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Abstract

The early life of small stellar subclusters – particularly as they evolve from the protostellar
phase to stable main sequence systems – is poorly understood. In this thesis, I investigate
the dynamical evolution of subclusters over this stellar adolescent phase.

I model isolated subclusters with different numbers of stars, N , and previously
unexplored initial conditions (such as ordered rotation) and evolve them using an n-body
algorithm. I derive an equation to generate the possible end states that these subclusters
can produce. I also present a prescription for mixing the statistics generated by different
values of N , which I use to investigate cores that produce a range in number of stars. I
analyze the multiplicity statistics and architectures of the final systems, and compare them
with the solar-mass primary statistics from Tokovinin (2021). Through this comparison, I
derive predictions about the initial conditions of subclusters as they leave the protostellar
phase.

To produce the best fit to the observed statistics, I find that prestellar cores must
typically spawn between 4.3 and 5.2 stars. Subclusters that begin with roughly half
their kinetic energy invested in rotation produce the best fits to the Tokovinin (2021)
sample. These properties are also compatible with the observed Orbital Statistics, i.e.
the distributions of semi-major axis, mass ratio, eccentricity and mutual inclination and
eccentricity. The observed distribution of mutual inclinations in particular favours an
average N of 4.8. The Best-Fit properties produce a similarly shaped mutual orbital
inclination distribution as observations, with a phase offset.

The initial number of stars in the subcluster, N , has the greatest effect on the
systems it produces, influencing periods and separations, dynamical biasing, plurality,
mutual orbital inclinations, and ejection timescales. The fraction of kinetic energy in
ordered rotation and the degree of mass segregation also have an effect on some of these
statistics.

For the Best-Fit Case, I find that 21(±1)% of subclusters spawn two or more
multiple systems.
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Chapter 1

Introduction

1.1 Multiple systems and their architectures
Stellar multiples are relatively close, bound systems of stars that circle one another

on regular, stable (or meta-stable) orbits. The most common multiples are binary, with
two stars orbiting their mutual centre of mass. Systems with three or more stars are known
as "higher-order multiples" and can feature complex structures. Figure 1.1 illustrates the
possible architectures for stable 3- and 4-star multiples. Stable, long-lived triple systems
are hierarchical; they’re composed of a relatively close central pair of stars and a third
member on a much wider orbit (Fig. 1.1a). Stable quadruple systems can have one of
two architectures: a ‘2+2’ system with two relatively close stellar pairs on a wide orbit
about one another (Fig. 1.1b); and a ‘planetary’ system with four stars on increasingly
wide orbits (Fig. 1.1c). Multiples with more than four stars can be made up of increasing
numbers of close pairs, planetary configurations, or combinations of the two.

Many complex multiples feature prominently in our own night sky. Mizar and
Alcor, which form the middle of the handle in the Plough (or Big Dipper) asterism, is a
2+2+2 sextuple (Mamajek et al., 2010; Zimmerman et al., 2010). The Castor system,
which forms the head of the left twin in the Gemini constellation, is a 2+2+2 sextuple
as well (Adams & Joy, 1917). The highest-order multiples known are septuples. Figure
1.2 (from Tokovinin 2021) shows a diagram of one septuple, 65 UMa (11551+4629),
where a central pair is orbited not only by three companions on hierarchical orbits, but
by a close pair on a distant orbit as well. Understanding the overarching structure of
these systems informs how we interpret observational statistics and drives theories of star
formation.

1.2 Observational studies
While the internal structures of complex multiple star systems are known on a

case-by case basis, uncovering how common such systems are – and how their properties
vary across different stellar populations – requires systematic observational surveys. In
early multiplicity surveys of low- and intermediate-mass primaries, higher-order multiplicity
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(a) Planetary Triple

(b) 2+2 Quadruple

(c) Planetary Quadruple

Figure 1.1. Diagrams of possible architectures for triple and quadruple systems.
Relative orbit and star sizes are illustrative and not to scale.
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Figure 1.2. Diagram of the structure of septuple star system 65 UMa. From
Tokovinin (2021).

appeared to be rare. When Duquennoy & Mayor (1991) studied the multiplicity of solar-
type stars in a 22-pc sample, they found that only 5% hosted triple or other higher-order
systems. Recent advances in observational technology and capability have led to the
discovery of additional members in previously catalogued star systems, thereby increasing
the percentage of known higher-order multiples in the solar neighbourhood. For a 25-pc
sample, Raghavan et al. (2010) found 13% of systems to be higher-order multiples, and
this increased to 17% when Tokovinin (2021) and Hirsch et al. (2021) studied the sample
in 2021.

Current statistics for nearby systems with solar-type, main-sequence primaries
(Tokovinin 2021, hereafter the T21 sample), are:

S : B : T : Q+ = 54 : 29 : 12 : 5 . (1.1)

Here S is the percentage of single stars, B the percentage of binaries, T the percentage of
triples, and Q+ the percentage of quadruples plus higher-order systems (i.e. quintuples,
sextuples and septuples).

Thus, in this sample, the fraction of stars that are single is

fS = S
S + 2B + 3T + 4Q+ ≃ 32.1% ; (1.2)

3
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Figure 1.3. Fraction of stellar systems which are multiple (bold) and triple or higher-
order, as a function of primary mass. From Offner et al. (2023).

4 The Statistics of Stellar Multiple Systems Formed from Small Subclusters



1.2. Observational studies

the fraction of stars that is in binaries is

fB = 2B
S + 2B + 3T + 4Q+ ≃ 34.6% ; (1.3)

the fraction that is in triples or higher order systems∗ is

f
T+ = 3T + 4Q+

S + 2B + 3T + 4Q+ ≃ 33.3% . (1.4)

and the fraction of stars that is in any multiple is

fM = 2B + 3T + 4Q+

S + 2B + 3T + 4Q+ = 1− fS ≃ 67.9% ; (1.5)

The multiplcity statistics vary greatly with the mass of the primary star. Figure
1.3 (from Offner et al. 2023) plots the fraction of systems which are multiple (MF) and
the fraction of systems which are triple or higher multiplicity (THF) as functions of mass.
While less than 15% of the smallest dwarf primaries host multiples, as many as 98% of
the largest O star primaries do. This trend is also reflected in the THF, which peaks
slightly lower at 85%. These percentages (especially at higher masses) are uncertain due
to selection effects and observational bias.

Multiple systems are detected using a variety of methods, each of which introduce
different biases into observed multiplicity results. Close systems are often detected through
spectroscopic or eclipse methods. Spectroscopic (or radial velocity, RV) techniques detect
line-of-sight velocity changes in the movement of stars to identify multiple systems
(Vogel, 1890; Pickering & Bailey, 1896). As the bodies of a binary system, for example,
orbit one another, the stars move alternately toward and away from the observer. This
velocity change produces periodic Doppler shifts in the stars’ spectral lines, creating a
cyclic signature over the orbital period. When a star’s spectrum is strong enough to
be measured, the degree of red or blue shifting gives its velocity along the line of sight.
From these velocity measurements, astronomers can identify multiple systems even if
only a subset of the components are directly observed. The technique favours short
period orbits, whose larger, faster RV variations are easier to detect. It is more likely
to miss companions in very unequal-mass systems, where the relatively weak pull of the
secondary produces only slight variations in radial velocity of the primary, and where the
fainter spectral lines of the secondary may be more difficult to distinguish from those
of the brighter companion. It is less sensitive in general to low-mass (and therefore low
luminosity) stars, whose spectra are fainter.

∗I have assumed that all the systems contributing to Q+ are quadruples. If I account for the
systems that are quintuples, sextuples and septuples, f

T+ will increase slightly, at the expense of fS

and fB .
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Close, similar-mass multiples are also favored in the eclipse detection method.
Here, stars are monitored for periodic dips in flux (Stebbins, 1910), which occur when
a companion passes in front of its primary (blocking a portion of its light) and behind
its primary (where the companion’s light is obscured). Companions on close orbits are
geometrically more likely to cross the disk of the primary from the perspective of the
observer, and since close systems have shorter periods, they produce more frequent
eclipses. Larger, more equal-mass companions present a large cross-sectional area
compared with the primary, blocking a larger fraction of their primary’s light when
eclipsing, and contributing more luminosity that is obscured when they themselves are
eclipsed. This produces deeper, easier to detect dips in flux.

Wider systems are detected with techniques such as astrometry, image blinking,
and speckle interferometry. Astrometric multiplicity studies (first introduced by Herschel
1803) rely on precisely monitoring a star’s position to map its motion compared with the
expected linear trajectory of single stars. By comparing a star’s measured trajectory with
either the bulk motion of nearby stars or a fixed reference frame, astrometry reveals bodies
which exhibit periodic movement in the plane of the sky. This periodic movement, which is
the result of gravitational motion around a system’s centre of mass, can be used to identify
stars which are gravitationally bound companions or which host unobserved companions.
The likelihood of astrometric detection depends upon the degree of curvature detected,
as motion must be observed to deviate from a linear path. Therefore, the method is
most effective with a high cadence and time span of measurements in comparison with
the system orbital period. Unequal mass systems can be more difficult to identify, as
the brighter primary star exhibits little movement around the centre of mass, while the
secondary, despite a potentially wide orbit, may be too faint to detect directly.

Image blinking detects wide multiples by taking images of sky at two epochs and
comparing them to reveal co-moving stars (van Biesbroeck 1944). Because both (or all)
companions must be detected, the method favours luminous stars. Speckle interferometry
(Labeyrie, 1970; Gezari et al., 1972) detects wide multiple systems by analyzing the
speckle pattern, an interference effect visible in stellar images as a result of atmospheric
turbulence and telescope aberrations. When a Fourier transform is applied to an image
of a multiple system, a pattern of equal-spaced fringes emerges. The spacing and relative
strength of these fringes encodes the separation and brightness of the components,
respectively. As brighter, more equal-contrast fringes are easier to detect, the method
favours luminous stars and equal-luminosity multiples.

Large multiplicity catalogues often collate the results of many surveys, and thus
include results from many detection methods. The Raghavan et al. (2010) and Tokovinin
(2021) samples, for instance, include multiples identified through all of the aforementioned
detection methods. Melding the results of these various methods helps to form a more

6 The Statistics of Stellar Multiple Systems Formed from Small Subclusters
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figures/ChenFig_no_permission.png

Figure 1.4. Fraction of stellar systems which are multiple for Class 0 protostars, Class
I protostars, and Main Sequence stars. From Chen et al. (2013).

complete understanding of multiplicity than can be achieved through any one method
alone. The catalogues still include bias, with Tokovinin (2021) stating that in the sample,
systems detected through eclipse are "over-represented, being easier to discover." So the
Tokovinin (2021) statistics likely over-represent close, similar-mass multiples.

As technology and techniques advance, precision continues to improve in astronomical
measurements, allowing for the detection of fainter, lower-mass companions. GAIA is
one such example of a high precision facility improving the completeness of the multiple
system sample through detection of new multiples (e.g. Shariat et al. 2025). As data
continues to be processed from telescopes like GAIA, observational biases will likely only
reduce and statistics such as fB , f

T+ , MF and THF will likely shift to higher values as
additional members of existing systems are discovered.
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Multiplicity is not static; rather it develops as stellar systems age. The MF is found
to be highest in the earliest phases of protostellar evolution, and then declines through
the subsequent protostellar phases. Chen et al. (2013) observed an MF of 0.64(±0.08)
for low-mass Class 0 protostars, while Connelley et al. (2008a,b) found this fraction to be
0.57(±0.9) for Class 0 and 0.23(±0.8) for Class 1 sources in Perseus. Tobin et al. (2022)
evaluated the same statistics in a more recent, higher resolution study of protostars
in Perseus, finding that the MF decreases from ≃ 0.49(±0.08) for Class 0 sources to
0.26(±0.09) for Class 1. Reipurth & Zinnecker (1993) found that the MF continues to
fall from pre-Main Sequence to Main Sequence populations.

These trends highlight that multiplicity is both mass-dependent and evolutionarily
dynamic. To understand the physical origin of these patterns, we consider the theoretical
mechanisms by which multiple systems form.

1.3 Formation of stellar multiple systems
In this section, I review the dominant theoretical pathways proposed for the

formation of stellar multiples. I specifically focus on the processes that form multiples
on the core-scale – core and disc fragmentation – and discuss how simulations and
observations constrain their relative importance.

In the standard star formation model, flows within turbulent molecular clouds
converge to create self-gravitating sheets (Pringle, 1989). These sheets can further
collapse into filaments, and eventually into prestellar cores (Turner et al., 1995). The
process is not necessarily sequential, and the convergent flows can themselves directly
spawn filament and core structures.

During the star formation process, stars from nearby cores can interact with one
another. For this interaction to result in a stellar capture and produce a multiple, their
mutual kinetic energy must be sufficiently dissipated to allow for gravitational binding.
This energy can be removed through friction with the stellar accretion disc (Ostriker, 1994;
McDonald & Clarke, 1995; Moeckel & Bally, 2007; Muñoz et al., 2015), or with remaining
filamentary material if the approach occurs along the filament. Because stars accumulate
significant kinetic energy during close approaches, substantial surrounding material is
needed to dissipate it and enable capture. Disc-assisted capture, therefore, requires that
discs must be very massive, and is typically only a viable formation mechanisms for
high-mass primary multiples.

In low-mass prestellar cores, multiple systems typically form through two main
processes: core fragmentation, and disc fragmentation. Figure 1.5 illustrates the four
mechanisms of creating a stellar multiple (filament fragmentation, core fragmentation,
disc fragmentation, and capture). It includes a schematic model, observational example,
and simulation snapshot for each mechanism, along with their associated distance scales.

8 The Statistics of Stellar Multiple Systems Formed from Small Subclusters



1.3. Formation of stellar multiple systems

Fi
gu

re
1.

5.
M

od
el

ill
us

tr
at

io
ns

(t
op

),
ob

se
rv

at
io

na
le

xa
m

pl
es

(m
id

dl
e)

,a
nd

sim
ul

at
io

n
sn

ap
sh

ot
s

(b
ot

to
m

)
of

th
e

fo
ur

m
ec

ha
ni

sm
s

fo
r

m
ul

tip
le

fo
rm

at
io

n,
fro

m
O

ffn
er

et
al

.(
20

23
).

9



Chapter 1. Introduction

In core fragmentation, as a prestellar core collapses, overdense regions may become
gravitationally unstable and condense into multiple protostars (Boss, 1986). Conditions
such as rotation, turbulence, and feedback within the core regulate the amount of
fragmentation. Hennebelle et al. (2004) find that rotation increases the number of
fragmentation products, and Cha & Whitworth (2003) find that differential rotation
in particular (as opposed to solid-body rotation) promotes fragmentation. Even small
amounts of turbulence can significantly enhance fragmentation (Goodwin et al., 2004a),
and this effect becomes stronger with increasing turbulence (Goodwin et al., 2004b).
Feedback comes in two main forms: radiative feedback, where collapsing material heats
the core through compression and friction; and outflow feedback, where mass loss via jets
and bipolar outflows alters the disc environment. The heating from radiative feedback can
stabilize the core against collapse, while outflows heat the disc, induce turbulence, and
transport mass and momentum away from the inner regions. Heating can either promote
or inhibit fragmentation, and studies find that these mechanisms promote fragmentation
specifically when they occur episodically. Lomax et al. (2014, 2015a, 2016) find that
when radiative feedback is episodic, cores reproduce the peak in the prestellar core
mass function and initial mass function, the observed brown dwarf-to-star ratio, and
the field multiplicity statistics. Rohde et al. (2021) find that outflow feedback is also
necessary: when episodic, it reproduces field multiplicity statistics for young populations,
and reproduces the population of binary twins. These "twins" are an observed population
whose ratio of primary to secondary mass is approximately equal (≥ 0.95).

Protostars that form from the dynamical collapse and fragmentation of the prestellar
core are typically surrounded by an accretion disc. This disc forms from material with
excess angular momentum, which prevents direct accretion onto the protostar. If the
accretion disc becomes sufficiently massive, extended and cold, it fragments to produce
a secondary star or stars in orbit around the primary (Larson, 1978; Adams et al., 1989;
Chapman et al., 1992; Bonnell & Bate, 1994; Whitworth et al., 1995; Bhattal et al.,
1998). This is "disc fragmentation". The discs can become unstable due to perturbation
by a passing star (Boffin et al., 1998; Watkins et al., 1998a,b; Thies et al., 2010),
by compression induced by a pressure wave, or by rotation of the core material itself
(Hennebelle et al., 2004). Disc instability can also be triggered as material infalls onto
the disc (Stamatellos et al., 2007) – specifically when this infall is rapid (Kratter et al.,
2010) – though the heating produced by the incoming material stabilizes the disc while
infall is still ongoing (Walch et al., 2009).

Cooling is essential to the fragmentation process; while fragments which form in
the inner disc tend to form earlier, faster, and become more massive (Stamatellos &
Whitworth, 2009), fragmentation occurs preferentially in the outer disc where cooling
is most efficient (Stamatellos & Whitworth, 2008, 2009). Episodic accretion provides

10 The Statistics of Stellar Multiple Systems Formed from Small Subclusters
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figures/LomaxFig_no_permission.png

Figure 1.6. Zoom-ins of a 2+2+2 sextuple system formed from a combination of
core and disk fragmentation. From Lomax et al. (2015a).

periods of cooling when fragmentation can occur (Stamatellos et al., 2011, 2012), and
rapid rotation helps to extend discs, cooling them and allowing for higher rates of
fragmentation (Walch et al., 2009).

The dominant fragmentation mode depends on factors such as feedback, ambient
structure, temperature, and turbulence. Core fragmentation is preferred in cores
undergoing radiative feedback (Offner et al., 2010). When cores form as part of the
collapse of a filament, however, Walch et al. (2012) find that the presence of nearby cores
suppresses the extended discs from which core fragmentation occurs. Disc fragmentation
is highly sensitive to the initial temperature of the core, only occurring in the simulations
of Sigalotti et al. (2023) when clouds begin with temperatures ≤ 6 K, and it dominates
in the simulations of Lomax et al. (2015b) when turbulence is high.

Together, core and disc fragmentation can produce young multiple systems of
as many as seven stars. For example, Lomax et al. (2015a) present a 2+2+2 sextuple
system formed through a combination of both mechanisms, shown in Figure 1.6.

11
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figures/AndreFig_no_permission.png

Figure 1.7. Comparison of the Kroupa (2001) IMF, the Chabrier (2005) system IMF,
and the CMF observed by André et al. (2010) in the Aquila region, reproduced from
André et al. (2010). The accompanying lognormal fit to the CMF data is in red, and
the power-law fit to the CMF data is in black. Observations are from SPIRE/PACS
observations of 541 prestellar core candidates. The typical mass spectrum of CO
clumps from Kramer et al. (1998) is also included for comparison.
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1.4 Previous related theoretical studies
A key constraint on star formation theories is the number of stars formed per core.

Understanding this number helps connect observed multiplicity statistics to the physical
processes of fragmentation and dynamical evolution. Here, I summarize key theoretical
studies that estimate N , or investigate the dynamics of small stellar systems that emerge
from core fragmentation. Lomax et al. (2015a) used smoothed-particle hydrodynamics
(SPH) to simulate the evolution of Ophiuchus-like cores under various feedback models.
They find that episodic radiative feedback best reproduced the peak in the stellar initial
mass function (IMF) (Chabrier, 2005) and the observed ratio of low-mass stars to brown
dwarfs (Andersen et al., 2008). Episodic radiative feedback also led the cores to reproduce
the binary statistics of young embedded class II and class III protostars as observed by
Kraus et al. (2011) and Kraus & Hillenbrand (2012)†. This best-fit feedback results in
cores which produce an average of 4.5(±1.9) stars each.

In a more recent study, Rohde et al. (2021) model episodic outflow feedback in
solar-mass cores using SPH. They find that the cores with outflow feedback reproduce
the robust VANDAM multiplicity statistics of young sources in Perseus (Tobin et al.,
2016) as well as the observed fraction of binary twins (Fernandez et al., 2017; Kounkel
et al., 2019). The episodic outflow feedback leads the cores to produce an average of
3.14 ± 1.95 stars each. This value is slightly lower than that found by Lomax et al.
(2015a), but the two results are consistent within uncertainties.

Holman et al. (2013) take a statistical approach to estimating N , analysing the
relationship between the IMF and the Core Mass Function (CMF). The stellar IMF
describes the observed distribution of stellar masses at the time of their formation. It is
generally flat at lower masses and decreases as a power law at higher masses (Salpeter
1955;Chabrier 2003). The CMF describes the observed mass distribution of prestellar
cores. The CMF exhibits a similar shape to the IMF, though shifted to higher masses
by a factor of ∼ 2 − 4 (Motte et al. 1998;Alves et al. 2007). Figure 1.7 from André
et al. (2010) illustrates this offset. The similarity in their shapes and the shift in mass
can both be explained if cores tend to fragment into multiple stars (with some relatively
small mass loss and inefficiency). Holman et al. (2013) find that if the shape of the
IMF is inherited from the shape of the CMF, then the increase in binary frequency with
primary mass observed in multiplicity surveys (Fig. 1.3) requires that a prestellar core
must typically spawn a subcluster of 4.3(±0.4) stars. This is the most constrained of the
N estimates, and is in full agreement with both the Lomax and Rohde findings.

While the above studies focus on how many stars form per core, others examine how
such small-N groups dynamically evolve into the multiplicity configurations we observe
today. Sterzik & Durisen (1998) explore how multiplicity can arise and evolve in such

†The authors of the study note that these early binary statistics are not strongly constrained
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small stellar subclusters with their dynamical n-body simulations of cold, non-rotating,
spherical distributions of N = 3, 4, or 5 stars. The stars have masses drawn from
a Miller-Scalo distribution, and are evolved for 1000 crossing times. At the end the
multiplicities are

S : B : T = 47 : 47 : 6, for N = 3;
S : B : T : Q = 63 : 29 : 6 : 1, for N = 4;
S : B : T : Q+ = 70 : 19 : 9 : 1, for N = 5.

(1.6)

Thus, they show that increasing N increases the percentage of singles and reduces the
percentage of binaries.

McDonald & Clarke (1993) investigate how stellar mass shapes the outcome of
small-N dynamics. In their model, they randomly sample stellar masses from an IMF-like
distribution, then assuming the two most massive stars form a binary while all other
stars remain single. They term this phenomenon Dynamical Biasing, and find that it
reproduces the observed population of binaries with solar-mass primaries and low-mass
luminous companions, while simultaneously explaining the observed scarcity of brown
dwarf companions to solar-type stars. In a second paper, McDonald & Clarke (1995)
use n-body simulations to show that, if the stars in a small-N subcluster are attended
by discs, the increased dissipation during close encounters reduces the effectiveness of
dynamical biasing, meaning that lower-mass stars have an increased chance of ending up
in a binary. Lee et al. (2019) and Kuffmeier et al. (2019) further show that dynamical
friction introduced by the disc causes forming protostars to migrate inward, hardening
binaries and thus increases the tendency to produce higher-order multiples.

If gas from the natal cloud is present, Kuruwita & Haugbølle (2023) show that the
resulting drag can also drive the migration, or inspiral, of forming stars, bringing binaries
closer together. This would likewise increase the proportion of higher-order multiples.

1.5 Early clustering in observations
Observations support the presence of small protostellar groupings within nearby,

young star-forming regions. Cartwright & Whitworth (2004) introduce a technique to
quantify stellar substructure within regions such as molecular clouds. Through this
technique, they show that the Chameleon Molecular Cloud displays moderate hierarchical
substructure, indicating that its young stellar objects are spatially grouped. The Taurus
Molecular Cloud shows an even greater degree of clustering in this study. The number of
protostars present in these groupings can vary between regions. In the Auriga-California
Molecular Cloud, for instance, Broekhoven-Fiene et al. (2014) identify 7 protostellar
clusters: 4 containing 10 or more stars, and 3 smaller groups of 5 − 9 stars. Similar
hierarchical organization is shown in young protostars across low mass star-forming
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environments; Schmeja et al. (2008) report clustering of Class 0 and Class 1 protostars
in the Perseus, Ophiuchus, and Serpens Molecular Clouds. Their analysis reveals age
effects in substructure, finding Class 2/3 protostars to be centrally condensed, resembling
older star clusters. They attribute this change in substructure to dynamical interactions
between protostars, which erase hierarchical, clustered structure on a few-Myr timescale.

1.6 Long-term impact of early dynamics
The early dynamical environment in which stars form can leave long-lasting imprints

on both the internal structure of multiple systems and the demographics of the field star
population. By studying these outcomes, we can reconstruct aspects of the subcluster
dynamics that produced them. In this work, I focus on three key mechanisms that
produce these signatures: Dynamical Biasing, von Zeipel-Lidov-Kozai cycles, and stellar
ejections.

Sterzik & Durisen (1998) (hereafter SD98) observe Dynamical Biasing in their
numerical simulations of subclusters with 3≤N≤5. In triple and higher-order multiples,
80 − 90% of central orbits involve the two most-massive stars, and this percentage
increases with increasing N , and with the range of stellar masses within the subcluster.
At the same time, the mean semi-major axis of these central orbits decreases with
increasing N , since with larger N there are more opportunities for three-star interactions.
The degree of dynamical biasing in observations, therefore, provides insight into the initial
number of stars and the initial mass distribution of subclusters.

When three-star interactions take place within a hierarchical triple, gravitational
perturbations from the outer companion can induce a periodic exchange of angular
momentum between the orbits. These von Zeipel-Lidov-Kozai (ZLK) cycles result in a
cyclic variation in the eccentricity of the inner orbit, combined with a cyclic variation in
the mutual orbital inclination (von Zeipel, 1910; Lidov, 1962; Kozai, 1962). They can
drive the inner binary toward high eccentricity, potentially triggering tidal interactions or
mergers, and they can flip the orbits of systems from prograde to retrograde (e.g. Naoz,
2016).

The dynamics of subclusters also play a key role in shaping broader field populations,
particularly the statistics of single stars, since many single stars start life in subclusters
before being ejected into the field. Consequently the number, mass distribution, and
velocity distribution of single stars are significantly influenced by the dissolution of their
natal subclusters. For example, the single star population should start with a velocity
distribution compatible with the velocity distribution of subcluster ejections. Subsequent
interactions between these single stars and other objects (other field stars, star clusters and
molecular clouds) may then alter this distribution. In addition, Dynamical Biasing leads
to the preferential ejection of lower-mass stars, which is seen in both numerical n-body
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(McDonald & Clarke, 1995; Sterzik & Durisen, 1998) and hydrodynamical simulations
(e.g. Goodwin et al., 2004a), resulting in a lower average mass for single stars compared
to those in multiple systems. The initial velocity distribution of field stars – especially low-
mass singles – may therefore preserve a dynamical imprint of early subcluster interactions,
offering a potential observational probe of the fragmentation and ejection process.

1.7 n-body integration
While prescriptions such as SPH are used to understand the fragmentation of

prestellar cores into protostellar multiples, once fragmentation and migration are complete
(and much of the natal gas has accreted or dissipated), n-body dynamics dominate the
evolution of stellar multiple systems.

Objects gravitate according to Newton’s law of universal gravitation (Newton,
1687), and when a gravitating system is made up of two bodies in isolation, the equations
of motion can be solved exactly. But for N > 2, no analytical solution exists. Instead,
the position and velocity of each object are described by a coupled set of infinite Taylor
series expanded around time:

x(t + h) = x(t) + hx′(t) + h2

2! x′′(t) + h3

3! x′′′(t) + h4

4! x(4)(t) + · · · (1.7)

x′(t + h) = x′(t) + hx′′(t) + h2

2! x′′′(t) + h3

3! x(4)(t) + h4

4! x(5)(t) + · · · , (1.8)

where x is the position vector, t is time, h is the timestep, and n "primes" represent the
n-th derivative of x.

The position and velocity of each body at some future time must be estimated
based on the force exerted by each other body. As a result, complexity increases with
N , as a system of N stars requires N(N − 1)/2 force calculations. Errors arise during
the trajectory calculations as an artifact of taking discrete time steps and of truncating
the estimated values at each of these steps. Short timesteps can improve accurracy to a
degree, but errors will still grow exponentially with integration time (Miller, 1964). Within
the isolated gravitating system, the quantites of total orbital energy, linear momentum,
angular momentum, and centre of mass velocity will always be conserved, providing
a benchmark for monitoring tbe growth of errors. Astronomers once calculated the
dynamical movements of these N > 2 systems by hand (Stromgren, 1900; Strömgren,
1909), but even with today’s computational technology, the n-body problem remains
complex.

Predictor-corrector methods of n-body integration reduce the number of force
evaluations needed by predicting the trajectory of a particle at some timestep using
the Taylor expansion, then refining the estimate with a corrector formula based on
the updated information (see Aarseth 2003). von Hoerner (1960), who introduced the
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method, estimates the calculations to the fourth order of the Taylor series. Following
works tested higher-order approximations (e.g. Aarseth, 1966; Wielen, 1967), but the
increased integration time was typically found to outweigh the gains in accuracy (Wielen,
1974). One predictor-corrector algorithm commonly used in astrophysical contexts is the
3rd Order Hermite scheme (Makino, 1991), which relies on estimating the acceleration
and jerk of each body. It is particularly suited to systems with large variation in mass
scales, distance scales, and dynamical timescales; it is also symplectic, which leads to
good conservation of energy over time.

The Runge-Kutta family of methods tackles the problem of reducing force evaluations
by estimating the trajectory at an intermediate, half-timestep (Runge, 1895; Kutta, 1901).
It is typically implemented at the 4th order, where four interim steps are calculated using
the previous timestep, two half-timesteps calculated with the preceding interim step, and
the full timestep calculated with the preceding interim step (see equations 2.40-2.47 in
Chapter 2). All interim steps are then weighted and summed to produce an estimated
change in position and velocity (2.48). RK4 is not symplectic, and can introduce a drift
in conserved quantities over time, though if total energy change is properly monitored,
this does not pose a problem for the end systems. As the integration scheme only requires
the calculation of position and velocity, it is simpler to implement than integrators like
Hermite.

More advanced techniques have been developed to address the issues that arise
with large variations in distance scale and very large n. For instances where individual
systems may experience a wide variety of distance scales, such as on elliptical orbits,
adaptive timesteps can increase accuracy and efficiency. They set each timestep according
to the relative change in trajectory from the step before, ensuring small steps at close
encounters and allowing large steps at large separations. When integrating systems whose
different components may remain on very disparate distance scales from one another, such
as a star cluster with close binaries, the close systems require much shorter timesteps to
maintain precision than is necessary for the widely separated pairings. In these instances,
instead of updating every star on the same timestep, each body can update on an
individual timescale. These techniques can be used individually, or in conjunction, as
the setup requires. For groups of very closely interacting bodies, conventional two-body
calculations can result in singularities. To avoid these singularities, chain regularization
recasts the equations of motion into a regularized coordinate system, typically organized
in a chain structure (Aarseth & Zare, 1974).

For very large n, calculating the forces between all particles becomes prohibitive.
Neighbour schemes reduce computational load by limiting calculations for each body to
some grouping of nearby "neighbours" (Ahmad & Cohen, 1973, 1974), and tree codes
estimate the combined effect of distant groupings of particles as one force (Barnes &
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Hut, 1986; McMillan & Aarseth, 1993). For extremely large n, such as in cosmological
simulations, particles can be assigned to a piece of a grid or mesh for which the potential is
solved before interpolating the motion back to each body. This grid is used in conjunction
with a neighbour treatment in the particle-particle particle-mesh method (Hockney &
Eastwood, 1988).

Like any numerical method, n-body balances the benefits of accuracy with the
cost of complex implementation and increasing computation time. While many complex
tools have been developed, simpler prescriptions often suffice for small-n systems with
constrained scales, especially when care is taken to monitor the accumulation of errors.

1.8 Aim of the thesis
Through a combination of observation and theory, we know the following:

• Higher-order multiples are prevalent: They comprise a significant portion of
stellar systems, even for lower primary masses when multiplicity is less common.
Multiplicity statistics are likely to be higher than current observational surveys report,
since detection methods likely miss the lowest mass and most widely-separated
companions.

• They can form from individual cores: Many protostars can condense from
a single prestellar core, as either a consequence of core fragmentation, disc
fragmentation, or a combination of the two. The conditions of these cores influence
the fragmentation pathway and its efficiency.

• Low-mass protostars must form in groups to reproduce multiplicity statistics:
Several distinct theoretical studies converge on the conclusion that an average of 4
or 5 stars likely form from each low-mass prestellar core, though the exact number
may vary by environment.

• n-body integration is a useful tool for understanding these protostellar
subclusters: n-body integration techniques, while unable to solve for gravitational
motion analytically, provide valuable insight into the complex movements, evolution,
and dissolution of small-N subclusters and the systems they can form. n-body
interactions alone can create stable multiples from randomized subclusters, even in
very simple models. The addition of features like gas and discs should increase the
survival of these multiples.

• Evidence of a dynamic history should be visible in the final systems:
Markers of an early life in dynamically-active small-N subclusters persist within
stellar multiples and the single star population long after the subcluster has dissolved.
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Despite the advances made in our understanding of stellar multiplicity, several
open questions remain:

• What happens to fragments over the long term? Simulations of fragmentation
halt at the protostellar stage, and sometimes before. How do these protostars
evolve as a group? How are they affected by initial conditions unexplored by Sterzik
& Durisen (1998)?

• Are N> 5 subclusters able to form long-lived multiples? Of how high an
order? How do these subclusters alter the global multiplicity statistics?

• What initial number of protostars, when evolved, best reproduce the
observed multiplicity statistics? How does this number compare with previous
findings? If they agree, how does it constrain our estimate of N?

With these open questions in mind, this thesis seeks to model the evolution of
stellar subclusters between the protostellar and main sequence phases with previously-
unexplored initial conditions. By comparing the multiplicity statistics and structural
features of the final systems with observed statistics, I will make predictions about the
initial conditions of the subclusters, with an emphasis on N . The goal of this work is to
find an estimate of N which reproduces observed statistics and constrains the estimates
of previous works.

1.8.1 Thesis plan
• Chapter 2 introduces the method by which I set the initial conditions of the

subclusters, evolve them, and calculate their system characteristics. I also outline
a procedure to idenfity and track stellar multiples.

• In Chapter 3, I evolve subclusters with 3 ≤ N ≤ 7 and various initial conditions. I
introduce a scheme to combine results from realizations of different N in order to
identify the mix of N values which best reproduces observed multiplicity statistics.

• Chapter 4 analyses the effect of initial conditions on the structural features of the
stellar systems produced by the experiments in Chapter 3.

• In chapter 5, I explore and derive a function which outputs the number of possible
end states for a subcluster of N stars. The function also gives the multiplicities of
all systems which make up each end state.

• The final chapter summarizes the thesis, outlines key results, and discusses future
avenues of exploration.
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Chapter 2

Method

In this chapter, I outline the technical processes used to set up stellar subclusters, evolve
them through time, and determine the characteristics of the systems they produce. I
further discuss how the output of these processes is stored, the efficiency and accuracy of
the integration, and how the data may be scaled to study subclusters of different masses
and sizes.

2.1 Creating the Systems

Table 2.1. Parameters and symbols

N and the Configuration Parameters
number of stars in subcluster N

standard deviation of log10(M/M⊙) σℓ

percentage of kinetic energy in ordered rotation αrot

rotation law: solid-body=sol; Keplerian=kep αlaw

mass segregation option αseg

Configuration, [σℓ, αrot, αlaw, αseg] C
Initialization Variables
mass of star M

log10(m/M⊙) (random Gaussian deviate) ℓ

random Gaussian deviates on [−∞,∞] G,Gν

position of star r

[r, θr, ϕr]
[x, y, z]

random linear deviates on [0, 1] Lr,Lθ,Lϕ

index for stellar ID n

radius of subcluster centre of mass rCOM

total mass of subcluster Mtot

gravitational potential energy Ω
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gravitational constant G
initial rotational kinetic energy of subcluster Erot

total kinetic energy of subcluster K
total orbital energy of the subcluster Etot

random isotropic velocity viso

dispersion in random isotropic velocity σiso

velocity of star v

[v, θv, ϕv]
[vx, vy, vz]

bulk velocity of subcluster υCOM

rotational velocity vrot

moment of inertia about the z-axis Iz

angular speed about the z-axis ω

unit vector parallel to the z-axis êz

Kepler coefficient κ

net angular momentum about the z-axis Hz

linear momentum p

angular momentum H

Numerical Variables and Parameters
acceleration a

time t

interim step values k1,υ, k2,υ, k3,υ, k4,υ

k1,r, k2,r, k3,r, k4,r

integration stepsize h
estimated change in velocity ∆v

estimated change in position ∆r

adaptive integration timestep ∆t

coefficient for integration timestep γ

time-interval for monitoring multiplicity ∆tMMO

Orbital Parameters
semi-major axis a

orbital period P

eccentricity e

orbital inclination angle θo

Scaling Parameters
mean of log10(m/M⊙) ℓ0

radius of subcluster R

factor to scale total mass of subcluster fM
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factor to scale radius of subcluster fR

Five physical parameters are required to generate the initial conditions for a
subcluster. The first is the number of stars in the subcluster, N . The remaining
four physical parameters, (σℓ, αrot, αlaw, αseg) are termed ‘Configuration Parameters’,
and regulate – in a statistical sense – the distribution of stellar masses and the initial
distribution of stars in phase space. In this section, I define the four Configuration
Parameters and explain how they are implemented in setting up the initial conditions.
They are also listed in the first section of Table 3.3, and they are all dimensionless.

2.1.1 Mass
The individual stellar masses, M , are generated from a log-normal distribution. I

define:

ℓ = log10

(
M

M⊙

)
, (2.1)

and calculate a value of ℓ using a gaussian random deviate G

ℓ = ℓ0 + σℓG, (2.2)

where ℓ0 defines the peak of the gaussian distribution and σ
ℓ

defines its log dispersion.
Each stellar mass M is then given by

M = 10ℓ M⊙ . (2.3)

Here σℓ is a Configuration Parameter, since it regulates the width of the mass
distribution, i.e. the mean ratio between the most and least massive stars. While ℓ0

regulates the mean mass, it is not a Configuration Parameter, as the results can be
re-scaled to give any value of ℓ0 . The prescription for rescaling the code output is
explained in Section 2.7.

2.1.2 Position
To start with, the stars are positioned randomly in a sphere of radius R using

spherical polar coordinates. I select values of r, θr, and ϕr using three independent
random linear deviates Lr, Lθ,r, and Lϕ,r on the interval [0, 1], where

r = RL1/3
r , (2.4)

θr = cos−1(2Lθ,r − 1), (2.5)
ϕr = 2πLϕ,r. (2.6)
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If αseg = 1, the stars are mass-segregated along the radial axis. This is done by matching
the masses and stellar radii such that the most massive star occupies the position of
smallest radius, and the least massive the position of largest radius (i.e. for any pair
of stars with IDs n and n′, if Mn < Mn′ , then rn > rn′). If αseg = 0, the radii remain
randomly assigned to the masses.

From here I transform the spherical coordinates into the cartesian reference frame:

x = r sin(θr) cos(ϕr), (2.7)
y = r sin(θr) sin(ϕr), (2.8)
z = r cos(θr). (2.9)

Once the masses and positions are assigned, the centre of the Cartesian coordinate
system is shifted to the centre of mass,

rn −→ rn − rCOM . (2.10)

where

rCOM = 1
Mtot

n=N∑
n=1
{Mnrn} , (2.11)

and

Mtot =
n=N∑
n=1
{Mn} . (2.12)

.
The initial self-gravitational potential energy,

Ω = −G
n=N−1∑

n=1

n′=N∑
n′=n+1

{
Mn Mn′

|rn − rn′|

}
, (2.13)

is also computed.
R is not a Configuration Parameter, since the results can be re-scaled to any

subcluster radius.

2.1.3 Velocity
The last two Configuration Parameters regulate the kinetic energy and spatial

distribution of the stars in the subcluster. αrot dictates the percentage of kinetic energy
that is in ordered rotation, as opposed to random isotropic velocity dispersion

αrot = Erot

K
. (2.14)
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K is the total kinetic energy:

K = 1
2

n=N∑
n=1

Mn|vn|2. (2.15)

At this juncture, the stars are given random isotropic velocities, viso, drawn from
a Maxwellian distribution with zero mean and standard deviation

σiso =
√

[1− αrot]
Ω

6Mtot
, (2.16)

where Mtot is the total mass of the subcluster. I select a gaussian random deviate Gυ on
the interval [−∞, +∞] and two linear random deviates (Lθ.v, Lϕ,v) on the interval [0, 1],
using these values to obtain velocities in the spherical frame

υ = σiso Gυ, (2.17)
θv = cos−1(2Lθ,v − 1), (2.18)
ϕv = 2πLϕ,v. (2.19)

Transforming to cartesian,

υx = υ sin(θv) cos(ϕv), (2.20)
υy = υ sin(θv) sin(ϕv), (2.21)
υz = υ cos(θv). (2.22)

These velocities are then shifted to the centre-of-mass frame by calculating the
subcluster bulk velocity,

υCOM
= 1

MTOT

n=N∑
n=1
{Mnυn} , (2.23)

subtracting from the stellar velocities,

υn −→ υn − υCOM
(2.24)

and renormalising to correct the total kinetic energy invested in isotropic velocity
dispersion.

If αrot > 0, the stars are also given ordered rotation velocities, vrot, where αlaw

dictates the rotation law. If αlaw = sol the rotation is solid-body and the rotational
exponent is 1. The moment of inertia about the z-axis, angular speed about the z-axis,

25



Chapter 1. Introduction

and velocity are thus assigned respectively as

Iz =
n=N∑
n=1
{Mn|êz∧rn|2},

ω = [αrotΩ/Iz]1/2,

vrot:n = ω êz∧rn ,

 if αlaw = sol ; (2.25)

where êz is the unit vector parallel to the z-axis and ∧ denotes a vector product.
Alternatively, if αlaw = kep the rotation is Keplerian and the rotational exponent is −1

2 .
The moment of inertia about the z-axis, Kepler coefficient, and velocity now scale with
r−1/2

n , and are assigned respectively as

I ′
z =

n=N∑
n=1
{Mn|êz∧rn|−1},

κ = [αrotΩ/I ′
z]1/2,

vrot:n = κ |êz∧rn|−3/2 êz∧rn,

 if αlaw = kep. (2.26)

The net velocities of the stars,

vn = viso:n + vrot:n, (2.27)

are then computed and shifted (again) to the centre-of-mass frame.

Finally the initial total kinetic energy is computed and the velocities are re-scaled
to ensure that the subcluster is virialised,

vn ←− vn

√
Ω
2K . (2.28)

Because of this rescaling, the specific choice of velocity dispersion σiso in Eq. 2.17 is
inconsequential.

I chose to use an initially virialised subcluster for two reasons. First, the timescale
on which the subcluster approaches virial equilibrium is likely to be short compared with
the timescale on which the multiplicity statistics stabilise. Second, this reduces the
number of free parameters to explore.

2.1.4 Flattening

In the original form of the experiment, I included a flattening parameter, αdisk,
which produced a flattened, disk-like spatial distribution of stars. This parameter was
disregarded from results, as it produced no statistically-significant affect on the end
systems. However, I will outline the prescription for this flattening.
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If αdisk = 1, the positions of the stars are flattened in the z-direction such that

z ←− z
[
1 + 3αrot

2

]−1
. (2.29)

The velocities are also modified accordingly:

vz ←− vz

1 +
√

3αrot

2

−1

. (2.30)

Equations 2.29 and 2.30 are not exact solutions, rather they approximate the
expected behaviour of a rotating cloud by parameterizing the flattening as a function of
the degree of ordered rotation.

The rotational velocity must be rescaled such that the chosen values reproduce the
desired value of αrot. For this, I calculate the net angular momentum about the z-axis

Hz =
n=N∑
n=1

Mn(xvtot,y − yvtot,x) (2.31)

and moment of inertia about the z-axis

Iz =
n=N∑
n=1

Mn(x2 + y2) (2.32)

to find the rotational energy

Erot = H2
z

2Iz

. (2.33)

Thus the new α′
rot is given by

α
′

rot = Erot

Ekin
. (2.34)

The rotational velocity is modified as follows:

vrot ←− vrot

√
αrot

α
′
rot

. (2.35)

The sequence from 2.27 through 2.28, and 2.31 through 2.35 is repeated until α′
rot

satisfies the condition

αrot:tol > |α′
rot − αrot|. (2.36)

The default value of the tolerance parameter is set to αrot:tol = 0.1.
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2.1.5 System Parameters

I use the shorthand

C ≡ [σℓ, αrot, αlaw, αseg] (2.37)

to represent a specific set of Configuration Parameters. Apart from N and C, the only
other variables that distinguish one experiment from another are the random-number
seeds used to generate different realisations of the same N and same set of Configuration
Parameters, C.

2.2 Evolving the System
To time-evolve the point-mass star clusters, I wrote a 4th order Runge-Kutte

Ordinary Differential Equation solving algorithm (RK4). For each of the coupled
differential equations of gravitational motion of acceleration:

a = dv

dt
, (2.38)

and velocity:

υ = dr

dt
, (2.39)

I calculate four interim step values k1, k2, k3, and k4 according to a given stepsize h:

k1,υ = ha(r) (2.40)
k1,r = hυ (2.41)

k2,υ = ha(r + k1,r

2 ) (2.42)

k2,r = h[υ + k1,υ

2 ] (2.43)

k3,υ = ha(r + k2,r

2 ) (2.44)

k3,r = h[υ + k2,υ

2 ] (2.45)

k4,υ = ha(r + k3,r) (2.46)
k4,r = h[υ + k3,υ]. (2.47)

They are then weighted and added together to calculate the estimated velocity and
position at the next step:
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∆υ = 1
6[k1,υ + 2k2,υ + 2k3,υ + k4,υ] (2.48)

∆r = 1
6[k1,r + 2k2,r + 2k3,r + k4,r]. (2.49)

This algorithm estimates the equations of gravitational motion to the 4th order,
which provides a high level of accuracy during stellar close encounters, when energy
conservation is most likely to be lost in N-body simulations. Other N-body codes such
as nbody6, which is employed in the AMUSE package (Portegies Zwart, 2011), use
lower-order algorithms such as the Leapfrog-Verlet 3rd order ODE solver. This is because
general N -body codes are designed to balance precision with efficiency for high N . Since
this code is designed for relatively small N values, I employ an RK4 for its greater
accuracy. I do not find this choice to be time-prohibitive – the computational runtime to
evolve a two-body system ∼ 1 Myr on a Mac M1 chip is ∼ 0.3 s.

To increase time-efficiency and conservation of angular momentum throughout the
evolution, I incorporated an algorithm to adapt the evolutionary timestep, ∆t. For each
stellar pair at each new step of the integrator, the algorithm takes the magnitude change
in relative position over relative velocity, and the magnitude change in relative velocity
over relative acceleration. ∆t is calculated as a fraction of the smallest of these values.

∆t = γ MIN
{
|rn − rn′ |
|vn − vn′|

,
|vn − vn′|
|an − an′ |

}
n̸=n′

(2.50)

where rn, vn, and an are the position, velocity, and acceleration of star n, respectively.

∆t is then used for the next step of the integration. Here γ is a user-specified
parameter determining the accuracy of the integration. This formulation ensures that
the largest fractional change in relative position or relative velocity of any two stars in
one timestep is ∼ γ. As stars move closer to one another, conservation of energy is
maintained, and as stars move further apart and less precision is needed, computational
time is conserved. The numerical experiments presented in the thesis have been performed
with γ =0.1.

Each initial system is integrated for a maximum of 1000 crossing times (tcr), where

tcr =
√

R3

GMtot

, (2.51)

unless all the existing systems become unbound from one another, in which case the
integration is terminated at a time t < 1000 tcr in order to save computer time (see
Section 2.4).
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2.3 Identifying Binary and Higher-Order Multiples
At regular intervals, ∆tMMO , during the cluster evolution, I identify multiple systems

using a Multiplicity Monitoring Operation, hereafter MMO. The MMO selects a random
pair of stars in the subcluster – If the stars in this pair [1] are mutual nearest neighbours,
and [2] have negative energy in their mutual centre of mass frame, they are identified
as bound. For the purposes of the MMO, the bound pair is then treated as a single
object with the properties (mass, position, velocity) of its center of mass. This object is
added to the pairing procedure, and its individual constituent stars are removed from
this iteration of the MMO. Conversely, if the pair do not meet both criteria [1] and [2],
they remain as individual stars, and the MMO checks a different possible pairing. This
continues recursively until the full inventory of multiple systems in the subcluster has
been determined.

Through this procedure, the MMO identifies all stellar systems which have formed
at that ∆tMMO , the multiplicity of each system, its architecture (i.e. planetary vs 2+2
quadruple), as well as which specific stars occupy which orbit. For each identified bound
system – including higher-order multiples – the procedure calculates the orbital parameters:
semi-major axis (a), orbital period (P ), eccentricity (e), and angular momentum vector
(which gives the orbital inclination vector with angle θo). The MMO is implemented
every 33 crossing times (∼ 2.3 Myr N−1/2, or ∼ 1 Myr for N = 4 or 5). By running
at many intervals throughout the integration, the MMO is able to track the evolution
of system multiplicity and architecture. Note that, after an MMO implementation, the
integration procedure continues to follow all stars as individuals.

2.1 shows the evolution of an example N = 4 subcluster. At all four MMO
timesteps shown, the MMO identifies a "planetary" quadruple with a central pairing made
up of the two most massive stars (0.64 M⊙ and 0.37 M⊙). In the first two ∆tMMO , the
0.25 M⊙ star occupies the third orbit in the hierarchy, and the 0.24 M⊙ star is a distant
fourth. Between the second and third ∆tMMO , the outer two stars exchange places in the
hierarchy.

2.4 Unbound Stars and Stopping Conditions
During the evolution, a star or system may become unbound from the rest of

the subcluster. It is then no longer necessary to track its position, and it is removed
from further evolution of the subcluster (and from subsequent MMO implementations).
However, during periods of frequent close encounters two stars that are actually bound
to one another may not meet condition [1] (i.e. may briefly not be mutual nearest
neighbours). This only occurs occasionally, and only ever in the very early lifetime of a
subcluster when the dynamics is very chaotic. To avoid inadvertently removing bound
stars or systems from the evolution, stars and systems are only removed after the first 4
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Figure 2.1. The trajectory of each member of a 4 star subcluster as projected onto
the z-axis. The subcluster centre of mass lies at the origin. Monitoring timesteps
are marked with purple vertical lines. At all four MMO timesteps shown, the MMO
identifies a "planetary" quadruple with a central pairing made up of the two most
massive stars (0.64 M⊙ and 0.37 M⊙). In the first two ∆tMMO , the 0.25 M⊙ star
forms a third and the 0.24 M⊙ star is a distant fourth. Between the second and third
∆tMMO , the outer two stars exchange places in the hierarchy.
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∆tMMO , and only if those stars or systems have remained unbound for two consecutive
MMOs.

If the MMO finds that the subcluster consists entirely of singles and binaries, no
further dynamical change can take place and the evolution is halted.

2.5 Output

The code outlined above calculates a significant number of values at a large
number of timesteps. Many, but not all, of these data are valuable for analysis. To
keep files as compact as possible, organize the data, and cull unnecessary information, I
constructed three output files: stellar information, orbital information, and subcluster
information.

Stellar information: This file stores information on the movement of the individual
stars in each realized subcluster. Each star is identified by its mass and a label number,
which is given by the star’s mass rank within its subcluster. The cartesian position and
velocity vectors, along with the dimensionalized time, are written every 0.5 crossing
times. While the position and velocity are calculated for every evolutionary timestep ∆t,
the 0.5 crossing time resolution is high enough to represent the general movements of
most systems without creating prohibitively-large output files. The stellar output files
for N = 7 do not exceed 1.7 GB each. To investigate the detailed movements of a
particular system, one can simply rerun that realization and store the output at a higher
time resolution.

Orbital Information: This file stores the information about each orbit identified by
the MMO. For each ∆tMMO , the MMO establishes a hierarchy of orbits and calculates the
parameters of those orbits. For each subcluster orbit at each ∆tMMO , I store the labels of
the inner object (which could be a single star or another orbit), the outer object (which
could likewise be a star or orbit), a label for this new orbit, and its orbital parameters:
mutual orbital inclination, eccentricity, semimajor axis, and period.

Subcluster Information: This file stores information about the subcluster as a
whole. At each ∆tMMO , the code writes the dimensionalized time, the multiplicity of all
systems in the subcluster, and the number of close orbits which are not the central pair
of their system, as in a 2+2, 3+2, 3+3, etc. configuration.

This file is also where the total kinetic energy and total potential energy of the
subcluster are stored for energy conservation checks.
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2.6 Checks
Total orbital energy Etot, linear momentum p, and angular momentum H ,

Etot = K + Ω, (2.52)
p = Mv, (2.53)

H = r ∧ p (2.54)

are conserved in real, isolated gravitational systems which are not subject to external
forces, but errors can accumulate in numerical methods such as RK4.

Figure, 2.2 shows K, Ω, and Etot over time for an example N = 3 subcluster. For
all subclusters in the example Configuration N = 3, C(σℓ = 0.3, αrot = 0, αseg = 0),
The median change in normalized relative energy over the course of a simulation,
∆Etot = |Etot,final −Etot,0|/(|K0|+ |Ω0|), is 0.3%. Deviations in total linear momentum
are negligible – while individual values of linear momentum are of order |p| = 10−3,
|ptot| is of the order 1E-18, arising from the 15-decimal place precision of 64-bit floats.
Angular momentum drifts slightly: 97(±2)% of subclusters complete the integration with
a fractional change in total angular momentum of < 5%. As the focus of this work is
the gravitational evolution of subclusters using the global statistics produced by many
realizations, small error accumulation (< 5%) does not meaningfully impact the results.
If the focus were on the dynamical evolution of individual, real-world systems such as
Earth-Moon-Sun, tighter error restrictions might be necessary.

2.7 Scaling
The numerical experiments described in the paper are strictly speaking dimensionless,

and have only been scaled so that the centre of the mass distribution corresponds to
M= 0.25 M⊙ and the subcluster radius to R = 103 AU for the purpose of illustration.
To scale a given experiment to a subcluster with a different total mass, M ′

tot, and/or a
different radius, R′, one must multiply all stellar and system masses by

f
M

= M ′
tot

Mtot
; (2.55)

all position vectors and orbital axes by

f
R

= R′

R
; (2.56)

the time and all orbital periods by
√√√√ f 3

R

f
M

; (2.57)
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and all velocities by
√

f
M

f
R

. (2.58)

Orbital eccentricities and inclinations are unchanged.
One potential use of these rescaling relations could be to modify the mass

distribution to study subclusters dominated by different spectral types.
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Figure 2.2. Kinetic, gravitational potential, and total orbital energy over the full
integration time for an example 3-star subcluster. The x-axis is given in dimensionless
crossing times and the y-axis in dimensionless energy.
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Chapter 3

The formation of multiples in small-N
subclusters

In this chapter, I explore the multiplicity achieved through the evolution of small,
isolated subclusters of N stars. The goal of this experiment is to understand what initial
conditions best reproduce observed multiplicity. I use the method outlined in Chapter 2
to initialise, evolve, and determine the characteristics of small-N stellar subclusters. I also
introduce a prescription for mixing the multiplicity statistics from realizations of different
N . By comparing the mixed experimental statistics with observations, I find a best
mix of Configuration Parameters and distribution of N to reproduce the main-sequence
multiplicity statistics of solar-mass primary systems.

3.1 Initial Conditions
I evolve an ensemble of stellar subclusters using pure gravitational dynamics. The

subclusters are initially characterised by the number of stars they contain, N , and four
Configuration Parameters described in Chapter 2. These are:

• σℓ, defined in Equation 2.2, the standard deviation of the log-normal distribution
of stellar masses, hereafter termed the ‘mass range’. I explore values in the range
0.2 ≤ σℓ ≤ 0.4, but focus here on results obtained with σℓ =0.3.∗

• αrot, Equation 2.14, the fraction of kinetic energy in ordered rotation. The rest is
in random velocities drawn from an isotropic Maxwellian distribution. I consider
values of αrot ranging from 0 to 0.99, or no rotation to virtually all kinetic energy
in ordered rotation.

• αlaw, the rotation law. This is either Keplerian (Equation 2.26, KEP), or solid-body
(Equation 2.25, SOL).

∗Lower values of σℓ result in too few binaries with low mass-ratios, q. Higher values result in an
IMF that is too much broader than the CMF.
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Chapter 3. The formation of multiples in small-N subclusters

Table 3.1. Parameters and symbols

multiplicity of system m
maximum multiplicity considered mmax
percentage of singles (m=1) S
percentage of binaries (m=2) B
percentage of triples (m=3) T
percentage of higher-order systems (m≥4) Q+

mean number of systems with multiplicity
m formed by a single subcluster with
Configuration C that contains N stars SCNm

probability that a core spawns N stars PDN

normalisation coefficient for PDN
(see Eqn. 3.2) ηD

parameter for PDN
(see Eqn. 3.1) ∆ND

parameter for PDN
(see Eqn. 3.1) ND

mean of N for PDN
(see Eqn. 3.3) µD

standard deviation of N for PDN
(see Eqn. 3.4) σD

N -distribution, [ND , ∆ND ] D
frequency of system of multiplicity m

resulting from Configuration C
and N -Distribution D fCDm

observed number of systems with multiplicity m Om

quality of fit to observations with
Configuration C and N -distribution D QCD

total number of systems with multiplicity m
predicted for Configuration C
and N -distribution D NCDm

percentage of stars with m ≥ 3 f
T+
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• αseg, which determines whether the stars are mass-segregated (αseg = 1) or not
(αseg =0). Star positions are generated randomly within a uniform-density sphere
with radius Ro if αrot = 0, and within a uniform-density oblate spheroid with
semi-major axis Ro if αrot >0. See section 2.1.2.

For the number of stars, N , I explore subclusters with 3 ≤ N ≤ 7. Subclusters of
N = 1, 2 are of course possible, but I do not need to evolve these cases – their multiplicity
output cannot be changed by pure internal dynamical evolution. I stop consideration
after N = 7 for two reasons: it is prohibitive to keep track of all the different possible
outcomes; and such large N are likely to be rare.

All subclusters start in Virial Equilibrium, and for each combination of N and
Configuration Parameters (σℓ, αrot, αlaw, αseg) I evolve 1000 realisations for a maximum
of 1000 tcr, where tcr ∼ 0.07 Myr N−1/2

For the purpose of illustration, I set: (i) the mean of the log-normal distribution
of masses to µℓ =−0.6 so that the median stellar mass is Mmed = 0.25 M⊙ ; and (ii)
the radius (or semi-major axis) of the initial spherical (or oblate spheroidal) envelope
to Ro = 1000 AU. However the equations regulating the evolution of a pure n-body
subcluster are dimensionless, so the results can be rescaled arbitrarily according to Section
2.7.

In order to understand how subcluster-scale dynamical interactions shape long-term
stellar multiplicity, I limit the experiment to point-mass stars and their gravitational forces.
I do not include ambient gas, (therefore there is no stellar accretion or gravitational
softening), stellar mass loss, collisions and mergers, or external forces.

3.2 Mixing N Statistics
For each set of Configuration Parameters, C listed in Table 3.3, and number of

stars, 3≤N ≤ 7, I compute the mean number of systems with multiplicity m, SCNm
,

formed from each of the 1000 realisations. m is taken in the range 1≤m≤mmax =4+.
Because the numbers of quintuples, sextuples and septuples are small (both in the
numerical experiments, and in the observations), they are simply added to the quadruples
to give S

CN4+ .

To fit the observations, I assume that the probability that a core spawns a subcluster
of N stars is given by the distribution function

PDN
= ηD MAX

({
∆N2

D
− [N −ND ]2

}
, 0
)

, (3.1)

ηD = 1
/ N=7∑

N=1
MAX

({
∆N2

D
− [N −ND ]2

}
, 0
)

, (3.2)
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where ηD is a normalisation coefficient. This function creates a truncated discrete
parabolic curve defined on the range 1 ≤ N ≤ 7. Because N is not a continuous variable,
ND regulates, but is not exactly, the mean of the N distribution; and ∆ND regulates, but
is not exactly, the standard deviation of the N distribution. The true mean and standard
deviation are given by

µD =
N=7∑
N=1
{PDN

N} , (3.3)

σ2
D

+ µ2
D

=
N=7∑
N=1

{
PDN

N2
}

. (3.4)

The subscript D in Equations 3.1 through 3.4 represents the parameters of the distribution
function, i.e.

D ≡ [ND , ∆ND ] , (3.5)

hereafter the N -Distribution.
The frequency with which a subcluster having Configuration Parameters C and

N -distribution D spawns a multiple system of order m is

fCDm
=

N=7∑
N=1
{PDN

SCNm
} . (3.6)

Therefore, if the observed number of systems with multiplicity m is Om , the predicted
number is

NCDm
= fCDm

m=4+∑
m=1
{Om}

/ m=4+∑
m=1
{fCDm

} , (3.7)

and the quality of fit for this combination of Configuration Parameters, C, and N -
Distribution, D, is given by

QCD
=

m=4+∑
m=1

{
[NCDm

−Om ]2
O2

m

}
(3.8)

A lower value of QCD
represents a better fit.

3.3 Results and Discussion
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3.3. Results and Discussion

Figure 3.1. Multiplicity distributions for subclusters with N = 3 (yellow), 4 (green),
5 (purple), 6 (red) and 7 (black). For each N -value I have evolved 1000 different
realisations with the fiducial Configuration Parameters (αrot = 0, αseg = 0). The blue
dashed line represents the T21 sample. Error bars represent the 3σ statistical variance.
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Figure 3.2. Multiplicity distributions for subclusters with N = 4, αseg = 1, and
different values of αrot = 0 (black), 0.25 (red), 0.5 (yellow), 0.75 (green), and 0.99
(blue). For each αrot value I have evolved 1000 different realisations. Error bars
represent the 3σ statistical variance.
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Table 3.2. The Configurations evaluated, and the quality and parameters of the best fit. Column 1, Configuration ID; Columns 2 through
4, the amount of rotation, the rotation law, and whether there is mass segregation; Columns 5 and 6, the N-Distribution Parameters,
(ND , ∆ND); Columns 7 and 8, the mean and standard deviation of the N -Distribution; Column 9, the quality of the best fit (small for a
good fit); Columns 10 through 13, the percentages of singles, S, binaries, B, triples, T, and quadruples plus higher orders, Q+; Column 14,
the total number of systems produced; Columns 15 through 18, the multiplicity fraction (MF, Equation 3.9), the triple and higher-order
fraction (f

T+ , Equation 1.4), the companion fraction (CF, Equation 3.10), and the plurality (PL, Equation 3.11). Row 1, the parameter
symbols; Row 2, the observed statistics from the T21 sample (Tokovinin, 2021); Rows 3 through 5, the results from Sterzik & Durisen
(1998) for subclusters with a single N = 3, 4 and 5; Rows 6 through 10, the results from this work for subclusters with a single N = 3, 4, 5,
6 and 7; Row 11, the fiducial case (no rotation, no segregation); Rows 12 through 15, the solid-body rotation cases; Rows 16 and 17, the
Keplerian rotation cases; Rows 18 through 22, the mass-segregated cases (including the best-fit case, SEG4).
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C αrot αlaw αseg ND ∆ND µ
D

σ
D
QCD

S B T Q+ Sys MF f
T+ CF PL

T21 0 – – 54 29 12 5 0.46 0.17 0.68 1.13
SD3 0 – 0 3 0 46.8 46.8 5.5 0 1,878 0.53 0.06 0.59 0.82
SD4 0 – 0 4 0 62.7 29.1 6.0 1.1 2,713 0.36 0.07 0.44 0.74
SD5 0 – 0 5 0 70.1 18.9 9.0 0.9 3,475 0.29 0.10 0.40 0.75
N=3 0 – 0 3 0 3 0 1.71 47.3 47.3 5.45 0 1,614 0.53 0.05 0.58 0.80
N=4 0 – 0 4 0 4 0 0.77 60.2 29.3 9.85 0.73 2,194 0.40 0.11 0.51 0.84
N=5 0 – 0 5 0 5 0 0.65 68.1 19.8 10.5 1.61 2,798 0.32 0.12 0.46 0.84
N=6 0 – 0 6 0 6 0 0.84 74.8 14.3 8.84 1.96 4,377 0.25 0.11 0.38 0.76
N=7 0 – 0 7 0 7 0 1.06 78.7 11.7 7.62 2.00 5,290 0.21 0.10 0.33 0.70
FID 0 – 0 4.9 1.0 4.8 0.1 0.64 67.1 21.0 10.4 1.49 16,273 0.33 0.12 0.46 0.84
SOL1 0.25 sol 0 5.0 1.0 5.0 0.0 0.57 66.2 21.7 10.4 1.7 17,104 0.34 0.12 0.48 0.86
SOL2 0.50 sol 0 4.3 3.3 4.4 2.1 0.41 62.6 24.3 11.1 2.0 16,599 0.37 0.13 0.53 0.91
SOL3 0.75 sol 0 4.4 3.4 4.4 2.2 0.49 63.8 23.1 11.3 1.78 16.714 0.36 0.13 0.51 0.90
SOL4 0.99 sol 0 4.9 1.0 4.8 0.1 1.26 70.3 23.7 5.65 0.38 17,829 0.30 0.06 0.36 0.63
KEP1 0.50 kep 0 4.4 3.4 4.4 2.2 0.42 63.5 23.6 10.8 2.08 16,715 0.36 0.13 0.51 0.90
KEP2 0.99 kep 0 5.0 1.0 5.0 0.0 1.22 71.2 21.8 6.57 0.38 17,992 0.29 0.07 0.36 0.64
SEG1 0 – 1 5.0 1.0 5.0 0.0 0.63 67.1 20.6 10.8 1.53 16,590 0.33 0.12 0.47 0.85
SEG2 0.50 sol 1 5.3 1.6 5.2 0.5 0.43 66.1 21.0 10.6 2.29 16,574 0.34 0.13 0.49 0.89
SEG3 0.99 sol 1 4.6 1.1 4.6 0.2 1.38 69.5 25.9 4.31 0.33 17,869 0.31 0.05 0.36 0.60
SEG4 0.50 kep 1 5.4 4.4 4.8 2.4 0.35 63.2 24.1 10.3 2.41 16,339 0.27 0.13 0.52 0.91
SEG5 0.99 kep 1 4.8 1.0 4.7 0.2 1.33 69.9 25.1 4.59 0.41 17,995 0.30 0.05 0.36 0.61
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3.3. Results and Discussion

The numerical experiments suggest that most cores spawn 4 or 5 stars. There
are cores that spawn 3 stars, but if they were the norm they would produce too many
binaries and too few singles, while contributing no quadruples or higher-order systems.
Conversely, there are cores that spawn more than 5 stars, but if they were the norm they
would produce too many singles and too few binaries. Although such high-N cores are
essential to produce the high-order systems, this pure n-body model does not produce
as many high-order systems as are observed; I find that increasing N is more effective
at over-producing singles than it is at producing stable higher-order multiples. In fact,
only 3 of the N = 7 experimental realizations resulted in lasting 7-star systems (see
Appendix A for details). In Section 3.3.4.1 I suggest that forming the observed number
of high-order systems probably requires the inclusion of additional physics such as disc
drag and disc fragmentation, since this will deliver compact, tightly bound companions
that can survive all but the closest interactions with other stars.

3.3.1 A universal N value
It is informative to consider the possibility that all cores spawn the same number

of stars, i.e. a universal N value, although a universal N is extremely unlikely. For these
experiments I use the fiducial parameters, i.e. no rotation and no mass-segregation.

An initially-bound subcluster with N =3 stars has A3 = 2 possible end-states:
(i) a triple system, or (ii) a binary and a single star. Because the dissolution of a 3-star
subcluster into a binary and a single is the only way for a binary or a single star to form
from such a subcluster, the percentages of single and binary systems must be equal in
this case. For the fiducial case, in which the initial subcluster has no ordered rotation or
mass segregation, ∼ 90% of 3-star subclusters decay into a binary and a single, giving
percentages of S:B:T:Q+ = 47:47:6:0, exactly as obtained by Sterzik & Durisen (1998).

An initially-bound subcluster with N =4 stars has A4 = 4 possible end-states:
(i) a quadruple; (ii) a triple and a single star; (iii) two separate binaries; or (iv) a binary
and two single stars. For the fiducial case, N =4 gives S:B:T:Q+ = 60:29:10:7. Note
that higher-order multiples may come in different variants. For example, there are ‘2+2’
quadruples and planetary quadruples.

Of the quadruple systems produced in the N =4 fiductial, 25(±14)% are ‘2+2’
systems and the remainder are planetary. In contrast, in the Tokovinin 2014 sample
∼ 75% of quadruples are ‘2+2’ systems. There are two possible explanations for this
discrepancy. First, because ’2+2’ systems feature two close pairs on one larger orbit (Fig.
1.1b), they are likely easier to detect through spectroscopic and eclipse methods, which
favour close orbits (see Section 1.2), making them overrepresented in the observational
sample. This is in comparison to ’planetary’ quadruples (Fig 1.1c), whose outermost
companions orbit much farther from the singular inner pair. These outer companions
are also more likely to be low-mass due to dynamical biasing, (see section 1.6), faint,
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Chapter 3. The formation of multiples in small-N subclusters

Figure 3.3. Map of the Quality Factor, QCD
, for the best-fit Configuration

Parameters SEG4 (αrot = 0.50, αlaw = KEP, αseg = 1) and the full range of N -
Distribution Parameters (1.0 ≤ ND ≤ 7.0 and 1.0 ≤ ∆ND ≤ 7.0). The colour encodes
log10(QCD

), with the best fits white, very bad fits purple, and the worst fit (ND = 2
and ∆ND = 1) black.
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3.3. Results and Discussion

Figure 3.4. Multiplicity distributions. The blue dashed curve represents the
T21 sample. The black full line represents the absolute best-fit combination of
Configuration Parameters and N -Distribution Parameters (i.e. SEG4, one from
bottom row in Table 3.3). The surrounding cyan represents fits for the same
Configuration Parameters and the 50 next-best-fits with different N -Distribution
Parameters (corresponding to the whitest region on Fig. 3.3).
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Figure 3.5. As Fig. 3.3, but for the Configuration Parameters giving the second
through fifth best fits (i.e. the other fits with QCD

<0.50): (a) SOL2 with QCD
=0.41;

(b) SOL3 with QCD
= 0.49; (c) KEP1 with QCD

= 0.42; and (d) SEG2 with QCD
=

0.43.
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3.3. Results and Discussion

Figure 3.6. As Fig. 3.3, but for all Configuration Parameters on a single color
mapping.
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and thus missed by wide orbit detection methods (see Section 1.2). Second, it may be
that additional physics that is missing from our numerical experiments – for example,
circumstellar accretion discs and disc fragmentation – increases the percentage of ‘2+2’
quadruples.

The number of distinguishable end-states increases monotonically with N. 5-star
subclusters have A5 = 6 possible end-states, and 6-star subclusters have A6 = 10
possible end-states. For the fiducial case, N = 5 gives S:B:T:Q+ = 68:20:10:2, with
24(±8)% of Q+ systems composed wholly, or in part, of ‘2+2’ configurations; and
N = 6 gives S:B:T:Q+ = 75:14:9:2, with 24(±6)% of Q+ systems containing ‘2+2’
configurations.

An initially-bound subcluster with N =7 stars has A7 = 14 possible end-states:
(i) a septuple; (ii) a sextuple and a single star, (iii) a quintuple and a binary, (iv) a
quintuple and two singles, (v) a quadruple and a triple, (vi) a quadruple, a binary, and a
single, (vii) a quadruple and three singles, (viii) two triples and a single, (ix) a triple and
two binaries, (x) a triple, a binary, and two singles, (xi) a triple and four singles, (xii)
three binaries and a single, (xiii) two binaries and three singles, (xiv) a binary and five
singles. Given the rapid increase in the number of end-states with increasing N , I limit
consideration to N≤7. For the fiducial case, N =7 gives S:B:T:Q+ = 79:12:8:2, with
19(±5)% of Q+ systems containing ‘2+2’ configurations. I explore the change in number
of possible end states with N in Chapter 5, and develop a formula for its calculation.

Figure 3.1 displays the multiplicity distributions for the fiducial case with different
values of N. The results for N =4 most accurately match the T21 sample, but no value
exactly reproduces the observed multiplicities. Increasing N does increase the probability
of forming higher-order multiples. Indeed, a system with multiplicity m≥3 can only form
if N≥m. However, this effect is small, and the main effect of increasing N is to increase
the percentage of singles at the expense of binaries. These singles are mainly lower-mass
stars that have been ejected by the sling-shot mechanism.

For subclusters with a universal N value the multiplicity statistics can be changed
quite significantly by introducing rotation. Figure 3.2 shows the effect of different amounts
of rotation for subclusters with N =4. The remaining 3 Configuration parameters: mass
range, type of rotation, and mass segregation, have no statistically-significant effect on
the universal N -value multiplicity statistics.

3.3.2 A distribution of N values
Since it is unlikely that every prestellar core produces the same number of stars,

I also calculate the experimental statistics for distributions of N values. I identify the
combinations of Configuration Parameters, C, and N -Distribution, D, that best fit the
observations. The N -Distributions are given by Equation 3.1, and I test all combinations
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of ND = 1.0, 1.1, 1.2, 1.3, . . . 6.8, 6.9, 7.0, and ∆ND = 1.0, 1.1, 1.2, 1.3, . . . 6.8,
6.9, 7.0.

Table 3.3 lists all the tested Configurations C; for each Configuration, the
parameters of the N -Distribution giving the best fit to the T21 sample; and – where
they exist – the corresponding parameters from Sterzik & Durisen (1998).

3.3.2.1 The notional absolute-best fit

The notional absolute-best fit is obtained with Configuration C = SEG4 (αrot =
0.5, αlaw = kep, αseg = 1) and an N -Distribution with (ND , ∆ND) ≃ (5.4, 4.4)
(corresponding to mean µD ≃ 4.8, and standard deviation σD ≃ 2.4). This delivers
percentages S:B:T:Q+ = 63 : 24 : 10 : 2.4, with Quality Factor QCD

= 0.35 and
41(±5)% of Q+ systems containing ‘2+2’ orbits.

3.3.2.2 How critical is the N-Distribution?

Figure 3.3 is a map of the Quality Factor, QCD
, for Configuration C = SEG4 over

the full range of N -Distribution parameters, (ND , ∆ND). There are two regions of low
QCD

(i.e. good fits, represented by white on Fig. 3.3). One is centred on the best fit
(ND , ∆ND)≃ (5.4, 4.4) with an extension to higher and lower values of ND and ∆ND .
The other, slightly less-favoured region, is centred on (ND , ∆ND)≃(5.5, 1).

Figure 3.4 compares the multiplicities corresponding to the absolute-best fit (black
line) and the fifty next-best fits (i.e. SEG4 with slightly different N -Distributions; cyan
shading). These fits correspond to the whitest region on Figure 3.3 (specifically, an area
that is ∼1.4% of the total area of Fig. 3.3). They all fall within one standard deviation
of the absolute-best fit, so the parameters of the N -Distribution giving the absolute-best
fit are not highly critical.

Notably, but unsurprisingly, a prestellar core producing exactly 2 stars results in
the worst fit, since it only produces binary systems. The corresponding black point on
Figure 3.3 is only just visible next to the abscissa.

3.3.2.3 Which are the critical Configuration Parameters?

Table 3.4 lists the five Configurations that produce fits with, QCD
< 0.5.

Figure 3.5 shows the Quality Factor, QCD
, for the four additional Configurations

and the full range of N -Distribution parameters, (ND , ∆ND). Panels (c) SOL2, (d)
SOL3, and (f) KEP1 on Fig. 3.5 are very similar to one another, with a single region
of high quality, centred on (ND , ∆ND)≃ (4.4, 3.4). Panel (i) SEG2 is more like SEG4
(Figure 3.3), with two regions, but the preferred region is now the lower one centred on
(ND , ∆ND)=(5.3, 1.6).
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Table 3.4. The parameters of the five best fits, i.e. those with Quality Factor,
QCD

< 0.5. Reading left to right, the columns give the configuration name, the
parameters of the configuration (αrot, αlaw, αseg), the mean and standard deviation of
the distribution of N values (µD , σD), the Quality Factor (QCD

), and the percentage
of Q+ systems that contain ‘2+2’ orbits.

C αrot αlaw αseg µD σD QCD
‘2+2’

SOL2 0.50 sol 0 4.4 2.1 0.41 25(±06)
SOL3 0.75 sol 0 4.4 2.2 0.49 26(±06)
KEP1 0.50 kep 0 4.4 2.2 0.42 28(±05)
SEG2 0.50 sol 1 5.2 0.5 0.43 44(±07)
SEG4 0.50 kep 1 4.8 2.4 0.35 41(±05)

All five Configurations involve rotation, four with 50% of the kinetic energy invested
in rotation, and one with 75%. I conclude that having comparable amounts of energy in
rotation and in random isotropic motions is a critical requirement for producing a good
fit to observed statistics.

In contrast, three of the top-five Configurations have solid-body rotation, while
two have Keplerian rotation. I conclude that the details of the rotation law are not
critical. Similarly three of the top-five configurations have no mass segregation, and two
of them do. Therefore it appears that mass segregation is also not a critical requirement
for a good fit.

Figure 3.6 compares all Configurations over the full range of N -Distribution
parameters using a single colour scale. All Configurations with low or now rotation
– panels (a) FID, (b) SOL1, and (h) SEG1 – give poor fits, and all high-rotation
Configurations – panels (e) SOL4, (g) KEP2, (j) SEG3, and (l) SEG5 – give the poorest
fits, regardless of rotation type or mass segregation. This again supports the conclusions
that moderate rotation is critical to reproducing observations, while type of rotation and
mass segregation are not.

The mass segregation does appear to have an affect on the formation of ’2+2’
systems. While the percentage of ’2+2’s is similar for the best-fit cases with no segregation
(αseg = 0), those that begin with segregated masses (αseg = 1) have a much higher
percentage of ’2+2’s (Table 3.4).

3.3.3 Metrics of overall multiplicity

Various metrics of overall multiplicity have been proposed, in particular the
multiplicity fraction (i.e. the fraction of systems that are not single),

MF = B + T + Q + ...

S + B + T + Q + ...
; (3.9)
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the triple/higher-order fraction (i.e. the fraction of systems that are triple or higher-order,
see Equation 1.4); the companion fraction (i.e. the mean number of companions per
primary),

CF = B + 2T + 3Q + ...

S + B + T + Q + ...
; (3.10)

and the plurality (i.e. the mean number of companions per star, irrespective of whether
it is a primary star),

PL = 2B + 6T + 12Q + ...

S + 2B + 3T + 4Q + ...
. (3.11)

These metrics are given in the last four columns of Table 3.3. The last one, PL, has the
merit that it has a clear physical meaning and reflects, more strongly than the others, the
percentage of higher-order multiples. CF and PL can both be greater than one. Indeed,
for the T21 sample, PL = 1.13, and it is likely to be even higher for high-mass primaries.

3.3.4 Caveats

3.3.4.1 Pure n-body dynamics
The numerical experiments reported here involve pure n-body dynamics. Consequently

– modulo numerical errors – the resulting multiplicities are determined solely by the initial
conditions and gravitational interactions between point masses. Because gravity is a
time-reversible process, N -star subclusters which end the experiment with one system of
multiplicity N (i.e. they undergo no ejections) fall into two categories: either the initial
subcluster begins in a stable (hierarchical) configuration, or the simulation ends before
the subcluster has reached its final state. Meta-stable systems will eventually dissolve
into more than one system. I explore the metastable population of the experiment in
Chapter 4.

Phenomena such as dissipation from the cloud or disc, which harden systems
against dissolution and act to increase stellar multiplicity, are not considered. I expect
the pure n-body results of this work to represent a conservative (i.e. low) estimate of
the multiplicity which can be achieved from a subcluster of N stars.

3.3.4.2 Isolated subclusters
Each subcluster is evolved in isolation. The subcluster cannot capture outside

stars, nor can it be perturbed by stellar flybys. For low-N subclusters, capture might
increase the multiplicity metrics (e.g. MF, CF and PL). But for high-N subclusters,
perturbations by stellar flybys would be likely to reduce the multiplicity metrics, for
example by disrupting hierarchical triples.

53



Chapter 3. The formation of multiples in small-N subclusters

3.3.4.3 Duration of integration
Subclusters are evolved for a maximum of 1000 crossing times. In practice most

of the final multiple systems are established early in the evolution, within the first 200
crossing times. For the N = 7 case, whose systems take the longest to settle into their
end states, more than 80% of instantiations achieve their final 1000 tcr multiplicities by
200 tcr, and more than 95% by 600 tcr.

3.3.4.4 Limited number of stars in subcluster
I do not consider subclusters with N > 7. As N increases, the multiplicity

distribution changes at a decreasing rate (see Figure 3.1): the percentages of binaries
and triples decrease slightly, the percentage of singles increases, and the percentages of
higher-order multiples (m≥4) increase imperceptibly. For example, in the fiducial case,
the multiplicity distributions for N = 6 and 7 agree within their 3σ uncertainties (Figure
3.1). This is true for all configurations tested. I expect multiplicities for values of N > 7
to follow this trend, remaining very similar to the multiplicity values for N = 7.

In addition, the complexity of possible end states increases dramatically with N

(see Chapter 5]), making higher-N numerical experiments prohibitive from a book-keeping
standpoint.

3.3.4.5 Observational statistics
The T21 observational statistics are probably influenced by selection effects , which

are introduced in relation to detection method and discussed for the T21 sample in
Section 1.2. Historically, many detection methods such as RV and eclipse have been
likely to miss low-luminoisty systems and unequal-mass companions. High-precision
data such as GAIA measurements have enabled observers to detect new companions
to previously-considered single stars, along with new companions to known multiples
(e.g. Thomas et al. 2023; Mugrauer et al. 2023). Because higher precision allows for
the detection of lower-luminosity and more unequal-mass systems, further technological
advancements will likely function to increase multiplicity estimates and the proportion of
higher-order systems. As the completeness of multiplicity surveys improves, the analysis
presented in this chapter can easily be reapplied to updated observational statistics.
However, the inability of this pure n-body model to produce enough higher-order systems
is likely to remain a limitation.

3.3.4.6 Summary
I have used n-body numerical experiments to determine the multiplicity statistics

that result from small-N subclusters of stars that interact only through their mutual
gravity. These statistics have then been compared with the T21 sample of nearby systems
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with solar-mass primaries (Tokovinin, 2021). The subclusters are presumed to be the
product of collapse and fragmentation in a single isolated prestellar core.

To produce an acceptable fit to the observed statistics, prestellar cores must –
on average – spawn between 4.3 and 5.2 stars. This seems to be a rather compelling
conclusion, in the sense that firstly it produces by far the best fit to the observations, and
secondly a very similar conclusion has been drawn by two other, completely independent
studies, v iz. [1] Holman et al. (2013) using statistical arguments, and [2] Lomax et al.
(2015b) using SPH simulations. I stress that neither [1] nor [2] involves n-body numerical
experiments, and they are therefore totally independent of the results reported here.

In the numerical experiments reported in this work, subclusters which begin with
roughly half their kinetic energy invested in rotation produce the best fits to the T21
sample. Furthermore there is a broad range of setups that produce very similar fits, but
they all have roughly half their kinetic energy invested in rotation. These setups do
occasionally spawn fewer than four stars, or more than five, but this is relatively rare.
The multiplicity statistics appear to be independent of whether the subcluster starts with
a solid-body or Keplerian rotation law, and of whether the masses are initially segregated.

Although the overall fits obtained here are quite good, there are always too few
systems with multiplicity m≥4. I believe that this is because these stars do not have
circumstellar discs. Such discs will make close encounters between stars dissipative,
thereby increasing the formation of tight orbits and higher-order multiples. Such discs
may also fragment to form close companions, some of which will survive interactions with
other stars in the subcluster, and again this will promote the formation of higher-order
multiples.
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Chapter 4

Orbital statistics of multiple systems formed
from small-N subclusters

In this chapter, I analyse the orbital parameters of the multiple systems identified in
the numerical experiments of Chapter 3. These parameters are: semi-major axes, a; the
extent of Dynamical Biasing; mass ratios, q1 and q2; numbers of companions; mutual
orbital inclinations, θo; eccentricities, e; masses and ejection velocities, υej. I term these
Orbital Statistics, to distinguish them from the Multiplicity Statistics reported in Chapter
3. I compare the Orbital Statistics from different N and Configuration Parameters, with
a focus on the Fiducial and Best Fit cases defined in Chapter 3. I also introduce a naming
convention to distinguish types of orbits.

4.1 Architectures of Multiple Systems
A system with multiplicity m comprises m stars and m−1 orbits. Most of the

parameters I discuss in the following chapter describe an orbit. If both the objects on
either end of the orbit are stars, I classify the orbit as S2; if only one is a star, as S1; and
if neither is a star, as S0.

A binary consists of a single S2 orbit.
A stable (and therefore hierarchical) triple comprises an S2 orbit and a larger S1

orbit; the S2 orbit involves a pair of stars orbiting one another, and the S1 orbit involves
this pair and a third star orbiting one another.

A quadruple may comprise an S2 orbit and two S1 orbits, in which case it is classed
as a Planetary Quadruple; the S2 orbit involves a pair of stars orbiting one another, the

Table 4.1. Additional orbital parameters

binary mass ratio q1
tertiary mass ratio q2
stellar escape velocity υej
ratio of outer to inner semi-major axis Ra

initial random kinetic energy of subcluster Eran
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Figure 4.1. An example orbital configuration – a 3+2 quintuple – made up of S2, S1,
and S0 orbits.
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first S1 orbit involves this pair and a third star orbiting one another, and the second
S1 orbit involves this threesome and a fourth star orbiting one another. Alternatively a
quadruple may comprise two S2 orbits and one S0 orbit, in which case it is classed as
a 2+2 Quadruple; each of the S2 orbits involves a different pair of stars orbiting one
another, and the S0 orbit involves the two pairs orbiting one another.

Figure 4.1 illustrates an example configuration, a 3+2 quintuple, which demonstrates
all three types of orbits.

For the purpose of evaluating statistical distributions I distinguish S2 orbits from
S1 orbits, and I do not consider S0 orbirts, since they are too rare to support reliable
statistics.

4.2 Results
I have selected two main cases from Chapter 3 with which to illustrate the Orbital

Statistics. In both I fix σℓ = 0.3, since this is the value that is most consistent with
the mapping from the prestellar Core Mass Function to the stellar Initial Mass Function
(Whitworth, Ambrose & Georgatos, in prep.).

• The first case is the Fiducial Case. It has αrot =0, therefore there is no ordered
rotation and αlaw is irrelevant. It also has αseg =0, meaning no mass segregation.
I present results for N =3, 4, 5, 6 and 7. With N =1 all stars are single, and with
N =2 all stars are in binaries, since the subcluster is virialised from the outset.

• The second case is the Best-Fit Case. This is the case identified in Chapter 3 which
best reproduces the Multiplicity Statistics for solar-mass primaries from T21. It has
a distribution of N values with mean µN =4.8 and standard deviation σN =2.4.
The Configuration Parameters are αrot = 0.5 and αlaw = kep (moderate Keplerian
rotation) and αseg =1 (mass segregation). Further details of the Best-Fit case can
be found in Chapter 3, section 2.5.

• Some dependencies are better illustrated by considering parameter values other
than those of the Fiducial and Best-Fit Cases. These are discussed in separate
subsections. Section 4.2.1.3 deals with the dependence of semi-major axes on the
amount of ordered rotation (αrot). Section 4.2.4.3 deals with how the mutual
orbital inclinations depend on the amount of ordered rotation (αrot).

4.2.1 The Distribution of Semi-Major Axes

4.2.1.1 Semi-major axes in the Fiducial Case
Figures 4.2a and 4.2b show that in the Fiducial Case the semi-major axes of S2

orbits tend to decrease with N , whereas the semi-major axes of S1 orbits are roughly
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Figure 4.2. The specific probability distributions of semi-major axis, a, for (a) S2
orbits, and (b) S1 orbits, in the Fiducial Case with N = 3, 5 and 7; the results for
N =4 and 6 are omitted to avoid confusion. (c) and (d) show the specific probability
distributions for the Best-Fit Case.
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Figure 4.3. The specific probability distributions of the ratio, Ra, of outer (S1) to
inner (S2) orbital semi-major axis in triple systems for N = 3, 5, and 7.
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independent of N . Specifically, with the scalings adopted here (see Section 2.7), the
peak of the distribution of semi-major axes for S2 orbits decreases from ∼400 AU for
N =3, to ∼90 AU for N =7, with the peaks of the corresponding period distributions
decreasing from ∼ 8 kyr to ∼ 1 kyr. In contrast, the semi-major axes for S1 orbits
peak at ∼4, 000 AU (periods at ∼300 kyr), more or less independent of N . Because
the distributions shown are specific probabilities, the area under each integrates to 1.
Therefore, they capture the probability density at each semi-major axis value, but do not
reflect the relative incidence of, for example, S1 vs S2 or N = 3 vs N = 5 orbits.

The ratios of S1 to S2 orbital semi-major axes, Ra, are shown in Figure 4.3. The
ratio peaks around Ra ∼ 45 for N = 7 and drops to Ra ∼ 25 for N = 3.

4.2.1.2 Semi-major axes in the Best-Fit Case

Figures 4.2c and 4.2d show that in the Best-Fit Case, the distribution of semi-major
axes for S2 orbits peaks at ∼160 AU (periods ∼2.5 kyr), similar to the Fiducial Case
with N =4 or 5. For S1 orbits the distribution peaks at ∼4, 000 AU (periods ∼300kyr),
as for the Fiducial Case with all N .

4.2.1.3 Semi-Major axes with Very High Rotation

The distributions of semi-major axis for S2 orbits (as discussed in the two preceding
subsections, 4.2.1.1 and 4.2.1.2) are, with one notable exception, almost independent of
the Configuration Parameters (σℓ, αrot. αlaw, αseg). The one exception is the case of
very rapid rotation. Figure 4.4 shows the results obtained with σℓ =0.3, αrot =0.99,
αlaw = sol, αseg =0, and different N . These parameters correspond to the same range
of un-segregated masses as 4.2.1.1 and 4.2.1.2, but with almost all the kinetic energy
invested in solid-body rotation. In this case the semi-major axes again tend to decrease
with increasing N , but the effect is significantly smaller. There are two reasons for this.
First the stars start on very circular orbits, and therefore close to nested ‘planetary’
architectures; this reduces the frequency of close interactions. Second, with solid-body
rotation, and a gravitational potential well that is only due to the masses of the other
stars, the Virial Condition in the form

K = Eran + Erot = − Ω
2 , (4.1)

will often deliver setups in which some stars are unbound, from the outset, and therefore
fly off immediately. At the same time, the stars on closer orbits are very strongly bound
and tend to stay so. This is particularly true for N =3.
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Figure 4.4. The specific probability distributions of semi-major axis, a, for S2 orbits
from the high-rotation case discussed in Section 4.2.1.3 (i.e. αrot = 0.99, αlaw =
sol, αseg = 0, so almost all the kinetic energy in solid-body rotation, and no mass
segregation) with N =3, 4, 5, 6, 7.
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Figure 4.5. The cumulative probability distributions of mass ratio, q1 . Solid Line: S2
orbits of systems formed dynamically in the Fiducial Case with N = 3. Dotted Line:
values obtained by simply pairing the 2 most massive stars. Dash-Dotted Line: values
obtained by pairing the most and least massive stars.
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4.2.2 Mass Ratios

4.2.2.1 Mass Ratios in the Fiducial Case
For any system in which two stars with masses M1 and M2 (< M1) orbit their

mutual centre of mass, the binary mass ratio is

q1 = M2

M1

. (4.2)

Necessarily 0<q1 <1.
For any system in which a star with mass M3 and an S2 pairing (total mass

M1 +M2) orbit one another, the tertiary mass ratio is

q2 = M3

M1 +M2

. (4.3)

It follows that q2 >0, but there is no upper limit on q2 .
The solid line on Figure 4.5 shows the cumulative probability distribution of q1

for the S2 orbits from the Fiducial Case with N = 3. The dotted line shows the ratio
between the mass of the second most massive star and the mass of the most massive star,
irrespective of whether they end up on an S2 orbit, for the same case. For comparison,
the dash-dotted line shows the ratio between the mass of the most and least massive
stars. This demonstrates the tendency of pure n-body dynamics to deliver the two most
massive stars into an S2 orbit (and conversely to put less massive stars on outer orbits or
eject them, as per McDonald & Clarke 1993). In this case 72(±1.5)% of the S2 orbits
involve the two most massive stars.

Figure 4.5 also shows that the distribution of mass ratios for the S2 orbits is
approximately flat in the interval 0.2<q1 <1, and that there are very few below q1 =0.2,
i.e. to a first approximation,

dp

dq1

∼

 0.00 , q1 <0.2 ;
1.25 , 0.2≤q1 <1.

(4.4)

Figure 4.6a shows the cumulative probability distribution of q1 for the S2 orbits in
the Fiducial Case with N =3, 4, 5, 6, 7. As N increases, the q1 distribution for S2 orbits
shifts to higher values.∗

∗While mass ratios and the relative frequency of high-q1 systems increases with N , the degree of
pure Dynamical Biasing, in which S2 orbits involve the two most massive stars, actually decreases
with increasing N . This is because, with larger N , i.e. more stars in the birth subcluster and
therefore more relatively massive stars to chose from, a pairing of – say – the first and third most
massive star may still have a high mass ratio. As noted by SD98, Dynamical Biasing is a more
useful concept if it is not limited in this sense, i.e. not limited to systems involving the two most
massive stars.
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Figure 4.6. The cumulative probability distributions of binary mass ratio, q1 , and
tertiary mass ratio, q2 . (a) q1 , and (b) q2 , for the Fiducial Case with N =3, 4, 5, 6, 7.
(c) q1 , and (d) q2 , for the Best-Fit Case with Fiducial Case N = 4 for comparison.
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Our results for the Fiducial Case and N =3, 4, 5 can be compared with those of
SD98, who obtain somewhat higher levels of dynamical biasing. This is because SD98
initialise their subclusters with a greater spread of stellar masses.

Our model almost never produces binaries with very similar masses, say q1 >0.9,
since this requires two unlikely circumstances: the random selection of two stars with
very similar mass from the mass spectrum, and for those two stars to be high-mass and
therefore likely to pair up.

Figure 4.6b shows the cumulative probability distribution of q2 for the S1 orbits in
the Fiducial Case with N =3, 4, 5, 6, 7. As N increases, the mean q2 decreases, and in
the limit N ≳5 almost all higher-order systems have 0.1 ≲q2 ≲0.4. For lower N values
there is little (N =4) or no (N =3) choice for the masses of additional components in
higher-order systems, once the stars in the central S2 orbit have been set.

The N = 3 case results in a small number of systems with q2 > 1, 6(±2)%, while
the N > 3 cases each produce less than 2% systems with q2 > 1. When I compare
with q2 values reported by Reipurth & Mikkola (2015) from their N = 3 simulations of
brown dwarf triples, I find that my 200 tcross (∼ 15 Myr) values fall between their result
values, which change drastically with evolution time. Reipurth & Mikkola (2015) find
1.2(±0.1)% of systems to have q2 > 1 at 1 Myr of evolution, rising to 13(±2)% at 100
Myr of evolution.

4.2.2.2 Mass Ratios in the Best-Fit Case

Figure 4.6c shows the cumulative probability distribution of q1 , and Figure 4.6d
the cumulative probability distribution of q2 , for the Best-Fit Case. They are very similar
to those for the Fiducial Case with N =4 and N =5, i.e. most q1 values are between
0.2 and 0.9; most q2 values are between 0.1 and 0.4; 65% of S2 orbits involve the two
most massive stars in the initial subcluster. Rotation and mass-segregation do not have
a significant influence on mass ratios.

For the Best-Fit Case, 4.9(±0.5)% of systems have q2 > 1. This is similar to
the tertiary mass ratios observed in T21, in which 3.0(±0.4)% of systems in the 200 pc
sample have q2 > 1.

4.2.3 The Number of Companions

In Chapter 3, I define the Plurality of a cohort of stars, 3.11, which is the mean
number of companions that a star in the cohort has, irrespective of whether it is a primary
star. Thus, for example, a binary involves two stars each of which has one companion, a
triple involves three stars each of which has two companions, and so on.
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4.2.3.1 The Number of Companions in the Fiducial Case
Figure 4.7a shows the mean Plurality, PL, as a function of mass for the Fiducial

Case with N =3, 5, 7. As expected PL increases with mass, and exceeds unity for masses
above the median (0.25 M⊙). As N increases, the mean Plurality of the highest-mass
stars increases, and the mean Plurality of the lowest-mass stars decreases. This is a
consequence of the greater number of interactions that can occur when N is higher.
These interactions tend to eject lower-mass stars, thereby reducing their Plurality, and
to deliver higher-mass stars into more tightly-bound long-lived higher-order multiples,
thereby increasing their Plurality.

4.2.3.2 The Number of Companions in the Best-Fit Case
Figure 4.7b shows the variation of PL with stellar mass for the Best-Fit Case.

This is very similar to the Fiducial Case with N =5, indicating that rotation and mass
segregation do not affect PL very much. For masses M ≳ 0.5 M⊙ , PL ≃ 1.5.

4.2.4 Mutual Orbital Inclination and von Zeipel-Lidov-Kozai Cycles
Each orbit, o, in a multiple system has an orientation,

êo = Lo

|Lo|
, (4.5)

which is the direction of the associated angular momentum, Lo. An important parameter
constraining the architectures of triple and higher-order multiples is the mutual orbital
inclination, i.e. the angle

θoo′ =cos−1(êo · ê′
o) (4.6)

between two nested orbits o and o′. A random, isotropic distribution of orbits will have a
mutual orbital inclination PDF with

dp

dθ
= sin(θ)

2 , 0 ≤ θ ≤ π . (4.7)

In this section I explore the statistics of mutual orbital inclinations, θo, and their systematic
time-variation, due to von Zeipel-Lidov-Kozai cycles.

4.2.4.1 Mutual orbital inclination in the Fiducial Case
Figure 4.8a shows the specific probability distributions of mutual orbital inclinations

for the Fiducial Case with different N . The curves in 4.8a and 4.8b represent the expected
distribution of θo for a population of randomly oriented orbits. The random distribution
peaks at θo = 90o, where the solid angle per unit interval of linear angle is largest. For
all N there are very few systems close to prograde coplanarity (small θo).
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Figure 4.7. The mean plurality, PL, as a function of stellar mass. (a) the Fiducial
Case with N = 3, 5, 7. (b) The Best-Fit Case. The shaded regions represent the 1σ
uncertainty.

69



Chapter 4. Orbital statistics of multiple systems formed from small-N subclusters

Figure 4.8. The specific probability distributions of mutual orbital inclination, θo, for
θo in degrees. (a) The Fiducial Case with N = 3, 4, 5, 6, 7. (b) The Best-Fit Case
and for the observed systems in the T23 catalogue. Figure 4.8a is produced using
2000 realizations for each N value, in order to improve signal-to-noise.
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Figure 4.9. The specific probability distributions of mutual orbital inclination, θo, for
subclusters with the Best-Fit N and different amounts of initial solid-body rotation,
αrot; and for the observed systems in the T23 catalogue. Here θo is given in degrees.
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For N =3, 6, and 7, the distribution is peaked towards approximately orthogonal
orbits. Two-sample Kolmogorov-Smirnov tests (K-S tests, see Massey 1951) comparing
these three N distributions with one another fail to reject the null hypothesis that the
samples could be drawn from the same underlying distribution. Their shape is consistent
with a random θo distribution, as one-sample KS tests comparing these N with a random
distribution also fail to reject the null hypothesis. Each of these comparisons generate
p-values of p≥ 0.25.

For N = 4 and 5, the distributions are quite flat above θo = 30o, implying that
counter-rotating orbits are somewhat favoured compared with a random θo distribution.
A two-sample K-S test confirms the consistency between these two distributions, failing to
reject the null hypothesis (p-value= 0.27). One-sample K-S tests also confirm that N = 4
and 5 are inconsistent with a random distribution, rejecting the null hypothesis with
p-values ≪ 0.01. Their preference for counter-rotation is supported by the simulations
of Hayashi et al. (2022), who find hierarchical triples to be more stable in an orbit that is
fully retrograde than either fully prograde or orthogonal.

4.2.4.2 Mutual orbital inclination in the Best-Fit Case
Figure 4.8b shows the specific probability distributions of mutual orbital inclinations

for the Best-Fit Case and for the observed systems in the Tokovinin 2023 catalogue
(hereafter T23). They have similar shapes, but in the Best-Fit Case the mean is
somewhat lower (θ̄ = 78◦ with skewness 0.038) than the T23 sample (θ̄ = 89◦ with
skewness 0.035) and a two-sample K-S test rejects the null hypothesis with a p-value
≪ 0.01. Further testing suggests that the Best-Fit parameter set has a similarly shaped
underlying distribution to the observed population, but that it is uniformly lower. If the
Best-Fit distribution is tested again with varying phase shifts, the K-S test fails to reject
the null hypothesis at shifts of +11o to +14o, where all p-values are > 0.10.

There is a dip in orbits with θo ∼ 90◦. It is supported by the Hayashi et al. (2022)
results, which find initially-orthogonal orbits to be the least stable when compared with
fully prograde and fully retrograde.

4.2.4.3 The Effect of Rotation
Figure 4.9 shows the specific probability distributions of mutual orbital inclinations

for the systems in the T23 catalogue, and the effect of introducing different amounts of
ordered rotation, αrot, into the Best-Fit Case. There is a good fit in the shape of the
distribution when αrot =0.5 though this distribution is shifted from the observed values
as discussed in the preceding section (Sec. 4.2.4.2).

Very low rotation (αrot =0) and very high rotation (αrot =0.99), on the other hand,
produce distributions which are distinct from the observed and αrot =0.5 distributions
and flatten toward high inclinations (θo > 110◦). Two-sample K-S tests reject the null
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Figure 4.10. An hierarchical triple system undergoing von Zeipel-Lidov-Kozai
cycles. (a) The eccentricity, e, of the inner S2 orbit, as a function of time. (b) The
corresponding mutual orbital inclination, θo.
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hypothesis with p-values < 0.2 for all pairings except αrot = 0 and αrot = 0.99, which
produce a p-value of 0.11.

None of the distributions are consistent with a random sample – one-sample K-S
tests between αrot =0, 0.5, 0.99 and a random θ distribution all reject the null hypothesis
with p-values < 0.5.

4.2.4.4 von Zeipel-Lidov-Kozai Cycles

In a von Zeipel-Lidov-Kozai (ZLK) cycle, a slow periodic change in the eccentricity
of the inner binary produces a correlated change in the inclination of the tertiary orbit
at each peri-centre. An example from our numerical experiments is shown in Figure
4.10. In the case of hierarchical triples with high eccentricity outer orbits, octupole-order
interactions can drive the eccentric Kozai-Lidov (EKL) mechanism (see Naoz 2016),
potentially flipping the orbit from θo <90◦ to θo >90◦. However, of the systems which
achieve θo > 90◦ in the experiments reported here, only ∼ 25% appear to reach these
inclinations due to the EKL mechanism. The remainder are either formed with, or
displaced impulsively into, orbits with θo >90◦.

4.2.5 Orbital Eccentricities

Figure 4.11a shows the specific probability distributions of eccentricity, e, for S2
orbits in the Fiducial Case with N =3, 4, 5, 6, 7. Figure 4.11c shows the distribution
of e for S2 orbits in the Best-Fit Case. In all cases, the distribution of eccentricities is
very close to thermal, i.e. dp/de≃ 2e. The only significant departure from a thermal
distribution is an excess of very eccentric orbits (e≃ 1), which is evident for all cases
except the Fiducial Case with N =3.

The high-e excess in S2 orbits increases with N . Some of this high-e excess may
be due to stellar exchanges between nested S2 and S1 orbits, or to tertiary members
exciting S2 orbits into higher eccentricities via ZLK cycles. The tertiary may then either
remain bound to the excited S2 system, or be ejected. The increase in the high-e excess
with increasing N supports these hypotheses, as the opportunities for orbital exchanges,
and the number of systems capable of ZLK cycles, both increase with N .

Figures 4.11b and 4.11d show the specific probability distributions of e for S1
orbits for, respectively, the Fiducial Case with N =3, 4, 5, 6, 7, and the Best-Fit Case.
Again the distributions are approximately thermal, albeit with low counts for the low-N
cases, and again there is an excess of high eccentricity orbits (e > 0.95). The high-e
S1 population is likely to be entirely meta-stable (see Sections 3.3.4.1 and 4.3.7). It is
also likely to be sensitive to external perturbations and challenging to observe; further
discussion of this issue is found in Section 4.3.8.
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Figure 4.11. The specific probability distributions of eccentricity, e. (a) S2 orbits, (b)
S1 orbits, for the Fiducial Case with N =3, 4, 5, 6, 7. (c) S2 orbits, (d) S1 orbits, for
the Best-Fit Case.
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Figure 4.12. The mass distributions for all stars, for those that end up in multiples,
and for those that end up single, in the Best-Fit Case. Means and standard deviations
are given in Table 4.2.
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Table 4.2. The mean and standard deviation of log-normal fits to the mass
distributions for stars that end up in multiple systems and stars that end up single.
Values are given for different N in the Fiducial Case and for the Best-Fit N -
distribution. ℓ=log10(M/M⊙).

Fiducial Best-Fit
with N = 3 4 5 6 7

Initial
µℓ -0.60 -0.60 -0.60 -0.60 -0.60 -0.60
σℓ 0.30 0.30 0.30 0.30 0.30 0.30

Multiple
µℓ -0.52 -0.50 -0.48 -0.44 -0.46 -0.49
σℓ 0.28 0.28 0.27 0.28 0.28 0.27

Single
µℓ -0.71 -0.68 -0.65 -0.62 -0.59 -0.66
σℓ 0.27 0.28 0.28 0.29 0.31 0.28
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Figure 4.13. The specific probability distributions of initial velocity (v0) and ejection
velocity (vej) for all stars in the Best-Fit Case.
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4.2.6 Dynamical Biasing

Table 4.2 gives the means and standard deviations of log-normal fits to the mass
distributions for all stars, for stars that end up in multiples, and for stars that end up
single, in the Fiducial Case with N = 3, 4, 5, 6, 7, and in the Best-Fit Case. Due to
Dynamical Biasing (McDonald & Clarke, 1993), the stars in multiple systems are in
all cases on average more massive than the singles, typically by ∼ 50%. Figure 4.12
illustrates this for the Best-Fit Case; the distributions for the Fiducial cases look very
similar.

4.2.7 Ejection Velocities

All stars start off as members of virialised subclusters. Therefore at the end any
single star must have been ejected fast enough to become unbound from all the other
stars in its birth subcluster.

Fig 4.13 compares the Maxwellian distribution of initial stellar velocities, v0, with
the velocities of single stars at the end, vej, for the Best-Fit Case. The ejection velocity
distribution is slightly broadened compared with the initial velocities. While few stars
have velocity outside of the initial velocity range, the fraction of stars with velocities
greater than three times the peak in the initial distribution increases significantly, by a
factor of ∼ 4 compared with the initial distribution. A similar result is found for the
Fiducial Case.

4.2.8 Dissolution Timescale

Figure 4.14a shows the cumulative probability distribution of single-star ejections
as a function of time, for the Fiducial Case with N =3, 4, 5, 6, 7. Ejections occur more
rapidly for larger N , as shown by Hamers (2020), but even for N =3, 50% of ejections
occur within the first 66 crossing times.

Figure 4.14b shows the cumulative probability distribution of single-star ejections
as a function of time, for the Best-Fit Case. 87(±5)% of ejections occur in the first 2
Myr, and 98(±2)% occur by 10 Myr.

4.2.9 Number of Multiples per Subcluster

In most cases, a subcluster in the experiment dissolves into one multiple system of
multiplicity m, and N −m single stars. But in some instances the subcluster dissolves
into as many as ⌊N/2⌋ multiple systems. For the Best-Fit Case, 21(±1)% of subclusters
produce more than one multiple system. All additional multiple systems produced in this
case are binaries.
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Figure 4.14. The cumulative probability distributions of the first ejection as a
function of the elapsed time. (a) The Fiducial Case with N = 3, 4, 5, 6, 7. (b) The
Best-Fit Case.
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4.3 Discussion
In this section I discuss some of the caveats and limitations that pertain to the

results presented above.

4.3.1 Dynamical Biasing and Ejections

If, as I find in Chapter 3, a prestellar core typically produces N =4 or 5 stars, and
these stars have a relatively small range of masses (σℓ∼0.3), the concept of Dynamical
Biasing is slightly more nuanced, in the sense that even if an S2 orbit does not involve
the two most massive stars in the subcluster, it will still – more often than not – involve
two of the more massive stars.

This in turn means that the single stars that are ejected will tend to be of lower
mass, and therefore harder to detect in observations than the ones that end up in multiple
systems.

4.3.2 The Core Potential and Subcluster Dispersal

It is reasonable that I have only taken account of the gravitational field of the
stars in the subcluster. The gas between the stars in the subcluster will only dominate
the gravitational field in the region where the stellar dynamics is modelled (R < Ro) if
its mean density is very high,

n̄H2
≳ 2× 109 cm−3

(
N

5

)(
M̄

0.25 M⊙

)(
Ro

500 AU

)−3
. (4.8)

This is unlikely. However, residual gas from the prestellar core at radii larger than Ro

will slow down dispersal of the stars formed, unless it has been very widely dispersed.
Therefore the ejection velocities computed should strictly be seen as upper limits.

4.3.3 Binary Twins

A significant fraction of observed binary stars have mass ratio close to unity. In
other words the component stars have very similar masses. This preference is too extreme
to be the result of dynamical biasing, and is normally attributed to hydrodynamical
effects, which are not captured in the pure N-body numerical experiments reported here.
The standard explanation (Whitworth et al., 1995, their Section 5.2) is that a binary
forms, possibly by disc fragmentation, but there is then ongoing accretion onto the
binary. The specific angular momentum of the inflowing material increases with time,
and therefore the lower-mass component, which has higher specific angular momentum
(by a factor q−2

1 ) and is therefore on a wider orbit, is better able to accrete this material.
Consequently it grows towards the same mass as the higher-mass component.
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4.3.4 Disc Fragmentation and Primordial Multiples
The stars in our numerical experiments start with random positions and velocities.

Therefore primordial binaries in close, tight orbits will be extremely rare at the outset.
However, in nature stars forming by dynamical fragmentation of a prestellar core will be
attended by circumstellar accretion discs, and these discs may become sufficiently massive
and cold to fragment, producing close companions (semi-major axes a ≲ 50 AU) on
low-eccentricity orbits. Indeed, I believe that disc fragmentation is a critical channel for
producing close systems (e.g. Whitworth & Stamatellos, 2006). Kuruwita & Haugbølle
(2023) have also shown that the gas present around forming stars can trigger their
inspiral and create close binaries. These close systems would be more difficult to disrupt,
increasing the proportion of higher-order multiples. Therefore the experiments reported
here are not expected to reproduce the statistics of the closest observed orbits.

Primordial binary systems would alter the orbital and mass ratio statistics of stellar
populations. They are often very close, decreasing the average semi-major axis, and as
they are more likely to be equal-mass pairs (as discussed in Section 4.3.3), they would
shift the binary mass ratio. So the inclusion of these systems in the experiment would
likely decrease the binary semi-major axis and shift the binary mass ratio distribution
closer to unity.

For primordial binaries formed through disc fragmentation, their location within
the system hierarchy would affect the outer mass ratios of the systems. If we consider
the mass ratios of the binary population produced by the experiment as an example
(Figure 4.6a and c) and split the more massive star into two equal mass bodies, the
existing binary mass ratio becomes the new tertiary mass ratio. Therefore the shape of
the q2 distribution is significantly altered and no q2 > 1 systems are present. But if we
instead split the less massive star of the binary into equal masses, all binaries will now
become triples with q2 > 1. The ratio with which disc fragmentation acts on higher-
vs lower-mass members of forming stellar subclusters will affect this q2 > 1 value and
the outer mass ratios as a whole. If implemented in the experiment, the effect of close
primordial binaries formed through disc fragmentation on the tertiary mass ratio would
depend highly upon the prescription for ordering and placing these binaries within the
initial subclusters.

4.3.5 Interacting Discs and Tidal Circularisation
An attendant circumstellar accretion disc may also interact with another star and

its disc. This will dissipate kinetic energy, and may thereby make the two stars bound,
or more tightly bound if they are already bound (e.g. McDonald & Clarke, 1995). This
mechanism is missing from our pure N-body experiments, and would help to produce
closer orbits.
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In addition, stars on extremely close orbits (a ≲ 0.1 AU) will experience strong
internal tidal interactions, and this will drive them into low-eccentricity orbits. However,
such close orbits are not produced here – and tidal interactions would not be captured,
even if they were, since the stars here are point masses.

Binary orbits may also be circularised when the component stars accrete from a
circumbinary disc. Again this is not included in our numerical experiments.

4.3.6 Time-scales
The Orbital Statistics presented in this paper represent subclusters that have been

evolved for 1000 crossing times. With the scalings I have adopted, one crossing time
is ∼ 0.077 Myr N−1/2, which for the Best-Fit Case with µN = 4.8 gives ∼ 0.035 Myr.
Orbital Statistics are only considered robust if they are reproduced in two successive
MMOs (see Section 2.3). Thus the first Orbital Statistics are collated after 66 crossing
times, i.e. at ∼2 Myr.

For the Fiducial Cases with large N≥4, and for the Best-Fit Case, Figure 4.14
indicates that the Orbital Statistics are closing in on their asymptotic values by t≲3 Myr,
whereas for N = 3, the Orbital Statistics only approach their asymptotic values at
t≳15 Myr. This may constitute a new and – at least in principle – distinctive constraint
on the size of the region in which the protostellar fragments in a core become an
ensemble of virialised protostars, like the ones I have modelled. If I exploit the fact that
the experiments are scale-free, i.e. I can adjust the mass- and length-scales as described
in Section 2.7, then the radius is given by

Ro ≥ 250 AU
(
N

5

)2/3 ( M̄

0.25 M⊙

)1/3 (
tdisp

Myr

)2/3

, N > 3 (4.9)

Ro ≤ 60 AU
(
N

5

)2/3 ( M̄

0.25 M⊙

)1/3 (
tdisp

Myr

)2/3

, N = 3 (4.10)

where N is the number of stars in the subcluster, M̄ is the mean stellar mass, and tdisp

is the timescale on which the subcluster disperses.

4.3.7 Eccentricity and meta-stable orbits
Section 4.2.5 reports a population of tertiary orbits with very high eccentricity,

which is most significant in N = 3 subclusters. All N = 3 systems which have S1 orbits
are triples that have not undergone an ejection. Consequently, they are either stable
from the outset, or meta-stable at the end of the experiment (see subsection 3.3.4.1).
Simulations by Hayashi et al. (2022) show that the disruption timescale of unstable triple
systems can be as long as 109 times the orbital period of the inner pair and is highly
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sensitive to the orbital parameters of the system. The ejection process can therefore
take much longer than the standard run time of the experiment, especially in the case of
high-eccentricity S1 orbits, which can have very long orbital periods.

Mardling & Aarseth (2001) established a semi-empirical and widely used metric for
determining the stability of hierarchical triple systems based upon their orbital parameters.
I find that of the Fiducial N = 3 systems which are triples at the end of the experiment,
15(±4)% meet the Mardling & Aarseth (2001) stability criterion. None of these stable
systems are in the high-e (e ≥ 0.95) regime. This suggests that ∼ 10 − 20% of the
Fiducial N = 3 triples were likely born into and will remain in hierarchical, long-term
stable triples, while the remainder are likely meta-stable and will eventually disrupt.

I expect a similar trend of meta-stability in all subclusters which have not
experienced an ejection (such as N = 4 quadruples), especially within the high-e S1
regime. I note that because destabilization can take many Gyr, these stars may contribute
to the multiplicity of their systems for a significant portion of member lifetimes.

4.3.8 External Perturbations

Even before a subcluster disperses due to internal interactions, it may be subject to
external perturbations, due to other massive structures in the vicinity, i.e. other subclusters
and gas clumps. These perturbations will sometimes unbind the outer members of the
subcluster and will destroy some of the multiples.

Once the subcluster disperses, its stars and multiple systems will interact with
other stars and multiple systems formed in nearby subclusters. These interactions will
change the architectures of existing multiples, and lead to exchanges of stars between
the multiples from different subclusters. In the long term these processes will tend to
reduce the overall multiplicity and plurality, by unbinding wider orbits, but at the same
time it will harden closer orbits.

The high-eccentricity tertiary orbits noted in Section 4.2.5 and 4.3.7 (see Figure
4.11) are real in the sense that their orbital parameters are confirmed at successive MMOs.
However, successive MMOs are only ∼ 1 Myr apart, and these highly eccentric orbits
have periods ∼1 Gyr. Consequently they will be hard to detect observationally, firstly
because they will spend most of their lifetime at distances ≳1 pc, and secondly because
association with a companion will be hard to establish. Therefore they are unlikely to
appear in catalogues. More importantly, they have very low binding energy and will be
easily disrupted. I find that performing a cut to remove these high-period orbits (P < 107

yr, a ≲ 4.5 ∗ 104 AU) does not affect the distributions of tertiary mass ratio or mutual
orbital inclination at a statistically significant level.
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4.3.9 Collisions and Mergers
Since the stellar particles are treated as point masses, collisions and mergers

between particles are not included in these experiments. Because the subclusters studied
here are small (N ≤ 7) with relatively low number density, random chance collisions are
extremely unlikely. Situations which might lead to mergers are also rare. Only ∼ 0.1% of
multiple systems formed in the experiments reported here have semi-major axes a < 1
AU. While some of these systems have the potential to merge due to tidal dissipation,
thereby reducing the proportion of close systems, the effect on the overall statistics is
very small.

4.3.10 Initial Spatial Distribution
I invoke a uniform density profile when positioning the stellar particles. Because

the number density of particles in each subcluster is so low, the choice of density profile
has little effect on the initial distributions.

Our initially rotating subclusters may begin with either a spherical or oblate
geometry (see Sec. 2.1.2 and 2.1.4, respectively). I find that these geometries do not
produce statistically significant differences in any of the reported metrics.

4.4 Summary
The initial conditions of a subcluster play an integral role in determining the

characteristics of the stellar multiple systems that it spawns. The initial number of
stars in the subcluster, N , has the greatest effect, influencing periods and separations,
dynamical biasing, plurality, mutual orbital inclinations, and ejection timescales. The
fraction of kinetic energy in ordered rotation, αrot, and the degree of mass segregation,
αseg also have an effect on some of these statistics.

The distributions of semi-major axis, a, for S2 orbits shift to lower values with
increasing N . This is because S2 orbits are hardened by energy exchange with other stars
in the subcluster, often leading to the ejection of these other stars. With higher N there
are more ‘other stars’ with which to exchange energy.

In contrast the distributions of a for S1 orbits are essentially independent of N .
In the Fiducial Case the percentage of subclusters that produce an S2 orbit

involving the two most massive stars decreases from 72(±1.5)% for N =3, to 62(±1.6)%
for N =7. However, there is still Dynamical Biasing, i.e. the tendency for more massive
stars to be bound in multiples and lower-mass stars to be ejected, when N is large. This
is because, when N is large, stars other than the two most massive ones may still be
quite massive.

Consequently the single stars tend to have lower than average mass, and to acquire
the highest velocities, υej, relative to the centre of mass of the original subcluster. The
distribution of υej for these single stars is indistinguishable from the Maxwellian distribution
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of velocities in the initial subcluster, so they should be classified as ‘walk-aways’, rather
than ‘run-aways’. Walk-aways are ejected earlier in subclusters with higher N .

S2 orbits have a flat distribution of mass ratios between q1 =0.2 and q1 =1.0. S1
orbits have a flat distribution of mass ratios between q2 =0.1 and q2 =0.5 with very few
higher values. These distributions do not depend strongly on the initial conditions of the
subcluster.

On average, a star’s Plurality (i.e. the number of companions that a star has,
irrespective of whether it is a primary) increases with its mass. The maximum number of
companions increases with N , and with the scaling adopted here, almost all stars with
M ≳0.5M⊙ end up with at least one companion when N≥3.

Moderate rotation results in triple systems with a distribution of mutual orbital
inclinations peaking at θo∼90◦, in agreement with the observed distributions. For triple
systems with θo >90◦, the majority (∼ 75%) form dynamically in high-inclination orbits
without the help of vZKL cycles.

For the Best-Fit Case, 21(±1)% of subclusters produce more than one multiple
system.

When considering Multiplicity Statistics, i.e. the relative proportions of different
multiples (singles, binaries, triples, etc.) Chapter 3 found that subclusters should have a
distribution of N values with median µN ≃ 4.8; the kinetic energy of the stars should be
divided between random isotropic velocities drawn from a Maxwellian distribution and
ordered rotation, with comparable amounts in each; and there should be mass segregation.
Here I have shown that these properties are also compatible with the observed Orbital
Statistics, i.e. the distributions of semi-major axis, mass ratio, and eccentricity. The
Best-Fit properties produce a similarly shaped mutual orbital inclination distribution as
observations, but with a negative phase offset of 11− 14 degrees.

I have shown that there is a relationship (Equation 4.9) between the size of the
region in which the protostars in a subcluster initially condense out (Ro), the number
of stars in the subcluster (N), the mean stellar mass (M̄), and the timescale (tdisp) on
which the subcluster disperses.
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Chapter 5

Equation for End States of an N-Star
Subcluster

In this chapter, I derive multiple forms of a function for enumerating end states of an
N -star subcluster. The equations provide both the number and multiplicity of systems.
I detail connections to an existing function in number theory, and discuss uses for the
restricted forms of the equation presented here.

5.1 Introduction
An early goal of this work was to calculate the multiplicity statistics that resulted

from the evolution of 3- 4- and 5-star stellar subclusters. For this purpose, the MMO
needed to be capable of identifying and tracking every type of system which could arise.
This is managable for small N – an isolated and initially-bound subcluster of 2 stars will
always remain as a binary; such a subcluster with 3 stars can form a triple, or decay into
a binary and a single. The possible outcomes increase quickly – 4 stars may remain a
quadruple, decay into a triple and a single, become two binaries, or become a binary and
three single stars. As N increases, keeping track of these possible end states presents a
complex combinatorics problem.

In order to better understand how the number of outcomes, A
N

, increases with
N , I sought to derive an equation for A

N
.

Table 5.1. General Variables and Functions

number of different end-states
for a subcluster of N stars A

N

Heaviside Function H
dummy ID of star n, n′, n′′

Partition Function par(N)
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5.2 An intuitive, limited form
An initially virialised subcluster of N ≥ 2 stars must produce at least one bound

multiple system. This component contains m0 stars, where 2<m0≤N . Here, we take
m0 to be the largest or equal-largest multiplicity in the end state. In the case where this
component is the only multiple, all remaining N−m0 stars are single. The remaining
N−m0 stars may also form bound systems. These systems may have any multiplicity
m1, where 2<m1 ≤m0.

In the first form of this equation, I simultaneously counted all additional component
systems of multiplicity m1 for an existing component of multiplicity m0, by taking the
number of times m1 divides wholly into the number of remaining stars. So, end states
containing a component system of multiplicity m0 and a component system (or systems)
of multiplicity m1 are counted with the following equation:

A
N≤7 =

N∑
m0=2

1 +
m0∑

m1=2

⌊
N −m0

m1

⌋ . (5.1)

This equation will account for all possible end states for initially virialised subclusters
with 2 < N ≤ 7.

For 7 < N ≤ 10, it is possible to achieve end states with component systems
of multiplicity m0, m1, and m2, where m2 < m1, i.e. N = 8 may end in two separate
triples and a binary, N = 10 may result in a quadruple, a triple, and a binary. To count
these states, I added an additional level of recursion. For each set of m0, m1, there are
N − (m0 + m1) remaining stars. If N − (m0 + m1) > 2, the stars may form a multiple
of order 2 ≤ m2 < m1. We disregard m2 = m1 systems, as they are counted in the
previous sum. The number of components of order m2 is then given by

nm2 =
⌊

N − (m0 + m1)
m2

⌋
(5.2)

where ⌊ ⌋ is the floor operator, and the full sum becomes

AN≤10 =
N∑

m0=2

1 +
m0∑

m1=2


⌊

N−m0

m1

⌋
+ H(N−(m0 + m1 + 2))

n′−1∑
m2=2

⌊
N − (m0 + m1)

m2

⌋
 . (5.3)

Here H represents the Heaviside function, i.e.

H(f) =

 1, if f ≥ 0 ;

0, if f < 0 .
(5.4)
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Each term of the sum represents one end state of the N -star subcluster. The combination
of m0, m1, and m2 which produces each term gives the multiplicities of the systems
in that end state, and the value of each sum gives the number of systems with that
multiplicity. The equation does not differentiate the type of system (e.g. there is no
discrimination between a quadruple which is planetary versus one which is a 2+2) or on
which specific stars occupy which remnant system. Further terms may be added to count
the end states of N ≤ 10.

5.3 A universal, recursive sum
Although 5.3 is useful for N ≤ 10, it becomes unwieldy if more terms are needed.

With the goal of finding a more universal expression for AN , I explored expressing the
sum in a more expanded form with simpler terms.

If we keep the outer sum of all terms whose highest multiplicity is m0:

AN =
N∑

m0=2
1 + ... (5.5)

For each m0, there will again be N −m0 stars remaining from which to form multiples.
Since m0 is the highest multiplicity possible for the end state, the maximum multiplicity
possible in the next term cannot be greater than m0 or N −m0. Therefore 2 ≤ n1 ≤
MIN(m0, N −m1) and the sum becomes:

AN =
N∑

m0=2

1 +


MIN(m0,N−m1)∑
m1=2

1 + ...


 (5.6)

Each new term of the sum depends only upon three values: N , the order of the
largest multiple in the previous term, mn−1, and the total order of the multiples which
have already been counted up to that n,

mtot =
n−1∑
i=0

mi (5.7)

Thus, the sum can expand to count to a multiplicity of mn, where

AN =
N∑

m0=2

1 +


MIN(m0,N−m1)∑
m1=2

1 +
...

MIN(mn−1,N−mtot)∑
mn=2

1


 (5.8)

and can be expressed as a sum of the recursive terms:

AN =
N∑

m0=2
a(m0, mtot); (5.9)
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where

a(mn−1, mtot) = 1 +
MIN(mn−1,N−mtot)∑

mn=2
a(mn, mtot + mn) (5.10)

This fully recursive form of AN gives the total number of end states for any value
of N , where each m is the multiplicity of an individual system in the end state. As in 5.3,
each term represents one end state of the N -star subcluster, and does not differentiate
the type of system or the specific stars in a remnant system. For values 2 ≤ N ≤ 15,
AN is listed in Table 5.2.

Table 5.2. The total number of possible end states of an initially virialized subcluster
of stars with 2 ≤ N ≤ 15.

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AN 1 2 4 6 10 14 21 29 41 55 76 100 134 175

5.4 Links to Number Theory and the Partition Function
It turns out that the rate of growth of A

N
is identical to an existing function in

number theory – the Partition Function. This function, par(N), counts the number of
ways that an integer N can be expressed as the sum of integers, disregarding order. For
example, par(3) = (1 + 1 + 1), (2 + 1), (3).

The solution for par(N) is calculated using the generating function

∞∑
N=0

PAR(N)xN =
∞∏

k=1
( 1
1− xk

), (5.11)

where par(N) is equal to the number of terms whose exponent is N . par(N) has no
closed-form solution, and can only be calculated exactly as a recurrence relation.

A
N

is not exactly equal to the Partition function, rather it’s a restriction of it.
The subclusters in this work always have N ≥ 2. Because the subclusters are initially
virialized, solutions where all stars end up single are not possible. There is one such
solution for any N in the Partition Function, so A

N
=par(N ≥ 2) − 1. Figure 5.1

shows A
N

, par(N), and par(N ≥ 2)− 1 for values of N .

5.5 Summary
Here are presented two forms of an equation to enumerate all possible end states for

an initially virialised stellar subcluster of N stars. The equations provide the multiplicities
of all end components. Equation 5.3 is accurate to N = 10. This is sufficient for the
types of systems explored in this work, as individual prestellar cores are not expected to
produce more than N = 7. Equation 5.9, the universal form, is accurate for any value
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Figure 5.1. Plot of A
N

, par(N), and par(N ≥ 2) − 1 as a function of N for
2 ≤ N ≤ 40. par(N ≥ 2)− 1 fits A

N
exactly.

of N . It is a restricted form of the number theory Partition Function and is simple to
implement as a programming loop when exploring higher values of N . Equation 5.9 may
be useful in a broader astronomical context, such as in tracking the dissolution of any
clustered bodies. Or, in pure mathematics, it may be of interest as an alternate form of
the Partition Function.
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Conclusion

“I’m ugly and I’m proud"

Patrick Star — Spongebob Squarepants

6.1 Thesis Overview
• Numerical model: I have developed and presented a scale-free prescription for

initializing and evolving an ensemble of stellar particles (N ≤ 7) as if they are
the fragmentation products of a single, isolated prestellar core (Chapter 2). Initial
conditions include the number of stars, mass range, amount and type of ordered
rotation, presence of mass segregation, and flattening. To evolve the subclusters, I
have written a numerical n-body code with 4th order Runge-Kutte integrator and
an adaptive timestep. The particles are treated as point masses and evolved under
gravity with no ambient gas (i.e. no stellar accretion or gravitational softening),
stellar mass loss, collisions and mergers, or external forces.

• Multiplicity-tracking algorithm: I have developed and detailed an algorithm
(MMO) which identifies the full orbital hierarchy of all systems that result from an
N ≤ 7 subcluster of objects (Section 2.3). The algorithm calculates the statistics
(semi-major axis, period, mutual orbital inclination, eccentricity) of these orbits.

• Subcluster evolution experiments: I evolved 3 ≤ N ≤ 7-star stellar subclusters
with varying initial mass and spatial distributions, types and amounts of ordered
rotation, and mass segregation (Section 3.1). I integrated for up to 1000 crossing
times (∼ 15 Myr for a cluster of M-dwarfs) with regular calls to the MMO (every
33 crossing times).

• Multiplicity analysis: I analysed the multiplicity statistics of the stellar systems
produced from the evolution of the subclusters (Chapter 3). By mixing the
multiplicity statistics from experiments of different N and comparing with the
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statistics of solar mass primary systems observed by T21, I determined the mix of N

and initial conditions that most closely reproduced the observed stellar multiplicity.
I also determined which initial conditions most affect multiplicity outcomes.

• Orbital parameter analysis: I analysed the orbital statistics of the stellar systems
produced from the evolution of the subclusters (Chapter 4). By comparing
the statistics between different parameter sets, I isolated the effects of various
initial conditions on orbits, mass ratios, and ejection velocities. Comparing
initial conditions with observations, I determined the initial conditions which best
reproduced observed distributions.

• Derivation of end state equation: I derived two versions of an equation to
enumerate all possible end states (with associated multiplicities) for an initially
virialised stellar subcluster of N stars (Chapter 5). The equation is a restriction on
the number theory partition function and offers an intuitive form of the function for
non-mathematical contexts. It is also simple to implement as a programming loop.

6.2 Key Results
This section summarizes the central findings of the thesis, grouped by their relevance

to star formation modeling, initial conditions, statistical outcomes, and theoretical
derivations.

1. Optimal Number of Stars for Observed Multiplicity
• On average, low-mass prestellar cores must spawn between 4 and 5 stars. This

number yields multiplicity statistics that most closely match observations of solar-
mass primary systems.

• Of all subcluster initial conditions explored, the initial number of stars has the
strongest effect. It shapes multiplicity, orbital periods and separations, dynamical
biasing, plurality, mutual orbital inclinations, and ejection timescales.

• A single subcluster of N > 3 may spawn more than one long-lived multiple system.
For the Best-Fit Case, 21(±1)% of subclusters produce more than one multiple
system, significantly increasing the Multiplicity Statistics, especially the fraction of
binary systems.

2. Role of initial kinematics and agreement across Multiplicity and Orbital
Statistics

• The best agreement with multiplicity observations occurs when subclusters begin
with approximately 50% of their kinetic energy in ordered rotation. Many combinations
of initial conditions yield good fits, and all share this characteristic.
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• These best-fit initial conditions produce a similarly shaped distribution of mutual
orbital inclinations as observations, but with a phase offset.

3. Insensitive parameters
• Subcluster initial conditions such as mass segregation and spatial flattening appear

to have little effect on the Multiplicity or Orbital Statistics.

4. Recursive, universal formula for enumerating end states
• All possible end states for an initially virialized subcluster of N stars are given

by Equation 5.3. This is a restriction on the number theory partition function,
Equation 5.4, which functions for any value of N > 1.

6.3 Future work
6.3.1 Discs and Gas

The experiments make a few simplifying assumptions that likely impact the results.
One is that stars form exclusively through Core Fragmentation. Another is that gravity is
the only force acting on the particles.

These assumptions contribute to the underproduction of high-multiplicity systems,
even in the Best-Fit case. Two likely causes are the lack of discs and gas. The protostellar
disc can fragment, creating companions with disc-scale separations, while friction with
residual gas can bring distant companions into closer orbits. By the time the natal gas
surrounding a stellar subcluster disperses, both mechanisms are expected to yield close
companions.

Companions formed through these pathways are expected to be robust against
dynamical disruption due to their tight orbits. As a result, their inclusion would likely
enhance the multiplicity statistics. Future work could therefore benefit from incorporating
these close companions.

Interactions between protostellar discs can also tighten orbits at close encounters,
removing energy from the orbits.

I could incorporate the effects of Disc Fragmentation and in-spiral without
introducing new physics, by modifying the initial conditions to include close pairings
consistent with Disc Fragmentation and in-spiral predictions. Additionally, I would replace
the global adaptive timestep with a local adaptive timestep scheme to efficiently handle
the wide range of distance scales, from tight binaries to wide companions.
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Disc interactions require additional physics, but could be added without the need
for large hydrodynamical simulations, by assigning a "disc" region around each particle.
Each region would have a radius, height, inclination vector, and rotational velocity. As
the subcluster evolves and as disc regions intersect, the code would modify the particle
velocities and disc parameters according to a prescription. I would write the prescription
for interaction effects based upon the findings of Clarke & Pringle (1991).

These modifications are expected to produce more realistic Multiplicity and Orbital
Statistics, bringing the experiments into better agreement with simulations.

6.3.2 Extension of Mass Regime
The analysis conducted in this thesis focuses on solar-mass primary observations.

As discussed in subsection 1.2, stellar multiplicity is highly dependent on the mass of
the primary, so predictions using solar mass statistics are not applicable to other spectral
types. To create a more global understanding of stellar multiplicity, I would extend the
analysis in Chapters 3 and 4 to different stellar mass regimes.

I would modify the initial conditions of the experiments to better reflect those
predicted by simulations and observations across stellar mass regimes. By comparing the
resulting multiplicity statistics with a broad set of observational surveys, it would then
be possible to extend the predictions made in Chapters 3 and 4 across all mass ranges.
Since multiplicity statistics are published for all spectral types (see Fig. 1.3), these data
could be used to constrain the mass dependence of initial conditions such as the number
of stars per system, N . Once the numerical experiments are complete for each mass
range, this analysis can quickly and easily be repeated as more robust survey statistics
become available.

Reproducing the high-mass primary statistics may prove difficult with the model
presented here, since their multiplicity is much higher than multiplicity for solar-mass
primaries (Figure 1.3). This could be remedied with the incorporation of the disc and
gas effects in subsection 6.3.1, which should increase multiplicity. Additionally, the more
massive prestellar cores that form massive stars could create a larger number of stars,
which would harden the resulting systems through increased ejections of the lowest-mass
members.

Finding a mass-dependent prediction of N would help to create a more universal,
cohesive understanding of star formation.

6.3.3 Observational Confirmation of Predictions
There are three main results that I present in this thesis which could be confirmed

through observations of low-mass protostars:

1. the velocities of very young and forming stars include a significant level of rotation
around the center of mass of the group
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2. over a short timescale, protostellar groupings undergo many slow ejections (Fig.
4.14b, Fig. 4.13), in agreement with Chen et al. (2013)

3. approximately 20% of protostellar cores produce more than one multiple system, in
line with predictions of McDonald & Clarke (1995)

I would explore Prediction 1 by characterizing the rotation of the protostellar
systems, and determining the strength of rotation of the protostellar multiple systems
around the system center of mass.

I would explore Predictions 2 and 3 in tandem by analyzing surveys such as
VANDAM Tobin et al. 2016 and PEACHES Yang et al. 2021, focusing on identifying
sources that may have been ejected from their parent groupings. Potential parent systems
and their ejected members could be linked through a combination of evidence: similarities
in outflow morphology, age, and velocity, as well as spatial proximity and chemical
signatures. Parent groupings could also be identified by probing for signs of ejection
wakes in their envelopes.

After associating parent groups and ejected systems, I would calculate ejection
statistics such as multiplicity, velocity, and age of the ejected protostellar systems and
compare with the above predictions.

6.4 Concluding remarks
The experiments and analysis I have presented in this thesis represent a step

toward understanding the earliest multiplicity history of the most common stars. They
bolster the arguments that most stars must be forming in small groupings from prestellar
cores. They inform predictions about the conditions of these groupings as they leave the
prestellar phase, such as their bulk rotation and ejection rates. They show us that – even
given gravity alone – stars can organize themselves into complex, lasting systems.

The numerical prescriptions that I have developed provide a framework around
which to explore the effects of further mechanisms and physics on the creation and
stabilization of stellar multiples. The analytical techniques established here create a
foundation from which to extend study across stellar mass regimes, in order to understand
multiplicity history for all stellar spectral types.

Our model of star formation will never be complete until we understand stellar
multiplicity, and our comprehension of multiplicity will not be complete until we understand
its beginnings. This thesis brings us closer to that beginning, showing us pathways through
which stars come together – and stay together – in the architecture of the universe.
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Appendix A

Long-lived septuple systems

Of the many N = 7 experimental realisations detailed in Chapter 3, three result in
long-lived, 7-star systems. While these systems are too few to extract statistics, they
represent interesting outcomes of seven-star dynamics, highlighting the complex and
varied architectures that can emerge through gravitation alone.

Figure A.1. Diagram of the architecture of System I in the style of Tokovinin (2021).
Orange circles represent the stars, which are numbered in order of decreasing mass.
The masses are listed below each star and scaled according to the convention in
Chapter 3. The green circles represent each orbit, lettered from A to F according
to the order which in they are identified by the MMO (see Section 2.3).
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A.1 System I: a 4+3 septuple
System I is comprised of a group of 4 stars on planetary orbits, which is itself

on a much larger orbit with a group of 3 stars. Figure A.1 is a diagram showing the
architecture of System I in the style of Tokovinin (2021). The orbital parameters are
listed in Table A.1, with the Chapter 3 scaling applied.

Orbit
θo e a/AU P/Myr

A - 0.42 200 0.0026
B - 0.87 100 0.0011
C 1.86 0.80 8,600 0.67
D 1.34 0.70 2,500 0.11
E 0.67 0.69 28,000 4.0
F 1.50 0.99 110,000 20

Table A.1. Orbital parameters for System I. Letters A-F denote the orbit. θo is
mutual orbital inclination between the given orbit and the orbit interior to it, e is
eccentricity, a is orbital semimajor axis, and P is orbital period.

The system develops quickly and remains in its final configuration from t = 66 tcross

to the end of the integration at t = 1000 tcross.

A.2 System II: a (2+2)+3 septuple

Figure A.2. As Figure A.1, for System II
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A.3. System III: a (2+3)+1+1 septuple

System II is comprised of a group of 4 stars on 2+2 orbits, which is itself on a much
larger orbit with a group of 3 stars. Figure A.2 is a diagram showing the architecture of
System II. The orbital parameters are listed in Table A.2, with the same scaling as above.

Orbit
θo e a/AU P/Myr

A - 0.45 120 0.0015
B - 0.74 900 0.27
C - 0.54 15,000 3.2
D 0.81 0.37 1,400 0.056
E 2.71 0.98 260,000 110
F 1.98 0.99 1,000,000 700

Table A.2. Orbital parameters for System II. Letters A-F denote the orbit. θo is
mutual orbital inclination between the given orbit and the orbit interior to it, e is
eccentricity, a is orbital semimajor axis, and P is orbital period.

Like System I, this system also develops quickly, in this case by t ∼ 200 tcross.
It remains in its final configuration until the end of the integration at t = 1000 tcross.
Due to its high eccentricity and large orbit, orbit F would likely become unbound over
many orbits, or if other bodies were nearby to perturb it (see subsection 4.3.8 for further
discussion). Notably, with this scaling, star 7 is in the brown dwarf mass range.

A.3 System III: a (2+3)+1+1 septuple
System III is comprised of a group of 2 stars, which is on a larger orbit with a

group of 3 stars. This quintet is in turn orbited by 2 more stars on planetary orbits.
Figure A.3 is a diagram showing the architecture of System III. The orbital parameters
are listed in Table A.3, with the same scaling as above.

Orbit
θo e a/AU P/Myr

A - 0.39 89 0.00085
B - 0.95 500 0.015
C 1.56 0.79 13,000 1.7
D 0.77 0.68 16,000 1.5
E 1.55 0.99 160,000 46
F 2.54 0.97 170,000 48

Table A.3. Orbital parameters for System III. Letters A-F denote the orbit. θo is
mutual orbital inclination between the given orbit and the orbit interior to it, e is
eccentricity, a is orbital semimajor axis, and P is orbital period.

Unlike the other two systems, System III develops more slowly, taking until
t ∼ 800 tcross to settle into its final configuration. It remains in this form until the end of
the integration at t = 1000 tcross.
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Appendix A. Long-lived septuple systems

Figure A.3. As Figure A.3, for System III
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