 |
| 50955 | 478.3303375 | 3297.971583 |
| 50970 | 478.080687  | 3296.250304 |
| 50985 | 478.080687  | 3296.250304 |
|       |             |             |
| 51000 | 478.080687  | 3296.250304 |
| 51015 | 478.080687  | 3296.250304 |
| 51030 | 478.080687  | 3296.250304 |
|       |             |             |
| 51045 | 478.080687  | 3296.250304 |
| 51060 | 477.8310365 | 3294.529024 |
| 51075 | 478.080687  | 3296.250304 |
|       |             |             |
| 51090 | 477.8310365 | 3294.529024 |
| 51105 | 477.8310365 | 3294.529024 |
| 51120 | 477.8310365 | 3294.529024 |
|       |             |             |
| 51135 | 477.8310365 | 3294.529024 |
| 51150 | 477.8310365 | 3294.529024 |
| 51165 | 477.8310365 | 3294.529024 |
| 51180 | 477.8310365 | 3294.529024 |
| 31100 | 711.001000  | 0207.023024 |

| 51195 | 477.8310365 | 3294.529024 |
|-------|-------------|-------------|
| 51210 | 478.080687  | 3296.250304 |
| -     |             |             |
| 51225 | 477.8310365 | 3294.529024 |
| 51240 | 477.8310365 | 3294.529024 |
| 51255 | 477.8310365 | 3294.529024 |
| 51270 | 477.8310365 | 3294.529024 |
|       |             |             |
| 51285 | 477.8310365 | 3294.529024 |
| 51300 | 477.8310365 | 3294.529024 |
| 51315 | 477.8310365 | 3294.529024 |
| 51330 | 477.5813861 | 3292.807745 |
|       |             |             |
| 51345 | 477.8310365 | 3294.529024 |
| 51360 | 477.5813861 | 3292.807745 |
| 51375 | 477.8310365 | 3294.529024 |
| 51390 | 477.5813861 | 3292.807745 |
| 51405 | 477.8310365 | 3294.529024 |
|       |             |             |
| 51420 | 477.5813861 | 3292.807745 |
| 51435 | 477.5813861 | 3292.807745 |
| 51450 | 477.5813861 | 3292.807745 |
| 51465 | 477.5813861 | 3292.807745 |
|       |             |             |
| 51480 | 477.5813861 | 3292.807745 |
| 51495 | 477.8310365 | 3294.529024 |
| 51510 | 477.5813861 | 3292.807745 |
| 51525 | 477.8310365 | 3294.529024 |
|       |             |             |
| 51540 | 477.5813861 | 3292.807745 |
| 51555 | 477.5813861 | 3292.807745 |
| 51570 | 477.3317356 | 3291.086465 |
| 51585 | 477.3317356 | 3291.086465 |
| 51600 | 477.5813861 | 3292.807745 |
|       |             |             |
| 51615 | 477.3317356 | 3291.086465 |
| 51630 | 477.5813861 | 3292.807745 |
| 51645 | 477.5813861 | 3292.807745 |
| 51660 | 477.5813861 | 3292.807745 |
| 51675 | 477.0820851 | 3289.365186 |
|       |             |             |
| 51690 | 477.5813861 | 3292.807745 |
| 51705 | 477.3317356 | 3291.086465 |
| 51720 | 477.3317356 | 3291.086465 |
| 51735 | 477.3317356 | 3291.086465 |
|       |             |             |
| 51750 | 477.0820851 | 3289.365186 |
| 51765 | 477.5813861 | 3292.807745 |
| 51780 | 477.3317356 | 3291.086465 |
| 51795 | 477.0820851 | 3289.365186 |
| 51810 | 476.8324346 | 3287.643906 |
|       |             |             |
| 51825 | 476.8324346 | 3287.643906 |
| 51840 | 476.8324346 | 3287.643906 |
| 51855 | 477.0820851 | 3289.365186 |
| 51870 | 477.3317356 | 3291.086465 |
|       |             |             |
| 51885 | 477.5813861 | 3292.807745 |
| 51900 | 477.8310365 | 3294.529024 |
| 51915 | 477.8310365 | 3294.529024 |
| 51930 | 477.8310365 | 3294.529024 |
| 51945 | 477.8310365 | 3294.529024 |
|       |             |             |
| 51960 | 477.3317356 | 3291.086465 |
| 51975 | 477.0820851 | 3289.365186 |
| 51990 | 476.8324346 | 3287.643906 |
| 52005 | 476.8324346 | 3287.643906 |
| 52020 | 477.0820851 |             |
| つとしとし | 411.U0∠U011 | 3289.365186 |

| 52035 | 477.3317356 | 3291.086465 |
|-------|-------------|-------------|
| 52050 | 477.0820851 | 3289.365186 |
| 52065 | 477.0820851 | 3289.365186 |
|       |             |             |
| 52080 | 476.8324346 | 3287.643906 |
| 52095 | 477.0820851 | 3289.365186 |
| 52110 | 477.3317356 | 3291.086465 |
| 52125 | 477.3317356 | 3291.086465 |
|       |             |             |
| 52140 | 477.3317356 | 3291.086465 |
| 52155 | 477.5813861 | 3292.807745 |
| 52170 | 477.3317356 | 3291.086465 |
| 52185 | 477.5813861 | 3292.807745 |
|       |             |             |
| 52200 | 477.3317356 | 3291.086465 |
| 52215 | 477.5813861 | 3292.807745 |
| 52230 | 477.5813861 | 3292.807745 |
| 52245 | 477.5813861 | 3292.807745 |
|       | 477.5813861 | 3292.807745 |
| 52260 |             |             |
| 52275 | 477.3317356 | 3291.086465 |
| 52290 | 477.5813861 | 3292.807745 |
| 52305 | 477.3317356 | 3291.086465 |
| 52320 | 477.3317356 | 3291.086465 |
|       |             | 0_000       |
| 52335 | 477.3317356 | 3291.086465 |
| 52350 | 477.0820851 | 3289.365186 |
| 52365 | 477.3317356 | 3291.086465 |
| 52380 | 477.3317356 | 3291.086465 |
| 52395 | 477.3317356 | 3291.086465 |
|       |             |             |
| 52410 | 477.0820851 | 3289.365186 |
| 52425 | 477.0820851 | 3289.365186 |
| 52440 | 477.0820851 | 3289.365186 |
| 52455 | 477.0820851 | 3289.365186 |
|       |             |             |
| 52470 | 477.0820851 | 3289.365186 |
| 52485 | 477.0820851 | 3289.365186 |
| 52500 | 477.0820851 | 3289.365186 |
| 52515 | 477.0820851 | 3289.365186 |
| 52530 | 477.0820851 | 3289.365186 |
|       |             | 3289.365186 |
| 52545 | 477.0820851 |             |
| 52560 | 477.0820851 | 3289.365186 |
| 52575 | 476.8324346 | 3287.643906 |
| 52590 | 477.0820851 | 3289.365186 |
| 52605 | 477.3317356 | 3291.086465 |
|       |             |             |
| 52620 | 477.5813861 | 3292.807745 |
| 52635 | 477.5813861 | 3292.807745 |
| 52650 | 477.5813861 | 3292.807745 |
| 52665 | 477.5813861 | 3292.807745 |
| 52680 | 477.3317356 | 3291.086465 |
|       |             |             |
| 52695 | 477.3317356 | 3291.086465 |
| 52710 | 477.3317356 | 3291.086465 |
| 52725 | 477.3317356 | 3291.086465 |
| 52740 | 477.3317356 | 3291.086465 |
| 52755 | 477.3317356 | 3291.086465 |
|       |             |             |
| 52770 | 477.3317356 | 3291.086465 |
| 52785 | 477.3317356 | 3291.086465 |
| 52800 | 477.3317356 | 3291.086465 |
| 52815 | 477.3317356 | 3291.086465 |
| 52830 | 477.0820851 | 3289.365186 |
|       |             |             |
| 52845 | 476.8324346 | 3287.643906 |
| 52860 | 477.0820851 | 3289.365186 |
|       |             |             |

| 52875 | 476.8324346 | 3287.643906 |
|-------|-------------|-------------|
| 52890 | 476.8324346 | 3287.643906 |
| 52905 | 477.0820851 | 3289.365186 |
| 52920 | 476.8324346 | 3287.643906 |
| 52935 | 476.8324346 | 3287.643906 |
| 52950 | 477.0820851 | 3289.365186 |
| 52965 | 476.8324346 | 3287.643906 |
| 52980 | 476.8324346 | 3287.643906 |
| 52995 | 476.8324346 | 3287.643906 |
| 53010 | 476.8324346 | 3287.643906 |
| 53025 | 476.8324346 | 3287.643906 |
| 53040 | 476.8324346 | 3287.643906 |
| 53055 | 476.8324346 | 3287.643906 |
| 53070 | 476.8324346 | 3287.643906 |
| 53085 | 476.5827841 | 3285.922626 |
| 53100 | 476.8324346 | 3287.643906 |
| 53115 | 476.5827841 | 3285.922626 |
| 53130 | 476.5827841 | 3285.922626 |
| 53145 | 476.5827841 | 3285.922626 |
| 53160 | 476.5827841 | 3285.922626 |
| 53175 | 476.5827841 | 3285.922626 |
| 53190 | 476.8324346 | 3287.643906 |
| 53205 | 476.5827841 | 3285.922626 |
| 53220 | 477.0820851 | 3289.365186 |
| 53235 | 476.8324346 | 3287.643906 |
| 53250 | 476.5827841 | 3285.922626 |
| 53265 | 476.3331336 | 3284.201347 |

Appendix 2.12: MicroGC Raw Data – 1st Stripping – Rich Samples

1st Stripping raw data and calculations – Rich initial molar loading

2 weeks

| Cumulative $CO_2$ volume (ml) |                                     |            | 126.2834    | 822.1257    | 3466.719    | 5542.893    | 6354.308    | 6967.192    | 7392.962    | 7754.278    | 7950.047    | 8092.367    | 8212.713    | 8321.486    | 8418.593    | 8515.7      | 8578.698    | 8641.696    | 8704.694    | 8767.693    | 8830.691    | 8893.709    |
|-------------------------------|-------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume =      | Corrected flow*Concentration*20 min |            | 126.2833507 | 695.8423929 | 2644.593654 | 2076.173264 | 811.4155221 | 612.8838373 | 425.7701761 | 361.3157563 | 195.7687029 | 142.3207921 | 120.3459012 | 108.772911  | 97.10663079 | 97.10663079 | 62.99825299 | 62.99825299 | 62.99825299 | 62.99825299 | 62.99825299 | 63.01860557 |
| Flow<br>Corrected             |                                     |            | 241.3041809 | 274.3993532 | 515.9816692 | 433.2291308 | 222.4868875 | 227.7738512 | 183.9685434 | 185.7336022 | 190.3489032 | 191.8641908 | 192.4907685 | 192.8215906 | 193.1556641 | 193.1556641 | 194.1357535 | 194.1357535 | 194.1357535 | 194.1357535 | 194.1357535 | 194.1351672 |
| Flow                          |                                     |            | 250         | 300         | 009         | 200         | 250         | 250         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         | 200         |
| CO <sub>2</sub>               | Concentration % v/v                 | 9.75       | 5.233367701 | 25.35874756 | 51.25363577 | 47.92321467 | 36.47026264 | 26.90755915 | 23.14364011 | 19.45344042 | 10.28472976 | 7.417788148 | 6.252034947 | 5.641116779 | 5.027376818 | 5.027376818 | 3.245061862 | 3.245061862 | 3.245061862 | 3.245061862 | 3.245061862 | 3.246120035 |
| microGC                       | Area                                | 2764.2     | 1483.7      | 7189.4      | 14530.8     | 13586.6     | 10339.6     | 7628.5      | 6561.4      | 5515.2      | 2915.8      | 2103        | 1772.5      | 1599.3      | 1425.3      | 1425.3      | 920         | 920         | 920         | 920         | 920         | 920.3       |
| Run number                    |                                     | 2          | က           | 4           | 2           | 9           | 7           | ∞           | O           | 10          | 1           | 12          | 13          | 4           | 15          |             |             |             |             |             |             | 16          |
| Time                          |                                     |            | 10:50       | 11:00       | 11:10       | 11:20       | 11:30       | 11:40       | 11:50       | 12:00       | 12:10       | 12:20       | 12:30       | 12:40       | 12:50       | 13:00       | 13:10       | 13:20       | 13:30       | 13:40       | 13:50       | 14:00       |
| Date                          |                                     | 08/12/2010 | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  | 08/12/2010  |

| 8966.016<br>9021.517<br>9066.004<br>9094.006<br>9102.29                                | Cumulative $CO_2$ volume (ml) |                                     | 97.14262     | 3848.653<br>5298.572       | 5747.291<br>5967 591 | 6063.78     | 6112.466    | 6161.151    | 6209.836    | 6245.887    | 6266.151    | 6280.475    |
|----------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|--------------|----------------------------|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 72.30695665<br>55.50018099<br>44.48786742<br>28.0012279<br>8.284152973                 | CO <sub>2</sub> Volume =      | Corrected flow*Concentration*20 min | 97.1426185   | 3/51.510318<br>1449.918714 | 448.7195028          | 96.18889274 | 48.68539227 | 48.68539227 | 48.68539227 | 36.05038543 | 20.26375418 | 14.32482268 |
| 193.8677739<br>194.3518804<br>194.6697427<br>195.1465955<br>195.7184243                | Flow Corrected                |                                     | 292.9986416  | 259.8150133<br>280.2200377 | 289.6213614          | 195.0290066 | 195.4878239 | 195.4878239 | 195.4878239 | 195.6100426 | 195.7628545 | 195.8203733 |
| 200<br>200<br>200<br>200<br>200                                                        | Flow                          |                                     | 300          | 300                        | 300                  | 200         | 200         | 200         | 200         | 200         | 200         | 200         |
| 3.729704797<br>2.855654439<br>2.285299544<br>1.434881702<br>0.423268939<br>0.423268939 | ${\rm CO}_2$                  | Concentration % v/v 9.75            | 1.105154367  | 48.13053039<br>17.24738324 | 5.164438385          | 1.644010027 | 0.830152168 | 0.830152168 | 0.830152168 | 0.614324039 | 0.345039142 | 0.243842906 |
| 1057.4<br>809.6<br>647.9<br>406.8<br>120                                               | microGC                       | Area<br>3410.7                      | 386.6        | 16836.8<br>6033.4          | 1806.6               | 575.1       | 290.4       | 290.4       | 290.4       | 214.9       | 120.7       | 85.3        |
| 71<br>18<br>20<br>22                                                                   | Run number                    | 0                                   | ၊ က <u>¬</u> | 4 ιν                       | 9 /                  | . ω         | <b>o</b>    | 10          | <del></del> | 12          | 13          | 4           |
| 14:10<br>14:20<br>14:30<br>14:40<br>14:50<br>15:00                                     | Time                          |                                     | 10:00        | 10:15<br>10:30             | 11:00                | 12:00       | 12:30       | 13:00       | 13:30       | 14:00       | 14:30       | 15:00       |
| 08/12/2010<br>08/12/2010<br>08/12/2010<br>08/12/2010<br>08/12/2010                     | 3 weeks<br>Date               | 11/01/2011                          | 11/01/2011   | 11/01/2011<br>11/01/2011   | 11/01/2011           | 11/01/2011  | 11/01/2011  | 11/01/2011  | 11/01/2011  | 11/01/2011  | 11/01/2011  | 11/01/2011  |

| Cumulative<br>CO <sub>2</sub> volume (ml) |                                     |            | 0           | 55.636      | 335.8675    | 1157.495    | 1645.678    | 1896.846    | 2045.641    | 2152.46     | 2233.943    | 2290.996    | 2331.835    | 2370.389    |
|-------------------------------------------|-------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume =                  | Corrected flow*Concentration*20 min |            | 55.63600395 | 280.2314567 | 821.6274499 | 488.1829036 | 251.1683883 | 148.7950364 | 106.8183296 | 81.48318597 | 57.05338922 | 40.83854641 | 38.55414908 | 33.29658295 |
| Flow Corrected                            |                                     |            | 293.3999655 | 242.2476586 | 237.1141077 | 240.2625598 | 242.5264147 | 194.5221674 | 194.9264893 | 195.1709275 | 195.4069223 | 195.5637176 | 195.5858176 | 195.6366903 |
| Flow                                      |                                     |            | 300         | 250         | 250         | 250         | 250         | 200         | 200         | 200         | 200         | 200         | 200         | 200         |
| CO <sub>2</sub>                           | Concentration % v/v                 | 9.75       | 0.632083736 | 3.855991265 | 11.5503805  | 6.772908549 | 3.452110411 | 2.54975287  | 1.826642956 | 1.391655117 | 0.973240671 | 0.696082534 | 0.657071315 | 0.567320014 |
| microGC                                   | Area                                | 3823.9     | 247.9       | 1512.3      | 4530        | 2656.3      | 1353.9      | 1000        | 716.4       | 545.8       | 381.7       | 273         | 257.7       | 222.5       |
| Run number                                |                                     | 2          | င           | 4           | 2           | 9           | 7           | 80          | 6           | 10          | 7           | 12          | 13          | 4           |
| Time                                      |                                     |            | 10:30       | 10:45       | 11:00       | 11:30       | 12:00       | 12:30       | 13:00       | 13:30       | 14:00       | 14:30       | 15:00       | 15:30       |
| Date                                      |                                     | 14/01/2011 | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  | 14/01/2011  |

Appendix 2.13: Inorganic Carbon Measurement - Absorption - Rich Samples

Absorption inorganic carbon measurement with TOC instrument – Rich initial molar loading

## 2 Weeks

| Cumulative<br>CO <sub>2</sub> volume | (lm)            | 0           | 847.0672517 | 1023.153442 | 2042.599806 | 5510.570983 | 6079.607409 | 6302.03207  | 6092.582181 | 6163.016657 | 6029.56186  | 6081.460947 | 6257.547138 |
|--------------------------------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| L of CO <sub>2</sub>                 |                 | 2.290974011 | 3.138041263 | 3.314127453 | 4.333573817 | 7.801544995 | 8.37058142  | 8.593006081 | 8.383556192 | 8.453990668 | 8.320535871 | 8.372434959 | 8.548521149 |
| gr of CO <sub>2</sub>                |                 | 4.52925562  | 6.203907577 | 6.552029975 | 8.567475437 | 15.42365445 | 16.54863947 | 16.98837302 | 16.57429059 | 16.71353955 | 16.44969942 | 16.55230391 | 16.90042631 |
| atoms of C                           |                 | 0.102914238 | 0.140965862 | 0.148875937 | 0.194671107 | 0.350457952 | 0.376019983 | 0.386011657 | 0.376602831 | 0.379766861 | 0.373771857 | 0.376103247 | 0.384013322 |
| C Content                            | in 396 ml (g)   | 1.236       | 1.693       | 1.788       | 2.338       | 4.209       | 4.516       | 4.636       | 4.523       | 4.561       | 4.489       | 4.517       | 4.612       |
| C Concentration after dilution       | (mg/L)          | 3121.212121 | 4275.252525 | 4515.151515 | 5904.040404 | 10628.78788 | 11404.0404  | 11707.07071 | 11421.71717 | 11517.67677 | 11335.85859 | 11406.56566 | 11646.46465 |
| TOC response                         | (mg/L)<br>403.1 | 12.36       | 16.93       | 17.88       | 23.38       | 42.09       | 45.16       | 46.36       | 45.23       | 45.61       | 44.89       | 45.17       | 46.12       |
| Time                                 | (min)           | 0           | 30          | 09          | 06          | 120         | 150         | 210         | 240         | 270         | 300         | 330         | 360         |
| Sample                               |                 | Initial     | 7           | က           | 4           | 2           | 9           |             | 7           | ∞           | 6           | 10          | 7           |

| Cumulative<br>CO <sub>2</sub> volume | (ml)            | 0           | 1558.752    | 4144.212    | 5461.369    | 6382.064    | 6645.12    | 6545.534    | 6421.522    | 6186.651    | 6273.084    | 6637.604    |
|--------------------------------------|-----------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|
| L of $CO_2$                          |                 | 1.149365    | 2.692562    | 5.278022    | 6.595179    | 7.515874    | 7.77893    | 7.679344    | 7.555332    | 7.320461    | 7.406894    | 7.771414    |
| gr of $CO_2$                         |                 | 2.272295    | 5.323195    | 10.43465    | 13.03867    | 14.85888    | 15.37894   | 15.18206    | 14.93689    | 14.47255    | 14.64343    | 15.36408    |
| atoms of C                           |                 | 0.051631326 | 0.12095421  | 0.237097261 | 0.296266069 | 0.33762515  | 0.34944203 | 0.344968497 | 0.339397682 | 0.328846896 | 0.332729585 | 0.349104405 |
| C Content                            | in 396 ml (g)   | 0.620092226 | 1.452660061 | 2.84753811  | 3.558155488 | 4.054878049 | 4.19679878 | 4.143071646 | 4.076166159 | 3.94945122  | 3.996082317 | 4.192743902 |
| C Concentration after dilution       | (mg/L)          | 1554.116    | 3640.752    | 7136.687    | 8917.683    | 10162.6     | 10518.29   | 10383.64    | 10215.96    | 9898.374    | 10015.24    | 10508.13    |
| TOC response                         | (mg/L)<br>393.6 | 6.117       | 14.33       | 28.09       | 35.1        | 40          | 41.4       | 40.87       | 40.21       | 38.96       | 39.42       | 41.36       |
| Time                                 | (min)           | 0           | 30          | 09          | 06          | 120         | 150        | 210         | 240         | 270         | 300         | 330         |
| Sample                               |                 | Initial     | 7           | က           | 4           | 2           | 9          |             | 7           | ∞           | 0           | 10          |

| (ml)            | 0                                       | 1558.752                                                                                                    | 4144.212                                                                                                                                                                     | 5461.369                                                                                                                                                                                                                                                                                                                                                                                                 | 6382.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6645.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6545.534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6421.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6186.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6273.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6637.604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 1.149365                                | 2.692562                                                                                                    | 5.278022                                                                                                                                                                     | 6.595179                                                                                                                                                                                                                                                                                                                                                                                                 | 7.515874                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.77893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.679344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.555332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.320461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.406894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.771414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 2.272295                                | 5.323195                                                                                                    | 10.43465                                                                                                                                                                     | 13.03867                                                                                                                                                                                                                                                                                                                                                                                                 | 14.85888                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.37894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.18206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.93689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.47255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.64343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15.36408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 0.051631326                             | 0.12095421                                                                                                  | 0.237097261                                                                                                                                                                  | 0.296266069                                                                                                                                                                                                                                                                                                                                                                                              | 0.33762515                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.34944203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.344968497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.339397682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.328846896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.332729585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.349104405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| in 396 ml (g)   | 0.620092226                             | 1.452660061                                                                                                 | 2.84753811                                                                                                                                                                   | 3.558155488                                                                                                                                                                                                                                                                                                                                                                                              | 4.054878049                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.19679878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.143071646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.076166159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.94945122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.996082317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.192743902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (mg/L)          | 1308.478803                             | 4436.408978                                                                                                 | 6890.274314                                                                                                                                                                  | 6698.254364                                                                                                                                                                                                                                                                                                                                                                                              | 6845.386534                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6571.072319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6715.710723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6735.660848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6483.790524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6882.793017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6683.291771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (mg/L)<br>456.3 | 5.247                                   | 17.79                                                                                                       | 27.63                                                                                                                                                                        | 26.86                                                                                                                                                                                                                                                                                                                                                                                                    | 27.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (min)           | 0                                       | 30                                                                                                          | 09                                                                                                                                                                           | 06                                                                                                                                                                                                                                                                                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | Initial                                 | 7                                                                                                           | က                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>o</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | (min) (mg/L) (mg/L) in 396 ml (g) 456.3 | (min) (mg/L) (mg/L) in 396 ml (g)<br>456.3<br>0 5.247 1308.478803 0.620092226 0.051631326 2.272295 1.149365 | (min) (mg/L) (mg/L) in 396 ml (g)<br>456.3<br>0 5.247 1308.478803 0.620092226 0.051631326 2.272295 1.149365<br>30 17.79 4436.408978 1.452660061 0.12095421 5.323195 2.692562 | (min)       (mg/L)       in 396 ml (g)         456.3       in 396 ml (g)         0       5.247         1308.478803       0.620092226       0.051631326       2.272295       1.149365         30       17.79       4436.408978       1.452660061       0.12095421       5.323195       2.692562         60       27.63       6890.274314       2.84753811       0.237097261       10.43465       5.278022 | (min)       (mg/L)       (mg/L)       in 396 ml (g)         456.3       1308.478803       0.620092226       0.051631326       2.272295       1.149365         30       17.79       4436.408978       1.452660061       0.12095421       5.323195       2.692562         60       27.63       6890.274314       2.84753811       0.237097261       10.43465       5.278022         90       26.86       6698.254364       3.558155488       0.296266069       13.03867       6.595179 | (min)       (mg/L)       (mg/L)       in 396 ml (g)         456.3       1308.478803       0.620092226       0.051631326       2.272295       1.149365         30       17.79       4436.408978       1.452660061       0.12095421       5.323195       2.692562         60       27.63       6890.274314       2.84753811       0.237097261       10.43465       5.278022         90       26.86       6698.254364       3.558155488       0.296266069       13.03867       6.595179         120       27.45       6845.386534       4.054878049       0.33762515       14.85888       7.515874 | (min)       (mg/L)       (mg/L)       in 396 ml (g)         456.3       456.3         0       5.247       1308.478803       0.620092226       0.051631326       2.272295       1.149365         30       17.79       4436.408978       1.452660061       0.12095421       5.323195       2.692562         60       27.63       6890.274314       2.84753811       0.237097261       10.43465       5.278022         90       26.86       6698.254364       3.558155488       0.296266069       13.03867       6.595179         120       27.45       6845.386534       4.054878049       0.33762515       14.85888       7.515874         150       26.35       6571.072319       4.19679878       0.34944203       15.37894       7.77893 | (min)       (mg/L)       (mg/L)       in 396 ml (g)         456.3       (mg/L)       in 396 ml (g)         60       5.247       1308.478803       0.620092226       0.051631326       2.272295       1.149365         30       17.79       4436.408978       1.452660061       0.12095421       5.323195       2.692562         60       27.63       6890.274314       2.84753811       0.237097261       10.43465       5.278022         90       26.86       6698.254364       3.558155488       0.296266069       13.03867       6.595179         120       27.45       6845.386534       4.054878049       0.33762515       14.85888       7.515874         150       26.35       6571.072319       4.19679878       0.34944203       15.37894       7.77893         210       26.93       6715.710723       4.143071646       0.344968497       15.18206       7.679344 | (min)         (mg/L)         (mg/L)         in 396 ml (g)           456.3         (mg/L)         in 396 ml (g)         1.149365           456.3         1308.478803         0.620092226         0.051631326         2.272295         1.149365           30         17.79         4436.408978         1.452660061         0.12095421         5.323195         2.692562           60         27.63         6890.274314         2.84753811         0.237097261         10.43465         5.278022           90         26.86         6698.254364         3.558155488         0.296266069         13.03867         6.595179           120         27.45         6845.386534         4.054878049         0.33762515         14.85888         7.515874           150         26.35         6571.072319         4.19679878         0.34944203         15.18206         7.679344           210         26.93         6715.710723         4.143071646         0.339397682         14.93689         7.555332           240         27.01         6735.660848         4.076166159         0.339397682         14.93689         7.555332 | (min)         (mg/L)         (mg/L)         in 396 ml (g)           456.3         456.3         1308.478803         0.620092226         0.051631326         2.272295         1.149365           30         17.79         4436.408978         1.452660061         0.12095421         5.323195         2.692562           60         27.63         6890.274314         2.84753811         0.237097261         10.43465         5.278022           90         26.86         6698.254364         3.55815548         0.296266069         13.03867         6.595179           120         27.45         6845.386534         4.054878049         0.33762515         14.85888         7.515874           150         26.35         6571.072319         4.19679878         0.34944203         15.18206         7.679344           240         27.01         6735.660848         4.076166159         0.339397682         14.93689         7.555332           270         26         6483.790524         3.94945122         0.328846896         14.47255         7.320461 | in 396 ml (g)  0.620092226   0.051631326   2.272295   1.149365 1.452660061   0.12095421   5.323195   2.692562 2.84753811   0.237097261   10.43465   5.278022 3.558155488   0.296266069   13.03867   6.595179 4.054878049   0.33762515   14.85888   7.515874 4.19679878   0.34944203   15.37894   7.77893 4.143071646   0.344968497   15.18206   7.679344 4.076166159   0.328846896   14.47255   7.320461 3.94945122   0.328846896   14.47255   7.320461 3.996082317   0.332729585   14.64343   7.406894 |

Appendix 2.14: MicroGC Raw Data – Stripping – Rich Samples

Stripping microGC measurement - Rich initial molar loading

2 weeks

| Cumulative<br>CO <sub>2</sub> volume (ml) |                                     |            | 0           | 1385.703    | 2924.616    | 4455.158    | 5966.718    | 6861.933    | 7340.334    | 7652.277    | 7820.187    | 7922.709    | 7996.465    | 8064.455    | 8106.095    |
|-------------------------------------------|-------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $CO_2$ Volume =                           | Corrected flow*Concentration*20 min |            | 1385.702788 | 1538.913383 | 1530.541548 | 1511.560518 | 895.2147529 | 478.4010702 | 311.943046  | 167.9102234 | 102.5211877 | 73.75598859 | 67.99087461 | 41.63949206 | 14.65549813 |
| Flow Corrected                            |                                     |            | 231.8849011 | 279.3998444 | 279.4768935 | 279.6516656 | 285.3892158 | 240.3555653 | 241.9438691 | 243.3267719 | 243.9572181 | 195.2455422 | 195.3012295 | 195.5559696 | 195.8171703 |
| Flow                                      |                                     |            | 250         | 300         | 300         | 300         | 300         | 250         | 250         | 250         | 250         | 200         | 200         | 200         | 200         |
| CO <sub>2</sub>                           | Concentration % v/v                 | 9.75       | 19.91940515 | 18.35974994 | 18.25483708 | 18.01718237 | 10.45606845 | 6.634629957 | 4.297733013 | 2.300202071 | 1.400808285 | 1.259200556 | 1.160444557 | 0.709762566 | 0.249475878 |
| microGC                                   | Area                                | 3959       | 8088.3      | 7455        | 7412.4      | 7315.9      | 4245.7      | 2694        | 1745.1      | 934         | 568.8       | 511.3       | 471.2       | 288.2       | 101.3       |
| Run number                                |                                     | 2          | င           | 4           | 2           | 9           | 7           | 80          | <b>o</b>    | 10          | 11          | 12          | 13          | 14          | 15          |
| Time                                      |                                     |            | 10:00       | 10:15       | 10:30       | 11:00       | 11:30       | 12:00       | 12:30       | 13:00       | 13:30       | 14:00       | 14:30       | 15:00       | 15:30       |
| Date                                      |                                     | 18/01/2011 | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  |

| Cumulative<br>CO <sub>2</sub> volume (ml) |                                     |            | 0           | 2647.241    | 4405.416    | 5613.406    | 6159.199    | 6472.181    | 6732.205    | 6940.224    | 7148.244    | 7356.263    | 7384.97     | 7406.276    | 7423.948    |
|-------------------------------------------|-------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CO <sub>2</sub> Volume =                  | Corrected flow*Concentration*20 min |            | 2647.241292 | 1758.174368 | 1207.9905   | 545.7931792 | 312.9814536 | 260.0241404 | 208.0193123 | 208.0193123 | 208.0193123 | 28.70673942 | 21.30594265 | 17.67243634 | 15.44156846 |
| Flow Corrected                            |                                     |            | 269.3961243 | 277.3898485 | 282.4624532 | 190.7400291 | 241.9339279 | 242.4414411 | 193.9531529 | 193.9531529 | 193.9531529 | 195.681113  | 195.7527626 | 195.7879495 | 195.8095563 |
| Flow                                      |                                     |            | 300         | 300         | 300         | 200         | 250         | 250         | 200         | 200         | 200         | 200         | 200         | 200         | 200         |
| CO <sub>2</sub>                           | Concentration<br>% v/v              | 9.75       | 32.75525088 | 21.12759806 | 14.2554699  | 9.538168817 | 4.31221665  | 3.575078298 | 3.575078298 | 3.575078298 | 3.575078298 | 0.489005453 | 0.362803609 | 0.300877155 | 0.262867124 |
| microGC                                   | Area                                | 4565.9     | 15339.2     | 9894        | 6675.8      | 4466.7      | 2019.4      | 1674.2      | 1674.2      | 1674.2      | 1674.2      | 229         | 169.9       | 140.9       | 123.1       |
| Run number                                |                                     | 2          | က           | 4           | 2           | 9           | 7           | ∞           | 6           | 10          | 1           | 12          | 13          | 14          | 15          |
| Time                                      |                                     |            | 10:00       | 10:15       | 10:30       | 11:00       | 11:30       | 12:00       | 12:30       | 13:00       | 13:30       | 14:00       | 14:30       | 15:00       | 15:30       |
| Date                                      |                                     | 10/01/2011 | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  | 10/01/2011  |

| Cumulative<br>CO <sub>2</sub> volume (ml) |                                     |            | 0           | 1917.844    | 2785.541    | 3367.521    | 3643.99     | 3788.17     | 3850.45     | 3900.003    | 3933.318    | 3963.345    | 3984.886    |
|-------------------------------------------|-------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $CO_2$ Volume =                           | Corrected flow*Concentration*20 min |            | 1917.844301 | 867.6965575 | 581.9805169 | 276.4682675 | 144.1805872 | 62.27957297 | 49.55271026 | 33.31499474 | 30.02737018 | 21.54146131 | 19.15440797 |
| Flow Corrected                            |                                     |            | 227.0631091 | 285.6482084 | 288.3515678 | 291.2710864 | 292.5445012 | 244.3460215 | 244.4691143 | 244.6262538 | 244.6580819 | 195.7504821 | 195.7735973 |
| Flow                                      |                                     |            | 250         | 300         | 300         | 300         | 300         | 250         | 250         | 250         | 250         | 200         | 200         |
| $CO_2$                                    | Concentration % v/v                 | 9.75       | 28.1543504  | 10.12546823 | 6.727672997 | 3.163928501 | 1.642833673 | 0.84960899  | 0.675650588 | 0.453957745 | 0.409106591 | 0.366818361 | 0.326131958 |
| microGC                                   | Area                                | 3043.4     | 8788.2      | 3160.6      | 2100        | 987.6       | 512.8       | 265.2       | 210.9       | 141.7       | 127.7       | 114.5       | 101.8       |
| Run number                                |                                     | 2          | က           | 4           | 2           | 9           | 7           | ∞           | တ           | 10          | 1           | 12          | 13          |
| Time                                      |                                     |            | 10:00       | 10:15       | 10:30       | 11:00       | 11:30       | 12:00       | 12:30       | 13:00       | 13:30       | 14:00       | 14:30       |
| Date                                      |                                     | 18/01/2011 | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  | 18/01/2011  |