

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/183603/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zainal, Humairah, Xu, Yingqi, Pong, Candelyn, Thumboo, Julian, Boivin, Jacky , Yeo, Samantha Rachel, Chan, Jerry Kok Yen, Ku, Chee Wai, Chua, Ka-Hee, Yu, Su Ling and Chan, Sze Ling 2025. Barriers and facilitators to potential nationwide implementation of fertility health awareness strategies in young married couples in Singapore: an implementation study. *BMC Health Services Research* 10.1186/s12913-025-13956-3

Publishers page: <https://doi.org/10.1186/s12913-025-13956-3>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Barriers and facilitators to potential nationwide implementation of fertility health awareness strategies in young married couples in Singapore: an implementation study

Received: 7 August 2025

Accepted: 22 December 2025

Published online: 30 December 2025

Cite this article as: Zainal H., Xu Y., Pong C. *et al.* Barriers and facilitators to potential nationwide implementation of fertility health awareness strategies in young married couples in Singapore: an implementation study. *BMC Health Serv Res* (2025). <https://doi.org/10.1186/s12913-025-13956-3>

Humairah Zainal, Yingqi Xu, Candelyn Pong, Julian Thumboo, Jacky Boivin, Samantha Rachel Yeo, Jerry Kok Yen Chan, Chee Wai Ku, Ka-Hee Chua, Su Ling Yu & Sze Ling Chan

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Barriers and Facilitators to Potential Nationwide Implementation of Fertility Health Awareness Strategies in Young Married Couples in Singapore: An Implementation Study

Humairah Zainal^{1,*}, humairah.zainal@sgh.com.sg
 Yingqi Xu^{2,3*}, yqxu@nus.edu.sg
 Candelyn Pong³, candelynpong@duke-nus.edu.sg
 Julian Thumboo^{1,4}, julian.thumboo@singhealth.com.sg
 Jacky Boivin⁵, Boivin@cardiff.ac.uk
 Samantha Rachel Yeo⁶, samantha.rachel.yeo.m.e@singhealth.com.sg
 Jerry Kok Yen Chan^{7,8}, jerrychan@duke-nus.edu.sg
 Chee Wai Ku^{7,8}, gmskcw@nus.edu.sg
 Ka-Hee Chua⁷, Chua.Ka.Hee@singhealth.com.sg
 Su Ling Yu⁹, yu.su.ling@singhealth.com.sg
 Sze Ling Chan^{2,3}, chan.sze.ling@singhealth.com.sg, ORCID ID: 0000-0003-4272-4595

¹Health Services Research Unit, Singapore General Hospital, Singapore, Singapore

²Health Services Research Centre, SingHealth, Singapore, Singapore

³Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore

⁴Department of Rheumatology & Immunology, Singapore General Hospital, Singapore, Singapore

⁵School of Psychology, Cardiff University, Cardiff, United Kingdom

⁶Division of Obstetrics & Gynaecology, KK Women's and Children's Hospital, Singapore, Singapore

⁷Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore

⁸Duke-NUS Medical School, Singapore, Singapore

⁹Department of Obstetrics & Gynaecology, Singapore General Hospital, Singapore, Singapore

*Joint first authors

Short title: Stakeholder perspectives on fertility interventions

No. of tables: 3

No. of figures: 1

No. of additional files: 11

Word count: 5416

Corresponding author:

Dr Sze Ling Chan
 Senior Research Fellow

Health Services Research Centre, SingHealth
Email: chan.sze.ling@singhealth.com.sg
Tel: +65 6576 7143

ARTICLE IN PRESS

1 **Abstract**

2 **Background:** Globally, the total fertility rate has declined over the years,
3 partly attributable to limited public awareness of age-related fertility
4 decline. To address this, we conducted an effectiveness-implementation
5 hybrid type I, three-arm, open-label randomised clinical trial (RCT) to
6 evaluate the effects of fertility health screening (FHS) and fertility
7 awareness tools (FAT) on knowledge, attitudes, and practices related to
8 childbearing. This study reports the implementation outcomes, barriers,
9 and facilitators to potential nationwide implementation of these two
10 interventions.

11 **Method:** The study comprised a three-arm RCT and a qualitative
12 component involving individual semi-structured interviews conducted
13 from January 2021 to March 2024. Eligible participants were married,
14 childless heterosexual couples with a female partner aged between 25 and
15 34 years. Healthcare professionals (HCPs) who implemented the
16 interventions, along with purposively selected couples, participated in the
17 interviews. The interview guide was based on the Consolidated Framework
18 for Implementation Research. Interviews were audio-recorded,
19 transcribed, and analysed using thematic analysis. Completion of each
20 FHS component was verified against medical records, and data used to
21 inform cost was collected via a productivity loss survey and Time Driven
22 Activity Based Costing.

23 **Results:** A total of 778 heterosexual couples were randomised in this three-
24 arm RCT. Of these, 29 couples and 20 HCPs took part in the interviews.
25 FHS was perceived as valuable for family planning, while views on FAT

26 were mixed. Both interventions demonstrated high fidelity. HCPs spent a
27 median of 219 minutes delivering FHS, which costs on average \$83.36 per
28 couple. Each couple also incurred a median total cost of productivity loss
29 and transportation of \$663.55 over all FHS visits. Key facilitators of FHS
30 were the use of evidence-based testing and professional guidance,
31 whereas resource and time constraints were notable barriers. Key barriers
32 for FAT included the lack of content novelty and access to health screening
33 though its structured design was a facilitator.

34 **Conclusion:** Both FHS and FAT were deemed acceptable and feasible by
35 couples and HCPs. Cost and staffing emerged as significant barriers to
36 broader implementation and scalability. These findings offer insights into
37 translating educational and fertility awareness interventions into practice
38 and guiding future nationwide and international implementation efforts.
39 (350 words)

40

41 **Contributions to the literature**

42 This is an effectiveness-implementation hybrid study evaluating various
43 implementation outcomes, barriers, and facilitators of two interventions:
44 fertility health screening (FHS) and fertility awareness tools (FAT).
45 We found valuable insights from recipients of the interventions and
46 providers that can inform the adaptation and scaling of a fertility education
47 intervention.
48 There is a paucity of implementation studies in fertility medicine and the
49 results help build an evidence base for implementing suitable interventions

50 to improve more informed fertility decision-making in Singapore and
51 beyond.

ARTICLE IN PRESS

52 **Introduction**

53 Many developed countries have witnessed declining birth rates over the
54 years, with people marrying and having children later [1]. The average age
55 at first birth in Singapore increased from 27.5 years in 1990 to 31.6 years
56 in 2023 [2]. While these trends continue, the limited biological fertility
57 window remains a reality, resulting in unintended subfertility and
58 pregnancy complications [3, 4]. In Singapore, medically assisted
59 reproduction services are available in private fertility centres and 3 public
60 healthcare institutions [5]. The Government co-funds up to 75% of costs at
61 the public institutions for up to 3 fresh and 3 frozen cycles for couples with
62 at least 1 Singapore Citizen where the woman is below 40 years of age [6].

63 Fertility awareness education significantly improves women's
64 knowledge about fertility [7, 8, 9, 10, 11, 12]. There is also evidence that
65 counselling tailored to areas of misunderstanding is more effective than
66 generic educational materials at increasing fertility awareness in women
67 donating eggs [13]. However, evidence for fertility education alone in
68 modifying childbearing intentions and behaviours is limited [10, 14]. The
69 addition of a behavioural change component is therefore warranted to
70 address relevant psychological determinants to modify the downstream
71 conception efforts, given the multitude of factors affecting childbearing
72 decisions.

73 We therefore designed two theory-guided, evidence-based personalised
74 fertility interventions, namely fertility health screening (FHS) and fertility
75 awareness tools (FAT), to deliver fertility education and target
76 psychological determinants to influence childbearing intention [15]. These

77 two interventions were evaluated in an effectiveness-implementation
78 hybrid type I randomised controlled trial (RCT) [15], which showed an
79 increase in fertility knowledge but not a change in intended age of first
80 birth or conception efforts six months post randomisation in Singaporean
81 couples [16]. The hybrid trial design also enables the concurrent
82 understanding of barriers and facilitators to the potential nationwide
83 implementation of these interventions and to explain the RCT results,
84 offering practical insights and actionable guidance for decision-makers,
85 and facilitating the translation to effective real-world applications [17].

86 In this study, we report the implementation outcomes within the RCT
87 and barriers and facilitators to potential nationwide implementation of the
88 interventions. The outcomes follow Proctor's Implementation Outcomes
89 Framework [18], and exploration of potential barriers and facilitators was
90 guided by the Consolidated Framework for Implementation Research
91 (CFIR), a comprehensive framework to identify factors at multiple levels
92 that can affect implementation success [19].

93 **Methods**94 **Study setting and study design**

95 This was a prospective, multicenter, three-arm parallel group open-label
96 RCT conducted at one general hospital and one specialist hospital from
97 January 2021 to March 2024, coupled with a qualitative component, the
98 protocol of which has been described elsewhere [13]. Briefly, the RCT was
99 designed to evaluate the effectiveness of two interventions, FHS and FAT,
100 on fertility intentions, fertility knowledge, and conception efforts. Young,
101 married, Singaporean or permanent resident couples with the female
102 partner between 25 and 34 years of age were recruited through direct
103 approaches at polyclinics, email broadcasts to SingHealth staff, postings
104 on our internal institutional website, promotion materials (posters and
105 brochures) displayed at healthcare institutions and selected public venues,
106 and on SingHealth institutions' Facebook and Instagram accounts. There
107 were no restrictions with regard to childbearing intention or attempts, as
108 long as they fulfilled the inclusion and exclusion criteria. Couples who
109 returned the baseline questionnaires received a reimbursement of \$20 and
110 were randomised into one of three arms: (i) FHS, (ii) FAT, and (iii) no
111 intervention (Control).

112 Couples assigned to the control arm were informed that they would be
113 receiving standard care during the study, and they were required to
114 complete a follow-up questionnaire at 6 months. Couples assigned to FHS
115 underwent a fertility health screening comprising an anti-Mullerian
116 hormone (AMH) test and semen analysis (SA), followed by a consultation
117 with a gynecologist and a reproductive planning counselling session with

118 a nurse. In this study, the AMH test was not used as a diagnostic tool to
119 predict fertility potential, but rather as part of a broader reproductive
120 health assessment. The purpose of including AMH was to enhance couples'
121 understanding of their reproductive health status and to facilitate
122 personalized counselling on fertility planning during the consultation.
123 Couples assigned to FAT were directed to an online portal where they were
124 shown a video targeting attitudes toward having children and the timing
125 of childbearing.

126 At 6 months, all couples, including those in the control group, were sent
127 a follow-up self-administered questionnaire via email to measure post-
128 intervention fertility knowledge, parenthood intentions, and conception
129 efforts. Couples who completed follow-up questions received an incentive
130 of \$80.

131 The study was reviewed and approved by the Centralized Institutional
132 Review Board of SingHealth (Ref No. 2019/2095). The reporting of this
133 implementation study follows the Standards for Reporting Implementation
134 Studies (StaRI) guidelines [20].

135

136 **Implementation outcomes and data collection**

137 We evaluated seven out of the eight implementation outcomes proposed
138 by Proctor *et al* (18). As the interventions are still in the pre-
139 implementation phase, sustainability is less relevant and therefore omitted.
140 The data sources used to inform each of these outcomes are shown in Table
141 1. Couple interviews and open-ended questions from the follow-up
142 questionnaires were analyzed to assess outcomes related to acceptability,

143 appropriateness, feasibility, implementation cost, and coverage/reach. The
144 6-month follow-up questionnaire included one open-ended question
145 inviting participants to share their views on the intervention ("Please tell
146 us what you think about the fertility screening or fertility awareness
147 tool."). HCP interviews were analyzed to assess outcomes related to
148 adoption, appropriateness, feasibility, implementation cost, and
149 coverage/reach. A fidelity checklist was employed to document the
150 completion of key steps during each FHS visit, verified against visit logs,
151 and laboratory and medical records by study clinical research coordinators
152 (CRCs) (Supplementary file 1). The return of completed FertiSTAT
153 questionnaires to CRCs served as a proxy indicator for FAT completion, as
154 the online portal was set up such that couples could only download
155 FertiSTAT after watching the video. To assess feasibility and cost, couples
156 in FHS were required to report the time taken, transportation costs, and
157 number of hours missed at work to attend each session in a 12-item
158 productivity loss questionnaire designed for this study. Couples in FAT
159 were also asked to report the time taken to complete the intervention.
160 Time Driven Activity Based Costing, a micro-costing methodology that
161 estimates the cost of delivering a service based on process costs [21], was
162 used to estimate the cost to deliver FHS. We constructed process maps for
163 each site and recorded the personnel involved and time taken for each step
164 (Supplementary file 2).

165

166 *Data analysis*

167 Descriptive statistics were used to summarise quantitative indicators:
168 counts and percentages for categorical variables, and means and standard
169 deviations or medians and interquartile ranges for continuous variables.
170 We performed a chi-square test or t-test, as appropriate, to compare
171 demographic characteristics between participants who completed the
172 study and those who did not. P-values <0.05 were considered statistically
173 significant. All analyses were performed using R v4.4.0.

174 The cost of productivity loss was estimated using the Human Capital
175 Approach, in which one hour of productivity loss is valued as one hour of
176 an employee's compensation [22]. The total cost of productivity loss was
177 calculated by multiplying the number of work hours missed by the
178 estimated hourly wage, based on a 44-hour workweek. All costs were
179 reported in 2024 Singapore Dollars.

180

181 **Qualitative study**

182 *Eligibility criteria*

183 Healthcare professionals (HCPs) from both participating hospitals and
184 couples randomised to FHS or FAT were invited for in-depth interviews by
185 the study team CRCs via email. HCPs were invited for in-depth interviews
186 soon after recruitment started in Jan 2021 until the target number was
187 reached. Couples in both intervention arms were invited for in-depth
188 interviews after they had completed the 6-month follow-up questionnaire.
189 For maximum variation, purposive sampling was used to recruit HCPs,
190 including doctors, nurses, administrative staff, laboratory personnel, and
191 middle and senior management. These HCPs were selected based on their

192 potential involvement in implementing the interventions, clinical expertise,
193 and experience. The couples were also purposively recruited based on
194 their treatment arm, age group, and responses to the primary outcome.

195

196 *Study procedures*

197 The interviews were conducted by a research fellow (HZ), who was trained
198 in qualitative research, and four CRCs who were trained and assessed to
199 be competent by HZ. To avoid potential bias, HZ and the CRCs interviewed
200 participants not from their institutions to ensure they had no prior
201 relationship with participants. The interviews were conducted from June
202 2021 to December 2023, over Zoom and audio recorded, and lasted
203 approximately 30 minutes each. The audio files were stored in encrypted
204 folders accessible only by the study team.

205

206 *Interview guide*

207 The interview guide was developed based on Damschroder *et al.*'s (2009)
208 CFIR [19]. Constructs deemed to be relevant to the implementation of
209 either intervention were selected and agreed on by consensus within the
210 study team (Supplementary files 3 & 4).

211

212 *Data Analysis*

213 The interviews were transcribed using Otter.ai, reviewed, and refined by
214 the CRCs for accuracy. Coding frameworks and themes were developed
215 iteratively using Braun and Clarke's (2006) six-step process [23]. This
216 involved familiarizing ourselves with the data by reading the transcripts in

217 their entirety before generating relevant codes, grouping them into
218 themes and sub-themes, and defining the themes. Inductive thematic
219 analysis was used to evaluate the implementation outcomes [23], and a
220 deductive approach was utilised when applying the findings to pre-
221 determined implementation outcomes. NVivo 12 software was used to
222 facilitate coding and categorizing the data. We then reviewed the themes,
223 identified those deemed relevant to the research questions, and mapped
224 them to selected CFIR constructs and implementation outcomes. As an
225 updated CFIR [24] was published in 2022, we used this for the mapping
226 instead. Finally, we followed O'Brien et al.'s (2014) Standards for
227 Reporting Qualitative Research (Supplementary file 5) [25] for reporting
228 the findings. To protect participants' anonymity, we assigned relevant
229 code identifiers to the participants ("HCP", "H" (husband), and "W"
230 (wife)).

231 **Results**

232 A total of 778 heterosexual couples were randomised into the three RCT
 233 arms (226 in FHS, 238 in FAT, and 314 in the control group). Among them,
 234 216, 216, and 314 couples completed the study, respectively. A total of 53
 235 couples were invited to participate in the interviews, and among them, 29
 236 couples (16 from FHS and 13 from FAT, comprising 29 husbands and 29
 237 wives) agreed and completed the joint interviews. A total of 66 HCPs and
 238 managers were invited, out of which 20 responded (10 doctors, 8
 239 laboratory staff, 1 nurse, and 1 manager). Their demographics are shown
 240 in Table 2. Additionally, 124 wives and 131 husbands completed the open-
 241 ended question in the follow-up questionnaire, which contributed to the
 242 data on implementation outcomes.

243

244 **Implementation outcomes**

245 Sample illustrative quotes according to implementation outcomes are
 246 given below and in Supplementary file 6.

247

248 **Acceptability**

249 Many couples in FHS expressed that undergoing FHS was a positive and
 250 useful experience, aiding them in family planning. In addition to insights
 251 into their health and fertility potential, FHS also alleviated participants'
 252 fear of infertility and raised their awareness about fertility.

253 *It gave me good insights into my current sperm status and how
 254 to improve it. - SGH134-H*

255 *I think the fertility screening is very useful, especially for the
 256 last session where the doctor explains to us thoroughly our
 257 results and assures us that we have no issues in having a child.*

258 *This gives us peace of mind and less pressure. - SGH175-H*

259 However, participants in FAT had mixed opinions about the intervention.
 260 Some of them found the brochure and video informative and educational,
 261 which served as a good reminder. Other participants were disappointed
 262 with the video's limited information, adding that it did not change their
 263 views on fertility or provide clear guidance on what actions to take or
 264 where to seek help.

265 *I think it's a good reminder for me to remember how valuable
 266 it is of youth in terms of fertility, and we have to start thinking
 267 about family planning and trying to conceive while we're still
 268 young and have the energy. So, I think that's a good reminder
 269 and refresh of all the knowledge that we should have. - KKH17-*

270 W

271 *Neutral - might be more beneficial to go for fertility screening
 272 to get advice rather than self-study using the tool. - SGH157-*

273 W

274 *We were hoping we were getting into the first group; we could
 275 get some check-ups or whatever, that is more useful to us
 276 because all we already knew. - KKH19-H*

277

278 **Adoption**

279 Four doctors and four nurses from both study sites were actively involved
 280 in providing consultation and counselling to participants in FHS. The
 281 interviewed HCPs highlighted that FHS was effective in gauging
 282 reproductive potential and raising awareness of the impact of time and age
 283 on women's fertility.

284 While tests such as AMH and SA provided a useful snapshot of current
 285 fertility, their predictive value was limited, especially SA, which might not
 286 accurately correlate with pregnancy outcomes and could change with a
 287 man's health. These tests offered only insights at one point in time, making
 288 it important for couples to understand the limitations. Adoption of such
 289 programs may be influenced by how well doctors think couples can grasp
 290 these nuances.

291 *It's useful for giving couples an idea of their reproductive
 292 potential, but semen analysis doesn't always correlate with
 293 pregnancy outcomes and can vary with a man's health, so it's
 294 not very predictive. - HCP3*

295 *I think FertStart is great for young couples as it raises
 296 awareness and gives them a snapshot of their reproductive
 297 health, helping them decide when to start a family. However,
 298 tests like AMH or semen analysis only reflect their current
 299 state. Just because results are good now 'doesn't mean they'll
 300 stay that way in a year or two, as reproductive health can
 301 change with age. It's really just a one-time screening. - HCP19*

302

303 **Appropriateness**

304 Couples in FHS reported that they benefited from FHS tests and
305 consultations with the consultant obstetrician and the nurse. These
306 services provided a better understanding of their fertility prospects, clear
307 instructions on the next steps, and information about available options and
308 factors affecting infertility. Participants also noted that FHS was beneficial
309 for early identification of potential issues if conception does not occur,
310 helping couples decide if they need to adjust their family planning timeline.
311 Additionally, normal results can provide a sense of relief and boost
312 confidence:

313 *The fertility screening was helpful in informing us about our
314 current physical health /fertility status and whether there is an
315 urgent need to bring forward our family planning timeline. -*

316 SGH8-W

317 *It provided a sense of relief to know that both of us had no
318 issues with our fertility based on the screening results. -*

319 SGH293-H

320 Couples in FAT had a neutral attitude towards it. While some
321 acknowledged that the FAT helped raise awareness about fertility, others
322 felt that it was not very helpful and did not provide information beyond
323 what was already available on the internet:

324 *I felt there were things I already knew, and the awareness just
325 helped to reinforce certain facts or misconceptions I may have
326 had about fertility and family planning, etc. Overall, although
327 I was not in the clinic group to undergo tests for my fertility,*

328 *I'm better aware of the process through the videos that were
 329 shared with me. - SGH288-H*

330 *The tool doesn't really help or add to the information we can
 331 already find on the internet. - SGH323-H*

332 One participant also mentioned that the intervention was not very helpful
 333 for couples who weren't planning to have kids (yet):

334 *"No, because we're both under 35. We are not really trying for a
 335 baby. So, if have, have, don't have, don't have. So it doesn't make a
 336 difference to us." - KKH19-W*

337 The HCPs noted that the interventions would be beneficial to some extent,
 338 particularly for individuals who already desire to have children but have
 339 not yet taken steps to achieve their goals. They highlighted the importance
 340 of nurses and doctors providing counselling in layman's terms to ensure
 341 participant comprehension.

342 *The brochure is good information for them. It's a wake-up call
 343 for them if let's say they don't get pregnant after 12 months of
 344 trying. - HCP10*

345 However, HCPs expressed concerns including that the fertility test results
 346 (AMH, SA) could be counter-productive, and influencing couples' decisions
 347 through interventions was difficult:

348 *The couple might think that they have a lot of time and won't
 349 start a family anytime soon. - HCP1*

350 *It's very hard to convince them to have children, especially in
 351 Singapore, where the cost of living and the cost of raising
 352 children are high. - HCP15*

353

354 **Feasibility**

355 On average, the HCPs spent a total of 219 minutes providing services to
 356 participants in FHS across the three visits (Table 3). The couples in the
 357 FHS group took approximately 0.5 days off from work each to attend each
 358 visit (Table 4). Many HCPs expressed concern regarding time and
 359 resource constraints due to the potential increase in service demand:

360 *In Singapore, we do not have much time to talk to the patient.*

361 *In our daily counselling sessions in the public sector, the
 362 allocated time is usually 10 to 15 minutes. So, to address
 363 patients' concerns effectively, we need to allocate longer
 364 consultation times. - HCP4*

365 *The AMH would be a lot more resource-intensive due to the
 366 need to find the time and manpower to attend to the couples.*

367 *The workload for those healthcare professionals administering
 368 it would also be quite intense. - HCP9*

369 *If this intervention were to be upscaled, I think manpower
 370 would be an issue because we would need to cope with the
 371 increased demand for this service. - HCP17*

372 There were several issues during participant recruitment and
 373 implementation of FHS within the RCT that could point to similar
 374 challenges if these were to be implemented in routine practice. First, only
 375 a total of four nurses were involved in the study, as there were very few
 376 nurses with specific seniority and experience to conduct reproductive
 377 counselling. Second, multiple visits were needed to complete the FHS, as

378 AMH and SA had to be done before the consultations. Some couples ended
379 up taking a few months to complete the whole intervention due to
380 difficulties in scheduling appointments, as the visits were offered only
381 during office hours.

382

383 **Fidelity**

384 Majority of couples in both intervention arms completed the study (95.6%
385 for FHS and 90.8% for FAT). Reminder emails were sent to a total of 442
386 (95.3%) of the couples. The doctor's notes and reproductive counselling
387 records showed that all couples in the FHS adhered to the plan,
388 demonstrating high fidelity to the intervention. For couples randomised to
389 FAT, 89 out of 102 (87.3%) couples returned the FertiSTAT, a proxy that
390 they had completed the intervention.

391

392 **Implementation cost**

393 Each participant took a median of two half-days off from work for the
394 consultations. The median individual monthly salary in this group of
395 participants was reported as \$4,500 (3,500, 6,000). Based on a 44-hour
396 workweek, the estimated hourly wage rate was \$25.57 (19.89, 34.09).
397 Consequently, the study visits resulted in a median productivity loss of
398 \$272.73 (181.82, 409.09) per person.

399 In addition, they spent a median of \$20.00 (6.00, 60.00) on
400 transportation for all the visits. The median total cost of productivity loss
401 and transportation for each couple was \$663.55 (453.75, 907.05) (Table
402 3).

403 The FHS involved various HCPs, incurring a total of \$17,088.46 for all
 404 the FHS activities for the 226 couples, equivalent to a mean of \$83.36 for
 405 each couple (Supplementary file 7).

406 Some couples mentioned that cost was a barrier, particularly for young
 407 couples who had just started working, as screening could lead to
 408 subsequent expensive interventions if problems were uncovered.
 409 Participants in FAT also commented that the government should provide
 410 increased subsidies and free medical consultations. Most couples
 411 expressed reluctance to pay for fertility screening, believing it
 412 unnecessary if they were young and healthy unless the test was free or
 413 heavily subsidised. However, one participant mentioned that facing
 414 difficulties conceiving would make them more willing to pay for the test
 415 upfront:

416 *If you experience difficulties, then you will be more inclined
 417 and more willing to pay upfront.* - SGH-285H

418 Most of the HCPs emphasised the importance of keeping the
 419 implementation cost low. Some were concerned about the uncertain cost-
 420 effectiveness of FHS, and the amount of resources needed if it were to be
 421 implemented nationwide.

422 *I am not sure how useful it is to just screen people for semen
 423 analysis because what if you get a poor result? The test might
 424 have to be repeated and that would increase the cost.* - HCP3

425 *I think the cost would be higher for the screening and may not
 426 be widely acceptable by clinicians because a lot of resources
 427 would be involved. We also don't really know how well it*

428 *reflects the ability to conceive for the patient. However, I think*
429 *it is easier to implement the video; much fewer resources are*
430 *required and so, would be more widely acceptable.* - HCP8

431

432 **Reach**

433 Recruitment for the RCT was challenging, pointing to potential difficulties
434 with reach. However, publicity for a routine service may face fewer
435 challenges compared to recruitment for a research study, especially if
436 coordinated by the government.

437 A total of 137 (17.6%) couples dropped out of the RCT. Common reasons
438 for nonparticipation included being pregnant (n=5, 3.6%), lack of interest
439 (2, 1.5%), lack of time (4, 2.9%), found to be ineligible (3, 2.2%),
440 inconvenience (2, 1.5%), inability to complete the intervention (5, 3.6%),
441 personal reasons (1, 0.7%), and being uncontactable (115, 48.5%). There
442 were significant differences in ethnicity, educational level, and income (for
443 males) between those who completed the study and those who dropped
444 out. Among nonparticipants, both male and female, there were fewer
445 Chinese and Buddhists, and more Malays and Muslims, compared to
446 participants. Those who completed the study were more likely to have
447 attained a university degree or higher, while those who dropped out were
448 more likely to hold a diploma ([a qualification between GCE A-Levels or](#)
449 [college and below an undergraduate degree](#)) as their highest level of
450 education (Supplementary file 8). This suggests that the interventions, if
451 implemented nationwide, may not reach all demographic segments of the
452 population equally.

453 Most couples from FHS and FAT suggested increasing awareness of
 454 FHS through various social media platforms, such as Instagram, Facebook,
 455 and TikTok, as well as traditional media such as radio and brochures.

456 *It is important to engage the young audience, who are mostly
 457 on social media since the target audience is those in their 20s
 458 and early 30s. They may no longer prefer to watch long videos.*

459 *Therefore, we may have to use social media like TikTok to raise
 460 awareness of the issues and interventions.* - HCP20

461 Another frequently mentioned approach was to partner with the
 462 Registry of Marriages to introduce the screening program to newlyweds
 463 or the Housing & Development Board when married couples collect keys
 464 to their flats. Rather than advertising in public health institutions, where
 465 young people rarely visit, participants recommended posting information
 466 about fertility checks on public transportation or conducting a roadshow
 467 at community centers.

468 Some participants were also concerned that if the intervention were to
 469 be implemented nationwide, individuals who truly required help might not
 470 receive the assistance they needed in a timely manner due to capacity
 471 constraints:

472 *If more people were to come forward, we might have a
 473 bottleneck. Whoever comes first, we serve first, but the people
 474 who are in dire need of help might not receive it.* - HCP8

475

476 **Barriers and facilitators to the potential nationwide
 477 implementation of interventions**

478 We identified eight barriers and two facilitators for FHS, and two barriers
479 and one facilitator for FAT. These barriers and facilitators were mapped
480 onto four of the five CFIR domains (Figure 1). FAT, with fewer barriers,
481 appears easier to implement compared to FHS. Sample illustrative quotes
482 are given in Supplementary file 9.

483

484 **FHS**

485 **CFIR Domain: Innovation**

486 *FHS Barrier 1: Lack of comprehensiveness (Construct: Innovation
487 evidence-based)*

488 One of the perceived barriers to FHS was the lack of comprehensiveness.
489 Many HCPs interviewed expressed concerns that AMH and SA alone did
490 not offer comprehensive evidence to accurately assess a couple's fertility
491 potential, as they did not account for other critical factors like hormonal
492 balance, genetic history, and physical or anatomical issues.

493

494 *FHS Barrier 2: Limited cost-effectiveness (Construct: Innovation cost)*

495 Some HCPs commented that SA and AMH tests were not cost-effective,
496 especially since SA results might not correlate with fertility outcomes
497 unless complemented by a more detailed history screening.

498

499 *FHS Facilitator 1: Evidence-based testing (Construct: Innovation
500 evidence-based)*

501 Participants felt the evidence-based fertility screening and professional
 502 advice provided greater confidence in the results and outcomes than
 503 anecdotes or culturally rooted beliefs about fertility.

504

505 **CFIR Domain: Outer setting**

506 *FHS Barrier 3: Cultural sensitivities and discomfort around fertility testing*
 507 *(Construct: Local attitudes)*

508 The participants shared that their health-seeking behaviour related to
 509 fertility was shaped by deeply ingrained societal norms and traditional
 510 values. They noted growing awareness and interest in preconception
 511 health, particularly in fertility screening among married couples in their
 512 community. However, they emphasised that cultural barriers continued to
 513 play a significant role in influencing their decisions and actions. In
 514 particular, men's discomfort with SA due to masculinity and societal
 515 expectations created a reluctance to fully engage in testing. These may
 516 lead to challenges in the adoption of fertility interventions even as
 517 awareness increases.

518

519 **CFIR Domain: Inner setting**

520 *FHS Barrier 4: Discomfort when producing samples for SA (Construct:*
 521 *Culture: Recipient-Centredness)*

522 One participant expressed discomfort with the sperm extraction process,
 523 rooted in personal beliefs about masturbation. Similarly, there was a
 524 critique of posters featuring scantily clad women in the room revealed a
 525 conflict with cultural and gender norms geared towards gender respect.

526 These sociocultural values influenced the acceptance of and engagement
527 with the intervention.

528

529 *FHS Barrier 5: Resource constraints in meeting increased demand for*
530 *fertility services (Construct: Available resources)*

531 Another challenge was the possible shortage of human resources due to a
532 potential increase in service demand, which has been illustrated under the
533 section Feasibility. This underscores how resource limitations, particularly
534 in terms of staffing and clinic capacity, could hinder the effective
535 implementation of fertility interventions.

536

537 **CFIR Domain: Individuals**

538 *FHS Barrier 6: Perceived assertiveness of HCPs during counselling session*
539 *(Construct: Innovation deliverers - capability)*

540 Some couples perceived the assertiveness of HCPs during the counselling
541 session somewhat negatively. Therefore, the way counselling was
542 conducted could either facilitate or hinder the success of FHS. A neutral,
543 supportive counselling approach that respected the personal choices and
544 concerns of participants was key to creating a positive environment for
545 decision-making. However, when participants perceived the approach as
546 too pronatalist, it could generate resistance and negative feelings,
547 ultimately reducing the effectiveness of the intervention.

548

549 *FHS Barrier 7: Lack of time for appointments (Construct: Innovation*
550 *recipients - Opportunity)*

551 Couples expressed how time constraints and work commitments acted as
552 barriers to accessing fertility interventions, which has been discussed
553 under the section Feasibility. In a context like Singapore, where
554 maintaining employment is a priority, individuals might struggle to attend
555 appointments, frequently rescheduling due to the inability to take time off
556 work. These factors limited opportunities for individuals to engage with
557 fertility interventions, even if they were otherwise motivated to seek care.

558

559 *FHS Barrier 8: Fertility tests may be counter-productive if results are
560 normal (Construct: Innovation recipients - Motivation)*

561 Another barrier was that FHS may be counter-productive if the results
562 turned out to be normal, as illustrated under the section Appropriateness.

563

564 *FHS Facilitator 2: Professional advice from trained HCPs (Construct:
565 Innovation deliverers: Capability)*

566 Many couples expressed that effective communication was key to
567 successfully adopting innovations, as it helped them feel understood and
568 built trust with HCPs. They noted that receiving clear and professional
569 explanations made them feel reassured, even if they didn't fully
570 understand the technical details. Several participants highlighted how
571 having experts who could offer detailed guidance alongside personalised
572 recommendations significantly enhanced their overall experience.

573

574 **FAT**

575 **CFIR Domain: Innovation**

576 *FAT Barrier 1: Lack of novelty in educational materials (Construct:*

577 *Innovation design)*

578 A barrier identified by the participants was the lack of novelty in the
579 materials provided, as discussed under the section Appropriateness. This
580 suggests that the materials and resources offered might not be adequately
581 tailored to meet the needs of more informed or experienced individuals,
582 limiting their effectiveness in enhancing understanding or guiding the next
583 steps.

584

585 *FAT Facilitator 1: Effective design of educational tools (Construct:*

586 *Innovation design)*

587 Participants shared that the clarity and accessibility of information played
588 a crucial role in helping them adopt innovations, especially healthcare-
589 related ones. They appreciated well-organised, visually appealing
590 materials, mentioning how attractive brochures, engaging video messages,
591 and clearly designed questionnaires made a difference in their
592 engagement and decision-making. Some participants found that
593 infographics and videos helped simplify complex concepts, making them
594 easier to understand and remember.

595

596 **CFIR Domain: Innovation**

597 *FAT Barrier 2: Lack of personalization and access to resources*

598 *(Construct: Available resources)*

599 A key barrier identified was the perceived lack of personalization and
600 access to health screening. To address this, offering free consultations or

601 teleconsultations to encourage more people to seek help was suggested.
602 Uncertainty about finding the right doctor and the associated cost were
603 also significant deterrents, often causing couples to delay seeking care.
604 Reducing financial burdens and providing clearer guidance would improve
605 accessibility and uptake.

ARTICLE IN PRESS

606 **Discussion**

607 This is, to our knowledge, the first effectiveness-implementation hybrid
608 trial integrating both qualitative and quantitative methods. The results
609 demonstrate that it is possible to implement education programs that are
610 acceptable and valued by patients and HCPs. Participants were fully
611 engaged with their group assignment and undertook activities as planned
612 in the study. However, it might not be possible to scale up these
613 interventions as they were. The FHS was perceived as too expensive given
614 the limited value of screening, which addresses changing fertility
615 parameters. Couples valued professional counselling from trained HCPs,
616 as they were able to respond effectively to enquiries and guide necessary
617 actions or behavioral changes. This is in keeping with a systematic review
618 of nine RCTs, which found that counselling has a significant positive
619 impact on pregnancy rates and represents an appealing treatment option,
620 especially for subfertile patients not undergoing medical treatment [26].
621 Another study also indicated that HCPs were regarded as the most
622 trustworthy source of information for family planning decision-making [27].

623 The FAT was less costly but was perceived as too simplistic and did not
624 provide sufficient novel personal information. Similarly, a European RCT
625 [14] evaluating the effectiveness of video-based education on fertility
626 awareness found no significant differences in participants' intentions to
627 adopt fertility-protective behaviours. This suggests that video-based
628 knowledge alone may not create a strong enough perception of infertility
629 risk or motivate early childbearing in an unselected population; as it could
630 add increased perception of risk for, for example, couples who are already

631 trying to conceive or definitely planning to have a family. However, studies
632 [9, 10, 11] have shown that exposure to fertility information through low-
633 cost brochures can improve fertility knowledge in the short term, although
634 the effect typically lasts less than six months. Although our video was
635 designed to target psychological constructs in the Theory of Planned
636 Behaviour to promote a more positive attitude towards having children,
637 emphasise the subjective norm of the desirability of children, induce
638 anticipated regret of not trying to conceive early, and increase perceived
639 control of conditions relevant to having children, the effect may not have
640 been strong enough.

641 Together, the results suggest that couples and HCPs are receptive to
642 fertility awareness interventions, but these would need to be modified to
643 be scaled up nationally. A blended approach incorporating digital health
644 strategies may be preferred for couples with busy schedules to overcome
645 the difficulty of attending physical visits [28]. For example, information
646 could be first provided online, sample collection for fertility testing could
647 be decentralized for convenience, and teleconsultations offered as an
648 option for the doctor consultation and reproductive counselling.

649 We recognise several limitations to the present study. Firstly, there is
650 likely selection bias in the recruitment, as participants were likely those
651 who wished to have children and/or were open to fertility screening. The
652 findings may also not apply to those who do not wish to have children or
653 have different motivations regarding parenthood, who are likely to require
654 different interventions with different behavioural targets. Second, the
655 HCPs involved in the study were from only two public hospitals in

656 Singapore. We therefore lack views from HCPs in the private sector, who
657 are likely needed to implement FHS on a nationwide scale. Further
658 engagement with private fertility clinics and other relevant stakeholder
659 groups such as the government would be needed if there is an intention to
660 implement the interventions more broadly. Third, since couple interviews
661 were conducted jointly with both partners, participants' responses may
662 have been shaped by social desirability or partner influence, which could
663 have constrained the disclosure of individual opinions or experiences.
664 Lastly, the cost-effectiveness of FHS was perceived and not formally
665 evaluated. Lastly, this is a formative evaluation, and new barriers and/or
666 facilitators may emerge if these interventions are actually implemented
667 due to changing contexts.

668 **Conclusion**

669 In conclusion, the findings indicate that the two interventions were
670 acceptable and feasible. However, FHS may face implementation
671 challenges due to higher costs and resource demands, while FAT was
672 easier to deliver but limited by less novel educational content. A stepped-
673 care model, starting with FAT and offering FHS to motivated couples, may
674 represent a cost-effective and scalable approach. Future studies should
675 consider a continued evaluation of implementation and contextual factors
676 to inform integration efforts.

ARTICLE IN PRESS

677 **List of abbreviations**

678 AMH Anti-Mullerian hormone

679 CFIR Consolidated Framework for Implementation Research

680 CRC Clinical research coordinator

681 FAT Fertility awareness tools

682 FHS Fertility health screening

683 H Husband

684 HCPs Healthcare professionals

685 RCT randomised controlled trial

686 SA Semen analysis

687 W Wife

ARTICLE IN PRESS

Barriers		CFIR	Facilitators	
FAT	FHS		FHS	FAT
		Innovation		
Lack of comprehensiveness		Innovation evidence base	Evidence-based testing	
Limited cost-effectiveness		Innovation cost		
Lack of novelty in education materials		Innovation design	Effective design of education tools	
		Outer setting		
Cultural sensitivities and discomfort around fertility testing		Local attitudes		
		Inner setting		
Discomfort when producing samples for SA		Culture: Recipient-Centeredness		
Lack of personalization and access to resources	Resource constraints in meeting increased demand for fertility services	Available resources		
		Individuals		
Perceived assertiveness of HCPs during counselling session		Innovation deliverers - Capability	Professional advice from trained HCPs	
Lack of time for appointments		Innovation recipients - Opportunity		
Fertility tests may be counter-productive if results were normal		Innovation recipients - Motivation		

688

689 **Figure 1. Barriers and facilitators are mapped onto the CFIR**
 690 **domains**

691 CFIR: consolidated framework for implementation research, FAT: fertility
 692 awareness tools, FHS: fertility health screening, HCPs: healthcare
 693 professionals, SA: semen analysis

Table 1 Implementation Science Outcomes Included

Implementation science outcomes included	Working definition	Variables/data source
Acceptability	The perception among stakeholders that an intervention is agreeable	<input type="checkbox"/> IDIs (couple) <input type="checkbox"/> FUQ Q56* & Q57†
Adoption	The intention, initial decision, or action to try to employ a new intervention	<input type="checkbox"/> No. of doctors/nurses in FHS <input type="checkbox"/> IDIs (HCPs)
Appropriateness	The perceived fit or relevance of the intervention in a particular setting or for a particular target audience or problem	<input type="checkbox"/> IDIs (couple, HCPs) <input type="checkbox"/> FUQ Q56* & Q57†
Feasibility	The extent to which an intervention can be carried out in a particular setting or organization	<input type="checkbox"/> IDIs (couples, HCPs) <input type="checkbox"/> FUQ Q56* & Q57† <input type="checkbox"/> TDABC (time taken) <input type="checkbox"/> PLQ (couple time taken) <input type="checkbox"/> Meeting minutes (issues) <input type="checkbox"/> Fidelity checklist (FHS) <input type="checkbox"/> % returning FertiSTAT (FAT) <input type="checkbox"/> % couples sent reminder email <input type="checkbox"/> TDABC + test + publicity cost <input type="checkbox"/> IDIs (couples, HCPs)
Fidelity	The degree to which an intervention was implemented as it was designed	<input type="checkbox"/> FUQ Q56* <input type="checkbox"/> Response rate <input type="checkbox"/> No. rejected due to quota (none) <input type="checkbox"/> Dropout rate <input type="checkbox"/> Dropout reasons <input type="checkbox"/> Characteristics of couples who dropped out vs completed <input type="checkbox"/> IDIs (couples, HCPs)
Implementation cost	Incremental or total (including intervention cost) cost of implementation strategy	
Coverage/reach	The degree to which the population that is eligible to benefit from an intervention actually receives it	

*Q56. Please tell us what you think about the fertility screening or fertility awareness tool. It can be positive or negative, there are no correct or wrong answers.

†How likely would you recommend it to other young couples? [Not at all, slightly, moderately, very, extremely]

FUQ: follow-up questionnaire; HCPs: healthcare professionals; IDIs: in-depth interviews; PLQ: productivity loss questionnaire, TDABC: Time Driven Activity Based Costing

FUQ and PLQ were completed by both the husbands and wives separately

ARTICLE IN PRESS

Table 2 Demographics of Interviewed Participants

Characteristics	Specific characteristics	Number of participants
HCP	Designation of HCP	
	Doctor	1 0 • 4 senior residents • 4 consultants • 1 associate consultant • 1 doctor from senior management
	Laboratory staff	8 • 4 embryologists • 3 medical laboratory technologists • 1 senior medical laboratory clinical scientist
	Nurse	1 Assistant Nurse Clinician
	Manager	1 Deputy Director, Women's SOC including IVF centres and subfertility clinics
	Gender	
	Male	4
	Female	16
	Institution HCP was from	
	KKH	15 HCPs
	SGH	5 HCPs
Couples	Institution couples underwent the intervention	
	A	14 couples
	B	15 couples
	Type of intervention couples underwent	
	FHS	16 couples
	FAT	13 couples
	Age	
	25-30	15 (13W, 2H)

31-35	36 (16W, 20H)
36-40	6 (H)
41-45	1 (H)
Educational level	
University degree or above	52 (27W, 25H)
Polytechnic diploma	3 (2W, 1H)
Professional qualification or above	2 (H)
'O'/'N' level or equivalent	1 (H)
Ethnicity	
Chinese	56 (28W, 28H)
Indian	1 (W)
Korean	1 (H)
Religion	
No religion	23 (10W, 13H)
Buddhism	15 (8W, 7H)
Christianity	13 (8W, 5H)
Taoism	5 (1W, 4H)
Catholicism	1 (W)
Hindusim	1 (W)
Monthly income range of individual participants	
<\$999	2 (W)
\$1,000-\$1,999	1 (H)
\$2,000-\$2,999	5 (2W, 3H)
\$3,000-\$3,999	13 (8W, 5H)
\$4,000-\$4,999	12 (7W, 5H)
\$5,000-\$6,999	16 (7W, 9H)
\$7,000-\$8,999	4 (2W, 2H)
\$9,000-\$10,999	5 (1W, 4H)

FAT: fertility awareness tools, FHS: fertility health screening, HCP: healthcare professionals, IVF: in vitro fertilization, KKH: KK Women's and Children's Hospital, SGH: Singapore General Hospital, SOC: specialist outpatient clinic; 'O'/'N' Level = General Certificate of Education Ordinary / Normal level

Table 3 Time taken to conduct fertility screening by the HCPs

Personnel	Activity	Median (IQR) (minutes)
Clinical Research Coordinator/Patient Service Associate/Nurse Counsellor	Registration of Visits	10 (9, 12)
	Ordering of tests	5 (1, 5)
	Giving instructions to participants	5 (4, 5)
	Scheduling of appointments	6 (4, 10)
Assistant Nurse Clinician/Nurse Clinician	Blood sampling and transferring samples to the lab	10 (7, 19)
Medical Laboratory Scientist/ Senior Medical Laboratory Scientist	Sample processing for AMH test	90 (90, 90)
	Analysis of SA sample	10 (10, 40)
	Preparation of test report	7 (6, 10)
Senior Resident/Associate Consultant/Consultant/Senior Consultant	Doctor consultation	10 (5, 10)
Assistant Nurse Clinician/Nurse Clinician	Reproductive counselling with nurse	30 (25, 35)
Average time spent on each couple		219.45*

*HCPs spent a total of 44,987 minutes on 205 couples, averaging 219.45 minutes per couple

AMH: Anti-Mullerian hormone, HCPs: healthcare professionals, IQR: interquartile range, min: minutes, SA: semen analysis

Table 4 Indirect and direct costs incurred to the couples in FHS

Median (IQR)	Husband	Wife
Time taken off from work to attend Visit 1 (day)	0.5 (0.5, 1.0)	0.5 (0.5, 1.0)
Time taken off from work to attend Visit 2 (day)	0.5 (0.5, 0.5)	0 (0.0, 0.0)
Time taken off from work to attend Visit 3 (day)	0.5 (0.5, 1.0)	0.5 (0.5, 1.0)
Total indirect cost on productivity loss (S\$)	405.86 (248.50, 516.07)	272.73 (164.84, 408.25)
Transportation expenses for visit 1 (S\$)	10 (2.5, 18)	2 (0, 5)
Transportation expenses for visit 2 (S\$)	15 (3.0, 25)	0 (0,0)
Transportation expenses for visit 3 (S\$)	10 (3.0, 20)	0 (0,4)
Direct cost on transportation (S\$)	20.00 (6.00, 60.00)	
Total cost on productivity loss and transportation (S\$)		663.55 (453.75, 907.05)

FHS: fertility health screening, IQR: interquartile range

Declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was reviewed and approved by the Centralized Institutional Review Board of SingHealth (Ref No. 2019/2095). All participants gave their informed consent.

Consent for publication

Not applicable

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available for patient confidentiality but are available from the corresponding author on reasonable request.

Competing interests

All authors declare no conflict of interest.

Funding

This study is supported by the Strategy Group, Prime Minister's Office of Singapore. The funder is apprised in the study design, interpretation of data, and writing of the report together with the study investigators, and is involved in the decision to submit reports for publication.

Authors' contributions

Conceptualization and methodology: SLC, JT, JB, SRY, JKYC, CWK, KHC, SLY

Investigation: HZ

Data curation and validation: SLC, HZ, YX

Formal analysis: HZ, CP, YX, SLC

Supervision: SLC, JT, KHC, SLY

Writing – original draft: HZ, YX

Writing – review & editing: all authors

Acknowledgements

We would like to thank all participants who took part in the study, clinical research coordinators (Nur Syahirah Binte Alias, Trish Koon, Jing Ti Chan, Huai Tian Lee, Mei Qi Yong, Fenfen Wang, Pei Sian Lee, Lara Lee, Kaiyisah Binte Azaar Udin), clinicians who gave inputs (Dr Kee Chong Ng, Dr Serene Liqing Lim, Dr Rajkumaralal Renuka Devi, Dr Tat Xin Ee, Dr Liying Yang, Dr Lee Wai Yen, Dr Sadhana Nadarajah), nurses who conducted the reproductive counselling (Rohima Binte Sungip, Rohana Hashim, Chun Yan Yu, Haiying Song, Maggie Cheng), administrative, communications and operations colleagues (Dr Shanqing Yin, Julin Wong, Jolene Teng, Adele Tan, Clara Chee, Edward Beh, Patricia Kin, Jun Tian Wu, Tricia Ang, Angeline Chen).

Supplementary Materials

Supplementary file 1 FHS Fidelity checklist

Supplementary file 2 Process map of Fertility Health Screening (FHS)
for Time Driven Activity Based Costing (TDABC)

Supplementary file 3 Interview guide for couples

Supplementary file 4 Interview guide for providers and key stakeholders

Supplementary file 5 Standards for Reporting Qualitative Research

Supplementary file 6 Sample illustrative quotes based on the
implementation outcomes

Supplementary file 7 Personnel involved in conducting fertility
screening and the cost

Supplementary file 8 Characteristics of dropouts and completed

Supplementary file 9 Consolidated Framework for Implementation
Research (CFIR) analysis with example quotes

References

- Cheng H, Luo W, Si S, Xin X, Peng Z, Zhou H, et al. Global trends in total fertility rate and its relation to national wealth, life expectancy and female education. *BMC Public Health*.2022; 22 (1): 1346. <http://10.1186/s12889-022-13656-1>.
- Singapore DoS. Median Age Of Mothers At First Birth [Internet] [cited 2024 Nov 25]. Available from: <https://tablebuilder.singstat.gov.sg/table/TS/M810741#>!
- Balasch J, Gratacos E. Delayed childbearing: effects on fertility and the outcome of pregnancy. *Curr Opin Obstet Gynecol*.2012; 24 (3): 187-93. <http://10.1097/GCO.0b013e3283517908>.
- Owen A, Carlson K, Sparzak PB. Age-Related Fertility Decline. *StatPearls*. Treasure Island (FL)2024.
- Ministry of Health S. Assisted Reproductive Technologies [Internet] [cited 2025 Feb 26]. Available from: <https://www.moh.gov.sg/newsroom/assisted-reproductive-technologies>.
- MadeForFamilies. Co-Funding for Assisted Conception Procedures [Internet] [cited 2025 Feb 26]. Available from: <https://www.madeforfamilies.gov.sg/support-measures/getting-baby-ready/co-funding-for-assisted-conception-procedures>.
- Mena GP, McLindon LA. Fertility awareness education improves fertility cycle knowledge and may reduce time-to-pregnancy in subfertile women. *Hum Fertil (Camb)*.2023; 26 (2): 405-12. <http://10.1080/14647273.2023.2214952>.
- Herzberger EH, Sun B, Engel O, Wolf Y, Herzberger S, Kimhy RB, et al. How effective is digital educational content in shaping fertility awareness? An interventional, cross-sectional study. *J Assist Reprod Genet*.2022; 39 (10): 2335-41. <http://10.1007/s10815-022-02590-1>.
- Daniluk JC, Koert E. Fertility awareness online: the efficacy of a fertility education website in increasing knowledge and changing fertility beliefs. *Hum Reprod*.2015; 30 (2): 353-63. <http://10.1093/humrep/deu328>.
- Maeda E, Nakamura F, Kobayashi Y, Boivin J, Sugimori H, Murata K, et al. Effects of fertility education on knowledge, desires and anxiety among the reproductive-aged population: findings from a randomized controlled trial. *Hum Reprod*.2016; 31 (9): 2051-60. <http://10.1093/humrep/dew133>.
- Wojcieszek AM, Thompson R. Conceiving of change: a brief intervention increases young adults' knowledge of fertility and the effectiveness of in vitro fertilization. *Fertil Steril*.2013; 100 (2): 523-9. <http://10.1016/j.fertnstert.2013.03.050>.
- Conceicao C, Pedro J, Martins MV. Effectiveness of a video intervention on fertility knowledge among university students: a randomised pre-test/post-test study. *Eur J Contracept Reprod Health Care*.2017; 22 (2): 107-13. <http://10.1080/13625187.2017.1288903>.
- Garcia D, Vassena R, Prat A, Vernaeve V. Increasing fertility knowledge and awareness by tailored education: a randomized controlled trial. *Reprod Biomed Online*.2016; 32 (1): 113-20. <http://10.1016/j.rbmo.2015.10.008>.
- Pedro J, Fernandes J, Barros A, Xavier P, Almeida V, Costa ME, et al. Effectiveness of a video-based education on fertility awareness: a

randomized controlled trial with partnered women. *Hum Fertil (Camb)*.2022; 25 (3): 522-33. <http://10.1080/14647273.2020.1854482>.

15. Chan SL, Thumboo J, Boivin J, Saffari SE, Yin S, Yeo SR, et al. Effect of fertility health awareness strategies on fertility knowledge and childbearing in young married couples (FertStart): study protocol for an effectiveness-implementation hybrid type I multicentre three-arm parallel group open-label randomised clinical trial. *BMJ Open*.2022; 12 (1): e051710. <http://10.1136/bmjopen-2021-051710>.

16. Chan Sze Ling JT, Jacky Boivin, Saffari Seyed Ehsan, Yeo Samantha Rachel, Yu Su Ling. Effectiveness of fertility health awareness strategies on fertility knowledge and childbearing in young married couples (FertStart): a multicentre three-arm parallel group open-label randomized controlled trial. Under review.

17. Curran GM, Bauer M, Mittman B, Pyne JM, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. *Med Care*.2012; 50 (3): 217-26. <http://10.1097/MLR.0b013e3182408812>.

18. Proctor E, Silmire H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. *Adm Policy Ment Health*.2011; 38 (2): 65-76. <http://10.1007/s10488-010-0319-7>.

19. Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. *Implement Sci*.2009; 4 50. <http://10.1186/1748-5908-4-50>.

20. Pinnock H, Barwick M, Carpenter CR, Eldridge S, Grandes G, Griffiths CJ, et al. Standards for Reporting Implementation Studies (StaRI) Statement. *BMJ*.2017; 356 i6795. <http://10.1136/bmj.i6795>.

21. Cidav Z, Mandell D, Pyne J, Beidas R, Curran G, Marcus S. A pragmatic method for costing implementation strategies using time-driven activity-based costing. *Implement Sci*.2020; 15 (1): 28. <http://10.1186/s13012-020-00993-1>.

22. Lofland JH, Pizzi L, Frick KD. A review of health-related workplace productivity loss instruments. *Pharmacoeconomics*.2004; 22 (3): 165-84. <http://10.2165/00019053-200422030-00003>.

23. Braun Virginia CV. Using the thematic analysis in psychology 2006 [cited 2024 Nov 25]. Available from: <https://uwe-repository.worktribe.com/output/1043060/using-thematic-analysis-in-psychology>.

24. Damschroder LJ, Reardon CM, Widerquist MAO, Lowery J. The updated Consolidated Framework for Implementation Research based on user feedback. *Implement Sci*.2022; 17 (1): 75. <http://10.1186/s13012-022-01245-0>.

25. O'Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standards for reporting qualitative research: a synthesis of recommendations. *Acad Med*.2014; 89 (9): 1245-51. <http://10.1097/ACM.0000000000000388>.

26. Maleki-Saghooni N, Amirian M, Sadeghi R, Latifnejad Roudsari R. Effectiveness of infertility counseling on pregnancy rate in infertile patients undergoing assisted reproductive technologies: A systematic review and meta-analysis. *Int J Reprod Biomed*.2017; 15 (7): 391-402.

27. Yirgu R, Wood SN, Karp C, Tsui A, Moreau C. "You better use the safer one... leave this one": the role of health providers in women's pursuit of their preferred family planning methods. *BMC Womens Health*. 2020; 20 (1): 170. <http://10.1186/s12905-020-01034-1>.

28. Haleem A, Javaid M, Singh RP, Suman R. Telemedicine for healthcare: Capabilities, features, barriers, and applications. *Sens Int*. 2021; 2 100117. <http://10.1016/j.sintl.2021.100117>.

ARTICLE IN PRESS