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Abstract 

Effective disease surveillance in wild fish populations is essential for food security and biodiversity conservation, 

but data acquisition can be limited by ad hoc reporting and resource-intensive laboratory diagnostics. We 

developed and evaluated a computer vision pipeline to detect saprolegniasis-like infections, a devastating 

disease in salmonids that manifests as visible signs. 

Compiling a dataset of 4,526 images (494 infected, 4,032 healthy) from citizen science platforms and 

stakeholders, we used data augmentation to address the significant class imbalance. We then fine-tuned and 

compared four pre-trained convolutional neural network architectures (EfficientNetV2S, EfficientNetV2B0, 

ResNet50, and MobileNetV3S), chosen to represent a range of standard and efficient models, to classify healthy 

versus infected fish across datasets of varying host taxonomic specificity. 

The EfficientNetV2S model achieved the highest performance on a Salmo spp. specific dataset, with a mean 

recall (proportion of infected fish images correctly identified) of 0.898 (± 0.043) and precision (proportion of 

correctly identified infected fish among all fish identified as infected) of 0.858 (± 0.067). Performance varied 

with host taxonomic scope, with models achieving lower metrics on broader host taxa datasets. Despite 
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challenges including variable image quality, water surface reflections, and inherent class imbalance, these 

results show computer vision can support large-scale disease surveillance in wild fish populations. 

Computer vision-based surveillance could enable earlier outbreak detection and targeted diagnostics, improving 

freshwater ecosystem health management. While successful implementation hinges on acquiring sufficient 

high-quality imagery, this study highlights the potential of applying tailored Artificial Intelligence tools for 

monitoring visually detectable diseases across diverse wildlife species. 

Keywords: machine learning, disease ecology, iEcology, wildlife, surveillance, visible signs 

 
Highlights 
 

1. Computer vision pipeline detects Saprolegnia spp. disease signs in wild salmonids  

2. Citizen science images viable source for fish disease detection  

3. EfficientNetV2S achieves highest recall and precision for on Salmo spp. specific 

dataset 

4. Model performance sensitive to host taxonomic level and specific image artefacts  

5. AI enables large-scale non-invasive surveillance of wildlife disease  

 

Visual Abstract: 
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1 Introduction 

The emergent field of iEcology (internet ecology) frequently uses image repositories to 

generate insights into species distribution and occurrence, biogeographical patterns, 

behaviour, species interactions, habitat use, and the impact of human activities on wildlife 

(Weinstein 2018; Jarić et al. 2020; Tuia et al. 2022). Its application to wildlife disease 

surveillance, however, remains sparse, despite the abundance of available data (Edwards et 

al. 2021). While examples are emerging, such as automated classification of Devil Facial 

Tumour Disease (DFTD) in Tasmanian devils (Sarcophilus harrisii) (Nurçin et al. 2024) and 

lesions in bottlenose dolphins (Tursiops erebennus) (Murphy et al. 2025), the field is still 

under-explored. Computer vision offers a promising tool for automating disease detection 

from images where diseases have visible signs. Freshwater wild fish are an excellent test bed 

for disease detection because they are a significant source of diseases (Shinn et al. 2014), 

including zoonoses (Gauthier 2015), they represent some of the most threatened vertebrates 

on the planet (Collen et al. 2014; Shinn et al. 2014; Dias et al. 2017), and disease control costs 

billions (Shinn et al. 2014). Many fish diseases present visible signs, making them well-suited 

for image-based detection. Furthermore, fishers, especially recreational anglers, have a 

culture of taking and sharing images online of their catch, therefore in theory, both visible 

signs and the images from which to observe them exist. The advantages of image-based 

disease detection over traditional surveillance in the field include the ability to rapidly screen 

thousands of images in a non-invasive manner. 

Computer vision applications have demonstrated promising results for disease detection 

across domesticated and livestock species. Deep learning models have shown success in 

diagnosing ocular surface diseases in domestic dogs and cats (Nam and Dong 2023) and 
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detecting skin conditions like pododermatitis and neoplasia in dogs (Smith et al. 2024). 

Computer vision has been used to detect early signs of respiratory diseases in pigs via changes 

in temperature using thermal imagery (Jorquera-Chavez et al. 2020). In cattle, computer 

vision has been employed for tick detection and identification (Barbedo et al. 2017; Luo et al. 

2022) and for real-time detection and scoring of digital dermatitis (Aravamuthan et al. 2024).  

While these advancements showcase the potential of computer vision in veterinary medicine, 

research on wild species is limited. Previous studies in fish have primarily focused on 

aquaculture settings using small datasets, often with limited information on the species 

involved (Malik et al. 2017; Hasan et al. 2022; Mia et al. 2022; Yasruddin et al. 2022; Rachman 

et al. 2023; Vijayalakshmi et al. 2023; Biswas et al. 2024; Kumaar et al. 2024; Maruf et al. 

2024). Ahmed et al. (2022), for example, classified ‘salmon disease’ in 266 images of salmon 

(83 healthy, 183 infected) with an accuracy of 91.4% using traditional computer vision 

methods, but the disease and salmon species were not specified. Gupta et al. (2022) achieved 

an accuracy of 96.7% using convolutional neural networks to classify 3,289 salmon images 

(augmented based on an initial dataset of 68 healthy, 71 wounded, 70 with fish-lice). 

Importantly, inclusion of augmented images during model validation and testing may 

influence evaluation metrics (Huang and Khabusi 2023; Rachman et al. 2023; Biswas et al. 

2024; Maruf et al. 2024).  

There is a paucity of  surveillance of fish diseases, such as saprolegniasis, caused by the 

oomycete Saprolegnia parasitica, which kills 1 in 10 farmed salmon (Dias et al. 2017). This 

disease, characterized by fungal-like white growths on the fish’s body, head, and fins, has no 

effective treatment. It causes significant morbidity and mortality in wild fish populations (van 

West and Beakes 2014; Derevnina et al. 2016; Matthews 2019; Matthews et al. 2021) and can 
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infect other aquatic species (Costa and Lopes 2022). With widescale fish mortality and inter-

specific transmission, early detection of this disease is critical to assess risk to aquatic species, 

and to help identify drivers of outbreaks (MacAulay et al. 2022). While regular disease 

surveillance occurs in commercial fisheries, outbreaks in wild fish are often detected by ad 

hoc reporting of diseased/dead fish to the relevant fisheries authorities (e.g. Fish Health 

Inspectorate in the UK). Ad hoc reporting often constitutes one-off, unstructured, non-

systematic alerts from anglers or members of the public who happen to spot diseased fish. 

Once an outbreak is recognised, identification of Saprolegnia spp. may follow with direct 

sampling of animals (Tandel et al. 2021) or water (Pavić et al. 2022) using molecular methods 

or culturing. While these methods are highly sensitive, they are time-consuming and damage 

to fish stocks has usually occurred by the time the pathogen is identified. Because Saprolegnia 

spp. cause visible signs of infection there is potential for use of image-based disease 

surveillance. While visible signs alone cannot confirm disease, these data could support large-

scale surveillance and identify areas for targeted investigation. 

Here, we establish a computer vision pipeline to detect common infectious diseases 

(Saprolegnia spp.) in wild salmonids. We use standard methods (Jarić et al. 2020; Edwards et 

al. 2021) to assemble a novel dataset for this disease from diverse online and stakeholder 

sources using images of wild-caught fish, and systematically assess classifier performance 

across different host taxonomies. This approach directly tests the utility of using existing 

online data as a scalable, cost-effective alternative to dedicated field surveys for disease 

surveillance. Our ultimate aim is to assess if we can move current practices from intermittent, 

episodic reports of disease towards detailed real-time monitoring of wild freshwater fish. 

Doing so would provide a step towards collating spatiotemporal information on disease and 

provide a framework from which we can expand to other host-parasite systems. Our 
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proposed pipeline offers a step-change in monitoring infectious diseases, providing a 

technology-led framework for understanding disease dynamics in wild fish and other species. 

2 Methods 

2.1 Data 

Images of salmonids were acquired from photo-sharing websites, Flickr (www.flickr.com), 

iNaturalist (www.iNaturalist.org), GBIF (www.GBIF.org) and Wikimedia Commons, between 

December 2023 and February 2024. These data constitute ‘passive citizen science’;  images 

submitted without scientific intent1 that nonetheless could contain important ecological data 

(Edwards et al. 2021). These sites were accessed using Application Programming Interfaces 

(APIs) that allow for keyword or taxonomic-level searches to download images and associated 

metadata. 

2.1.1 Image acquisition 

We focused our work on salmonids as the taxa most prone to saprolegniasis (Vieira da Silva 

do Nascimento et al. 2020). GBIF and iNaturalist can be searched taxonomically for 

‘Salmonidae’, returning observations linked to any subfamily, genus or species within this 

family. Flickr and Wikimedia Commons allow for keyword searches in text fields such as titles 

and descriptions. To compile keywords, a comprehensive list of scientific and common 

salmonid names was created by integrating subfamily, genus, and species data from FishBase 

(https://www.fishbase.se/search.php), FishTreeOfLife 

 
1 Upon manual review of the images, titles and descriptions, it is clear that most images were 

taken by anglers. 
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(https://fishtreeoflife.org/api/taxonomy/family/Salmonidae.json), and NCBI 

(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). This list was enriched with 

additional species and English common names from FishBase and iNaturalist (see Table S1 for 

a full list of taxa). This resulted in a final list of three subfamilies, 11 genera, 387 species and 

two hybrids.  

We searched GBIF occurrence data using the following filters: “BasisOfRecord is Human 

Observation”, “MediaType is Image”, “OccurenceStatus is Present”, “TaxonKey is 

Salmonidae”. Of the returned occurrences, 94.5% were duplicated from iNaturalist and these 

duplicates were excluded. We downloaded the Darwin Core Archive resulting from our search 

and used the gbif-dl (v0.1.1) package in Python 3.9.18 to extract the corresponding URLs and 

download the images. 

For iNaturalist images we first downloaded the metadata files (observations, observers, 

photos and taxa) from the ‘iNaturalist Licensed Observation Images’ open dataset 

(https://registry.opendata.aws/inaturalist-open-data) using the AWS Command Line 

Interface (CLI). We then used Python 3.11.7 and the pandas (v1.5.3) package to link taxa 

information to observation, observer and photo metadata, allowing us to filter to images 

identified as the Family ‘Salmonidae’ (taxon_id=47520) or lower associated taxonomic levels. 

We used the multiprocess (v0.70.15) package to download the images. To ensure 

comprehensive coverage, we incorporated iNaturalist observations regardless of their quality 

grade. 

We queried the Flickr API for images with tags, descriptions or titles containing the terms in 

Table S1 using the flickrapi (v2.4.0) package in python 3.11.7. We tested the search terms in 

the Flickr user interface first and excluded terms that returned a very high proportion of 
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irrelevant images, such as the common name ‘salmon’ which returns over 400,000 images, 

mainly of salmon prepared for food. SHA-256 (Secure Hash Algorithm) from hashlib in the 

Python Standard Library of python 3.11.7 was used to create unique ids for each image to 

locate and remove duplicate downloads. 

To acquire images from Wikimedia Commons we followed the process implemented by 

Marshall et al. (2020), amending their R script (SuppCode2_Wikimedia_query.R from 

zenodo.org/records/4010155) to query for the terms listed in Table S1. Following removal of 

duplicate image URLs, the images were downloaded using urllib3 (v1.26.16) in Python 3.11.7.  

In total, before ‘ground-truthing’ to check for salmonids, 69,158 photographs were collated 

across online sources based on keyword or taxonomic-level searches: 49,057 from iNaturalist, 

1,843 from GBIF, 19,610 from Flickr and 183 from Wikimedia Commons. 

2.1.2 Ground truth - images of healthy and diseased salmonids 

The Wikimedia Commons and Flickr image datasets contained a high proportion of irrelevant 

images, as they were downloaded based on keywords (Table S1) that often had multiple 

meanings. For example, a Grayling is also a moth species. To address this issue two labellers 

manually screened the dataset for the presence of salmonids (Figure 1), on Labelbox 

(Labelbox. 2025), leaving 91 relevant images from Wikimedia Commons and 6,869 from Flickr 

which were added to the existing collection of 49,057 images from iNaturalist and 1,843 

images from GBIF. 

Due to the time-consuming nature of expert annotation and the requirement of specific 

expertise to identify Saprolegnia spp., two of the authors examined a subset of approximately 

10% (5,667) of the salmonid images for visible signs of disease, outlined in Figure 1. This 
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subset provided a manageable starting point for the intensive labelling process, while still 

yielding a dataset large enough to develop and validate our proof-of-concept pipeline. Due to 

poor image quality or obstructions making it difficult to assess fish health, 696 images were 

excluded. From this initial evaluation, 4,105 images were identified as containing healthy 

salmonids, making up the first class in our binary classification problem. The remaining 866 

images were reviewed for visible signs of Saprolegnia spp. Where more than one salmonid 

was visible in an image, the image would be labelled as part of the ‘Saprolegnia spp.’ class if 

at least one of them displayed visible signs of the disease. This process identified 217 potential 

infections in salmonids, making up the second class in the classification problem.  

The ‘Saprolegnia spp.’ class was supplemented following the creation of ground truth labels 

by searching the iNaturalist and Flickr APIs using the keyword ‘Saprolegnia’ (‘Additional 

Saprolegnia spp. images’ in Figure 1). The Flickr search returned 33 images with nine new 

images showing salmonids with visible signs of Saprolegnia spp. infection while iNaturalist 

returned 42 images of which 41 showed signs of saprolegniasis. Additionally, we incorporated 

198 images provided by the Environment Agency’s National Fisheries Laboratory (EA), 120 

images uploaded to the Fisheries Management Scotland (FMS) app for fish disease 

(https://fms.scot/fish-health-and-disease), and 55 provided by the Fish Pathobiology and 

Immunology Laboratory at Michigan State University. These photographs were assumed, not 

verified, to show fish with Saprolegnia spp. based on visible signs. The final count of images 

with Saprolegnia spp. infection was 630.  
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Figure 1. Data pipeline. Data pipeline for collating images and identifying disease (Saprolegnia 

spp.) in salmonids. Images and metadata were downloaded from online sources using API 

searches based on taxonomy or search terms and false positives removed. A 10% subset, 

stratified by data source and taxonomic classification, of the data was labelled as ‘healthy’ or 

‘disease’ and the ‘disease’ class was subsequently screened for visible signs of Saprolegnia spp. 

Images with visible signs of Saprolegnia spp. infections were added from additional sources 

(e.g. Environment Agency). Following cleaning, the data were split into tiered datasets based 

on taxonomic classification and the number of available images in the ‘healthy’ and 

‘Saprolegnia spp.’ classes per taxon. 
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2.1.3 Image cleaning 

All images were manually cropped to remove obvious watermarks, time stamps, duplicates 

or borders. If this was not possible the image was excluded. The final dataset consisted of 

4,032 images showing healthy salmonids, hereafter referred to as the ‘healthy’ class, and 494 

images showing salmonids with visible signs of Saprolegnia spp. infection, hereafter referred 

to as the ‘Saprolegnia spp.’ class (Table 1). 

Table 1. The number of salmonid images classed as ‘healthy’ and ‘Saprolegnia’ spp. from each 

image source. 

Source ‘Healthy’ count ‘Saprolegnia spp.’ count 

iNaturalist 3,374 211 

Flickr 556 22 

GBIF 92 2 

Wikimedia Commons 10 0 

Environment Agency 0 130 

Fisheries Management Scotland 0 98 

Michigan State University 0 31 

Total 4,032 494 

2.1.4 Metadata 

Metadata associated with images was used to split the data into training and validation 

partitions. iNaturalist, Flickr, FMS and Immunology Laboratory at Michigan State University 

images were accompanied by detailed metadata, including user information, date, and 

location. While Wikimedia Commons images were downloaded with user and date 

information, location data was unavailable. EA images sourced from National Fisheries 

Laboratory (NFL) image archives, encompassing those taken by EA field officers, NFL 

employees, and anglers, included date and camera specifications as a proxy for user 
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information in the EXIF data. Although location information was missing for the EA images, 

we knew that all were captured within England and Wales. 

2.1.5 Dataset strategies 

The ‘healthy’ and ‘Saprolegnia spp.’ dataset comprised images of salmonids classified to 

different taxonomic levels, ranging from family to species. A total of 13 taxa had images of 

both healthy and infected classes (Table 2) with the remaining taxa having images only in one 

of the classes. To address the imbalance in Saprolegnia spp. infected and healthy images 

across different taxonomic groups, we implemented a multi-tiered data preparation strategy, 

based on taxonomic specificity and the number of available images for each taxonomic 

classification. 

 Table 1. Count and ratio of images across host taxa for Healthy and Saprolegnia spp. classes. 

Ratio represents the number of Saprolegnia spp. images divided by the number of Healthy 

images. Only taxa with images in both classes are included. See Table S1 for a full list of taxa. 

Host taxa Healthy Saprolegnia spp. Ratio 

Salmo spp. 43 135 3.140 

Salmo salar 91 110 1.209 

Oncorhynchus tshawytscha 180 54 0.300 

Oncorhynchus spp. 181 45 0.249 

Oncorhynchus keta 50 45 0.900 

Oncorhynchus gorbuscha 85 27 0.318 

Oncorhynchus nerka 132 25 0.189 

Oncorhynchus mykiss 936 24 0.026 

Oncorhynchus kisutch 214 11 0.051 

Salmo trutta 836 10 0.012 

Salvelinus fontinalis 529 2 0.004 

Thymallus thymallus 44 2 0.045 

Prosopium williamsoni 24 1 0.042 

To address the imbalance in Saprolegnia spp. infected and healthy images across different 

taxonomic groups, we implemented a multi-tiered data preparation strategy. The full dataset, 
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referred to as ‘All photographs’, included all 4,032 ‘healthy’ and 494 ‘Saprolegnia spp.’ images 

from 68 different taxa. We then created several tiered datasets (Table 2): 

• ‘Taxa present in both classes’: This dataset included all images from taxa with images 

present in both the ‘healthy’ and ‘Saprolegnia spp.’ classes (Table 1). 

• ‘Taxa with ≥10 photographs in both classes’: This dataset restricted the inclusion 

criteria to taxa with a minimum of 10 images in both classes. The 10-image threshold 

was chosen to ensure a reasonable number of images for training, validation, and 

testing, while also maintaining a balance between data quantity and quality. 

• Genus specific datasets: To account for potential variations within specific genera, we 

created separate datasets for species within Oncorhynchus and Salmo, each with a 

minimum of 10 images per class, ‘Oncorhynchus’ with ≥10 photographs in both 

classes’ and ‘Salmo with ≥10 photographs in both classes’. 

Both data quality and data quantity are important factors for model performance. While a 

larger, more diverse dataset can improve model generalisation, addressing potential class 

imbalance and intra-class variability is crucial. In our case, a larger dataset might introduce 

samples that, while belonging to the same class, exhibit significant visual differences. 

Conversely, a smaller, more focused dataset may lead to overfitting where the model starts 

to ‘memorise’ the training data rather than learning real patterns. Our strategy aimed to 

balance these trade-offs by focusing on taxa with adequate representation in both classes 

and by creating genus-specific datasets to capture intra-genus variations, and therefore our 

tiered datasets included a mixture of all photographs and taxa within and across broad taxa 

(Table 2). It was not practical to look at one species in isolation in this study, as the datasets 

would have been too small to be practically split into adequate training and validation sets. 
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Table 2. Count and ratio of images for the ‘Saprolegnia spp.’ and ‘Healthy’ classes in the tiered 

datasets. The class ratio is calculated as the number of ‘Saprolegnia spp.’ images divided by 

the number of ‘Healthy’ images. 

Dataset Saprolegnia spp. Healthy Class ratio 

All photographs 494 4,032 0.123 

Taxa present in both classes 491 3,345 0.147 

Taxa with ≥10 photographs in both classes 486 2,748 0.177 

Oncorhynchus, ≥10 photographs in both classes 231 1,778 0.130 

Salmo, ≥10 photographs in both classes 255 970 0.263 

2.1.6 Dataset splits 

The limited sample size of small validation sets can introduce high variance in performance 

metrics, as the choice of validation samples can substantially impact the evaluation results 

(Chollet 2021). The best practice with small datasets is to use k-fold cross-validation (Chollet 

2021). This technique divides the data into k ‘folds’ (subsets), using each fold once as a 

validation set while training on the remaining folds. We implemented this using the scikit-

learn package StratifiedGroupKFold function, with k=5 folds. To ensure robust evaluation, we 

leveraged the metadata associated with each photograph to stratify by location and 

taxonomic classification, and group by user information (for example, username for 

iNaturalist submitted images) to prevent data leakage from user-specific patterns. These 

patterns, which persist even after removing obvious duplicates, can include consistent 

camera artifacts (such as sensor noise or colour profiles) or a characteristic photographic 

style. If these user-specific signatures were present in both the training and validation sets, 

the model's performance could be artificially inflated by learning to identify the photographer 

rather than the disease. This approach was crucial, as the smallest tiered dataset contained 

only 255 images in the ‘Saprolegnia spp.’ class, with some users contributing as many as 31 

of these images. By using stratified group k-fold cross validation, we aimed to assess the 
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stability of each model across different data splits. The reported metrics for each model 

represent the average performance across the 5 folds. 

2.2 Image classification 

We selected four neural network architectures to compare a range of common and state-of-

the-art approaches. We chose ResNet50 (He et al. 2016) because it is a widely recognised 

architecture used as a standard baseline for image classification, providing a robust point of 

comparison (Alom et al. 2019). ResNet‑50 is a 50‑layer residual network that uses skip 

connections between convolutional blocks to ease optimisation of deep architectures (He et 

al. 2016). We also included MobileNetV3S (Howard et al. 2019), a lightweight network based 

on depth wise separable convolutions and squeeze-and-excitation blocks, which is designed 

for high efficiency on less powerful devices. This is an important consideration for future 

work, where the model could be integrated into a mobile application for in-field analysis. 

Finally, we chose two models from the more modern EfficientNetV2 family (Tan and Le, 2021), 

which are known for their high accuracy and computational efficiency compared to older 

models like ResNet50. This family of models uses compound scaling and Fused‑MBConv 

blocks to achieve high accuracy with relatively few parameters (Tan and Le, 2021). We 

specifically used two variants, EfficientNetV2B0 and EfficientNetV2S, to explore the trade-off 

between model size and performance on our dataset. EfficientNetV2B0 is the smaller, more 

efficient model, while the slightly larger EfficientNetV2S offers potentially higher accuracy at 

a greater computational cost. This selection allowed us to assess performance across different 

model backbones, balancing a classic baseline with modern, efficient alternatives. 
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2.2.1 Addressing class imbalance 

Class imbalance is a common issue in machine learning, especially in image classification and 

wildlife classification tasks, such as species classification, where distributions are often long-

tailed (Cunha et al. 2023). In this study, the datasets exhibit a clear imbalance, with a large 

majority of ‘healthy’ samples and a minority of ‘Saprolegnia spp.’ samples; this is an expected 

feature of disease, reflecting the reality that for many diseases the number of healthy 

individuals vastly outnumber those with disease. This imbalance can lead to model bias 

towards the majority class. This will lead to poor generalisation, where the model performs 

poorly on new data, particularly for the minority class. The following sections detail the 

specific strategies we used to manage this challenge. 

2.2.2 Increasing the sample size 

While oversampling (duplicating existing training samples) can potentially lead to overfitting 

(Alkhawaldeh et al. 2023), we mitigated this risk by subsequently applying data augmentation 

techniques to the expanded training dataset. Data augmentation, a set of popular techniques 

to increase training data size, especially when samples are limited (Shorten and Khoshgoftaar 

2019; Mumuni and Mumuni 2022), can create a more robust and varied dataset and enhance 

model generalisation capabilities. RandAugment, a data augmentation technique that applies 

a combination of image transformations (Cubuk et al. 2020), was applied to the oversampled 

data. RandAugment was implemented in Keras-CV with the number of augmentations, N, set 

to the default value of 3, and the magnitude, M, was set to the default value of 0.5. 
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2.2.3 Transfer learning 

To leverage transfer learning, all models were instantiated with pre-trained weights from 

training on ImageNet (Krizhevsky et al. 2012). Models pre-trained on larger datasets, such as 

ImageNet, transfer the knowledge gained from training on large datasets to new tasks, such 

as classifying photographs of salmonids based on health status. The model can then be fine-

tuned on this new, often smaller dataset. 

2.2.4 Loss function 

The choice of loss function (a mathematical function that quantifies the difference between 

model predictions and actual observations) is crucial for addressing class imbalance. Focal 

Loss is a modified cross-entropy loss which down-weights the loss contributions of well-

classified examples, allowing the model to focus on the more challenging minority class (Lin 

et al. 2020). We employed the Keras-CV implementation of Focal Loss with default 

parameters, which are effective in various computer vision classification tasks (Nemoto et al. 

2018; Petmezas et al. 2022; Nie et al. 2023). We set the bias initialization of the final 

classification layer to 𝑏 = log (
1−𝜋

𝜋
), with 𝜋 = 0.01, as suggested by Lin et al. (2020), who 

show that this prevents large destabilizing loss values at the start of the training process. 

2.2.5 Training pipeline 

The training pipeline was implemented in Python 3.10.13 using Keras 3 with JAX as the back 

end, and all models were trained on two Nvidia P100 GPUs. All four architectures shared the 

same transfer‑learning pipeline (Fig. 2). Each cropped salmonid image was resized to the 

required input resolution (224x224 pixels for ResNet‑50, MobileNetV3‑S and 

EfficientNetV2‑B0, 300x300 pixels for EfficientNetV2‑S) and, during training, RandAugment 
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(N = 3, M = 0.5) was applied to the training images. The augmented image was then passed 

through the chosen convolutional backbone initialised with ImageNet weights, followed by a 

custom classification head consisting of global average pooling, a fully connected layer (128 

units for ResNet‑50 and MobileNetV3‑S, 256 for EfficientNetV2‑B0 and 512 for 

EfficientNetV2‑S), dropout with rate 0.2, and a final dense layer with two sigmoid‑activated 

outputs (‘healthy’ and ‘Saprolegnia spp.’). The bias of the output layer was initialised to reflect 

a low prior probability of disease (π = 0.01, β ≈ −4.6) for the focal loss, and the Adam optimiser 

was used to update model weights. 
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Figure 2. Transfer‑learning pipeline used for training models on binary classification task. Each 

cropped salmonid photograph was resized and augmented using RandAugment (N = 3, 

M = 0.5) before being passed through a pre‑trained convolutional backbone (ResNet‑50, 

MobileNetV3‑S, EfficientNetV2‑B0 or EfficientNetV2‑S, initialised with ImageNet weights). The 

backbone output was fed to a custom classification head consisting of global average pooling, 

a dense layer (128–512 units, ReLU) and a dropout layer (rate 0.2), followed by a two‑unit 

sigmoid output for the ‘healthy’ and ‘Saprolegnia spp.’ classes trained with focal loss. 
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We used a typical transfer learning and fine-tuning approach (Chollet 2021). We instantiated 

the base model backbone with pre-trained, ImageNet (Krizhevsky et al. 2012), weights. First, 

the backbone layers were frozen and only the classification head was trained, using a learning 

rate of 0.001, a common and effective starting point for this training phase (Chollet 2021). If 

the validation loss did not improve for five epochs, the learning rate was reduced by a factor 

of 0.1. If the validation loss did not improve for 20 epochs, training in this frozen phase was 

stopped and the model weights were restored to those from the epoch with the lowest 

validation loss. In the second phase the last blocks of the backbone were unfrozen (as 

specified for each model in Table 4) and the whole network was fine‑tuned for 40 epochs with 

a lower learning rate of 0.00001. This much lower rate is a standard practice for fine-tuning, 

as it prevents the general-purpose features learned on ImageNet from being catastrophically 

forgotten during the update process (Yosinski et al. 2014).  The patience values of five epochs 

for learning rate reduction and 20 for early stopping were chosen as common heuristics to 

balance efficient training time with allowing the model to fully converge.  

 

Table 4. Architecture and computational characteristics of the four convolutional models 

trained to classify images of salmonids as ‘healthy’ or ‘Saprolegnia spp.’. For each backbone 

we report the input resolution, the size of the added dense layer (Dense units),t number of 

model layers unfrozen during the fine‑tuning phase, the number of total and trainable 

parameters (at fine‑tuning), and the approximate inference time per image measured on a 

P100 GPU. 

Backbone 
Input 
size [px] 

Dense 
units 

Unfrozen layers 
to fine tune 

Total 
parameter
s 

Trainable 
parameters 

Inference time per 
image [ms] 
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ResNet50 224×224 128 98 23850242 15216002 104.35 

MobileNet
V3Small 224×224 128 52 1013234 803114 27.38 

EfficientNet
V2B0 224×224 256 198 6247762 5707446 105.05 

EfficientNet
V2S 300×300 512 363 20988258 18876042 412.38 

We used k-fold cross-validation with k=5 to train each model architecture 5 times. The 

arithmetic mean and standard deviation for each evaluation metric were calculated using the 

implementations of mean and std in NumPy. 

2.2.6 Model Evaluation 

We assessed models using common metrics (Géron 2022): precision (Eq. 1), recall (Eq. 2) and 

F1 (Eq. 3). We also calculated the Matthews Correlation Coefficient (MCC) (Eq. 4) (Chicco and 

Jurman 2020). These metrics denote relationships between the numbers of True Positives 

(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). True positives for the 

‘Saprolegnia spp.’ class represent the number of cases correctly identified as presenting with 

Saprolegnia spp. and true negatives the number of cases correctly identified as not presenting 

with Saprolegnia spp., as ‘healthy’. Similarly, false positives, or type 1 errors, are images 

incorrectly classified as ‘Saprolegnia spp.’ and false negatives, or type 2 errors, are the 

number of disease cases incorrectly classified as ‘healthy’. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 
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𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(3) 

 

𝑀𝐶𝐶 = 2 ×
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4) 

 

Precision (Eq. 1) measures the proportion of correct positive predictions amongst all positive 

predictions made by the model. For example, if the model identifies 100 images as 

‘Saprolegnia spp.’, with 90 actually showing visible signs of Saprolegnia spp., the precision 

would be 90%. High precision indicates that when the model predicts a particular condition is 

present, it is usually correct. Recall (Eq. 2) measures the proportion of actual positive cases 

correctly identified by the model. For instance, if there are 100 images of fish with visible signs 

of Saprolegnia spp. in the dataset, and the model correctly identifies 80 of them, the recall 

would be 80%. High recall indicates that the model is successfully detecting most instances of 

the condition of interest. The F1 (Eq. 3) is the harmonic mean of precision and recall, balancing 

both measures. For example, in disease monitoring, we want to avoid both incorrectly 

identifying healthy fish as diseased (false positives, affecting precision) and missing cases of 

actual disease (false negatives, affecting recall). A high F1 indicates that the model maintains 

both good precision and good recall. The Matthews Correlation Coefficient (MCC) (Eq. 4) 

produces a value between -1 and +1, representing the correlation between observed and 

predicted classifications. A coefficient of +1 represents a perfect prediction, 0 is no better 

than random guessing, and -1 indicates total disagreement. MCC calculates the correlation 
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using all four categories of the confusion matrix (true positives, true negatives, false positives, 

and false negatives), making it robust for imbalanced datasets. 

We focus on models with high recall for the ‘Saprolegnia spp.’ class to minimise missed cases 

(false negatives), even if it might increase false positives. We also consider precision for the 

disease class. To account for the class imbalance, we use the macro-average F1-score (the 

mean of both class-wise F1 scores). In addition, we report the MCC, which provides a single 

summary value per model and dataset. From here on, we refer to class-wise metrics as 

metric𝑐𝑙𝑎𝑠𝑠, where ‘metric’ is one of the metrics precision, recall or F1, and ‘class’ is either 

‘healthy’ or ‘sapro’ for Saprolegnia spp.  

To further compare generalist and genus-specific training regimes on identical images, we 

carried out an additional exploratory evaluation in which all final models were applied to fixed 

Salmo and Oncorhynchus data sets. For each architecture and training dataset we computed 

F1sapro and MCC across the five cross-validation folds and summarised these as 

mean ± standard deviation. Full methodological details and results are provided in 

Supplementary Section S4. 

2.2.7 Comparison to a random model 

To establish a simple, unbiased benchmark, we employed a model that randomly assigned 

either the ‘healthy’ or ‘Saprolegnia spp.’ class with equal probability and ran it 100 times to 

obtain a mean ratio. To compare the performance of our models against the random model, 

we used generalised linear models (GLM) using R (v4.1.2) with precisionsapro, recallsapro and F1 

statistics in turn as the response variables with model type (random baseline, ResNet50, 
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MobileNetV3S, EffienctNetV2B0, EfficientNetV2S) and data class as explanatory variables 

using a Gaussian error distribution.  

2.3 Qualitative and quantitative analysis 

We used saliency methods to visualise which parts of an image most influenced a model 

classification decision and generated heatmaps that highlight those regions. We applied Grad-

CAM, (Selvaraju et al. 2020) in TensorFlow, following the implementation in Chollet (2021) 

for the best performing model on all images in the Salmo genus-specific dataset. We 

categorised images as: correctly identified ‘healthy’ or ‘Saprolegnia spp.’ images and 

incorrectly identified ‘healthy’ or ‘Saprolegnia spp.’ images. Through manual inspection of 

correctly (n=1208) and incorrectly (n=17) classified images and their corresponding Grad-CAM 

heatmaps, we investigated whether systematic patterns existed in the regions of the image 

that most influenced the model's classification decisions. To quantitatively investigate how 

image characteristics influenced model performance, we calculated several image quality and 

dimension metrics for each image. We then compared the distributions of these metrics 

between correct and incorrect classifications. Full methodological details and statistical 

analyses are provided in Section S5. 

3 Results 

3.1 Model comparison 

The EfficientNetV2S architecture demonstrated the best performance, yielding the highest 

values for all metrics (Fig. 3). EfficientNetV2B0, a smaller model requiring fewer 

computational resources, consistently achieved second-best performance across most 
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metrics. Interestingly, the maximum values were not achieved on the ‘All images’ but on the 

Salmo genus-specific dataset where EfficientNetV2S attained a macro-average F1 of 0.920 ± 

0.029, recall𝑠𝑎𝑝𝑟𝑜 of 0.898 ± 0.043 and precision𝑠𝑎𝑝𝑟𝑜 of 0.858 ± 0.067. This high 

performance was likely due to the more balanced nature of the Salmo dataset, which 

contained a high proportion of ‘Saprolegnia spp.’ class images from fishery stakeholders. 

Indeed, all the best metric scores were achieved on this taxonomic grouping, regardless of 

the classification model used (Fig. 3).  

In contrast, the models generally performed worst on the Oncorhynchus genus-specific 

dataset, likely due to lower proportion of Saprolegnia spp. cases (Table 3) and greater visual 

variation between host taxa, particularly during spawning. MobileNetV3S produced the 

lowest precision𝑠𝑎𝑝𝑟𝑜 of 0.304 ± 0.086, F1𝑠𝑎𝑝𝑟𝑜 of 0.406 ± 0.081 and macro-average F1 of 

0.640 ± 0.054 on the Oncorhynchus genus-specific dataset, while ResNet50 achieved the 

lowest recall𝑠𝑎𝑝𝑟𝑜 of 0.530 ± 0.080 on the ‘Taxa with ≥ 10 photographs in both classes’ 

dataset. However, even these lower-performing models still significantly exceeded random 

performance (p < 5E−5) for recallsapro, precisionsapro, and macro-average F1-score, particularly 

on the Salmo genus-specific dataset (Fig. 3). 

All model architectures performed well on the ‘Healthy’ class metrics for all datasets. 

However, the models achieved their best performance, in terms of ‘Saprolegnia spp.’ class-

specific metrics and macro-average F1, on the Salmo dataset, followed by the broader 

datasets and again by the Oncorhynchus dataset. This pattern of declining performance across 

datasets was consistent across all models except for ResNet50, whose anomalous 

performance on the 'Taxa with ≥ 10 photographs in both classes' dataset (with the lowest 

recall𝑠𝑎𝑝𝑟𝑜) represented a deviation from the otherwise consistent trend. The Matthews 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Correlation Coefficient showed the same ordering of models and datasets as the F1‑based 

metrics, with EfficientNetV2S and EfficientNetV2B0 giving the highest values on all datasets 

(Fig. S1). This supports the use of F1 and macro‑F1 as primary summary measures, as the 

conclusions are unchanged when using a metric that is less sensitive to class imbalance. The 

trend was especially evident for the precisionsapro score of EfficientNetV2S, which decreased 

from 0.858 ± 0.067 on the Salmo-specific dataset to 0.656 ± 0.039 on the ‘Taxa with ≥ 10 

photographs in both classes’ dataset, and further to 0.462 ± 0.041 on the Oncorhynchus-

specific dataset (Fig. 3a).  



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

 

Figure 3. Performance metrics. Comparisons of precision𝑠𝑎𝑝𝑟𝑜, recallsapro and macro-average 

F1 for different models across the different tiered datasets.  A random model with 95% 
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confidence level, in grey, for each metric and dataset was calculated by running a model that 

randomly predicts the ‘healthy’ or ‘Saprolegnia spp.’ class with equal probability 100 times. 

Box plots show median, interquartile range, minimum and maximum values, with individual 

points for each model run overlaid. 

While EfficientNetV2S generally showed strong performance, the model exhibited the highest 

variability in precisionsapro and macro-average F1 on the ’All photographs’ dataset (Fig. 3). In 

contrast, MobileNetV3S yielded the highest mean recallsapro for both the ‘Taxa with 

photographs in both classes’ and the Oncorhynchus-specific datasets (Fig. 3b), despite having 

the lowest precisionsapro scores (Fig. 3a). 

Across all datasets, MCC showed the same ordering and trends as the class-specific F1 and 

macro-average F1 scores (Fig. S1). On the ‘Salmo, ≥10 photographs in both classes’ dataset, 

EfficientNetV2-S had the highest mean MCC (about 0.85), followed by 

EfficientNetV2-B0 (about 0.79), MobileNetV3-S (about 0.69) and ResNet-50 (about 0.67). For 

the broader datasets (‘All photographs’, ‘Taxa with photographs in both classes’ and ‘Taxa 

with ≥10 photographs in both classes’), mean MCC values across models were lower, 

generally between 0.4 and 0.75, with the same ranking of architectures. On 

the ‘Oncorhynchus, ≥10 photographs in both classes’ dataset, MCC values were lowest 

overall and ranged from roughly 0.23–0.35 for MobileNetV3-S and 0.39–0.46 for ResNet-50 

to about 0.38–0.61 for EfficientNetV2-B0 and 0.53–0.71 for EfficientNetV2-S. 

The exploratory analysis of applying all models to the Salmo and Oncorhynchus genus-specific 

datasets (Table S2) showed that models trained on the matching genus achieved the 

highest  F1sapro and MCC. For example, EfficientNetV2-S trained on the Salmo dataset reached 

mean F1sapro = 0.97 ± 0.01 and MCC = 0.96 ± 0.02 across the five folds on the Salmo data set, 
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while the corresponding Oncorhynchus-trained model achieved F1sapro = 0.80 ± 0.09 and 

MCC = 0.78 ± 0.10 on the Oncorhynchus data. Generalist EfficientNetV2-S models trained on 

“Taxa present in both classes” or “Taxa with ≥10 photographs in both classes” performed 

similarly on both datasets (F1sapro ≈ 0.95–0.96 on the Salmo data and ≈ 0.79 on the 

Oncorhynchus data, MCC ≈ 0.77–0.94). Because the genus‑specific datasets were also used 

during model training, these scores involve substantial data re‑use and should be interpreted 

as optimistic, exploratory upper bounds rather than unbiased test performance (Table S2). 

3.2 Qualitative and qualitative analysis 

Grad-CAM analysis revealed that surface reflections were consistently responsible for 

misclassifications for EfficientNetV2S, particularly when surface reflections obscured fish 

features (Figure 4). Manual inspection highlights that the model can correctly focus on 

infection, with the strongest activation (shown in red to turquoise) around the dorsal fin and 

midsection where the infection was visible (Fig. 4e). Similarly, when correctly classifying a 

healthy brown trout the model appropriately concentrated on the fish's body, with the 

highest activation along the main body and adjacent areas (Fig. 4f). However, where water 

surface reflections created both bubbles above and reflective patterns below the fish (Figs 4c-

d) the corresponding heatmap (Figure 4g-h) reveals that the model focused primarily on these 

water disturbances leading to misclassifying these healthy fish as diseased. 
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Figure 4. Grad-CAM heatmaps. Comparison of a subset of images used for EfficientNetV2S 

classification on the ‘Salmo, ≥10 photographs in both classes’ dataset (a-d) and their 

corresponding Grad-CAM heatmap overlays (e-h). (a) Atlantic salmon (Salmo salar) correctly 

classified as infected with ‘Saprolegnia spp.’, (b) Atlantic salmon (Salmo salar) correctly 

classified as ‘healthy’, (c and d) Brown trout (Salmo trutta) incorrectly classified as 

‘Saprolegnia spp.’, and corresponding Grad-CAM heatmap overlays (e-h).  See Section S2 for 

photograph attribution.  

The quantitative analysis of image characteristics found no statistically significant association 

between classification outcome and global image quality metrics. Comparing correctly and 

incorrectly classified images using a Mann-Whitney U test on the full dataset revealed no 

significant differences in sharpness (p=0.366), perceptual quality (BRISQUE, p=0.266; NIQE, 

p=0.787), or image dimensions (p>0.9). Full details of this analysis are provided in Section S5. 
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4 Discussion 

Our results demonstrate the potential for computer vision to support disease surveillance in 

wild fisheries. All models significantly outperformed random classification (Fig. 3), particularly 

on the Salmo genus-specific dataset. Our work demonstrates the potential for rapid and 

extensive surveillance, mindful of potential methodology pitfalls, with classification 

potentially improved with more training images. 

Previous work has reported near-perfect classification of fish diseases, including   Saprolegnia 

spp. (models: VGG16, MobileNetV2 and inceptionV3 (Biswas et al. 2024). However, our 

manual inspection of the images used  

(https://www.kaggle.com/datasets/subirbiswas19/freshwater-fish-disease-aquaculture-in-

south-asia), suggests potential overfitting due to augmented versions of images from the 

training set constituting those in the test set. Kumaar et al. (2024) also achieved high 

performance (models: InceptionV3, VGG16 and a custom FishNetCNN) on the same dataset, 

expanded with additional images, but had inconsistent sample sizes and possible augmented 

training samples in the test set. Although our best model (EfficientNetV2S) achieved lower 

metrics for classification of Saprolegnia spp. than these works (Biswas et al. 2024; Kumaar et 

al. 2024), we adhered to stricter validation protocols, reducing bias and  improving real-world 

application for  monitoring diseases in the field. 

4.1 Model Performance and Technical Considerations 

The strong performance of EfficientNetV2S can most likely be attributed to its ability to 

process higher resolution images (300x300 pixels versus 224x224 pixels) enabling detection 

of subtle disease features. Grad-CAM visualisations confirmed the model focused on relevant 
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anatomical features in correctly classified images. In cases of misclassification, however, the 

model’s focus was often on water surface reflections rather than the fish itself (Fig. 4). This 

qualitative finding is supported by our quantitative analysis, which found no significant link 

between misclassifications and global image quality metrics like overall sharpness or 

perceptual quality (Section S5). It must be noted, however, that the statistical power of this 

quantitative analysis was inherently low due to the small number of misclassified images (14 

'healthy', 3 'Saprolegnia spp.'). Despite this limitation, the combined evidence strongly 

suggests that model errors are not driven by generally 'poor quality' images, but by the 

specific, misleading artefacts like reflections identified by Grad-CAM. This provides clear 

guidance for improving image acquisition protocols or pre-processing steps in future work. 

All models, particularly MobileNetV3S, overpredicted ‘Saprolegnia spp.’ leading to higher 

recallsapro (proportion of infected fish images that are correctly identified) but lower 

precisionsapro (proportion of correctly identified infected fish among all fish identified as being 

infected). Oversampling to address class imbalance changes the class distribution in the 

training data and this can drive the models to overpredict the minority class. Although we 

mitigated this using image augmentation to increase the size of our training datasets, 

alternative strategies like multi-branch networks, as suggested for visual recognition of 

animal species in camera-trap images (Cunha et al. 2023), could enhance performance.   

An important consideration for practical application of computer vision as a surveillance tool 

is the resources required for classification. Model training required significant computational 

resources (148GB RAM and two Nvidia P100 GPUs), with processing time ranging from 15 to 

47 hours depending on the model and dataset size. While EfficientNetV2S delivered the best 

performance, EfficientNetV2B0 offers a practical alternative with only one-third of the 
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parameters (Tan and Le 2021), enabling deployment on resource-constrained devices while 

maintaining strong performance. This trade-off between accuracy and efficiency is crucial for 

real-world implementation, particularly in field settings. 

 

4.2 Data Challenges in Disease Detection 

Developing robust disease detection models is hindered by the difficulty of obtaining expert 

annotations for images with confirmed disease. Citizen science data introduces noise and 

geographic bias (Edwards et al. 2021) and in the current work, UK-based images were 

overrepresented. Many images were shared by anglers, and although these stakeholders 

offer an opportunity to acquire many images, they may be less likely to take ‘trophy’ images 

of diseased fish or only share pictures of fish in advanced stages of disease, so creating bias. 

Combined with inconsistent taxonomy across sources and variable image quality, the 

complexities of building representative datasets are apparent using internet harvested 

images. Computer vision techniques such as augmentation (making random changes to 

existing images to increase dataset size) increase sample size, but risk inadvertently 

amplifying existing biases (Shorten and Khoshgoftaar 2019). For our study, an important next 

step to improve model performance and generalisability could be to expand the labelled 

dataset by annotating a larger portion of the thousands of unlabelled salmonid images 

acquired during our initial data collection. With post-hoc image processing not being a 

complete solution, engaging and training stakeholders (here, anglers) to submit images of 

both healthy and unhealthy-looking fish could help overcome some biases and class 

imbalances. Similar citizen science approaches have worked well for surveillance of other 

wildlife diseases, such as sarcoptic mange in foxes, Vulpes vulpes (Scott et al. 2020), although 
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they did not use computer vision. Open access image repositories (iNaturalist, Flickr, GBIF), 

offer great opportunities to develop structured citizen science programs with standardised 

imaging protocols (August et al. 2020). Indeed, iNaturalist and Flickr were valuable resources 

for collecting a large dataset of 4,526 salmonid images for our study.  

Online platforms offer great potential to collate a large number of field-acquired images, 

providing a cost-effective alternative to traditional field surveys; they capture valuable 

metadata, including date, time, location, which is important for disease surveillance and in 

iNaturalist ‘research grade’ images have been taxonomically identified. An additional benefit 

of using online repositories is that users have explicitly agreed to share their observations 

under Creative Commons licenses, aligning with best practices including Findable, Accessible, 

Interoperable, and Reusable (FAIR) data (Wilkinson et al. 2016). However, leveraging citizen 

science data still requires careful curation and quality control due to the inherent biases in 

these data (Brown and Williams 2019). 

Academic or practitioner curated databases of confirmed disease cases, such as those used 

in our study, offer a potential solution for training models. However, these databases are 

often not open access. While there is a growing infrastructure for sharing images (e.g., Kaggle, 

Zenodo) and increasing calls for collaboration in building species-specific disease databases 

(Nunes et al. 2020), challenges remain in transforming collated data into resources that 

effectively meet researchers' needs. Good annotation practices and standardised protocols 

are needed to make these datasets broadly useful.  For example, 'SalmonScan'  (Ahmed 2024), 

although a large dataset (1,208), constitutes augmented images from 24 uninfected and 91 

infected fish, and lacks details about species identification and infection types.  
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4.3 Challenges in Wild Fish Disease Detection 

Beyond the challenge of specific image artefacts like surface reflections, the pipeline’s 

reliance on image-level classification presents a key limitation. This approach prevents a per-

fish assessment in images containing multiple individuals. Future work could address this 

limitation in two ways. A two-stage pipeline could use an object detector like 

‘megafishdetector’ (Yang et al. 2023) to first locate and crop each fish, before our existing 

classifier is applied to each individual. A more comprehensive solution would be to develop a 

dedicated object detection model from the ground up, though this would require the 

significant effort of re-annotating the dataset with bounding boxes. Both approaches 

represent key directions for improving the granularity of this surveillance tool. Pre-processing 

techniques could reduce reflection effects crucial for minimally invasive in situ monitoring. It 

is clear from the results on the Salmo dataset that a narrower taxon focus can yield good 

results, so a hierarchical model incorporating taxonomic data (Elhamod et al. 2022), may 

improve classification accuracy.  

4.4 Implications for Disease Surveillance 

Our results demonstrate the potential for computer vision to transform disease surveillance 

in wild fish populations. While our models cannot replace traditional diagnostic methods, as 

confirmation of Saprolegenia spp. infection requires a confirmed molecular diagnosis (van 

West and Beakes 2014), they offer a valuable tool for rapid, large-scale screening. This 

approach could help identify potential disease outbreaks earlier, enabling more targeted 

application of confirmatory tests.  
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The exploratory analysis on the Salmo and Oncorhynchus genus-specific datasets (Table S2) 

further suggests that, although models trained on a specific genus tend to perform best 

on that genus, generalist models trained on broader salmonid data can approach this level of 

performance under conditions of substantial data re-use. This supports the idea that a single, 

broadly trained model may be sufficient for many surveillance applications, with targeted 

genus-specific fine-tuning reserved for high-priority host groups. 

This tool could be deployed in two main ways. First, for post-hoc analysis, automatically 

screening large image collections from online repositories to flag potential outbreaks for 

managers. Large-scale post-hoc analyses incorporating geotags and temporal data could also 

help identify consistent spatial and temporal patterns of disease occurrence, offering valuable 

ecological insights into outbreak dynamics. Second, as an in situ mobile application. Our 

model comparison was in part designed to explore the trade-offs for such on-device 

deployment. While an ultra-lightweight model like MobileNetV3S offers a rapid assessment 

that performs well above baseline (Figure 3) (around 27 ms per image in our tests), 

architectures like EfficientNetV2 are also suitable for mobile use and provide a significant 

increase in accuracy (Tan and Le 2021). EfficientNetV2B0 require roughly 100 ms per image 

and EfficientNetV2S about 400 ms (Table 4). This shows that a range of models are viable for 

a practical real-time, in-field tool, offering a choice between maximum efficiency and higher 

performance. 

The success with Saprolegnia spp. suggests potential applications for other visually distinctive 

diseases not only in fish but also in other animals, such as mange in Vulpes vulpes (Scott et al. 

2020). Integration with spatiotemporal metadata, available for all research grade iNaturalist 

observations, could provide insights into disease dynamics and environmental drivers of 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

outbreaks if large enough datasets could be acquired. However, such datasets would likely 

contain inherent biases, as observation frequency often correlates with human population 

density and accessibility of sites (Geurts et al. 2023). Additionally, temporal biases may arise 

from seasonal variations in observer effort and species visibility. These sampling biases would 

need careful consideration in terms of how to analyse the data and in interpreting any 

apparent patterns in disease occurrence or distribution.  

5 Conclusion 

This work represents a significant step toward automated disease surveillance in wild fish 

populations, demonstrating both the potential and challenges of computer vision 

approaches. Overall, this work highlights the transformative potential of computer vision for 

disease surveillance in fish, but also other visually distinct wildlife diseases, while also 

underscoring the need for continued refinement and careful integration with existing 

methods. 
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Highlights 

 

6. Computer vision pipeline detects Saprolegnia spp. disease signs in wild salmonids  

7. Citizen science images viable source for fish disease detection  

8. EfficientNetV2S achieves highest recall and precision for on Salmo spp. specific 

dataset 

9. Model performance sensitive to host taxonomic level and image quality  

10. AI enables large-scale non-invasive surveillance of wildlife disease  


