

1 **Sediment melting during subduction initiation: Evidence of mantle-hosted S-type**
2 **granitoids in the Neoproterozoic Fuchuan Ophiolite**

3

4 Si-Fang Huang^{1*}, Wei Wang^{2*}, Andrew C. Kerr³, Peter A. Cawood⁴, Guimei Lu⁵

5

6 *¹Henan Engineering Technology Research Center of Ecological Protection and*
7 *Management of the Old Course of Yellow River, School of Surveying and Planning,*
8 *Shangqiu Normal University, Shangqiu 476000, China.*

9 *²School of Earth Sciences, State Key Laboratory of Geological Processes and Mineral*
10 *Resources, China University of Geosciences, Wuhan 430074, China*

11 *³School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT,*
12 *UK*

13 *⁴School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC*
14 *3800, Australia*

15 *⁵State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry,*
16 *Chinese Academy of Sciences, Guangzhou 510640, China*

17

18 ***Corresponding author at:** School of Surveying and Planning, Shangqiu Normal
19 University, Shangqiu 476000, China. Email address: hsifang@sqnu.edu.cn;
20 School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
21 Email address: wwz@cug.edu.cn

22

23 **Abstract**

24 The mechanisms and geodynamic significance of sediment recycling in
25 subduction zones remain intensely controversial in Precambrian geology. This study
26 reports a suite of Precambrian sediment-derived felsic intrusions preserved within an
27 exhumed mantle peridotite of a supra-subduction zone in South China. These felsic
28 rocks intruded into the peridotite of the Fuchuan Ophiolite show U-Pb ages of 846 -
29 837 Ma, coinciding with the dating of ca. 848 - 820 Ma crustal section rocks of the
30 ophiolite, implying their generation during slab subduction rather than later obduction.
31 Petrography, zircon O isotopic and trace elemental signatures of the Fuchuan mantle-
32 hosted granitoids indicate S-type affinity. Integrated O ($\delta^{18}\text{O} = 7.5\text{ ‰ to }11.3\text{ ‰}$), Hf
33 ($\epsilon_{\text{Hf(t)}} = -3.8\text{ to }+6.9$) and Nd ($\epsilon_{\text{Nd(t)}} = -2.2\text{ to }-0.4$) isotopic compositions, coupled with
34 inherited zircon ages and whole-rock geochemistry, collectively suggest derivation

35 from a continental margin sediment protolith. Geochemical analyses and pseudosection
36 modeling reveal partial melting of subducted sediment at 650 - 790 °C and <4 kbar
37 (~12-15 km). This condition of melting is atypical in a mature subduction channel, but
38 is plausible during the initiation phase of subduction. Consequently, the mantle-hosted
39 S-type intrusions formed during slab subduction may represent a proxy for subduction
40 initiation. In contrast to the formation depth (< 14 kbar; depths < 45 km) of Phanerozoic
41 mantle-hosted leucogranitoids, sediment-derived melt transport from subducting slabs
42 during the Neoproterozoic occurred at substantially shallower depths, suggesting that
43 the Neoproterozoic era may witness the reoperating of modern-style plate tectonics
44 after Earth's middle age, occurring under elevated mantle potential temperatures
45 relative to present-day conditions.

46

47 **Keywords:** mantle-hosted S-type granitoids, Neoproterozoic, South China, subduction
48 initiation, plate tectonics

49

50 1. Introduction

51 Subduction is the main mechanism of mass transfer from Earth's surface to its
52 mantle and has the potential to modify the compositions of mantle, crust, hydrosphere,
53 and atmosphere (Klaver et al., 2024; Stern, 2002; Zheng, 2019; Zheng et al., 2019).
54 Sediments, containing abundant lithophile elements (for example, K, Rb, Th, U and
55 LREE), play a pivotal role in the generation of volcanic arc magmas and the crust-
56 mantle interaction processes during slab subduction (Klein and Behn, 2021). In the
57 classic model, sediments on top of the subducting slab release aqueous fluids and melts,
58 which metasomatize the mantle peridotite and thus facilitate the generation of mantle-
59 derived magma (Li et al., 2022; Zheng, 2019). However, some recent studies have
60 revealed that oceanic sediments, altered basaltic crust and serpentinite from the
61 subducted slab can potentially ascend as a diapiric fashion into the overlying mantle
62 wedge (Behn et al., 2011). Although slab subduction has been recognized from the early
63 Neoproterozoic and even the Archean (Zheng and Zhao, 2020), critical geological
64 evidence is lacking on whether sediment transfer conditions in Precambrian subduction
65 zone matched that in Phanerozoic, given the differences in thermal state between the
66 Precambrian and contemporary Earth (van Keken et al., 2018).

67 Suprasubduction zone (SSZ) ophiolites comprise fragments of oceanic crust and
68 underlying mantle rocks and represent key archives for investigating mass transfer and

69 crust-mantle interactions in subduction systems (Cawood et al., 2024; Stern, 2002).
70 Granitic rocks within oceanic crustal units of the SSZ-type ophiolites are commonly
71 plagiogranites, generated through fractional crystallization of mantle-derived melts or
72 partial melts of oceanic crust (Çörtük et al., 2024; Li et al., 2022a, 2023; Sun et al.,
73 2020). Meanwhile, a minor proportion of peraluminous granitoids within the ophiolite
74 are genetically linked to the partial melting of metasedimentary rocks during obduction
75 (Cox et al., 1999; Li et al., 2008). However, mantle-hosted S-type granitoids within the
76 SSZ-type ophiolite formed during slab subduction, although rare, preserve a record of
77 direct melting of sediment at mantle depths and thus crustal-mantle interaction during
78 slab subduction (Angelo et al., 2023; Haase et al., 2015). As a result, deciphering the
79 petrogenesis of mantle-hosted S-type granitoids can be potentially used to understand
80 the mechanism of sediment transfer and subduction zone crust-mantle interaction. At
81 present, the mantle-hosted S-type granitoids formed during the process of oceanic slab
82 subduction have predominantly been reported from the Phanerozoic Samail Ophiolites
83 (Angelo et al., 2023; Cox et al., 1999; Rioux et al., 2021), whereas their counterparts in
84 Precambrian ophiolites have rarely been documented (Huang et al., 2021).

85 In this work, we report Neoproterozoic mantle-hosted S-type intrusions from the
86 SSZ-type Fuchuan Ophiolite, South China (Fig. 1). Field and petrological observations,
87 whole-rock geochemistry and Nd isotope, zircon trace elements, zircon U-Pb
88 geochronology and Hf-O isotopes of these mantle-hosted S-type intrusions indicate
89 generation by partial melting of sediment in a subduction channel, and subsequent
90 intrusion into the cold corner of the mantle wedge. Temperature and pressure estimates
91 suggest that mantle-hosted S-type granitoids in ophiolites may be a proxy for
92 subduction initiation. In addition, our findings indicate that during the Neoproterozoic
93 era, the depth at which sediments were transported from subducting slabs into the
94 mantle was significantly shallower than observed in modern subduction systems.

95

96 **2. Geological background**

97 The Neoproterozoic Fuchuan Ophiolite lies in the eastern part of the Jiangnan Belt
98 of South China (Bai et al., 1986; Zhao, 2015; Zhou et al., 1989; Zhou and Zhao, 1991).
99 The ophiolite comprises serpentized harzburgite with minor pyroxenite, dunite,
100 wehrlite, lenses of chromitite and veins (or blocks) of granitoids in its mantle section.
101 Its crustal section consists of isotropic gabbro (with subordinate layered troctolite and
102 anorthosite), pillowd lava and sedimentary cover (including black chert, meta-

103 graywacke and tuffaceous sandstone) (Fig. 1; Bai et al., 1986; Zhang et al., 2012).
104 Zircon U-Pb geochronology, whole-rock and mineral geochemistry suggest that the
105 Fuchuan Ophiolite formed at ca. 848 - 820 Ma in a suprasubduction zone (SSZ) setting
106 (Huang et al., 2021; Li and Zhao, 2020; Shu et al., 2019; Zhang et al., 2013). The
107 Fuchuan Ophiolite was obducted into the early Neoproterozoic littoral- to marine-facies
108 autochthonous sedimentary sequences of the Shangxi/Xikou Group and onto the
109 Shexian granitoid plutons after ca. 820 Ma, with mylonitization occurring along the
110 thrust-fault contact zone (Ding et al., 2008; Li et al., 2003; Wang et al., 2013a; Yao et
111 al., 2019). The SE-dipping mylonitic foliations are pervasively developed in both the
112 Shangxi/Xikou Group and the Shexian granitoid plutons, indicating that the Fuchuan
113 Ophiolite was emplaced as a tectonic nappe from southeast to northwest direction (Bai
114 et al., 1989; Ding et al., 2008; Zhou et al., 1989).

115 The Shangxi/Xikou Group was mainly derived from the Neoproterozoic magmatic
116 arc with a peak U-Pb zircon age of 830 - 1000 Ma and so the maximum depositional
117 age has been interpreted to be ca. 820 - 830 Ma (Wang et al., 2013a; Xu et al., 2014).
118 The Shexian granitoid plutons, along with the Xucun and Jiuling plutons in the Jiangnan
119 Belt, are markedly strongly peraluminous (Huang et al., 2025; Li et al., 2003; Shen et
120 al., 1993; Wu et al., 2006; Xu and Zhou, 1989; Zheng et al., 2008). These plutons have
121 been dated at ca. 850 - 810 Ma, and may have formed in a syn-/post-collisional tectonic
122 setting when the Yangtze and Cathaysia Blocks amalgamated (Li et al., 2003; Wu et
123 al., 2006; Wang et al., 2013b, 2023; Zheng et al., 2008). Alternatively, they have been
124 interpreted as being generated in a back-arc extension setting when the paleo-Huanan
125 oceanic slab subducted along the southeastern margin of the Yangtze Block (Yao et al.,
126 2019; Zhu et al., 2023; Huang et al., 2025). These peraluminous granitoid plutons and
127 sedimentary sequences, along with the Fuchuan Ophiolite, are unconformably overlain
128 by the late Neoproterozoic sedimentary sequences formed during Nanhua rifting (Wang
129 et al., 2016; Yin et al., 2013).

130 Numerous felsic intrusions, varying in width from 0.1 to 2 meters, intrude the
131 harzburgite matrix of the Fuchuan Ophiolite, without any discernible metamorphic
132 aureole or mylonitization in the contact zone (Fig. 1d-f). These felsic intrusions exhibit
133 tectonic dislocation, with their shear sense aligned with the mylonitized foliation
134 orientation in the thrust-fault contact zone, demonstrating they constitute a part of the
135 Fuchuan Ophiolite (Shu et al., 2019). In contrast to country granitoids, exemplified by
136 the Shexian granitoid plutons, which are typically characterized by enrichment in mafic

137 minerals (~10 - 20%; [Fig. 1g](#)), the felsic intrusions, intruded into harzburgite of the
138 Fuchuan Ophiolite, exhibit an off-white coloration and lack significant mafic mineral
139 content (colour index < 5; [Fig. 1f](#)). Therefore, the felsic intrusions of the Fuchuan
140 Ophiolite are known as Fuchuan mantle-hosted granitoids to distinguish them from the
141 country granitoid rocks (e.g., Shexian granitoid pluton). They are mainly composed of
142 potassium feldspar (30 - 40 vol.%), plagioclase (20 - 25 vol.%), quartz (10 - 30 vol.%),
143 muscovite (~5 vol.%) and accessory minerals (cordierite, zircon, and apatite) ([Fig. 1h-i](#)). In contrast to typical plagiogranites, marked by plagioclase enrichment, the Fuchuan
144 mantle-hosted granitoids are characterized by their abundance of potassium feldspar
145 ([Fig. 1h-i](#)).

147

148 3. Methods

149 Zircon cathodoluminescence images were acquired at the State Key Laboratory of
150 Geological Process and Mineral Resources (GPMR), with a CL 4+ system integrated
151 into a Zeiss Sigma 300 scanning electron microscope. *In-situ* zircon O isotope analyses
152 were measured using the Cameca IMS-1280 SIMS housed at Guangzhou Institute of
153 Geochemistry following the analytical procedures given in [Li et al. \(2010\)](#). The
154 standard zircon Qinghu was as an unknown sample to monitor data quality, yielding
155 weighted mean value of $\delta^{18}\text{O}$ is $5.55 \pm 0.12\text{\textperthousand}$ (2σ , $n=13$), which is identical to the
156 reported value of $5.46\text{\textperthousand} \pm 0.24\text{\textperthousand}$ within the errors ([Yang et al., 2018](#)). *In-situ* zircon
157 U-Pb dating were determined using an Agilent Technologies 7700x quadrupole ICP-
158 MS were attached with RESOlution laser-ablation system at GPMR. Zircon 91500 was
159 set as external standard material. Zircon GJ-1 and Plešovice were used as unknown
160 samples to monitor quality of geochronology with weighted mean $^{206}\text{Pb}/^{238}\text{U}$ ages of
161 599.4 ± 3.6 Ma (MSWD= 3.0, $n = 14$) and 337.0 ± 2.8 Ma (MSWD = 0.64, $n = 7$),
162 respectively ([Jackson et al., 2004](#); [Sláma et al., 2008](#)). Trace elemental contents of
163 zircon were calibrated using ^{29}Si as internal standard and NIST SRM 610 as an external
164 reference standard material. Zircon Lu-Hf isotope analyses were measured at GPMR,
165 using a Neptune Plus multi-collector ICP-MS attached with an ArF excimer laser
166 ablation system. Standard zircon 91500 and GJ-1 was used for quality control. Raw
167 datasets of zircon U-Pb and Lu-Hf isotopes were processed using *ICPMSDataCal*
168 software ([Liu et al., 2010](#)). Concordia diagrams and age calculation were performed
169 on-line by procedure of *IsoplotR* ([Vermeesch, 2018](#)).

170 Whole-rock major element compositions were obtained at GPMR using a
171 Shimadzu 1800-XRF. Measurements of trace element abundances were conducted
172 using an Agilent 7700x ICP-MS at Nanjing FocuMS Technology Co. Ltd. The sample
173 was firstly digested by acetic acid, and then by HF + HNO₃ mixture at 190 °C for 48 h
174 to ensure complete dissolution of residue. Pure elemental standards were used as
175 external calibration for instrument responses and internal reference materials BHVO-2,
176 W-2, GSP-2 and AGV-2 were used to monitor the quality of analyses. High precision
177 radiogenic Nd isotope composition was measured by Nu Instruments Plasma II MC-
178 ICP-MS. Detailed analytical procedures were described by [Chen et al. \(2009\)](#).

179 Pseudosection modeling was carried out by GeoPS (<http://www.geops.org/zh-cn/>)
180 with the MnNCKFMASHT system and employed the hp633ver.dat thermodynamic
181 database ([Xiang and Connolly, 2022](#)). The a-x solution models for orthopyroxene
182 [Opx(W)], garnet [Gt(W)], melt [melt(W)], mica [Mica(W)], ilmenite [Ilm(W)],
183 cordierite [Crd(W)], biotite [Bi(W)], chlorite [Chl(W)], chloritoid [Ctd(W)] and spinel
184 [Sp(WPC)] from White et al. ([2014](#)), and for feldspar [Fsp(C1)] and epidote [Ep(HP11)]
185 from Holland and Powell ([2011](#)) were used. The modeling focused on the Xikou Group
186 metasedimentary rocks, assuming an Fe³⁺/(Fe³⁺+Fe²⁺) ratio equivalent to 0.1.

187

188 4. Results

189 4.1. Zircon U-Pb geochronology

190 While a few zircon grains from the Fuchuan mantle-hosted granitoids have core-
191 rim structure, most of them show clear oscillatory zoning ([Fig. 2a-d](#)). Zircons from the
192 studied grains have Th/U ratio ranging from 0.11 to 1.32, total REE concentrations of
193 310 - 3486 ppm, positive Ce (Ce/Ce* = 1 - 395) and negative Eu anomalies (Eu/Eu* =
194 0.02 - 0.51), indicative of magmatic origin ([Fig. S1](#)). High (Sm/La)_N, consistent
195 (Yb/Dy)_N values and lack of correlation between Th/U and LREE-I [LREE-I =
196 (Dy/Nd)+(Dy/Sm)] values ([Fig. S1](#)), also suggest the zircons of the felsic intrusions are
197 magmatic ([Bell et al., 2016](#)). A total of 120 zircon spots from 4 samples for U-Pb dating
198 were measured. Twenty-seven of them show older ²⁰⁶Pb/²³⁸U apparent ages, varying
199 from 880 to 2468 Ma, and are considered as xenocrysts from the source material rather
200 than captured from wall rocks, because the studied intrusions outcrop in mantle
201 peridotite ([Fig. 1d, e](#)). Nine spots were analyzed on the zircon cores with ages ranging
202 from 829 to 852 Ma, and they are also considered to be xenocrysts, because of the
203 inconsistent oscillatory zoning in the core and the rim, and low U contents ([Figs. 2 and](#)

204 [S1](#)). Eleven zircon grains with younger ages of 646 to 806 Ma are dark and have high
205 U contents, indicative of a later thermal event ([Bell et al., 2016](#)). Sixteen zircon grains
206 show discordant U-Pb ages, attributed to later lead loss ([Bell et al., 2016](#)). The
207 remaining analyses for samples FC19-21, FC19-22, FC10-01 and FC10-36 yield
208 $^{206}\text{Pb}/^{238}\text{U}$ weighted mean ages of 842 ± 4 Ma (MSWD = 1.06, n = 17), 844 ± 5 Ma
209 (MSWD = 1.20, n = 15), 845 ± 5 Ma (MSWD = 0.77, n = 14) and 846 ± 4 Ma (MSWD
210 = 0.76, n = 12), respectively ([Fig. 2e-h](#)). These ages, within analytical uncertainty, agree
211 with previous LA-ICP-MS/SIMS zircon ages (841 ± 5 Ma; 840 ± 5 Ma and 837 ± 6 Ma)
212 for the Fuchuan mantle-hosted granitoids ([Li and Zhao, 2020](#); [Shu et al., 2019](#)) and are
213 interpreted as the emplacement age. Existing studies document that mafic-ultramafic
214 magmatism (e.g., gabbros, anorthosites, wehrlites) in the Fuchuan Ophiolite persisted
215 from ca. 848 Ma to ca. 820 Ma ([Huang et al., 2021](#) and references there in), indicating
216 that the Fuchuan mantle-hosted granitoids (ca. 846 - 837 Ma) formed during oceanic
217 slab subduction rather than during obduction of the ophiolitic suit onto the continental
218 margin.

219

220 *4.2. Zircon Hf-O isotopes*

221 Magmatic zircons exhibit elevated $\delta^{18}\text{O}$ values ranging from $7.47 \pm 0.23\text{ ‰}$ to
222 $11.27 \pm 0.29\text{ ‰}$ (n = 36), averaging $9.16 \pm 0.26\text{ ‰}$ (2σ ; [Fig. S2](#)). In contrast, inherited
223 zircon grains display significantly greater $\delta^{18}\text{O}$ variability ($4.70 \pm 0.16\text{ ‰}$ to $10.35 \pm$
224 0.22 ‰ , n = 27), with their oxygen isotope composition characterized by a distinct
225 bimodal distribution pattern ([Fig. S2](#)). The $\epsilon_{\text{Hf}(t)}$ values of magmatic (n = 51) and
226 inherited (n = 27) zircons range from -3.8 ± 0.5 to $+6.9 \pm 0.5$ and from -4.9 ± 0.5 to
227 $+13.0 \pm 0.7$, respectively.

228

229 *4.3. Whole-rock geochemistry and Nd isotopes*

230 The Fuchuan mantle-hosted granitoids display variable SiO_2 (62.7 - 75.1 wt. %),
231 K_2O (4.3 - 9.1 wt. %), Na_2O (2.4 - 6.8 wt. %) and Al_2O_3 (12.7 - 16.7 wt. %) contents,
232 and high $\text{K}_2\text{O}/\text{Na}_2\text{O}$ ratios (0.71 - 3.09; [Fig. 3](#)). Aluminum saturation index (ASI) of
233 the Fuchuan mantle-hosted granitoids range from 0.65 to 1.04, which may represent an
234 underestimate due to the presence of calcite veins (width of ~1 mm) in felsic intrusions.

235 These mantle-hosted granitoids have crust-derived rather than mantle-derived
236 granite (e.g. plagiogranite in ophiolite) features, including fractionated light rare earth

237 elements $[(\text{La/Sm})_{\text{N}} = 1.48 - 2.83]$, unfractionated heavy rare earth element patterns
238 $[(\text{Dy/Yb})_{\text{N}} = 0.84 - 1.12]$, and significantly negative Eu anomalies $(\text{Eu/Eu}^* = 0.16 -$
239 0.42; [Fig. 4a](#)). Pronounced enrichment of LILEs (Rb, U, K and Pb) and depletion of
240 HFSEs (Nb, Ta and Ti) related to primitive mantle are also indicative of crustal origin
241 of the magma ([Fig. 4b](#)).

242 The Fuchuan mantle-hosted granitoids have measured $^{143}\text{Nd}/^{144}\text{Nd}$ ratios ranging
243 from 0.512265 to 0.512615, and the corresponding whole-rock $\varepsilon_{\text{Nd(t)}}$ values from -2.2
244 to -0.4.

245

246 5. Discussion

247 5.1. *Fuchuan mantle-hosted granitoids derived from partial melts of subducted* 248 *sediments*

249 Investigations relying exclusively on zircon U-Pb-Hf isotopic data propose that
250 the Fuchuan mantle-hosted granitoids are mantle-derived plagiogranites ([Li and Zhao,](#)
251 [2020; Shu et al., 2019](#)). However, we demonstrate that these granitoids show features
252 of S-type granites, including high K_2O contents and the presence of magmatic
253 muscovite, cordierite, and abundant inherited zircons. The $\delta^{18}\text{O}$ values (7.5 ‰ - 11.3
254 ‰) of magmatic zircons are higher than both mantle and lower crustal values (5.3 ± 0.6
255 ‰) ([Valley et al., 2003](#)), thus suggesting their supracrustal material source. Phosphorus
256 content of the studied magmatic zircons is highly variable (208 to 2369 ppm; 76 %
257 grains > 600 ppm), with a mean concentration of 1136 ± 596 ppm, similar to zircons
258 from the Lachlan S-type granites (1000 ± 490 ppm) ([Burnham and Berry, 2017](#)). The
259 REE + Y contents of zircon positively correlate with P concentrations, with a slope of
260 1, further indicative of a S-type granite affinity ([Fig. 5a](#)). This conclusion is
261 demonstrated by the cumulate curves of P and Y contents and U/Th ratios of zircon
262 ([Fig. 5b](#)). Furthermore, there is a close similarity in trace element patterns between the
263 Fuchuan mantle-hosted granitoids and leucogranites from the Samail Ophiolite and the
264 Himalayas ([Fig. 4](#)).

265 The intrusion of Fuchuan mantle-hosted granitoids into a matrix of mantle
266 peridotite, means that it is possible that the native mantle constituents imparted a
267 significant chemical imprint upon the Fuchuan felsic intrusions. However, low MgO
268 (0.4 - 2.2 wt. %), Cr (mean of 17 ppm), and Ni (mean of 21 ppm) contents of the
269 Fuchuan mantle-hosted granitoids suggest negligible mantle contribution. This is also
270 supported by the sharp contact (without any discernable contact metamorphic aureole)

271 between felsic intrusions and harzburgite. The lack of disequilibrium mineral pairs
272 precludes the possibility of crustal-mantle hybrids (Sylvester, 1998), and this is also
273 supported by their consistent La/Sm (2.3 - 4.4) ratios and $\epsilon_{\text{Nd}(t)}$ (-0.4 to -2.2) values. A
274 notable feature of the Fuchuan mantle-hosted granitoids is the pronounced decoupling
275 between the predominantly positive $\epsilon_{\text{Hf}(t)}$ (up to +6.9) and the negative whole-rock $\epsilon_{\text{Nd}(t)}$
276 values. The presence of inherited zircons indicates zirconium saturation in the melt,
277 implying that residual zircons were preserved in the source. These zircons retained Hf-
278 Nd fractionation signatures during partial melting, as reflected by the low Hf contents
279 (2.42 - 4.39 ppm) and high Nd/Hf ratios (1.72 - 6.20) of the Fuchuan mantle-hosted
280 granitoids. We suggest that these residual zircons sequestered substantial ^{177}Hf in the
281 source, thereby elevating the $\epsilon_{\text{Hf}(t)}$ values of the derived melt and decoupling it from the
282 $\epsilon_{\text{Nd}(t)}$. Batch partial melts derived from crustal sources can exhibit a wide spectrum of
283 $\epsilon_{\text{Hf}(t)}$ values (Tang et al., 2014). Therefore, the Hf isotopic heterogeneity observed in
284 the Fuchuan mantle-hosted granitoids likely originated from mixing of multiple melt
285 batches derived from a common source, rather than from mixing between mantle- and
286 crust-derived magmas. Meanwhile, the positive correlation between $\epsilon_{\text{Hf}(t)}$ and $\delta^{18}\text{O}$ of
287 magmatic zircons does not support two end-member mixing, ruling out a significant
288 mantle-derived material contribution (Fig. 6a). Furthermore, a significant contribution
289 of mantle-derived melts would yield high Na_2O contents and consequent low
290 $\text{K}_2\text{O}/\text{Na}_2\text{O}$ ratios, which is inconsistent with the Fuchuan mantle-hosted granitoids (Fig.
291 3). Therefore, we argue that the Fuchuan mantle-hosted granitoids were derived from
292 the partial melting of subducted sediments with insignificant contribution from the
293 mantle peridotite.

294

295 *5.2. Continental margin sediments as the magma source for the Fuchuan mantle-hosted
296 granitoids*

297 Sediments subducted into the mantle on a down going oceanic plate can be abyssal
298 or continental margin in origin. Abyssal sediments are mainly composed of pelagic
299 mud, and siliceous and carbonate oozes. The moderate-to-high paleo-latitudinal
300 positioning of the Yangtze Block within Rodinia (de Kock et al., 2024), along with the
301 comparatively limited faunal distribution during the early Neoproterozoic era (before
302 850 Ma) (Retallack, 2013), means that carbonate ooze and its counterparts are not
303 effective candidates for melting to produce the Fuchuan mantle-hosted granitoids. The
304 $\delta^{18}\text{O}$ values (7.5 ‰ - 11.3 ‰) of magmatic zircons from the Fuchuan mantle-hosted

305 granitoids are significantly lower than leucogranite ($\delta^{18}\text{O}$ up to 26 ‰) derived from
306 pelagic mud in Samail Ophiolite (Spencer et al., 2017). The melt of siliceous rock would
307 have extremely high SiO_2 contents (> 80 wt.%) as compared to mantle-hosted
308 granitoids. Calculations shows that even with 1 % partial melting of global subducting
309 sediment (GLOSS) and typical abyssal metasediments (from Samail Ophiolite), the
310 melts would still show significantly low Th/La ratios (0.37 and 0.58, respectively)
311 relative to the Fuchuan mantle-hosted granitoids (0.48 - 1.27; Fig. 7). All the above
312 observations indicate that abyssal sediment was not the melt source of the Fuchuan
313 mantle-hosted granitoids.

314 The Fuchuan mantle-hosted granitoids exhibit Sm/La and Th/La ratios comparable
315 to those observed in Himalayan leucogranites and $\epsilon_{\text{Hf(t)}}$ - $\delta^{18}\text{O}$ values of magmatic
316 zircons to the ca. 850 - 810 Ma S-type granitoids in the Jiangnan Belt (Figs. 6-7),
317 suggesting continental metasedimentary rocks are the primary magma source.
318 Calculation of Hf-O isotopes suggests that the sedimentary source of the Fuchuan
319 mantle-hosted granitoids contained ~30% to 80% juvenile crust components, which is
320 also supported by ~50% inherited zircons with mantle-type $\delta^{18}\text{O}$ values (Fig. 6a). This
321 juvenile signal was likely inherited from adjacent juvenile arc crust (e.g., the Jiangnan
322 arc) that supplied detritus to the sedimentary source, as most inherited zircons with
323 $^{206}\text{Pb}/^{238}\text{U}$ ages ranging from 1000 Ma to 930 Ma are coeval with arc-related
324 magmatism in the eastern segment of the Jiangnan Belt (Yao et al., 2019 and references
325 therein). Furthermore, the studied mantle-hosted granitoids have whole-rock $\epsilon_{\text{Nd(t)}}$
326 values (-0.4 to -2.2) and two-stage Nd model ages (1.54 - 1.64 Ga) similar to the ca.
327 850 - 810 Ma strongly peraluminous granitoids (-3.0 to -0.3; 1.51 - 1.74 Ga) and the
328 Shangxi/Xikou Group sediment sequences (+0.1 to -2.7; 1.38 - 1.63 Ga) in the Jiangnan
329 Belt (Chen and Jahn, 1998; Li et al., 2003; Huang et al., 2019; Wu et al., 2006; Wang
330 et al., 2016, 2023; Zheng et al., 2018; Zhu et al., 2023), confirming the continental
331 margin sediments derived interpretation. This interpretation is supported by the
332 presence of abundant inherited zircons, which mainly show Neoproterozoic U-Pb
333 apparent ages (ca. 830 - 1000 Ma), similar to detrital zircon age patterns from the
334 Neoproterozoic Shangxi/Xikou Group (Wang et al., 2013a).

335

336 5.3. Partial melts of subducted sediments during the incipient subduction

337 The Fuchuan mantle-hosted granitoids have low to medium Al_2O_3 contents (12.7-
338 16.7 wt.%), strongly negative Eu anomalies ($\text{Eu}/\text{Eu}^* = 0.16 - 0.42$), low Sr/Y ratios

(1.12-10.4) and flat HREE patterns ($(\text{Dy}/\text{Yb})_{\text{N}} = 0.84\text{-}1.12$; [Fig. 4a](#)), indicating that plagioclase instead of garnet was the dominant crystallizing/residual phase ([Rioux et al., 2021](#)). The constant Eu/Eu^* values in these granitoids along with the variable Ba/Sr and Rb/Sr ratios ([Fig. 8](#)), show that plagioclase (as a residual phase) has played a key role in the magma source, indicating low-pressure partial melting in the plagioclase stability region ([Zhu et al., 2023](#)). Thermodynamic modeling of partial melting of metasedimentary rocks from the Shangxi/Xikou Group demonstrates that melts with elevated $\text{K}_2\text{O}/\text{Na}_2\text{O}$ ratios (up to 2.1), comparable to those observed in the Fuchuan mantle-hosted granitoids, are generated under low-pressure conditions with insignificant garnet residue (< 4 kbar, corresponding to depths < 12 - 15 km) ([Fig. 9a](#)). Phase equilibrium analyses of the plagioclase-dominant and garnet-free source lithology under varying thermal regimes imply melting temperature for the generation of Fuchuan mantle-hosted granitoids below 800 °C, with requisite high geothermal gradients ([Fig. 9b-c](#)).

While evidence from thermobarometric modeling supports the possibility that the peraluminous granitoids within the ophiolite could have been derived from the melting of underlying sediments during obduction ([Li et al., 2008; Whitehead et al., 2000](#)), the geochronological results (846 - 837 Ma) indicate that the Fuchuan mantle-hosted granitoids were formed during oceanic slab subduction ([this study; Li and Zhao, 2020; Shu et al., 2019](#)). The temperature experienced by sediments at the top of subducted slab (< 2.0 GPa) in a normal subduction zone with arc magmatism is below 600 °C ([Gerya, 2011; van Keken et al., 2018](#)), much lower than the melt temperatures (657 - 785 °C) of the Fuchuan felsic intrusions estimated through Ti-in-zircon and zircon saturation geothermometer ([Boehnke et al., 2013; Watson and Harrison, 2005](#)). Numerical modeling indicates that the temperature within the mantle wedge near the trench can reach up to 800 °C ([Gerya, 2011](#)). Consequently, the diapir melting of mélange, which consists of sediment, altered oceanic crust, and mantle peridotite, could be a plausible mechanism for the formation of the Fuchuan mantle-hosted granitoids ([Behn et al., 2011](#)). Nevertheless, experimental petrology suggests that mélange-derived melts are generally metaluminous ($\text{A/CNK} < 1.0$), and are characterized by relatively low SiO_2 (49 - 58 wt. %), high MgO (1.0 - 16 wt. %) contents and low $\text{K}_2\text{O}/\text{Na}_2\text{O}$ (< 0.5) ratios ([Cruz-Uribe et al., 2018](#)). Furthermore, the melts forming the Fuchuan mantle-hosted granitoids are pure sediment-derived melts ([Fig. 3](#)). Added to this, recent temperature-pressure experimental petrology shows that subduction zone

373 mélange dehydration forms dense peridotite with buoyancy loss, inhibiting diapir
374 ascent (Rebaza et al., 2024).

375 Alternatively, such high melting temperatures could be reached when subduction
376 initiation, as the geotherms of subduction initiation are prone to be particularly steep in
377 comparison with a mature subduction zone (Hall et al., 2003; Rollinson, 2015; van
378 Keken et al., 2018). Considering the suprasubduction zone setting of the Fuchuan
379 Ophiolite, together with the high-T and low-P conditions of the felsic melts, we propose
380 that the mantle-hosted S-type granitoids were derived from partial melting of subducted
381 sedimentary rocks during incipient subduction. Following this these S-type granitic
382 melts would have been emplaced into the shallow and cold corner of mantle wedge
383 forming through lithospheric extension of the upper plate in response to oceanic slab
384 sinking (Fig. 10a). Therefore, such mantle-hosted S-type granitoids are an excellent
385 proxy for modelling the process of subduction initiation.

386 The Fuchuan mantle-hosted granitoids can be modelled by partial melting of
387 subducted sedimentary rocks and thus provide significant insight in deciphering the
388 process of sediment recycling in the subduction zone and arc magmatism. Both the
389 boninitic lavas and highly depleted mantle peridotites in the Fuchuan Ophiolite show
390 significant enrichment in incompatible elements, including Rb, K, Th, U, and light rare
391 earth elements (Huang et al., 2021; Li and Zhao, 2020; Zhao and Asimow, 2014). This
392 distinct geochemical signature is remarkably similar to the enrichment patterns
393 observed in the Fuchuan mantle-hosted granitoids (Fig. 4b). Furthermore, it is widely
394 recognized that melts derived from subducted sediments play a crucial role in the
395 generation of boninites, as evidenced by the well-studied examples from the Samail
396 Ophiolite and the Izu-Bonin arc (Ishikawa et al., 2005; Li et al., 2022b). These
397 phenomena collectively suggests that the Fuchuan mantle-hosted granitoids likely
398 represent the subducted slab-derived component responsible for metasomatizing the
399 mantle source region prior to boninitic magma generation. Therefore, with the further
400 down-going of subducting slab after the generation of S-type felsic intrusions,
401 sediment-derived melts metasomatize deeper and hotter mantle peridotite and then
402 trigger boninitic melts (Fig. 10b). This model may offer new insights into the multistage
403 island-arc subduction along the southeastern margin of the Yangtze Block during 1000
404 - 820 Ma (Chen, 1993; Guo et al., 1984; Shu et al., 1994, 2019; Wang et al., 2013a,
405 2013b; Yao et al., 2019; Zhao, 2015; Zheng et al., 2008).

406

407 *5.4. Significance of subduction sediments recycling in Neoproterozoic*

408 The mantle-hosted S-type granitoids in the Phanerozoic Samail Ophiolite have
409 trace element geochemical signatures are similar to boninitic lavas derived from
410 depleted mantle peridotites (Haase et al., 2015) and this provides further support for
411 our subduction initiation model. However, these Phanerozoic mantle-hosted S-type
412 granitoids show slight HREE depletion compared to the Fuchuan mantle-hosted
413 granitoids (Fig. 4a). Calculations and thermodynamic modeling of Rioux et al. (2021)
414 suggests that the sources of these Phanerozoic mantle-hosted granitoids have at least 5-
415 10 % garnet, corresponding to a pressure of < 14 kbar (depths < 45 km), which is
416 significantly deeper compared to the Neoproterozoic Fuchuan mantle-hosted granitoids
417 (< 12 - 15 km). Therefore, we suggest that during the Neoproterozoic era, the transport
418 depth of sediment-derived melts from subducting slabs into the mantle was
419 substantially shallower compared to modern subduction systems and this was likely
420 linked to elevated mantle potential temperatures relative to present-day Earth (van
421 Keken et al., 2018).

422 Some research reveals that mantle potential temperatures have decreased to below
423 80-100 °C relative to modern Earth since the Neoproterozoic. This suggests the
424 establishment of a globally connected deep subduction system under modern-style plate
425 tectonic paradigm characterized by enhanced orogenic activity, increased sediment flux
426 to subduction zones and high P/T metamorphic records with low thermal gradients
427 (<350°C/GPa) (Campbell and Squire, 2010; Cawood et al., 2024; Sobolev and Brown,
428 2019; Stern, 2025; Yao et al., 2021). This tectonic shift facilitated massive sediment
429 recycling into the mantle through subduction processes (Sobolev and Brown, 2019;
430 Wang et al., 2020; Zhao et al., 2022; Zheng and Zhao, 2020), promoting the generation
431 of mantle-hosted S-type granitoids, associated arc magmatism (e.g., boninitic melts)
432 and abundant SSZ-type ophiolites along the margin of Rodinia (Huang et al., 2021;
433 Tang et al., 2021). The Fuchuan mantle-hosted granitoids, representing the earliest
434 known mantle-hosted S-type granitoids formed at shallow depths during oceanic slab
435 subduction, may well mark the initial manifestation of modern-style plate tectonics
436 under elevated mantle potential temperatures compared to present-day conditions.

437 A range of geochemical evidence indicates the recycling of supracrustal rocks (e.g.,
438 altered oceanic crust and pelagic sediments) into the mantle during the Archean. This
439 evidence includes: a) the heavy Si-O isotopic signatures detected in Archean zircons
440 from the North China, Slave, Siberia, Antarctica, Greenland, and Australia cratons

441 (Guitreau et al., 2022; Zhang et al., 2023; Wang et al., 2022); b) atmospheric sulfur
442 isotope anomalies identified in Eoarchean meta-mafic rocks from the Innuksuac
443 Complex, Canada (Caro et al., 2025); c) late Archean sulfide inclusions within
444 lithospheric diamonds of eclogitic paragenesis (Farquhar et al., 2002; Smit et al., 2019).
445 However, the Archean mantle was approximately 300 K hotter than present-day
446 ambient mantle, and such elevated temperatures would have significantly influenced
447 the feasibility and mode of subduction processes (Fischer and Gerya, 2016).
448 Consequently, widely invoked models for early plate tectonics involves shallow and
449 flat subduction (Foley et al., 2003; Johnson et al., 2014; Lu et al., 2024a, Wang et al.,
450 2022a) or sagduction process triggered by mantle plumes (Yu et al., 2022). These
451 processes would have inhibited deep subduction under low thermal gradients. This is
452 further supported by the absence of Archean ophiolites and high P/T metamorphic
453 records.

454 The emergence of ca. 2.2-1.8 Ga ophiolite suites (e.g., the Flin Flon ophiolite and
455 Jormua ophiolites; Peltonen et al., 1996; Scott et al., 1992) and contemporaneous high
456 P/T blueschists/eclogites formed under low thermal gradients (e.g., eclogite xenoliths
457 found in Paleoproterozoic carbonatites within the North China Craton; Brown and
458 Johnson, 2019; Weller and St-Onge, 2017; Xu et al., 2018), may indicate a short-lived
459 period of globally connected deep subduction during Paleoproterozoic mantle cooling.
460 The recycling of surficial crustal materials at this time, including sediments, is
461 evidenced by increasing alkaline content and Nb/Ta ratios in igneous rocks, elevated
462 mantle oxygen fugacity, and signals from the deep carbon cycle (Liu et al., 2019; 2023;
463 2025, 2025a; Moreira et al., 2023). However, this transient phase of global deep
464 subduction may have ceased following the assembly of the Nuna/Columbia
465 supercontinent. Because mantle temperature likely rose again from 2.2 to 1.8 Ga with
466 enhanced continental insulation effects associated with supercontinent consolidation
467 (Lu et al., 2024), leading to an extended period of “single-lid” tectonics throughout
468 Earth’s middle age (Cawood et al., 2014; Huang et al., 2025; Stern, 2025; Tang et al.,
469 2021; Zhang et al., 2025).

470

471 *5.5. Implication for the generation of S-type granitoids*

472 S-type granitoids are largely derived from partial melting of pre-existing
473 metasedimentary/other supracrustal materials (Wang et al., 2013b, 2023). They occur
474 across a range of geodynamic settings including ocean-continent subduction

475 accretionary orogens and continent-continent collisional orogens, as well as continental
476 rifts (Collins and Richards, 2008; Zhu et al., 2023), and thus represent intracrustal
477 fractionation of crustal components via anataxis (Ackerson et al., 2018; Kemp et al.,
478 2007; Schaen et al., 2021). The discovery of mantle-hosted S-type granitoids points to
479 subduction initiation as a potential mechanism for the recycling of sediments at the
480 mantle depth. In addition, the sharp contact observed between the felsic intrusions and
481 mantle peridotite in the Fuchuan Ophiolite (Fig. 2a-b) signifies rapid solidification
482 within a cold and shallow mantle wedge corner. This implies a steep thermal gradient
483 during subduction initiation created a narrow and transient hot zone within the corner,
484 resulting in the proximal emplacement of granitic melts and thereby precluding any
485 long-distance migration. This phenomenon is consistent with the observation of these
486 granitoids in the Samail Ophiolite (Rioux et al., 2021; Rollinson, 2015), suggesting that
487 sediment-derived melts can be preserved within the mantle wedge corner, and thus they
488 hold the potential to significantly contribute to the heterogeneity of the mantle.

489

490 6. Conclusions

491 A suite of mantle-hosted S-type granitoids within the Neoproterozoic Fuchuan
492 supra-subduction zone ophiolite in South China has been newly identified in this study.
493 These mantle-hosted granitoids emplaced at ca. 837 - 846 Ma and are coeval with the
494 subduction-related mafic-ultramafic rocks (848 - 820 Ma) within the Fuchuan Ophiolite,
495 implying the former's emplacement during oceanic slab subduction rather than late
496 obduction. Geochemical analyses and pseudosection modeling collectively reveal that
497 these felsic intrusions formed during subduction initiation and so are a crucial proxy
498 for subduction initiation. In contrast to the generation depth of the Phanerozoic mantle-
499 hosted S-type granitoids, Neoproterozoic sediment-derived melt transport from
500 subducting slabs occurred at substantially shallower depths, hinting that the
501 Neoproterozoic era likely witnesses the re-operation of modern-style plate tectonic
502 paradigm after ceasing of Paleoproterozoic deep subduction.

503

504 CRediT authorship contribution statement

505 **Sifang Huang:** Validation, Software, Resources, Methodology, Formal analysis,
506 Data curation, Methodology, Funding acquisition, Conceptualization, Writing –
507 original draft, review and editing. **Wei Wang:** Writing – review & editing, Supervision,

508 Investigation, Conceptualization, Visualization, Funding acquisition. **Andrew C. Kerr:**
509 Writing – review & editing, Visualization. **Peter A. Cawood:** Writing – review &
510 editing, Visualization, Conceptualization, Funding acquisition. **Guimei Lu:** Writing –
511 review & editing, Software.

512 Declaration of competing interest

513 The authors declare that they have no competing financial interests or personal
514 relationships that could have appeared to influence the work reported in this paper.

515 Acknowledgements

516 We thank the editors for their effective handling of the manuscript and additional
517 comments. We are also grateful to two anonymous reviewers whose insightful and
518 constructive reviews greatly improved this manuscript. This work was supported by the
519 National Natural Scientific Foundation of China (42272228), the Natural Science
520 Foundation of Henan Province (242300421663), the Natural Science Foundation of
521 Hubei Province (2025AFA033), the Shangqiu Normal University Doctor Research
522 Start-up Fund and the Australian Research Council (FL160100168).

523 Data availability

524 Data are available at <https://doi.org/10.6084/m9.figshare.30175099>.

525 References

526 Ackerson, M. R., Mysen, B. O., Tailby, N. D., Watson, E. B., 2018. Low-temperature crystallization of
527 granites and the implications for crustal magmatism. *Nature* 559, 94-97.
528 <https://doi.org/10.1038/s41586-018-0264-2>.

529 Angelo, T. V., Spencer, C. J., Cavosie, A. J., Thomas, R., Li, H. Y., 2023. Petrogenesis of Mantle-Hosted
530 Granitoids from the Samail Ophiolite. *J. Petrol.* 64, egad021.
531 <https://doi.org/10.1093/petrology/egad021>.

532 Bai, W. J., Gan, Q. G., Yang, J. S., Xing, F. M., Xu, X., 1989. Discovery of Well-reserved Ophiolite and
533 Its Basical Characters in Southeastern Margin of the Jiangnan Ancient Continent. *Acta Petrol.*
534 *Mineral.* 5, 289-299. (in Chinese with English Abstract)

535 Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R., Massonne, H. J., 2011. Diapirs as the source of
536 the sediment signature in arc lavas. *Nat. Geosci.* 4, 641-646. <https://doi.org/10.1038/ngeo1214>.

537 Bell, E. A., Boehnke, P., Harrison, T. M., 2016. Recovering the primary geochemistry of Jack Hills
538 zircons through quantitative estimates of chemical alteration. *Geochim. Cosmochim. Acta* 191, 187-
539 202. <https://doi.org/10.1016/j.gca.2016.07.016>.

540 Boehnke, Patrick., Watson, E. B., Trail, D., Harrison, T. M., Schmitt, A. K., 2013. Zircon saturation re-
541 visited. *Chem. Geol.* 351, 324-334. <https://doi.org/10.1016/j.chemgeo.2013.05.028>.

542 Brown, M., Johnson, T., 2019. Metamorphism and the evolution of subduction on Earth. *Am. Miner.*
543 104, 1065-1082. <https://doi.org/10.2138/am-2019-6956>.

544 Burnham, A. D., Berry, A. J., 2017. Formation of Hadean granites by melting of igneous crust. *Nat.*
545 *Geosci.* 10, 457-461. <https://doi.org/10.1038/ngeo2942>.

546 Campbell, I. H., Squire, R. J., 2010. The mountains that triggered the Late Neoproterozoic increase in
547 oxygen: The Second Great Oxidation Event. *Geochim. Cosmochim. Acta* 74, 4187-4206.
548 <https://doi.org/10.1016/j.gca.2010.04.064>.

549 Caro, G., Grocolas, T., Bourgeois, P., Bouilhol, P., Mojzsis, S.J., Paris, G., 2025. Early Archaean onset

550 of volatile cycling at subduction zones. *Nat. Geosci.* 18, 436-442. <https://doi.org/10.1038/s41561-025-01677-5>.

551 Cawood, P. A., Merdith, A. S., Murphy, J. B., 2024. Syn-emplacement ophiolites and relationship to
552 supercontinent cycle. *Earth Planet. Sci. Lett.* 641, 118810. <https://doi.org/10.1016/j.epsl.2024.118810>.

553 Cawood, P. A., Hawkesworth, C. J., 2014. Earth's middle age. *Geology* 42, 503-506. <https://doi.org/10.1130/G35402.1>.

554 Chen, F., Zhu, X. Y., Wang, W., Wang, F., Trung, H. P., Siebel, W., 2009. Single-grain detrital muscovite
555 Rb-Sr isotopic composition as an indicator of provenance for the Carboniferous sedimentary rocks
556 in northern Dabie, China. *Geochem. J.* 43, 257-273. <https://doi.org/10.2343/geochemj.1.0023>.

557 Chen, J., Jahn, B. M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. *Tectonophysics* 284, 101-133. [https://doi.org/10.1016/S0040-1951\(97\)00186-8](https://doi.org/10.1016/S0040-1951(97)00186-8).

558 Cheng, H., 1993. Geochemistry of Proterozoic Island-arc Volcanic Rocks in Northwest Zhejiang. *Geochimica* 1, 18-27. <https://doi.org/10.19700/j.0379-1726.1993.01.003>. (in Chinese with English
559 Abstract)

560 Collins, W. J., Richards, S. W., 2008. Geodynamic significance of S-type granites in circum-Pacific
561 orogens. *Geology* 36, 559-562. <https://doi.org/10.1130/G24658A.1>.

562 Cox, J., Searle, M., Pedersen, R., 1999. The petrogenesis of leucogranitic dykes intruding the northern
563 Semail ophiolite, United Arab Emirates: field relationships, geochemistry and Sr/Nd isotope
564 systematics. *Contrib. Mineral. Petrol.* 137, 267-287. <https://doi.org/10.1007/s004100050550>.

565 Çörtük, R. M., Çelik, Ö. F., Özkan, M., Davies, J., Marzoli, A., 2024. Timing of the subduction initiation
566 and ophiolite emplacement of the inner Tauride Ocean: Insight from the Pınarbaşı ophiolite in
567 Central Türkiye. *Lithos* 488-489, 107833. <https://doi.org/10.1016/j.lithos.2024.107833>.

568 Cruz-Uribe, A. M., Marschall, H. R., Gaetani, G. A., Roux, V. L., 2018. Generation of alkaline magmas
569 in subduction zones by partial melting of mélange diapirs-An experimental study. *Geology* 46, 343-
570 346. <https://doi.org/10.1130/G39956.1>.

571 de Kock, M. O., Malatji, I., Wabo, H., Mukhopadhyay, J., Banerjee, A., Mare, L. P., 2024. High-latitude
572 platform carbonate deposition constitutes a climate conundrum at the terminal Mesoproterozoic. *Nat. Commun.* 15, 2024. <https://doi.org/10.1038/s41467-024-46390-w>

573 Ding, B. H., Shi, R. D., Zhi, X. C., Zheng, L., Chen, L., 2008. Neoproterozoic (~850Ma) subduction in
574 the Jiangnan orogen: evidence from the SHRIMP U-Pb dating of the SSZ-type ophiolite in southern
575 Anhui Province. *Acta Petrol. Mineral.* 27, 375-388. <https://doi.org/10.3969/j.issn.1000-6524.2008.05.001> (in Chinese with English Abstract)

576 Farquhar, J., Wing, B.A., McKeegan, K.D., Harris, J.W., Cartigny, P., Thiemens, M.H., 2002. Mass-
577 Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. *Science* 298,
578 2369-2372. <https://doi.org/10.1126/science.1078617>.

579 Fischer, R., Gerya, T., 2016. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D
580 thermomechanical modelling. *Gondwana Res.* 37, 53-70. <https://doi.org/10.1016/j.gr.2016.06.002>.

581 Foley, S. F., Buhre, S., Jacob, D. E., 2003. Evolution of the Archaean crust by delamination and shallow
582 subduction. *Nature* 421, 249-252. <https://doi.org/10.1038/nature01319>.

583 Gao, J., Klemd, R., Long, L., Xiong, X., Qian, Q., 2009. Adakitic signature formed by fractional
584 crystallization: An interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi
585 ophiolitic mélange belt, South China. *Lithos* 110, 277-293. <https://doi.org/10.1016/j.lithos.2009.01.009>.

586 Gerya, T. V., 2011. Intra-oceanic Subduction Zones, in: Brown, D., Ryan, P.D., Arc-Continent Collision.
587 Springer-Verlag, Berlin, pp. 23-51. https://doi.org/10.1007/978-3-540-88558-0_2.

588 Guillot, S., Le Fort, P., 1995. Geochemical constraints on the bimodal origin of High Himalayan
589 leucogranites. *Lithos* 35, 221-234. [https://doi.org/10.1016/0024-4937\(94\)00052-4](https://doi.org/10.1016/0024-4937(94)00052-4).

590 Guitreau, M., Gannoun, A., Deng, Z., Chaussidon, M., Moynier, F., Barbarin, B., Marin-Carbonne, J.,
591 2022. Stable isotope geochemistry of silicon in granitoid zircon. *Geochim. Cosmochim. Acta* 316,
592 273-294. <https://doi.org/10.1016/j.gca.2021.09.029>.

593 Guo, L. Z., Shi, Y. S., Ma, R. S., Ye, S. F., Lu, H. F., 1984. Tectonostratigraphic Terranes of Southeast
594 China. *J. Nanjing Univ. (Nat. Sci.)* 20, 732-739. (in Chinese with English Abstract)

595 Guo, Z., Wilson, M., 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source
596 region and geodynamic setting. *Gondwana Res.* 22, 360-376. <https://doi.org/10.1016/j.gr.2011.07.027>.

597 Haase, K. M., Freund, S., Koepke, J., Hauff, F., Erdmann, M., 2015. Melts of sediments in the mantle
598 wedge of the Oman ophiolite. *Geology* 43, 275-278. <https://doi.org/10.1130/G36451.1>.

599 Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., Müller, R. D., 2003. Catastrophic initiation of
600 subduction following forced convergence across fracture zones. *Earth Planet. Sci. Lett.* 212, 15-30.

601

602

603

604

605

606

607

608

609

610 https://doi.org/10.1016/S0012-821X(03)00242-5.
611 Hermann, J., Rubatto, D., 2009. Accessory phase control on the trace element signature of sediment
612 melts in subduction zones. *Chem. Geol.* 265, 512-526.
613 https://doi.org/10.1016/j.chemgeo.2009.05.018.
614 Holland, T., Powell, R., 2011. An improved and extended internally consistent thermodynamic dataset
615 for phases of petrological interest, involving a new equation of state for solids. *J. Metamorph. Geol.*
616 29, 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x.
617 Huang, S. F., Lu, G. M., Yu, F., Zhu, X., He, Z., Li, R., Zhang, M. D., Li, Q. W., Wang, W., 2025.
618 Neoproterozoic backarc S-type granite in the Jiangnan fold belt, South China: Implication for
619 initiation of modern-style plate tectonics. *Geol. Soc. Am. Bull.* https://doi.org/10.1130/B38197.1.
620 *in press.*
621 Huang, S. F., Wang, W., Kerr, A. C., Zhao, J. H., Xiong, Q., Wang, J., 2021. The Fuchuan Ophiolite in
622 South China: Evidence for Modern-Style Plate Tectonics During Rodinia Breakup. *Geochem.*
623 *Geophys. Geosyst.* 22, e2021GC010137. https://doi.org/10.1029/2021GC010137.
624 Huang, S. F., Wang, W., Pandit, M. K., Zhao, J. H., Lu, G. M., Xue, E. K., 2019. Neoproterozoic S-type
625 granites in the western Jiangnan Orogenic Belt, South China: Implications for petrogenesis and
626 geodynamic significance. *Lithos* 342-343, 45-58. https://doi.org/10.1016/j.lithos.2019.05.016.
627 Ishikawa, T., Fujisawa, S., Nagaishi, K., Masuda, T., 2005. Trace element characteristics of the fluid
628 liberated from amphibolite-facies slab: Inference from the metamorphic sole beneath the Oman
629 ophiolite and implication for boninite genesis. *Earth Planet. Sci. Lett.* 240, 355-377.
630 https://doi.org/10.1016/j.epsl.2005.09.049.
631 Jackson, S. E., Pearson, N. J., Griffin, W. L., Belousova, E. A., 2004. The application of laser ablation-
632 inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. *Chem. Geol.*
633 211, 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017.
634 Johnson, M. C., Plank, T., 1999. Dehydration and melting experiments constrain the fate of subducted
635 sediments. *Geochem. Geophys. Geosyst.* 1, 1007. https://doi.org/10.1029/1999GC000014.
636 Johnson, T. E., Brown, M., Kaus, B. J. P., VanTongeren, J. A., 2014. Delamination and recycling of
637 Archaean crust caused by gravitational instabilities. *Nat. Geosci.* 7, 47-52.
638 https://doi.org/10.1038/ngeo2019.
639 Kemp, A. I., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J. M., Gray, C.
640 M., Whitehouse, M. J., 2007. Magmatic and crustal differentiation history of granitic rocks from
641 Hf-O isotopes in zircon. *Science* 315, 980-983. https://doi.org/10.1126/science.1136154.
642 Kessel, R., Schmidt, M. W., Ulmer, P., Pettke, T., 2005. Trace element signature of subduction-zone
643 fluids, melts and supercritical liquids at 120-180 km depth. *Nature* 439, 724-727.
644 https://doi.org/10.1038/nature03971.
645 Klaver, M., Yogodzinski, G., Albert, C., Camejo-Harry, M., Elburg, M., Hoernle, K., Macpherson, C.,
646 Nowell, G., Rushmer, T., Williams, H., Millet, M. A., 2024. Widespread slab melting in modern
647 subduction zones. *Earth Planet. Sci. Lett.* 626, 118544. https://doi.org/10.1016/j.epsl.2023.118544.
648 Klein, B. Z., Behn, M. D., 2021. On the Evolution and Fate of Sediment Diapirs in Subduction Zones.
649 *Geochem. Geophys. Geosyst.* 22, e2021GC009873. https://doi.org/10.1029/2021GC009873.
650 Li, H., Hermann, J., Zhang, L., 2022. Melting of subducted slab dictates trace element recycling in global
651 arcs. *Sci. Adv.* 8, eabh2166. https://doi.org/10.1126/sciadv.abh2166.
652 Li, H., Wang, M., Zeng, X. W., Luo, A. B., Zhang, B. C., Shen, D., 2022a. Partial melting caused by
653 subduction of young, hot oceanic crust in shallow high-temperature and low-pressure environments:
654 Indications from Middle and Late Jurassic oceanic plagiogranite in Shiquanhe, Central Tibet. *Lithos*
655 420-421, 106698. https://doi.org/10.1016/j.lithos.2022.106698.
656 Li, H. Y., Li, X., Ryan, J. G., Zhang, C., Xu, Y.G., 2022b. Boron isotopes in boninites document rapid
657 changes in slab inputs during subduction initiation. *Nat. Commun.* 13, 993.
658 https://doi.org/10.1038/s41467-022-28637-6
659 Li, Q. W., Zhao, J. H., 2020. Amalgamation between the Yangtze and Cathaysia Blocks in South China:
660 Evidence from the ophiolite geochemistry. *Precambrian Res.* 350, 105893.
661 https://doi.org/10.1016/j.precamres.2020.105893.
662 Li, W. X., Li, X. H., 2003. Adakitic granites within the NE Jiangxi ophiolites, South China: geochemical
663 and Nd isotopic evidence. *Precambrian Res.* 122, 29-44. https://doi.org/10.1016/S0301-
664 9268(02)00206-1.
665 Li, W. X., Li, X. H., Li, Z. X., Lou, F. S., 2008. Obduction-type granites within the NE Jiangxi Ophiolite:
666 Implications for the final amalgamation between the Yangtze and Cathaysia Blocks. *Gondwana Res.*
667 13, 288-301. https://doi.org/10.1016/j.gr.2007.12.010.
668 Li, X. H., Li, Z. X., Ge, W., Zhou, H., Li, W., Liu, Y., Wingate, M. T. D., 2003. Neoproterozoic granitoids
669 in South China: crustal melting above a mantle plume at ca. 825 Ma? *Precambrian Res.* 122, 45-83.

670 https://doi.org/10.1016/S0301-9268(02)00207-3.

671 Li, X. H., Long, W. G., Li, Q. L., Yu, L., Tao, H., 2010. Penglai Zircon Megacrysts: A Potential New
672 Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age.
673 *Geostand. Geoanal. Res.* 34, 117-134. https://doi.org/10.1111/j.1751-908X.2010.00036.x.

674 Li, Y., Zhang, Z., Santosh, M., Wang, G., Wang, J., Dong, P., Li, H., Kong, W., 2023. Continental crustal
675 growth and differentiation in intraoceanic arcs: Insights from plagiogranites in the forearc ophiolite
676 of the southeastern Central Asian Orogenic Belt, China. *Lithos* 454-455, 107289.
677 https://doi.org/10.1016/j.lithos.2023.107289.

678 Liu, D., Xu, C., Brenna, M., Liu, X., Li, Q., Wei, C., 2025a. Paleoproterozoic deep carbon cycle recorded
679 in carbonatites. *Precambrian Res.* 417, 107669. https://doi.org/10.1016/j.precamres.2024.107669.

680 Liu, H., Sun, W. D., Zartman, R., Tang, M., 2019. Continuous plate subduction marked by the rise of
681 alkali magmatism 2.1 billion years ago. *Nat. Commun.* 10, 3408. https://doi.org/10.1038/s41467-
682 019-11329-z.

683 Liu, H., Wang, Y., Deng, J., Zhang, Y., Chen, Q., Liao, R., Sun, W. D., 2023. Modern-style arc
684 magmatism since ca. 2.2 billion years ago revealed by Nb/Ta-Dy/Yb systematics in igneous rocks.
685 *Chem. Geol.* 638, 121710. https://doi.org/10.1016/j.chemgeo.2023.121710.

686 Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., Wang, D., 2010. Continental and Oceanic Crust Recycling-
687 induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes
688 and Trace Elements in Zircons from Mantle Xenoliths. *J. Petrol.* 51, 537-571.
689 https://doi.org/10.1093/petrology/egp082.

690 Lu, G. M., Xu, Y. G., Wang, W., Spencer, C. J., Roberts, N. M. W., Condie, K. C., 2024. Diverse source
691 materials contributed to a secular increase in $\delta^{18}\text{O}$ for the Paleo-Mesoproterozoic A₂-type granites.
692 *Earth Planet. Sci. Lett.* 642, 118885. https://doi.org/10.1016/j.epsl.2024.118885.

693 Lu, G. M., Xu, Y. G., Wang, W., Spencer, C. J., Huang, G., Roberts, N. M., 2024a. Continental crust
694 rejuvenation across the Paleo-Mesoarchean transition resulted from elevated mantle geotherms.
695 *Geophys. Res. Lett.* 51, e2024GL108715. https://doi.org/10.1029/2024GL108715.

696 Moreira, H., Storey, C., Bruand, E., Darling, J., Fowler, M., Cotte, M., Villalobos-Portillo, E. E., Parat,
697 F., Seixas, L., Philippot, P., Dhuime, B., 2023. Sub-arc mantle fugacity shifted by sediment
698 recycling across the Great Oxidation Event. *Nat. Geosci.* 16, 922-927.
699 https://doi.org/10.1038/s41561-023-01258-4.

700 Peltonen, P., Kontinen, A., Huhma, H., 1996. Petrology and Geochemistry of Metabasalts from the 1.95
701 Ga Jormua Ophiolite, Northeastern Finland. *J. Petrol.* 37, 1359-1383.
702 https://doi.org/10.1093/petrology/37.6.1359.

703 Plank, T., Langmuir, C. H., 1998. The chemical composition of subducting sediment and its
704 consequences for the crust and mantle. *Chem. Geol.* 145, 325-394. https://doi.org/10.1016/S0009-
705 2541(97)00150-2.

706 Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial melting of amphibolite/eclogite and the origin of
707 Archean trondhjemites and tonalites. *Precambrian Res.* 51, 1-25. https://doi.org/10.1016/0301-
708 9268(91)90092-O.

709 Rebaza, A. M., Mallik, A., Cooperdock, E. H. G., Holman, B. I., 2024. The fate of ultramafic-rich
710 mélange in cold to hot subduction zones: Implications for diapirism (or not) and chemical
711 geodynamics. *Earth Planet. Sci. Lett.* 647, 119020. https://doi.org/10.1016/j.epsl.2024.119020.

712 Retallack, G. J., 2013. Ediacaran life on land. *Nature* 493, 89-92. https://doi.org/10.1038/nature11777.

713 Rioux, M., Benoit, M., Amri, I., Ceuleneer, G., Garber, J. M., Searle, M., Leal, K., 2021. The Origin of
714 Felsic Intrusions Within the Mantle Section of the Samail Ophiolite: Geochemical Evidence for
715 Three Distinct Mixing and Fractionation Trends. *J. Geophys. Res.-Solid Earth* 126, e2020JB020760.
716 https://doi.org/10.1029/2020JB020760.

717 Rollinson, H., 2015. Slab and sediment melting during subduction initiation: granitoid dykes from the
718 mantle section of the Oman ophiolite. *Contrib. Mineral. Petrol.* 170, 32.
719 https://doi.org/10.1007/s00410-015-1177-9.

720 Rushmer, T., 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-
721 absent conditions. *Contrib. Mineral. Petrol.* 107, 41-59. https://doi.org/10.1007/BF00311184.

722 Schaen, A. J., Schoene, B., Dufek, J., Singer, B. S., Eddy, M. P., Jicha, B. R., Cottle, J. M., 2021.
723 Transient rhyolite melt extraction to produce a shallow granitic pluton. *Sci. Adv.* 7, eabf0604.
724 https://doi.org/10.1126/sciadv.abf0604

725 Scott, D. J., Helmstaedt, H., Bickle, M. J., 1992. Purtuniq ophiolite, Cape Smith belt, northern Quebec,
726 Canada: A reconstructed section of Early Proterozoic oceanic crust. *Geology* 20, 173-176.
727 https://doi.org/10.1130/0091-7613(1992)020<0173:POCSBN>2.3.CO;2.

728 Sen, C., Dunn, T., 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa:
729 implications for the origin of adakites. *Contrib. Mineral. Petrol.* 117, 394-409.

730 https://doi.org/10.1007/BF00307273.
731 Shen, W. Z., Zhu, J. C., Liu, C. S., Xu, S. J., Ling, H. F., 1993. Sm-Nd isotopic study of basement
732 metamorphic rocks in South China and its constraint on material sources of granitoids. *Acta Petrol.*
733 *Sin.* 9, 115-124. (in Chinese with English Abstract)
734 Shu, L., Wang, J., Yao, J., 2019. Tectonic evolution of the eastern Jiangnan region, South China: New
735 findings and implications on the assembly of the Rodinia supercontinent. *Precambrian Res.* 322,
736 42-65. https://doi.org/10.1016/j.precamres.2018.12.007.
737 Shu, L. S., Zhou, G. Q., Shi, Y. S., Yin, J., 1994. Study of the high metamorphic blueschist and its late
738 Proterozoic age in the eastern Jiangnan Belt. *Chin. Sci. Bull.* 39, 1200-1204.
739 https://doi.org/10.1360/csb1993-38-20-1879.
740 Shui, T., Xu, B. T., Liang, R. H., Qiu, Y. S., 1986. The ancient land connection belt of Jiangshan –
741 Shaoxing. *Chin. Sci. Bull.* 31, 444-448. https://doi.org/10.1360/csb1986-31-6-444. (in Chinese).
742 Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A.,
743 Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., Whitehouse,
744 M. J., 2008. Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic
745 microanalysis. *Chem. Geol.* 249, 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005.
746 Smit, K. V., Shirey, S. B., Hauri, E. H., Stern, R. A., 2019. Sulfur isotopes in diamonds reveal differences
747 in continent construction. *Science* 364, 383-385. https://doi.org/10.1126/science.aaw9548.
748 Sobolev, S. V., Brown, M., 2019. Surface erosion events controlled the evolution of plate tectonics on
749 Earth. *Nature* 570, 52-57. https://doi.org/10.1038/s41586-019-1258-4.
750 Spencer, C. J., Cavosie, A. J., Raub, T. D., Rollinson, H., Evans, N. J., 2017. Evidence for melting mud
751 in Earth's mantle from extreme oxygen isotope signatures in zircon. *Geology* 45, 975-978.
752 https://doi.org/10.1130/G39402.1.
753 Stern, R. J., 2002. Subduction zones. *Rev. Geophys.* 40, 1012. https://doi.org/10.1029/2001RG000108.
754 Stern, R. J., 2025. A reinterpretation of the past 2.5 billion years of Earth's tectonic history: Two episodes
755 each of plate and single-lid tectonics. *Geol. Soc. Am. Bull.* 137, 2079-2100.
756 https://doi.org/10.1130/B37966.1.
757 Sun, Z. M., Wang, X. L., Zhang, F. F., Xie, H. Q., Zhao, K., Li, J. Y., 2020. Diversity of Felsic Rocks in
758 Oceanic Crust: Implications From the Neoproterozoic Plagiogranites Within the Northeast Jiangxi
759 Ophiolite, Southern China. *J. Geophys. Res.-Solid Earth* 125, e2019JB017414.
760 https://doi.org/10.1029/2019JB017414.
761 Sylvester, P. J., 1998. Post-collisional strongly peraluminous granites. *Lithos* 45, 29-44.
762 https://doi.org/10.1016/S0024-4937(98)00024-3.
763 Tang, M., Chu, X., Hao, J., Shen, B., 2021. Orogenic quiescence in Earth's middle age. *Science* 371,
764 728-731. https://doi.org/10.1126/science.abf1876.
765 Tang, M., Wang, X.L., Shu, X.J., Wang, D., Yang, T., Gopon, P., 2014, Hafnium isotopic heterogeneity
766 in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal
767 anatexis. *Earth Planet. Sci. Lett.* 389, 188-199, https://doi.org/10.1016/j.epsl.2013.12.036.
768 Tommasini, S., Avanzinelli, R., Conticelli, S., 2011. The Th/La and Sm/La conundrum of the Tethyan
769 realm lamproites. *Earth Planet. Sci. Lett.* 301, 469-478. https://doi.org/10.1016/j.epsl.2010.11.023.
770 Valley, J. W., Bindeman, I. N., Peck, W. H., 2003. Empirical calibration of oxygen isotope fractionation
771 in zircon. *Geochim. Cosmochim. Acta* 67, 3257-3266. https://doi.org/10.1016/S0016-
772 7037(03)00090-5.
773 van Keken, P. E., Wada, I., Abers, G. A., Hacker, B. R., Wang, K., 2018. Mafic High-Pressure Rocks
774 Are Preferentially Exhumed From Warm Subduction Settings. *Geochem. Geophys. Geosyst.* 19,
775 2934-2961. https://doi.org/10.1029/2018GC007624.
776 Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. *Geosci. Front.* 9, 1479-1493.
777 https://doi.org/10.1016/j.gsf.2018.04.001.
778 Wang, J., Gong, Y., Hu, X., Shi, H., Jiang, K., 2023. Petrogenesis of granitoids in the southern Anhui
779 Province, China: Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan
780 orogenic belt. *Precambrian Res.* 397, 107194. https://doi.org/10.1016/j.precamres.2023.107194.
781 Wang, W., Zhou, M. F., Yan, D. P., Li, L., Malpas, J., 2013a. Detrital zircon record of Neoproterozoic
782 active-margin sedimentation in the eastern Jiangnan Orogen, South China. *Precambrian Res.* 235,
783 1-19. https://doi.org/10.1016/j.precamres.2013.05.013.
784 Wang, W., Zhou, M. F., Zhao, J. H., Pandit, M. K., Zheng, J. P., Liu, Z. R., 2016. Neoproterozoic active
785 continental margin in the southeastern Yangtze Block of South China: Evidence from the ca. 830-
786 810 Ma sedimentary strata. *Sediment. Geol.* 342, 254-267.
787 https://doi.org/10.1016/j.sedgeo.2016.07.006.
788 Wang, W., Cawood, P. A., Spencer, C., Pandit, M. K., Zhao, J. H., Xia, X. P., Zheng, J. P., Lu G. M.,
789 2022a. Global-scale emergence of continental crust during the Mesoarchean and early Neoarchean,

Geology 50, 184-188. <https://doi.org/10.1130/G49418.1>.

Wang, X. L., Liu, F., Li, J., Wang, D., 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics. *Sci. China-Earth Sci.* 63, 2068-2086. <https://doi.org/10.1007/s11430-020-9698-0>.

Wang, X. L., Zhou, J. C., Wan, Y. S., Kitajima, K., Wang, D., Bonamici, C., Qiu, J. S., Sun, T., 2013b. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. *Earth Planet. Sci. Lett.* 366, 71-82. <https://doi.org/10.1016/j.epsl.2013.02.011>.

Wang, X. L., Tang, M., Moyen, J., Wang, D., Kröner, A., Hawkesworth, C., Xia, X., Xie, H., Anhaeusser, C., Hofmann, A., Li, J., Li, L., 2022. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. *Natl. Sci. Rev.* 9, nwab136. <https://doi.org/10.1093/nsr/nwab136>.

Watson, E.B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. *Science* 308, 841-844. <https://doi.org/10.1126/science.1110873>.

Weller, O. M., St-Onge, M. R. 2017., Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. *Nat. Geosci.* 10, 305-311. <https://doi.org/10.1038/ngeo2904>.

White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., Green, E., 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. *J. Metamorph. Geol.* 32, 261-286. <https://doi.org/10.1111/jmg.12071>.

Whitehead, J., Dunning, G.R., Spray, J.G., 2000. U-Pb geochronology and origin of granitoid rocks in the Thetford Mines ophiolite, Canadian Appalachians. *Geol. Soc. Am. Bull.* 112, 915-928. [https://doi.org/10.1130/0016-7606\(2000\)112<915:UGAOOG>2.0.CO;2](https://doi.org/10.1130/0016-7606(2000)112<915:UGAOOG>2.0.CO;2).

Wu, R. X., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Zhang, S. B., Liu, X. M., Wu, F. Y., 2006. Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. *Precambrian Res.* 146, 179-212. <https://doi.org/10.1016/j.precamres.2006.01.012>.

Xiang, H., Connolly, J. A. D., 2022. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. *J. Metamorph. Geol.* 40, 243-255. <https://doi.org/10.1111/jmg.12626>.

Xu, C., Kynický, J., Song, W., Tao, R., Lü, Z., Li, Y., Yang, Y., Pohanka, M., Galiova, M. V., Zhang, L., Fei, Y., 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. *Nat. Commun.* 9, 2790. <https://doi.org/10.1038/s41467-018-05140-5>.

Xu, X., Xue, D., Li, Y., Hu, P., Chen, N., 2014. Neoproterozoic sequences along the Dexing-Huangshan fault zone in the eastern Jiangnan orogen, South China: Geochronological and geochemical constrains. *Gondwana Res.* 25, 368-382. <https://doi.org/10.1016/j.gr.2013.03.020>.

Xu, X. S., Zhou, X. M., 1989. Rock Inclusion within Precambrian Granitoids in South Anhui Province. *Mineral. Petrol.* 11, 24-28. <https://doi.org/10.19719/j.cnki.1001-6872.1991.01.005>.

Yang, Q., Xia, X., Zhang, W., Zhang, Y., Xiong, B., Xu, Y., Wang, Q., Wei, G., 2018. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. *Solid Earth Sci.* 3, 81-86. <https://doi.org/10.1016/j.sesci.2018.05.001>.

Yao, J., Cawood, P. A., Shu, L. S., Zhao, G. C., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt. *Earth-Sci. Rev.* 196, 102872. <https://doi.org/10.1016/j.earscirev.2019.05.016>.

Yao, J., Cawood, P. A., Zhao, G., Han, Y., Xia, X., Liu, Q., Wang, P., 2021. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly. *Nat. Commun.* 12, 4189. <https://doi.org/10.1038/s41467-021-24422-z>.

Yin, C., Lin, S., Davis, D. W., Xing, G., Davis, W. J., Cheng, G., Xiao, W., Li, L., 2013. Tectonic evolution of the southeastern margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf isotopic studies of zircon from the eastern Jiangnan Orogenic Belt and implications for the tectonic interpretation of South China. *Precambrian Res.* 236, 145-156. <https://doi.org/10.1016/j.precamres.2013.07.022>.

Yu, C., Yang, T., Zhang, J., Zhao, G., Cawood, P.A., Yin, C., Qian, J., Gao, P., Zhao, C., 2022. Coexisting diverse P-T-t paths during Neoarchean Sagduction: Insights from numerical modeling and applications to the eastern North China Craton. *Earth Planet. Sci. Lett.* 586, 117529. <https://doi.org/10.1016/j.epsl.2022.117529>.

Zhang, C. L., Santosh, M., Zou, H. B., Li, H. K., Huang, W. C., 2013. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry, zircon U-Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China. *Lithos* 179, 263-274. <https://doi.org/10.1016/j.lithos.2013.08.015>.

Zhang, J., Li, R., Pandit, M. K., Zheng, J. P., Zhao, J. H., Lan, T. G., Wang, W., 2025. Provenance variation and tectonic evolution of the Vindhyan Basin in north-central India: Implications on Proterozoic supercontinent cycles. *Tectonics*, 44, e2025TC009063. <https://doi.org/10.1029/2025TC009063>.

850 Zhang, Q., Zhao, L., Zhou, D., Nutman, A. P., Mitchell, R. N., Liu, Y., Li, Q. L., Yu, H. M., Fan, B.,
851 Spencer, C. J., Li, X. H., 2023. No evidence of supracrustal recycling in Si-O isotopes of Earth's
852 oldest rocks 4 Ga ago. *Sci. Adv.* 9, eadfo693. <https://doi.org/10.1126/sciadv.adf0693>.

853 Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic continental accretion in South China:
854 Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen. *Precambrian Res.* 220-
855 221, 45-64. <https://doi.org/10.1016/j.precamres.2012.07.010>.

856 Zhao, G. C., 2015. Jiangnan orogen in south china: developing from divergent double subduction.
857 *Gondwana Res.* 27, 1173-1180. <https://doi.org/10.1016/j.gr.2014.09.004>.

858 Zhao, G. C., Zhang, J., Yin, C. Q., Wang, C., Zhang, G. W., 2022. Pre-Plate Tectonics and Origin of
859 Continents. *Chin. Sci. Bull.* 68, 2312-2323. <http://dx.doi.org/10.1360/TB-2022-0249>.

860 Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic boninite-series rocks in South China: A depleted
861 mantle source modified by sediment-derived melt. *Chem. Geol.* 388, 98-111.
862 <https://doi.org/10.1016/j.chemgeo.2014.09.004>.

863 Zhao, J. H., Zhou, M. F., Zheng, J. P., 2013. Constraints from zircon U-Pb ages, O and Hf isotopic
864 compositions on the origin of Neoproterozoic peraluminous granitoids from the Jiangnan Fold Belt,
865 South China. *Contrib. Mineral. Petrol.* 166, 1505-1519. <https://doi.org/10.1007/s00410-013-0940-z>.

866 Zhou, G. Q., Zhao, J. X., 1991. Sm-Nd isotope study of Northeastern Jiangxi ophiolite in the southeastern
867 margin of the Yangtze Craton, South China. *Chin. Sci. Bull.* 36, 129-132.
868 <https://doi.org/10.1360/csb1991-36-2-129>. (in Chinese)

869 Zhou, X. M., Zou, H. B., Yang, J. D., Wang, Y. X., 1989. Sm-Nd Isochronous Age of Fuchuan Ophiolite
870 Suite in Shexian Country, Anhui Province and Its Geology Significance. *Chin. Sci. Bull.* 34, 1243-
871 1245. <https://doi.org/10.1360/csb1989-34-16-1243>. (in Chinese)

872 Zheng, J. P., Xiong, Q., Zhao, Y., Li, W., 2019. Subduction-zone peridotites and their records of crust-
873 mantle interaction. *Sci. China-Earth Sci.* 49, 1037-1058. <https://doi.org/10.1007/s11430-018-9346-6>.

874 Zheng, Y. F., 2019. Subduction zone geochemistry. *Geosci. Front.* 10, 1223-1254.
875 <https://doi.org/10.1016/j.gsf.2019.02.003>.

876 Zheng, Y. F., Wu, R. X., Wu, Y. B., Zhang, S. B., Yuan, H. L., Wu, F. Y., 2008. Rift melting of juvenile
877 arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the
878 Jiangnan orogen, South China. *Precambrian Res.* 163, 351-383.
879 <https://doi.org/10.1016/j.precamres.2008.01.004>.

880 Zheng, Y. F., Zhao, G., 2020. Two styles of plate tectonics in Earth's history. *Sci. Bull.* 65, 329-334.
881 <https://doi.org/10.1016/j.scib.2018.12.029>.

882 Zhu, Q., Zhao, X., Hong, W., Jin, G., Huang, W., Wang, C., Liu, K., Gao, T., Wen, H., 2023.
883 Geochronology, Hf isotope and trace element of zircon and apatite for Neoproterozoic granodiorites
884 in the eastern Jiangnan Orogen: Implications for the Neoproterozoic tectonic evolution. *Lithos* 446,
885 107134. <https://doi.org/10.1016/j.lithos.2023.107134>.

886

887

888

889 **Figure Captions:**

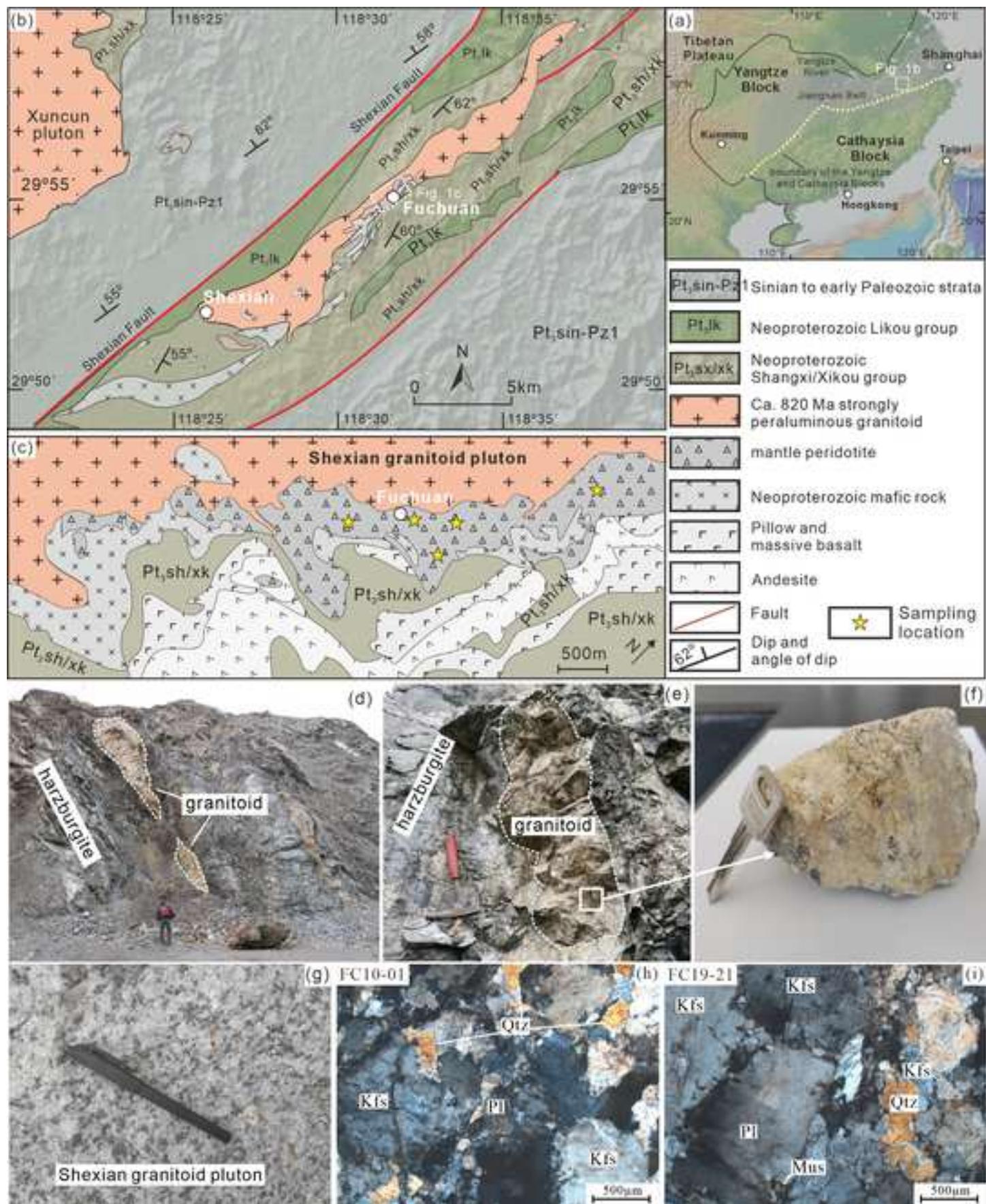
890 **Fig. 1.** Simplified geological map, hand-specimen photographs and microscopic
891 photos. (a to c) Simplified geological map of the Fuchuan Ophiolite and adjacent
892 key Neoproterozoic igneous and sedimentary rocks in the Jiangnan Belt, South
893 China. Modified after [Huang et al. \(2021\)](#) and [Shu et al. \(2019\)](#). (d and e) Field
894 photographs of the Fuchuan mantle-hosted granitoids in the Fuchuan Ophiolite. (f
895 and g) Hand-specimen photographs of the Fuchuan mantle-hosted granitoid and
896 Shexian granitoid. The key and pen serving as scales have actual lengths of 7.1cm
897 and 14.9cm, respectively. (h and i) Microscopic photos of the Fuchuan mantle-
898 hosted granitoids. Abbreviation: Ap-apatite; Kfs-potassium feldspar; Mus-
899 muscovite; Pl-plagioclase; Qz-quartz.

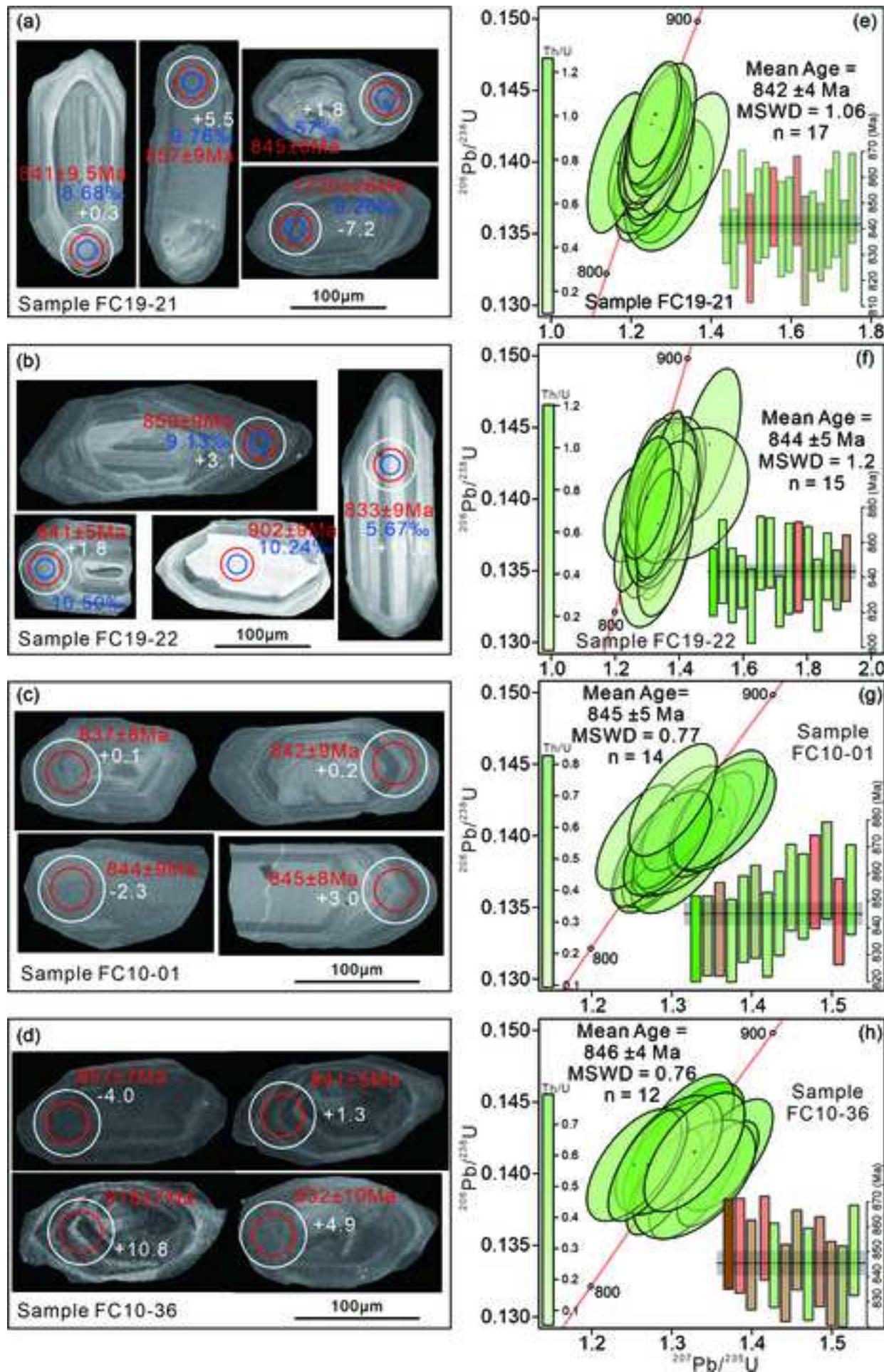
900 **Fig. 2.** Zircon cathodoluminescence (CL) images and U-Pb concordia diagrams. (a to
901 d) Representative zircon CL images for sample FC19-21, FC19-22, FC10-01 and
902 FC10-33. The white, red and yellow circles in the CL images with diameters of
903 54 μ m, 33 μ m and 20 μ m, are for Lu-Hf, U-Pb and O isotope analyses, respectively.
904 Age, $\epsilon_{\text{Hf(t)}}$ and $\delta^{18}\text{O}$ values of representative zircons are marked with yellow, red,
905 and blue fonts. (e to h) Zircon U-Pb concordia plots and weighted mean ages.

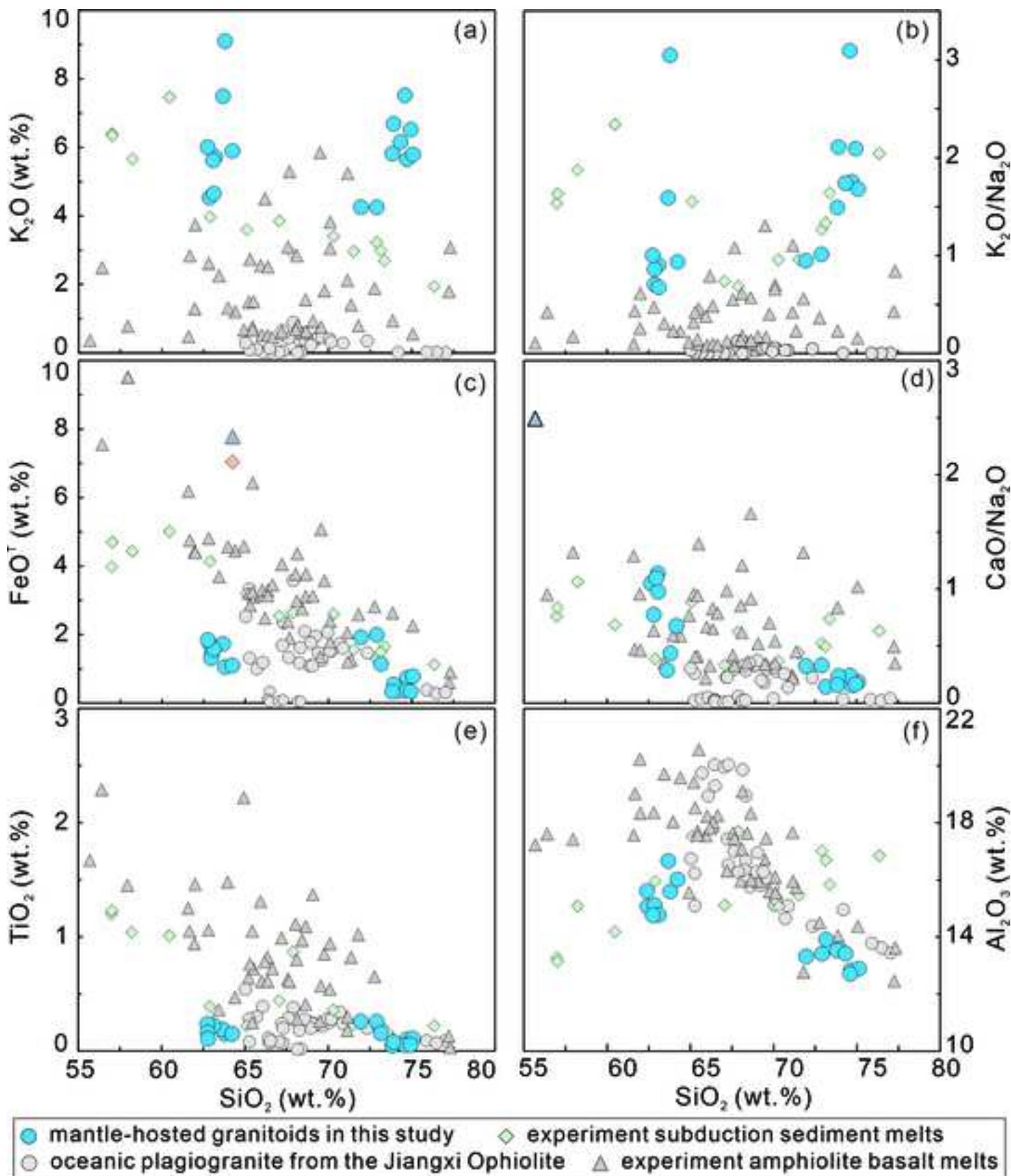
906 **Fig. 3.** Bivariate plots of the selected major oxide contents/ratios against SiO_2 . Data of
907 experiment melts derived from amphibolite basalt and subduction sediment are
908 from [Johnson and Plank \(1999\)](#), [Rapp et al. \(1991\)](#), [Rushmer \(1991\)](#) and [Sen and](#)
909 [Dunn \(1994\)](#). Data of typical oceanic plagiogranite in the Jiangxi Ophiolite are
910 from [Gao et al. \(2009\)](#), [Li and Li \(2003\)](#) and [Sun et al. \(2020\)](#).

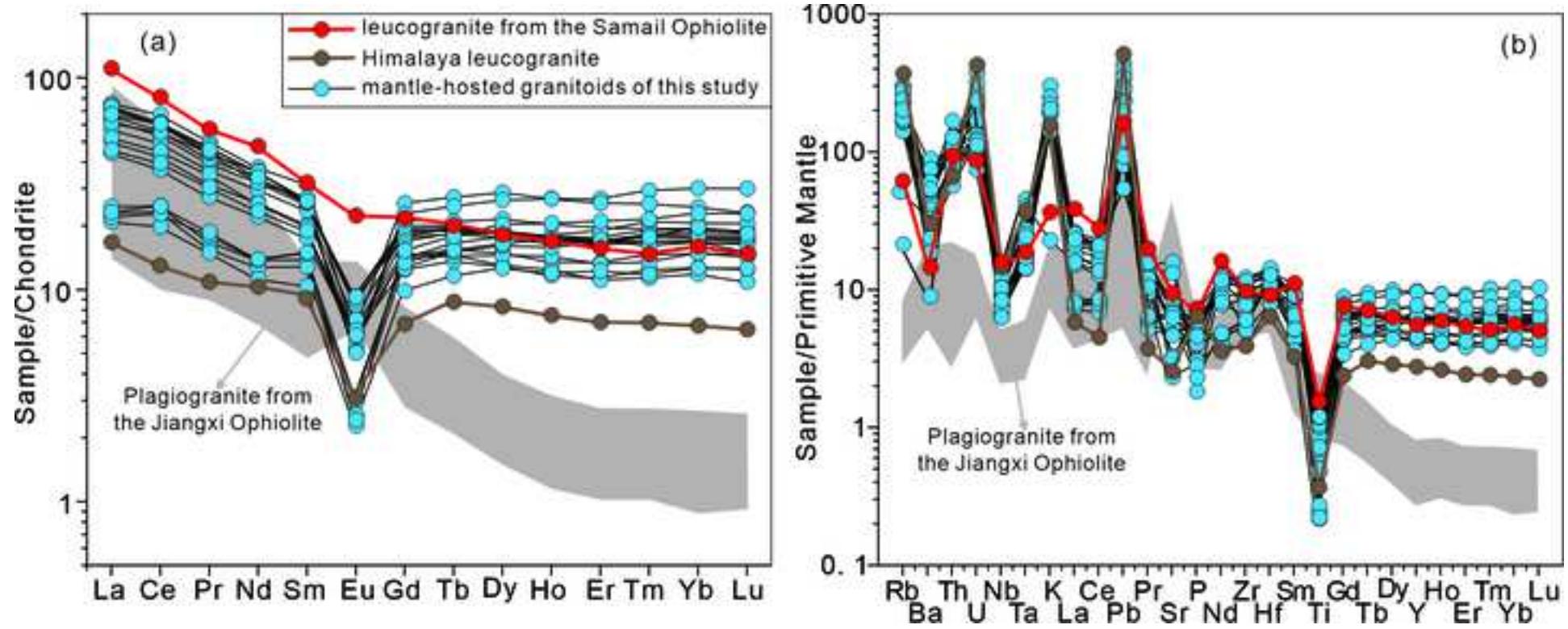
911 **Fig. 4.** Chondrite normalized REE (a) and primitive mantle-normalized incompatible
912 trace element (b) patterns for felsic intrusions from the Fuchuan Ophiolite. Data of
913 Typical oceanic plagiogranite in the Jiangxi Ophiolite are from [Gao et al. \(2009\)](#),
914 [Li and Li \(2003\)](#) and [Sun et al. \(2020\)](#). Leucogranite in Samail Ophiolite and
915 Himalaya are from [Guo and Wilson \(2012\)](#) and [Haase et al. \(2015\)](#).

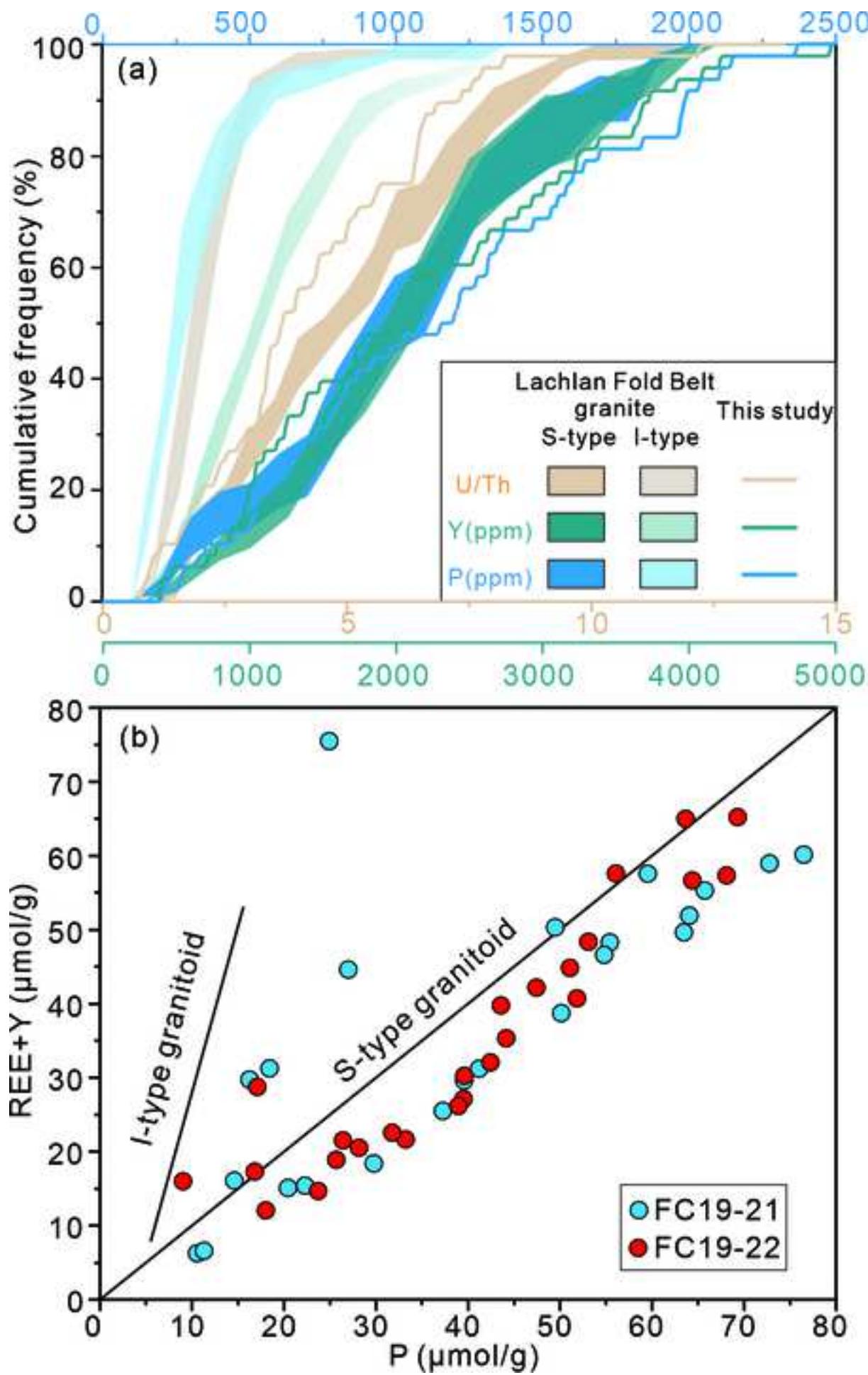
916 **Fig. 5.** Zircon trace elements characteristics. (a) Cumulative frequency diagrams of
917 trace element (P and Y) concentration and ratio (U/Th) in zircon. Revised shaded
918 areas indicating zircon provenance for I- and S-type granite in the Lachlan Fold
919 Belt ([Burnham and Berry, 2017](#)). (b) Relationship between the concentration of P
920 and REE+Y in magmatic zircons for I- and S-type granite.

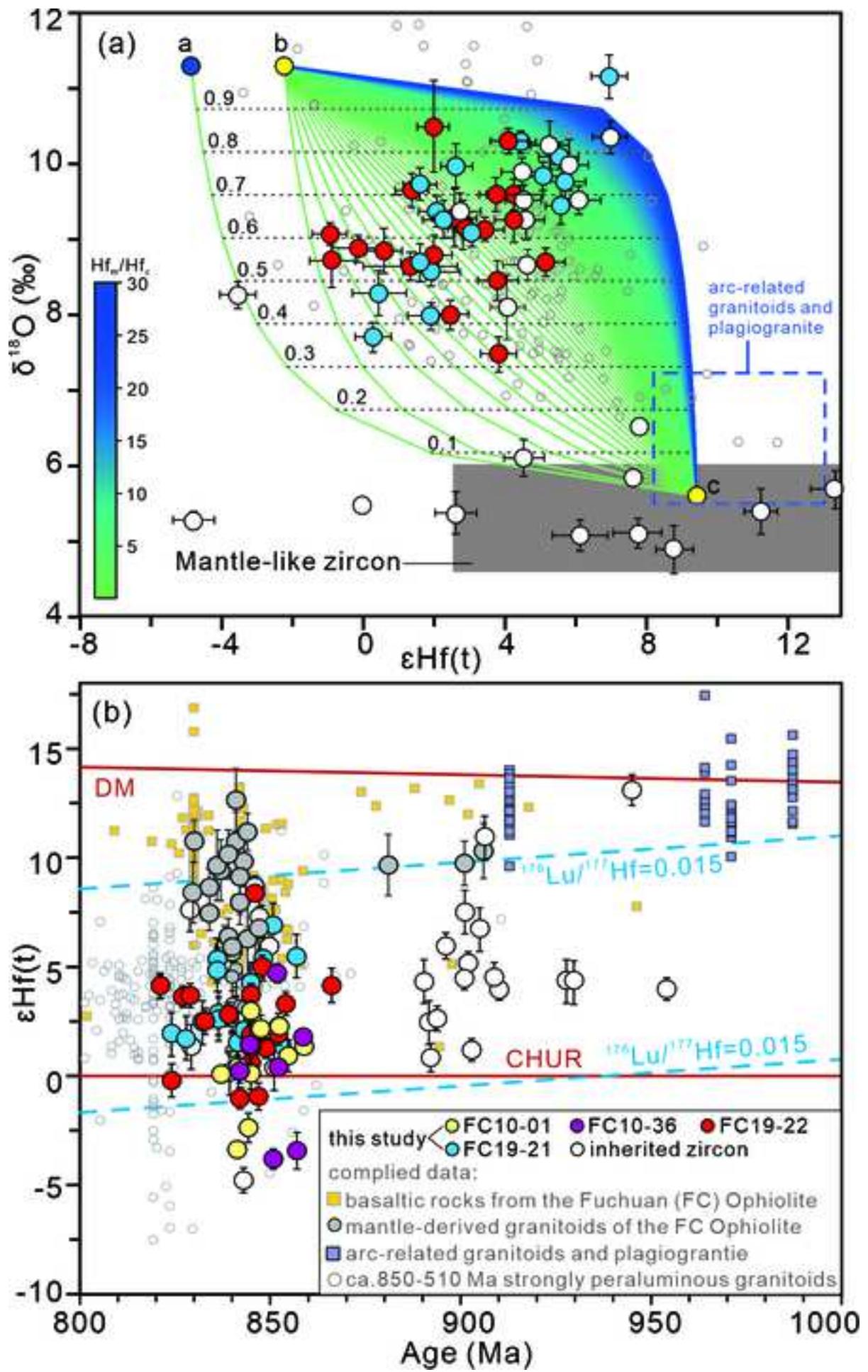

921 **Fig. 6.** Zircon U-Pb-Hf-O isotopes. (a) $\epsilon_{\text{Hf(t)}}$ versus $\delta^{18}\text{O}$. Green lines represent
922 calculated mixing tend (with 10% mixing increments) between the crustal end-
923 member (a: $\epsilon_{\text{Hf(t)}} = -5.1$, $\delta^{18}\text{O} = 11.3\text{\textperthousand}$; b: $\epsilon_{\text{Hf(t)}} = -2.5$, $\delta^{18}\text{O} = 11.3\text{\textperthousand}$) and the
924 mantle end member (c: $\epsilon_{\text{Hf(t)}} = +9.0$, $\delta^{18}\text{O} = 5.6\text{\textperthousand}$) ([Shu et al., 2019](#); [Zhang et al.,](#)
925 [2012, 2013](#)). The mantle-like zircon $\delta^{18}\text{O}$ and $\epsilon_{\text{Hf(t)}}$ is from [Valley et al. \(2003\)](#), [Shu](#)
926 [et al. \(2019\)](#) and [Zhang et al. \(2012, 2013\)](#). (b) $\epsilon_{\text{Hf(t)}}$ versus ages. Complied data of
927 the granitoids and basaltic rocks ([Shu et al., 2019](#); [Zhang et al., 2012, 2013](#)), the
928 early Neoproterozoic arc-related granitoids and plagiogranites from the eastern
929 segment of the Jiangnan Belt ([Sun et al., 2020](#)) and the ca. 850-510 Ma strongly
930 peraluminous granitoids (Xucun, Shehian and Jiuling plutons) ([Wang et al., 2013b](#);
931 [Zhao et al., 2013](#)) is shown for comparison.

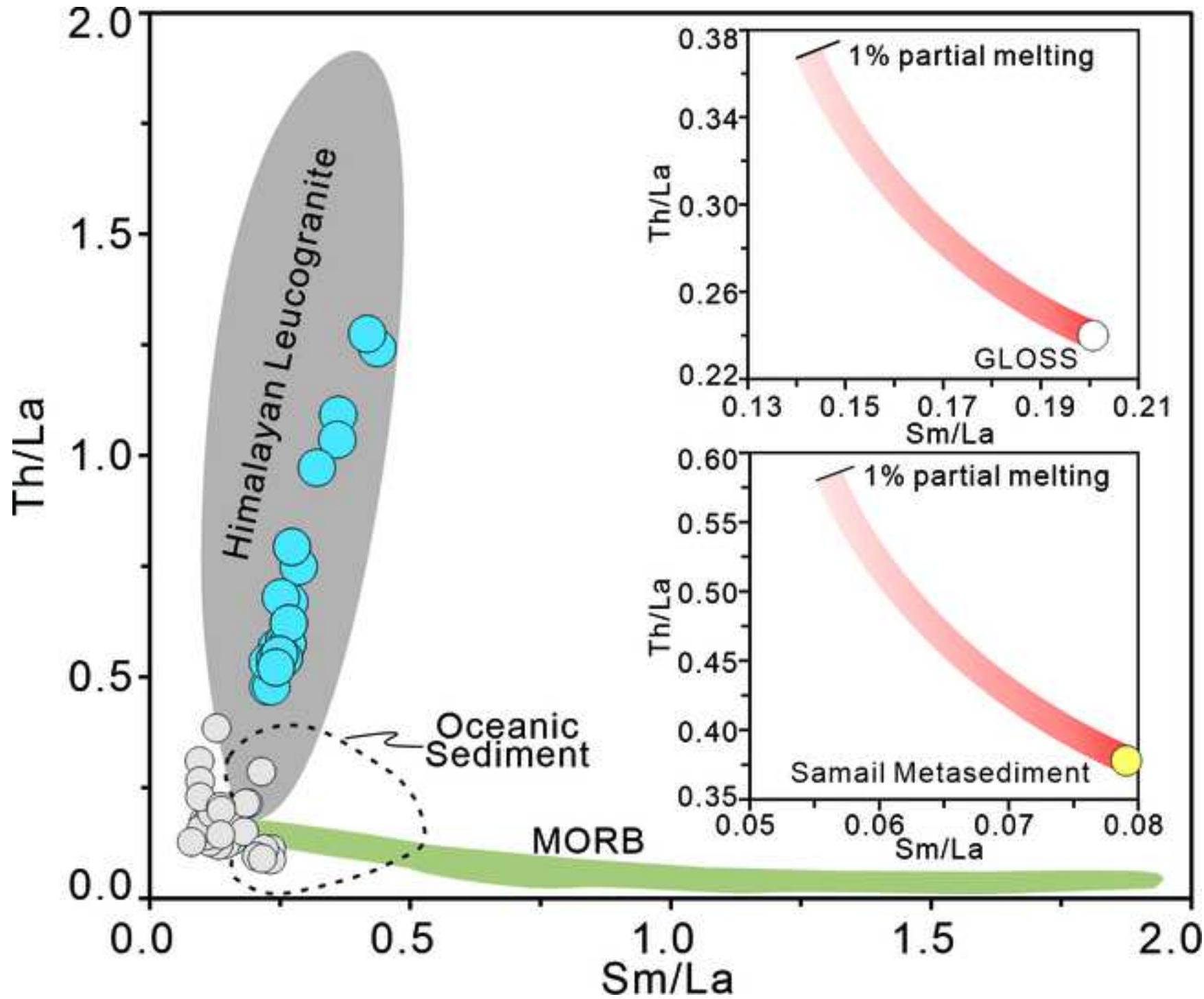

932 **Fig. 7.** Th/La versus Sm/La of whole-rock geochemistry. Outline of Himalayan
933 leucogranite and MORB are from [Guillot and Le Fort \(1995\)](#), [Guo and Wilson](#)
934 ([2012](#)) and [Tommasini et al. \(2011\)](#). The inset diagrams show modeling of partial
935 melting for GLOSS and the metasedimentary rocks from the Samail Ophiolite.
936 Percentages (1%) represent the degree of partial melting. Composition of the
937 GLOSS and metasedimentary rocks from the Samail Ophiolite are compiled from
938 [Plank and Langmuir \(1998\)](#), [Johnson and Plank \(1999\)](#) and [Rioux et al. \(2021\)](#).
939 Partition coefficients are from [Hermann and Rubatto \(2009\)](#) and [Kessel et al.](#)
940 ([2005](#)). The legend is the same as that of Fig. 3.

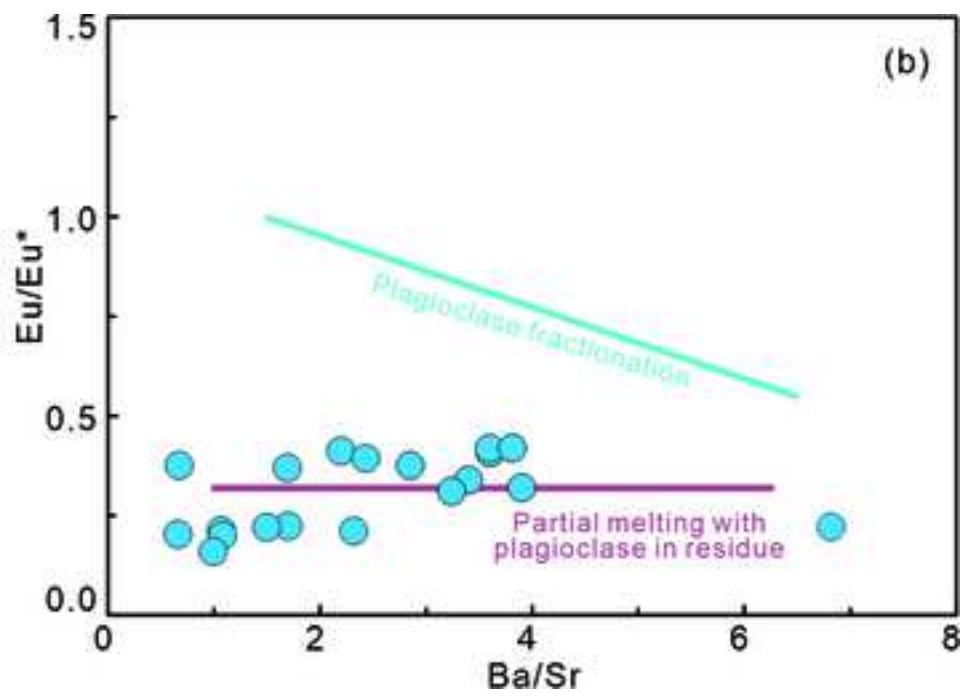
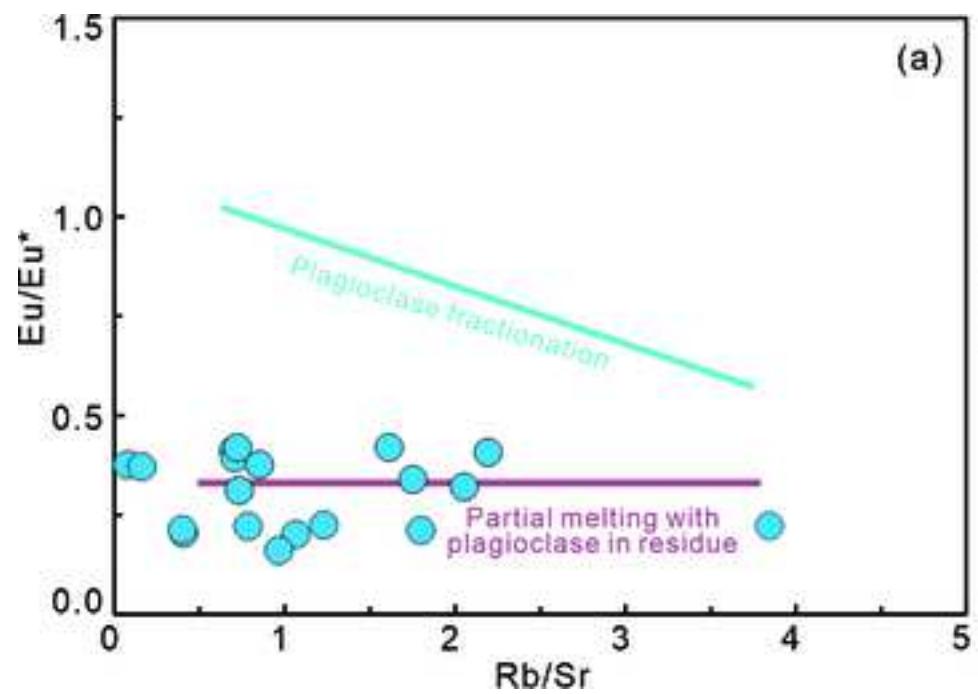

941 **Fig. 8.** Bivariate plots of Eu/Eu* versus Rb/Sr and Ba/Sr for the Fuchuan mantle-hosted
942 granitoids. The legend is the same as that of Fig. 3.

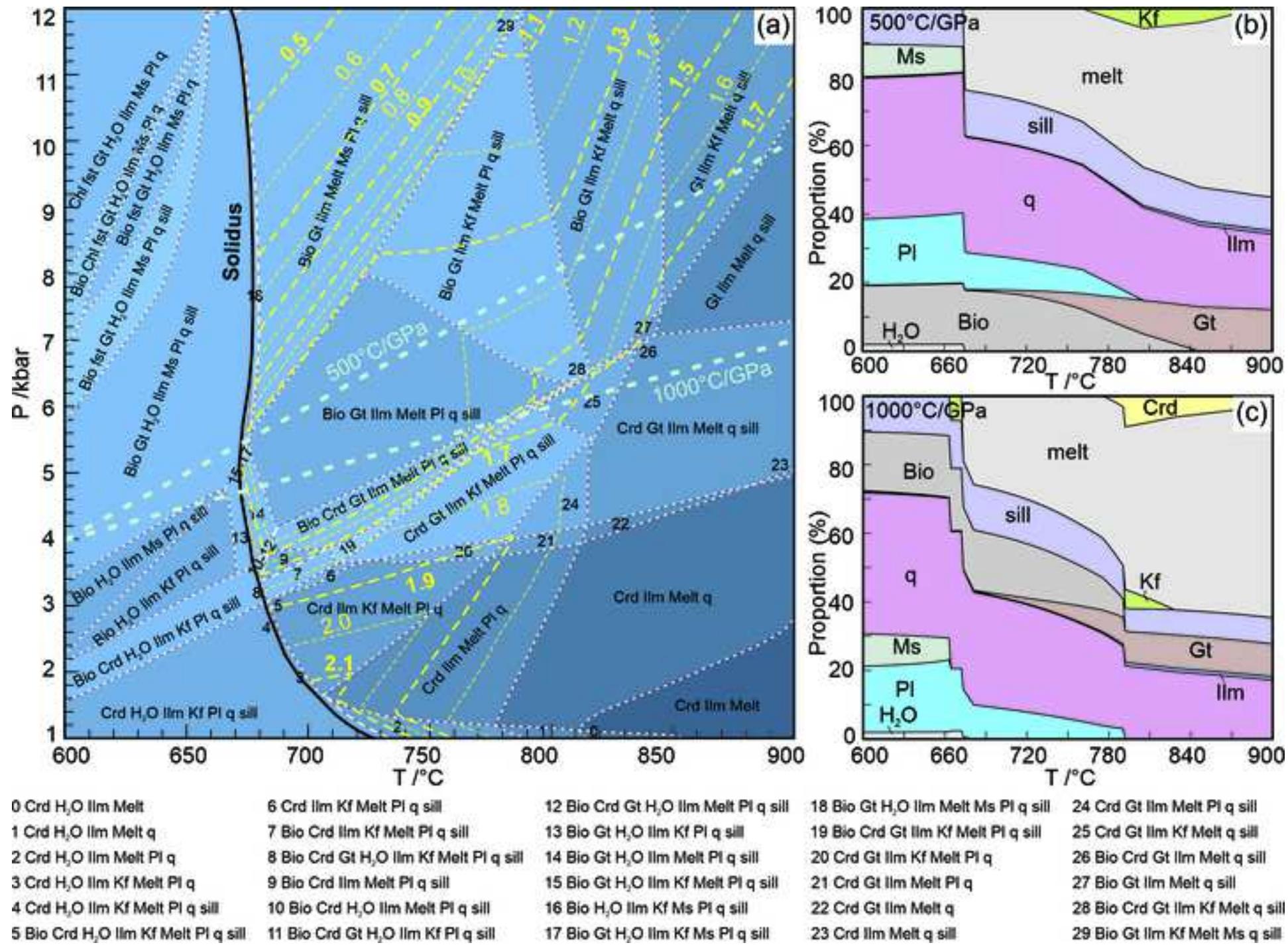

943 **Fig. 9.** P-T phase diagrams. Modeled P-T pseudosections for sedimentary rocks of the
944 Xikou Group, South China (a) with 3 wt. % H₂O. The yellow dotted-dashed lines
945 in panel (a) indicate the variation of K₂O/Na₂O value for melt. The modelling
946 results (b, c) of phase mode (vol %) for sedimentary rocks of the Xikou Group
947 under different geothermic gradient at 500 °C/GPa and 1000 °C/GPa. Composition
948 of the sedimentary rocks of the Xikou Group ([Table S5](#)) are compiled from [Xu et](#)
949 [al. \(2014\)](#).


950 **Fig. 10.** Schematic model for subduction initiation under modern plate tectonic
951 paradigm. (a) Sinking of density and cold oceanic slab into mantle with high
952 geotherms during subduction commencement, resulted in partial melting of
953 sedimentary rocks on the top of subduction slab. These melts were emplaced into
954 the shallow and cold corner of mantle wedge and solidified rapidly (this study). (b)
955 With down-going and rollback of subduction slab, sediment-derived melts
956 metasomatized deeper and hotter mantle peridotite and then trigger the fore-arc
957 basaltic and boninitic magmatism in tectonic extension ([Huang et al., 2021](#); [Zhao](#)
958 and [Asimow, 2014](#)).

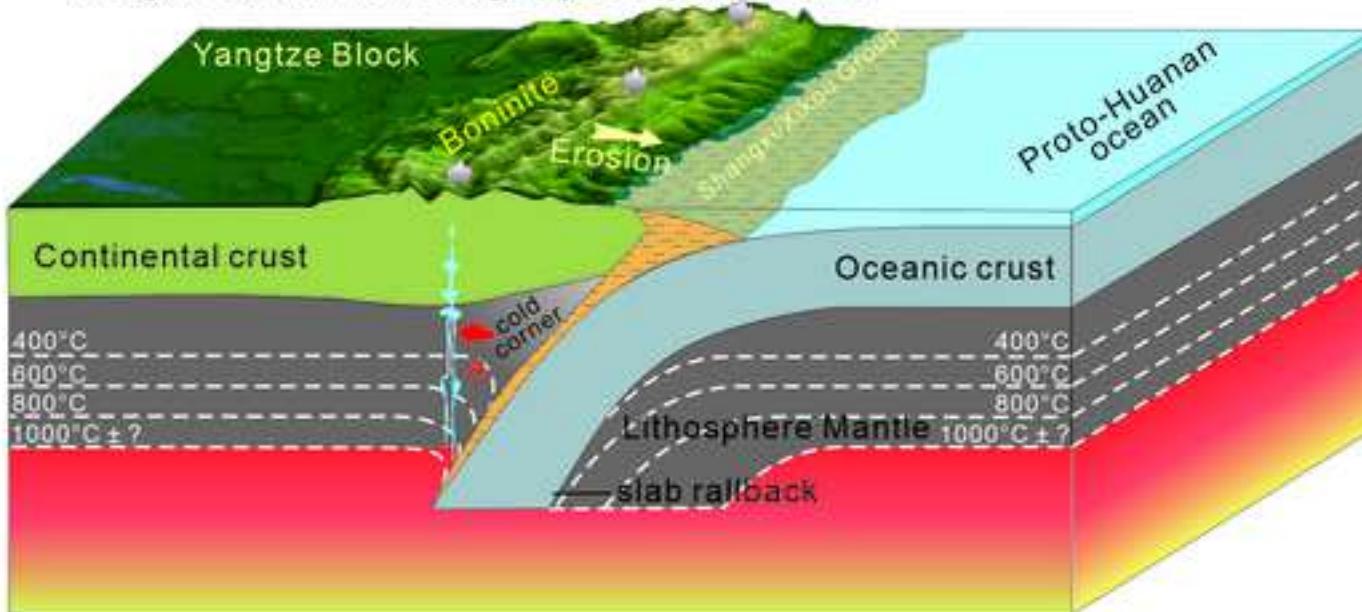










(a) Sediment melts immediately when subduction initiation and then intrude into the cold corner of mantle wedge

(b) With down-going of slab, fore-arc extension trigger boninitic magmatism in the slightly deeper mantle

Click here to access/download
e-Component
Supplementary Tables.xls

Click here to access/download

e-Component
Supplementary Information.docx