
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/183570/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Tziora, Eirini, Karakatsoulis, Georgios, Skouri, Konstantina and Syntetos, Aris 2026. On the impact of
supply uncertainty on inventory decisions: EOQ-based models. International Journal of Production Research

10.1080/00207543.2025.2606914 

Publishers page: http://dx.doi.org/10.1080/00207543.2025.2606914 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



International Journal of Production Research

On the impact of supply uncertainty on inventory decisions: EOQ-based models

Submission ID 257782594

Article Type Research Article

Keywords
Inventory, Supply uncertainty, Random yield, Im
perfect quality, Random capacity, Supply disrup
tions

Authors EIRINI TZIORA, Georgios Karakatsoulis, Konsta
ntina Skouri, Aris Syntetos

For any queries please contact:

TPRS-peerreview@journals.tandf.co.uk

Note for Reviewers:

To submit your review please visit https://mc.manuscriptcentral.com/TPRS

For Peer Review Only  -  Non-Anonymous PDF Cover Page

mailto:


Page 1 of 41

On the impact of supply uncertainty on inventory

decisions: EOQ-based models

Eirini Tzioraa, Georgios Karakatsoulisb, Konstantina Skouric, Aris
Syntetosd

aUniversity of Ioannina, Department of Mathematics, GR-45110
Ioannina, Greece, Email: e.tziora@uoi.gr

bCentre for Research and Technology Hellas, Institute of Applied Biosciences, GR-57001
Thessaloniki, Greece, Email: g.karakatsoulis@certh.gr

cUniversity of Ioannina, Department of Mathematics, GR-45110
Ioannina, Greece, Email: kskouri@uoi.gr

dUniversity of Cardiff, Cardiff Business School, CF10 3EU Cardiff, United
Kingdom, Email: SyntetosA@cardiff.ac.uk

Abstract

Inventory management is influenced by both demand and supply uncer-
tainty, with the latter often manifesting as yield variability, where delivered
quantities deviate from orders. This study develops a unified framework to
analyze four key sources of variability in order quantities: (1) random yield,
where deliveries differ from the order quantity; (2) random quality, where re-
ceived items include defects identified through post-delivery inspection; (3)
random capacity, where supplier limitations prevent full order fulfillment; and
(4) supply disruption, where the order fails to materialize. Within an EOQ
context and under an (s, S) policy, we derive a common long-run average cost
formulation for all four uncertainty types and determine the cost-minimizing
inventory policies. We conduct both theoretical and numerical comparisons,
examining impacts on total cost, optimal policy parameters, and replen-
ishment intervals. Beyond providing a unified perspective on yield-related
supply uncertainty, our findings offer guidance for supplier evaluation and
selection.

Keywords: Inventory, Supply uncertainty, Random yield, Imperfect
quality, Random capacity, Supply disruptions
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1. Introduction

Inventory systems almost invariably operate under supply uncertainty,
which can impact performance across multiple dimensions. This uncertainty
typically arises from variability in order quantities and/or delivery lead times.
The former is the focus of this study and is mainly caused by i) random
yield, ii) imperfect quality products, iii) random supplier capacity, and iv)
supply disruptions. Despite a substantial body of related literature, to the
best of our knowledge, this is the first time that the different types of yield
uncertainty are systematically compared with respect to their impact on
inventory system performance.

Random yield refers to the unpredictable variability in the quantity of
output produced due to production inefficiencies, defective raw materials, or
unpredictable processes. Random yield leads to waste, reprocessing costs,
and inconsistent production rates. In high-technology manufacturing, such
as semiconductors and pharmaceuticals, the appearance of random yield is
common (Berling and Sonntag [2]). Fluctuating yields complicate inven-
tory decisions, leading to increased safety stock requirements, overordering
to compensate for yield variability, and supplier diversification to reduce de-
pendency, as potential mitigation strategies. However, each strategy has
specific trade-offs, such as higher holding costs, product obsolescence, and
higher coordination costs.

Imperfect quality products are items that fail to meet the desired specifi-
cations or quality standards. This can be due to production errors, material
defects, or human mistakes. The production of imperfect-quality items is
commonly expected in ultra-precision manufacturing industries e.g., auto-
motive, aerospace, defense, and shipbuilding (Kang et al. [39], Nakhaeinejad
[22]). When dealing with imperfect quality items, the risk that some goods
may not meet the required standards should be accounted for. This uncer-
tainty unavoidably impacts inventory decisions. Specifically, to ensure prod-
uct quality, additional inspection processes or rework procedures may need
to be implemented, leading to delays and added costs in sorting out defective
items. Furthermore, higher safety stock may be required to compensate for
defects, leading to increased holding costs due to excess inventory. In indus-
tries where imperfect quality is common, return or replacement policies are
often demanded, especially if defects are discovered after delivery, resulting
in logistics costs related to returns, replacements, and customer satisfaction
efforts. Imperfect quality can also lead to stockouts if defective products are
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returned or discarded, which can hurt sales and damage the firm’s reputation.
Random supplier capacity refers to the uncertain ability of suppliers to

deliver the required quantity of raw materials or components. Factors af-
fecting this could include labor shortages, equipment breakdowns, or logis-
tical challenges. Managing random supplier capacity is a common challenge
in industries such as electronics and automotive manufacturing, with firms
facing the need to optimize sourcing decisions between reliable and unreli-
able suppliers to maintain stability under uncertain conditions (Chen and
Tan [5]). When uncertainty around a supplier’s capacity arises, inventory
management decisions are adapted through increased safety stock, supplier
diversification, flexible order quantities, or paying for guaranteed capacity,
which ties up capital and increases holding costs.

Finally, supply disruptions occur when the supply chain is interrupted
due to factors like political instability, natural disasters, pandemics, or trans-
portation issues. These disruptions lead to delays or shortages of products
and raw material. Inventory management adaptations to mitigate supply
disruption include increased safety stock, advanced ordering, diversification
of suppliers, aggregating inventory from different suppliers or regions, coor-
dination with logistics providers. Addressing supply disruption risks before
launching new programs is a critical issue for firms operating under just-in-
time frameworks, particularly those with a small supplier base and low in-
ventory levels, as highlighted by Sanci et al. [30] in collaboration with Ford
Motor Company. Obviously, any adaptation could lead to higher holding
costs, risk of overstocking, higher transportation, administrative, logistical
and quality control expenses.

In this context, we can observe that the above-mentioned types of uncer-
tainties arise from different causes but share several interrelations. Random
yield and imperfect quality are closely related, as random yield refers to
the quantity of usable output (which may be greater or less than the or-
dered quantity), while imperfect quality products refer to variations in qual-
ity within that output. Random supplier capacity is closely associated with
random yield and imperfect quality, as unreliable material supply can reduce
production efficiency and degrade product quality. A cascading effect occurs
when a supply disruption reduces supplier capacity, which in turn affects
yield and increases the likelihood of quality issues.

In this paper, we consider an inventory system operating under a re-
order point order-up-to level (s, S) policy with constant demand, ensuring
that uncertainty arises only from the supply side. In this context, we aim
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to mathematically examine the interconnections between the aforementioned
supply uncertainties through a unified representation of the underlying pro-
cess, along with the corresponding long-run average profit. We then seek to
compare how each type of uncertainty affects decisions and costs. Under-
standing this impact should lead to better supplier selection and assessment
decisions.

The remainder of the paper is as follows: In section 2, we provide a
literature review of systems with the aforementioned supply uncertainties
under constant demand along with a detailed discussion of our contribution.
Section 3 introduces the notation and underlying assumptions. Section 4
presents the objective function in a unified manner for all types of uncertain-
ties considered, along with its specification for each type. Section 5 provides
optimal policy variables for all supply uncertainty types. Numerical compar-
isons are given in Section 6. Section 7 concludes with the main findings and
suggestions for future research. Lastly, all proofs appear in the Appendix.

2. Research background and contribution

In this section, we first discuss the research background, organized around
the four types of uncertainly considered in our work, followed by our contri-
bution to the field of inventory management.

2.1. Research background

In the Economic Order Quantity (EOQ) framework, one of the earliest
contributions addressing random yield was by Silver [32], who modified the
classical EOQ model to incorporate yield uncertainty. Assuming that the
received quantity is a random proportion of the ordered quantity, with a
constant mean and a variance that may depend on the order quantity, he in-
vestigated the impact of random yield on cost and order quantity. Kalro and
Gohil [12] extended this model in order to include both complete and partial
backorders by also considering that the standard deviation of the quantity
received is either independent of the quantity ordered or dependent on it.
Perry et al. [26], analyzed the particular case of exponentially distributed
yields in Silver’s [32] model. A review of single-item continuous review in-
ventory models under random yield can be found in the work of Yano and
Lee [40].

Salameh and Jaber [29] first modified the traditional EOQ model to con-
sider imperfect quality items that require full inspection. They assumed
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that, upon receiving an order, a screening process with a finite rate begins,
to distinguish the perfect quality items from the imperfect ones. While the
former are used to meet the customer demand, the latter are sold at the
end of the process as a single batch at a lower price to a secondary market.
Cárdenas-Barron [3] corrected an error in Salameh and Jaber’s proposed or-
der quantity, while Maddah and Jaber [19] revisited it using renewal theory,
resulting in simpler expressions for both long-term average profit and opti-
mal order quantity. Their findings indicate that the optimal order quantity
increases with a higher screening rate, which facilitates faster removal of
imperfect quality items. Additionally, the optimal order quantity decreases
with greater variability in the proportion of imperfect quality items.

The model of Salameh and Jaber [29], has inspired extensive research and
various extensions (see Khan et al. [15]), including backordered shortages
(e.g., Eroglu and Ozdemir [6]), inspection errors (e.g., Khan et al. [16], Hsu
[10]) or inspection errors with planned backorders (e.g., Hsu and Hsu [9]).
A common assumption in these models is that, despite the substantial time
required for inspection, no unplanned shortages occur during this process.
This assumption rests on the idea that the quantity of perfect quality items
at least meets the total demand throughout the screening period. However,
Papachristos and Konstantaras [23] showed that this assumption does not
guarantee the avoidance of unplanned shortages. Vörös [37] also revised the
Salameh and Jaber [29] model, relaxing the assumption that demand is fully
met at the end of the screening process. However, this approach does not
effectively prevent unplanned shortages. To address this issue, Maddah et al.
[20] proposed a policy that maintains inventory availability throughout the
screening period by placing an order when the inventory level equals the total
demand during the screening period. Karakatsoulis and Skouri [13], proposed
an improved (r,Q) inventory model for imperfect quality items, optimizing
both reorder point and order quantity to minimize the average total cost while
assuming that the number of perfect quality items at least equals the demand
during the screening. They account for both cases that shortages cannot
occur and that unplanned shortages with backlogging costs occur during
the screening process. Their study, assuming that only imperfect quality
items are detected until the detection of all the imperfect ones, identifies a
lower reorder point that prevents shortages and reduces the average inventory,
minimizing total costs.

With regard to supplier capacity, Wang and Gerchak [38] incorporated
capacity variability into both the classical EOQmodel with constant demand
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and a continuous review order quantity/reorder point model with backlog-
ging, showing that capacity uncertainty generally increases optimal order
quantities and reorder points, with tractable solutions in the exponential
case. Hariga and Haouari [7] focused more narrowly on the EOQ frame-
work, demonstrating that under random supplier capacity, the cost function
is unimodal and pseudo-convex, and that the classical EOQ solution performs
nearly optimally across a range of capacity distributions. Extending this line
of research, Moon et al. [21] integrated variable capacity with random yields,
developed multi-item EOQ formulations subject to budget constraints, and
applied a distribution-free approach to the (Q, r) model, enabling robust
solutions when demand distributions are only partially known.

Finally, disruptions in supply chains can be categorized into two main
types: exogenous and endogenous (e.g., Konstantaras et al. [17], Taleizadeh
et al. [35]) meaning that they can be unrelated to supplier’s efficiency (e.g.
natural disasters, terrorist attacks, geopolitical events, economic factors, ac-
cidents, pandemics), or they can reflect issues within the supply process itself
(e.g. the supplier’s inability to deliver, supplier failures, poor quality sup-
plies). The study of inventory systems affected by supply disruptions began
with Chao’s [4] foundational work, where a finite state space model was
developed, while using a Markov process to represent the system’s states.
Building on this, Parlar and Berkin [24] extended the analysis in the EOQ
environment and initiated a large class of inventory models, now known as the
EOQD (with D for Disruptions). They assumed that the supply process al-
ternates between periods of supply availability and supply unavailability, the
durations of which are random variables with constant average rates. Two
scenarios were examined: one with both periods exponentially distributed
(parameters λ and µ), and another with an exponential supply availability
period (parameter λ) and a deterministic unavailability period. They em-
ployed a zero-inventory ordering policy, assuming any unmet demand during
a disruption was lost. This early work was refined by Berk and Arreola-Risa
[1], who derived an optimal order quantity formula, aiming to cost mini-
mization, although no closed-form solution was provided. Their numerical
analysis revealed that as the availability ratio λ/µ increased, the optimal
order size also increased. Snyder [33] developed a convex cost function that
closely approximates the previous model and can be solved in closed form.
Parlar and Perry [25] further advanced this research by adopting a continuous
review order-up-to policy, where the reorder point was treated as a decision
variable, allowing for complete backordering of unmet demand. Unlike the
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traditional EOQ models, in systems under disruption risk maintaining a pos-
itive reorder point can be beneficial. This finding suggests that holding safety
stock is an effective strategy for mitigating the negative effects of disruptions.
Their results indicated that both the reorder point and the order-up-to level
increase as the frequency of supply availability decreases, assuming a con-
stant recovery rate. Additionally, for a fixed order quantity, shorter average
supply availability durations lead to an increased reorder point while shorter
disruption durations correspond to a lower one. Karakatsoulis and Skouri
[14] accounted for different limiting supply disruption probabilities and ex-
amined a periodic review model under the (S, T ) policy, facing disruptions
occurring at random points in time. Extending the periodic-review model
of Konstantaras et al. [17], they used a continuous-time Markov chain to
analyze systems with identical limiting disruption probabilities but differing
disruption profiles, finding that rare, long disruptions require larger safety
stocks, longer review intervals, and incur higher costs than frequent, short
disruptions. For a recent review on supply disruptions, see Snyder et al. [34].

2.2. Contribution

It is evident that each type of supply uncertainty stems from different
real-world situations. However, they seem to be interrelated. Therefore, it
would be interesting if they could be handled in a unified way, allowing their
associations to be highlighted and making comparisons as well as combina-
tions between them possible.

In this context, we consider an inventory installation controlled by a con-
tinuous review (s, S) policy, facing a fixed-rate deterministic demand under
the aforementioned types of supply uncertainty. Maintaining a constant de-
mand prevents the introduction of additional uncertainty factors, allowing
the focus to remain solely on supply-related uncertainty. Meanwhile, the
(s, S) policy can help mitigate supply uncertainty by providing flexibility in
order quantities and adjusting safety stock. In addition, the (s, S) policy
facilitates the integration of multiple types of uncertainty into a single model
while formulating the average profit per unit time in a unified manner. This
enables the identification of similarities and differences between various types
of supply uncertainty, which, under specific conditions, become interrelated.

To create comparable models for random yield, imperfect-quality prod-
ucts, and random capacity−types of uncertainty−we adopt the assumptions
of Silver [32], Maddah and Jaber [19], and Hariga and Haouari [7], respec-
tively (except for the zero-safety-stock assumption). Regarding supply dis-
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ruptions, we adopt the assumptions of Berk and Arreola-Risa [1], assuming
lost sales for unsatisfied demand to ensure the greatest fairness with pre-
vious models, and we further extend their model by using an (s, S) policy.
By assuming different limiting supply disruption probabilities, our work also
connects with the model of Karakatsoulis and Skouri [14]. To ensure compa-
rability with the existing literature, we adopt a profit maximization criterion.
From the optimization of the resulting models, it is noteworthy that a zero-
safety-stock and order-up-to levels—coinciding with those derived by Silver
[32], Maddah and Jaber [19], and Hariga and Haouari [7] for each associated
type of uncertainty—are obtained. This implies that the zero-safety-stock
assumption made in those models is not only intuitively correct but also
formally proven.

3. Notation and assumptions

In this section, we present the notation and abbreviations used through-
out this paper, as well as the common assumptions underlying the operation
of the inventory systems considered in our work. Some additional assump-
tions concerning each type of supply uncertainty are introduced afterwards.

3.1. Notation

S order-up-to level (decision variable)
s reorder point (decision variable)
Q the difference Q = S − s
t time between two successive replenishments of inventory, with T = E(t)
h holding cost (per unit per unit time)
c purchase cost (per unit)
r sales price (per unit)

l̂ loss of goodwill (per unit)

l lost sales cost (per unit), l = l̂ + r − c
g screening cost (per unit)
D demand rate
x screening rate
K fixed cost (per order)

3.2. Abbreviations

r random yield
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f imperfect quality products
c random capacity
d supply disruption
v variance dependent on S − s
n variance independent of S − s
EOQ economic order quantity

3.3. Assumptions

We study a single-item inventory system controlled by a continuous review
(s, S) policy. In this context, if the system’s inventory level is equal to the
reorder point, s, a replenishment order is released. The quantity ordered
becomes available immediately, aiming to restore the inventory position at
an order-up-to level S. The demand rate is constant, and shortages are not
allowed. Under a reliable supply process, the received quantity coincides with
the quantity ordered, i.e. Q = S − s. As unreliable supply is assumed, the
received quantity becomes a random variable. Particularly we assume that
supply is subject to one of the following types of uncertainty: a) random
yield b) quality issues (imperfect quality products) c) random capacity and
d) supply disruptions. Next, we list the individual assumptions for each of
the types mentioned above.

Random yield

a1 In each order, of size Q = S − s, the quantity received is Yy(s, S) =
(1 − p)(S − s), where p is a continuous random variable with support
on [0, 1). Random yield could indeed lead to received quantities higher
than the ordered quantity, but we make this assumption to enable a fair
comparison with the following types of supply uncertainty—a common
practice found in the literature (e.g., Yano and Lee [40], Lee and Yano
[18]).

a2 The number of items delivered in each cycle is independent of the num-
ber delivered in other cycles.

a3 We consider two cases regarding V ar(p): V ar(p) is either independent

of Q = S − s, or V ar(p) = ρ(1−ρ)
S−s

, where ρ ∈ [0, 1). The latter case is
motivated by the fact that each item in an order has a probability ρ ∈
[0, 1) of being received. This suggests that Yy(s, S) ∼ Bin(S−s, 1−ρ).

In this case, p is defined as p = Yy(s,S)

S−s
, so E(p) = ρ and V ar(p) = ρ(1−ρ)

S−s
.
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Imperfect quality products

In addition to the assumptions a2-a3 the following assumptions are also
considered.

b1 In each batch of S − s items a quantity of p(S − s) imperfect quality
items is included, which is detected after a 100% error-free screening
process at a finite rate x > D. We assume that x is sufficiently large
to eliminate the probability of shortages at the end of the screening
process. Consequently, the number of perfect quality items is given by
Yf (s, S) = (1−p)(S−s), where p is a continuous random variable with
support on [0, 1).

b2 The holding cost per unit per unit of time is the same for both per-
fect and imperfect quality products, as they are stored in the same
warehouse (see also Salameh and Jaber [29], Maddah and Jaber [19]).

Random capacity

c1 The quantity received, for an order of size Q = S − s, is: Yc(s, S) =
(S − s)(1 − max{1 − p, 0}), where p is a continuous random variable
with support in (0,∞).

Supply disruptions

d1 Supply disruptions occur randomly in time and last for random du-
rations. The times of disruption and recovery follow exponential dis-
tributions with rates λ and µ, respectively. The choice of exponential
distributions for supply availability and supply disruption, aside from
their mathematical tractability, is well-suited for describing the time
between events that occur independently and at a constant average
rate. At the scheduled replenishment time, the availability of the sup-
ply is described by the random variable p, which takes the value 1 if
the supply is available and 0 if it is not.

d2 If unplanned shortages occur during the disruption period, unsatisfied
demand is lost.

Based on Assumptions d1, d2 and since continuous review allows orders to be
placed immediately upon recovery, the received quantity is then determined
by:
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Yd(s, S) =


Dt, 0 < t ≤ S

D

S, t >
S

D

4. Objective function formulation

Under the continuous review policy (s, S), if the inventory position of
the system is equal to (or below) the reorder point, s, a replenishment order
is released. The order size aims to restore the inventory level at an order-
up-to level S. However, due to supply uncertainty, the inventory level after
any replenishment is within the interval [min{s,max{S −W (s, S), 0}}, S −
W (s, S)], where W (s, S) is the divergence from the target order-up-to level
S. The form of W (s, S) for each type of uncertainty will be specified later.
So, the system inventory level at any time instant τ with τ ∈ [0, t] can be
determined as:

I(τ) = S −W (s, S)−Dτ (1)

Since the demand rate is constant, I(τ) is a random variable with a distri-
bution depending on W (s, S).

Based on (1), we model the average total profit, for uniformity purposes,
in terms of the policy variables.

Π̂(s, S) = rE(S − [S −Dt]+)︸ ︷︷ ︸
revenue per unit sold

−
[

K︸︷︷︸
order cost

+ cE(S − [S −Dt]+)︸ ︷︷ ︸
purchase cost

+ hE

(∫ t

0

[S −W (s, S)−Dω]+ dω

)
︸ ︷︷ ︸

holding cost

+ l̂E[S −Dt]−︸ ︷︷ ︸
loss of goodwill

= rE(S − [(S −Dt) + [S −Dt]−])

−
[
K + cE(S − [(S −Dt) + [S −Dt]−])

+ hE

(∫ t

0

[S −W (s, S)−Dω]+ dω

)
+ l̂E[S −Dt]−

]
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= (r − c)E(Dt)−
[
K + hE

(∫ t

0

[S −W (s, S)−Dω]+ dω

)
+ (r − c+ l̂)E[S −Dt]−

]
= (r − c)E(Dt)

−
[
K + hE

(∫ t

0

[S −W (s, S)−Dω]+ dω

)
+ lE[S −Dt]−

]
(2)

If t represents the time between two successive replenishments of inven-
tory, we denote its expected length as:

T = E(t) (3)

The expected profit per unit time is obtained by invoking the renewal-reward
theorem (Ross [27]):

Π(s, S) =
Π̂(s, S)

T
= (r − c)D − C(s, S) (4)

where:

C(s, S) =

K + hE

(∫ t

0

[S −W (s, S)−Dω]+ dω

)
+ lE[S −Dt]−

T
(5)

In this perspective, the total profit per time unit consists of two terms: one in-
dependent of the variables (s, S) and the term C(s, S). Since argmax

(s,S)

Π(s, S)

= argmin
(s,S)

C(s, S), we henceforth intend to minimize C(s, S).

4.1. Objective function formulation per type of uncertainty

In this section, we seek to specify C(s, S), for each type of supply uncer-
tainty considered.

4.1.1. Cost function under random yield

Given the underlying assumptions, we seek to determine the correspond-
ing average cost. To do so, we need to specify expressions for W (s, S) and t.
Figure 1 depicts the inventory level for the random yield case. As we can see
from the figure and based on Assumption a1, the received quantity (at time
τ = 0) is (1− p)(S − s), so:
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W (s, S) =


p(S − s), τ = 0,

0, 0 < τ ≤ t

(6)

The cycle, t, between two consecutive replenishment is t = (1−p)(S−s)
D

so,

T =
[1− E(p)](S − s)

D

Figure 1: Sample path of the inventory evolution under random yield.

By replacing the above expressions in (5) the average cost per unit time
is:

Cy(s, S) =
KD

(S − s)[1− E(p)]
+ h(S − s)

{
V ar(p)

2[1− E(p)]
+

[1− E(p)]

2

}
+ hs

(7)

Using the transformation Q = S − s we obtain:

Cy(s,Q) =
KD

Q[1− E(p)]
+ hQ

{
V ar(p)

2[1− E(p)]
+

[1− E(p)]

2

}
+ hs (8)
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In case with V ar(p) =
ρ(1− ρ)

S − s
, (7) becomes:

Cy(s, S) =
KD

(S − s)[1− E(p)]
+ h(S − s)

[1− E(p)]

2
+ hs+ h

E(p)

2
(9)

Using the transformation Q = S − s we obtain:

Cy(s,Q) =
KD

Q[1− E(p)]
+ hQ

[1− E(p)]

2
+ hs+ h

E(p)

2
(10)

4.1.2. Cost function for imperfect quality products

Based on the underlying assumptions, we aim to formulate the corre-
sponding average cost. To achieve this, we need to specify expressions for
W (s, S) and t. The inventory level, when imperfect quality products are in-
cluded in a delivered order, is graphically represented in Figure 2. As we can
see from the figure and based on Assumption b1, the perfect quality items
(which are identified at time τ = S−s

x
) are equal to (1−p)(S−s), so W (s, S)

is:

W (s, S) =


0, 0 < τ ≤ t and τ ̸= (S − s)

x
,

p(S − s), τ =
S − s

x

(11)

The cycle, t, between two consecutive replenishment is t = (1−p)(S−s)
D

so,

T =
[1− E(p)](S − s)

D

By substituting the above expressions into (5) we obtain:

KD

(S − s)[1− E(p)]
+hs+h(S− s)

{
DE(p)

x[1− E(p)]
+

V ar(p)

2[1− E(p)]
+

[1− E(p)]

2

}
As imperfect quality items are included in the order, an additional cost

per unit time is considered for the screening process,
gD

1− E(p)
, leading to

the following average cost per unit time:
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Figure 2: Sample path of the inventory evolution when imperfect quality products are
included in an order.

Cf (s, S) =
KD

(S − s)[1− E(p)]
+

gD

1− E(p)
+ hs

+ h(S − s)

{
DE(p)

x[1− E(p)]
+

V ar(p)

2[1− E(p)]
+

[1− E(p)]

2

}
(12)

Using the transformation Q = S − s we obtain:

Cf (s,Q) =
KD

Q[1− E(p)]
+

gD

1− E(p)
+ hs

+ hQ

{
DE(p)

x[1− E(p)]
+

V ar(p)

2[1− E(p)]
+

[1− E(p)]

2

}
(13)

In case of V ar(p) =
ρ(1− ρ)

S − s
, (12) becomes:
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Cf (s, S) =
KD

(S − s)[1− E(p)]
+

gD

1− E(p)
+ hs

+ h(S − s)

{
DE(p)

x[1− E(p)]
+

[1− E(p)]

2

}
+ h

E(p)

2
(14)

Using the transformation Q = S − s we obtain:

Cf (s,Q) =
KD

Q[1− E(p)]
+

gD

1− E(p)
+ hs

+ hQ

{
DE(p)

x[1− E(p)]
+

[1− E(p)]

2

}
+ h

E(p)

2
(15)

4.1.3. Cost function under random capacity

Given the underlying assumptions, we aim to formulate the corresponding
average cost. For this purpose, we need to specify expressions for W (s, S)
and t. The inventory level for the random capacity case is depicted in Figure
3. As we can see from the figure and based on Assumption c1, the received
quantity (at time τ = 0) is (S − s)min{p, 1}, so W (s, S) is:

W (s, S) =


(S − s)max{1− p, 0}, τ = 0,

0, τ ∈ (0, t]

(16)

By rewriting W (s, S) = max{(1 − p)(S − s), 0} and replacing p(S − s)
with c to represent supplier capacity we are able to exploit results existing
in the literature. Thus we get:

W (s, S) =


max{S − s− c, 0}, τ = 0,

0, τ ∈ (0, t]

(17)

The random variable Yc(s, S) has a mixed distribution function, with a
discrete positive mass at S − s and a continuous distribution for c < S − s.
The probability density function of Yc(s, S), fc(y), is given by:

fc(y)dy =

{
1− F (y), y = S − s

f(y)dy, y < S − s
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The cycle, t, between two consecutive replenishment is t =
Yc(s, S)

D
so,

T =

∫ S−s

0

cf(c)dc+

∫ ∞

S−s

(S − s)f(c)dc

D

=

∫ S−s

0

cf(c)dc+ (S − s)[1− F (S − s)]

D

Figure 3: Sample path of the inventory evolution under random capacity.

Using the above results the average cost per unit time, resulting from (5),
is:

Cc(s, S) =

2KD + h

∫ S−s

0

c(c+ 2s)f(c)dc+ h(S − s)[(S − s) + 2s][1− F (S − s)]

2

∫ S−s

0

cf(c)dc+ 2(S − s)[1− F (S − s)]

(18)
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Using the transformation Q = S − s we obtain:

Cc(s,Q) =

2KD + h

∫ Q

0

c(c+ 2s)f(c)dc+ hQ[Q+ 2s][1− F (Q)]

2

∫ Q

0

cf(c)dc+ 2Q[1− F (Q)]

(19)

4.1.4. Cost function under supply disruptions

Given the underlying assumptions, we seek to determine the correspond-
ing average cost. To do so, once again we need to specify expressions for
W (s, S) and t. Figure 4 depicts the inventory level for the supply disrup-
tions case. As we can see from the figure and based on Assumptions d1 and
d2, the received quantity (at time τ = 0) is min{Dt, S}, so W (s, S) is:

Figure 4: Sample path of inventory evolution under supply disruption.

W (s, S) =


0, 0 < τ ≤ S

D

Dτ − S,
S

D
< τ ≤ t

Also, the supply availability (Pr(p = 1)) or disruption at the time of replen-
ishment placement (Pr(p = 0)) must be considered. If there is no disruption
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at order placement, the inventory-related cycle cost is given by h
(

S2−s2

2D

)
,

with cycle length equal to S−s
D

. In the case of a disruption, two possible
scenarios regarding its duration, z, can occur: either z ≤ s

D
or z > s

D
with

z, being a random variable with E(z) = 1/µ.
When z ≤ s

D
:

the holding cost (being a continuous function) is given as:

h

(
S2 − s2

2D
+

(2s−Dz)z

2

)
with a cycle length of:

S − s+D
(
z|z ≤ s

D

)
D

When z > s
D
:

the holding cost equals:

h
s2

2D
+ h

(
S2 − s2

2D

)
and a lost sales cost of:

lD(z − s

D
)

is incurred.
The cycle length in this case is:

S − s+D
(
z|z > s

D

)
D

To calculate the average total cost and cycle, the probability of disruption
or availability at the time of order placement must be determined. Lemma 1,
which is derived from Kolmogorov’s differential equations for the two-state
Continuous-Time Markov Chain (Ross [28]), provides useful results towards
this direction (see also Karakatsoulis and Skouri [14]).

Lemma 1. Let the states 1 and 0 represent supply availability and disruption,
respectively. Also, let Pij(t) be the probability of the system being in state j
at time t given that it was in state i at the beginning. Then:

P10(t) =
λ

λ+ µ

[
1− e−(λ+µ)t

]
(20)
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P01(t) =
µ

λ+ µ

[
1− e−(λ+µ)t

]
(21)

with Pij(t) + Pii(t) = 1, i, j ∈ {0, 1}, i ̸= j.

Given the transition probabilities, we can derive the limiting probability
of disruption as:

Pr(p = 1) =
λ

λ+ µ

By using Lemma 1, the function Cd(s, S) and the expected cycle length are
formulated as:

Cd(s, S) =
1

T

{
K +

[
1− P10

(
S − s

D

)]
h
(S − s)[(S − s) + 2s]

2D
+ P10

(
S − s

D

)
{
P

(
z ≤ s

D

)
E

[
h

(
(S − s)[(S − s) + 2s]

2D

)
+ h

(2s−Dz)z

2

∣∣∣∣z ≤ s

D

]
+ P

(
z >

s

D

)
E

[
h
(S − s)[(S − s) + 2s]

2D
+

hs2

2D
+ lD

(
z − s

D

)∣∣∣∣z >
s

D

]}}
=

1

T

{
K +

[
1− P10

(
S − s

D

)]
h
(S − s)[(S − s) + 2s]

2D
+ P10

(
S − s

D

)
[
h
(S − s)[(S − s) + 2s]

2D
+

hs

µ
− hD

µ2

(
1− e−

µs
D

)
+ l

D

µ
e−

µs
D

]}
(22)

and

T =

[
1− P10

(
S − s

D

)](
S − s

D

)
+ P10

(
S − s

D

)
[
S − s

D
+ E

(
z

∣∣∣∣z <
s

D

)
P
(
z <

s

D

)
+ E

(
z

∣∣∣∣z >
s

D

)
P
(
z >

s

D

)]
=

S − s

D
+ P10

(
S − s

D

)
1

µ

The following remark outlines the relationships between different types
of supply uncertainty.

Remark 1. a) When x → ∞ then Wf → Wy implying that a system with
imperfect quality items behaves the same as one under random yield.
b) Under random yield, when p → 1 then Wy → Wd at S

D
< τ ≤ t and the
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system under random yield behaves like one with supply disruptions. This
suggests that a system under random yield operates similarly to one experi-
encing supply disruptions. In this case, however, the time that the system
operates under supply unavailability must be considered, and the assumption
about this time is crucial for deriving the cost of Cd.
c) Under random capacity, when p → 0 then Wc → Wd at S

D
< τ ≤ t and the

system behaves like a system with supply disruptions. Once again, the time
that the system operates under supply unavailability must be considered, and
the assumption about this time is crucial for deriving the cost of Cd.

5. Optimization per type of uncertainty

In this section, we aim to determine the values of the variables s and S
that minimize the cost function C(s, S) for each type of supply uncertainty
considered. Furthermore, we derive the optimal policy variables to address
supply disruptions with a complete loss of demand during stock-outs a topic
that, to the best of our knowledge, is being explored for the first time in the
literature. In order to facilitate the analysis we use the expressions of cost
functions (8), (10), (13), (15), (19) and (22). The optimal values are in terms
of s, S for all the types of supply uncertainty except for the case of supply
disruption.

5.1. Optimization under random yield

From (8) we observe that cost is increasing in s, so s = 0. Therefore
minimizing (7), with s = 0 leads to the optimal value for S which is equivalent
to the results obtained in Silver [32]. As two cases regarding the variance of
the random variable p are considered, the following proposition holds.

Proposition 1. The globally optimal policy variables, (sy, Sy) are:
a) if V ar(p) is independent of S − s then

(syn, Syn) =

(
0,

√
2KD

hE[(1− p)2]

)
(23)

with cost:

Cyn(syn, Syn) =
2KD

Syn[1− E(p)]
(24)
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b) if V ar(p) =
ρ(1− ρ)

S − s
then

(syv, Syv) =

(
0,

√
2KD

h[1− E(p)]2

)
(25)

with cost:

Cyv(syv, Syv) =
2KD

Syv[1− E(p)]
+

hE(p)

2
(26)

It is worthwhile to note that, from relations (23) and (25), we observe
that, due to [1− E(p)]2 < E[(1− p)2], Syn < Syv.

5.2. Optimization under imperfect quality products

From (13) we observe that cost is increasing in s, so s = 0. Therefore
minimizing (12), with s = 0 leads to the optimal value for S derived in
Maddah and Jaber [19] assuming that V ar(p) is independent of S − s. As
two cases regarding the variance of the random variable p are considered, the
following proposition holds.

Proposition 2. The globally optimal policy variables, (sy, Sy) are:
a) if V ar(p) is independent of S − s then

(sfn, Sfn) =

(
0,

√√√√√ 2KD

h

{
E[(1− p)2] +

2DE(p)

x

})
(27)

with cost:

Cfn(sfn, Sfn) =
2KD

Sfn[1− E(p)]
+

gD

1− E(p)
(28)

b) if V ar(p) =
ρ(1− ρ)

S − s
then

(sfv, Sfv) =

(
0,

√√√√√ 2KD

h

{[
1− E(p)

]2
+

2DE(p)

x

})
(29)

with cost:

Cfv(sfv, Sfv) =
2KD

Sfv[1− E(p)]
+

gD

1− E(p)
+

hE(p)

2
(30)
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Once again, from (27) and (29) we observe that Sfn < Sfv.
As it is apparent through equations (23)-(30) it follows that the order-up-

to level for the imperfect quality items is less than the one in the random yield
case. We also get that the order-up-to level decreases as V ar(p) increases
for both types of supply uncertainty. Also, we observe that the cost for the
imperfect quality items is greater than the one in the random yield case.
Finally, we get that the cost increases as V ar(p) decreases for all the types
of supply uncertainty.

5.3. Optimization under random capacity

From (19) we observe that cost is increasing in s, so s = 0. Therefore
minimizing (18), with s = 0 leads to the optimal value for S, as derived in
Hariga and Haouari [7] and summarized in the next proposition:
Let, Sc the solution of equation:

l(S) = 0

where:

l(S) = S2 −
∫ S

0

(c− S)2f(c)dc− SEOQ
2

Proposition 3. The globally optimal policy variables, (0, Sc) with Cc(sc, Sc) =
hSc.

Furthermore, Hariga and Haouari [7], showed that:

SEOQ ≤ Sc ≤ Su

with:

Su =
S2
EOQ + [E(c)]2 + [V ar(c)]2

2E(c)

5.4. Optimization under supply disruptions

After the variable substitution we get that:

T (s,Q) =
Q

D
+ P10

(
Q

D

)
1

µ
(31)

and

Cd(s,Q) =
K + hQ(Q+2s)

2D
+ P10

(
Q
D

) [
hs
µ
− hD

µ2

(
1− e−

µs
D

)
+ lD

µ
e−

µs
D

]
Q
D
+ P10

(
Q
D

)
1
µ

(32)

The following proposition ensures the existence of the optimal policy.
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Proposition 4. Cd(s,Q) attains a unique minimum.

Let (sd, Qd) = argmin
(s,Q)

Cd(s,Q), that is not always feasible. The following

proposition provides conditions that lead to feasible solutions.
Let Q1d and Q2d satisfy:[
1 + e

Q1d(λ+µ)

D

]
hQ1d

2(λ+ µ)− 2D
[
−1 + e

Q1d(λ+µ)

D

]
[hQ1d +K(λ+ µ)] = 0

and

(
hQ2

2dµ(λ+ µ)

2λ
+DhQ2d −

DKµ(λ+ µ)

λ
− lD2

)
+

{
−hQ2

2d(λ+ µ)

2
−Q2dD[h+ l(λ+ µ)] +D[lD −K(λ+ µ)]

}
e−

Q2d(λ+µ)

D = 0.

Proposition 5. The optimal values of the decision variables are given as:

(sd, Qd) =



(
− D

µ
ln


h

(
Q1d

DP10

(
Q1d

D

) +
1

µ

)
h
1

µ
+ l

 , Q1d

)
, if hQ1d

D
− P10

(
Q1d

D

)
l < 0

(0, Q2d), otherwise

We also note that once sd = 0, the cost function reduces to the formulation
of Berk and Arreola-Risa [1]. Since they proved that this cost function is
unimodal, it follows that it has a unique minimum, which is obtained from
the first-order condition.

We then provide the conditions under which it is optimal to keep safety
stock (i.e. sd > 0).
Let Q̂ satisfy:

hQ̂

D
− λ

λ+ µ

[
1− e−

(λ+µ)Q̂
D

]
l = 0

Proposition 6. a) If h ≥ lλ, then sd = 0.

b) If h < lλ and

{
Q ≥ Q̂, then sd = 0,

Q < Q̂, then sd = s(Q1d)
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The above proposition proves that it is not always optimal to keep safety
stock, especially when the holding cost is higher than the average lost sales
cost during the disruption period. Even in the opposite situation, where the
holding cost is less than the average lost sales cost during the disruption
period, it is not always optimal to keep safety stock, especially when the
value of variable Q exceeds a certain threshold.

Since the optimal value of variable Q1d cannot be found in closed form,
the following proposition provides an upper and a lower bound.

Proposition 7. SEOQ ≤ Q1d ≤ Qub, with Qub =

D

[
1 +

√
1 +

2K(λ+ µ)2

Dh

]
λ+ µ

6. Numerical comparisons

6.1. Experimental set up

We studied several datasets to assess the impact of different types of
supply uncertainty. We evaluated the optimal policy variables and costs
under each supply uncertainty type, as well as for the classical EOQ model,
which obviously represents a scenario without supply uncertainty. The results
were obtained for the specific parameter values K = 100, D = 4000, and h =
2, as in Karakatsoulis and Skouri [14]. In order to describe supply uncertainty,
we assume that for all types, E(p) = q (i.e. the limiting probability of
supply disruption), where q takes values from 0.1 to 0.7 in increments of
0.05. For random yield and imperfect-quality products, when the variance
is independent of the order quantity, we assume that p follows a Beta(α, β)
distribution. The parameters α and β are chosen such that E(p) = α/(α +
β) = q and variance equal to 0.01 so as to ensure small dispersion around
q. In this context, we compute the parameters α and β from equations
α/(α + β) = q and (αβ)/[(α+ β)2(α + β + 1)] = 0.01 for each value of
q. For random capacity, we assume that the random variable p follows a
Normal distribution with a mean of (1− q)SEOQ (where SEOQ = 632.46) and
a standard deviation of 10. We choose this mean because in the absence of
supply uncertainty, the quantity delivered would always be QEOQ(:= SEOQ),
while we set the standard deviation to be small enough compared to the order
quantities. For the supply disruption, we consider two different disruption
profiles. Specifically, we assume that λ+µ = 2 and λ+µ = 9, with the latter
case indicating faster switching between supply availability and disruption
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E(p)
(= q)

syn Syn syv Syv sfn Sfn sfv Sfv sc Sc
sd

(λ+ µ = 2)
Sd

(λ+ µ = 2)
sd

(λ+ µ = 9)
Sd

(λ+ µ = 9)
0.10 0 698.43 0 702.73 0 671.66 0 675.48 0 636.06 826.16 2519.68 643.13 1694.58
0.15 0 738.97 0 744.07 0 693.17 0 697.37 0 640.92 1740.85 3434.38 880.90 1932.35
0.20 0 784.47 0 790.57 0 714.59 0 719.20 0 648.37 2468.36 4161.88 1081.73 2133.17
0.25 0 835.88 0 843.27 0 735.63 0 740.66 0 658.91 3112.22 4805.75 1269.55 2321.00
0.30 0 894.43 0 903.51 0 755.93 0 761.39 0 673.23 3721.02 5414.54 1456.38 2507.83
0.35 0 961.69 0 973.01 0 775.08 0 780.97 0 692.17 4323.92 6017.45 1650.28 2701.73
0.40 0 1039.75 0 1054.09 0 792.64 0 798.94 0 716.92 4942.43 6635.96 1858.10 2909.55
0.45 0 1131.37 0 1149.92 0 808.12 0 814.80 0 749.03 5595.52 7289.04 2086.89 3138.34
0.50 0 1240.35 0 1264.91 0 821.07 0 828.08 0 790.73 6302.68 7996.20 2344.91 3396.36
0.55 0 1371.99 0 1405.46 0 831.05 0 838.32 0 845.21 7086.49 8780.01 2642.78 3694.22
0.60 0 1533.93 0 1581.14 0 837.71 0 845.15 0 917.26 7975.55 9669.07 2995.11 4046.56
0.65 0 1737.49 0 1807.02 0 840.79 0 848.32 0 1014.41 9008.68 10720.21 3423.30 4474.75
0.70 0 2000.00 0 2108.19 0 840.17 0 847.68 0 1149.22 10242.04 11935.56 3960.51 5011.96

Table 1: Optimal reorder point and order-up-to level per uncertainty.

states. The distributions were selected to ensure the same mean batch loss
under each type of supply uncertainty while minimizing variance. Finally, we
set l = 22 to be significantly higher than the holding cost, g = 0.4, in parallel
with Maddah and Jaber [19], and x = 12000, assuming it is sufficiently large
to eliminate the probability of any shortages at the end of the screening
process. We note that in the absence of supply uncertainty, the system setup
aligns with the EOQ model, for which the values are SEOQ = 632.46 and
CEOQ = 1264.9 respectively.

6.2. Numerical results

Tables 1-6 present the results based on the setup described above. Table 1
presents the optimal policy under each type of uncertainty. We observe that
an increase in the probability of any type of uncertainty (as indicated by an
increase in q) leads to higher order-up-to levels. More specifically, supply
disruption causes the greatest increase in the order-up-to level, followed by
random yield. For values of q up to 0.55, the presence of imperfect quality
items leads to a slightly larger increase in the order-up-to level than random
capacity; beyond this point, the reverse effect occurs. It is also worth noting
that, in the cases of random yield and imperfect quality items, the increase in
the order-up-to level is greater when V ar(p) = ρ(1−ρ)

S−s
. In the case of supply

disruption, the nominal order quantity (Q = S − s) remains constant as q
increases. Essentially, it is the safety stock that increases. In fact, the safety
stock is larger when λ + µ = 2 compared to when λ + µ = 9, indicating
that a larger safety stock is required for systems experiencing infrequent but
prolonged disruptions (i.e., lower values of λ+ µ).

Table 2 reports the average cycle lengths per type of supply uncertainty.
It is observed that, for all types of uncertainty, the average cycle length de-
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E(p)
(= q)

Tyn Tyv Tfn Tfv Tc
Td

(λ+ µ = 2)
Td

(λ+ µ = 9)
0.10 0.157 0.158 0.151 0.152 0.142 0.455 0.274
0.15 0.157 0.158 0.147 0.148 0.134 0.474 0.281
0.20 0.157 0.158 0.143 0.144 0.126 0.495 0.288
0.25 0.157 0.158 0.138 0.139 0.119 0.519 0.296
0.30 0.157 0.158 0.132 0.133 0.111 0.546 0.306
0.35 0.156 0.158 0.126 0.127 0.103 0.577 0.317
0.40 0.156 0.158 0.119 0.120 0.095 0.614 0.330
0.45 0.156 0.158 0.111 0.112 0.087 0.657 0.345
0.50 0.155 0.158 0.103 0.104 0.079 0.709 0.364
0.55 0.154 0.158 0.093 0.094 0.071 0.772 0.386
0.60 0.153 0.158 0.084 0.085 0.063 0.852 0.414
0.65 0.152 0.158 0.074 0.074 0.055 0.954 0.450
0.70 0.150 0.158 0.063 0.064 0.047 1.090 0.498

Table 2: Expected cycle length per uncertainty.

creases as the parameter q increases, with the exception of supply disruption,
where the opposite trend is evident. Particularly, in the cases of random yield,
imperfect quality items, and random capacity, it becomes necessary to reduce
the average time between orders as q increases, in order to ensure demand
fulfillment within the given interval. Conversely, in the presence of supply dis-
ruption, the average time between orders tends to increase with q, which can
be attributed to the corresponding increase in safety stock. It seems, holding
inventory becomes more cost-effective than placing frequent orders. This be-
havior is particularly pronounced in systems characterized by infrequent but
prolonged disruptions (i.e., when λ+µ = 2). Furthermore, the average cycle
length is shorter than the classical Economic Order Quantity (EOQ) cycle
in all cases, except under supply disruption, where it is longer. For random
yield and imperfect quality items, this behavior can also be demonstrated
analytically. In particular, Tyn = TEOQ

(1−E(p))√
E[(1−p)2]

, Tyv = TEOQ -and thus

constant-, Tfn = TEOQ
(1−E(p))√

E[(1−p)2]+
2DE(p)

x

and Tfv = TEOQ
(1−E(p))√

[1−E(p)]2+
2DE(p)

x

.

Even when the optimal policy is determined for each type of uncertainty,
the received quantity is random. Hence, Table 3 presents the average received
quantities under each uncertainty type. The pattern of average cycle lengths
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E(p)
(= q)

Q̄yn Q̄yv Q̄fn Q̄fv Q̄c
Q̄d

(λ+ µ = 2)
Q̄d

(λ+ µ = 9)
0.10 628.59 632.46 671.66 675.48 569.21 1732.94 1084.03
0.15 628.12 632.46 693.17 697.37 537.59 1798.92 1109.33
0.20 627.57 632.46 714.59 719.20 505.96 1872.72 1137.76
0.25 626.91 632.46 735.63 740.66 474.34 1955.79 1169.93
0.30 626.10 632.46 755.93 761.39 442.72 2050.01 1206.63
0.35 625.10 632.46 775.08 780.97 411.10 2157.77 1248.89
0.40 623.85 632.46 792.64 798.94 379.47 2282.23 1298.08
0.45 622.25 632.46 808.12 814.80 347.85 2427.59 1356.04
0.50 620.17 632.46 821.07 828.08 316.23 2599.60 1425.37
0.55 617.40 632.46 831.05 838.32 284.61 2806.32 1509.77
0.60 613.57 632.46 837.71 845.15 252.98 3059.46 1614.75
0.65 608.12 632.46 840.79 848.32 221.36 3376.60 1748.88
0.70 600.00 632.46 840.17 847.68 189.74 3785.55 1926.27

Table 3: Expected received quantity per uncertainty.

is mirrored in the average received quantities. For random yield and random
capacity, the expected received quantity decreases as q increases, whereas
under supply disruption it increases, owing to higher safety stock. The re-
ceived quantity approximates the demand during the cycle, except for the
case of imperfect quality items since the received quantity equals the order
quantity, because the imperfect quality items that cannot be used to fulfill
demand are detected after the screening process takes place. This suggests
that cycle lengths allow the average order quantities to adapt, where feasible,
to satisfy demand within the specified time interval. Additionally, inventory
mitigation generally occurs through order-up-to levels, except under supply
disruptions, where safety stock serves as the primary mechanism.

Table 4 shows that, for each type of supply uncertainty, the cost rises
as q increases, with supply disruption leading to the largest increase. Fur-
thermore, the cost is larger when λ + µ = 2. This increase could be related
to higher order-up-to levels and reorder points, leading to increased holding
costs. The presence of imperfect quality items causes the next highest cost
increase reasonably due to cost stems from screening requirement. The ran-
dom yield appears to have a very slight effect on cost increase. The latter can

be theoretically proven since Cyn = CEOQ

√
E[(1−p)2]

1−E(p)
and Cyv = CEOQ+ hE(p)

2
.

To further evaluate the cost impact of each supply uncertainty type, we
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E(p)
(= q)

Cyn Cyv Cfn Cfv Cc
Cd

(λ+ µ = 2)
Cd

(λ+ µ = 9)
0.10 1272.7 1265.0 3101.2 3093.8 1272.1 7582.0 3607.0
0.15 1273.6 1265.1 3240.1 3232.1 1281.8 9411.4 4082.6
0.20 1274.8 1265.1 3399.4 3390.6 1296.7 10866.4 4484.2
0.25 1276.1 1265.2 3583.3 3573.7 1317.8 12154.2 4859.9
0.30 1277.8 1265.2 3797.6 3787.0 1346.5 13371.8 5233.5
0.35 1279.8 1265.3 4049.5 4037.8 1384.3 14577.6 5621.3
0.40 1282.4 1265.3 4348.8 4336.0 1433.8 15814.6 6037.0
0.45 1285.6 1265.4 4709.0 4694.7 1498.1 17120.7 6494.6
0.50 1290.0 1265.4 5148.7 5132.7 1581.5 18535.1 7010.6
0.55 1295.8 1265.5 5694.7 5676.7 1690.4 20102.7 7606.3
0.60 1303.8 1265.5 6387.5 6367.0 1834.5 21880.8 8311.0
0.65 1315.5 1265.6 7290.0 7266.5 2028.8 23947.1 9167.4
0.70 1333.3 1265.6 8507.3 8479.9 2298.4 26413.8 10241.8

Table 4: Optimal cost per uncertainty.

compare it with the EOQ cost (no uncertainty), using the indicators ∆i =
Ci−CEOQ

CEOQ
100%, i ∈ {yn, yv, fn, fv, c, d}. As shown in Table 5, long and rare

supply disruptions (λ + µ = 2) can increase costs by up to 1988.19% at a
limiting probability of 0.7.

To evaluate the impact of using the EOQ policy instead of the optimal
policy, we employ the indicatorsEi =

C(EOQ)−Ci

Ci
100%, i ∈ {yn, yv, fn, fv, c, d}.

As shown in Table 6, EOQ can result in substantial cost increases, par-
ticularly under random yield (up to 81.62%) and supply disruption (up to
381.92% when λ+ µ = 9), likely due to the required adaptation of order up
to levels. By contrast, random capacity shows relatively good performance,
likely due to the specific choice of capacity distribution.

Overall, our numerical comparisons show that supply disruptions are the
most critical type of uncertainty in terms of cost increases compared to the
basic EOQ model (representing reliable supply). This cost increase is es-
pecially significant for systems experiencing infrequent but prolonged dis-
ruptions. These findings align with common understanding, as supply dis-
ruptions directly affect availability and can halt entire operations, leading
to broader consequences. For the other three types of uncertainty, the cost
increase is relatively small when q is low. However, as q increases, ran-
dom yield uncertainty tends to have higher cost consequences. This study
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E(p)
(= q)

∆yn ∆yv ∆fn ∆fv ∆c
∆d

(λ+ µ = 2)
∆d

(λ+ µ = 9)
0.10 0.62 0.01 145.17 144.59 0.57 499.41 185.16
0.15 0.69 0.01 156.16 155.52 1.34 644.04 222.76
0.20 0.78 0.02 168.75 168.05 2.52 759.07 254.51
0.25 0.88 0.02 183.29 182.53 4.18 860.87 284.21
0.30 1.02 0.02 200.22 199.39 6.45 957.13 313.75
0.35 1.18 0.03 220.14 219.22 9.44 1052.46 344.40
0.40 1.38 0.03 243.80 242.79 13.35 1150.25 377.26
0.45 1.64 0.04 272.28 271.15 18.43 1253.51 413.44
0.50 1.98 0.04 307.04 305.77 25.03 1365.33 454.24
0.55 2.44 0.04 350.21 348.79 33.64 1489.26 501.33
0.60 3.08 0.05 404.97 403.36 45.03 1629.83 557.04
0.65 4.00 0.05 476.32 474.47 60.39 1793.18 624.74
0.70 5.41 0.06 572.56 570.39 81.71 1988.19 709.69

Table 5: Percentage cost increase over the classical EOQ model.

E(p)
(= q)

Eyn Eyv Efn Efv Ec
Ed

(λ+ µ = 2)
Ed

(λ+ µ = 9)
0.10 0.49 0.56 0.08 0.09 0.00 16.18 69.60
0.15 1.21 1.32 0.18 0.20 0.00 34.55 113.75
0.20 2.33 2.50 0.31 0.34 0.00 52.52 155.78
0.25 3.91 4.17 0.46 0.50 0.00 69.02 195.44
0.30 6.07 6.43 0.63 0.68 0.00 83.75 232.53
0.35 8.91 9.42 0.81 0.87 0.00 96.59 266.77
0.40 12.61 13.33 0.99 1.06 0.00 107.46 297.83
0.45 17.39 18.40 1.15 1.23 0.00 116.24 325.23
0.50 23.55 24.99 1.30 1.38 0.00 122.83 348.40
0.55 31.51 33.60 1.41 1.49 0.00 127.06 366.64
0.60 41.88 44.98 1.49 1.57 0.00 128.77 379.07
0.65 55.56 60.33 1.52 1.61 0.00 127.75 384.62
0.70 73.93 81.62 1.51 1.60 0.00 123.72 381.92

Table 6: Percentage cost increase when using the classical EOQ quantity.
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could be valuable for products that inherently deal with multiple supply un-
certainties such as seasonal consumer electronics (e.g., gaming consoles or
smartphones). Our results aim to contribute to better-informed supplier as-
sessment and selection decisions. These findings suggest that, when inventory
is the sole mitigation lever, suppliers characterized by predictable, statistical
uncertainties (e.g., yield variability and quality defects) are preferable. Con-
versely, suppliers subject to binary shocks (e.g., supply disruptions) should
be avoided, as such uncertainties are the most challenging to buffer using
inventory alone. Capacity-related uncertainty warrants careful evaluation;
although our numerical results indicate that its cost implications are com-
parable to those associated with yield and defect-related uncertainties, this
outcome may be attributable to the relatively low variance assumed in the
analysis.

7. Conclusions

Ensuring consistent, on-time supply is the foundation of effective inven-
tory management. Without a reliable supply, organizations risk facing stock-
outs or overstocking, both of which are costly. The reliability of supply di-
rectly affects the ability to meet demand and maintain a balanced inventory.
Even the best systems, forecasting methods, and quality measures can fail if
suppliers do not deliver on time, in full, and with perfect quality.

In this paper, we examine supply uncertainty under four distinct types,
aiming to study its impact on system performance. In this context, we for-
mulate the average cost of the system in a unified manner, allowing us to
identify the differences and similarities in the processes that lead to each type
of uncertainty. This approach also enables us to view one type of supply un-
certainty as a limiting case of another.

We assume deterministic demand to avoid introducing additional uncer-
tainty factors and apply a continuous review (s, S) replenishment policy. For
random yield and imperfect quality items uncertainties both closely related
we present closed-form expressions for policy variables (existing in the liter-
ature under the assumption s = 0), which are directly comparable to those
in the classical EOQ model. For random capacity and supply disruptions,
the existence of optimal policy variables is established, and bounds for the
corresponding optimal values of the variable Q, relative to the classical EOQ
model, are provided.
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The proposed model, however, presents certain limitations. The study as-
sumes that each source of supply uncertainty considered in the model—namely
random yield, imperfect quality items, random capacity, and supply disrup-
tions—has been examined in isolation. In practice, these uncertainties may
occur simultaneously or be interrelated, and their joint effects warrant fur-
ther investigation within an integrated modeling framework. Furthermore,
the analysis focuses on a single-supplier, single-buyer setting, which does not
capture the complexity of real-world supply networks, where multi-supplier
or multi-echelon systems often exist and may involve backup sourcing or
coordination contracts.

The previously mentioned limitations could inspire several areas for fur-
ther research, aiming to enhance the model’s practical relevance and make
it more reflective of actual supply chain conditions. One area of research
involves accommodating an advance information regime. For instance, the
supplier could provide information about supply availability before the re-
plenishment release, allowing the buyer to mitigate supply uncertainty. Sup-
ply chain visibility, information-sharing and collaboration among partners
could be implemented through Industry 4.0 technologies, enabling the buyer
to respond to yield randomness and significantly strengthen the resilience of
the supply chain (Ismail et al. [11]). Another area could focus on adapting
models to account for different planned shortage-related assumptions, such
as complete or partial backorders or lost sales. A different area could concern
supplier diversification, enabling differentiation from a single source of sup-
ply, while aiming to address how different types of supply uncertainty affect a
buyer’s sourcing strategy when constraints are present, e.g. minimum order
quantity requirements (Heese [8]). Lastly, introducing uncertainty in de-
mand and exploring its interrelation with supply, or comparing the different
types of supply uncertainty with the demand uncertainty-perhaps through
appropriate heuristics (Teunter et al. [36]) while investigating the different
strategies that are appropriate dealing with each (Schmitt et al. [31]) could
also be an interesting avenue of study.
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8. Appendix. Proofs

Proof of Proposition 4. The first and second derivatives of Cd(s,Q) with
respect to s are:

∂Cd(s,Q)

∂s
=

hQ
D

+ P10(
Q
D
)
(

h
µ
− h

µ
e−

µs
D − le−

µs
D

)
Q
D
+ P10(

Q
D
) 1
µ

∂2Cd(s,Q)

∂s2
=

P10(
Q
D
)e−

µs
D

(
h
D
+ lµ

D

)
Q
D
+ P10(

Q
D
) 1
µ

> 0

therefore from the first order condition for a minimum, ∂Cd(s,Q)
∂s

= 0, we get:

sd(Q) = −D

µ
ln


h

(
Q

DP10

(
Q
D

) +
1

µ

)
h
1

µ
+ l


= −D

µ
ln

[
h

(
Q

DP10

(
Q
D

) +
1

µ

)]
+

D

µ
ln

(
h
1

µ
+ l

)
For s = sd(Q), Cd(s,Q) becomes:

Cd(s,Q) =

KD + h
Q2

2
+ hD

Q

µ

Q+ P10

(
Q

D

)
D

µ

− h
D

µ
ln



h

 Q

DP10

(
Q

D

) +
1

µ


h
1

µ
+ l


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Differentiating with respect to Q, we get:

∂Cd(s,Q)

∂Q
=

e
Q(λ+µ)

D µ(λ+ µ)

(
λ+ e

Q(λ+µ)
D µ

)
ϕ(Q)

2

(
− 1 + e

Q(λ+µ)
D

)(
Dλ− e

Q(λ+µ)
D (Dλ+Qµ(λ+ µ))

)2
(33)

where:

ϕ(Q) =
[
1 + e

Q(λ+µ)
D

]
hQ2(λ+ µ)− 2D

[
−1 + e

Q(λ+µ)
D

]
[hQ+K(λ+ µ)]

Instead of solving the first order condition (∂Cd(s,Q)
∂Q

= 0), is equivalent to

solve ϕ(Q) = 0. To this end, the monotonicity of ϕ(Q) will be examined.
Differentiating with respect to Q, we get:

∂ϕ(Q)

∂Q
= e

Q(λ+µ)
D

[
h
Q2(λ+ µ)2

D
− 2Dh− 2(λ+ µ)2K

]
+ 2hQ(λ+ µ) + 2Dh

By setting ∂ϕ(Q)
∂Q

= 0 we get:[
hQ2 (λ+ µ)2

D
− 2Dh− 2(λ+ µ)2K

]
+ [2hQ(λ+ µ) + 2Dh] e−

Q(λ+µ)
D = 0

Define:

f1(Q) =

[
hQ2 (λ+ µ)2

D
− 2Dh− 2(λ+ µ)2K

]
+ [2hQ(λ+ µ) + 2Dh] e−

Q(λ+µ)
D

=
dϕ(Q)

dQ
e−

Q(λ+µ)
D

It is worth mentioning that f1(Q) and dϕ(Q)
dQ

have the exact same roots. At

this stage it is more convenient to study f1(Q). For any Q > 0, we get:

df1(Q)

dQ
= 2h

(λ+ µ)2

D
Q− (λ+ µ)2

D
2hQe−

Q(λ+µ)
D

as well as:

d2f1(Q)

dQ2
= e−

Q(λ+µ)
D 2h

(λ+ µ)2

D2

[
D

(
− 1 + e

Q(λ+µ)
D

)
+Q(λ+ µ)

]
(34)
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> e−
Q(λ+µ)

D 2h
(λ+ µ)2

D2
2Q(λ+ µ)

with the latter relation being a consequence of the inequality ex > 1 + x

for x > 0, so in that case (34) implies that d2f1(Q)
dQ2 > 0, meaning that df1(Q)

dQ

is strictly increasing. Observe also that df1(Q)
dQ

∣∣
Q=0

= 0, and since df1(Q)
dQ

is

monotone, we have df1(Q)
dQ

> 0 for any Q > 0. Hence, f1(Q) is strictly

increasing for Q > 0. In addition, since f1(0) < 0 and lim
Q→∞

f1(Q) = ∞,

f1(Q) = 0 has a unique positive solution, say Q > 0, that coincides with

that of dϕ(Q)
dQ

= 0. The unique solution Q of f1(Q) also implies that f1(Q) < 0

for Q < Q and f1(Q) > 0 for Q > Q, which also implies that dϕ(Q)
dQ

< 0 for

Q < Q and dϕ(Q)
dQ

> 0 for Q > Q. Moreover, since ϕ(0) = 0, there is a unique

positive value Q satisfying ϕ(Q) = 0, which implies that Cd attains a unique
minimum.

Proof of Proposition 6.

sd(Q) = −D

µ
ln


h

(
Q

DP10

(
Q
D

) +
1

µ

)
h
1

µ
+ l


is positive only when

h

(
Q

DP10

(
Q
D

) +
1

µ

)
h
1

µ
+ l

< 1

Let

f2(Q) = h
Q

D
− lP10

(
Q

D

)
The first and second order derivative of f2(Q) with respect to Q are:

df2(Q)

dQ
=

h

D
− λl

D
e

−(λ+ µ)Q

D

d2f2(Q)

dQ2
=

lλ(λ+ µ)

D2
e

−(λ+ µ)Q

D > 0
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In case that h ≥ lλ, function f2(Q) is increasing and since f2(0) = 0 and
Q > 0 then f2(Q) > 0 and so:

h

(
Q

DP10

(
Q
D

) +
1

µ

)
h
1

µ
+ l

> 1

thus sd = 0.
In case that h < lλ, there is a unique value of Q such that df2(Q)

dQ
= 0.

The function f2(Q) is decreasing up to that specific value of Q and negative
(since f2(0) = 0) for Q < Q̂ so:

h

(
Q

DP10

(
Q
D

) +
1

µ

)
h
1

µ
+ l

< 1

thus sd > 0.
For Q ≥ Q̂ we get that f2(Q) ≥ 0 and so:

h

(
Q

DP10

(
Q
D

) +
1

µ

)
h
1

µ
+ l

≥ 1

thus sd = 0.

Proof of Proposition 7. As we aim to solve ϕ(Q) = 0, we rewrite it as:

−e
Q(λ+µ)

D

[
hQ2(λ+ µ)− 2DhQ− 2DK(λ+ µ)

]︸ ︷︷ ︸
ϕ1(Q)

= hQ2(λ+ µ) + 2DhQ+ 2DK(λ+ µ)︸ ︷︷ ︸
ϕ2(Q)

It is apparent that ϕ2(Q) is an increasing function and has positive values
for Q > 0.
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Regarding ϕ1(Q), it is easy to show that ϕ1(Q) = 0 has two roots, say
Qlb and Qub, such that Qlb < 0 < Qub we only consider the root:

Qub =

D

[
1 +

√
1 + 2K(λ+µ)2

Dh

]
λ+ µ

Since ϕ(Qub) = −ϕ1(Qub) + ϕ2(Qub) > 0, from the unimodality of ϕ(Q) (and
consequently of Cd(s(Q), Q)) it follows that Q1d < Qub.

For the lower bound, we can show that ∂ϕ(Q)
∂Q

∣∣
Q=QEOQ

< 0. Since ϕ(Q)

is unimodal -decreasing and then increasing in Q- as shown in the proof of
Proposition 4, it follows that ϕ(QEOQ) < 0, which implies that QEOQ <
Q1d.
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