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ABSTRACT
Unequal load distribution in three‐phase power distribution networks leads to voltage unbalance and decreased network 
efficiency. Integration of photovoltaics (PVs) and electric vehicle charging stations (EVCSs) into such networks is a challenging 
task as their penetration affects the power quality of the system. Considering the varying load demand and PV generation 
alongside the stochastic nature of electric vehicles (EVs), this study presents a technique for the precise placement of the PV 
system and EVCS inside the unbalanced networks to enhance the performance of the system. The optimal placement of PVs 
and EVCSs is carried out by considering real Pakistani 60‐bus unbalanced radial distribution systems (URDS), whereas to 
minimize the voltage unbalanced factor (VUF) and active power loss (APL), a metaheuristic technique, improved grey wolf 
optimization (IGWO) was used. Six different case studies of the integration of PVs and EVCSs inside the system are considered 
in this work. The simulation results demonstrate that the integration of the single‐phase PVs and EVCSs resulted in an increase 
of APL by 18.04% and VUF by 21.78%. However, the APL and VUF decreased by 14.82% and 3.96%, respectively, for the three‐ 
phase integration of the same size of PVs and EVCSs. Hence, the integration of three‐phase PVs and EVCSs enhanced the 
system performance in comparison to the single‐phase integration.

1 | Introduction 

The developing countries are working on several initiatives to 
persuade consumers to switch from internal combustion engine 
(ICE) to electric vehicle (EV) technology and invest in renewable 
energy sources (RES) to keep the environment eco‐friendly [1]. The 
distribution networks integrated with photovoltaic (PV) encounter 
significant challenges, including the intermittent and dynamic 
nature of these sources [2]. The existing distribution networks in 

these countries cannot meet the increasing demand for EVs. 
Meanwhile, the high penetration of PVs and EVCSs influences the 
operational performance along with power quality parameters such 
as power losses and VUF of the network. The abnormal increase in 
VUF and power losses can lead to overheating and potential 
damage to electrical equipment [3]. Moreover, inappropriate PV 
size and location may adversely influence network conditions, 
including power quality. Henceforth, it is essential to employ a 
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suitable strategy to address the power quality and intermittent 
nature of PVs simultaneously to enhance the distribution network's 
stability, reliability, and efficiency. This research aims to mitigate 
the VUF and APL by the appropriate selection and location of PVs 
and EVCSs in an unbalanced distribution network.

Modern power distribution networks present significant chal
lenges for utility companies, primarily due to their unbalanced 
nature stemming from the uneven distribution of loads across 
the three phases. This situation results in increased line losses, a 
reduction in voltage stability, and an increase in voltage 
unbalance at the distribution transformer [4]. The importance 
of PVs in electricity networks cannot be overstated, as they 
represent a vital energy source that connects directly to the 
distribution system or is located at the consumer premises. By 
facilitating localized energy production, PVs not only support 
grid stability but also empower consumers to engage more 
actively in energy management and sustainability efforts. 
However, utilizing EVs as a spinning reserve to meet peak 
demand and enhance system performance may optimize the 
location of the charging station (CS). As a result, EVs may help 
reduce expenses and optimize critical factors like voltage devi
ation and power losses across the network. However, selecting 
the appropriate size and location of the PVs and EVCSs in the 
unbalanced distribution networks is important, as they have 
catastrophic effects on voltage stability and power losses. In 
recent times, numerous studies have been carried out to address 
the challenges associated with PVs and EVCSs integration, 
where various metaheuristic approaches have been adopted.

A multi‐criteria decision‐making technique has been formulated 
by Maji et al. [5] to improve the network performance metrics of 
unbalanced power distribution networks (PDNs). Prior research 
has shown that the main goal of strategically deploying PV sys
tems throughout the network is to mitigate active power losses. 
Soliman et al. [6] have devised a specific methodology for hosting 
PVs in the distribution system to enhance the system perform
ance parameters and decrease the annual operating expenses. 
Considering the hourly and seasonal fluctuations in the energy 
demand and distributed solar power production, Particle swarm 
optimization (PSO) has resulted in reducing system losses, im
proving voltage profile, and optimizing the hosting capacity of 
PVs in balanced networks [7].

Alizadeh et al. [8] have proposed a non‐dominated solution‐ 
based multi‐objective strategy to allocate PVs as efficiently as 
possible by reducing power loss and improving the voltage pro
files for a balanced distribution network. A combined placement 
index consisting of the loss sensitivity factor and voltage stability 
factor was formulated for PV placement to reduce the overall 
network losses and improve the voltage profile [9]. Shaheen 
et al. [10] have utilized hunter‐prey‐based algorithms for optimal 
placement and sizing of PVs in a balanced distribution network 
to improve the network performance parameters. A hybrid me
taheuristic technique comprising of sine‐cosine algorithm (SCA) 
and analytical technique has improved the voltage stability and 
power losses across the system. The study carefully examined the 
balanced distribution network [11].

The impact of hourly variations in load demand on the inte
gration of solar systems into the IEEE‐14 bus balanced distri
bution network, considering the PSO and genetic algorithm 
(GA) for optimum placement and sizing of PVs, has resulted in 

reducing the power losses and improving the system voltage 
profile in [12]. An enhanced equilibrium optimizer is proposed 
to determine the optimum PV placement and size inside the 
PDNs to minimize the power losses, considering the system 
constraints [13]. Aref et al. [14] Proposed an approach for 
allocating solar power generators in balanced power distribu
tion networks in Egypt to lower power loss in the network and 
improve the voltage profile using PSO and GA optimization 
techniques. However, the main objective for integrating high‐ 
level solar systems in advanced distribution networks is to 
reduce power loss in the balanced power distribution net
work [15, 16].

Several approaches to place EVCS optimally have been re
ported, while each has its own objectives. Comprehensive re
views have been carried out on the integration of EVs and the 
challenges related to infrastructure, power loss, and environ
mental impact; and EV charging topologies and power elec
tronic converter (PEC) solutions for EV applications and their 
impacts on power quality and electric power systems in [17, 18], 
respectively. As reported in the literature, the integration of EVs 
into the power system increases the electricity demand [19]. An 
intelligent algorithm‐based approach is employed to solve the 
planning problem of EVCSs in urban areas to provide a cost‐ 
effective and easily accessible EVCS [20]. Nour et al. [21] re
ported that the distribution network system's peak demand 
increased by 17.9% when 10% more EVs were added, and by 
35.8% when 20% more EVs were added to the system. Higher 
peak demand from EVs results in higher power losses and 
voltage fluctuations. This could lead to the overheating of the 
transformer and the line simultaneously [22]. The use of PSO 
resulted in the optimal placement of EVCS in the balanced 
distribution of the system, as reported in [23, 24]. Another 
hybrid approach, PSO‐GWO, has reduced the network power 
losses of the 33‐bus system by 30.67% by optimally placing 
EVCSs across the radial distribution network [25]. An innova
tive technique was designed to adjust the size and location of 
PVs and EVCSs to minimize the undesirable consequences of 
power quality arising due to their integration into the distri
bution network by the authors in [26–28]. An optimization 
control approach integrated with a step‐up DC‐DC converter 
has been employed in [29] to enhance the system performance 
and network efficiency, integrated with solar PV‐based EV 
charging stations.

The integration of PVs and EVCSs results in an increase in 
power loss and VUF, with the challenge of selecting appropriate 
sizes and places in the distribution network; hence, deciding on 
suitable optimization techniques with the objectives of mini
mizing the power loss and VUF is important. In recent times, 
BFOA‐PSO [30], GA‐PSO [31], ECapSa [32], PSO [33], JSO [34], 
HHO and TLBO [35], and ALO [36] techniques have been 
considered to minimize power losses and voltage deviation and 
improve voltage stability while taking into account balanced 
distribution networks.

The authors of [37–39] offer a novel approach that makes use of 
optimization techniques to determine the optimal PV unit 
positions and sizes in association with plug‐in electric vehicles 
(PEVs). The main goal is to minimize energy losses while 
considering the stochastic nature of PEVs as well as the 
inherent uncertainty related to PV generation and the dynamic 
nature of loads. An incentive‐based demand side management 
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of EVs and optimal dispatch of power from distributed gener
ators has resulted in reducing the network power losses by 
13.93% [40]. Nandini et al. [41] have implemented JAYA and 
Whale Optimization Algorithm (WOA) to assess the impact of 
EVCS and RES on the VUF and power losses on the modified 
IEEE 33 bus system. A new metaheuristic technique, wild horse 
optimizer (WHO), has been implemented on the modified 
IEEE‐123 bus system to reduce the active power losses and 
voltage unbalance with the concurrent integration of PVs and 
EVCSs [42].

It can be observed from a summary of previous research that 
the majority of recent studies on the location of PVs and EVCSs 
in PDNs have concentrated on two main goals: minimizing total 
energy loss and improving the system's voltage profile. Addi
tionally, the majority of the solutions reported regarding PVs 
and EVCSs integration in the study were validated on the MV 
side of the balanced distribution system. However, only a few 
studies including [43–45] have considered the unbalanced dis
tribution network for the integration of PVs and EVCSs on the 
LV side of the network [46].

Although the literature covers key components of PVs and 
EVCSs placement and sizing in balanced and unbalanced dis
tribution networks. However, the impact of PVs and EVCSs on 
voltage stability, power loss, and VUF in an unbalanced dis
tribution network was overlooked. Assessing the presence of 
VUF, which can impact network power loss and performance 
under varying distribution feeder loading conditions through
out the day, was also missing. Henceforth, to fill this gap, a 
methodology needs to be devised to minimize the maximum 
APL and VUF over the day. Furthermore, the impact of power 
losses and voltage unbalance has not been investigated in an 
unpredictable context with unknown parameters like dynamic 
load demand, PVs, RESs, and EVs' charging behaviors. Also, the 
influence of single‐phase and three‐phase PVs and EVCSs 
sources placement in unbalanced distribution networks in the 
context of VUF and APL simultaneously has not been reported. 
The VUF and APL are also affected by whether PVs and EVs are 
placed in single or three‐phase systems in an unbalanced dis
tribution network. It has been discovered that the VUF on the 
LV side of the network is not propagated to the MV side of the 
network, as the distribution transformers across the network 
are a Dyn vector group.

The current study is unique in that it reduces VUF and APL in 
an unbalanced distribution network while considering several 
sources, such as solar PV, EVCS, and dynamic load demand 
using a metaheuristic technique, Improved Grey Wolf Optimi
zation (IGWO). This work also aims to evaluate and maintain 
the VUF of an unbalanced real 60‐bus system within the stip
ulated limit of 2% across different cases. The uncertainty in PVs 
is addressed by taking into account variable and unexpected 
factors such as solar radiation and the variable states of charge 
of EVs at EVCS under various limitations. The integration of 
both single‐phase and three‐phase PVs and EVCSs has been 
considered, and an assessment of the VUF and APL of the 
network has been carried out. It is recommended that the 
integration of three‐phase PVs and EVCSs can aid in converting 
an unbalanced distribution network into a balanced one, while 
simultaneously reducing the VUF and APL. The novelty of this 
research work lies in the application of IGWO for the optimal 
placement of PV systems within a real unbalanced distribution 

system incorporating EVCSs. This research work considers the 
dynamic nature of network load, the intermittent nature of PVs, 
the stochastic nature of EVs, and their concurrent impact on the 
hourly variation of APL and VUF on the LV side, which prior 
research has not examined. IGWO promises superior conver
gence and optimization efficiency over conventional algorithms. 
The integrated approach enhances power quality and promotes 
sustainable network operation by smart integration of REs in 
unbalanced distribution networks.

The main contributions of this research work are given below: 

• Evaluate the effectiveness of single‐phase and three‐phase 
PV placement on VUF and APL mitigation.

• Investigate the impact of EVCS charging load on an 
unbalanced distribution system, considering the stochastic 
nature of EVs and PVs.

• Investigate the effectiveness of single‐phase and three‐ 
phase PV and two EVCSs integration in the unbalanced 
distribution network, for VUF and APL mitigation.

The remainder of the paper is arranged as follows: Section 2
provides details on an unbalanced distribution systems that 
integrate with renewable energy sources and electric vehicles. 
Section 3 offers the problem definition and develops the math
ematical model of the network under consideration, PV profiles, 
and EV charging modeling. Section 4 describes the solution 
procedure using flow charts. Section 5 explains the simulation 
findings and their comparison. The efficacy of the current study 
has been established in Section 6, whereas Section 7 summarizes 
the findings and recommendations for future work.

2 | Problem Statement 

Distribution feeders can be categorized based on configuration and 
load, i.e., radial, loop, and network. Normally, the distribution 
transformers are operating as unbalanced due to varying loads 
across each phase of the transformer. Due to this varying nature 
of the connected load, the unbalancing phenomenon occurs on 
the LV side of the network, which increases both the VUF and 
APL of the transformer. The same phenomena exist across all 
the transformers connected across the distribution feeder. The 
increased VUF and APL have a negative impact on the distri
bution network performance and the electrical equipment life. 
Voltage unbalance can arise in distribution feeders with high 
PV penetration, non‐uniform EV load penetration, and charg
ing patterns over a three‐phase system. This study evaluates 
how the IGWO can be implemented for the strategic position of 
PVs on the LV side of the network integrated with EVCSs to 
mitigate the voltage unbalance and power losses in an 
unbalanced distribution network. Figure 1 illustrates the pro
posed work, which includes a conventional grid as the primary 
energy source and solar PV as an alternative source of power for 
the distribution network and EVCS. The PVs and EVCSs should 
be strategically placed to compensate VUF and APL across the 
network.

3 | Problem Formulation 

A multi‐objective framework is used to analyze the system's 
APL and VUF across six case studies. The decision variables for 
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PV placement include the location in terms of bus number, size 
in kW, power factor, and phase selection for PV placement. 
Similarly, for EVCS, it considers the number of EVs connected 
at each CS, the location in terms of bus number, the initial SOC 
of each EV, and the charging schedule of the EVs.

3.1 | Objective Function 

The current problem's objective functions are the minimization 
of APL and VUF.

F f fmin = + ,1 2 (1) 

where f1 and f2 represent the APL and VUF, which are the two 
objectives of the current study; represents the vector of the 
decision variables. Both objective functions are given equal 
weightage and , i.e., 0.5. Whereas,
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The equation Ploss i
t

, represents active power losses in the net
work at time instant t for state i, with nt and nI representing the 
number of time instants and states, respectively. CP is the 
combined probability of solar irradiance, EVCS load demand, 
and the load demand of the network. Br represents the number 
of branches; GST denotes the conductance of the line connecting 
buses S and T.

A small portion of the single‐line diagram of a radial distribu
tion system is shown in Figure 2 to calculate the load flow in a 
radial distribution network. In the figure, two buses are shown; 
one is the sending end bus designated as bus S, while the 
receiving end bus is named bus T. The following mathematical 

equations can be used to compute the active and reactive 
powers across the network:
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where P and P,S T represent the active power at buses S and T, 
respectively; and Q and QS T , are the reactive power at buses S 
and T, respectively. PL T, and QL T, signify the active and reactive 
load power at bus T. RS T, and XS T, show the series resistance 
and reactance of the transmission lines S, T , respectively. VT is 
the voltage at the bus T and can be computed using the voltage 
at the bus S V( )S employing (7):
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Therefore, the active and reactive power losses (P ,S Tloss ( , )
Q )S Tloss ( , ) in the transmission line between buses S and T are 
computed as:
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FIGURE 1 | Conceptual view of the proposed work. 

FIGURE 2 | Single Line diagram of Radial Distribution Network. 
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Hence, the total active and reactive power losses (TPL, TQL) in 
RDS are computed by aggregating the losses for all branches, Br
In the distribution network:

TPL P S T= ( ( , ))
S

Br

,T=1
Loss (10) 

TQL Q S T= ( ( , ))
S T

Br

, =1
Loss (11) 

Two key parameters are to be determined accordingly for each 
case: VUF and APL over a day. It is essential to compute both 
the positive and negative sequence components of the voltage 
for calculating VUF. The (12) and (13) demonstrate the math
ematical expression to compute both the positive and negative 
sequence components of the voltage [47].
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The VUF is defined in percent as the ratio of the magnitude of the 
negative sequence voltage to the magnitude of the positive 
sequence component of the voltage at the fundamental frequency 
of the system. The mathematical expression is expressed in (14) as:
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According to the IEEE standards, the value of VUF on the LV 
side of the RDS should not exceed 2%. All the scenarios under 
consideration of the studied system have been simulated, and 
VUF on LV is calculated accordingly.

3.2 | Constraints 

When optimizing an objective function, the technical limita
tions of the network must be considered. This work has the 
following equality and inequality constraints for the network 
under consideration.

3.2.1 | Equality Constraints 

The total power demand at any instant in time t includes the 
power demand of the network under consideration, the power 
demand of EVCS, and the power demand to compensate for the 
active power losses across the distribution network. The total 
power demand must be met by the conventional grid and PVs at 
any instant of time t . In (15), the total power demand is 
mathematically expressed as

P P P P P+ = + + ,grid t PV t D t EVCS t L t( ) ( ) ( ) ( ) ( ) (15) 

where Pgrid t( ) represents the power of the grid; PPV t( ) shows the 
power produced by the solar PVs; PD t( ) shows the total load 

demand of the URDS network; PEVCS t( ) represents the total power 
required by the EVCS; PL t( ) represent the total active power losses 
in the distribution network at any instant t of the day.

3.2.2 | Inequality Constraints 

All bus voltages must be within the minimum and maximum 
limits, as given in the equation below.

V V V ,i
tmin max (16) 

where V min and V max indicate the minimum and maximum 
voltages at bus i, respectively.
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The operational limitations for incorporating PVs and EVCSs in 
unbalanced distribution networks are multifaceted. To main
tain network stability, node voltages must remain within a set 
range, with each bus's voltage not exceeding upper and lower 
limitations as defined in (17). Furthermore, in (18), voltage 
angles at each bus are limited to appropriate values, ensuring 
that phase angles remain aligned and do not impede power 
flow. Each PV system provides between 50 and 100 kVA, with a 
power factor ranging from 0.1 to 1; the highest permitted bus 
capacity must handle this power output efficiently, as depicted 
in (19). To minimize overloading, distribution feeders must stay 
within their rated current limitations in (20), ensuring excessive 
current does not jeopardize system dependability. Similarly, in 
(21), distribution lines have a maximum volt‐ampere rating that 
must not be exceeded to ensure safe and effective energy 
transfer. Finally, to meet regulatory criteria and maintain con
sistent performance, the VUF is subject to regulation, ensuring 
that voltage imbalances remain below acceptable limits as 
defined in (22).

3.3 | Photovoltaic System 

Solar irradiance is the primary factor determining PV module 
output power. PV electricity is unpredictable due to uncontrollable 
solar irradiation, making forecasting difficult. To model uncer
tainty, the beta probability distribution function (PDF) is com
monly used [48], which represents a bimodal distribution and is 
expressed as follows:
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where represents the solar irradiance in kW
m2 represent the 

shape factor parameters of the alpha distribution, which are 
dependent on the mean µ and standard deviation as follows:
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The Zth PV module's power output is calculated in each scenario.

P S T= (1 0.005( 25)),i t z
PV PV PV i t z am i t z, , , , , , (26) 

Here, PV , SPV , and Tam represent the efficiency, surface area, 
and ambient temperature of PV modules.

3.4 | Electric Vehicle Model 

Not all EVs are connected to the distribution network at the 
same time. The total number of EVs at the CS and their avail
able state of charge (SOC) is determined by the user's daily 
return time and travel distance per car, which are dependent on 
driving patterns and charging/discharging preferences for 
electric vehicles. This research assumes that customers' daily 
return time and the initially available SOC of every EV are 
random variables with a normal PDF. Therefore, the daily 
driving distance is expressed using a logarithmic distribution 
function as shown below [49]:
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where u,Dist t Dist t, , represent the mean and standard deviation of 
the distance covered at time t, respectively. After that, to cal
culate the arrival time of every EV, the normal distribution 
function is used, as shown below [50]:
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where u,a t a t, , denote the mean and standard deviation of the 
arrival time at t . The average daily return time for EV users is 
µ = 12 With a standard deviation of 5 h. The EVs are often 
parked at CSs between 8 and 12 p.m.
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Where Distk and AMRk represent the travel distance and all‐ 
electric range of the kth EV, CEVBatt k, denotes the battery 
capacity of the kth EV, E k,cons

mile
represents the EV energy con

sumption per mile.

3.5 | Modeling of EV Battery 

At the time instant t , the EV battery's SOC is modified based on 
charging and discharging, as shown below [37].
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where SoCi t k
EV
, , is the SOC of EV at any time instant t ; EV

Ch and 
EV
Dc represent the charging efficiency and discharging efficiency 

of kth EV; and Pi t k
Ch EV
, ,

, and Pi t k
Dc EV
, ,

, are the charging power and 
discharging power of kth EV at any time instant t for scenario i, 
respectively. The percentage of charging power and discharging 
power for each EV to the overall power of the CS is determined 
by the battery capacity (CEVBatt k, ), the current state of charge 
(SoCi t k

EV
, , ), PEVCS t i, , , the total power of the CS and tr the remaining 

time before departure. To calculate the charging power and 
discharging power of kth EV at time instant t and scenario i, the 
following relationship is used [51]:
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where tr k, shows the remaining time in EVCS, which can be 
found from the available data on arrival time ta k, and td k,
departure time as follows:

t t t=r k d k a k, , , (34) 

The optimization solver determines the total active power of the 
CS based on the EV batteries' current SOC and departure time.

3.6 | EV Constraints 

The EV's power and energy are also limited to ensure its safety 
when charging. The EV batteries' energy balance is depicted 
in (35).

E E P T
P T

= +

, ,

i t k
EV

i t k
EV

i t k
Ch EV

EV
Ch

i t k
Dc EV

EV
Dc i t k

, , , 1, , ,
,

, ,
,

, ,
(35) 

Where Ei t k
EV
, , represents the amount of electric energy stored in 

the kth EV at time t. Furthermore, energy storage ought to be 
limited to a specific range, as defined in (36).

E E E , ,EV
i t k
EV EV

i t kmin , , max , , (36) 

The charging power is limited to PCh EV
max

, , with a binary indicator 
Zi t k

Ch EV
, ,

, showing that the kth EV is charging within a certain 
time period in (37). The discharging power is kept within a 
maximum of P Dc EV

max
, , and a binary indicator Zi t k

Dc EV
, ,

, indicates that 
the kth EV discharges at a certain time segment t , as shown in 
(38). The EV's SOC is confined to the SoC EV

max and SoC EV
min limits, 
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as indicated in (39). However, (40) defines the prohibiting 
simultaneous charging and discharge [52].

P P Z0 ,i t k
Ch EV Ch EV

i t k
Ch EV

i t k, ,
,

max
,

, ,
,

, , (37) 

P P Z0 ,i t k
Dc EV Dc EV

i t k
Dc EV

i t k, ,
,

max
,

, ,
,

, , (38) 

SoC SoC SoC ,EV
i t k
EV EV

i t kmin , , max , , (39) 

Z Z0 + 1,i t k
Ch EV

i t k
Dc EV

i t k, ,
,

, ,
,

, , (40) 

3.7 | Improved Gray Wolf Optimization 

Mirjalili introduced the GWO approach in 2014 [53], which repli
cates the social order and predatory nature of gray wolves. The GWs 
are well‐designed to be the top predators in the food chain, while 
the approach is simple, easy to grasp, and requires few parameter 
adjustments. Wolves' hunting strategy involves three phases: 
approaching, surrounding, and attacking the prey. Every gray wolf 
represents a potential replacement in the population.

The GWO approach categorizes the wolves into four distinct levels: 
; representing the current best individual and presents the finest 

option, and ; the inferior second and third‐best options, and ; 
representing the conventional alternative, while > > > . 
The GWs encircle the prey, as shown in (41) and (42).

G F Y t Y t= | × ( ) ( )|p (41) 

Y t Y t E G( + 1) = ( ) ×p (42) 

Y t( ), Y t( )p , and t demonstrate the current positioning vector of 
the GW, the position of the prey, and tth iteration correspond
ingly. The vectors E and F are explained in detail in (43).

E v m v F m= 2 , = 21 2
(43) 

Where m1 and m2 are random vectors that range from 0 to 1. In 
(42), it is explained how the elements of v decrease linearly 
from 2 to 0 over iterations.

v t
t

= 2 2 ×
max

(44) 

It is assumed that and, , , have a better understanding of 
the prey's location. As a result, wolves are obliged to track 

and , , . The hunting activity is described in (45).

G F Y Y t

G F Y Y t G F Y Y t

= | × ( )|,

= | × ( )| = | × ( )|
1

2 3

(45) 

The coefficients F1, F2, and F3 can be calculated as shown in 
(41). The top three solutions at the tth iteration are referred to as 
Y Y, , and Y . Similarly, the vectors E E,1 2 , and E3 are calcu
lated as mentioned in (43).

Y Y E G Y Y E G Y

Y E G

= × ( ), = × ( ),

= × ( )

i i i1 1 2 2 3

3

(46) 

Y t Y t Y t Y t( + 1) = ( ) + ( ) + ( )
3i GWO

i i i1 2 3 (47) 

The wolves attack the prey when they halt, ending the hunt. 
This can be mathematically represented as a linear decrement 
throughout the iteration process that controls intensification 
and diversification. This GWO has a wide range of uses. How
ever, it has drawbacks such as an absence of population vari
ance, a disparity within intensification and diversification, 
trouble coming up with workable solutions, and early conver
gence. The IGWO technique was used in the present study to 
address the issue effectively. The process involves three stages: 
initialization, movement, and selection/update.

Initializing the population: Throughout this stage, N wolves are 
distributed arbitrarily around the search territory, which has 
dimensions D and lies within the defined range; l u[ , ]i k described 
in (46). tmax indicates the highest number of iterations.

Y l u l i N k G= + rand [0, 1] × ( ), [1, ], [1, ]ik k k k k (48) 

The GW population is randomly initialized between several 
power grid variables. The position of the ith wolf in tth iteration 
is represented as Y t Y Y Y( ) = { , , , }i i i iD1 2 . The Population 
matrix N G( × ) retains the entire wolf population.

Movement phase: The research IGWO employs an agile tech
nique known as a learning‐based hunting dimension (LHD) 
search. Within LHD, each wolf is trained by its neighbor wolves 
to pretend to be an option for Y t( )i 's new position. Two distinct 
options are produced by the GWO and LHD techniques. Each 
dimension of a wolf's position Y t( )i is assessed using the LHD 
method, allowing them to learn from their neighbors and a 
randomly selected wolf from Pop. In addition to Y t( + 1)i GwO , 
the LHD approach generates another candidate, Y t( + 1)i LHD , 
regarding the newly created position. To evaluate a radius R t( )i , 
calculate the Euclidean distance from Y t( )i to the position can
didate's Y t( + 1),i GWO as demonstrated in (49):

¸ ¸R t Y t Y t( ) = ( ) ( + 1)i i i GWO (49) 

To find the neighbors of Y t( )i use (50) and radius R t( ),i where Gi

denotes the Euclidean distance between Y t( )i and Y t( )j . A 
multi‐neighborhood learning is represented in (51) when 
building a community around Y t( )i .

N t Y t G Y t Y t R t Y t( ) = { ( ) ( ( ), ( )) ( ), ( ) Pop}i j i i k i k (50) 

To determine the dth dimension of Y t( + 1)i LHD g, , the dth
dimension of a random neighbor Y t( )n g, from N t( )i and a single 
wolf Y t( )m g, chosen at random from the Population is used.

Y t Y t Y t Y t( + 1) = ( ) + rand × ( ( ) ( ))i LHD g i n r g, ,g ,g , (51) 

Select and update the GWs' locations: This stage entails en
circling and attacking the target. The fitness values of 
Y t( + 1)i GWO and Y t( + 1)i LHD g, are compared using (52) to p 
ropose the candidate with the highest fitness score. After sur
rounding the prey, GWs , , and had a clearer understanding 
of its location.
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Y t
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( + 1)otherwise
i

i i i LHD

i LHD

GWO GWO (52) 

To update the procedure to the new position labeled Y t( + 1)i , two 
criteria must be met: if the fitness value of the selected candidate is 
less than Y t( )i , ultimately Y t( )i is advanced by the selected candi
date, otherwise Y t( )i remains unchanged in the Population matrix. 
Lastly, the iteration number is incremented until it is attained. The 
sequence of steps used in the current study, based on IGWO to find 
the optimal solution, is described in Figure 3.

3.8 | Co‐Simulation of MATLAB and OpenDSS 

The suggested approach has been tested on a real Pakistani 
distribution system (the 60‐bus distribution system) to show 
how successful it is. The data of the network under consid
eration has been accessed using the Open Distribution System 
Simulator (OpenDSS) package, a distribution system simulator 

(DSS) by EPRI designed for smart grids and renewable en
ergy [54].

MATLAB® R2021b is used to test the simulation framework on a 
laptop equipped with a 2.60 GHz Intel® Core i7‐6600U processor 
and 16 GB of main memory. This study uses OpenDSS for power 
system modeling, PV unit modeling, EV modeling, power flow 
analysis, and smart inverter control. The unbalanced distribution 
system is simulated and computed using OpenDSS. More specif
ically, we use MATLAB® to manage the OpenDSS using a com
ponent object model (COM) interface that allows us to adjust load, 
transformer, and line parameters, as well as analyze power‐flow 
solutions. OpenDSS always awaits the commands from MATLAB. 
When a command is sent to OpenDSS from MATLAB, it is exe
cuted and, if any results are obtained, returned to MATLAB. This 
method is performed for every command that OpenDSS must 
execute. Figure 4 depicts a generic structure for implementing our 
suggested technique in the MATLAB®‐OpenDSS co‐simulation 
environment. MATLAB only supports matrix arithmetic, condi
tional branching, looping, and communication with OpenDSS. 

FIGURE 3 | Flowchart of the proposed methodology for the Optimal solution using IGWO. 
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Whereas OpenDSS analyzes a system's power flow 24 times for 
each potential solution. The proposed method's performance is 
then validated through a variety of case studies.

4 | Case Study 

The proposed methodology is implemented to evaluate its 
effectiveness on the standard 11 kV Real‐60 Bus unbalanced 
RDS (URDS) system on the LV side for the optimal sizing and 
placement of PVs and EVCSs using IGWO. This work aims to 
create a different set of cases and, through a detailed analysis, 
draw a general conclusion on how these PVs and EVCSs impact 
the power quality aspects of an unbalanced distribution net
work. The following case studies have been created to examine 
the performance under different conditions.

4.1 | Case‐I: Without Compensation 

The base case scenario analyzes a real 60‐bus system under 
normal operating conditions, implying that no PVs or EVCSs are 
integrated into the network. Both the APL and VUF are calcu
lated over a day, and the maximum values of both parameters are 
recorded.

4.2 | Case‐II: Single‐Phase PVs Integration 

In this case, single‐phase PVs are integrated at the optimal 
locations into the network under consideration using IGWO. The 
maximum values of APL and VUF are observed over a daytime.

4.3 | Case‐III: Three‐Phase PVs Integration 

Three‐phase PVs are incorporated at the optimal locations across 
the network under consideration using IGWO in this case, whereas 
APL and VUF are also evaluated and analyzed.

4.4 | Case‐IV: 2 Evcs Integration in G2V Mode 

Two EVCSs are configured at the specific locations across the 
network, and the Grid to Vehicle (G2V) mode is activated for the 
current case.

4.5 | Case‐V: Single‐Phase PVs and 2 Evcs 
Integration 

Two EVCSs in G2V mode are connected at fixed locations across 
the network, and single‐phase PVs are integrated at the optimum 
locations into the network using IGWO.

4.6 | Case‐VI: Three‐Phase PVs and 2 EVCS 
Integration 

In this case, two EVCSs and three‐phase PVs are integrated into 
the network under consideration at their optimal locations 
using IGWO.

Each case study is simulated and analyzed for 24 h over a day 
with a time interval of 1 h. APL and VUF are calculated over 
a day. The designed network is a real 60‐bus system URDS. Out 
of 60 buses, 59 buses are load buses. The transformers, Dyn type, 

FIGURE 4 | Interfacing OpenDSS and MATLAB. 
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with different capacities ranging from 25 kVA to 400 kVA, are 
connected in the network. The network under consideration is 
11/0.415 kV, whereas Figure 5 shows the real 60 bus URDS 
under consideration.

The URDS network is outlined in Table 1 for the considered 
real 60‐bus system. The distribution network requires a total of 
7.21 MW of active power and 1.768 MVAR of reactive power, 
respectively, whereas the network's line voltage is 11 kV. The 
voltage magnitude of each phase, phase angle, and power losses 
are calculated accordingly.

5 | Results and Discussion 

5.1 | Case‐I: Without Compensation 

In the current case, there is no integration of any PVs and 
EVCSs along the network under consideration. The system 
under consideration is simulated, and the voltage magnitude, 
active power losses, and VUF are calculated, respectively. The 
voltage magnitude decreases at the end of the feeder due to its 
radial nature. As a result, the consumer at the end of the feeder 
faces LV issues. This can lead to economic and power quality 

concerns, such as line losses, reliability, and stability. The actual 
maximum active power losses of the network, calculated using 
Open DSS load flow analysis, are 455.472 kW at the 17th hour of 
the day within the URDS as presented in Figure 6. Additionally, 

FIGURE 5 | Real 60‐Bus Unbalanced Radial Distribution Network. 

TABLE 1 | Real 60 Bus URDS Total Power Demand.

Parameters Values

Bus type Real 60‐Bus
Active power (MW) 7.2
Reactive power (MVAR) 1.768
Apparent power (MVA) 7.41
Voltage level (kV) 11/0.415
Transformers No. of T/Fs Size (kVA)

6 25
10 50
20 100
22 200
1 400
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the maximum value of VUF observed is 2.02% at the 
17th hour of the day. As observed from Figure 6, the load 
demand is maximum at the 17th hour of the day which also 
resulted in the maximum values of APL and VUF at the 
same hour of the day.

5.2 | Case‐II: Single‐Phase PVs Integration 

Single‐phase PVs are integrated into the URDS at the opti
mum location on the LV side using IGWO. It provides power 
during the daytime as solar power generation depends upon 
the solar irradiation available. The end user consumers install 
PVs to produce their electricity, reducing their dependence on 
the conventional grid, and helping the users to reduce their 
electricity bill costs. Figure 7 shows the PV power profile 
over a day.

Integrating solar PVs can help to reduce active power losses and 
VUF. It can be observed from Figure 8 that the PV profile and 
demand curve overlap from the 7th hour of the day to the 
18th hour of the day. It has been observed that maximum APL 
increased up to 474.860 kW at the 17th hour of the day, and the 
value of VUF increased from 2.02% to 2.46%. As long as single‐ 
phase PVs are supplying power to the URDS, both the APL and 
VUF increase.

5.3 | Case‐III: Three‐Phase PVs Integration 

Three‐phase PVs are installed in the under‐consideration URDS 
at optimum locations across the network. With the integration 
of the PVs, it was observed that the maximum values of APL 
decreased from 455.472 kW to 338.826 kW at the 17th hour of 
the day. Similarly, the value of VUF also reduced from 2.02% to 
1.91% at the 17th hour of the day.

5.4 | Case‐IV: 2 EVCS Integration in G2V Mode 

When EVCS is integrated into the distribution network in G2V 
mode, EVs receive electric power from the conventional grid to 
charge their battery. This mode of charging is called the “charging 
mode or grid mode”. The EVCS operated as the linkage between 
the grid and the EV in this mode. As the CS is connected to the 
grid, it receives power, converted to specific voltage and current 
levels as per the standard of EV battery charging.

This charging mode or grid mode increases the APL in the net
work due to the additional load of two CSs of 1564 kW each with a 
capacity of 782 kW. The optimal location of both EVCSs is at the 
5th and 25th buses of the distribution network. The size and 
location of EVCSs within the distribution network have a negative 
impact on the power losses, VUF, and voltage profile if not placed 
at optimum locations. Figure 9 shows the EV profile at the CS over 
the day. As the maximum number of EVs is available at the CS for 
charging from 7th to 12th hour of the day, the network requires 
extra power from the grid to meet these EVCS loads. It has been 
observed that the maximum APL has increased from 455.472 kW 
to 506.286 kW from the 17th hour of the day to the 11th hour of 
the day. The results also reflect that VUF increases from 2.02% to 
2.06% from the 17th hour of the day to the 12th hour of the day.

5.5 | Case‐V: Single‐Phase PVs and 2 EVCS 
Integration 

Integrating EVCSs and PVs optimally into the distribution network 
can be beneficial for both the end users and the grid. The end users 
can avail benefits of PVs to produce their electricity, reducing the 
burden on the conventional grid and helping the consumers save 
their utility bills. In the current case, single‐phase PVs are opti
mally placed across the LV side of the network. As most EVs are 
available in the CS from the 7th to 12th hour of the day, solar 

FIGURE 6 | Demand Curve over a day. 

FIGURE 7 | PV power curve over a day. 

FIGURE 8 | Overlapping curve of PV profile and load profile. 
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power is also contributing to the network during the same hours, 
which has also been highlighted in Figure 10. This single‐phase PV 
integration further increases the network APL and VUF simulta
neously during these hours of the day. The power loss increases 
from 455.472 kW to 537.668 kW. Moreover, the maximum power 
loss shifts from the 17th hour of the day to the 11th hour of the day. 
It is clear from the figure that the overlapping interval of EVs, PVs, 
and demand curves is from the 7th to 12th hour of the day. Inte
grating two EVCSs with single‐phase PVs has an adverse impact on 
both the APL and VUF. The maximum value of the VUF is 2.46% 
at the 19th hour of the day.

5.6 | Case‐VI: Three‐Phase PVs and 2 EVCS 
Integration 

When the distribution network is integrated with three‐phase PVs, 
though it reduces the burden on the grid due to the extra load of 
two EVCSs, it lessens the load on the conventional grid by sup
plying balanced three‐phase power across the LV side of the net
work. In this mode, EVCSs are optimally placed at the 5th and 25th 
buses of the distribution network. Three‐phase PVs are optimally 
positioned at the optimum location across the network on the LV 
side. This also promotes sustainability and reduces the maximum 
APL across the network from 455.472 kW to 387.949 kW at the 
11th hour of the day. VUF also reduces from 2.02% to 1.94% from 
the 17th hour of the day to the 12th hour of the day. Integrating 
three‐phase PVs helps to reduce APL and VUF across the network 
even when two EVCSs are present in the distribution network.

This research work explains the in‐depth systematic analysis of 
an unbalanced distribution network, highlighting power quality 
issues like VUF and APL. Also, analyzing the impact of PVs and 
EVCSs integration on the URDS network performance, either 
alone or in combined operation. Six different cases were defined 
to assess the impact of PVs and EVCSs on the value of VUF and 
APL over a day. Figures 11 and 12 compare the APL and VUF for 
all the cases under consideration over 24 h of the day. It can be 
observed from Case I that the maximum value of the load on the 
demand curve was at the 17th hour of the day. Resultantly, the 
maximum value of APL 455.472 kW and VUF 2.02% was 
observed at the 17th hour of the day. Case II considered the 
optimal placement of single‐phase PVs across the LV side of the 

FIGURE 9 | Number of EVs at EVCS over a day. FIGURE 10 | Overlapping interval of EVs, PVs, and the demand curve. 

FIGURE 11 | Comparison of active power loss values over a day for 
all cases. 

FIGURE 12 | Comparison of VUF across the URDS for all cases. 
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network. The load demand curve and PV power profile overlap 
from the 7th to the 19th hour of the day. Whereas both the 
maximum value of VUF and APL had increased by 21.78% and 
4.25% at the 17th hour of the day, as compared to Case‐I. The 
Case‐II results gave the understanding that single‐phase PV 
integration increased both the VUF and APL, as observed in 

[46, 55]. Single‐phase PV integration in URDS tries to improve 
the voltage magnitude of that phase at the cost of deteriorating 
the voltage profile of other phases, hence leading to an increase 
in VUF. As observed in Figures 11 and 12, due to the single‐ 
phase PV integration, APL and VUF have increased as compared 
to Case‐I.

TABLE 2 | Performance of Real 60‐bus URDS Under Different Cases.

Cases Items IGWO

Case‐I Without compensation Max Ploss (kW) 455.472
Max VUF (%) 2.02
Vmin (p.u) 0.9107
Energy Loss over a day (MWh/day) 7.65

Case‐II With single phase PVs PVs (Solar) size in kW 2977
Max Ploss (kW) 474.860
%Ploss increase 4.25
Max VUF (%) 2.46
%VUF increase 21.78
Vmin (p.u) 0.9191
Energy Loss over a day (MWh/day) 7.76

Case‐III With three phase PVs PVs (Solar) size in kW 3070
Max Ploss (kW) 338.826
%Ploss decrease 25.6099
Max VUF (%) 1.91
%VUF decrease 5.44
Vmin (p.u) 0.9230
Energy Loss over a day (MWhr/day) 6.2

Case‐IV With 2 EVCS(G2V) mode EVCS size in kW (Location) 782 (5), 782 (25)
Max Ploss (kW) 506.286
%Ploss increase 11.15
Max VUF (%) 2.06
%VUF increase 1.98
Vmin (p.u) 0.9090
Energy Loss over a day (MWh/day) 8.26

Case‐V With 2 EVCS and single‐phase PVs EVCS size in kW (Location) 782 (5), 782 (25)
PVs (Solar) size in kW 2977
Max Ploss (kW) 537.668
%Ploss increase 18.04
Max VUF (%) 2.46
%VUF increase 21.78
Vmin (p.u) 0.9116
Energy Loss over a day (MWh/day) 8.46

Case‐VI With 2 EVCS and three phase PVs EVCS size in kW (Location) 782 (5), 782 (25)
PVs (Solar) size in kW 3070
Max Ploss (kW) 387.949
%Ploss decrease 14.82
Max VUF (%) 1.94
%VUF decrease 3.96
Vmin (p.u) 0.9220
Energy Loss over a day (MWh/day) 6.8
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Case III highlights the importance of three‐phase PV integration 
into URDS. Three‐phase PV integration injects balanced power 
across the LV side of an unbalanced distribution transformer, 
which accumulatively improves the system performance by 
reducing the maximum APL and VUF by 25.60% and 5.44% across 
the URDS as compared to Case‐I. The Case‐IV elaborates on the 
optimal placement of two EVCS in the URDS under consideration. 
The maximum number of EVs was at the CS from the 7th to the 
12th hour of the day. The power demand of these EVCSs was met 
by the conventional grid, leading to an increase in both the max
imum APL and VUF by 11.15% and 1.98% simultaneously in 
comparison to Case‐I. Since the network power demand was small 
from the 7th to the 12th hour of the day, the excessive power 
demand of EVCSs shifted the maximum APL and VUF of the 
network from the 17th hour of the day to the 12th hour of the day. 
Moreover, it was observed that integrating two EVCSs into the 
network resulted in an increase in network losses. Hence, to reduce 
the impact of EV charging on the conventional grid, it is always 
recommended to add energy sources.

The Case‐V considered the combination of optimal placement of 
EVCSs and single‐phase PVs in the network under consideration. 
Due to the inclusion of EVCS, the APL and VUF of the network 
increased as observed in Case IV. The single‐phase PV integration 
with EVCS further increased the APL and VUF. As evident from 
Figure 10, the overlapping interval of EV charging, PV power curve 
and demand curve of the network was from the 7th to the 
12th hour of the day. This single‐phase PV integration must support 
reducing the burden on the conventional grid by power‐sharing due 
to the excessive load demand of EVCS. But instead of power sup
port from PVs, the maximum APL and VUF of the network 
increased by 18.04% and 21.78% at the 11th hour of the day.

The Case‐VI considered the optimal placement of EVCSs and 
three‐phase PV integration simultaneously for the network under 
consideration. It can be judged from Figures 11 and 12 that the 
maximum value of the APL and VUF decreases by 14.82% and 
3.96% at the 12th hour of the day. Since both the APL and VUF of 

the URDS are directly linked to each other, henceforth the three‐ 
phase PV integration injected balanced power into the bus, 
which reduced the voltage imbalance between the phases at that 
bus and resulted in a reduction in power losses across the same 
bus. The PVs were optimally placed across the whole network, 
and the contribution of all these PVs led to a reduction in the 
APL and VUF of the network.

Table 2 compares all six cases, as observed Case‐VI and Case‐III 
can be considered the best choices among the all cases studied, 
whereas Case‐V seems to be the worst case.

Figure 13 shows the comparison of active energy loss over a day 
and the maximum value of VUF for all the cases under consider
ation. It has been observed that no matter what the case is, single‐ 
phase PVs integration have an adverse impact on the voltage 
unbalance and power losses. The analysis of all cases clearly ex
plains that to minimize the VUF and APL, it is highly recom
mended to integrate three‐phase PVs and EVs into the unbalanced 
distribution network. In the current distribution system, most of 
the end user loads are single‐phase and have acquired single‐phase 
electricity connection from the utility. Whereas most of the LV 
networks in the current distribution network have three phases 
and end users have easy access to all three phases in their vicinity. 
Hence, based on our findings, it is recommended that forcing the 
end users to go for three‐phase electricity connections and up
grading the existing single‐phase users to three‐phase in order to 
minimize the unbalancing situation, to maximize the hosting 
capacity of PVs and EVs in URDS.

6 | Comparative Evaluation and Scalability of 
IGWO on IEEE−123 Bus System 

To verify the efficacy and scalability of the proposed methodology 
to integrate PVs and EVCSs on the LV side of the network using 
IGWO, the IEEE−123 bus system is considered. The results are 
compared with the other optimization techniques and are tabu
lated in Table 3, showing that integration of three‐phase PV and 

TABLE 3 | Performance Comparison of PSO, ABC, ALO, and IGWO Against Base Case on IEEE−123 Bus System.

Applied 
Methods DG Size Phase Vmax Vmin

Max 
Ploss (kW)

Max 
VUF (%)

Energy Loss 
(MWh/day)

Base Case — A 1.0508 0.9766 95.0 1.0623 1.28
B 1.0477 0.9789
C 1.0496 0.9789

PSO [33] 1255 A 1.0478 0.9807 77.9 0.9593 1.02
B 1.0478 0.9813
C 1.049 0.9819

ABC [56] 1102 A 1.0519 0.9807 77.5 0.9492 1.10
B 1.0516 0.9828
C 1.0533 0.9828

ALO [36] 1493 A 1.046 0.9805 77.7 0.9475 0.91
B 1.0477 0.9823
C 1.0489 0.9827

IGWO [57] 1430 A 1.0484 0.9806 77.5 0.9466 0.87
B 1.0478 0.9807
C 1.0489 0.9816
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EVCSs on the LV side of the IEEE−123 bus system has led to a 
reduction of both VUF and energy loss over a day. Whereas the 
IGWO has outperformed other mentioned techniques in terms of 
improving the network performance.

The convergence behavior of the recommended IGWO meth
odology has been examined with other established methods, 
including particle swarm optimization (PSO), ant lion optimi
zation (ALO), and artificial bee colony (ABC), for Case VI in 
order to further demonstrate the effectiveness of the optimiza
tion technique. Figure 14 shows the evolution of the objective 
function values over iterations, giving a visual representation of 
the patterns of convergence.

7 | Conclusion 

This research suggested a way to reduce the LV network VUF 
and APL by integrating three‐phase PVs and EVs into an 

unbalanced distribution network. The suggested method of
fers rooftop PVs and EVCSs placement and sizing solutions 
that maximize system performance while maintaining oper
ational limitations like node voltages, branch currents, feeder 
loading capacity, VUF, and APL. The model was developed as 
a mixed‐integer nonlinear multi‐objective optimization, with 
the objectives of minimizing the VUF and APL in a real 
60‐bus Pakistani URDS. The IGWO technique was used to 
solve this multi‐objective model to determine the best solu
tion, ensuring that no objective function outweighs the others. 
The simulation results show that optimal placement and siz
ing of three‐phase PVs and EVCSs helped to maximize the 
penetration level of PVs and meet the varying EV demand in 
the network. According to the simulation results, integrating 
three‐phase PVs with EVCS reduced the APL and UVF by 
14.82% and 3.96% while integrating single‐phase PVs and 
EVCSs increased APL by 18.04% and VUF by 21.78% in a real 
60‐bus URDS.

While carrying out the current study, Total Harmonic Distor
tion (THD) was not considered, which arises due to the inte
gration of the PVs and EVCSs, and EVs V2G mode for peak load 
management, which will be the aim of our future study. 
Moreover, in the future, other energy resources such as wind 
energy, fuel cells, compressed air energy storage, and hydrogen 
storage will also be integrated and their impact on the URDS 
will be analyzed.

Indices and sets 

K Index of EV

Z index of PV

t Index of time

I Index of scenario

Parameters 

AMRk All‐electric range for the kth EV

E k,cons
mile

Energy consumption per mileage of the kth EV

E E/EV EV
min max Min/Max energy limit of the EV's battery

/EV
Ch

EV
Dc Charging and discharging efficiencies of the EV

SoC SoC/EV EV
min max Min/Max SOC limits of the EV

Ei t k
EV
, , Energy content of the EV's battery in kWh

P P/i t k
Ch EV

i t k
Dc EV

, ,
,

, ,
, Charging/discharging power of the EV in kW

PEVCS t i, , EVCS power in kW

SoCi t k
EV
, , State of charge of the EV

Z Z/i t k
Ch EV

i t k
Dc EV

, ,
,

, ,
, Charging and discharging binary variables of the EV
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