

1 Effect of reactive magnesia on erosion control of a lead contaminated lean clay: insights 2 from runoff, infiltration and disintegration characteristics

3 Zhengtao Shen^{1*}, Yue Xu^{2#}, Yuanyuan Geng³, Fei Jin⁴, Benyi Cao⁵, Huan Liu⁶, Chao-Sheng
4 Tang⁷, Bin Shi⁸

5 Information of the authors

6 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. E-
7 mail: ztshen@mail.nju.edu.cn

8 2. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. E-
9 mail: 522022290024@smail.nju.edu.cn

10 3. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. E-
11 mail: 502022290067@smail.nju.edu.cn

12 4. School of Engineering, Cardiff University, Cardiff CF24 3AA, UK, E-mail:
13 jinf2@cardiff.ac.uk

14 5, School of Engineering, University of Surrey, Guildford GU2 7XH, UK, E-mail:
15 b.cao@surrey.ac.uk

16 6. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. E-
17 mail: liuhuan@nju.edu.cn

18 7. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. E-
19 mail: tangchaosheng@nju.edu.cn

20 8. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China. E-

21 mail: shibin@nju.edu.cn

22 *Corresponding author:

23 Zhengtao Shen, E-mail: ztshen@nju.edu.cn

24 #These authors contribute equally to this work

25 **Abstract:** The erosion-induced environmental risks of contaminated soil and the corresponding
26 remediation strategies remain inadequately understood. This study investigates the effect of
27 reactive magnesia (MgO), a low-carbon and highly effective remediation material, on erosion
28 control of lead (Pb)-contaminated silty clay, focusing on runoff, infiltration and disintegration
29 characteristics. This study found that the co-migration of Pb with soil particles via runoff is the
30 primary pathway for its transport. MgO treatment decreases the chemically dissolved Pb
31 concentration in runoff by 71%, and the mass of Pb-contaminated soil loss to runoff erosion by
32 92.4%. Furthermore, MgO treatment lowers the clay content in eroded soil particles from 17%
33 in the parent soil to 7%, reduces their Pb concentration from 4960 mg/kg to 3600 mg/kg, and
34 increases their proportion of stable Pb from 79% to 96%, thereby substantially mitigating the
35 environmental risk posed by eroded soil particles. Further hydro-mechanical analysis reveals
36 that MgO significantly delays the onset of disintegration in Pb-contaminated soil and reduces
37 the final disintegration rate from 100% to 35%. This study presents a new perspective on
38 balancing chemical stabilisation with physical solidification for the remediation of heavy metal-
39 contaminated soils.

40 **Keywords:** Pb contaminated soil; erosion control; Pb migration; chemical stabilisation; soil
41 solidification; reactive magnesia

42 Notation List

MgO	Reactive magnesia
Pb	Lead
V_n	The disintegration rate of the sample at a given immersion time
m_n	The mass of disintegrated soil particles at a given immersion time
M	The total mass of the sample
δ_{tn}	The disintegration ratio of the sample

43

44 1 Introduction

45 Lead (Pb) is a toxic heavy metal that can cause irreversible damage to the brain, nervous
46 system, and cardiovascular system of human beings, particularly in children and pregnant
47 women (O'Connor et al., 2020). According to the "Global Burden of Disease Study 2019",
48 global Pb exposure contributes to approximately 9 million deaths each year (Fuller et al., 2022).
49 Pb pollution primarily originates from the improper disposal of lead-acid batteries and
50 electronic waste (Akram et al., 2019), mining and smelting of Pb-containing minerals (Forsyth
51 et al., 2019), and Pb-containing waste generated during the production of paints and pigments
52 (Ranjbar et al., 2023). Since Pb is non-biodegradable in nature, it persists in the environment
53 and accumulates into soil through the food chain, posing a significant threat to ecosystems
54 (Angon et al., 2024). Soil acts as a major sink for Pb (Raj and Das, 2023), playing a crucial role
55 in mitigating its mobility and bioavailability in the environment.

56 Natural process, such as rainfall cycles, can facilitate Pb leaching from soil, leading to its
57 migration (Kushwaha et al., 2018, Zhang et al., 2024). Rainwater generally exhibits a pH of 5.6,
58 and acid rain has an even lower pH (Prakash et al., 2023), reducing Pb solubility in soil.
59 Consequently, it is widely believed that long-term exposure to rainwater causes Pb dissolution
60 in soil, thereby posing environmental risks (Qi et al., 2022). However, the physical effects of
61 rainwater are often overlooked. In fact, Pb in contaminated soil can also migrate to surrounding
62 areas via co-migration with rainfall-eroded soil particles (Wang et al., 2024a). Studies have
63 shown that the concentration of heavy metals in sediments transported by surface runoff is 2.31-
64 3.98 times higher than that in the parent contaminated soil (Quinton and Catt, 2007, Shen et al.,

65 2021).

66 Chemical stabilisation is the most widely used method for the remediation of Pb-
67 contaminated soils (Wang et al., 2021a, Du et al., 2014a). This technique involves incorporating
68 materials such as biochar, phosphates, and reactive magnesia (MgO) into the soil (Wang et al.,
69 2021b, Xu et al., 2021). These additives promote adsorption, complexation, and precipitation
70 of Pb, thereby enhancing its stability within the soil matrix and inhibiting migration. Among
71 these materials, MgO has emerged as a promising Pb remediation agent due to its high
72 efficiency, durability and lower carbon emissions compared to Portland cement, a conventional
73 soil remediation material (Li et al., 2019, Cao et al., 2023, Yi et al., 2014). Several studies have
74 demonstrated that MgO effectively reduces the chemical leaching of metals under laboratory
75 and field conditions using batch leaching tests (Wang et al., 2018, Yi et al., 2014, Wang et al.,
76 2016). However, it remains unclear whether MgO can effectively mitigate Pb leaching caused
77 by erosion and the co-migration of Pb with soil particles. Evaluating the efficacy of MgO under
78 the dynamic environmental conditions is crucial to understanding its dual role in chemical
79 stabilisation and erosion control of heavy-metal-contaminated soils.

80 In this study, MgO was used to remediate Xiashu soil (a lean clay) severely contaminated
81 with Pb. This soil is representative of surface soils from one of China's key heavy metal
82 contamination regions - the middle and lower reaches of the Yangtze Plain. Using simulated
83 rainwater erosion experiments, this study explored the patterns and mechanisms of MgO's
84 effects on Pb-contaminated Xiashu soil from three perspectives: runoff, infiltration, and
85 disintegration characteristics. By integrating chemical stabilisation and erosion control, this

86 study provides theoretical support and practical guidance for effective remediation of Pb-
87 contaminated soils.

88 **2 Materials and methods**

89 **2.1 Materials**

90 The soil used in this study is Xiashu soil, which is widely distributed in the middle and
91 lower reaches of the Yangtze River plain, China. Xiashu soil is classified as a low-plasticity
92 clay, with its primary clay minerals comprising interstratified illite-smectite (61.8%), illite
93 (32.1%), and kaolinite (6.1%). Table 1 presents the basic properties of Xiashu soil.

94 Xiashu soil was collected from the topsoil (0-25 cm) in Pukou District, Nanjing, China.
95 The collected soil was air-dried at room temperature for 14 days. Subsequently, it was crushed
96 and sieved through a 2 mm mesh to remove plant roots, gravel, and other non-soil components.
97 A Pb(NO₃)₂ solution with a designated Pb concentration was thoroughly mixed with a certain
98 amount of the sieved soil to achieve a Pb concentration of 5000 mg/kg, simulating severely Pb-
99 contaminated soil based on the national standard for soil environmental quality (GB 36600-
100 2018). The prepared Pb-contaminated soil was incubated at a water content of 40% for 7 days
101 to ensure the uniform distribution of Pb within the soil. It was then oven-dried at 40 °C for 48
102 hours, re-crushed, and sieved through a 2 mm mesh for sample preparation.

103 The MgO used in this experiment is a light-burned MgO, which is produced based on
104 HG/T2573-2012. It has a pH of 10.3 and reactivity of 30 s, determined by the method described
105 in Jin and Al-Tabbaa (2014).

106 **2.2 Sample preparation and experimental design**

107 MgO was added to the Pb-contaminated soil at dosages of 0%, 5% and 10%, respectively
108 (Table 2). Briefly, MgO was thoroughly mixed with the sieved Pb-contaminated soil, and
109 deionised water was added to achieve a water content of 19%. The soils were then sealed and
110 incubated for 2 days. Subsequently, the soils were statically compacted in a mold at a constant
111 rate of 0.4 mm/min, forming compacted soil samples with dimensions of 16 × 16 × 5 cm and a
112 dry density of 1.5 g/cm³. Each sample contained 768 g of soil and 3840 mg of Pb, irrespective
113 of the MgO addition. Deionised water was sprayed onto the prepared samples to maintain a
114 water content of 30% to avoid either too dry or too wet, and the samples were then sealed and
115 incubated for 7 days.

116 The soil erosion experiment was conducted following the method described by Shen et al.
117 (2021). As illustrated in Fig. 1, the prepared samples were placed on a platform with the slope
118 adjusted to 15° to facilitate the collection of surface runoff. The samples were housed in an
119 acrylic box measuring 16 × 16 × 8 cm, featuring 49 drainage holes with a diameter of 2 mm at
120 the bottom. Two layers of filter paper were lined to regulate the rainfall intensity. An 8 mm-
121 diameter outlet was installed at a height of 3.5 cm (corresponding to the sample's upper surface)
122 and at the bottom of the box to collect runoff and infiltration, including soil particles in both
123 flows.

124 The rainfall intensity and duration were set to 12 mm/h and 1 h to simulate short-duration
125 heavy rainfall extremes based on the national standard for rainfall levels (GB/T 28592-2012).
126 After each rainfall simulation, the samples were air-dried for 71 hours at room temperature. A

127 total of 16 rainfall cycles, each lasting 72 h, were conducted to simulate the extreme rainfall
128 events likely to occur over a four-year period in Nanjing based on the information at the China
129 Meteorological Data Service Center (<https://data.cma.cn/>). After each cycle, photographs of the
130 sample surface were taken to examine the erosion conditions, and runoff and infiltration were
131 collected and analysed. The control soil sample (M0) fully penetrated and interconnected by
132 rainwater after the fifth rainfall cycle, leading to the discontinuation of testing for the M0
133 sample beyond this cycle.

134 **2.3 Physical and chemical analysis**

135 The collected runoff and infiltration solutions were left to settle at room temperature for
136 24 hours, after which the clear supernatant was carefully collected to record the volume. The
137 supernatant was then filtered through a 0.45 µm filter and the Pb concentration was measured
138 using an inductively coupled plasma optical emission spectrometer (ICP-OES) with a detection
139 limit of 0.03 mg/L. The sedimented soil particles were retrieved through filtration, and weighed
140 after oven drying at 40 °C until a constant weight was reached. The particle size distribution of
141 the soil particles was analysed by a laser particle size analyser (Mastor2000). The total Pb
142 concentration of the soil particles was determined by microwave digestion, dilution and
143 filtration, followed by ICP-OES analysis. All analyses were conducted in triplicates, with the
144 mean values and standard deviations reported.

145 **2.4 Disintegration test**

146 To further investigate the hydro-mechanical stability of the Pb-contaminated soils with
147 and without MgO treatment, a disintegration test was conducted following the method

148 described by Tang et al. (2023). The sample specifications were consistent with those in Table
149 2 and were formed into cubes measuring $2.5 \times 2.5 \times 2.5$ cm. The collection device consists of a
150 plastic water tank and a 2000 mL beaker. The disintegration cage is slightly smaller than the
151 beaker and featured a mesh screen with a 2 mm pore size at the bottom to facilitate the collection
152 of soil particles after disintegration. The test was conducted in triplicate.

153 Before the experiment, the water tank and 10 beakers were filled with water, and the
154 samples were placed in the disintegration cage. The disintegration cage was submerged
155 sequentially in the corresponding beakers for specific immersion times: 5 s, 10 s, 30 s, 1 min
156 (60 s), 5 min (300 s), 10 min (600 s), 1 h (3600 s), 1.5 h (5400 s), 3 h (10800 s), and 12 h (43200
157 s). After the experiment, the beakers were removed from the water tank, and the dry mass of
158 the soil particles collected from each beaker was measured. The mass represented the
159 disintegrated soil at each time interval. The disintegration rate and ratio at different immersion
160 times were calculated using Eq (1) and Eq (2):

161

162 V_{tn}

$$163 = \frac{m_n}{M} \times 100\% \quad (1)$$

164 δ_{tn}

$$165 = \sum_1^n \frac{m_n}{M} \times 100\% \quad (2)$$

166 where V_{tn} represents the disintegration rate of the sample at a given immersion time, m_n denotes
167 the mass of disintegrated soil particles at a given immersion time, M is the total mass of the

168 sample, and δ_{tn} signifies the disintegration ratio of the sample.

169 **3 Results and discussion**

170 **3.1 Runoff**

171 ***Runoff volume***

172 The runoff volumes in M5 and M10 were significantly higher than in M0, and higher MgO dosage resulted in higher runoff volumes (Fig. 2a&b). For instance, the runoff volumes of M5 and M10 were 24.2% and 31.5% higher than that in M0 after the first cycle. This increase in runoff may be attributed to the hydration of MgO, which enhances bonding among soil particles and strengthens the soil structure. Consequently, more rainfall accumulated on the surface as runoff due to reduced soil permeability. As the number of cycles increased, the individual runoff volumes of the samples gradually increased and eventually stabilised. This may be attributed to: (1) the soils being unsaturated at the start of the experiment, leading to initial absorption of rainwater and reduced runoff; (2) the simulated rainfall continuously compacting the soils, progressively decreasing their permeability and reaching a stable state.

182 ***Pb leaching in runoff***

183 MgO treatment significantly reduced Pb leaching in the run-off at the first cycle (Fig. 3a). Compared to M0 (0.677 mg/L), the Pb concentration in run-off for M5 and M10 decreased to 0.230 mg/L (by 66%) and 0.199 mg/L (by 71%), respectively. After the first cycle, the effect of MgO treatment on Pb leaching in the run-off became insignificant. From the forth cycle onward, Pb in the run-off was negligible for all samples. The decrease in Pb concentration in the runoff

188 with increasing cycles is due to the leaching of weakly bound Pb during the earlier cycles, and
189 the remaining Pb in the soil is more stable and less prone to leaching in subsequent cycles
190 (Tessier et al., 1979). The individual leached Pb amounts in the runoff followed the same trend
191 as their concentrations (Fig. 3b). After 16 cycles, the cumulative leached Pb amounts in the
192 runoff were 1.53 mg for M0 (calculated only up to the forth cycle), 1.36 mg for M5, and 1.13
193 mg for M10.

194 ***Erosion of Pb contaminated soil in runoff***

195 MgO treatment significantly reduce the loss of Pb-contaminated soil through run-off (Fig.
196 4). For instance, the eroded soil mass for M5 and M10 reduced by 81.6% and 92.4%
197 respectively, compared to M0 at the first cycle. Under the effect of rainfall, the erosion of M0
198 gradually increased until the sample failed after the fifth cycle. In total, 189 g of soil was eroded,
199 accounting for 25% of its initial mass. In contrast, the MgO-treated samples experienced
200 minimal soil erosion throughout the cycles, with M10 showing almost no erosion beyond the
201 first cycle. The solidifying effect of MgO on the soil is also evident in the surface morphology
202 of the samples (Fig. 5). The surface of M0 was significantly damaged by rainwater erosion,
203 while the surface damage of M5 was notably reduced. In contrast, the surface morphology of
204 M10 exhibited almost no visible change.

205 Compared to the control, the eroded soil in the runoff had significantly higher sand fraction
206 and lower clay fraction after MgO treatment (Fig. 6). Because clay and silt particles exhibit
207 higher reactivity, they are more readily cemented and stabilised by MgO (Spadini et al., 2018).
208 As the eroded soil contains more sand, and sand has a much lower capacity to carry heavy

209 metals compared to clay and silt (Wu et al., 2024), the Pb concentration in the eroded soils
210 treated with MgO are significantly lower (3920 mg/kg for M5 and 3500 mg/kg for M10) than
211 that of the control (4960 mg/kg)(Fig. 7a). Due to the immobilisation by MgO, the Pb in eroded
212 soil for M10 is rendered more stable than that in the untreated soil (Fig. 7b).

213 **3.2 Infiltration**

214 ***Infiltration volume***

215 The infiltration volumes of all samples were significantly lower than their run-off volumes
216 (Fig. 2). Higher MgO dosage resulted in significantly lower infiltration volumes, because the
217 expansion of hydrated MgO reduces soil porosity and permeability, preventing rainwater
218 infiltration (Ben-Moshe et al., 2013, Bayat et al., 2019). Interestingly, M5 showed a higher
219 infiltration volume than M0, which may be due to the insufficient expansion of MgO upon
220 hydration to fully fill soil voids for M5, resulting in higher permeability. Additionally, the
221 hydration product (i.e., magnesium hydroxide) encapsulated the soil particles, limiting their
222 ability to absorb water, reducing their water-holding capacity (Wang et al., 2018, Wang et al.,
223 2021a). Consequently, rainwater rapidly infiltrates through the remaining pores, leading to
224 higher infiltration. In contrast, with higher MgO content, the pores are predominantly filled by
225 the hydrated MgO, impeding water infiltration and leading to lower infiltration for M10.

226 ***Pb leaching in infiltration***

227 The concentration of Pb in infiltration was generally higher than that in runoff. This may
228 be attributed to the more extensive interaction between water and the Pb-contaminated soil

229 during infiltration, as well as the longer residence time compared to runoff processes. This
230 extended contact allows Pb within the soil to desorb into the water more effectively (Rassaei,
231 2023). MgO did not significantly reduce the concentrations of Pb in M5 and M10 compared to
232 M0 during the first four cycles (Fig. 3d). In fact, after the forth cycle, M10 exhibited a higher
233 Pb concentration in the infiltration solution (1.660 mg/L) than M0 (0.666 mg/L). As the
234 infiltration volume was significantly smaller than the runoff volume, the total amount of Pb
235 leached in infiltration during a single cycle was less than 0.1 mg/L (Fig. 3e). The relatively
236 higher cumulative amount of Pb leached through infiltration for M5 compared with M0 and
237 M10 was due to its higher infiltration volume (Fig. 3f). However, the cumulative amount of Pb
238 leached through infiltration for all samples remained significantly lower than that leached
239 through runoff (Fig. 3f).

240 ***Loss of Pb contaminated soil in infiltration***

241 The loss of Pb-contaminated soil due to infiltration was significantly lower than that caused by
242 runoff for all samples (Table 3). At the first cycle, MgO treatments reduced the migration of Pb
243 in contaminated soil via infiltration by 82% (M5) and 92% (M10), respectively, compared to
244 M0. After the forth cycle, no further loss of Pb from the contaminated soil was detected from
245 infiltration. Given the relatively low overall risk of Pb migration through infiltration, no further
246 analyses (e.g., particle size or Pb concentration) were conducted.

247 **3.3 Disintegration characteristics**

248 The Pb-contaminated soil without MgO treatment rapidly disintegrated upon submersion
249 (Fig. 8a), reaching a 96% disintegration ratio within 1005 s (Fig. 8b). In contrast, M5 and M10

250 exhibited significantly delayed disintegration, with the process commencing only after 1005s
251 of immersion. Their disintegration rates were also slower, requiring significantly more time
252 (>20805 s) to reach their maximum disintegration. The final disintegration ratios for M5 and
253 M10 were 66% and 35%, respectively. MgO significantly improves the water stability of the
254 Pb-contaminated soil, and higher dosages further enhance this improvement.

255 **3.4 Discussion**

256 ***Rainfall induced Pb migration***

257 Numerous studies indicate that rainwater can chemically dissolve heavy metals, thereby
258 facilitating their migration and posing environmental risks (Xu et al., 2024, Ouyang et al., 2017,
259 Rao et al., 2016). The findings of this study align with these observations. Specifically, runoff
260 induced by rainwater dissolved approximately 1.53 mg of Pb (equivalent to 1.99 mg/kg in 768
261 g of total dry soil), whereas infiltration dissolved about 0.11 mg of Pb (0.14 mg/kg in 768 g of
262 total dry soil) (Fig. 3c&f). From a chemical dissolution perspective, horizontal migration via
263 runoff represents the primary environmental risk for the Pb-contaminated silty clay. It is
264 noteworthy that although the proportion of Pb dissolved through runoff was small in this
265 experiment, circumneutral (pH 6.5) deionised water was used over only 16 simulated rainfall
266 cycles. Under field conditions with acid rain over a longer duration (Du et al., 2014b), the risk
267 of Pb migration through runoff could be considerably higher.

268 This study revealed that horizontal co-migration of Pb with soil particles induced by runoff
269 erosion may pose a greater risk than dissolved-phase Pb migration. Before the sample was fully
270 penetrated, just five rainfall cycles resulted in the runoff-driven erosion of 180 g of Pb

271 contaminated soil, accounting for 23% of the total dry mass of the sample (Fig. 4b). In large
272 metal-mining areas - particularly those with slopes and cohesive soils (e.g., Hunan, Guangxi,
273 and Yunnan in China) (Shi et al., 2023) - even if Pb migration via dissolution is not substantial,
274 the co-migration of Pb and soil particles due to erosion warrants serious attention. For these
275 specific regions, remediation efforts may need to shift from purely chemical stabilisation to
276 methods that enhance the mechanical properties of soil. The risk of Pb co-migration with soil
277 particles through infiltration was notably lower than that via runoff erosion (Table 4).
278 Considering the experimental limitations, such as the sample thickness (2 cm) and the presence
279 of 49 small holes (diameter of 2 mm) in the base (resulting in an overestimation of seepage-
280 induced soil loss), the real-world infiltration risk of Pb co-migration with soil particles is likely
281 even lower under field conditions.

282 ***Effectiveness of MgO in prevention of Pb migration***

283 This study presents compelling evidence that MgO effectively inhibits the migration of Pb: (1)
284 MgO significantly decreases the leaching of Pb into runoff; (2) MgO substantially reduces the
285 erosion of Pb-contaminated soil, thereby lowering the risk of Pb co-migration with eroded soils;
286 (3) the eroded soil after MgO treatment contains significantly less Pb, and the remaining Pb is
287 considerably more stable compared to the parent soil; and (4) MgO markedly enhances the
288 hydro-mechanical stability of Pb-contaminated soil, delaying the disintegration process and
289 reducing the cumulative disintegration ratio. These findings provide deeper insights into the
290 mechanisms by which MgO prevents Pb migration, compared to existing literature that
291 primarily uses batch leaching methods (e.g., TCLP) to assess the stability of MgO-stabilised

292 metals (Wang et al., 2018, Wang et al., 2021a, Shen et al., 2019b). In other words, beyond
293 chemical stabilisation, enhancing the water stability and erosion resistance of soil can also
294 significantly contribute to inhibiting Pb migration. It should be noted that the prevention of Pb
295 migration by MgO is more pronounced at a dosage of 10%. Although MgO effectively inhibits
296 Pb migration overall, adding 5% MgO increases the total amount of Pb leached through
297 infiltration. Therefore, practical applications should carefully consider the optimal dosage of
298 MgO to maximise its inhibitory effects while minimizing unintended consequences.

299 ***Implications for soil remediation***

300 Soil erosion is a prevalent phenomenon in natural environments. In mining areas, metal
301 extraction activities often alter the topography, leading to the formation of sloping tailings
302 deposits that are frequently associated with heavy metal contamination (Grangeia et al., 2011,
303 Emel et al., 2014). Previous studies have primarily focused on the chemical migration of heavy
304 metals (Sun et al., 2022, Wang et al., 2024b). However, erosion can facilitate a more extensive
305 co-migration of heavy metals with soil particles. Therefore, in such regions, the risk of heavy
306 metal migration due to erosion cannot be overlooked.

307 Since the 1980s, cement-based solidification/stabilisation techniques have been the primary
308 method for the remediation of heavy metal-contaminated soils (Shen et al., 2019a). However,
309 starting around 2010, cement has been increasingly recognised as a high-carbon emission
310 material (Miller et al., 2018), prompting a shift towards reducing its usage (Shen et al., 2019a).
311 Consequently, in the context of heavy metal remediation - especially in emerging soil
312 remediation markets such as China - chemical stabilisation methods utilizing biochar, clay

313 minerals, iron-based and phosphate-based materials have gained prominence (Ma et al., 2022).
314 Although chemical stabilisation can effectively immobilise heavy metals through efficient
315 chemical reactions (e.g., complexation and precipitation), it has minimal impact on the
316 mechanical properties of soil. Based on the findings of this study, the extensive application of
317 chemical stabilisation may pose a risk of heavy metals co-migrating through erosion processes.
318 Therefore, in regions with significant erosion risks, it is essential to consider soil solidification
319 in addition to heavy metal immobilisation to mitigate the risk of heavy metal migration caused
320 by erosion.

321 **4 Conclusion**

322 This study investigates the effect of MgO on the erosion control of the Pb-contaminated
323 silty clay based on runoff, infiltration and disintegration characteristics. It is found that soil loss
324 induced by erosion, along with the associated co-migration of Pb with soil particles, poses the
325 primary environmental risk, significantly exceeding the risk of Pb leaching caused by chemical
326 dissolution in rainwater. The risk of Pb migration through infiltration is negligible. MgO
327 mitigates the risk of Pb migration through multiple mechanisms. It reduces the Pb concentration
328 in runoff (from chemical dissolution) by up to 71% and decreases the mass of Pb-contaminated
329 soil loss to runoff erosion by 92.4%, thereby substantially mitigating the co-migration of Pb
330 with soil particles, identified here as the predominant environmental hazard. Furthermore, MgO
331 lowers the clay content in eroded soil particles from 17% in the parent soil to 7%, reduces the
332 Pb concentration from 4960 mg/kg to 3600 mg/kg, and increases the proportion of stable Pb
333 from 79% to 96%, significantly decreasing the environmental risk posed by eroded soil particles.

334 Hydro-mechanical analysis further indicates that MgO significantly delays the onset of
335 disintegration in Pb-contaminated soil and reduces the final disintegration rate from 100%
336 (untreated) to 35%. These findings were achieved using a 10% MgO application, whereas the
337 effect of adding 5% MgO was considerably less pronounced. By elucidating the mechanisms
338 underlying MgO remediation of Pb-contaminated silty clay, this study provides valuable
339 insights into the treatment of regionally contaminated soils (e.g., metal tailings and soils
340 surrounding mining areas) and offers a new perspective for balancing chemical stabilisation
341 with physical solidification in the remediation of heavy metal-contaminated soils.

342 **Acknowledgments**

343 This work was supported by the National Key Research and Development Program of China
344 (2023YFC3707900), the Fundamental Research Funds for the Central Universities
345 (2024300399), National Natural Science Foundation of China (42277123, 42477187), Natural
346 Science Foundation of Jiangsu Province (BK20220787).

347 References

348 Akram, R., Natasha, Fahad, S., Hashmi, M. Z., Wahid, A., Adnan, M., Mubeen, M., Khan, N., Rehmani,
349 M. I. A., Awais, M., Abbas, M., Shahzad, K., Ahmad, S., Hammad, H. M. & Nasim, W. (2019)
350 Trends of electronic waste pollution and its impact on the global environment and
351 ecosystem. *Environmental Science and Pollution Research* **26**(17):16923-16938.

352 Angon, P. B., Islam, M. S., Shreejana, K. C., Das, A., Anjum, N., Poudel, A. & Suchi, S. A. (2024)
353 Sources, effects and present perspectives of heavy metals contamination: Soil, plants and
354 human food chain. *Helijon* **10**(7).

355 Bayat, H., Kolahchi, Z., Valaey, S., Rastgou, M. & Mahdavi, S. (2019) Iron and magnesium nano-
356 oxide effects on some physical and mechanical properties of a loamy Hypocalcic Cambisol.
357 *Geoderma* **335**:57-68.

358 Ben-Moshe, T., Frenk, S., Dror, I., Minz, D. & Berkowitz, B. (2013) Effects of metal oxide
359 nanoparticles on soil properties. *Chemosphere* **90**(2):640-6.

360 Cao, B., Xu, J., Wang, F. & Al-Tabbaa, A. (2023) Self-healing soil mix cutoff wall materials
361 incorporating reactive MgO pellets. *Géotechnique* **74**(12):1317-1328.

362 Du, Y. J., Jiang, N. J., Liu, S. Y., Jin, F., Singh, D. N. & Puppala, A. J. (2014a) Engineering properties
363 and microstructural characteristics of cement-stabilized zinc-contaminated kaolin.
364 *Canadian Geotechnical Journal* **51**(3):289-302.

365 Du, Y. J., Wei, M. L., Reddy, K. R., Liu, Z. P. & Jin, F. (2014b) Effect of acid rain pH on leaching
366 behavior of cement stabilized lead-contaminated soil. *Journal of Hazardous Materials*
367 **271**:131-140.

368 Emel, J., Plisinski, J. & Rogan, J. (2014) Monitoring geomorphic and hydrologic change at mine
369 sites using satellite imagery: The Geita Gold Mine in Tanzania. *Applied Geography* **54**:243-
370 249.

371 Forsyth, J. E., Nurunnahar, S., Islam, S. S., Baker, M., Yeasmin, D., Islam, M. S., Rahman, M., Fendorf,
372 S., Ardoine, N. M., Winch, P. J. & Luby, S. P. (2019) Turmeric means "yellow" in Bengali: Lead
373 chromate pigments added to turmeric threaten public health across Bangladesh. *Environ
374 Res* **179**(Pt A):108722.

375 Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G., Bose-O'reilly, S., Brauer, M., Caravanos, J.,
376 Chiles, T., Cohen, A., Corra, L., Cropper, M., Ferraro, G., Hanna, J., Hanrahan, D., Hu, H.,
377 Hunter, D., Janata, G., Kupka, R., Lanphear, B., Lichtveld, M., Martin, K., Mustapha, A.,
378 Sanchez-Triana, E., Sandilya, K., Schaeffli, L., Shaw, J., Seddon, J., Suk, W., Tellez-Rojo, M.
379 M. & Yan, C. (2022) Pollution and health: a progress update. *Lancet Planet Health*
380 **6**(6):e535-e547.

381 Grangeia, C., Avila, P., Matias, M. & Da Silva, E. F. (2011) Mine tailings integrated investigations:
382 The case of Rio tailings (Panasqueira Mine, Central Portugal). *Engineering Geology*
383 **123**(4):359-372.

384 Jin, F. & Al-Tabbaa, A. (2014) Characterisation of different commercial reactive magnesia.
385 *Advances in cement research* **26**(2):101-113.

386 Kushwaha, A., Hans, N., Kumar, S. & Rani, R. (2018) A critical review on speciation, mobilization
387 and toxicity of lead in soil-microbe-plant system and bioremediation strategies.
388 *Ecotoxicol Environ Saf* **147**:1035-1045.

389 Li, W., Ni, P. & Yi, Y. (2019) Comparison of reactive magnesia, quick lime, and ordinary Portland
390 cement for stabilization/solidification of heavy metal-contaminated soils. *Sci Total Environ*
391 **671**:741-753.

392 Ma, Y., Wang, L. N., Cao, Y. Z., Liang, T., Wang, P. P., Luo, H. L., Yu, J. J., Zhang, D. D., Xing, B. S. &
393 Yang, B. (2022) Stabilization and remediation of heavy metal-contaminated soils in China: insights
394 from a decade-long national survey. *Environmental Science and Pollution Research* **29(26)**:39077-39087.

395 Miller, S. A., John, V. M., Pacca, S. A. & Horvath, A. (2018) Carbon dioxide reduction potential in
396 the global cement industry by 2050. *Cement and Concrete Research* **114**:115-124.

397 O'connor, D., Hou, D., Ok, Y. S. & Lanphear, B. P. (2020) The effects of iniquitous lead exposure on
398 health. *Nature Sustainability* **3(2)**:77-79.

399 Ouyang, W., Huang, W. J., Hao, X., Tysklind, M., Haglund, P. & Hao, F. H. (2017) Watershed soil Cd
400 loss after long-term agricultural practice and biochar amendment under four rainfall
401 levels. *Water Research* **122**:692-700.

402 Prakash, J., Agrawal, S. B. & Agrawal, M. (2023) Global Trends of Acidity in Rainfall and Its Impact
403 on Plants and Soil. *Journal of Soil Science and Plant Nutrition* **23(1)**:398-419.

404 Qi, S. Q., Li, X. X., Luo, J., Han, R. F., Chen, Q. Q., Shen, D. S. & Shentu, J. (2022) Soil heterogeneity
405 influence on the distribution of heavy metals in soil during acid rain infiltration: Experimental and numerical
406 modeling. *Journal of Environmental Management* **322**.

407 Quinton, J. N. & Catt, J. A. (2007) Enrichment of heavy metals in sediment resulting from soil
408 erosion on agricultural fields. *Environmental Science & Technology* **41(10)**:3495-3500.

409 Raj, K. & Das, A. P. (2023) Lead pollution: Impact on environment and human health and approach
410 for a sustainable solution. *Environmental Chemistry and Ecotoxicology* **5**:79-85.

411 Ranjbar, Z., Pourhadadi, D., Montazeri, S. & Modaberi, M. R. (2023) Lead compounds in paint and
412 coatings: A review of regulations and latest updates. *Progress in Organic Coatings* **174**.

413 Rao, Z. X., Huang, D. Y., Zhu, H. H., Zhu, Q. H., Wang, J. Y., Luo, Z. C., Xu, C., Shen, X. & He, Y. B.
414 (2016) Effect of rice straw mulching on migration and transportation of Cd, Cu, Zn, and
415 Ni in surface runoff under simulated rainfall. *Journal of Soils and Sediments* **16(8)**:2021-2029.

416 Rassaei, F. (2023) Adsorption Kinetics and Isotherm Modeling of Lead in Calcareous Soils: Insights
417 into Thermodynamics, Desorption, and Soil Properties. *Communications in Soil Science
418 and Plant Analysis* **54(15)**:2059-2076.

419 Shen, Z., Jin, F., O'connor, D. & Hou, D. (2019a) Solidification/stabilization for soil remediation: an
420 old technology with new vitality.) ACS Publications.

421 Shen, Z., Pan, S., Hou, D., O'connor, D., Jin, F., Mo, L., Xu, D., Zhang, Z. & Alessi, D. S. (2019b)
422 Temporal effect of MgO reactivity on the stabilization of lead contaminated soil.
423 *Environment International* **131**:104990.

424 Shen, Z. T., Zhang, Z. R., Zhang, M. D., Rinklebe, J., Ma, Y. & Hou, D. Y. (2021) Effect of production
425 temperature and particle size of rice husk biochar on mercury immobilization and erosion
426 prevention of a mercury contaminated soil. *Journal of Hazardous Materials* **420**.

427 Shi, J. D., Zhao, D., Ren, F. T. & Huang, L. (2023) Spatiotemporal variation of soil heavy metals in
428 China: The pollution status and risk assessment. *Science of the Total Environment* **871**.

429 Spadini, L., Navel, A., Martins, J. M. F., Vince, E. & Lamy, I. (2018) Soil aggregates: a scale to

432 investigate the densities of metal and proton reactive sites of organic matter and clay
433 phases in soil. *European Journal of Soil Science* **69**(5):953-961.

434 Sun, R. G., Gao, Y. & Yang, Y. (2022) Leaching of heavy metals from lead-zinc mine tailings and
435 the subsequent migration and transformation characteristics in paddy soil. *Chemosphere*
436 **291**.

437 Tang, C., Pan, X., Cheng, Y. & Ji, X. (2023) Improving hydro-mechanical behavior of loess by a bio-
438 strategy. *Biogeotechnics* **1**(2).

439 Tessier, A., Campbell, P. C. & Bisson, M. (1979) Sequential extraction procedure for the speciation
440 of particulate trace metals. *Analytical Chemistry* **51**(7):844-851.

441 Wang, F., Jin, F., Shen, Z. & Al-Tabbaa, A. (2016) Three-year performance of in-situ mass stabilised
442 contaminated site soils using MgO-bearing binders. *Journal of Hazardous Materials*
443 **318**:302-307.

444 Wang, F., Li, W., Wang, H., Hu, Y. & Cheng, H. (2024a) The leaching behavior of heavy metal from
445 contaminated mining soil: The effect of rainfall conditions and the impact on surrounding
446 agricultural lands. *Sci Total Environ* **914**:169877.

447 Wang, F., Li, W., Wang, H., Hu, Y. N. & Cheng, H. F. (2024b) The leaching behavior of heavy metal
448 from contaminated mining soil: The effect of rainfall conditions and the impact on
449 surrounding agricultural lands. *Science of the Total Environment* **914**.

450 Wang, F., Shen, Z. & Al-Tabbaa, A. (2018) PC-based and MgO-based binders stabilised/solidified
451 heavy metal-contaminated model soil: strength and heavy metal speciation in early stage.
452 *Géotechnique* **68**(11):1025-1030.

453 Wang, F., Xu, J., Zhang, Y. H., Shen, Z. T. & Al-Tabbaa, A. (2021a) MgO-GGBS Binder-
454 Stabilized/Solidified PAE-Contaminated Soil: Strength and Leachability in Early Stage.
455 *Journal of Geotechnical and Geoenvironmental Engineering* **147**(8).

456 Wang, L. W., Rinklebe, J., Tack, F. M. G. & Hou, D. Y. (2021b) A review of green remediation
457 strategies for heavy metal contaminated soil. *Soil Use and Management* **37**(4):936-963.

458 Wu, Y. L., Yang, J. J., Chang, R. Q., Li, S. C. & Kou, H. L. (2024) Strength, leaching characteristics and
459 microstructure of CGF plus P all-solid-waste binder solidification/stabilization Cu(II)
460 contaminated soil. *Construction and Building Materials* **411**.

461 Xu, D. M., Fu, R. B., Wang, J. X., Shi, Y. X. & Guo, X. P. (2021) Chemical stabilization remediation for
462 heavy metals in contaminated soils on the latest decade: Available stabilizing materials
463 and associated evaluation methods-A critical review. *Journal of Cleaner Production* **321**.

464 Xu, Z. X., Yin, M., Yang, X., Yang, Y., Xu, X. H., Li, H. G., Hong, M., Qiu, G. H., Feng, X. H., Tan, W. F.
465 & Yin, H. (2024) Simulation of vertical migration behaviors of heavy metals in polluted
466 soils from arid regions in northern China under extreme weather. *Science of the Total
467 Environment* **919**.

468 Yi, Y., Li, C., Liu, S. & Al-Tabbaa, A. (2014) Resistance of MgO-GGBS and CS-GGBS stabilised
469 marine soft clays to sodium sulfate attack. *Géotechnique* **64**(8):673-679.

470 Zhang, L., Zhu, Y., Gu, H., Lam, S. S., Chen, X., Sonne, C. & Peng, W. (2024) A review of
471 phytoremediation of environmental lead (pb) contamination. *Chemosphere* **362**:142691.

472

473 **Table captions**

474 Table 1 Basic properties of Xiashu soil used in this work

475 Table 2 Mix proportions and sample notations used in this work

476 Table 3 Mass of soil loss in infiltration at different rainfall cycles

477 **Figure captions**

478 Fig. 1. Schematic diagram of the soil erosion experiment (Shen et al., 2021).

479 Fig. 2. Runoff (a-individual, b-cumulative) and infiltration (c-individual, d-cumulative)

480 volumes of the soils with and without MgO treatment.

481 Fig. 3. Pb leaching in the runoff (a-individual concentration, b-individual amount, c-cumulative

482 amount) and infiltration (c-individual concentration, d-individual amount, f-cumulative

483 amount).

484 Fig. 4. Erosion induced loss of Pb-contaminated soil (a-individual rainfall, b-cumulative).

485 Fig. 5. Effect of MgO on surface morphology of Pb-contaminated soil during rainfall cycles.

486 Fig. 6. Particle size distribution of the eroded Pb-contaminated soil in runoff.

487 Fig. 7. Pb concentration (a) and fraction (b) of eroded soil in runoff.

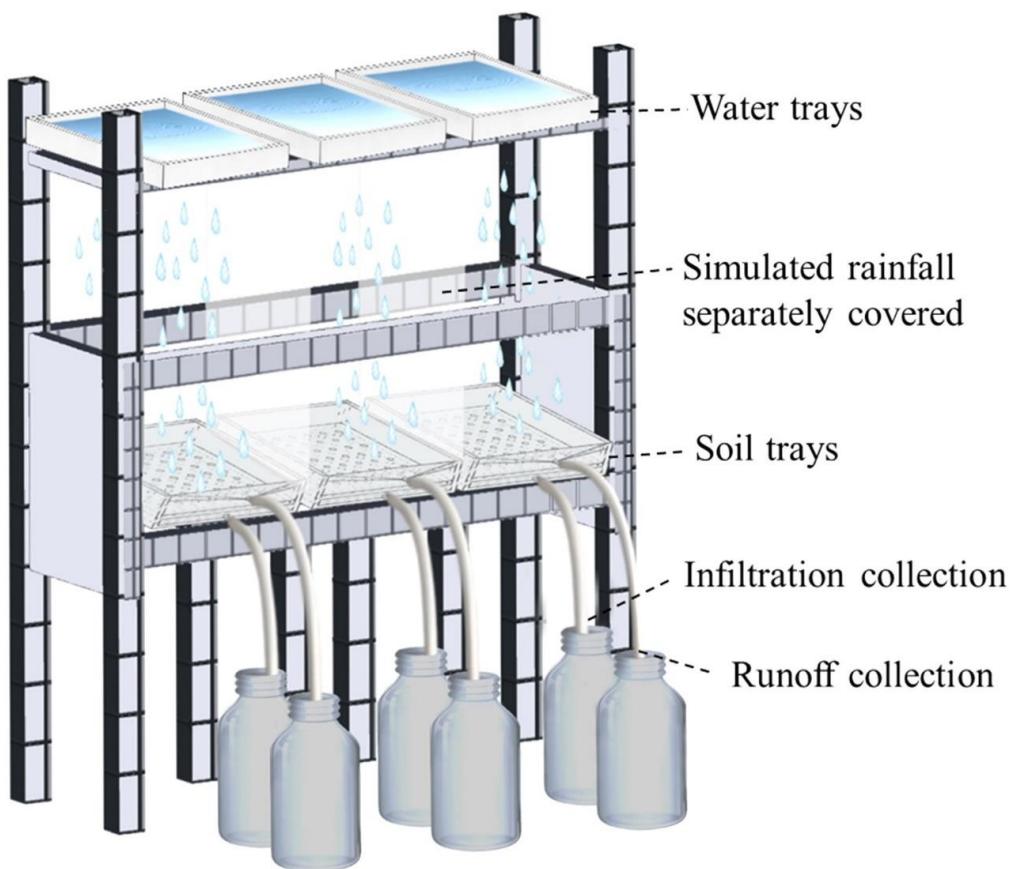
488 Fig. 8. Disintegration rate (a) and ration (b) of Pb contaminated soil.

489 Table 1 Basic properties of Xiashu soil used in this work

Parameter	Value
Specific gravity	2.73
Grain size distribution	
Sand content (%)	2
Silt content (%)	76
Clay content (%)	22
Atterberg limits	
Liquid limits	36.5
Plastic limits	19.5
Plasticity index	17.0
Standard compaction test	
Optimum moisture content (%)	16.5
Maximum dry density (g/cm ³)	1.7
Optimum water content (%)	16.5
USCS classification (ASTM 2017)	Lean clay (CL)

490

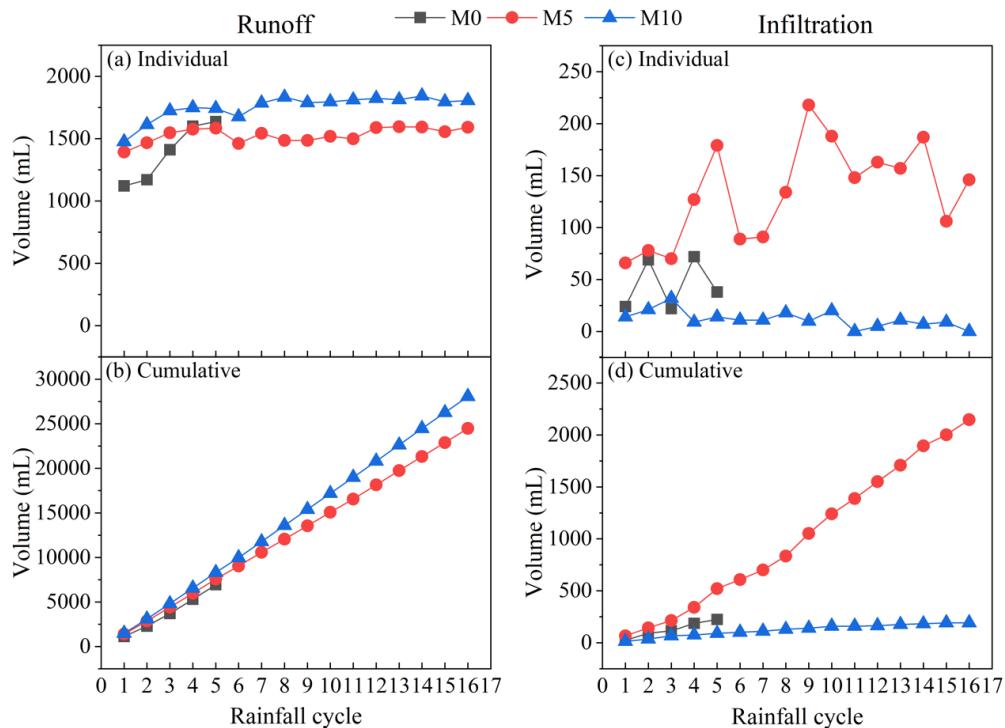
491 Table 2. Mix proportions and sample notations used in this work


Sample ID	Density (g/cm ³)	Water content (w/w)	MgO dosage (%)	Pb concentration (mg/kg)
M0	1.5	30	0	5000
M5	1.5	30	5	5000
M10	1.5	30	10	5000

492

493 Table 3. Mass of soil loss in infiltration at different rainfall cycles

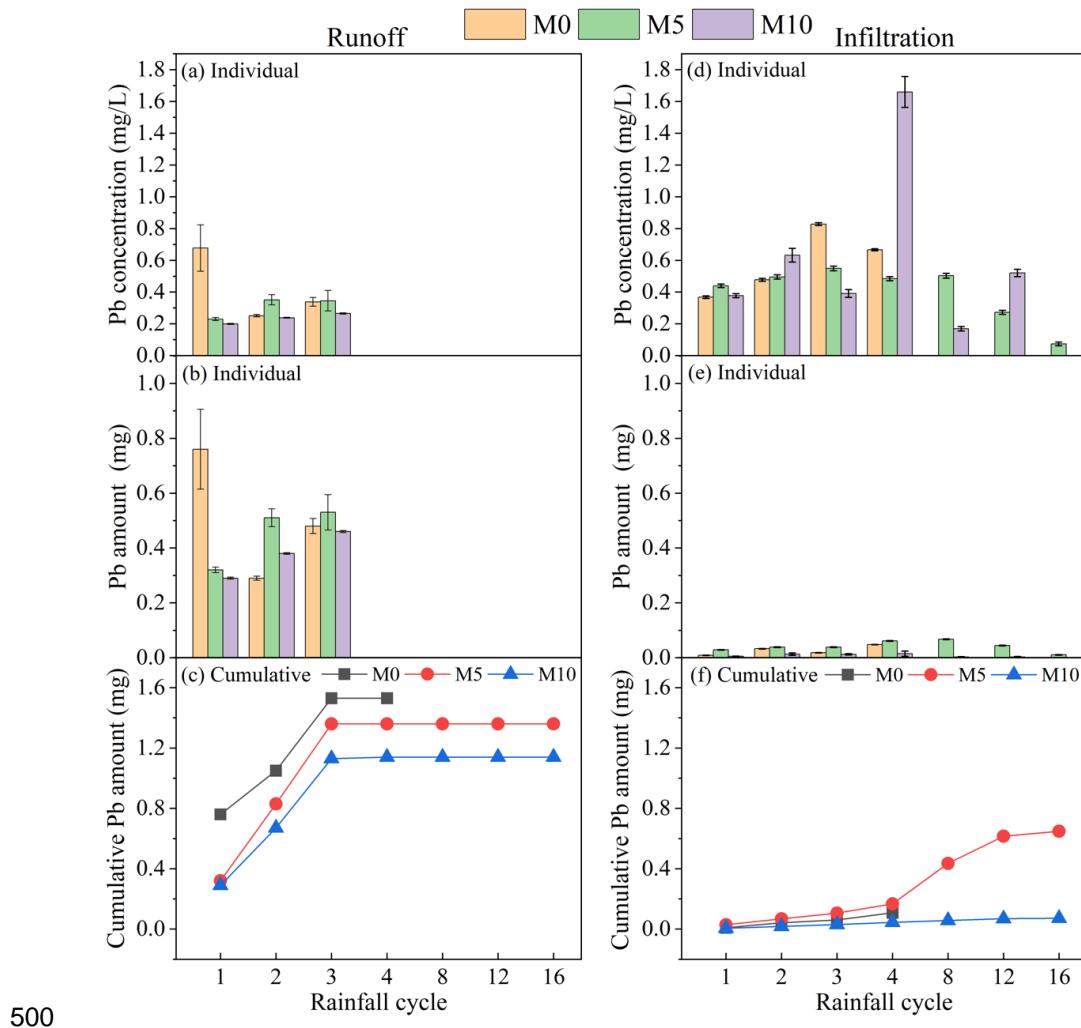
Rainfall cycle	M0(g)	M5(g)	M10(g)
1	18.48	3.40	1.40
4	64.46	2.43	0
8	0	0	0
12	0	0	0
16	0	0	0


494

495

496

Fig. 1. Schematic diagram of the soil erosion experiment (Shen et al., 2021).


497

498

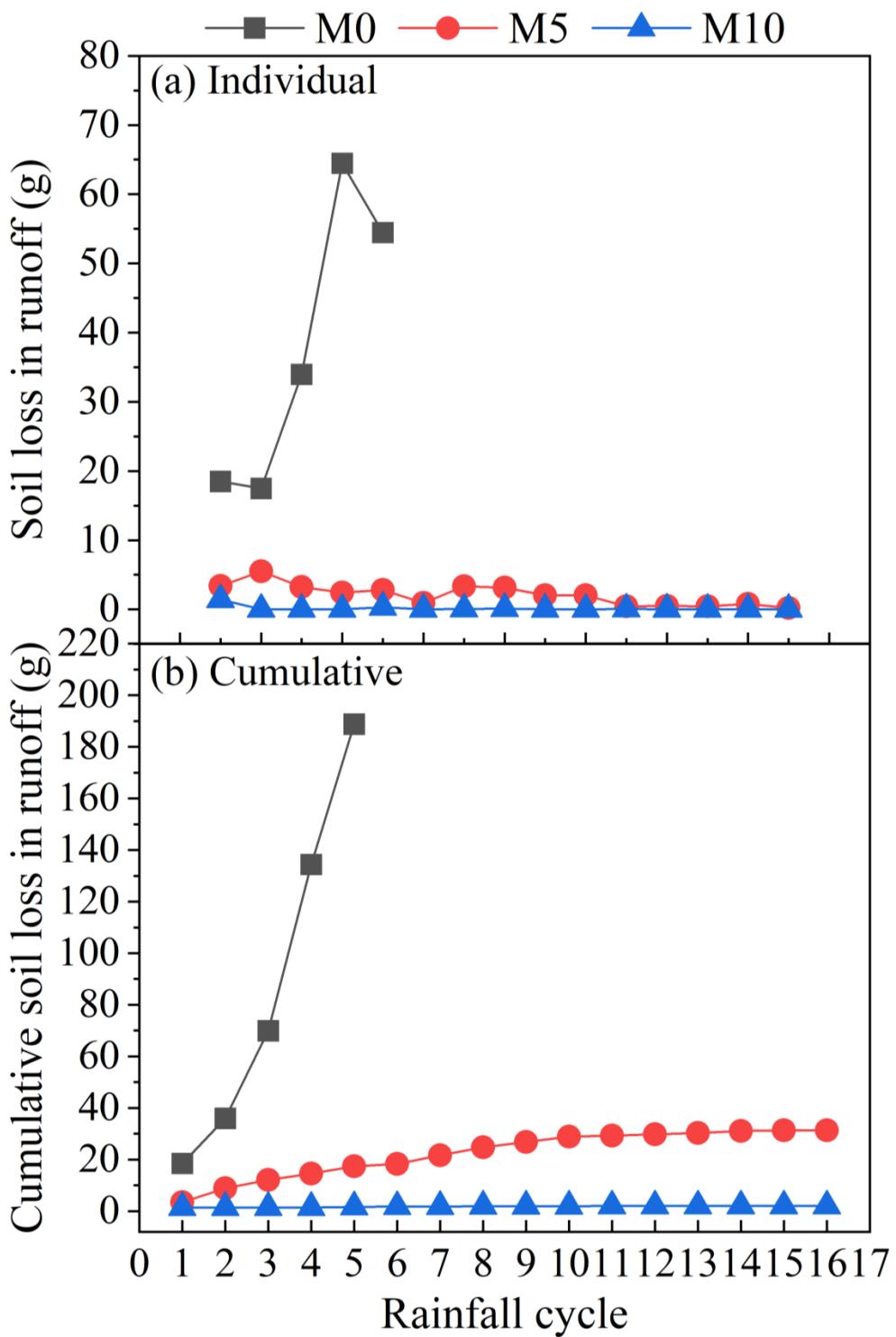
499

Fig. 2. Runoff (a-individual, b-cumulative) and infiltration (c-individual, d-cumulative)

volumes of the soils with and without MgO treatment.

500

501


502

503

Fig. 3. Pb leaching in the runoff (a-individual concentration, b-individual amount, c-

cumulative amount) and infiltration (c-individual concentration, d-individual amount, f-

cumulative amount).

504

505 Fig. 4. Erosion induced loss of Pb-contaminated soil (a-individual rainfall, b-cumulative).

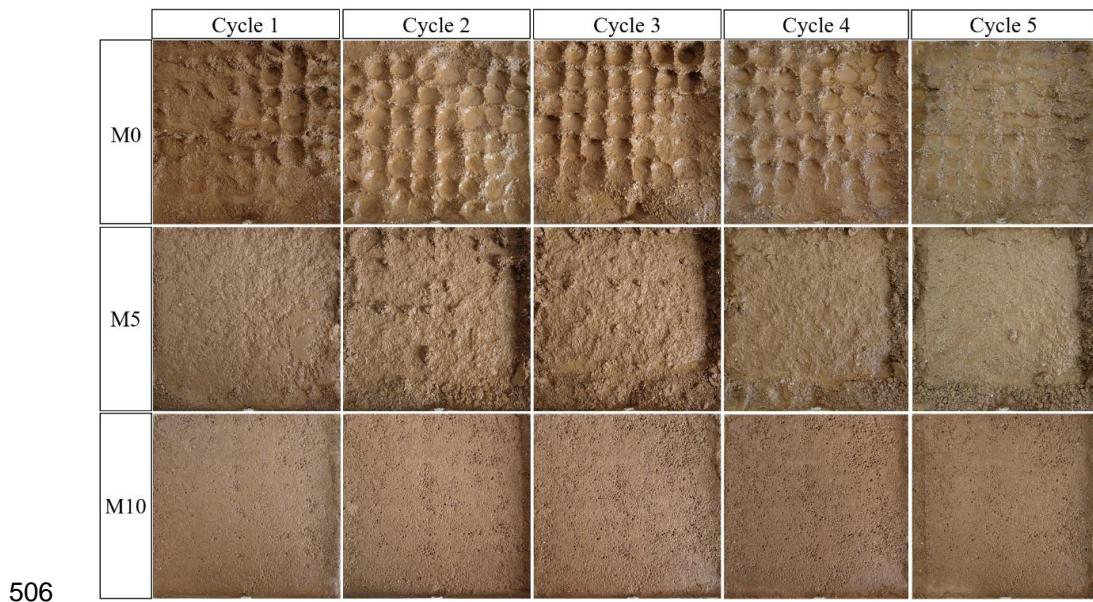
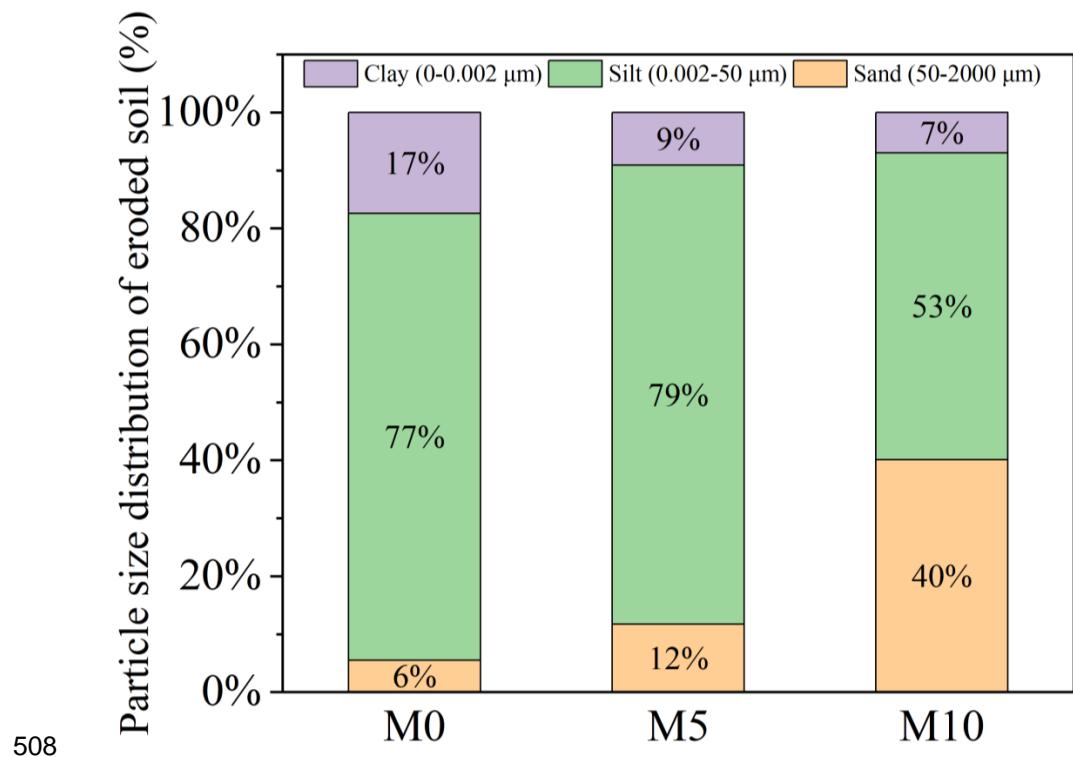
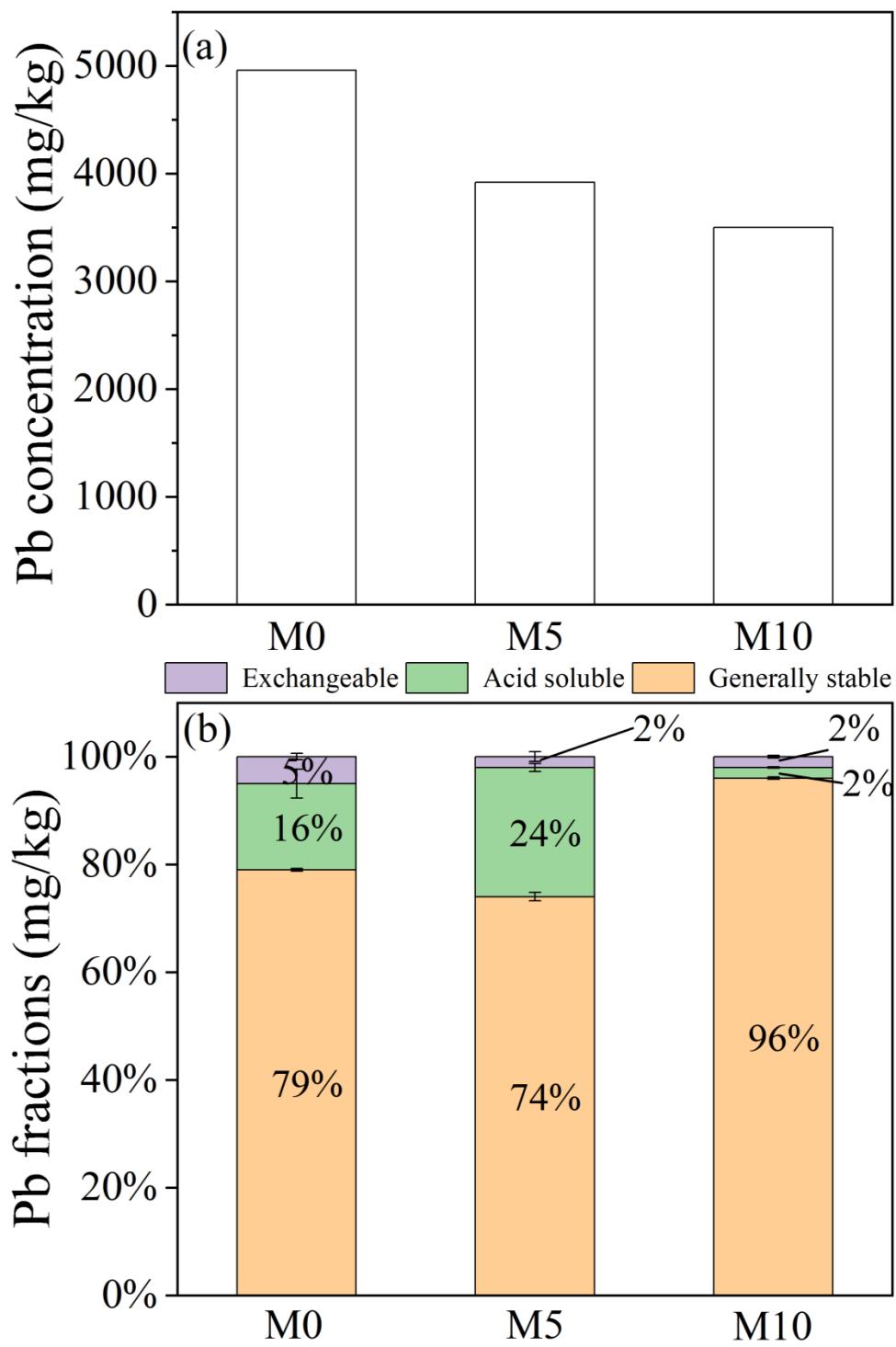



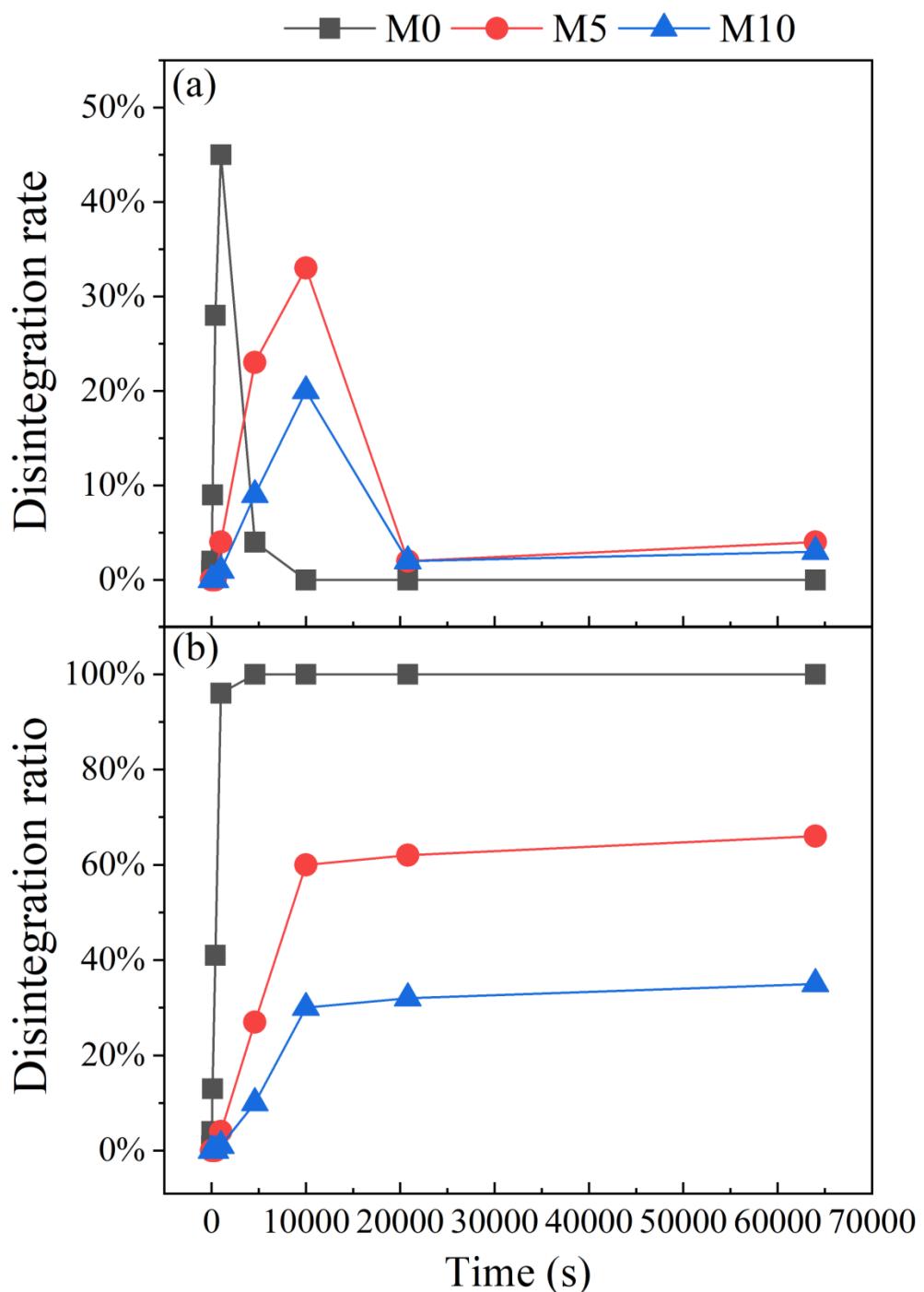
Fig. 5. Effect of MgO on surface morphology of Pb-contaminated soil during rainfall cycles.



508

509

510


Fig. 6. Particle size distribution of the eroded Pb-contaminated soil in runoff.

511

512

Fig. 7. Pb concentration (a) and fraction (b) of eroded soil in runoff.

513

514

Fig. 8. Disintegration rate (a) and ration (b) of Pb contaminated soil.