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ABSTRACT

Unequal load distribution in three-phase power distribution networks leads to voltage unbalance and decreased network
efficiency. Integration of photovoltaics (PVs) and electric vehicle charging stations (EVCSs) into such networks is a challenging
task as their penetration affects the power quality of the system. Considering the varying load demand and PV generation
alongside the stochastic nature of electric vehicles (EVs), this study presents a technique for the precise placement of the PV
system and EVCS inside the unbalanced networks to enhance the performance of the system. The optimal placement of PVs
and EVCSs is carried out by considering real Pakistani 60-bus unbalanced radial distribution systems (URDS), whereas to
minimize the voltage unbalanced factor (VUF) and active power loss (APL), a metaheuristic technique, improved grey wolf
optimization (IGWO) was used. Six different case studies of the integration of PVs and EVCSs inside the system are considered
in this work. The simulation results demonstrate that the integration of the single-phase PVs and EVCSs resulted in an increase
of APL by 18.04% and VUF by 21.78%. However, the APL and VUF decreased by 14.82% and 3.96%, respectively, for the three-
phase integration of the same size of PVs and EVCSs. Hence, the integration of three-phase PVs and EVCSs enhanced the

system performance in comparison to the single-phase integration.

1 | Introduction

The developing countries are working on several initiatives to
persuade consumers to switch from internal combustion engine
(ICE) to electric vehicle (EV) technology and invest in renewable
energy sources (RES) to keep the environment eco-friendly [1]. The
distribution networks integrated with photovoltaic (PV) encounter
significant challenges, including the intermittent and dynamic
nature of these sources [2]. The existing distribution networks in

these countries cannot meet the increasing demand for EVs.
Meanwhile, the high penetration of PVs and EVCSs influences the
operational performance along with power quality parameters such
as power losses and VUF of the network. The abnormal increase in
VUF and power losses can lead to overheating and potential
damage to electrical equipment [3]. Moreover, inappropriate PV
size and location may adversely influence network conditions,
including power quality. Henceforth, it is essential to employ a
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suitable strategy to address the power quality and intermittent
nature of PVs simultaneously to enhance the distribution network's
stability, reliability, and efficiency. This research aims to mitigate
the VUF and APL by the appropriate selection and location of PVs
and EVCSs in an unbalanced distribution network.

Modern power distribution networks present significant chal-
lenges for utility companies, primarily due to their unbalanced
nature stemming from the uneven distribution of loads across
the three phases. This situation results in increased line losses, a
reduction in voltage stability, and an increase in voltage
unbalance at the distribution transformer [4]. The importance
of PVs in electricity networks cannot be overstated, as they
represent a vital energy source that connects directly to the
distribution system or is located at the consumer premises. By
facilitating localized energy production, PVs not only support
grid stability but also empower consumers to engage more
actively in energy management and sustainability efforts.
However, utilizing EVs as a spinning reserve to meet peak
demand and enhance system performance may optimize the
location of the charging station (CS). As a result, EVs may help
reduce expenses and optimize critical factors like voltage devi-
ation and power losses across the network. However, selecting
the appropriate size and location of the PVs and EVCSs in the
unbalanced distribution networks is important, as they have
catastrophic effects on voltage stability and power losses. In
recent times, numerous studies have been carried out to address
the challenges associated with PVs and EVCSs integration,
where various metaheuristic approaches have been adopted.

A multi-criteria decision-making technique has been formulated
by Maji et al. [5] to improve the network performance metrics of
unbalanced power distribution networks (PDNs). Prior research
has shown that the main goal of strategically deploying PV sys-
tems throughout the network is to mitigate active power losses.
Soliman et al. [6] have devised a specific methodology for hosting
PVs in the distribution system to enhance the system perform-
ance parameters and decrease the annual operating expenses.
Considering the hourly and seasonal fluctuations in the energy
demand and distributed solar power production, Particle swarm
optimization (PSO) has resulted in reducing system losses, im-
proving voltage profile, and optimizing the hosting capacity of
PVs in balanced networks [7].

Alizadeh et al. [8] have proposed a non-dominated solution-
based multi-objective strategy to allocate PVs as efficiently as
possible by reducing power loss and improving the voltage pro-
files for a balanced distribution network. A combined placement
index consisting of the loss sensitivity factor and voltage stability
factor was formulated for PV placement to reduce the overall
network losses and improve the voltage profile [9]. Shaheen
et al. [10] have utilized hunter-prey-based algorithms for optimal
placement and sizing of PVs in a balanced distribution network
to improve the network performance parameters. A hybrid me-
taheuristic technique comprising of sine-cosine algorithm (SCA)
and analytical technique has improved the voltage stability and
power losses across the system. The study carefully examined the
balanced distribution network [11].

The impact of hourly variations in load demand on the inte-
gration of solar systems into the IEEE-14 bus balanced distri-
bution network, considering the PSO and genetic algorithm
(GA) for optimum placement and sizing of PVs, has resulted in

reducing the power losses and improving the system voltage
profile in [12]. An enhanced equilibrium optimizer is proposed
to determine the optimum PV placement and size inside the
PDNs to minimize the power losses, considering the system
constraints [13]. Aref et al. [14] Proposed an approach for
allocating solar power generators in balanced power distribu-
tion networks in Egypt to lower power loss in the network and
improve the voltage profile using PSO and GA optimization
techniques. However, the main objective for integrating high-
level solar systems in advanced distribution networks is to
reduce power loss in the balanced power distribution net-
work [15, 16].

Several approaches to place EVCS optimally have been re-
ported, while each has its own objectives. Comprehensive re-
views have been carried out on the integration of EVs and the
challenges related to infrastructure, power loss, and environ-
mental impact; and EV charging topologies and power elec-
tronic converter (PEC) solutions for EV applications and their
impacts on power quality and electric power systems in [17, 18],
respectively. As reported in the literature, the integration of EVs
into the power system increases the electricity demand [19]. An
intelligent algorithm-based approach is employed to solve the
planning problem of EVCSs in urban areas to provide a cost-
effective and easily accessible EVCS [20]. Nour et al. [21] re-
ported that the distribution network system's peak demand
increased by 17.9% when 10% more EVs were added, and by
35.8% when 20% more EVs were added to the system. Higher
peak demand from EVs results in higher power losses and
voltage fluctuations. This could lead to the overheating of the
transformer and the line simultaneously [22]. The use of PSO
resulted in the optimal placement of EVCS in the balanced
distribution of the system, as reported in [23, 24]. Another
hybrid approach, PSO-GWO, has reduced the network power
losses of the 33-bus system by 30.67% by optimally placing
EVCSs across the radial distribution network [25]. An innova-
tive technique was designed to adjust the size and location of
PVs and EVCSs to minimize the undesirable consequences of
power quality arising due to their integration into the distri-
bution network by the authors in [26-28]. An optimization
control approach integrated with a step-up DC-DC converter
has been employed in [29] to enhance the system performance
and network efficiency, integrated with solar PV-based EV
charging stations.

The integration of PVs and EVCSs results in an increase in
power loss and VUF, with the challenge of selecting appropriate
sizes and places in the distribution network; hence, deciding on
suitable optimization techniques with the objectives of mini-
mizing the power loss and VUF is important. In recent times,
BFOA-PSO [30], GA-PSO [31], ECapSa [32], PSO [33], JSO [34],
HHO and TLBO [35], and ALO [36] techniques have been
considered to minimize power losses and voltage deviation and
improve voltage stability while taking into account balanced
distribution networks.

The authors of [37-39] offer a novel approach that makes use of
optimization techniques to determine the optimal PV unit
positions and sizes in association with plug-in electric vehicles
(PEVs). The main goal is to minimize energy losses while
considering the stochastic nature of PEVs as well as the
inherent uncertainty related to PV generation and the dynamic
nature of loads. An incentive-based demand side management

Energy Science & Engineering, 2025



of EVs and optimal dispatch of power from distributed gener-
ators has resulted in reducing the network power losses by
13.93% [40]. Nandini et al. [41] have implemented JAYA and
Whale Optimization Algorithm (WOA) to assess the impact of
EVCS and RES on the VUF and power losses on the modified
IEEE 33 bus system. A new metaheuristic technique, wild horse
optimizer (WHO), has been implemented on the modified
IEEE-123 bus system to reduce the active power losses and
voltage unbalance with the concurrent integration of PVs and
EVCSs [42].

It can be observed from a summary of previous research that
the majority of recent studies on the location of PVs and EVCSs
in PDNs have concentrated on two main goals: minimizing total
energy loss and improving the system's voltage profile. Addi-
tionally, the majority of the solutions reported regarding PVs
and EVCSs integration in the study were validated on the MV
side of the balanced distribution system. However, only a few
studies including [43-45] have considered the unbalanced dis-
tribution network for the integration of PVs and EVCSs on the
LV side of the network [46].

Although the literature covers key components of PVs and
EVCSs placement and sizing in balanced and unbalanced dis-
tribution networks. However, the impact of PVs and EVCSs on
voltage stability, power loss, and VUF in an unbalanced dis-
tribution network was overlooked. Assessing the presence of
VUF, which can impact network power loss and performance
under varying distribution feeder loading conditions through-
out the day, was also missing. Henceforth, to fill this gap, a
methodology needs to be devised to minimize the maximum
APL and VUF over the day. Furthermore, the impact of power
losses and voltage unbalance has not been investigated in an
unpredictable context with unknown parameters like dynamic
load demand, PVs, RESs, and EVs' charging behaviors. Also, the
influence of single-phase and three-phase PVs and EVCSs
sources placement in unbalanced distribution networks in the
context of VUF and APL simultaneously has not been reported.
The VUF and APL are also affected by whether PVs and EVs are
placed in single or three-phase systems in an unbalanced dis-
tribution network. It has been discovered that the VUF on the
LV side of the network is not propagated to the MV side of the
network, as the distribution transformers across the network
are a Dyn vector group.

The current study is unique in that it reduces VUF and APL in
an unbalanced distribution network while considering several
sources, such as solar PV, EVCS, and dynamic load demand
using a metaheuristic technique, Improved Grey Wolf Optimi-
zation (IGWO). This work also aims to evaluate and maintain
the VUF of an unbalanced real 60-bus system within the stip-
ulated limit of 2% across different cases. The uncertainty in PVs
is addressed by taking into account variable and unexpected
factors such as solar radiation and the variable states of charge
of EVs at EVCS under various limitations. The integration of
both single-phase and three-phase PVs and EVCSs has been
considered, and an assessment of the VUF and APL of the
network has been carried out. It is recommended that the
integration of three-phase PVs and EVCSs can aid in converting
an unbalanced distribution network into a balanced one, while
simultaneously reducing the VUF and APL. The novelty of this
research work lies in the application of IGWO for the optimal
placement of PV systems within a real unbalanced distribution

system incorporating EVCSs. This research work considers the
dynamic nature of network load, the intermittent nature of PVs,
the stochastic nature of EVs, and their concurrent impact on the
hourly variation of APL and VUF on the LV side, which prior
research has not examined. IGWO promises superior conver-
gence and optimization efficiency over conventional algorithms.
The integrated approach enhances power quality and promotes
sustainable network operation by smart integration of REs in
unbalanced distribution networks.

The main contributions of this research work are given below:

« Evaluate the effectiveness of single-phase and three-phase
PV placement on VUF and APL mitigation.

« Investigate the impact of EVCS charging load on an
unbalanced distribution system, considering the stochastic
nature of EVs and PVs.

« Investigate the effectiveness of single-phase and three-
phase PV and two EVCSs integration in the unbalanced
distribution network, for VUF and APL mitigation.

The remainder of the paper is arranged as follows: Section 2
provides details on an unbalanced distribution systems that
integrate with renewable energy sources and electric vehicles.
Section 3 offers the problem definition and develops the math-
ematical model of the network under consideration, PV profiles,
and EV charging modeling. Section 4 describes the solution
procedure using flow charts. Section 5 explains the simulation
findings and their comparison. The efficacy of the current study
has been established in Section 6, whereas Section 7 summarizes
the findings and recommendations for future work.

2 | Problem Statement

Distribution feeders can be categorized based on configuration and
load, i.e., radial, loop, and network. Normally, the distribution
transformers are operating as unbalanced due to varying loads
across each phase of the transformer. Due to this varying nature
of the connected load, the unbalancing phenomenon occurs on
the LV side of the network, which increases both the VUF and
APL of the transformer. The same phenomena exist across all
the transformers connected across the distribution feeder. The
increased VUF and APL have a negative impact on the distri-
bution network performance and the electrical equipment life.
Voltage unbalance can arise in distribution feeders with high
PV penetration, non-uniform EV load penetration, and charg-
ing patterns over a three-phase system. This study evaluates
how the IGWO can be implemented for the strategic position of
PVs on the LV side of the network integrated with EVCSs to
mitigate the voltage unbalance and power losses in an
unbalanced distribution network. Figure 1 illustrates the pro-
posed work, which includes a conventional grid as the primary
energy source and solar PV as an alternative source of power for
the distribution network and EVCS. The PVs and EVCSs should
be strategically placed to compensate VUF and APL across the
network.

3 | Problem Formulation

A multi-objective framework is used to analyze the system's
APL and VUF across six case studies. The decision variables for
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FIGURE1 | Conceptual view of the proposed work.

PV placement include the location in terms of bus number, size
in kW, power factor, and phase selection for PV placement.
Similarly, for EVCS, it considers the number of EVs connected
at each CS, the location in terms of bus number, the initial SOC
of each EV, and the charging schedule of the EVs.

3.1 | Objective Function

The current problem'’s objective functions are the minimization
of APL and VUF.

meinF =of, + B, 1)

where f; and f, represent the APL and VUF, which are the two
objectives of the current study; 6 represents the vector of the
decision variables. Both objective functions are given equal
weightage « and §3, i.e., 0.5. Whereas,

ng  ny

fi =Max| >} > Ploi* CP} 2
t=1I=1

Br
Pos= 3 Gor (V§ +VE -2V cossST), 3)

S, T=1
n  ny

= Max[z > VUFg*CP]. @
t=1I=1

The equation Pj; represents active power losses in the net-
work at time instant ¢ for state i, with n, and n; representing the
number of time instants and states, respectively. CP is the
combined probability of solar irradiance, EVCS load demand,
and the load demand of the network. Br represents the number
of branches; Gsr denotes the conductance of the line connecting
buses S and T.

A small portion of the single-line diagram of a radial distribu-
tion system is shown in Figure 2 to calculate the load flow in a
radial distribution network. In the figure, two buses are shown;
one is the sending end bus designated as bus S, while the
receiving end bus is named bus T. The following mathematical

Zgt=Rg 1 +iXs 1

AC Source

=

Ploss,’l' + J Qloss.'l‘

-

Ploss,S + J QIoss.S

FIGURE 2 | Single Line diagram of Radial Distribution Network.

equations can be used to compute the active and reactive
powers across the network:

2 2
Ps=Pr+ P+ Rs,T[(PT * Br)” ¥ Qr + Qur) ), (5)

IVl

2 2
Qs = Qr + Qur+ XS,T((PT + Pr)* +(Qr + Qr1) )’ (6)

IVrl2

where Ps and, Pr represent the active power at buses S and T,
respectively; and Qs and Qr, are the reactive power at buses S
and T, respectively. P, r and Qy, r signify the active and reactive
load power at bus T. Rgr and Xs r show the series resistance
and reactance of the transmission lines S, T, respectively. V7 is
the voltage at the bus T and can be computed using the voltage
at the bus S (Vs) employing (7):

(P3+Q3)

T,U)

Vi =|Vi—2(PsRsr + QsXs1) + (Rg,r + X%,T)

Therefore, the active and reactive power losses (Pioss(s,T),
Qioss (s,r)) in the transmission line between buses S and T are
computed as:

PZ + -Q2
Pross S,1) = RS,T Slviljzs s (8)
S
PZ + 'Q2
Qioss (s,1) = Xs,T[SlTJZS ~ ©
S
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Hence, the total active and reactive power losses (TPL, TQL) in
RDS are computed by aggregating the losses for all branches, Br
In the distribution network:

Br

TPL = 3 (Puoss(S, T)) (10)
S, T=1
Br

TQL = Z (Qross (S, T)) (11)
S, T=1

Two key parameters are to be determined accordingly for each
case: VUF and APL over a day. It is essential to compute both
the positive and negative sequence components of the voltage
for calculating VUF. The (12) and (13) demonstrate the math-
ematical expression to compute both the positive and negative
sequence components of the voltage [47].

1
Voositive = E (Va4 axVy + a>x V), (12)

1
Vnegativezg '(Va+az*Vb+a*VC),

& (13)
a = 12120°,
a? = 1.2240°.

The VUF is defined in percent as the ratio of the magnitude of the
negative sequence voltage to the magnitude of the positive
sequence component of the voltage at the fundamental frequency
of the system. The mathematical expression is expressed in (14) as:

| Vnegativel

VUF(%) = %100 (14)

positive

According to the IEEE standards, the value of VUF on the LV
side of the RDS should not exceed 2%. All the scenarios under
consideration of the studied system have been simulated, and
VUF on LV is calculated accordingly.

3.2 | Constraints

When optimizing an objective function, the technical limita-
tions of the network must be considered. This work has the
following equality and inequality constraints for the network
under consideration.

3.2.1 | Equality Constraints

The total power demand at any instant in time ¢ includes the
power demand of the network under consideration, the power
demand of EVCS, and the power demand to compensate for the
active power losses across the distribution network. The total
power demand must be met by the conventional grid and PVs at
any instant of time f. In (15), the total power demand is
mathematically expressed as

demand of the URDS network; Pgycs () represents the total power
required by the EVCS; P, () represent the total active power losses
in the distribution network at any instant ¢ of the day.

3.2.2 | Inequality Constraints

All bus voltages must be within the minimum and maximum
limits, as given in the equation below.

Vmin < V; < pmax (16)

where V™ and V™2 jpdjcate the minimum and maximum
voltages at bus i, respectively.

09<Vi<11 17)

omn <6 <orx (18)
PRy <PEY <pPHY. (19)
I <Ipax (20)

St < Smax 1)
%(VUF); <% (VUF )jimit (22)

The operational limitations for incorporating PVs and EVCSs in
unbalanced distribution networks are multifaceted. To main-
tain network stability, node voltages must remain within a set
range, with each bus's voltage not exceeding upper and lower
limitations as defined in (17). Furthermore, in (18), voltage
angles at each bus are limited to appropriate values, ensuring
that phase angles remain aligned and do not impede power
flow. Each PV system provides between 50 and 100 kVA, with a
power factor ranging from 0.1 to 1; the highest permitted bus
capacity must handle this power output efficiently, as depicted
in (19). To minimize overloading, distribution feeders must stay
within their rated current limitations in (20), ensuring excessive
current does not jeopardize system dependability. Similarly, in
(21), distribution lines have a maximum volt-ampere rating that
must not be exceeded to ensure safe and effective energy
transfer. Finally, to meet regulatory criteria and maintain con-
sistent performance, the VUF is subject to regulation, ensuring
that voltage imbalances remain below acceptable limits as
defined in (22).

3.3 | Photovoltaic System

Solar irradiance is the primary factor determining PV module
output power. PV electricity is unpredictable due to uncontrollable
solar irradiation, making forecasting difficult. To model uncer-
tainty, the beta probability distribution function (PDF) is com-
monly used [48], which represents a bimodal distribution and is
expressed as follows:

r@+7y)
Poiao) + P =Ppp + P, + Prop, (15) — %
grid(t) PV (t) D(t) EVCS(t) L(t) _ _
fupra @ = TOTQ) " 6Dt =0y
. 0, Otherwise
where Pyiq(,) represents the power of the grid; Py () shows the
power produced by the solar PVs; Pp() shows the total load ,0<0<1,8>0,y >0,
Energy Science & Engineering, 2025 5



where y represents the solar irradiance in k—“zl B represent the
m

shape factor parameters of the alpha distribution, which are
dependent on the mean u and standard deviation o as follows:

y=a —u)*[w - 1), 24)
_ By
6—1_H~ (25)

The Zth PV module's power output is calculated in each scenario.

PEV. = aPV % SPV %9, , % (1 — 0.005(T*" —

Ltz

25)), Vi, (26)

Here, oV, S?V, and T represent the efficiency, surface area,
and ambient temperature of PV modules.

3.4 | Electric Vehicle Model

Not all EVs are connected to the distribution network at the
same time. The total number of EVs at the CS and their avail-
able state of charge (SOC) is determined by the user's daily
return time and travel distance per car, which are dependent on
driving patterns and charging/discharging preferences for
electric vehicles. This research assumes that customers' daily
return time and the initially available SOC of every EV are
random variables with a normal PDF. Therefore, the daily
driving distance is expressed using a logarithmic distribution
function as shown below [49]:

1 (Inv — upig,1)*
Foer (V) = exp| — : (27)
Distk \/ 270pist, v 20Dist, 2

where opig 1, Upist, Tepresent the mean and standard deviation of
the distance covered at time ¢, respectively. After that, to cal-
culate the arrival time of every EV, the normal distribution
function is used, as shown below [50]:

1 (ta — Ug)?
t,) = exp|— . s 28
L N =] p[ 200.2 (28)

where g, 4, Ug; denote the mean and standard deviation of the
arrival time at ¢. The average daily return time for EV users is
u =12 With a standard deviation of 5h. The EVs are often
parked at CSs between 8 and 12 p.m.

S0Cipit k
AMRy — Disty, (29)
= AMR,, , 0 < Disty< AMRy, Disty > 0.8 *x AMRy,
20%
AMR, = CrvBart,k (30)
Eeons

mile’

Where Dist; and AMRy, represent the travel distance and all-
electric range of the kth EV, Cgypu:r denotes the battery
capacity of the kth EV, Eewn . represents the EV energy con-

sumption per mile.

3.5 | Modeling of EV Battery

At the time instant ¢, the EV battery's SOC is modified based on
charging and discharging, as shown below [37].

Dc,EV

Bk (31)

EV _ anrEV ChEV . sCh
SoCipy = SoCi_1x + Py *6py — “she
EV

where SonX . is the SOC of EV at any time instant ¢; §&% and
5P¢ represent the charging efficiency and discharging efficiency
of kth EV; and P{}3fand PPf” are the charging power and
discharging power of kth EV at any time instant ¢ for scenario i,
respectively. The percentage of charging power and discharging
power for each EV to the overall power of the CS is determined
by the battery capacity (Cgvpauk), the current state of charge
(SoCEYD), Prves,.i, the total power of the CS and ¢, the remaining
time before departure. To calculate the charging power and
discharging power of kth EV at time instant ¢t and scenario i, the
following relationship is used [51]:

hEY (CEVBatt,k — SoCEY) » CEVBatt,k) * Peyes, i
P’ = ) » (32)

K 1 EV
tr,k * Zm:l (CEVBan,m - Socz,m,i * CEVBan,m

tr,m

EV
by % (Soci,t,k * CEVBatt,k) * Peycs,e,i
De,EV _
itk = v 1 v > (33)
Zm=1 E(Soct,m,i * CEVBatl,m)

where t,x shows the remaining time in EVCS, which can be
found from the available data on arrival time f,; and fgy
departure time as follows:

b =tk — lak (34)

The optimization solver determines the total active power of the
CS based on the EV batteries’ current SOC and departure time.

3.6 | EV Constraints

The EV's power and energy are also limited to ensure its safety
when charging. The EV batteries’ energy balance is depicted
in (35).

EV _ EV Ch,EV Ch
Eitk =Eiiix + Pigy” 6y AT

PPEEY s« AT y (35)
- T’ itk »
Where ElEtV  represents the amount of electric energy stored in
the kth EV at time t. Furthermore, energy storage ought to be
limited to a specific range, as defined in (36).

Emnin < Eitk < B> Yok » (36)
The charging power is limited to P$":E", with a binary indicator

VA lctthV showing that the kth EV is charging within a certain

time period in (37). The discharging power is kept within a
maximum of PR%¢", and a binary indicator Z[3*" indicates that

the kth EV discharges at a certain time segment ¢, as shown in
(38). The EV's SOC is confined to the SoCE" and SoCEY limits,
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as indicated in (39). However, (40) defines the prohibiting
simultaneous charging and discharge [52].

0 <PHEY < POREY 5 ZCHEY 9, 4 (37)
0 < PP <PRE % ZP5E Vi (38)
SoCy < SoCEY) < SoCRL, Y1k (39)

0 <ZMEV 4+ ZPEEY <1,%, 1 (40)

37 |

Mirjalili introduced the GWO approach in 2014 [53], which repli-
cates the social order and predatory nature of gray wolves. The GWs
are well-designed to be the top predators in the food chain, while
the approach is simple, easy to grasp, and requires few parameter
adjustments. Wolves' hunting strategy involves three phases:
approaching, surrounding, and attacking the prey. Every gray wolf
represents a potential replacement in the population.

Improved Gray Wolf Optimization

The GWO approach categorizes the wolves into four distinct levels:
a; representing the current best individual and presents the finest
option, 8 and &; the inferior second and third-best options, and w;
representing the conventional alternative, while o > 8 > & > w.
The GWs encircle the prey, as shown in (41) and (42).

G=FxY0-Y® (41)
Yt+1)=Y,0)-ExG (42)

- -
Y (1), Y,(t), and t demonstrate the current positioning vector of
the GW, the position of the prey, and tth iteration correspond-

ingly. The vectors E and F are explained in detail in (43).

— —> —v> = (43)
Where r—n_f and r—n_z) are random vectors that range from 0 to 1. In
(42), it is explained how the elements of ¥ decrease linearly

from 2 to O over iterations.

2 Xt
v=2-

(44)
tmax

It is assumed that a, 3, and J, have a better understanding of

the prey's location. As a result, wolves w are obliged to track

a, 8, and 8. The hunting activity is described in (45).

- - -
= |F1 X Ya - Y(t)l,

(45)

£ &8

- = — - =5 =
XY= Y(0)IGs = IEs X Y; — Y (1)l

el

- - -

The coefficients F;, F>, and F; can be calculated as shown in
(41). The top three solutions at the tth iteration are referred to as
= = = .. - — —

Y., Y3, and ¥s. Similarly, the vectors Ej, E,, and E; are calcu-
lated as mentioned in (43).

- 5 — 5 > 5 —— = —>
Yo =Y —Ei X (Gy), Y, = Y3 — E; X (Gp), Yi3 46
=Y; — B3 X (Gs)

Ya () + Yo () + Y5 (1) 47)

N
Y_owo(t+ 1) = 3

The wolves attack the prey when they halt, ending the hunt.
This can be mathematically represented as a linear decrement
throughout the iteration process that controls intensification
and diversification. This GWO has a wide range of uses. How-
ever, it has drawbacks such as an absence of population vari-
ance, a disparity within intensification and diversification,
trouble coming up with workable solutions, and early conver-
gence. The IGWO technique was used in the present study to
address the issue effectively. The process involves three stages:
initialization, movement, and selection/update.

Initializing the population: Throughout this stage, N wolves are
distributed arbitrarily around the search territory, which has
dimensions D and lies within the defined range; [I;, ux] described
in (46). tmax indicates the highest number of iterations.

Yo = I + rand, [0, 1] X (ux — L), i € [1,N], k € [1,G] 48)

The GW population is randomly initialized between several
power grid variables. The position of the ith wolf in tth iteration
= - — —
is represented as Y (¢t) = {Yy, Ypp, -+ ,Yp}. The Population

matrix (N X G) retains the entire wolf population.

Movement phase: The research IGWO employs an agile tech-
nique known as a learning-based hunting dimension (LHD)
search. Within LHD, each wolf is trained by its neighbor wolves
to pretend to be an option for Y;(¢)'s new position. Two distinct
options are produced by the GWO and LHD techniques. Each
dimension of a wolf's position E-)(t) is assessed using the LHD
method, allowing them to learn from their neighbors and a
randomly selected wolf from Pop. In addition to ?;—Gwo(t + 1),
the LHD approach generates another candidate, f_LHD(t + 1),
regarding the newly created position. To evaluate a radius I_Q)i(t),
calculate the Euclidean distance from l_ﬁ)(t)to the position can-
didate's ?i)—GWO(t + 1), as demonstrated in (49):

Ri(t) = I, (1) = Y_owo(t + DI (49)

To find the neighbors of ff(t) use (50) and radius T{:(t),where a
denotes the Euclidean distance between fq)(t) and f/;(t). A
multi-neighborhood learning is represented in (51) when
building a community around ?i)(t).

N = {01 G (0, %) <Ri(1), Ye(t) € Pop} (50)

To determine the dth dimension of %}_LHD,g(t + 1), the dth
—
dimension of a random neighbor ¥, 4 (¢) from ZTI: (t) and a single
-
wolf ¥, ,(¢) chosen at random from the Population is used.

Yorimmg(t + 1) = Yg(6) + rand x (Y 5(6) = Y0(0) (5D

Select and update the GWs' locations: This stage entails en-
circling and attacking the target. The fitness values of
Y{-)_GWO(t + 1) and X_/Z_LHD,g (t + 1) are compared using (52) to p
ropose the candidate with the highest fitness score. After sur-
rounding the prey, GWs a, 3, and § had a clearer understanding
of its location.
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— = —
Y_owo(t + 1), iff (Yi—ewo) < f(Y—rup)
Y,_rup(t + 1)otherwise

Y(t+1)= (52)

To update the procedure to the new position labeled f (t+ 1), two
criteria must be met: if the fitness value of the selected candidate is
less than ?(t), ultimately f(t)is advanced by the selected candi-
date, otherwise f (t) remains unchanged in the Population matrix.
Lastly, the iteration number is incremented until it is attained. The
sequence of steps used in the current study, based on IGWO to find
the optimal solution, is described in Figure 3.

3.8 | Co-Simulation of MATLAB and OpenDSS

The suggested approach has been tested on a real Pakistani
distribution system (the 60-bus distribution system) to show
how successful it is. The data of the network under consid-
eration has been accessed using the Open Distribution System
Simulator (OpenDSS) package, a distribution system simulator

(DSS) by EPRI designed for smart grids and renewable en-
ergy [54].

MATLAB® R2021b is used to test the simulation framework on a
laptop equipped with a 2.60 GHz Intel® Core i7-6600U processor
and 16 GB of main memory. This study uses OpenDSS for power
system modeling, PV unit modeling, EV modeling, power flow
analysis, and smart inverter control. The unbalanced distribution
system is simulated and computed using OpenDSS. More specif-
ically, we use MATLAB® to manage the OpenDSS using a com-
ponent object model (COM) interface that allows us to adjust load,
transformer, and line parameters, as well as analyze power-flow
solutions. OpenDSS always awaits the commands from MATLAB.
When a command is sent to OpenDSS from MATLAB, it is exe-
cuted and, if any results are obtained, returned to MATLAB. This
method is performed for every command that OpenDSS must
execute. Figure 4 depicts a generic structure for implementing our
suggested technique in the MATLAB®-OpenDSS co-simulation
environment. MATLAB only supports matrix arithmetic, condi-
tional branching, looping, and communication with OpenDSS.

Load data in OpenDSS

\ 4

Perform load flow analysis

\4

Compute Py, Q)% VUF
using eq(9-13)

\ 4

Import results to
MATLAB

\4

Applying IGWO
technique to integrate
PVs and EVCS

Record the Optimal result

\ 4

]
1
1
1
]
Export to OpenDSS 1
1
]
]
]
1

\4

Run the modified file and
export results

eplace the previous
solution

Initialize population and
all the parameters
required

\ 4

Initialize Ppy, Py from
eq(22-25 & 28-34 ) with technical
constraints
from eq(15-21 & 35-39)

\ 4

Run the load flow,determine
the fitness value for each
population

\ 4

Identify the best and worst
solution in the population

V€

IModify the solutions based
on the best and worst
solution using eq(51)

\ 4

Check all the technical
constraints from eq(15-21
& 35-39)

Is new solution y'
better than previous soultion y,

Keep the previous
solution

No

Ieeting end of criteria

FIGURE 3 |

Flowchart of the proposed methodology for the Optimal solution using IGWO.

Energy Science & Engineering, 2025



<\ MATLAB

Receive OpenDSS

Send OpenDSS
command > Test System
g2 v
£ 2
= = Execute Command
-
Wait for completion =&x +
w
37
¢ ca Power Flow Analysis
U -

v

Return Results

results

Y

Data presentation and
analysis

FIGURE 4 | Interfacing OpenDSS and MATLAB.
Whereas OpenDSS analyzes a system's power flow 24 times for
each potential solution. The proposed method's performance is
then validated through a variety of case studies.

4 | Case Study

The proposed methodology is implemented to evaluate its
effectiveness on the standard 11 kV Real-60 Bus unbalanced
RDS (URDS) system on the LV side for the optimal sizing and
placement of PVs and EVCSs using IGWO. This work aims to
create a different set of cases and, through a detailed analysis,
draw a general conclusion on how these PVs and EVCSs impact
the power quality aspects of an unbalanced distribution net-
work. The following case studies have been created to examine
the performance under different conditions.

41 | Case-I: Without Compensation

The base case scenario analyzes a real 60-bus system under
normal operating conditions, implying that no PVs or EVCSs are
integrated into the network. Both the APL and VUF are calcu-
lated over a day, and the maximum values of both parameters are
recorded.

4.2 | Case-II: Single-Phase PVs Integration

In this case, single-phase PVs are integrated at the optimal
locations into the network under consideration using IGWO. The
maximum values of APL and VUF are observed over a daytime.

4.3 | Case-III: Three-Phase PVs Integration

Three-phase PVs are incorporated at the optimal locations across
the network under consideration using IGWO in this case, whereas
APL and VUF are also evaluated and analyzed.

4.4 | Case-IV: 2 Evcs Integration in G2V Mode

Two EVCSs are configured at the specific locations across the
network, and the Grid to Vehicle (G2V) mode is activated for the
current case.

4.5 | Case-V: Single-Phase PVs and 2 Evcs
Integration

Two EVCSs in G2V mode are connected at fixed locations across
the network, and single-phase PVs are integrated at the optimum
locations into the network using IGWO.

4.6 | Case-VI: Three-Phase PVs and 2 EVCS
Integration

In this case, two EVCSs and three-phase PVs are integrated into
the network under consideration at their optimal locations
using IGWO.

Each case study is simulated and analyzed for 24 h over a day
with a time interval of 1 h. APL and VUF are calculated over
a day. The designed network is a real 60-bus system URDS. Out
of 60 buses, 59 buses are load buses. The transformers, Dyn type,
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FIGURE 5 | Real 60-Bus Unbalanced Radial Distribution Network.

with different capacities ranging from 25kVA to 400kVA, are
connected in the network. The network under consideration is
11/0.415kV, whereas Figure 5 shows the real 60 bus URDS
under consideration.

The URDS network is outlined in Table 1 for the considered
real 60-bus system. The distribution network requires a total of
7.21 MW of active power and 1.768 MVAR of reactive power,
respectively, whereas the network's line voltage is 11 kV. The
voltage magnitude of each phase, phase angle, and power losses
are calculated accordingly.

5 | Results and Discussion

5.1 | Case-I: Without Compensation

In the current case, there is no integration of any PVs and
EVCSs along the network under consideration. The system
under consideration is simulated, and the voltage magnitude,
active power losses, and VUF are calculated, respectively. The
voltage magnitude decreases at the end of the feeder due to its
radial nature. As a result, the consumer at the end of the feeder
faces LV issues. This can lead to economic and power quality

44

45 46 47 48 49 50

N
2
3
N
-~
e 1
o«
h
=
[
<

TABLE 1 | Real 60 Bus URDS Total Power Demand.

Parameters Values

Bus type Real 60-Bus

Active power (MW) 7.2

Reactive power (MVAR) 1.768

Apparent power (MVA) 7.41

Voltage level (kV) 11/0.415

Transformers No. of T/Fs Size (kVA)
6 25
10 50
20 100
22 200
1 400

concerns, such as line losses, reliability, and stability. The actual
maximum active power losses of the network, calculated using
Open DSS load flow analysis, are 455.472 kW at the 17th hour of
the day within the URDS as presented in Figure 6. Additionally,

10
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FIGURE 7 | PV power curve over a day.

the maximum value of VUF observed is 2.02% at the
17th hour of the day. As observed from Figure 6, the load
demand is maximum at the 17th hour of the day which also
resulted in the maximum values of APL and VUF at the
same hour of the day.

5.2 | Case-II: Single-Phase PVs Integration

Single-phase PVs are integrated into the URDS at the opti-
mum location on the LV side using IGWO. It provides power
during the daytime as solar power generation depends upon
the solar irradiation available. The end user consumers install
PVs to produce their electricity, reducing their dependence on
the conventional grid, and helping the users to reduce their
electricity bill costs. Figure 7 shows the PV power profile
over a day.

Integrating solar PVs can help to reduce active power losses and
VUF. It can be observed from Figure 8 that the PV profile and
demand curve overlap from the 7th hour of the day to the
18th hour of the day. It has been observed that maximum APL
increased up to 474.860 kW at the 17th hour of the day, and the
value of VUF increased from 2.02% to 2.46%. As long as single-
phase PVs are supplying power to the URDS, both the APL and
VUF increase.
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FIGURE 8 | Overlapping curve of PV profile and load profile.

5.3 | Case-III: Three-Phase PVs Integration

Three-phase PVs are installed in the under-consideration URDS
at optimum locations across the network. With the integration
of the PVs, it was observed that the maximum values of APL
decreased from 455.472kW to 338.826 kW at the 17th hour of
the day. Similarly, the value of VUF also reduced from 2.02% to
1.91% at the 17th hour of the day.

5.4 | Case-IV: 2 EVCS Integration in G2V Mode

When EVCS is integrated into the distribution network in G2V
mode, EVs receive electric power from the conventional grid to
charge their battery. This mode of charging is called the “charging
mode or grid mode”. The EVCS operated as the linkage between
the grid and the EV in this mode. As the CS is connected to the
grid, it receives power, converted to specific voltage and current
levels as per the standard of EV battery charging.

This charging mode or grid mode increases the APL in the net-
work due to the additional load of two CSs of 1564 kW each with a
capacity of 782 kW. The optimal location of both EVCSs is at the
5th and 25th buses of the distribution network. The size and
location of EVCSs within the distribution network have a negative
impact on the power losses, VUF, and voltage profile if not placed
at optimum locations. Figure 9 shows the EV profile at the CS over
the day. As the maximum number of EVs is available at the CS for
charging from 7th to 12th hour of the day, the network requires
extra power from the grid to meet these EVCS loads. It has been
observed that the maximum APL has increased from 455.472 kW
to 506.286 kW from the 17th hour of the day to the 11th hour of
the day. The results also reflect that VUF increases from 2.02% to
2.06% from the 17th hour of the day to the 12th hour of the day.

5.5 | Case-V: Single-Phase PVs and 2 EVCS
Integration

Integrating EVCSs and PVs optimally into the distribution network
can be beneficial for both the end users and the grid. The end users
can avail benefits of PVs to produce their electricity, reducing the
burden on the conventional grid and helping the consumers save
their utility bills. In the current case, single-phase PVs are opti-
mally placed across the LV side of the network. As most EVs are
available in the CS from the 7th to 12th hour of the day, solar
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FIGURE 9 | Number of EVs at EVCS over a day.

power is also contributing to the network during the same hours,
which has also been highlighted in Figure 10. This single-phase PV
integration further increases the network APL and VUF simulta-
neously during these hours of the day. The power loss increases
from 455.472kW to 537.668 kW. Moreover, the maximum power
loss shifts from the 17th hour of the day to the 11th hour of the day.
It is clear from the figure that the overlapping interval of EVs, PVs,
and demand curves is from the 7th to 12th hour of the day. Inte-
grating two EVCSs with single-phase PVs has an adverse impact on
both the APL and VUF. The maximum value of the VUF is 2.46%
at the 19th hour of the day.

5.6 | Case-VI: Three-Phase PVs and 2 EVCS
Integration

When the distribution network is integrated with three-phase PVs,
though it reduces the burden on the grid due to the extra load of
two EVCSs, it lessens the load on the conventional grid by sup-
plying balanced three-phase power across the LV side of the net-
work. In this mode, EVCSs are optimally placed at the 5th and 25th
buses of the distribution network. Three-phase PVs are optimally
positioned at the optimum location across the network on the LV
side. This also promotes sustainability and reduces the maximum
APL across the network from 455.472kW to 387.949 kW at the
11th hour of the day. VUF also reduces from 2.02% to 1.94% from
the 17th hour of the day to the 12th hour of the day. Integrating
three-phase PVs helps to reduce APL and VUF across the network
even when two EVCSs are present in the distribution network.

This research work explains the in-depth systematic analysis of
an unbalanced distribution network, highlighting power quality
issues like VUF and APL. Also, analyzing the impact of PVs and
EVCSs integration on the URDS network performance, either
alone or in combined operation. Six different cases were defined
to assess the impact of PVs and EVCSs on the value of VUF and
APL over a day. Figures 11 and 12 compare the APL and VUF for
all the cases under consideration over 24 h of the day. It can be
observed from Case I that the maximum value of the load on the
demand curve was at the 17th hour of the day. Resultantly, the
maximum value of APL 455472kW and VUF 2.02% was
observed at the 17th hour of the day. Case II considered the
optimal placement of single-phase PVs across the LV side of the
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FIGURE 10 | Overlapping interval of EVs, PVs, and the demand curve.

600

550

500

Active Power Losses (kW)
N A w - -
wn (=3 wn (=3 W
=1 (=1 o =4 =]
1 1 1 1 1

200

150

100 T T
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Hour)

FIGURE 11 |
all cases.

Comparison of active power loss values over a day for

o

(/o) AOA

05

FIGURE 12 |

Comparison of VUF across the URDS for all cases.

12

Energy Science & Engineering, 2025



network. The load demand curve and PV power profile overlap
from the 7th to the 19th hour of the day. Whereas both the
maximum value of VUF and APL had increased by 21.78% and
4.25% at the 17th hour of the day, as compared to Case-I. The
Case-II results gave the understanding that single-phase PV

[46, 55]. Single-phase PV integration in URDS tries to improve
the voltage magnitude of that phase at the cost of deteriorating
the voltage profile of other phases, hence leading to an increase
in VUF. As observed in Figures 11 and 12, due to the single-
phase PV integration, APL and VUF have increased as compared

integration increased both the VUF and APL, as observed in to Case-I.
TABLE 2 | Performance of Real 60-bus URDS Under Different Cases.

Cases Items IGWO

Case-1 Without compensation Max Pjoes (KW) 455.472
Max VUF (%) 2.02
Vmin (p.u) 0.9107
Energy Loss over a day (MWh/day) 7.65

Case-II With single phase PVs PVs (Solar) size in kW 2977
Max Pjogs (KW) 474.860
%Pjoss iNCrease 4.25
Max VUF (%) 2.46
%VUF increase 21.78
Vmin (p.u) 0.9191
Energy Loss over a day (MWh/day) 7.76

Case-III With three phase PVs PVs (Solar) size in kKW 3070
Max Pjoss (KW) 338.826
%P)oss decrease 25.6099
Max VUF (%) 1.91
%VUF decrease 5.44
Vmin (p.u) 0.9230
Energy Loss over a day (MWhr/day) 6.2

Case-IV With 2 EVCS(G2V) mode EVCS size in kW (Location) 782 (5), 782 (25)
Max Py (KW) 506.286
%P)oss iNCrease 11.15
Max VUF (%) 2.06
%VUF increase 1.98
Vmin (p.u) 0.9090
Energy Loss over a day (MWh/day) 8.26

Case-V With 2 EVCS and single-phase PVs EVCS size in kW (Location) 782 (5), 782 (25)
PVs (Solar) size in kW 2977
Max Pjoss (KW) 537.668
%P)oss iNCrease 18.04
Max VUF (%) 2.46
%VUF increase 21.78
Vmin (p.u) 0.9116
Energy Loss over a day (MWh/day) 8.46

Case-VI With 2 EVCS and three phase PVs EVCS size in kW (Location) 782 (5), 782 (25)

PVs (Solar) size in kKW

Max Pjpgs (kW)

%Pjoss decrease

Max VUF (%)

%VUF decrease

Vmin (p.u)

Energy Loss over a day (MWh/day)

3070
387.949
14.82
1.94
3.96
0.9220
6.8
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Case III highlights the importance of three-phase PV integration
into URDS. Three-phase PV integration injects balanced power
across the LV side of an unbalanced distribution transformer,
which accumulatively improves the system performance by
reducing the maximum APL and VUF by 25.60% and 5.44% across
the URDS as compared to Case-I. The Case-IV elaborates on the
optimal placement of two EVCS in the URDS under consideration.
The maximum number of EVs was at the CS from the 7th to the
12th hour of the day. The power demand of these EVCSs was met
by the conventional grid, leading to an increase in both the max-
imum APL and VUF by 11.15% and 1.98% simultaneously in
comparison to Case-I. Since the network power demand was small
from the 7th to the 12th hour of the day, the excessive power
demand of EVCSs shifted the maximum APL and VUF of the
network from the 17th hour of the day to the 12th hour of the day.
Moreover, it was observed that integrating two EVCSs into the
network resulted in an increase in network losses. Hence, to reduce
the impact of EV charging on the conventional grid, it is always
recommended to add energy sources.

The Case-V considered the combination of optimal placement of
EVCSs and single-phase PVs in the network under consideration.
Due to the inclusion of EVCS, the APL and VUF of the network
increased as observed in Case IV. The single-phase PV integration
with EVCS further increased the APL and VUF. As evident from
Figure 10, the overlapping interval of EV charging, PV power curve
and demand curve of the network was from the 7th to the
12th hour of the day. This single-phase PV integration must support
reducing the burden on the conventional grid by power-sharing due
to the excessive load demand of EVCS. But instead of power sup-
port from PVs, the maximum APL and VUF of the network
increased by 18.04% and 21.78% at the 11th hour of the day.

The Case-VI considered the optimal placement of EVCSs and
three-phase PV integration simultaneously for the network under
consideration. It can be judged from Figures 11 and 12 that the
maximum value of the APL and VUF decreases by 14.82% and
3.96% at the 12th hour of the day. Since both the APL and VUF of

the URDS are directly linked to each other, henceforth the three-
phase PV integration injected balanced power into the bus,
which reduced the voltage imbalance between the phases at that
bus and resulted in a reduction in power losses across the same
bus. The PVs were optimally placed across the whole network,
and the contribution of all these PVs led to a reduction in the
APL and VUF of the network.

Table 2 compares all six cases, as observed Case-VI and Case-I11
can be considered the best choices among the all cases studied,
whereas Case-V seems to be the worst case.

Figure 13 shows the comparison of active energy loss over a day
and the maximum value of VUF for all the cases under consider-
ation. It has been observed that no matter what the case is, single-
phase PVs integration have an adverse impact on the voltage
unbalance and power losses. The analysis of all cases clearly ex-
plains that to minimize the VUF and APL, it is highly recom-
mended to integrate three-phase PVs and EVs into the unbalanced
distribution network. In the current distribution system, most of
the end user loads are single-phase and have acquired single-phase
electricity connection from the utility. Whereas most of the LV
networks in the current distribution network have three phases
and end users have easy access to all three phases in their vicinity.
Hence, based on our findings, it is recommended that forcing the
end users to go for three-phase electricity connections and up-
grading the existing single-phase users to three-phase in order to
minimize the unbalancing situation, to maximize the hosting
capacity of PVs and EVs in URDS.

6 | Comparative Evaluation and Scalability of
IGWO on IEEE-123 Bus System

To verify the efficacy and scalability of the proposed methodology
to integrate PVs and EVCSs on the LV side of the network using
IGWO, the IEEE—123 bus system is considered. The results are
compared with the other optimization techniques and are tabu-
lated in Table 3, showing that integration of three-phase PV and

TABLE 3 | Performance Comparison of PSO, ABC, ALO, and IGWO Against Base Case on IEEE—123 Bus System.
Applied Max Max Energy Loss
Methods DG Size Phase Vmax Vmin Pioss (KW) VUF (%) (MWh/day)
Base Case — A 1.0508 0.9766 95.0 1.0623 1.28
B 1.0477 0.9789
C 1.0496 0.9789
PSO [33] 1255 A 1.0478 0.9807 77.9 0.9593 1.02
B 1.0478 0.9813
C 1.049 0.9819
ABC [56] 1102 A 1.0519 0.9807 77.5 0.9492 1.10
B 1.0516 0.9828
C 1.0533 0.9828
ALO [36] 1493 A 1.046 0.9805 77.7 0.9475 0.91
B 1.0477 0.9823
C 1.0489 0.9827
IGWO [57] 1430 A 1.0484 0.9806 77.5 0.9466 0.87
B 1.0478 0.9807
C 1.0489 0.9816
14 Energy Science & Engineering, 2025



FIGURE 13 | Energy Loss (MWh/day) and VUF Over a Day.
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FIGURE 14 | Convergence curves of PSO, ALO, ABC, and IGWO
for Case VI.

EVCSs on the LV side of the IEEE—123 bus system has led to a
reduction of both VUF and energy loss over a day. Whereas the
IGWO has outperformed other mentioned techniques in terms of
improving the network performance.

The convergence behavior of the recommended IGWO meth-
odology has been examined with other established methods,
including particle swarm optimization (PSO), ant lion optimi-
zation (ALO), and artificial bee colony (ABC), for Case VI in
order to further demonstrate the effectiveness of the optimiza-
tion technique. Figure 14 shows the evolution of the objective
function values over iterations, giving a visual representation of
the patterns of convergence.

7 | Conclusion

This research suggested a way to reduce the LV network VUF
and APL by integrating three-phase PVs and EVs into an

unbalanced distribution network. The suggested method of-
fers rooftop PVs and EVCSs placement and sizing solutions
that maximize system performance while maintaining oper-
ational limitations like node voltages, branch currents, feeder
loading capacity, VUF, and APL. The model was developed as
a mixed-integer nonlinear multi-objective optimization, with
the objectives of minimizing the VUF and APL in a real
60-bus Pakistani URDS. The IGWO technique was used to
solve this multi-objective model to determine the best solu-
tion, ensuring that no objective function outweighs the others.
The simulation results show that optimal placement and siz-
ing of three-phase PVs and EVCSs helped to maximize the
penetration level of PVs and meet the varying EV demand in
the network. According to the simulation results, integrating
three-phase PVs with EVCS reduced the APL and UVF by
14.82% and 3.96% while integrating single-phase PVs and
EVCSs increased APL by 18.04% and VUF by 21.78% in a real
60-bus URDS.

While carrying out the current study, Total Harmonic Distor-
tion (THD) was not considered, which arises due to the inte-
gration of the PVs and EVCSs, and EVs V2G mode for peak load
management, which will be the aim of our future study.
Moreover, in the future, other energy resources such as wind
energy, fuel cells, compressed air energy storage, and hydrogen
storage will also be integrated and their impact on the URDS
will be analyzed.

Indices and sets

K Index of EV

Z index of PV

t Index of time

I Index of scenario

Parameters

AMRg All-electric range for the kth EV

Eﬁk Energy consumption per mileage of the kth EV
EEY /EEV. Min/Max energy limit of the EV's battery

s /82 Charging and discharging efficiencies of the EV
SoCEY /SoCEY. Min/Max SOC limits of the EV

EF, Energy content of the EV's battery in kWh
PEREYPEAEY Charging/discharging power of the EV in kW
Peyes.ti EVCS power in kW

SoCEY State of charge of the EV

fof’,fv/Z ﬂc,fv Charging and discharging binary variables of the EV
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