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Abstract

Effective disease surveillance in wild fish populations is essential for food security and biodiversity conservation,
but data acquisition can be limited by ad hoc reporting and resource-intensive laboratory diagnostics. We
developed and evaluated a computer vision pipeline to detect saprolegniasis-like infections, a devastating

disease in salmonids that manifests as visible signs.

Compiling a dataset of 4,526 images (494 infected, 4,032 healthy) from citizen science platforms and
stakeholders, we used data augmentation to address the significant class imbalance. We then fine-tuned and
compared four pre-trained convolutional neural network architectures (EfficientNetV2S, EfficientNetV2BO,
ResNet50, and MobileNetV3S), chosen to represent a range of standard and efficient models, to classify healthy

versus infected fish across datasets of varying host taxonomic specificity.

The EfficientNetV2S model achieved the highest performance on a Salmo spp. specific dataset, with a mean
recall (proportion of infected fish images correctly identified) of 0.898 (+ 0.043) and precision (proportion of
correctly identified infected fish among all fish identified as infected) of 0.858 (+ 0.067). Performance varied

with host taxonomic scope, with models achieving lower metrics on broader host taxa datasets. Despite



challenges including variable image quality, water surface reflections, and inherent class imbalance, these

results show computer vision can support large-scale disease surveillance in wild fish populations.

Computer vision-based surveillance could enable earlier outbreak detection and targeted diagnostics, improving
freshwater ecosystem health management. While successful implementation hinges on acquiring sufficient
high-quality imagery, this study highlights the potential of applying tailored Artificial Intelligence tools for

monitoring visually detectable diseases across diverse wildlife species.

Keywords: machine learning, disease ecology, iEcology, wildlife, surveillance, visible signs
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1. Computer vision pipeline detects Saprolegnia spp. disease signs in wild salmonids
2. Citizen science images viable source for fish disease detection
3. EfficientNetV2S achieves highest recall and precision for on Salmo spp. specific
dataset
4. Model performance sensitive to host taxonomic level and specific image artefacts
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1 Introduction

The emergent field of iEcology (internet ecology) frequently uses image repositories to
generate insights into species distribution and occurrence, biogeographical patterns,
behaviour, species interactions, habitat use, and the impact of human activities on wildlife
(Weinstein 2018; Jari¢ et al. 2020; Tuia et al. 2022). Its application to wildlife disease
surveillance, however, remains sparse, despite the abundance of available data (Edwards et
al. 2021). While examples are emerging, such as automated classification of Devil Facial
Tumour Disease (DFTD) in Tasmanian devils (Sarcophilus harrisii) (Nurgin et al. 2024) and
lesions in bottlenose dolphins (Tursiops erebennus) (Murphy et al. 2025), the field is still
under-explored. Computer vision offers a promising tool for automating disease detection
from images where diseases have visible signs. Freshwater wild fish are an excellent test bed
for disease detection because they are a significant source of diseases (Shinn et al. 2014),
including zoonoses (Gauthier 2015), they represent some of the most threatened vertebrates
on the planet (Collen et al. 2014; Shinn et al. 2014; Dias et al. 2017), and disease control costs
billions (Shinn et al. 2014). Many fish diseases present visible signs, making them well-suited
for image-based detection. Furthermore, fishers, especially recreational anglers, have a
culture of taking and sharing images online of their catch, therefore in theory, both visible
signs and the images from which to observe them exist. The advantages of image-based
disease detection over traditional surveillance in the field include the ability to rapidly screen

thousands of images in a non-invasive manner.

Computer vision applications have demonstrated promising results for disease detection
across domesticated and livestock species. Deep learning models have shown success in

diagnosing ocular surface diseases in domestic dogs and cats (Nam and Dong 2023) and



detecting skin conditions like pododermatitis and neoplasia in dogs (Smith et al. 2024).
Computer vision has been used to detect early signs of respiratory diseases in pigs via changes
in temperature using thermal imagery (Jorquera-Chavez et al. 2020). In cattle, computer
vision has been employed for tick detection and identification (Barbedo et al. 2017; Luo et al.

2022) and for real-time detection and scoring of digital dermatitis (Aravamuthan et al. 2024).

While these advancements showcase the potential of computer vision in veterinary medicine,
research on wild species is limited. Previous studies in fish have primarily focused on
aquaculture settings using small datasets, often with limited information on the species
involved (Malik et al. 2017; Hasan et al. 2022; Mia et al. 2022; Yasruddin et al. 2022; Rachman
et al. 2023; Vijayalakshmi et al. 2023; Biswas et al. 2024; Kumaar et al. 2024; Maruf et al.
2024). Ahmed et al. (2022), for example, classified ‘salmon disease’ in 266 images of salmon
(83 healthy, 183 infected) with an accuracy of 91.4% using traditional computer vision
methods, but the disease and salmon species were not specified. Gupta et al. (2022) achieved
an accuracy of 96.7% using convolutional neural networks to classify 3,289 salmon images
(augmented based on an initial dataset of 68 healthy, 71 wounded, 70 with fish-lice).
Importantly, inclusion of augmented images during model validation and testing may
influence evaluation metrics (Huang and Khabusi 2023; Rachman et al. 2023; Biswas et al.

2024; Maruf et al. 2024).

There is a paucity of surveillance of fish diseases, such as saprolegniasis, caused by the
oomycete Saprolegnia parasitica, which kills 1 in 10 farmed salmon (Dias et al. 2017). This
disease, characterized by fungal-like white growths on the fish’s body, head, and fins, has no
effective treatment. It causes significant morbidity and mortality in wild fish populations (van

West and Beakes 2014; Derevnina et al. 2016; Matthews 2019; Matthews et al. 2021) and can



infect other aquatic species (Costa and Lopes 2022). With widescale fish mortality and inter-
specific transmission, early detection of this disease is critical to assess risk to aquatic species,
and to help identify drivers of outbreaks (MacAulay et al. 2022). While regular disease
surveillance occurs in commercial fisheries, outbreaks in wild fish are often detected by ad
hoc reporting of diseased/dead fish to the relevant fisheries authorities (e.g. Fish Health
Inspectorate in the UK). Ad hoc reporting often constitutes one-off, unstructured, non-
systematic alerts from anglers or members of the public who happen to spot diseased fish.
Once an outbreak is recognised, identification of Saprolegnia spp. may follow with direct
sampling of animals (Tandel et al. 2021) or water (Pavic¢ et al. 2022) using molecular methods
or culturing. While these methods are highly sensitive, they are time-consuming and damage
to fish stocks has usually occurred by the time the pathogen is identified. Because Saprolegnia
spp. cause visible signs of infection there is potential for use of image-based disease
surveillance. While visible signs alone cannot confirm disease, these data could support large-

scale surveillance and identify areas for targeted investigation.

Here, we establish a computer vision pipeline to detect common infectious diseases
(Saprolegnia spp.) in wild salmonids. We use standard methods (Jari¢ et al. 2020; Edwards et
al. 2021) to assemble a novel dataset for this disease from diverse online and stakeholder
sources using images of wild-caught fish, and systematically assess classifier performance
across different host taxonomies. This approach directly tests the utility of using existing
online data as a scalable, cost-effective alternative to dedicated field surveys for disease
surveillance. Our ultimate aim is to assess if we can move current practices from intermittent,
episodic reports of disease towards detailed real-time monitoring of wild freshwater fish.
Doing so would provide a step towards collating spatiotemporal information on disease and

provide a framework from which we can expand to other host-parasite systems. Our



proposed pipeline offers a step-change in monitoring infectious diseases, providing a

technology-led framework for understanding disease dynamics in wild fish and other species.

2 Methods

2.1 Data

Images of salmonids were acquired from photo-sharing websites, Flickr (www.flickr.com),
iNaturalist (www.iNaturalist.org), GBIF (www.GBIF.org) and Wikimedia Commons, between
December 2023 and February 2024. These data constitute ‘passive citizen science’; images
submitted without scientific intent! that nonetheless could contain important ecological data
(Edwards et al. 2021). These sites were accessed using Application Programming Interfaces
(APIs) that allow for keyword or taxonomic-level searches to download images and associated

metadata.
2.1.1 Image acquisition

We focused our work on salmonids as the taxa most prone to saprolegniasis (Vieira da Silva
do Nascimento et al. 2020). GBIF and iNaturalist can be searched taxonomically for
‘Salmonidae’, returning observations linked to any subfamily, genus or species within this
family. Flickr and Wikimedia Commons allow for keyword searches in text fields such as titles
and descriptions. To compile keywords, a comprehensive list of scientific and common
salmonid names was created by integrating subfamily, genus, and species data from FishBase

(https://www.fishbase.se/search.php), FishTreeOfLife

1 Upon manual review of the images, titles and descriptions, it is clear that most images were
taken by anglers.



(https://fishtreeoflife.org/api/taxonomy/family/Salmonidae.json), and NCBI
(https.//www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). This list was enriched with
additional species and English common names from FishBase and iNaturalist (see Table S1 for
a full list of taxa). This resulted in a final list of three subfamilies, 11 genera, 387 species and

two hybrids.

We searched GBIF occurrence data using the following filters: “BasisOfRecord is Human
Observation”, “MediaType is Image”, “OccurenceStatus is Present”, “TaxonKey is
Salmonidae”. Of the returned occurrences, 94.5% were duplicated from iNaturalist and these
duplicates were excluded. We downloaded the Darwin Core Archive resulting from our search
and used the gbif-dl (v0.1.1) package in Python 3.9.18 to extract the corresponding URLs and

download the images.

For iNaturalist images we first downloaded the metadata files (observations, observers,
photos and taxa) from the ‘iNaturalist Licensed Observation Images’ open dataset
(https://registry.opendata.aws/inaturalist-open-data) using the AWS Command Line
Interface (CLI). We then used Python 3.11.7 and the pandas (v1.5.3) package to link taxa
information to observation, observer and photo metadata, allowing us to filter to images
identified as the Family ‘Salmonidae’ (taxon_id=47520) or lower associated taxonomic levels.
We used the multiprocess (v0.70.15) package to download the images. To ensure
comprehensive coverage, we incorporated iNaturalist observations regardless of their quality

grade.

We queried the Flickr API for images with tags, descriptions or titles containing the terms in
Table S1 using the flickrapi (v2.4.0) package in python 3.11.7. We tested the search terms in

the Flickr user interface first and excluded terms that returned a very high proportion of



irrelevant images, such as the common name ‘salmon’ which returns over 400,000 images,
mainly of salmon prepared for food. SHA-256 (Secure Hash Algorithm) from hashlib in the
Python Standard Library of python 3.11.7 was used to create unique ids for each image to

locate and remove duplicate downloads.

To acquire images from Wikimedia Commons we followed the process implemented by
Marshall et al. (2020), amending their R script (SuppCode2_Wikimedia_query.R from
zenodo.org/records/4010155) to query for the terms listed in Table S1. Following removal of

duplicate image URLs, the images were downloaded using urllib3 (v1.26.16) in Python 3.11.7.

In total, before ‘ground-truthing’ to check for salmonids, 69,158 photographs were collated
across online sources based on keyword or taxonomic-level searches: 49,057 from iNaturalist,

1,843 from GBIF, 19,610 from Flickr and 183 from Wikimedia Commons.

2.1.2 Ground truth - images of healthy and diseased salmonids

The Wikimedia Commons and Flickr image datasets contained a high proportion of irrelevant
images, as they were downloaded based on keywords (Table S1) that often had multiple
meanings. For example, a Grayling is also a moth species. To address this issue two labellers
manually screened the dataset for the presence of salmonids (Figure 1), on Labelbox
(Labelbox. 2025), leaving 91 relevant images from Wikimedia Commons and 6,869 from Flickr
which were added to the existing collection of 49,057 images from iNaturalist and 1,843

images from GBIF.

Due to the time-consuming nature of expert annotation and the requirement of specific
expertise to identify Saprolegnia spp., two of the authors examined a subset of approximately

10% (5,667) of the salmonid images for visible signs of disease, outlined in Figure 1. This



subset provided a manageable starting point for the intensive labelling process, while still
yielding a dataset large enough to develop and validate our proof-of-concept pipeline. Due to
poor image quality or obstructions making it difficult to assess fish health, 696 images were
excluded. From this initial evaluation, 4,105 images were identified as containing healthy
salmonids, making up the first class in our binary classification problem. The remaining 866
images were reviewed for visible signs of Saprolegnia spp. Where more than one salmonid
was visible in an image, the image would be labelled as part of the ‘Saprolegnia spp.’ class if
at least one of them displayed visible signs of the disease. This process identified 217 potential

infections in salmonids, making up the second class in the classification problem.

The ‘Saprolegnia spp.’ class was supplemented following the creation of ground truth labels
by searching the iNaturalist and Flickr APIs using the keyword ‘Saprolegnia’ (‘Additional
Saprolegnia spp. images’ in Figure 1). The Flickr search returned 33 images with nine new
images showing salmonids with visible signs of Saprolegnia spp. infection while iNaturalist
returned 42 images of which 41 showed signs of saprolegniasis. Additionally, we incorporated
198 images provided by the Environment Agency’s National Fisheries Laboratory (EA), 120
images uploaded to the Fisheries Management Scotland (FMS) app for fish disease
(https://fms.scot/fish-health-and-disease), and 55 provided by the Fish Pathobiology and
Immunology Laboratory at Michigan State University. These photographs were assumed, not
verified, to show fish with Saprolegnia spp. based on visible signs. The final count of images

with Saprolegnia spp. infection was 630.
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Figure 1. Data pipeline. Data pipeline for collating images and identifying disease (Saprolegnia
spp.) in salmonids. Images and metadata were downloaded from online sources using API
searches based on taxonomy or search terms and false positives removed. A 10% subset,
stratified by data source and taxonomic classification, of the data was labelled as ‘healthy’ or
‘disease’ and the ‘disease’ class was subsequently screened for visible signs of Saprolegnia spp.
Images with visible signs of Saprolegnia spp. infections were added from additional sources
(e.g. Environment Agency). Following cleaning, the data were split into tiered datasets based
on taxonomic classification and the number of available images in the ‘healthy’ and

‘Saprolegnia spp.’ classes per taxon.



2.1.3 Image cleaning

All images were manually cropped to remove obvious watermarks, time stamps, duplicates
or borders. If this was not possible the image was excluded. The final dataset consisted of
4,032 images showing healthy salmonids, hereafter referred to as the ‘healthy’ class, and 494
images showing salmonids with visible signs of Saprolegnia spp. infection, hereafter referred

to as the ‘Saprolegnia spp.’ class (Table 1).

Table 1. The number of salmonid images classed as ‘healthy’ and ‘Saprolegnia’ spp. from each

image source.

Source ‘Healthy’ count ‘Saprolegnia spp.’ count
iNaturalist 3,374 211

Flickr 556 22

GBIF 92 2

Wikimedia Commons 10 0

Environment Agency 0 130

Fisheries Management Scotland 0 98

Michigan State University 0 31

Total 4,032 494

2.1.4 Metadata

Metadata associated with images was used to split the data into training and validation
partitions. iNaturalist, Flickr, FMS and Immunology Laboratory at Michigan State University
images were accompanied by detailed metadata, including user information, date, and
location. While Wikimedia Commons images were downloaded with user and date
information, location data was unavailable. EA images sourced from National Fisheries
Laboratory (NFL) image archives, encompassing those taken by EA field officers, NFL

employees, and anglers, included date and camera specifications as a proxy for user



information in the EXIF data. Although location information was missing for the EA images,

we knew that all were captured within England and Wales.

2.1.5 Dataset strategies

The ‘healthy’ and ‘Saprolegnia spp.’” dataset comprised images of salmonids classified to
different taxonomic levels, ranging from family to species. A total of 13 taxa had images of
both healthy and infected classes (Table 2) with the remaining taxa having images only in one
of the classes. To address the imbalance in Saprolegnia spp. infected and healthy images
across different taxonomic groups, we implemented a multi-tiered data preparation strategy,
based on taxonomic specificity and the number of available images for each taxonomic

classification.

Table 1. Count and ratio of images across host taxa for Healthy and Saprolegnia spp. classes.
Ratio represents the number of Saprolegnia spp. images divided by the number of Healthy

images. Only taxa with images in both classes are included. See Table S1 for a full list of taxa.

Host taxa Healthy Saprolegnia spp. Ratio
Salmo spp. 43 135 3.140
Salmo salar 91 110 1.209
Oncorhynchus tshawytscha 180 54 0.300
Oncorhynchus spp. 181 45 0.249
Oncorhynchus keta 50 45 0.900
Oncorhynchus gorbuscha 85 27 0.318
Oncorhynchus nerka 132 25 0.189
Oncorhynchus mykiss 936 24 0.026
Oncorhynchus kisutch 214 11 0.051
Salmo trutta 836 10 0.012
Salvelinus fontinalis 529 2 0.004
Thymallus thymallus 44 2 0.045
Prosopium williamsoni 24 1 0.042

To address the imbalance in Saprolegnia spp. infected and healthy images across different

taxonomic groups, we implemented a multi-tiered data preparation strategy. The full dataset,



referred to as ‘All photographs’, included all 4,032 ‘healthy’ and 494 ‘Saprolegnia spp.’ images

from 68 different taxa. We then created several tiered datasets (Table 2):

e ‘Taxa present in both classes’: This dataset included all images from taxa with images
present in both the ‘healthy’ and ‘Saprolegnia spp.’ classes (Table 1).

e ‘Taxa with =10 photographs in both classes’: This dataset restricted the inclusion
criteria to taxa with a minimum of 10 images in both classes. The 10-image threshold
was chosen to ensure a reasonable number of images for training, validation, and
testing, while also maintaining a balance between data quantity and quality.

e Genus specific datasets: To account for potential variations within specific genera, we
created separate datasets for species within Oncorhynchus and Salmo, each with a
minimum of 10 images per class, ‘Oncorhynchus’ with =10 photographs in both

classes’ and ‘Salmo with =10 photographs in both classes’.

Both data quality and data quantity are important factors for model performance. While a
larger, more diverse dataset can improve model generalisation, addressing potential class
imbalance and intra-class variability is crucial. In our case, a larger dataset might introduce
samples that, while belonging to the same class, exhibit significant visual differences.
Conversely, a smaller, more focused dataset may lead to overfitting where the model starts
to ‘memorise’ the training data rather than learning real patterns. Our strategy aimed to
balance these trade-offs by focusing on taxa with adequate representation in both classes
and by creating genus-specific datasets to capture intra-genus variations, and therefore our
tiered datasets included a mixture of all photographs and taxa within and across broad taxa
(Table 2). It was not practical to look at one species in isolation in this study, as the datasets

would have been too small to be practically split into adequate training and validation sets.



Table 2. Count and ratio of images for the ‘Saprolegnia spp.’ and ‘Healthy’ classes in the tiered
datasets. The class ratio is calculated as the number of ‘Saprolegnia spp.” images divided by

the number of ‘Healthy’ images.

Dataset Saprolegnia spp. Healthy Class ratio
All photographs 494 4,032 0.123
Taxa present in both classes 491 3,345 0.147
Taxa with =10 photographs in both classes 486 2,748 0.177
Oncorhynchus, =10 photographs in both classes 231 1,778 0.130
Salmo, =10 photographs in both classes 255 970 0.263

2.1.6 Dataset splits

The limited sample size of small validation sets can introduce high variance in performance
metrics, as the choice of validation samples can substantially impact the evaluation results
(Chollet 2021). The best practice with small datasets is to use k-fold cross-validation (Chollet
2021). This technique divides the data into k ‘folds’ (subsets), using each fold once as a
validation set while training on the remaining folds. We implemented this using the scikit-
learn package StratifiedGroupKFold function, with k=5 folds. To ensure robust evaluation, we
leveraged the metadata associated with each photograph to stratify by location and
taxonomic classification, and group by user information (for example, username for
iNaturalist submitted images) to prevent data leakage from user-specific patterns. These
patterns, which persist even after removing obvious duplicates, can include consistent
camera artifacts (such as sensor noise or colour profiles) or a characteristic photographic
style. If these user-specific signatures were present in both the training and validation sets,
the model's performance could be artificially inflated by learning to identify the photographer
rather than the disease. This approach was crucial, as the smallest tiered dataset contained
only 255 images in the ‘Saprolegnia spp.’ class, with some users contributing as many as 31

of these images. By using stratified group k-fold cross validation, we aimed to assess the



stability of each model across different data splits. The reported metrics for each model

represent the average performance across the 5 folds.

2.2 Image classification

We selected four neural network architectures to compare a range of common and state-of-
the-art approaches. We chose ResNet50 (He et al. 2016) because it is a widely recognised
architecture used as a standard baseline for image classification, providing a robust point of
comparison (Alom et al. 2019). ResNet-50 is a 50-layer residual network that uses skip
connections between convolutional blocks to ease optimisation of deep architectures (He et
al. 2016). We also included MobileNetV3S (Howard et al. 2019), a lightweight network based
on depth wise separable convolutions and squeeze-and-excitation blocks, which is designed
for high efficiency on less powerful devices. This is an important consideration for future
work, where the model could be integrated into a mobile application for in-field analysis.
Finally, we chose two models from the more modern EfficientNetV2 family (Tan and Le, 2021),
which are known for their high accuracy and computational efficiency compared to older
models like ResNet50. This family of models uses compound scaling and Fused-MBConv
blocks to achieve high accuracy with relatively few parameters (Tan and Le, 2021). We
specifically used two variants, EfficientNetV2B0 and EfficientNetV2S, to explore the trade-off
between model size and performance on our dataset. EfficientNetV2BO is the smaller, more
efficient model, while the slightly larger EfficientNetV2S offers potentially higher accuracy at
a greater computational cost. This selection allowed us to assess performance across different

model backbones, balancing a classic baseline with modern, efficient alternatives.



2.2.1 Addressing class imbalance

Class imbalance is a common issue in machine learning, especially in image classification and
wildlife classification tasks, such as species classification, where distributions are often long-
tailed (Cunha et al. 2023). In this study, the datasets exhibit a clear imbalance, with a large
majority of ‘healthy’ samples and a minority of ‘Saprolegnia spp.” samples; this is an expected
feature of disease, reflecting the reality that for many diseases the number of healthy
individuals vastly outnumber those with disease. This imbalance can lead to model bias
towards the majority class. This will lead to poor generalisation, where the model performs
poorly on new data, particularly for the minority class. The following sections detail the

specific strategies we used to manage this challenge.

2.2.2 Increasing the sample size

While oversampling (duplicating existing training samples) can potentially lead to overfitting
(Alkhawaldeh et al. 2023), we mitigated this risk by subsequently applying data augmentation
techniques to the expanded training dataset. Data augmentation, a set of popular techniques
to increase training data size, especially when samples are limited (Shorten and Khoshgoftaar
2019; Mumuni and Mumuni 2022), can create a more robust and varied dataset and enhance
model generalisation capabilities. RandAugment, a data augmentation technique that applies
a combination of image transformations (Cubuk et al. 2020), was applied to the oversampled
data. RandAugment was implemented in Keras-CV with the number of augmentations, N, set

to the default value of 3, and the magnitude, M, was set to the default value of 0.5.



2.2.3 Transfer learning

To leverage transfer learning, all models were instantiated with pre-trained weights from
training on ImageNet (Krizhevsky et al. 2012). Models pre-trained on larger datasets, such as
ImageNet, transfer the knowledge gained from training on large datasets to new tasks, such
as classifying photographs of salmonids based on health status. The model can then be fine-

tuned on this new, often smaller dataset.

2.2.4 Loss function

The choice of loss function (a mathematical function that quantifies the difference between
model predictions and actual observations) is crucial for addressing class imbalance. Focal
Loss is a modified cross-entropy loss which down-weights the loss contributions of well-
classified examples, allowing the model to focus on the more challenging minority class (Lin
et al. 2020). We employed the Keras-CV implementation of Focal Loss with default
parameters, which are effective in various computer vision classification tasks (Nemoto et al.

2018; Petmezas et al. 2022; Nie et al. 2023). We set the bias initialization of the final
classification layer to b = log (1_7”), with T = 0.01, as suggested by Lin et al. (2020), who

show that this prevents large destabilizing loss values at the start of the training process.

2.2.5 Training pipeline

The training pipeline was implemented in Python 3.10.13 using Keras 3 with JAX as the back
end, and all models were trained on two Nvidia P100 GPUs. All four architectures shared the
same transfer-learning pipeline (Fig. 2). Each cropped salmonid image was resized to the
required input resolution (224x224 pixels for ResNet-50, MobileNetV3-S and

EfficientNetV2-B0, 300x300 pixels for EfficientNetV2-S) and, during training, RandAugment



(N =3, M=0.5) was applied to the training images. The augmented image was then passed
through the chosen convolutional backbone initialised with ImageNet weights, followed by a
custom classification head consisting of global average pooling, a fully connected layer (128
units for ResNet-50 and MobileNetV3-S, 256 for EfficientNetV2-BO and 512 for
EfficientNetV2-S), dropout with rate 0.2, and a final dense layer with two sigmoid-activated
outputs (‘healthy’ and ‘Saprolegnia spp.’). The bias of the output layer was initialised to reflect
a low prior probability of disease (it = 0.01, B = -4.6) for the focal loss, and the Adam optimiser

was used to update model weights.



Input image
(Salmonid photograph)

Data augmentation
RandAugment (N=3, M=0.5)

l

Pre-trained CNN backbone
ResNet50 / MobileNetV3S /
EfficientNetV2-B0O [/ V2-5
Weights: ImageNet

Global average pooling

Dense layer
(128-512 units, RelLU)

Dropout (rate = 0.2)

l

Output layer
2 units (healthy / Saprolegnia)
activation: sigmoid
loss: focal loss

Figure 2. Transfer-learning pipeline used for training models on binary classification task. Each
cropped salmonid photograph was resized and augmented using RandAugment (N =3,
M =0.5) before being passed through a pre-trained convolutional backbone (ResNet-50,
MobileNetV3-S, EfficientNetV2-BO or EfficientNetV2-S, initialised with ImageNet weights). The
backbone output was fed to a custom classification head consisting of global average pooling,
a dense layer (128-512 units, ReLU) and a dropout layer (rate 0.2), followed by a two -unit

sigmoid output for the ‘healthy’ and ‘Saprolegnia spp.’ classes trained with focal loss.



We used a typical transfer learning and fine-tuning approach (Chollet 2021). We instantiated
the base model backbone with pre-trained, ImageNet (Krizhevsky et al. 2012), weights. First,
the backbone layers were frozen and only the classification head was trained, using a learning
rate of 0.001, a common and effective starting point for this training phase (Chollet 2021). If
the validation loss did not improve for five epochs, the learning rate was reduced by a factor
of 0.1. If the validation loss did not improve for 20 epochs, training in this frozen phase was
stopped and the model weights were restored to those from the epoch with the lowest
validation loss. In the second phase the last blocks of the backbone were unfrozen (as
specified for each model in Table 4) and the whole network was fine-tuned for 40 epochs with
a lower learning rate of 0.00001. This much lower rate is a standard practice for fine-tuning,
as it prevents the general-purpose features learned on ImageNet from being catastrophically
forgotten during the update process (Yosinski et al. 2014). The patience values of five epochs
for learning rate reduction and 20 for early stopping were chosen as common heuristics to

balance efficient training time with allowing the model to fully converge.

Table 4. Architecture and computational characteristics of the four convolutional models
trained to classify images of salmonids as ‘healthy’ or ‘Saprolegnia spp.’. For each backbone
we report the input resolution, the size of the added dense layer (Dense units),t number of
model layers unfrozen during the fine-tuning phase, the number of total and trainable
parameters (at fine-tuning), and the approximate inference time per image measured on a

P100 GPU.

Total
Input Dense Unfrozen layers parameter Trainable Inference time per
Backbone size [px] units to fine tune s parameters image [ms]




ResNet50 224x224 128 98 23850242 15216002 104.35

MobileNet

V3Small 224x224 128 52 1013234 803114 27.38
EfficientNet

V2BO 224x224 256 198 6247762 5707446 105.05
EfficientNet

V2S 300x300 512 363 20988258 18876042 412.38

We used k-fold cross-validation with k=5 to train each model architecture 5 times. The
arithmetic mean and standard deviation for each evaluation metric were calculated using the

implementations of mean and std in NumPy.

2.2.6 Model Evaluation

We assessed models using common metrics (Géron 2022): precision (Eq. 1), recall (Eq. 2) and
F1 (Eq. 3). We also calculated the Matthews Correlation Coefficient (MCC) (Eq. 4) (Chicco and
Jurman 2020). These metrics denote relationships between the numbers of True Positives
(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). True positives for the
‘Saprolegnia spp.’ class represent the number of cases correctly identified as presenting with
Saprolegnia spp. and true negatives the number of cases correctly identified as not presenting
with Saprolegnia spp., as ‘healthy’. Similarly, false positives, or type 1 errors, are images
incorrectly classified as ‘Saprolegnia spp.” and false negatives, or type 2 errors, are the

7

number of disease cases incorrectly classified as ‘healthy’.

Precision = TP 1

recision = TP (D
TP

Recall = ——— (2)

TP+ FN



precision X recall
F1=2x — (3)
precision + recall

TP XTN — FP X FN
MCC =2 X (4)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Precision (Eqg. 1) measures the proportion of correct positive predictions amongst all positive
predictions made by the model. For example, if the model identifies 100 images as
‘Saprolegnia spp.’, with 90 actually showing visible signs of Saprolegnia spp., the precision
would be 90%. High precision indicates that when the model predicts a particular condition is
present, it is usually correct. Recall (Eq. 2) measures the proportion of actual positive cases
correctly identified by the model. For instance, if there are 100 images of fish with visible signs
of Saprolegnia spp. in the dataset, and the model correctly identifies 80 of them, the recall
would be 80%. High recall indicates that the model is successfully detecting most instances of
the condition of interest. The F1 (Eq. 3) is the harmonic mean of precision and recall, balancing
both measures. For example, in disease monitoring, we want to avoid both incorrectly
identifying healthy fish as diseased (false positives, affecting precision) and missing cases of
actual disease (false negatives, affecting recall). A high F1 indicates that the model maintains
both good precision and good recall. The Matthews Correlation Coefficient (MCC) (Eq. 4)
produces a value between -1 and +1, representing the correlation between observed and
predicted classifications. A coefficient of +1 represents a perfect prediction, 0 is no better

than random guessing, and -1 indicates total disagreement. MCC calculates the correlation



using all four categories of the confusion matrix (true positives, true negatives, false positives,

and false negatives), making it robust for imbalanced datasets.

We focus on models with high recall for the ‘Saprolegnia spp.’ class to minimise missed cases
(false negatives), even if it might increase false positives. We also consider precision for the
disease class. To account for the class imbalance, we use the macro-average Fl-score (the
mean of both class-wise F1 scores). In addition, we report the MCC, which provides a single
summary value per model and dataset. From here on, we refer to class-wise metrics as
metric.q.ss, Where ‘metric’ is one of the metrics precision, recall or F1, and ‘class’ is either

‘healthy’ or ‘sapro’ for Saprolegnia spp.

To further compare generalist and genus-specific training regimes on identical images, we
carried out an additional exploratory evaluation in which all final models were applied to fixed
Salmo and Oncorhynchus data sets. For each architecture and training dataset we computed
Flsapro and MCC across the five cross-validation foldsand summarised these as
mean * standard deviation. Full methodological details and results are provided in

Supplementary Section S4.

2.2.7 Comparison to a random model

To establish a simple, unbiased benchmark, we employed a model that randomly assigned
either the ‘healthy’ or ‘Saprolegnia spp.’ class with equal probability and ran it 100 times to
obtain a mean ratio. To compare the performance of our models against the random model,
we used generalised linear models (GLM) using R (v4.1.2) with precisionsapro, recallsapro and F1

statistics in turn as the response variables with model type (random baseline, ResNet50,



MobileNetV3S, EffienctNetV2BO0, EfficientNetV2S) and data class as explanatory variables

using a Gaussian error distribution.

2.3 Qualitative and quantitative analysis

We used saliency methods to visualise which parts of an image most influenced a model
classification decision and generated heatmaps that highlight those regions. We applied Grad-
CAM, (Selvaraju et al. 2020) in TensorFlow, following the implementation in Chollet (2021)
for the best performing model on all images in the Salmo genus-specific dataset. We
categorised images as: correctly identified ‘healthy’ or ‘Saprolegnia spp.” images and
incorrectly identified ‘healthy’ or ‘Saprolegnia spp.” images. Through manual inspection of
correctly (n=1208) and incorrectly (n=17) classified images and their corresponding Grad-CAM
heatmaps, we investigated whether systematic patterns existed in the regions of the image
that most influenced the model's classification decisions. To quantitatively investigate how
image characteristics influenced model performance, we calculated several image quality and
dimension metrics for each image. We then compared the distributions of these metrics
between correct and incorrect classifications. Full methodological details and statistical

analyses are provided in Section S5.

3 Results

3.1 Model comparison

The EfficientNetV2S architecture demonstrated the best performance, yielding the highest
values for all metrics (Fig. 3). EfficientNetV2B0O, a smaller model requiring fewer

computational resources, consistently achieved second-best performance across most



metrics. Interestingly, the maximum values were not achieved on the ‘All images’ but on the
Salmo genus-specific dataset where EfficientNetV2S attained a macro-average F1 of 0.920 +
0.029, recallggyyr, of 0.898 + 0.043 and precisiongg,,, of 0.858 £ 0.067. This high
performance was likely due to the more balanced nature of the Salmo dataset, which
contained a high proportion of ‘Saprolegnia spp.’ class images from fishery stakeholders.
Indeed, all the best metric scores were achieved on this taxonomic grouping, regardless of
the classification model used (Fig. 3).

In contrast, the models generally performed worst on the Oncorhynchus genus-specific
dataset, likely due to lower proportion of Saprolegnia spp. cases (Table 3) and greater visual
variation between host taxa, particularly during spawning. MobileNetV3S produced the
lowest precisionggy,, of 0.304 + 0.086, Flg4y., Of 0.406 + 0.081 and macro-average F1 of
0.640 + 0.054 on the Oncorhynchus genus-specific dataset, while ResNet50 achieved the
lowest recallgg,r, of 0.530 + 0.080 on the ‘Taxa with > 10 photographs in both classes’
dataset. However, even these lower-performing models still significantly exceeded random

performance (p < 5E~°) for recallsapro, precisionsapro, and macro-average F1-score, particularly

on the Salmo genus-specific dataset (Fig. 3).

All model architectures performed well on the ‘Healthy’ class metrics for all datasets.
However, the models achieved their best performance, in terms of ‘Saprolegnia spp.’ class-
specific metrics and macro-average F1, on the Salmo dataset, followed by the broader
datasets and again by the Oncorhynchus dataset. This pattern of declining performance across
datasets was consistent across all models except for ResNet50, whose anomalous
performance on the 'Taxa with > 10 photographs in both classes' dataset (with the lowest

recallsqpro) represented a deviation from the otherwise consistent trend. The Matthews



Correlation Coefficient showed the same ordering of models and datasets as the F1-based
metrics, with EfficientNetV2S and EfficientNetV2BO0 giving the highest values on all datasets
(Fig. S1). This supports the use of F1 and macro-F1 as primary summary measures, as the
conclusions are unchanged when using a metric that is less sensitive to class imbalance. The
trend was especially evident for the precisionsapro score of EfficientNetV2S, which decreased
from 0.858 + 0.067 on the Salmo-specific dataset to 0.656 + 0.039 on the ‘Taxa with > 10
photographs in both classes’ dataset, and further to 0.462 + 0.041 on the Oncorhynchus-

specific dataset (Fig. 3a).
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confidence level, in grey, for each metric and dataset was calculated by running a model that
randomly predicts the ‘healthy’ or ‘Saprolegnia spp.’ class with equal probability 100 times.
Box plots show median, interquartile range, minimum and maximum values, with individual

points for each model run overlaid.

While EfficientNetV2S generally showed strong performance, the model exhibited the highest
variability in precisionsapro and macro-average F1 on the ’All photographs’ dataset (Fig. 3). In
contrast, MobileNetV3S yielded the highest mean recallsspro for both the ‘Taxa with
photographs in both classes’ and the Oncorhynchus-specific datasets (Fig. 3b), despite having

the lowest precisionsapro scores (Fig. 3a).

Across all datasets, MCC showed the same ordering and trends as the class-specific F1 and
macro-average F1 scores (Fig. S1). On the ‘Salmo, 210 photographs in both classes’ dataset,
EfficientNetV2-S had the highest mean  MCC (about 0.85), followed by
EfficientNetV2-B0 (about 0.79), MobileNetV3-S (about 0.69) and ResNet-50 (about 0.67). For
the broader datasets (‘All photographs’, ‘Taxa with photographs in both classes’ and ‘Taxa
with 210 photographsin both classes’), mean MCC values across models were lower,
generally  between0.4 and 0.75,  with the same ranking of architectures. On
the ‘Oncorhynchus, 210 photographs in both classes’ dataset, MCC values were lowest
overall and ranged from roughly 0.23-0.35 for MobileNetV3-S and 0.39-0.46 for ResNet-50

to about 0.38-0.61 for EfficientNetV2-B0 and 0.53—0.71 for EfficientNetV2-S.

The exploratory analysis of applying all models to the Salmo and Oncorhynchus genus-specific
datasets (Table S2) showed that models trained on the matching genus achieved the
highest Flsapro and MCC. For example, EfficientNetV2-S trained on the Salmo dataset reached

mean Flsapro =0.97 £0.01 and MCC=0.96 + 0.02 across the five folds on the Salmo data set,



while the corresponding Oncorhynchus-trained model achieved Flsapr0=0.80+0.09 and
MCC =0.78 £ 0.10 on the Oncorhynchus data. Generalist EfficientNetV2-S models trained on
“Taxa present in both classes” or “Taxa with 210 photographs in both classes” performed
similarly on both datasets (Flsapro=0.95-0.96 onthe Salmo dataand =0.79 onthe
Oncorhynchus data, MCC = 0.77—-0.94). Because the genus-specific datasets were also used
during model training, these scores involve substantial data re-use and should be interpreted

as optimistic, exploratory upper bounds rather than unbiased test performance (Table S2).

3.2 Qualitative and qualitative analysis

Grad-CAM analysis revealed that surface reflections were consistently responsible for
misclassifications for EfficientNetV2S, particularly when surface reflections obscured fish
features (Figure 4). Manual inspection highlights that the model can correctly focus on
infection, with the strongest activation (shown in red to turquoise) around the dorsal fin and
midsection where the infection was visible (Fig. 4e). Similarly, when correctly classifying a
healthy brown trout the model appropriately concentrated on the fish's body, with the
highest activation along the main body and adjacent areas (Fig. 4f). However, where water
surface reflections created both bubbles above and reflective patterns below the fish (Figs 4c-
d) the corresponding heatmap (Figure 4g-h) reveals that the model focused primarily on these

water disturbances leading to misclassifying these healthy fish as diseased.



Figure 4. Grad-CAM heatmaps. Comparison of a subset of images used for EfficientNetV2S
classification on the ‘Salmo, =10 photographs in both classes’ dataset (a-d) and their
corresponding Grad-CAM heatmap overlays (e-h). (a) Atlantic salmon (Salmo salar) correctly
classified as infected with ‘Saprolegnia spp.’, (b) Atlantic salmon (Salmo salar) correctly
classified as ‘healthy’, (c and d) Brown trout (Salmo trutta) incorrectly classified as
‘Saprolegnia spp.’, and corresponding Grad-CAM heatmap overlays (e-h). See Section S2 for

photograph attribution.

The quantitative analysis of image characteristics found no statistically significant association
between classification outcome and global image quality metrics. Comparing correctly and
incorrectly classified images using a Mann-Whitney U test on the full dataset revealed no
significant differences in sharpness (p=0.366), perceptual quality (BRISQUE, p=0.266; NIQE,

p=0.787), or image dimensions (p>0.9). Full details of this analysis are provided in Section S5.



4 Discussion

Our results demonstrate the potential for computer vision to support disease surveillance in
wild fisheries. All models significantly outperformed random classification (Fig. 3), particularly
on the Salmo genus-specific dataset. Our work demonstrates the potential for rapid and
extensive surveillance, mindful of potential methodology pitfalls, with classification

potentially improved with more training images.

Previous work has reported near-perfect classification of fish diseases, including Saprolegnia
spp. (models: VGG16, MobileNetV2 and inceptionV3 (Biswas et al. 2024). However, our
manual inspection of the images used
(https.//www.kaggle.com/datasets/subirbiswas19/freshwater-fish-disease-aquaculture-in-

south-asia), suggests potential overfitting due to augmented versions of images from the
training set constituting those in the test set. Kumaar et al. (2024) also achieved high
performance (models: InceptionV3, VGG16 and a custom FishNetCNN) on the same dataset,
expanded with additional images, but had inconsistent sample sizes and possible augmented
training samples in the test set. Although our best model (EfficientNetV2S) achieved lower
metrics for classification of Saprolegnia spp. than these works (Biswas et al. 2024; Kumaar et
al. 2024), we adhered to stricter validation protocols, reducing bias and improving real-world

application for monitoring diseases in the field.

4.1 Model Performance and Technical Considerations

The strong performance of EfficientNetV2S can most likely be attributed to its ability to
process higher resolution images (300x300 pixels versus 224x224 pixels) enabling detection

of subtle disease features. Grad-CAM visualisations confirmed the model focused on relevant



anatomical features in correctly classified images. In cases of misclassification, however, the
model’s focus was often on water surface reflections rather than the fish itself (Fig. 4). This
qualitative finding is supported by our quantitative analysis, which found no significant link
between misclassifications and global image quality metrics like overall sharpness or
perceptual quality (Section S5). It must be noted, however, that the statistical power of this
guantitative analysis was inherently low due to the small number of misclassified images (14
'healthy', 3 'Saprolegnia spp.'). Despite this limitation, the combined evidence strongly
suggests that model errors are not driven by generally 'poor quality' images, but by the
specific, misleading artefacts like reflections identified by Grad-CAM. This provides clear

guidance for improving image acquisition protocols or pre-processing steps in future work.

All models, particularly MobileNetV3S, overpredicted ‘Saprolegnia spp.’ leading to higher
recallsapro (proportion of infected fish images that are correctly identified) but lower
precisionsapro (proportion of correctly identified infected fish among all fish identified as being
infected). Oversampling to address class imbalance changes the class distribution in the
training data and this can drive the models to overpredict the minority class. Although we
mitigated this using image augmentation to increase the size of our training datasets,
alternative strategies like multi-branch networks, as suggested for visual recognition of

animal species in camera-trap images (Cunha et al. 2023), could enhance performance.

An important consideration for practical application of computer vision as a surveillance tool
is the resources required for classification. Model training required significant computational
resources (148GB RAM and two Nvidia P100 GPUs), with processing time ranging from 15 to
47 hours depending on the model and dataset size. While EfficientNetV2S delivered the best

performance, EfficientNetV2B0 offers a practical alternative with only one-third of the



parameters (Tan and Le 2021), enabling deployment on resource-constrained devices while
maintaining strong performance. This trade-off between accuracy and efficiency is crucial for

real-world implementation, particularly in field settings.

4.2 Data Challenges in Disease Detection

Developing robust disease detection models is hindered by the difficulty of obtaining expert
annotations for images with confirmed disease. Citizen science data introduces noise and
geographic bias (Edwards et al. 2021) and in the current work, UK-based images were
overrepresented. Many images were shared by anglers, and although these stakeholders
offer an opportunity to acquire many images, they may be less likely to take ‘trophy’ images
of diseased fish or only share pictures of fish in advanced stages of disease, so creating bias.
Combined with inconsistent taxonomy across sources and variable image quality, the
complexities of building representative datasets are apparent using internet harvested
images. Computer vision techniques such as augmentation (making random changes to
existing images to increase dataset size) increase sample size, but risk inadvertently
amplifying existing biases (Shorten and Khoshgoftaar 2019). For our study, an important next
step to improve model performance and generalisability could be to expand the labelled
dataset by annotating a larger portion of the thousands of unlabelled salmonid images
acquired during our initial data collection. With post-hoc image processing not being a
complete solution, engaging and training stakeholders (here, anglers) to submit images of
both healthy and unhealthy-looking fish could help overcome some biases and class
imbalances. Similar citizen science approaches have worked well for surveillance of other

wildlife diseases, such as sarcoptic mange in foxes, Vulpes vulpes (Scott et al. 2020), although



they did not use computer vision. Open access image repositories (iNaturalist, Flickr, GBIF),
offer great opportunities to develop structured citizen science programs with standardised
imaging protocols (August et al. 2020). Indeed, iNaturalist and Flickr were valuable resources
for collecting a large dataset of 4,526 salmonid images for our study.

Online platforms offer great potential to collate a large number of field-acquired images,
providing a cost-effective alternative to traditional field surveys; they capture valuable
metadata, including date, time, location, which is important for disease surveillance and in
iNaturalist ‘research grade’ images have been taxonomically identified. An additional benefit
of using online repositories is that users have explicitly agreed to share their observations
under Creative Commons licenses, aligning with best practices including Findable, Accessible,
Interoperable, and Reusable (FAIR) data (Wilkinson et al. 2016). However, leveraging citizen
science data still requires careful curation and quality control due to the inherent biases in
these data (Brown and Williams 2019).

Academic or practitioner curated databases of confirmed disease cases, such as those used
in our study, offer a potential solution for training models. However, these databases are
often not open access. While there is a growing infrastructure for sharing images (e.g., Kaggle,
Zenodo) and increasing calls for collaboration in building species-specific disease databases
(Nunes et al. 2020), challenges remain in transforming collated data into resources that
effectively meet researchers' needs. Good annotation practices and standardised protocols
are needed to make these datasets broadly useful. For example, 'SalmonScan' (Ahmed 2024),
although a large dataset (1,208), constitutes augmented images from 24 uninfected and 91

infected fish, and lacks details about species identification and infection types.



4.3 Challenges in Wild Fish Disease Detection

Beyond the challenge of specific image artefacts like surface reflections, the pipeline’s
reliance on image-level classification presents a key limitation. This approach prevents a per-
fish assessment in images containing multiple individuals. Future work could address this
limitation in two ways. A two-stage pipeline could use an object detector like
‘megafishdetector’ (Yang et al. 2023) to first locate and crop each fish, before our existing
classifier is applied to each individual. A more comprehensive solution would be to develop a
dedicated object detection model from the ground up, though this would require the
significant effort of re-annotating the dataset with bounding boxes. Both approaches
represent key directions for improving the granularity of this surveillance tool. Pre-processing
techniques could reduce reflection effects crucial for minimally invasive in situ monitoring. It
is clear from the results on the Salmo dataset that a narrower taxon focus can yield good
results, so a hierarchical model incorporating taxonomic data (Elhamod et al. 2022), may

improve classification accuracy.

4.4 Implications for Disease Surveillance

Our results demonstrate the potential for computer vision to transform disease surveillance
in wild fish populations. While our models cannot replace traditional diagnostic methods, as
confirmation of Saprolegenia spp. infection requires a confirmed molecular diagnosis (van
West and Beakes 2014), they offer a valuable tool for rapid, large-scale screening. This
approach could help identify potential disease outbreaks earlier, enabling more targeted

application of confirmatory tests.



The exploratory analysis on the Salmo and Oncorhynchus genus-specific datasets (Table S2)
further suggests that, although models trained on a specific genus tend to perform best
on that genus, generalist models trained on broader salmonid data can approach this level of
performance under conditions of substantial data re-use. This supports the idea that a single,
broadly trained model may be sufficient for many surveillance applications, with targeted

genus-specific fine-tuning reserved for high-priority host groups.

This tool could be deployed in two main ways. First, for post-hoc analysis, automatically
screening large image collections from online repositories to flag potential outbreaks for
managers. Large-scale post-hoc analyses incorporating geotags and temporal data could also
help identify consistent spatial and temporal patterns of disease occurrence, offering valuable
ecological insights into outbreak dynamics. Second, as an in situ mobile application. Our
model comparison was in part designed to explore the trade-offs for such on-device
deployment. While an ultra-lightweight model like MobileNetV3S offers a rapid assessment
that performs well above baseline (Figure 3) (around 27 ms per image in our tests),
architectures like EfficientNetV2 are also suitable for mobile use and provide a significant
increase in accuracy (Tan and Le 2021). EfficientNetV2BO0 require roughly 100 ms per image
and EfficientNetV2S about 400 ms (Table 4). This shows that a range of models are viable for
a practical real-time, in-field tool, offering a choice between maximum efficiency and higher

performance.

The success with Saprolegnia spp. suggests potential applications for other visually distinctive
diseases not only in fish but also in other animals, such as mange in Vulpes vulpes (Scott et al.
2020). Integration with spatiotemporal metadata, available for all research grade iNaturalist

observations, could provide insights into disease dynamics and environmental drivers of



outbreaks if large enough datasets could be acquired. However, such datasets would likely
contain inherent biases, as observation frequency often correlates with human population
density and accessibility of sites (Geurts et al. 2023). Additionally, temporal biases may arise
from seasonal variations in observer effort and species visibility. These sampling biases would
need careful consideration in terms of how to analyse the data and in interpreting any

apparent patterns in disease occurrence or distribution.

5 Conclusion

This work represents a significant step toward automated disease surveillance in wild fish
populations, demonstrating both the potential and challenges of computer vision
approaches. Overall, this work highlights the transformative potential of computer vision for
disease surveillance in fish, but also other visually distinct wildlife diseases, while also
underscoring the need for continued refinement and careful integration with existing

methods.
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