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Abstract
We identify a large class of positive-semidefinite kernels for which a certain poly-
nomial rate of convergence of maximum mean discrepancies of Farey sequences is
equivalent to the Riemann hypothesis. This class includes all Matérn kernels of
order at least one-half.

1 Introduction
A kernel K : Ω×Ω → R on a domain Ω is positive-semidefinite if the kernel Gram matrix
with elements K(xi, xj) for i, j = 1, . . . , N is positive-semidefinite for all N ∈ N and
X = (x1, . . . , xN ) ⊆ Ω. Each positive-semidefinite kernel induces a unique reproducing
kernel Hilbert space H (RKHS) that is a Hilbert space of certain real-valued functions
defined on Ω equipped with a norm ∥·∥H [3, 18]. Properties such as differentiability and
boundedness of the kernel determine which functions are elements of H. Under mild
measurability assumptions one can then define the maximum mean discrepancy (MMD)

MMD(P,X) = sup
∥f∥H≤1

∣∣∣∣ ∫
Ω
f(x)P (dx)− 1

N

N∑
i=1

f(xi)
∣∣∣∣

between a probability measure P on Ω and the empirical measure ξ = 1/N
∑N

i=1 δxi of
the point set X. The MMD measures how well the empirical measure approximates P or,
in other words, how well the points are P -distributed. Among other things, the MMD is
routinely used as a test statistic and for hypothesis testing in non-parametric statistics
and machine learning [9, 19].

The Riemann hypothesis (RH) states that the non-trivial roots of the Riemann zeta
function ζ(s) =

∑∞
k=1 k

−s on the complex plane all have real part 1/2. The purpose of
this note is to show that the RH is equivalent to a certain polynomial rate of convergence
of the MMD of the uniform measure on [0, 1] and the empirical measure of the Farey
sequence. The equivalence holds for a large class of commonly used kernels, including
Matérns. The nth Farey sequence Fn = (ai,n)Ni=1 is the increasing sequence of reduced
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Figure 1: The first 18 Farey sequences F1, . . . , F18.

fractions on [0, 1] whose denominators do not exceed n. The first six Farey sequences are

F1 =
(
0
1 ,

1
1

)
= (a1,1, a2,1),

F2 =
(
0
1 ,

1
2 ,

1
1

)
= (a1,2, a2,2, a3,2),

F3 =
(
0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

)
= (a1,3, a2,3, a3,3, a4,3, a5,3),

F4 =
(
0
1 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1

)
= (a1,4, a2,4, a3,4, a4,4, a5,4, a6,4, a7,4),

F5 =
(
0
1 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1

)
= (a1,5, a2,5, . . . , a10,5, a11,5),

F6 =
(
0
1 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1

)
= (a1,6, a2,6, . . . , a12,6, a13,6),

where we have bolded the points in Fn that do not appear in Fn−1. The first 18 Farey
sequences are shown in Figure 1. Note that n refers to the index of a Farey sequence,
not to the number of points in the nth Farey sequence, which is N = |Fn| = Φ(n) + 1,
where Φ is the summatory totient function.

Farey sequences have long history and many appearances in different branches of
mathematics [4]. The most intriguing appearance of Farey sequences is related to their
connections with the RH, which originate with a classical result by Franel [8], who proved
that

N∑
i=1

(
i

N
− ai,n

)2

= O(n−1+ε) as n → ∞ (1.1)

for every ε > 0 is equivalent to the RH. Equation (1.1) is a statement about the uniformity
of the distribution of Farey sequences. We refer to [14] for a comprehensive review. In
this note we exploit these connections and recast Franel’s result using the statistical
concept of MMD, hence providing an equivalent formulation of the RH with statistical
flavour.

Equation (1.1) can be understood as a statement about the discretised L2-discrepancy;
see [6, 16] for results on the star-discrepancy. Let X = (x1, . . . , xN ) ⊂ [0, 1] be an
increasing sequence. The local discrepancy of X on [0, 1] is given by

Dloc(A,X) =
∣∣∣∣ |A ∩X|

N
−meas(A)

∣∣∣∣ for measurable A ⊆ [0, 1].

The L2-discrepancy measures the uniformity of X and is defined as

D2(X) =

√∫ 1

0
Dloc([0, α], X)2 dα.
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An approximation D̃2(X) to D2(X) can be obtained by discretising at x1, . . . , xN :

D̃2(X) =

√√√√ 1
N

N∑
i=1

Dloc([0, xi], X)2 =

√√√√ 1
N

N∑
i=1

(
i

N
− xi

)2

≈ D2(X),

where the second equality follows from the facts that meas([0, xi]) = xi and, since X is
an increasing sequence, |[0, xi] ∩X| = i. A theorem of Mertens [10, § 18.5] gives the
asymptotic equivalence

N = |Fn| ∼
n2

2ζ(2) = 3n2

π2 , (1.2)

where ζ(2) = π2/6 is the famous value of the Riemann zeta function at s = 2 orig-
inally computed by Euler. Franel’s result in Equation (1.1) and the asymptotics in
Equation (1.2) then show that the RH is equivalent to

D̃2(Fn) =

√√√√ 1
N

N∑
i=1

(
i

N
− ai,n

)2

= O(n−3/2+ε) = O(N−3/4+ε)

for every ε > 0. That is, the RH is equivalent to a statement about the discretised
L2-discrepancies of Farey sequences. It should now come as no suprise that the RH can
also be formulated in terms of the MMD.

2 Results and remarks
For the MMD between the uniform measure on [0, 1] and the empirical measure for a
sequence points X = (x1, . . . , xN ) ⊂ [0, 1] we use the simplified notation

MMD(X) = sup
∥f∥H≤1

∣∣∣∣ ∫ 1

0
f(x) dx− 1

N

N∑
i=1

f(xi)
∣∣∣∣. (2.1)

The following theorem connects the rate of convergence of MMDs of Farey sequences to
the RH. We give the proof in Section 4.

Theorem 2.1. Let K be a positive-semidefinite kernel on [0, 1] and H its RKHS. Suppose
that

(a) H is a subset of W 1,2([0, 1]), the Sobolev space of order one on [0, 1], and

(b) H contains the function x 7→ a+ bx+ xβ for some a, b ∈ R and β ∈ [2, γ] ∪ {4, 5},
where γ = 1 + 6/

√
3D ≈ 3.405 and D = π2/6 + 2/3 log 2− 2/3.

Then the RH is equivalent to

MMD(Fn) = O(n−3/2+ε) = O(N−3/4+ε) for every ε > 0. (2.2)

Note that assumption (b) is satisfied if H contains the monomial x 7→ xβ for some
β ∈ {2, 3, 4, 5}. Figure 2 shows how the MMD behaves. There are three commonly used
classes of kernels that are covered by Theorem 2.1:

1. Let λ > 0 be a correlation length parameter. The Matérn kernel of order ν > 0 is
given by

Kν(x, y) =
21−ν

Γ(ν)

(√
2ν|x− y|

λ

)ν

Kν

(√
2ν|x− y|

λ

)
, (2.3)
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Figure 2: The plots show MMD(Fn) · n3/2, the normalised MMDs of Farey sequences,
up to n = 250 for Matérn kernels with (i) ν = 1/2 and λ = 1, (ii) ν = 3/2 and λ = 31/2,
and (iii) ν = 5/2 and λ = 51/2. Note that n is the index of the Farey sequence, not the
number of points. For n = 250 we have N = |Fn| = 19,025.

where Γ is the gamma function and Kν the modified Bessel function of the second
kind of order ν. Matérn kernels are widely used to define Gaussian random field
models in spatial statistics [20]. It is well known that the RKHS of a Matérn
kernel of order ν on [0, 1] is norm-equivalent to the (possibly fractional) Sobolev
space W ν+1/2,2([0, 1]); see [23, Thm. 6.13 and Cor. 10.48]. Assumptions (a) and (b)
are thus satisfied if ν ≥ 1/2 because Sobolev spaces are nested and contain all
polynomials.

2. By integrating min{x, y}, the covariance kernel of Brownian motion, m times and
adding a polynomial part that removes boundary conditions at the origin one
obtains the released m-fold integrated Brownian motion kernel

Km(x, y) =
m∑

k=0

(xy)k

(k!)2 +
∫ 1

0

(x− t)m+ (y − t)m+
(m!)2 dt, (2.4)

where (x)+ = max{0, x}. Because its RKHS is norm-equivalent to Wm+1,2([0, 1]),
this kernel satisfies the assumptions of Theorem 2.1 [3, p. 322].

3. The energy-distance kernel

Kα(x, y) = |x|α + |y|α − |x− y|α (2.5)

is positive-semidefinite for α ∈ (0, 2). The energy-distance kernel is, up to scaling,
the covariance kernel of the fractional Brownian motion with Hurst index β/2;
for α = 1 it reduces to the Brownian motion kernel. In Section 4.2 we use a
characterisation by Barton and Poor [2] to verify that the RKHS of an energy-
distance kernel satisfies the assumptions of Theorem 2.1 for every α ∈ [1, 2).

We summarise these observations in the following proposition.

Proposition 2.2. Suppose that K is (i) any Matérn kernel of order ν ≥ 1/2 in Equa-
tion (2.3), (ii) a released m-fold integrated Brownian motion kernel in Equation (2.4)
with m ≥ 0, or (iii) an energy-distance kernel in Equation (2.5) with α ∈ [1, 2). Then
the RH is equivalent to Equation (2.2).
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Remark 2.3. Matérn kernels, integrated Brownian motion kernels, and energy-distance
kernel are only finitely differentiable. Theorem 2.1 applies also to some infinitely
differentiable kernels, such as K(x, y) = exp(xy). The RKHS of this particular kernel is
contained in every Sobolev space and includes all polynomials by the virtue of the Taylor
expansion K(x, y) =

∑∞
k=0(xy)k/k!; see [18, Sec. 2.1] and [25]. The theorem does not

cover the popular Gaussian kernel K(x, y) = exp(−(x− y)2/(2λ2)) because its RKHS
does not contain any non-trivial polynomials [15].
Remark 2.4. There are a number of results which state that the RH is equivalent to∣∣∣∣ ∫ 1

0
f(x) dx− 1

N

N∑
i=1

f(ai,n)
∣∣∣∣ = O(n−3/2+ε)

for every ε > 0 if f is a suitable fixed function. The proof of Theorem 2.1 uses such
results from [12, 24] that apply to certain monomials. Other options from [12, 13, 24]
include functions whose derivatives satisfy a particular inequality and certain functions
with singularity at the origin, such as f(x) = log(x). Kanemitsu and Yoshimoto [11]
provide a collection of suitable functions expressed as Fourier cosine series.

3 Implications for energy-distance kernels
Theorem 2.1 has some curious implications when applied to the energy-distance kernel
Kα in Equation (2.5). By direct calculation, we obtain the following expression for the
squared MMD of the nth Farey sequence:

MMD2(Fn) =
4

(α+ 1)N

N∑
i=1

aα+1
i,n − 1

N2

N∑
i,j=1

|ai,n − aj,n|α − 2
(α+ 1)(α+ 2) . (3.1)

For α = 1, the energy-distance kernel reduces to the Brownian motion kernel K1(x, y) =
min{x, y} that we use in the proof of Theorem 2.1 (in particular, see Lemma 4.1). Here
we consider α ∈ (1, 2). Denote

Sα,N = 1
N

N∑
i=1

aα+1
i,n and Tα,N = 1

N2

N∑
i,j=1

|ai,n − aj,n|α,

so that

MMD2(Fn) =
(

4
α+ 1Sα,N− 4

(α+ 1)(α+ 2)

)
+
(

2
(α+ 1)(α+ 2)−Tα,N

)
=: δ1,N+δ2,N .

By the asymptotic uniformity of Fn [see Equation (4.3)],

Sα,N →
∫ 1

0
xα+1 dx = 1

α+ 2

with the rate O(n−3/2+ε) for every ε > 0 as N → ∞. That is, δ1,N = O(n−3/2+ε). How-
ever, Theorem 2.1 and Proposition 2.2 state that the RH is equivalent to MMD2(Fn) =
O(n−3+ε) for any α ∈ [1, 2). This has two consequences. First,

δ2,N = 2
(α+ 1)(α+ 2) − Tα,N =

∫ 1

0

∫ 1

0
|x− y|α dxdy − 1

N2

N∑
i,j=1

|ai,n − aj,n|α

= O(n−3/2+ε)

if the RH holds. Second, the RH requires there to be substantial cancellations between
the terms δ1,N and δ2,N which individually tend to zero as O(n−3/2+ε) but whose sum
must have the much faster rate O(n−3+ε) under the RH.
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4 Proofs
This section contains proofs for the results in Section 2.

4.1 Proof of Theorem 2.1
The proof of Theorem 2.1 uses the following lemma, which in fact states that the MMD
for a piecewise linear kernel equals the L2-discrepancy [5, 22].

Lemma 4.1. Let N ∈ N be odd and K(x, y) = 1 + min{x, y}. If an increasing sequence
X = (x1, . . . , xN ) contains 1/2 and is symmetric on [0, 1], in that 1 − x ∈ X if x ∈ X,
then

MMD(X)2 = 1
N

N∑
i=1

(
i

N
− xi

)2

− 1
6N2 .

Proof. From the reproducing property of the kernel in H it follows that the squared
MMD admits the closed form expression

MMD(X)2 =
∫ 1

0

∫ 1

0
K(x, y) dx dy − 2

N

N∑
i=1

∫ 1

0
K(x, xi) dx+ 1

N2

N∑
i,j=1

K(xi, xj) (4.1)

in terms of the kernel and its integrals; see, for example, [9, Lem. 6] or [17, Sec. 10.2].
For the kernel K(x, y) = 1 +min{x, y} it is straightforward to compute that∫ 1

0
K(x, y) dx = 1 + 1

2(2− y)y and
∫ 1

0

∫ 1

0
K(x, y) dxdy = 4

3 .

Therefore Equation (4.1) gives

MMD(X)2 = 4
3 − 2

N

N∑
i=1

(
1 + 1

2(2− xi)xi

)
+ 1

N2

N∑
i,j=1

(1 + min{xi, xj})

= 1
3 − 1

N

N∑
i=1

(2− xi)xi +
1
N2

N∑
i=1

(2N − 2i+ 1)xi

= 1
N

N∑
i=1

(
i

N
− xi

)2

+ 1
N2

N∑
i=1

xi −
3N + 1
6N2 .

Because the sequence X contains 1/2 and is symmetric,

1
N2

N∑
i=1

xi −
3N + 1
6N2 = 1

N2

(
1
2 + N − 1

2

)
− 3N + 1

6N2 = − 1
6N2 .

This concludes the proof.

Proof of Theorem 2.1. Consider first the kernelK0(x, y) = 1+min{x, y} from Lemma 4.1.
Because they contain 1/2 for n ≥ 2 and are symmetric, we may apply the lemma to the
Farey sequences Fn and so obtain

MMD0(Fn)2 = 1
N

N∑
i=1

(
i

N
− ai,n

)2

− 1
6N2 (4.2)
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for the K0-MMD of Fn when n ≥ 2. The result by Franel in Equation (1.1) and the
asymptotics N = |Fn| ∼ 3n2/π2 from Equation (1.2) imply that the RH is equivalent to

N∑
i=1

(
i

N
− ai,n

)2

= O(n−1+ε) = O(N−1/2+ε)

for every ε > 0. Inserting this in Equation (4.2) and observing that the second term is
negligible shows that the RH is equivalent to MMD0(Fn) = O(N−3/4+ε), from which
Equation (2.2) follows for K = K0 by using Equation (1.2) again.

It is well known (e.g., [1, Sec. 3.1] or [21, Sec. 10]) that the RKHS H0 of K0(x, y) =
1 + min{x, y} is norm-equivalent to the Sobolev space W 1,2([0, 1]). By an RKHS
inclusion theorem of Aronszajn [18, Thm. 5.1], the norm of any RKHS H ⊆ H0 satisfies
∥f∥H0 ≤ c∥f∥H for a positive c and all f ∈ H. From this it follows that the unit ball of H
is contained in the c-ball of H0. Because the MMD in Equation (2.1) is a supremum over
the unit ball of the RKHS, the MMD of Fn for any kernel K that satisfies assumption (a)
is bounded from above by a constant multiple of the MMD of Fn for K0. Consequently,

MMD(Fn) = O(MMD0(Fn) ) = O(n−3/2+ε) = O(N−3/4+ε)

for every ε > 0 if the RH is true. To show that this rate implies the RH we use
assumption (b). Let fβ(x) = a+ bx+ xβ for a, b ∈ R and β ∈ [2, γ] ∪ {4, 5}, where

γ = 1 + 6
√
3D

≈ 3.405 and D = π2

6 + 2
3 log 2− 2

3 .

Because Farey sequences are symmetric about 1/2,∣∣∣∣ ∫ 1

0
fβ(x) dx− 1

N

N∑
i=1

f(ai,n)
∣∣∣∣ = ∣∣∣∣ ∫ 1

0
xβ dx− 1

N

N∑
i=1

aβi,n

∣∣∣∣.
Results by Mikolás [12, Thm. 5] and Yoshimoto [24, pp. 302–3] state, in combination
with the asymptotics in Equation (1.2), that the RH is equivalent to∣∣∣∣ ∫ 1

0
xβ dx− 1

N

N∑
i=1

aβi,n

∣∣∣∣ = O(n−3/2+ε) = O(N−3/4+ε) (4.3)

for every ε > 0. Under assumption (b) the unit ball of H contains a constant multiple of
fβ , so that the rate MMD(Fn) = O(n−3/2+ε) implies Equation (4.3) and consequently
also the RH. This concludes the proof.

4.2 Proof of Proposition 2.2 for energy-distance kernels
We first prove that RKHSs of energy-distance kernels contain suitable polynomials.

Lemma 4.2. Let m be a positive integer. The RKHS of the energy-distance kernel Kα

in (2.5) on [0, 1] contains a polynomial of degree m for every α ∈ (0, 2).

Proof. Let Hα(R) denote the RKHS of the energy-distance kernel (2.5) on R. The-
orem 4.1 in [2] states that f ∈ Hα(R) if and only if there is g : R → C satisfying∫
R|g(ω)|

2|ω|1−α dω < ∞ such that

f(x) =
∫
R

eiωx − 1
iω

g(ω)|ω|1−α dω for all x ∈ R. (4.4)
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We select
g(ω) = −iω sincm+1

(
ω

2π

)
1

|ω|1−α
.

For this function the integral∫
R
|g(ω)|2|ω|1−α dω =

∫
R
|ω|1+αsinc2(m+1)

(
ω

2π

)
dω =

∫
R

sin2(m+1)(ω/2π)
|ω|2m+1−α

dω

is finite if 2m > α. Therefore the function f defined in Equation (4.4) is in Hα(R) for
any α ∈ (0, 2). This function is

f(x) =
∫
R

[
eiωxsincm+1

(
ω

2π

)
− sincm+1

(
ω

2π

)]
dω

=
∫
R
[cos(xω) + i sin(xω)] sincm+1

(
ω

2π

)
dω − constant

=
∫
R
cos(xω) sincm+1

(
ω

2π

)
dω − constant,

where the integral is the cosine transform of the (m+1)th power of sinc. By Equation (16)
in Section 1.6 of [7], this cosine transform equals a polynomial of degree m on some
non-empty interval [0, δ]. By applying a suitable scaling we obtain a function in Hα(R)
that is a polynomial of degree m on [0, 1] with a leading coefficient one. This proves the
claim because the RKHS of Kα on [0, 1] consists of restrictions onto [0, 1] of functions in
Hα(R) [3, p. 25].

Proof of Proposition 2.2 for energy-distance kernels with α ∈ [1, 2). Assumption (b) holds
by setting m = 2 in Lemma 4.2. For α = 1 and x, y ≥ 0 the energy-distance kernel
becomes

K1(x, y) = |x|+ |y| − |x− y| = min{x, y}.

In the proof of Theorem 2.1 we noted that the RKHS of K(x, y) = 1+min{x, y} on [0, 1]
is norm-equivalent to W 1,2([0, 1]). The RKHS of K consists of sums of constant functions
with elements of the RKHS of K1 [3, p. 24]. From the characterisation of Hα(R) in [2]
that we used in the proof of Lemma 4.2 it also follows that Hα(R) ⊆ Hγ(R) if α ≥ γ.
This inclusion is inherited by RKHSs on [0, 1]. Therefore Kα satisfies assumption (a) for
α ∈ [1, 2).
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