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Abstract

Directors and cinematographers often recreate iconic
scenes by replicating the underlying camera language to
evoke shared aesthetic and narrative meaning. In this work,
we refer to this as the task of Cinematic-Guided Camera
Language Transfer, where the goal is to reproduce the cin-
ematic camera language of a reference video clip in a new
3D scene. The pioneer work, Jaws [62], tackles this prob-
lem by adapting generic computer vision methods but fails
to model the essential principles of cinematography, often
leading to inaccurate framing, motion mismatches, and loss
of expressive intent. To overcome these limitations, we sys-
tematically define the objectives of camera language trans-
fer, grounding them in professional cinematography litera-
ture. Specifically, we conduct an in-depth review of cine-
matography literature to identify eight key cinematic fea-
tures and encode them into five novel camera language
losses. These losses not only guide optimization of camera
parameters for effective transfer, but also serve as quantita-
tive metrics for evaluating cinematographic fidelity. Exten-
sive experiments demonstrate the superiority of our method.

1. Introduction

Throughout film history, directors and cinematographers
have frequently paid visual homage to iconic scenes by
recreating the key camera language such as signature cam-
era trajectories, compositions, and framings to evoke shared
aesthetic or narrative meaning (e.g., the dolly zoom from
Vertigo [19] or the suspenseful tracking shots in Jaws [55]).
With the rise of virtual production tools, it has become com-
mon to replicate such cinematic effects in simulated 3D en-
vironments (e.g., NeRF [45], 3DGS [26], Unity [58]) before
principal photography [2, 8], and to train robots [12, 42, 49].
In this work, we refer to this as the task of Cinematic-
Guided Camera Language Transfer: given a reference
video clip and a new 3D scene, the objective is to reproduce
the cinematic camera language of the reference clip within
the new scene, such that the re-rendered video conveys a
consistent cinematic visual style.

Jaws [62], a pioneering effort in this direction, address
this task by formulating it as a camera parameters (both
extrinsics and intrinsics) optimization problem. Specifi-
cally, they define camera language losses (i.e., the objec-
tive function) as an on-screen loss(full-body pose match-
ing) and an inter-frame loss(optical-flow matching). While
promising, their approach largely relies on a naive adap-
tation of existing computer vision techniques, rather than
adhering to principles of cinematic camera language. As a
result, Jaws [62] easily breaks down, leaving a critical gap
in capturing the expressive cinematographic intent. For ex-
ample, naive human pose matching using all skeleton joints
is highly sensitive to pose variation, causing mismatched
shot size and framing; likewise, global optical flow ignores
motion parallax, conflating near and far motions and weak-
ening supervision on camera-induced depth-dependent dy-
namics. Moreover, Jaws overlooks key cinematic features,
such as filmic space and camera angle, thereby limiting its
ability to reproduce authentic cinematic visual styles.

In this work, we address the above-mentioned limita-
tions by systematically defining the objectives of cinematic-
guided camera language transfer, explicitly grounding them
in professional cinematography literature [9, 44] that prior
approaches have overlooked. Specifically, we first review
the cinematography literature [9, 44] and identify 8 key cin-
ematic features for camera language, including (i) shot size
(how much of the frame the subject occupies); (ii) fram-
ing (the subject’s screen position); (iii) camera angle (rela-
tive orientation to subjects); (iv) camera movement (frame-
to-frame motion cues); (v) lens choice (perceived depth
and spatial compression); (vi) camera position (camera-to-
subject location); (vii) zooming (cynamically focal) and
(viii) focus (the effect of depth of field). Then, we care-
fully examine them and capture these 8 features using 5
novel camera language losses, including (i) shot size loss;
(i1) framing loss; (iii) filmic space loss; (iv) camera move-
ment loss; (v) camera angle loss; using computer vision
techniques. Similar to Jaws [62], we formulate the task as
optimizing camera parameters under our novel camera lan-
guage losses, which enables more effective and consistent
camera language transfer. Notably, our losses can also be
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Figure 1. Our camera language transfer framework using five camera-language losses: shot size (yellow chain), framing (blue dot), camera
angle, filmic space (green:character; blue:background), and camera movement (depth-layered optical flow).

used as quantitative metrics to evaluate how well the cam-
era language of generated shots matches that of the refer-
ence video. Our experiments demonstrate that the proposed
method generates videos of effective and consistent camera
language, better preserving both the narrative intent and the
cinematic visual characteristics of the reference video clips.

Our main contributions include:

* We are the first to systematically define the objectives of
cinematic-guided camera language transfer in 3D scenes,
which are explicitly grounded in professional cinematog-
raphy literature [9, 44].

* To achieve it, we first conduct an in-depth review of pro-
fessional cinematography literature and identify 8 key
cinematic features for camera language, including (i) shot
size; (ii) framing; (iii) camera angle; (iv) camera move-
ment; (v) lens choice; (vi) camera position; (vii) zooming
and (viii) focus.

* We then carefully analyze the 8 features and encode them
with 5 novel camera language losses: (i) shot size loss,
(ii) framing loss, (iii) filmic space loss, (iv) camera move-
ment loss, and (v) camera angle loss, and implement them
using computer vision techniques. Notably, our losses
can also be used as cinematic metrics for the task.

* Experimental results show that our method outperforms
state-of-the-art approaches, generating videos with more
effective and consistent camera language that better pre-
serve both the narrative intent and the cinematic visual
characteristics of reference clips.

2. Related Work
2.1. 3D Scene Representation

Scene representation has long been central in computer
vision and graphics, with traditional methods relying on
explicit forms such as meshes [40], voxels [39], point
clouds [30], and light fields [1]. However, they often re-
quired dense sampling, manual reconstruction, or heavy
computational resources, limiting their accessibility. The

advent of neural scene representations, NeRF [5, 32, 45, 46]
offers photorealistic rendering and greatly lowers the bar-
rier for high-quality 3D scene construction, albeit at sig-
nificant computational cost. More recently, 3D Gaussian
Splatting (3DGS) [26] offers NeRF-level realism with far
more efficient training and rendering, establishing a critical
foundation for creative tasks such as cinematic camera con-
trol and 3D style transfer. Motivated by these advantages,
we adopt 3DGS as the input 3D scenes in our Cinematic-
Guided Camera Language Transfer framework.

2.2. Cinematic Feature

Cinematic features have been studied for decades. Early
methods [6, 51, 52, 59] focus on shot size classification and
analysis, which is determined by how much of the screen
a subject fills. Camera motion is another key feature. For
camera motion classification, CAMHID [17] takes motion
vector as camera motion descriptors, while Derue et al. [13]
leverage optical flow, and MUL-MOVE-Net [10] extends
this to optical-flow histograms. For camera movement anal-
ysis, CameraBench [35] proposes annotations and a taxon-
omy of motion primitives. SGNet [50] and LWSRNet [33]
use view scale and camera movement for shot classification.
MovieNet [22] annotates view scale and camera movement
to support broader film-understanding tasks. Lu et al. [41]
incorporate composition with shot size and movement for
analyzing film shot attributes. CineScale2 [53] extends cin-
ematic analysis to camera angles, proposing a CNN-based
framework for automatic angle recognition. Recent bench-
marks incorporate filmic attributes with language models.
CineTechBench [63], FilMaster [21], and ShotBench [37]
annotate multiple cinematic dimensions but focus on evalu-
ating the video generation performance of vision-language
models, which is not suitable for cinematic-guided cam-
era language transfer task. We define cinematic features
rooted in film grammar for cinematic-guided camera lan-
guage transfer task: shot size, framing, camera angle, cam-
era movement, lens choice, camera position, zooming and



focus, which encompassing the cinematic visual feature
from classical film theory.

2.3. Camera Control in Virtual Cinematography

Camera Control has been long studied in computer graphics
and virtual cinematography [11]. A naive example-based
solution is to reconstruct the camera path from a film clip
(typically via SfM) and replay it in a new scene [14, 29].
However, differences in subject distance and scene scale of-
ten cause composition drift and scale mismatch, degrading
shot size and parallax. A second strategy treat camera con-
trol as a sequence prediction problem: Huang et al. [20]
incorporate the video contents and previous camera move-
ments to predict the future camera movements, while Jiang
et al. [23, 24] train example-driven LSTM controllers us-
ing a cinematic feature space (camera angle, distance, com-
position, character configuration, motion). Although these
methods produce smooth trajectories, they did not model
full cinematic visual language. A third strategy formu-
lates camera control as a constraint-satisfaction or optimiza-
tion problem by incorporating predefined metrics. Text-
conditioned generation [25, 38] allow users to specify shots
via natural language. Others adopt visual metrics to guide
the optimization. For example, Galvane et al. [15] formu-
late camera parameters as a search or optimization problem
to maximize view quality metrics. GAIT [65] adopted rein-
forcement learning to auto-generate camera trajectories in
3D indoor environments by maximizing a learned aesthetic
scoring function. Jaws [62] optimize camera parameters
using optical flow and pose. However, these optimization
methods do not capture the full cinematic visual feature.

3. Preliminaries

Problem Formulation. Cinematic-Guided Camera Lan-
guage Transfer enables intuitive replication of a reference
video clip’s camera language onto novel 3D scenes. Follow-
ing [62], we formulate it as an inverse rendering-style opti-
mization problem. Specifically, given a 3D scene .S and a
reference video clip Vier = {FL;} Y, comprising N frames,
we aim to synthesize a novel video clip Vs = {F5}Y , by
transferring the camera language of Vet onto S and render-
ing it accordingly:

Vs = Render(C, S) N
= Render(CLTrans Ve, S), S)
where Render(-, -) represents the native rendering methods
associated with the input 3D scene (e.g., NeRF, 3DGS); and
C = CLTrans(Vier, S) = {Z%,EL}N | denotes the frame-
wise intrinsic and extrinsic camera parameters, whose opti-
mum C' is obtained via solving an optimization problem:

C = arg mén Ler Vs, Veet) @)

where Ly is a loss function capturing the camera language
of the given video clips.

Camera Parameters. Following [62], we define the cam-

era parameters C' comprising intrinsics and extrinsics as:

* Intrinsic parameters Z = -, where y is a focal length
scaling factor. This simplified version has been widely
adopted in prior works [47, 54] due to its favorable opti-
mization properties.

* Extrinsic parameters £ = (t, ) defining the camera pose,
where t = (tg,1y,t.), @ = (Oroll, Opicch, Oyaw) denotes the
camera translation and rotation in S E/(3), respectively.

4. Method

As with most optimization problems, our solution (Eq. 2)
is characterized by three key components: (i) loss function,
(i1) initialization strategy, and (iii) optimization procedure.

In this work, we first draw inspiration from professional
cinematography literature [9, 44] to identify key cinematic
features for camera language transfer, and show that the for-
mulation in [62] is suboptimal in this regard (Sec. 4.1). We
then introduce a novel loss design, grounded in these cin-
ematic features, that comprehensively captures the camera
language of the given video clips (Sec. 4.2). Finally, build-
ing on this loss, we present the corresponding optimization
procedure and initialization strategy (Sec. 4.3).

4.1. Key Cinematic Features for Camera Language

As shown in Egs. 1,2, our goal is to estimate camera param-
eters that reproduce the look and feel of the reference clip’s
cinematography, even when the underlying scene content
differs. This task is challenging because it demands match-
ing high-level cinematic visual features conveyed through
camera language, rather than merely replicating the raw

camera trajectories and settings of the reference video [7].

Therefore, the key lies in identifying the key cinematic fea-

tures that fundamentally shape how visual storytelling is ex-

pressed through camera work. Drawing from professional
cinematography literature [9, 44], we identify the following
key cinematic features for camera language:

* Shot Size: Determines the proportion of the subject (typ-
ically a character) within the frame, influencing narrative
intimacy and visual emphasis.

» Framing: Defines spatial composition of subjects within
the image plane, shaping visual balance and directing au-
dience attention.

* Camera Angle: Encodes camera-to-subject orientation,
modulating power dynamics and viewer alignment.

» Camera Movement: Reflects temporal camera displace-
ment, producing perceived motion and rhythm.

* Lens Choice: Models perceived depth and spatial com-
pression, ultimately, the construction of filmic space [7].



* *Camera Position: Camera-to-subject location, affect-
ing shot size, framing, camera angle, and movement.

e *Zooming: Dynamically modifies shot size without cam-
era translation.

* Focus: Closely tied to depth of field, determines which
parts of the scene appear sharp or blurred, guiding atten-
tion and suggesting emotional or narrative focus.

where * shows that the feature is closely related to other

features. Please see Supplementary Sec. 8 for details.

Remark on [62]. Although the pioneering work [62] yields
promising results, it approaches the problem from a purely
computer vision perspective. Specifically, it implements
Lcr (Eq. 2) as a matching of pose and optical flow between
the rendered video and the reference input. However, this
approach overlooks alignment with the key cinematic fea-
tures identified above. For instance, direct pose matching
often introduces errors in shot size, as the poses of the main
character in the 3D scene and the reference video typically
differ. We refer the audience to Sec. 6.3 and the supplemen-
tary material for results and analysis.

4.2. Camera Language Losses

In this section, we formalize the eight key cinematic fea-
tures (Sec. 4.1) into five loss functions as follows. Note
that as mentioned in Sec. 4.1, (i) Camera position influences
shot size, framing, camera angle, and movement. Its effects
are thus implicitly captured by these components and not
modeled separately. (ii) Zooming is functionally encom-
passed within our shot size formulation and is not treated
as an independent factor as well. (iii) Focus is not modeled
due to representation limitations (i.e., depth-of-field) in the
3DGS framework and is left for future work. Please see the
supplementary materials for more details.

4.2.1 Shot Size Loss

As defined in [28], shot sizes are typically categorized based
on the relative positions of five key human joints, including
(1) head top, (ii) chest, (iii) waist, (iv) knees, and (v) feet.
Please see Supplementary Sec. 11.2 for more details. Ac-
cordingly, we propose a novel shot size loss as:

Lshotsize = ”drEf - ds” (3)

where d™f and d° are the normalized maximum hori-
zontal/vertical distances among the visible key joints in
the corresponding reference and rendered frames Fi; €
RHwxWerx3 and Fi € RFsxWsx3 respectively; and the
choice between horizontal and vertical distances is deter-
mined by whichever is greater in .. Formally, let 7' C
J = {Jjheadiop Jehests - -+ Jieet} denote the visible set of the
five key joints in

(2 .
o> We have:

dref — max (”x]z _x]'lc”7 ”le _kaH) 4)
Href

Jirdn €T Wiet

e s =2l Ui = gl
T — Yi —y;
dS _ Ja Jb or Je Jd 5
Ws s )
where the choices of (x, ju, J») or (Y, je, ja) depend on the
results of Eq. 4 for consistency.

Comparison with Previous Works. Previous works esti-
mate shot size either from the normalized area of the sub-
ject [22, 50, 51, 61, 66] or from the full-body pose of the
main character [62]. However, both approaches are subop-
timal: the former is highly sensitive to pose variations and
subject shapes that are irrelevant to shot size, while the latter
enforces overly strict alignment of the entire pose, includ-
ing joints (e.g., arms) that have little bearing on shot size.
In contrast, our shot size loss adheres closely to the def-
inition in cinematography literature and is robust to pose,
viewpoint, and body-shape variations unrelated to shot size,
thereby ensuring faithful transfer of camera language.

4.2.2 Framing Loss

Framing refers to the spatial arrangement and composition
of significant visual elements in a film frame [28] (please
see Supplementary Sec. 11.4 for details). Notably, fram-
ing is often co-determined with shot size as determining a
subject’s spatial placement also involves determining how
much space they occupy in a frame. Thus, our framing loss
focuses on capturing the spatial placement of a subject, as
its size is already captured in Eq. 3. However, given the in-
evitable differences in content between the reference video
and the input 3D scene, perfectly matching all spatial ele-
ments through camera adjustment is infeasible. Fortunately,
among these elements, human characters are most often the
primary narrative focus and serve as the dominant composi-
tional anchors in the frame. Guided by this cinematic prin-
ciple, we follow previous works [20, 23, 62] and focus on
character placement as the key visual anchor for framing
alignment. Accordingly, we represent character placement
using centroids of visible key joints, which serve as a com-
pact descriptor of the character’s overall spatial location in
the frame, and have:

Lframing = \/<‘fref - ES)2 + (gref - gS)2 (6)

where z"°f and g™f are the centroid coordinates of the set

of visible joints 7% in frame F; (Sec. 4.2.1) that:

_ 1 E
(xref, yref) — |j = (-er? ij) (')
ref | i
jiegvis

ref
And 7° and ¢ are calculated in a similar way with the same
set of joints in the rendered frame FF.
Comparison with Previous Works. Interestingly, [62]
achieves framing implicitly through a full-pose matching



loss, which inherits similar shortcomings to those in shot
size estimation (e.g., sensitivity to framing-irrelevant joints
such as the arms). In contrast, our method explicitly models
the cinematographic intent of subject placement while re-
maining robust to variations in pose, orientation, and artic-
ulation, thereby providing a stable framing transfer across
heterogeneous scenes.

4.2.3 Filmic Space Loss

Filmic space is the spatial structure perceived within a film
frame [28], which can be characterized by the depth, prox-
imity, size, and proportions of objects and places within the
image (please see Supplementary Sec. 11.5 for more de-
tails). To encode these properties in a manner consistent
with human perception and robust to the monocular scale
ambiguity inherent in films, we adopt perceptual depth,
rather than absolute depth, as the basis to capture the filmic
space feature of an input frame.

Following classical mise-en-scene conventions [7], we
segment each frame into three coarse depth layers by thresh-
olding the perceptual depth value of each pixel: (i) fore-
ground (F), (ii) character (C), and (iii) background (B).
This tripartite scheme reflects both classical film language
and cognitively natural: observers coarsely “chunk” depth
into near/mid/far zones, supporting stable perception of spa-
tial layout and narrative salience.We then propose our filmic
space loss using the log-form of relative depth ratios be-
tween the three depths layers as:

Lspace = ” log dicct - IOg dlb:c” + H IOg dﬁgf - IOg dfc” (®)

where dy,. and dy. are the relative depth ratios between (15,
C) and (F, C), respectively, that:

ds dr
= — dC = —
f de

)
where dg, dc, and dr are the representative depths of the
three depth layers, respectively, that:

d = argr;l(aﬁd’r[d(p) lpeK], Ke{F, C B}, (10)
p

where Pr[] is the probability estimated by applying kernel

density estimation (KDE) on depth values d(p) of pixel p at

depth layer K € {F, C, B}.

Discussion. Our loss features two novel designs:

* Representative Depth Value. Because direct per-pixel
depth matching between reference and rendered frames
becomes invalid under scene content differences, we in-
stead represent each layer by the mode of its depth dis-
tribution as a stable depth estimate. This choice (i) sup-
presses noise and small occlusions more effectively than
means or medians in multi-modal cases, (ii) captures the

“prevailing distance” of the layer, and (iii) produces a
compact, semantically grounded descriptor aligned with
the (foreground, character, background) schema.

* Relative Depth Ratio. To obtain a scale-robust perceptual
descriptor, we compute two relative depth ratios dy,. and
ds.. These ratios encode perceived depth separation and
offer three advantages: (i) invariance to global monoc-
ular depth scaling, (ii) direct correspondence to percep-
tual separation (“how far the character sits from fore-
ground/background”), and (iii) a clear mapping to cine-
matic intent (“deep” vs. “flat” staging).

To the best of our knowledge, we are the first to introduce

a loss function for modeling filmic space. Consequently, no

direct comparison with prior approaches is available.

4.2.4 Camera Movement Loss

Camera movement refers to the changing position or orien-
tation of the camera over time, resulting in perceived rela-
tive motion of scene elements within the frame [28] (please
see Supplementary Sec. 11.7 for details). Recognizing that
camera movement is largely conveyed through scene mo-
tion parallax [18, 60], where nearer objects exhibit greater
displacement than distant ones, we propose a novel camera
movement loss based on a novel depth-layered optical flow
decomposition strategy:

Lcam—move =

1
g Z L(ﬁ)ti—ﬂow' (1D

Ke{F,c,B}

where F, C, and B are the three depth layers obtained in
Sec. 4.2.3; the optical flow loss L’Ocpti_ﬂow of depth layer K is:
Lopitow = 10k = O 2, (12)
where Or’gf and O§ represent the optical flows of the ref-
erence and rendered videos at depth layer K, respectively,
measured using the endpoint error (EPE) distance [4].

Comparison with Previous Works. Our camera move-
ment loss offers two distinct advantages over the global op-
tical flow matching loss in [62]:

* First, it accounts for motion parallax by decomposing op-
tical flow matching across depth layers. This was ne-
glected in [62], which matches only global optical flow
between the reference and rendered videos. As a result,
when the depth structures of the reference and rendered
frames are not perfectly aligned—as is typical in prac-
tice—foreground motion is averaged with background
parallax, especially near depth discontinuities.

* Second, it balances the contribution of foreground, char-
acter, and background, thereby avoiding biased optical
flow matching. Specifically, since endpoint error (EPE)
is implicitly weighted by pixel count, the global optical
flow matching in [62] is dominated by large background



regions and thus obscures character dynamics, especially
when the foreground and the background differ greatly in
depth and motion patterns (e.g., dolly zoom or bullet-time
effects).

4.2.5 Camera Angle Loss

Camera angle refers to the placement of the camera relative
to the subject [28] ((please see Supplementary Sec. 11.10).
Thus, we tie it to the relative orientation between the cam-
era and the subject. For each frame, we infer three angles
a = (¢,0,9) (yaw, pitch, roll). We minimize the differ-
ence of this angle between reference and rendered frames
to preserve consistent camera angle. We convert degrees to
radians and take the component-wise absolute error:

Aa = ’rad(as) — rad(a™") . (13)

Our per-frame camera-angle loss sums the per-axis errors:

Langle = \AW + ‘A9| + |A¢‘ (14

4.2.6 Overall Loss Function

In summary, we have the overall loss function Ly as:

ECL = )\1 Lshotsize + /\2Lframing+

(15)
/\3Lspace + )\4Lcam—move + /\5Lang1e

where we set A1 ..., A5 are weighting coefficients, empiri-
cally determined to balance the scale of different loss terms.

4.3. Optimization and Initialization

Optimization Procedure. Notice, shot size is jointly de-
termined by both the intrinsic and extrinsic camera pa-
rameters. For a given shot size, the desired framing can
be achieved either by adjusting the intrinsic parameters
(e.g., focal length) or by modifying the extrinsic parame-
ters (e.g., moving the camera closer to or farther from the
subject). In our experiments, we observe that the corre-
sponding feature space exhibits lots of local minima. When
employing gradient-based optimizers such as the Adam op-
timizer [27], the optimization process easily falls into lo-
cal minima. To address this, we adopt the gradient-free
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [16], which is run for up to 100 iterations, with early
stopping if the total loss does not decrease over 20 con-
secutive steps. The search ranges of parameters were set
as follows: the translation vector v; € [—5.0,5.0]3, the
rotation axis w; € [—1.0,1.0]3, and the rotation angle
0; € [-%,%]. The focal length scaling factor +; is op-
timized within [0.0,5.0]. Notably, this gradient-free ap-
proach allows us to incorporate non-differentiable opera-
tions—such as the selection of valid key joints based on

confidence thresholds—without affecting the overall opti-
mization process. Moreover, the framework transfers easily
to other 3D scene representations(NeRFs[5, 32, 45, 46], 3D
point-cloud[30], and Unity[58]). By contrast, Jaws[62] re-
lies on a differentiable NeRF and assumes dense multi-view
as input. As a result, under the sparse-view reconstructions
common in practice, it often fails (see Fig.3).

Initialization Strategy. Following JAWS [62], we adopt
the same initialization strategy to make a fair comparison.
The initial view is selected by the user from the input im-
ages used to train the 3D scene representation.

5. Implementation Details

We represent the input 3D scene S using 3DGS [26] due
to its high quality and efficiency. To extract their cinematic
features, we leverage several state-of-the-art models. See
Supplementary Sec. 9 for more details.

6. Experiments
6.1. Experimental Setup

Datasets. Our dataset comprises 3D scenes S and reference

videos Vier:

* Our dataset includes both outdoor (selected from
DL3DV [36], ENeRF-Outdoor [34]) and indoor scenes
(DyNeRF [32], Mobile-Stage [48, 67]). All the selected
scenes have at least one human or character-like subject.

* Our reference videos are selected from the Camer-
aBench [35] and CondensedMovies [3] datasets, each a
single-shot clip with one character. To cover diverse and
representative cinematic motion styles, we include canon-
ical shot types defined in classical film theory [7, 43], in-
cluding both basic and classic complex shots.

— The basic shots include: (i) Push in (camera moves for-
ward), (ii) Pull out (camera moves backward), (iii) Pan
(camera moves horizontally), (iv) Tilt (camera moves
vertically), (v) Orbit (camera circles around a subject),
(vi) Zoom (lens-based magnification), and (vii) Crash
Zoom (a rapid zoom in or out).

— The classic complex shots include: (i) Dolly Zoom (si-
multaneous zoom and dolly movement that alters back-
ground perspective while maintaining subject scale),
and (ii) Dutch Angle (camera is tilted to create a sense
of unease or disorientation).

Metrics. Based on our Camera-Language loss, we identify
cinematic visual metrics for quantitative experiment from a
professional cinematography perspective. Specifically, our
Shot Size Loss can be used to evaluate the main charac-
ter’s screen occupancy relative to the reference. Framing
loss evaluates the on-screen position of the main charac-
ter. Filmic space loss evaluates the perceived depth struc-
ture and further enforces focal-length consistency. Cam-
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Figure 2. Qualitative results of the dolly zoom (left) and rotating (right) example.Our results show that our cinematic visual feature
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Figure 3. Qualitative results of the crash zoom (left) and Boom (right) example. Our results show that our cinematic visual feature
(specifically, shot size, framing, camera movement) consistent with the reference frame.

era movement loss evaluates temporal differences in cam-
era motion. Camera angle loss evaluates the relative cam-
era—subject orientation.

6.2. Quantitative results

We use our cinematic feature metric to evaluate the results
of Jaws[62] and our model by computing the mean dif-
ference of each frame at each rendered video clip. Our
method achieves consistently lower errors as shown in Ta-
ble.1.(Note: Frames with severe rendering failures in JAWS

are excluded from the evaluation.)

6.3. Qualitative results

We test our method on both basic (Fig.3) and classic com-
plex shots dolly zoom(Fig.2 left). Baseline method gener-
ally fail when background and character move differently.
Specifically, baseline method failed to handle the shot size.
In contrast, our method accurately clones visual feature
from the reference video: the tree in the background be-
come smaller, while the character become bigger.
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Table 1. Quantitative comparison of cinematic feature metrics.
Lower values indicate better alignment with the reference. Our
method outperforms JAWS on all reported metrics.

Metric JAWS [62] Ours
Shot Size 0.093017 0.080433
Framing 0.447699  0.380040
Filmic Space 2.905601 0.475843
Camera Movement  30.288347 1.952139
Camera Angle 2.905543  2.603337

6.4. User Study

We conducted a user study with 11 participants, recruited
from the computer science department as unpaid volunteers
with no formal training in cinematography. The study eval-
uated (1) the fidelity of visual style to the reference video,
(2) smoothness, and (3) naturalness of the generated video
covering both basic shots and classic complex shots. For
each sample, participants viewed two anonymized videos,
one from the baseline Jaws[62] and one from our method,
presented in random order alongside the reference. They
were asked to select the preferred video for each criterion.
As shown in Table 2, across all three criteria, our method
is consistently preferred over the baseline Jaws. In particu-
lar, for visual style fidelity, our method is preferred in all tri-
als, indicating a strong alignment with the reference videos.

Table 2. User preference evaluation between our method and
Jaws[62]. Each percentage represents the ratio of pairwise com-
parisons in which ours was preferred by participants over Jaws.

Visual Style Smoothness Naturalness
Ours (%) 100.00 84.85 81.82
Jaws[62] (%) 0.00 15.15 18.18

Substantial improvements are also observed in smoothness
(84.85%) and naturalness(81.82%).

6.5. Ablation study

Fig. 4 and Fig. 5 present our ablation results. Removing the
framing or shot size loss leads to inaccurate subject place-
ment or scale, while removing the filmic space loss pro-
duces overly deep perspective inconsistent with the refer-
ence. Excluding the camera movement loss causes temporal
instability, and removing the camera angle loss yields mis-
aligned subject orientation. Our full model contributes to
best preserving the intended cinematic expression. Please
see Sec. 10 in the supplementary materials for more details.

7. Conclusion

We address the task of Cinematic-Guided Camera Lan-
guage Transfer, aiming to reproduce the cinematic camera
language of a reference video in a new 3D scene. While
prior work approached this challenge with generic computer
vision techniques, it overlooked core cinematographic prin-
ciples, resulting in inaccurate framing, motion mismatches,
and loss of expressive intent. To address this gap, we sys-
tematically grounded the task in professional cinematogra-
phy literature, identifying eight fundamental cinematic fea-
tures and encoding them into five novel camera language
losses, which not only enable more effective and consis-
tent transfer of camera language, but also provide quantita-
tive metrics for evaluating cinematographic fidelity. Exten-
sive experiments show that our method substantially outper-
forms existing approaches, better preserving both narrative
intent and cinematic visual style of reference clips.
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Improved Cinematic-Guided Camera Language Transfer in 3D Scene

Supplementary Material

8. More Details about Cinematic Feature and
Camera Language Losses Definition

In this work, we systematically define the objectives of cam-
era language transfer, grounding them in professional cin-
ematography literature. we conduct an in-depth review of
cinematography literature to identify eight key cinematic
features and encode them into five novel camera language
losses. In film theory, camera language is expressed through
camerawork, which includes shot size, framing, camera an-
gle, camera movement, lens choice, camera position, focus,
and zooming[44][9].

L]

Shot Size Shot size describes how much of the sub-

ject(typically a person) appears within the frame. Direc-

tors use shot size to manipulate visual composition and
guide audience perception, thereby enhancing narrative
expression.

Framing Framing refers to the subject’s position and spa-

tial layout within the frame. It is used to guide narrative

emphasis, evoke emotional responses, and maintain vi-

sual coherence.

Camera Angle Camera angle means the specific location

and orientation of the camera, which directly affects the

viewer’s perceived relationship with on-screen characters
or space.

* Camera Movement Camera movement introduces tem-
poral variation across frames by shifting the camera’s po-
sition during a shot, thereby influencing temporal move-
ment.

* Lens Choice Lens choice allows filmmakers to manipu-
late camera perspective[28](see Section 11.9) to enhance
their visual storytelling, thereby influencing the audi-
ence’s perception of the scene’s depth cues and, ulti-
mately, the construction of filmic space[7].

e Camera Position While camera position contributes to

determining shot size, framing, camera angle and camera

movement, its effects are already implicitly captured in
these components and is therefore not modeled separately
in our formulation.

Zooming Zooming used for temporal changes in shot

size, is also functionally subsumed under our shot size

modeling and thus not treated as an independent factor.

* Focus Focus, which is closely tied to depth of field, de-

termines which parts of the scene appear sharp or blurred,

guiding attention and suggesting emotional or narrative
focus.

L]

8.1. Shot Size loss

As defined in [28] (see Section 11.2), shot size refers to the
degree to which a subject (typically a character) dominates
the frame.

According to cinematic conventions[28] (see Sec-
tion 11.2 for details), shot sizes can be categorized as fol-
lows:

* Extreme Long Shot (ELS): Often an establishing shot,
dominated by the setting or landscape.

» Long Shot (LS): Shows the full subject within the context
of the background.

* Medium Long Shot (MLS): Depicts the subject from
slightly above the knees to the top of the head, integrating
the subject within the environment.

* Medium Shot (MS): Shows the subject from waist-level
to the top of the head.

* Medium Close-Up (MCU): Frames the subject from
chest-level to the top of the head.

* Close-Up (CU): The subject’s head or object fills most of
the frame.

* Extreme Close-Up (ECU): A small detail or part of the
face fills the entire frame.

Obviously, different shot sizes are primarily distin-
guished by the relative positions of key human joints, rather
than merely by the occupied frame area as used in previous
works [22, 50, 51, 61, 66]. Inspired by the definition of shot
size in cinematographic visual language theory, we propose
a novel key-joint-chain-based shot size descriptor. Specif-
ically, we focus on landmarks most relevant to shot size
perception in filmmaking—head top, chest, waist, knees,
and feet—denoted as J = {Jheadtops Jehest, - - - » Jreet - This
cinematographic definition captures the semantic essence
of shot size while remaining robust to minor variations in
pose, viewpoint, and body shape, thereby ensuring stylis-
tically faithful reproduction of classic cinematic shots. As
shown in Fig. 6, the baseline model[62] fails to match the
shot size: the character appears smaller than in the refer-
ence image. In contrast, our method maintains consistent
shot size even when the character poses differ, demonstrat-
ing robustness to appearance variations.

Our task specifically targets the stylistic replication of
classic cinematic shots, requiring high-level visual style
consistency while tolerating minor differences in actor
poses and physique. In practice, significant pose variations
rarely occur between the reference and rendered scenes, en-
suring that the spatial layout of the key-joint-chain, which
represents high-level pose feature, remains pretty similar.
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(b) Visualization of shot size and framing in our method.

Figure 6. Comparison of shot size and framing. The baseline
method (top) produces misaligned in shot size and framing, while
our method (bottom) achieves more consistent alignment with the
reference image.

8.2. Framing Loss

As a core component of film style, framing determines
where subjects—especially human characters—are posi-
tioned to convey narrative emphasis, emotional tone, and
visual harmony. In practical filmmaking, particularly within
classical Hollywood cinema, framing is closely intertwined
with shot size: the subject’s spatial placement typically fol-
lows conventions that also define how much space they oc-
cupy in the frame. As we have already addressed subject
size through our Shot Size Loss, the Framing Loss is specif-
ically designed to capture spatial placement. In cinematog-
raphy, the spatial position of such elements in the 2D im-
age plane is determined jointly by scene composition and
camerawork. Given inevitable differences in scene content
between reference and target shots, perfect spatial matching
of all elements via camera adjustment is generally infeasi-
ble. Among these elements, human characters are most fre-
quently the primary narrative focus and the dominant com-
positional anchor in the frame. Motivated by this cinematic
principle, we concentrate on the spatial placement of char-
acters as visual anchors for framing alignment, similar to
previous work[20, 23, 62]. A straightforward strategy, used
in JAWS [62], is to perform pose-level alignment by match-
ing the 2D positions of all detected skeletal joints. How-
ever, full-pose alignment is highly sensitive to variations in
body pose, orientation, and camera viewpoint. As shown in
Fig. 6, the baseline model fails to match the framing: the
character is centered in the image, whereas in the reference
frame, the character is positioned on the right. In contrast,
our method preserves consistent framing even under pose
variations, demonstrating robustness to changes in appear-
ance and subject positioning.

To improve robustness against these variations, we repre-
sent character placement in the frame using the centroid of a
subset of reliably key joints (same with key joints in Section
8.1), rather than the full set of joint coordinates. This cen-

troid acts as a compact descriptor of the character’s overall
spatial location in the frame, effectively capturing the fram-
ing intent while discarding high-frequency pose variations.

By focusing on centroid alignment, this formulation cap-
tures the cinematographic intention of subject placement
while maintaining robustness to pose, orientation, and ar-
ticulation differences, thus providing a stable framing con-
straint across heterogeneous scenes.

8.3. Filmic Space Loss

Filmic space is the spatial construct perceived within the
film frame [28] (see Section 11.5). Its key attributes include
depth cues and juxtaposition. Since we only focus on single
shot rather than shot sequences editing, we focus on depth
cues, which convey the perceived three-dimensionality of
a scene. As noted in [28] (see Section 11.5), filmic space
can be characterized by the depth, proximity, size, and pro-
portions of objects and places within the image. To encode
these properties in a way that matches human perception
and is robust to monocular-scale ambiguity, we adopt per-
ceptual distance, rather than metric distance, as the filmic
space feature.

A long-standing convention in film theory and practice
organizes the frame into three planes—foreground, mid-
ground, and background—as a mise-en-sceéne strategy to
create the illusion of depth and to structure attention [7].
This tripartite scheme is both canonical in classical film lan-
guage and cognitively natural: observers coarsely “chunk”
depth into near/mid/far zones, supporting stable judgments
of spatial layout and narrative salience. Motivated by this,
we segment each frame into three coarse depth layers by
thresholding the perceptual depth value of each pixel: (i)
foreground (F), (ii) character (C), and (iii) background ().
This representation aligns with cinematographic semantics
(framing elements in the foreground, principal actors at mid
distances, setting in the background) and encourages the
model to allocate features to the same coarse regions that
directors intentionally compose.

However, directly matching per-pixel depth between ref-
erence and rendered frames is fragile when scene content
differs. Thus, for each layer we compute a representative
depth value given by the kernel density estimation (KDE)
of that layer’s depth distribution to serve as a stable esti-
mate of its distance, as defined in Eq.10.

To obtain a scale-robust perceptual descriptor, we then
derive two relative depth ratios as defined in Eq.9: (1)
the ratio of the character layer’s depth feature to the back-
ground layer’s depth feature, and (2) the ratio of the char-
acter layer’s depth feature to the foreground layer’s depth
feature. These ratios effectively encode the perceived depth
separation between the main character and the background
(or foreground), respectively.

This loss encourages the generated scene to maintain



Figure 7. Camera Angle loss.

similar depth relationships as the reference. By matching
relative depth cues in this way, we ensure that the perceived
spatial composition — how “deep” or “flat” the scene looks
— remains consistent with the reference style.

8.4. Camera Movement Loss

Previous cinematic transfer approaches[62] employs an
global optical flow estimator to measure and match inter-
frame motion between the reference and rendering videos.
However, while optical flow effectively captures camera-
induced inter-frame motion, it neglects the critical motion
parallax phenomenon [18, 60]: identical camera motions
produce depth-dependent apparent motion, with nearer ob-
jects exhibiting larger displacements than distant ones.
Thus, directly aligning global optical flows between ref-
erence and rendered scenes with distinct depth distri-
butions can introduce misleading. Moreover, a global
endpoint-error (EPE) objective is implicitly weighted by
pixel counts; large background regions dominate the loss
and obscure character dynamics—particularly when fore-
ground and background exhibit large depth disparities and
distinct motion regimes(e.g., in dolly zoom or bullet-time
effects).

To address this, we propose a depth-layered optical flow
decomposition strategy. We first compute a dense depth
map for each frame using a state-of-the-art depth estima-
tion network[69]. Subsequently, we compute optical flow
separately within each depth layer, as defined in Eq.11.

8.5. Camera Angle Loss

For each frame, we infer three angles a = (v, 6, ¢) (yaw,
pitch, roll), as shown in Fig. 7.

9. Implementation Details

We represent the input 3D scene S using 3D Gaussian Splat-

ting (3DGS) [26] from its high quality and efficiency. To

extract their cinematic features, we leverage several state-

of-the-art models:

* For shot size 10SS Lghorisize and framing 10SS Lraming, We
adopt HRNet [56] (via the MMPose library) trained on
the CrowdPose dataset [31] to infer the joint position of

the character. Nevertheless, the 14 annotated joints in

CrowdPose are designed for the pose estimation task in

computer vision, which does not align with the 5 key

joints required for camera language transfer. Thus, we
construct these 5 key joints as follows: (i) the head po-
sition is directly obtained from the annotated head top
keypoint. (ii) The chest is estimated as the midpoint be-
tween the left and right shoulders. (iii) The waisz is es-
timated as the midpoint between the left and right hip.

(iv) The knees and (v) feet are defined as the midpoints

of the respective left-right joint pairs (knees and ankles).

The set of visible key joints 7 is obtained by applying
a confidence threshold of 0.5 to the joint predictions from
HRNet, where joints with confidence greater than 0.5 are
considered visible.

* For filmic space loss Lgpace and camera movement loss
Leam-move, We employ DepthAnything [68] to estimate
the perceptual depth of each pixel in a frame. We use
YOLOVS for character mask generation (i.e., character
layer C).

* For camera movement 10SS L¢am-move, W€ use RAFT [57]
to estimate the optical flow in each depth layer. The op-
tical flow is computed in a backward manner, i.e., for the
i-th frame, it is estimated using the i-th and (i — 1)-th
frames. The camera movement loss is not applied to the
first frame.

* For camera angle 10SS Langle, We use OrientAnything [64]
to estimate characters’ orientation.

10. Ablation Study

Shot Size Loss Fig. 4 (second row, fourth column) shows
the effect of removing the shot size loss. Without shot size
loss, the character appears significantly smaller compared
to the reference, indicating a mismatch in perceived sub-
ject scale. In contrast, our full model accurately preserves
the character’s size, closely matching the reference shot and
maintaining intended composition.

Framing Loss Fig. 4 (second row, third column) shows
the effect of removing the framing loss. In this case, the
character appears on the left side of the frame, deviating
from the reference composition in which the character is
located on the right. Incorporating the framing loss in our
full model corrects this spatial misalignment, resulting in a
composition that accurately matches the subject placement
in the reference image.

Filmic Space Loss Filmic space loss is designed to re-
solve the inherent ambiguity in shot size: the same shot size
can arise either from placing the camera physically closer
to the subject or from using a longer focal length. How-
ever, the two ways result in markedly different filmic spaces
due to their distinct perspective properties. Fig. 4 (first row,
fourth column) shows our ablation study for filmic space
loss. The left image in second line is rendered without ap-



plying the filmic space loss, resulting in a deep space with a
wide-angle appearance: foreground expansion, strong line
convergence, and a diminished background relative to the
subject. In contrast, the right image in second line is ren-
dered using our full model, demonstrating a shallower space
with flattened perspective and stronger depth compression,
consistent with the reference image.

Camera Movement Loss Fig. 5 shows the ablation
study for camera movement loss. Camera movement loss
encourages consecutive frames to exhibit similar visual mo-
tion patterns to those in the reference clip, promoting per-
ceptual coherence across frames. Moreover, its formulation
facilitates efficient optimization.

Camera Angle Loss Fig. 4 (first row, third column)
shows the effect of removing the camera angle loss. With-
out this term, the subject’s orientation deviates noticeably
from the reference, and the optimization becomes less sta-
ble, often requiring more iterations to converge. With the
loss included, the subject’s pose aligns more consistently
with the reference view.

11. Related Definition from Professional Film
Book

The following definitions are quoted from A Dictionary of
Film Studies by Kuhn and Westwell [28] for reference in
our discussion of cinematic loss. All excerpts are quoted
for academic reference purposes.

11.1. Shot

“Continuous action on the cinema screen result-
ing from what appears to be a single run of the
camera. The shot is the basic building block of all
films—which normally consist of a series of shots
edited together (see editing; medium specificity).
Shots are generally characterized by 1. The ap-
parent distance between camera and subject (see
framing; shot size). 2. The angle of the cam-
era in viewing the subject (see camera angle). 3.
The movement of the camera during the shot (see
camera movement). 4. The number of characters
within the frame (e.g two-shot, three-shot).”

11.2. Shot Size (shot scale, shot type)

“An informally agreed and widely accepted set
of conventions which describe and define differ-
ent framings of a film image, or apparent dis-
tances between camera and subject. In the ex-
treme long shot (ELS, XLS), often used as an
establishing shot to set up the location for the
scene, the frame is dominated by a landscape
or a setting. The long shot (LS) shows the sub-
ject (usually a character in the film) in its en-
tirety, along with the background. The medium

long shot, three-quarter shot, or American shot
(MLS) shows the subject from above the knees
to above the head, but still as part of the setting.
The medium shot or mid shot shows the subject
from waist-level to the top of the head. The
medium closeup or medium close shot (MCU,
MCS) shows a character from chest level to the
top of the head. In the closeup or close shot (CU,
CS) the head takes up more than half of the
frame; while in the extreme/tight shot/close up
(ECU, XCU) a portion of the face, or a small ob-
ject, fills the frame. In classical Hollywood cin-
ema, these definitions were carefully maintained
in order to match studios’ standardized produc-
tion methods; but over time they have become
less precise, and framing guides for filmmakers
are often inconsistent in their descriptions of shot
sizes. For the contemporary cinematographer, di-
rector, and camera operator working together on
a production, the solution to this imprecision is
to agree before filming precisely how they wish
to define each type of shot size, bearing in mind
that framing can be an important expressive tool.
They might agree, for example, to use carefully
composed framings reminiscent of classical cin-
ema, with neat uncrossed edges, a clear space
about the head, and solid centring in the frame.
This choice could suggest a sense of order and
stability that might enhance character or story in,
say, a heritage film. Alternatively, choosing fram-
ings that look ‘grabbed’, awkward, uneven, and
inconsistent might be a stylistic support for a sto-
ryline involving hurry or unease. Shot size, then,
is not a set system but an integral part of a film’s
style. In Watchmen (Zack Snyder, US, 2009), for
example, the decision was made for the film to
stay with careful, graphically composed, comic-
book style images. This choice recreates the look
of the graphic novel and creates a sense of pe-
riod, because the shot sizes are similar to those of
classical Hollywood cinema. However, because
the visual style for contemporary action films has
shifted to unsteady, uneven framings, with odd
and inconsistent shot sizes (as, for example, in
127 Hours (Danny Boyle, US/UK/France, 2010)),
Watchmen might look somewhat static and out-
of-date in its style by comparison. Given such
flexibility in shot sizes one might ask whether
any random framing and shot size will be accept-
able to audiences. It is not, because an aestheti-
cally controlled film will be consistent in its use
of shot sizes, and there is a history of framing that
will be familiar to viewers from paintings, pho-



tographs, films, and television programmes, and
which will be drawn on in interpreting the style
of a particular film. The variations in shot size
and framing—and above all the disparities in the
scale and the fragmentation of the human body on
the screen—that are possible in cinema constitute
a key point in the medium’s distinctiveness. In the
early years of cinema, viewers and commentators
alike were astonished above all by the closeup,
with its capacity to convey detail and emotion. In
film studies, shot sizes can be treated as a com-
ponent of film style, and attention to patterns and
variations in their use in films and groups of films
can be illuminating, for example, in analyses of
authorship in film and of national cinemas, for ex-
ample, as well as in histories of film form. See
also shot.”

11.3. Scale

“If the same object were filmed at different shot
scales it would often signify quite differently.
Shot scale can foster intimacy with a character,
or conversely, it can swallow the character in its
environment. Orson Welles exploited divergent
shot scales in Citizen Kane (1941) to demonstrate
the changing power relationship between Charles
Foster Kane and his lawyer. As a boy, his fig-
ure is lost in the snow at the back of the shot as
the lawyer arranges for his adoption. As a young
man he rebels against Bernstein’s oversight, ris-
ing in the frame as he asserts himself.”
“Extreme Long Shot A framing in which
the scale of the object shown is very small; a
building, landscape, or crowd of people will fill
the screen. Usually the first or last shots of a
sequence, that can also function as establishing
shots. The following examples of framing from
Eyes Wide Shut (Stanley Kubrick, 1999) and A
Summer Tale (Conte d ’Eté, Eric Rohmer, 1996)
well illustrate the range of uses for this partic-
ular shot scale.” “These two extreme long shots
are also establishing shots. However, their pri-
mary function is different. Whereas Rohmer give
us a standard establishing shot that introduces
the locale where the main characters are about
to meet, Kubrick uses the ballroom shot mainly
as a brief transition between two more important
scenes. While the two shots above have simi-
lar sizes, some extreme long shots can be signifi-
cantly larger, particularly if shot from the air with
the help of cranes or helicopters. This kind of ex-
treme long shot is also called bird’s eye view shot,
since it gives an aerial perspective of the scene.”

“Long Shot A framing in which the scale of
the object shown is small; a standing human fig-
ure would appear nearly the height of the screen.
It makes for a relatively stable shot that can acco-
modate movement without reframing. It is there-
fore commonly used in genres where a full body
action is to be seen in its entirety, for instance
Hollywood Musicals or 1970s Martial Arts films.
Another advantage of the long shot is that it al-
lows to show a character and her/his surroundings
in a single frame, as in these two images from
Eyes Wide Shut (Stanley Kubrick, 1999) and A
Summer Tale (Conte d ’Eté, Eric Rohmer, 1996).”

“Medium Long Shot Framing such than an
object four or five feet high would fill most of
the screen vertically. Also called plain américain,
given its recurrence in the Western genre, where it
was important to keep a cowboy’s weapon in the
image.”

“Medium Close-Up A framing in which the
scale of the object shown is fairly large; a human
figure seen from the chest up would fill most of
the screen. Another common shot scale.”

“Close-Up A framing in which the scale of
the object shown is relatively large. In a close-up
a person’s head, or some other similarly sized ob-
Jject, would fill the frame. Framing scales are not
universal, but rather established in relationship
with other frames from the same film. These two
shots from Eyes Wide Shut and A Summer Tale
can be described as close-ups, even if one starts at
the neck and the second at the upper chest.. Fram-
ing scales are usually drawn in relationship to the
human figure but this can be misleading since a
frame need not include people. Accordingly, this
shot from The Color of Paradise (Rang-e Khoda,
Majid Majidi, Iran,1999) is also a close-up.”

“Extreme Close-Up A framing in which the
scale of the object shown is very large; most com-
monly, a small object or a part of the body usu-
ally shot with a zoom lens. Again, faces are the
most recurrent images in extreme close-ups, as
these images fromThe Color of Paradise (Rang-
e Khoda,Majid Majidi, 1999), The Stendhal Syn-
drome (La Sindrome di Stendhal, Dario Argento,
1996), and My Neighbor Totoro (Tonari No To-
toro, Miyazaki Hayao, 1988) demonstrate. With
regard to the latter, it should be noted that while
all of these film terms equally applies to anima-
tion, the technical procedure to achieve a particu-
lar effect can be very different. For instance this
last frame is a drawing of Totoro’s teeth, not a
zoom on his face, as it would have been the case



in a live-action film.”

11.4. Framing

“The arrangement and composition of elements
in a film frame, i.e. the entire rectangular area
of a film image as projected or as visible on the
screen. In the Hollywood studio era shot sizes
were standardized to ensure continuity for edit-
ing, and these standards still dominate framing to-
day. To this extent framing for film is pragmatic:
it follows a set of rules which can be seen in the
vocabulary of shot size. A standard closeup, for
example, crops just below the shoulders and puts
the eyes of the actor along an imaginary line that
cuts across the top third of the screen horizon-
tally: this placing of the eyes provides for a small
amount of space above the actor’s head. To en-
hance consistency of framing, lighting and focus
visually isolate the actor from the background,
ensuring his or her dominance in the image. Even
performance is subsidiary to framing: screen ac-
tors stay relatively still, except as their role re-
quires them to move—in which case in order to
ensure correct framing they keep in position by
following marks on the floor.” “In film studies,
framing is treated as a component of film style,
and as such is widely referenced in textual anal-
ysis and in studies of mise-en-scene, of author-
ship, and of genre. Framing is also a key ele-
ment in film reception, and here the significance
of the standardization of film framings cannot be
overstated: audiences the world over are familiar
with these conventions. However, standardized
framings may be modified by practices asso-
ciated with artistic and dramatic forms such
as photography, painting, and drama; and this
can produce striking stylistic effects.”

“Rule of Thirds A flexible compositional
‘rule’ taught as part of painting and photographic
practice and which may be extended to the fram-
ing of shots in filmmaking. Its aim is to indi-
cate where significant elements may be placed
in the frame in order to attract the viewer’s atten-
tion, and also produce a well composed—rvisually
coherent and harmonious—image. This idea of
composition, based on geometrical principles,
stems from ideas developed from the ancient
Greek and Roman periods which still hold sway
in Western culture today, the argument being that
geometrical ‘rules’ follow the ‘rules’ of nature.
The rule of thirds ordains that the frame be di-
vided into thirds both vertically and horizontally:
if lines were drawn to mark these thirds they

would look like the grid used to play noughts
and crosses, but with flatter rectangular spaces.
The intersections of the four gridlines represent
the approximate points where objects in the frame
would be placed. In the case of filmed closeups,
for example, the subject’s eyes would be lined
up to match the upper horizontal third. How-
ever, conventions of composition change and de-
velop, and in filmmaking centred framings are
more common than those using rule of thirds.”

11.5. Filmic Space (Cinematic Space, Cinemato-

graphic Space, Film Space)

“The space created within the film frame as op-
posed to the space of the real world or of the pro-
filmic event. Filmic space is a wholly distinct
type of space, one that can only be created on
the cinema screen through the techniques and lan-
guage of cinema—one of the distinctive attributes
of film as a medium being that it creates its own
patterns of spatiality (and temporality). The key
attributes of filmic space are firstly, that it is two-
dimensional but assumes the appearance of three-
dimensionality because of depth cues provided
through mise-en-scene: composition and fram-
ing, lighting, deep focus cinematography, cam-
era movement, and other formal and stylistic ele-
ments; and secondly, that from the juxtaposition,
by means of editing, of shots recorded in differ-
ent locations a coherent and intelligible topogra-
phy can be created in and for the world of the
film. Filmic space can be treated as an element
of film form; and it also figures in the processes
by which viewers become drawn into the world
on the screen and follow various cues in men-
tally navigating that world. In other words, filmic
space is a factor in film spectatorship and a com-
ponent of the cinematic apparatus. In film studies,
analysis of filmic space as a formal element read-
ily generates insights into cinema’s capacity to
engage the viewer: this is undoubtedly a factor in
a ‘spatial turn’ noted in recent film studies. And
indeed systematic scrutiny of spaces and their or-
ganization within individual films and groups of
films can be a productive strategy in textual anal-
ysis, and can also provide a basis for phenomeno-
logical inquiry into filmic space and the cinematic
experience. ”’

11.6. Space

“The representation of space affects the reading
of a film. Depth, proximity, size and proportions
of the places and objects in a film can be ma-



nipulated through camera placement and lenses,
lighting, decor, effectively determining mood or
relationships between elements in the diegetic
world.”

“Deep Space A film utilizes deep space when
significant elements of an image are positioned
both near to and distant from the camera. For
deep space these objects do not have to be in fo-
cus, a defining characteristic of deep focus. Stag-
ing in deep space is the opposite of staging in
shallow space. Deep space is used throughout
many Iranian films such as The Color of Par-
adise (Rang-e Khoda, 1999). Director Majid Ma-
Jjidi likes to integrate the characters into their nat-
ural surroundings, to map out the actual distances
involved between one location and another in or-
der to emphasize just exactly how hard it is for a
particular character (especially children) to move
from one place to another.”

“Shallow Space The opposite of deep space,
in shallow space the image is staged with very lit-
tle depth. The figures in the image occupy the
same or closely positioned planes. While the re-
sulting image loses realistic appeal, its flatness
enhances its pictorial qualities. Striking graphic
patters can be achieved through shallow space. In
these frames from My Neighbor Totoro (Tonari
No Totoro, Japan, 1988) Miyazaki fills the en-
tire background with a lamp-eyed, grinning cat-
bus. Shallow space creates ambiguity: is the cat
brimming with joy at the sisters’ encounter, or
is he about to eat them? Shallow space can be
staged, or it can also be achieved optically, with
the use of a telephoto lens.This is particularly
useful for creating claustrophic images, since it
makes the characters look like they are being
crushed against the background.”

11.7. Camera Movement

“In film studies, camera movement is examined
as part of the wider study of film form and film
style, both past and present; and as a stylistic ‘sig-
nature’ of certain directors, genres, or film move-
ments. Camera movement was rare in early cin-
ema, when films were usually composed of static
wide shots, or tableau shots, giving the impres-
sion of action taking place on a stage set.”

11.8. Zoom Shot

“A shot taken with a zoom (varifocal, or variable
focal length) lens in which focal length is changed
from wide-angle to telephoto, or vice versa, in
the course of recording the shot. A zoom shot

creates the impression of the camera moving
towards (zoom in) or away from (zoom out)
the subject, though no camera movement is
involved. However, although a zoom shot may
create mobile framing as, say, a tracking shot
does, perspectival relations and depth of field
are different in each case. A zoom in enlarges
elements in the image and flattens its planes to-
gether, while a zoom out does the opposite. A
zoom in can be effective in rapidly and dramati-
cally drawing the viewer into a scene or bringing
the viewer’s attention to a detail; and a zoom out
in revealing the background and the surroundings
of a character or activity. Zoom shots are a sta-
ple of forms of filmmaking such as documentary
and news gathering, where mobility and speed
of reaction are paramount and/or where the film-
maker prefers subjects to be unaware of the cam-
era. Originally designed for aerial and reconnais-
sance photography, zoom lenses became a stan-
dard tool in news filming around 1950, and the
practice of zooming in or zooming out during the
course of a shot began in the late 1950s.”

11.9. Lens

“There are two main types of lens: prime lenses
which have a fixed focal length and zoom lenses,
which have a variable focal length. Focal length
is the distance (measured in millimetres) from the
optical centre of the lens to the focal point on the
film stock where the image is sharp and clear (i.e.
in focus). Prime lenses are diverse, but are often
split into a number of types. Firstly, normal—or
standard, or middle-focal-length—Ilenses which
are taken to correspond to, and reproduce the
sense of perspective seen by, the human eye; these
lenses have a focal length of between 35 mm and
50 mm. Secondly, wide angle, or short-focal-
length, lenses: with a focal length beginning at
12.5 mm these lenses can create a sense of distor-
tion; figures appear to loom, objects look unnatu-
rally large in the foreground and the background
diminishes with steepened perspective. Wide-
angle lenses are often used by filmmakers wishing
to convey something out of the ordinary. Thirdly,
telephoto, or long-focal-length, lenses, with focal
lengths ranging from 85 mm to as high as 500
mm, bring distant objects close but flatten space
and depth in the process.”



11.10. Camera Angle (Angle of Framing, Angle of

View)

“The placement, or implied placement, of the
film camera in relation to the subject. The nor-
mal camera height is about eye level, produc-
ing the most common view, a straight-on angle
on the subject. When the camera isplaced above
the subject, the result is a high-angle or extreme
high-angle shot. A camera placed below eye level
produces a low-angle or extreme low-angle shot.
A canted angle or Dutch angle is produced where
the camera is tilted so that the shot is composed
with vertical lines at an angle to the side of the
frame or the horizon line of the shot is not par-
allel with the bottom of the frame. Camera an-
gle is not a set system but an integral part of a
film’s style, and there are no hard-and-fast rules
about the meanings of different angles on a sub-
Jject (a character shown in low angle does not nec-
essarily suggest that he or she is powerful and
overbearing, for example; nor does a view from
a high angle always indicate vulnerability). In
film studies, camera angle is treated as a compo-
nent of film form and film style, and it is assumed
that, as with all aspects of film form, a particular
camera angle will derive its meaning or meanings
from its place and function within the film as a
whole and in combination with other formal ele-
ments (such as framing, lighting, shot size, etc.).
In the point-of-view shot, for example, an angled
shot can simply represent the direction of a char-
acter’s look, and as such would be fully integrated
into the film’s narrative system. On the other
hand, angle of view can be deployed expression
is tically and even abstractly, as in the extreme
high-angle studio shots in Busby Berkeley’s pro-
duction numbers for 1930s Hollywood musicals
such as Gold Diggers of 1933 (Mervyn LeRoy,
US, 1933); Footlight Parade (Lloyd Bacon, US,
1933); and Dames (Ray Enright, US, 1934), in
which the kaleidoscopic spectacle of symmetry
and pattern in movement becomes the focus of at-
tention, engagement, and pleasure. The same de-
vice is used with very different meanings in Rat-
catcher (Lynne Ramsay, UK, 1999), where high
angle shots signal a move from a space of real-
ity to one of interiority and imagination. In some
avant-garde films, extreme high and low angles
are used as a defamiliarization device (see russian
formalism): for example, Fernand Léger’s quirky
angles on familiar objects in Ballet mécanique
(France, 1924) offer fresh ways of looking at or-
dinary and everyday objects.”

11.11. Mise-en-scéne

The following is from Chapter 4 of Film Art: An
Introduction [7].

“Depth cues also pick out planes within the
image. Planes are the layers of space occupied by
persons or objects. Planes are described accord-
ing to how close to or far away from the cam-
era they are: foreground, middle ground, back-
ground. ”
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