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Abstract
Smart buildings remain heterogeneous across sensing infrastructure, metadata quality, 
legacy protocols, and analytics requirements, hindering reusable human–building natu-
ral language interfaces. We present OntoSage, a modular framework for ontologically 
grounded question answering (QA) and fulfillment of analytic intents over smart build-
ing data. The framework (i) leverages Brick Schema-based RDF model with reasoning 
capabilities, (ii) translates natural language (NL) questions into executable SPARQL via a 
fine-tuned seq2seq model (T5-Base), and (iii) orchestrates portable analytics microservices 
that operate on time-series sensor data referenced through ontology-linked UUIDs. A sum-
marization component (open-weights Mistral-7B, zero-shot) converts structured SPARQL/
SQL/analytic outputs into concise stakeholder-aware responses without requiring task-
specific fine-tuning. We categorize QA complexity into four reasoning classes and report 
component-level execution metrics supporting these categories. To address portability, 
we formalize a lightweight adaptation workflow (ontology ingestion→entity enrichment 
for NLU→NL2SPARQL validity checks→analytics binding) designed to minimize per-
building retraining. Reproducibility is enabled through public source code, synthetic and 
ontology-derived datasets, Docker/Compose service descriptors, and documented support-
ing scripts “(https://github.com/suhasdevmane/OntoBot)”. The developers’ documentation 
is publicly accessible “(https://ontosage-docs.github.io)”.

Keywords  Human-Building Interaction (HBI) · Internet of Things (IoT) · Smart 
Buildings · Semantic Web · Ontologies · Large Language Models(LLMs)
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1  Introduction

Human–Building Interaction (HBI) studies how occupants, cyber-physical infrastructure, 
and data services co-evolve in intelligent built environments [1, 2]. Contemporary smart 
buildings integrate heterogeneous sensing (environmental, HVAC, air quality, etc.), var-
ied middleware, inconsistent metadata curation, and siloed Building Management Sys-
tems (BMS). This fragmentation impedes the development of universal, reusable natural 
language (NL) interfaces that would allow stakeholders (facility managers, sustainability 
officers, maintenance staff, visitors, etc.) to interrogate both semantic knowledge (ontolo-
gies) and live/historical time-series data. Commodity voice/NL platforms (Alexa, Google 
Home, HomeKit, SmartThings) provide intent execution abstractions but (i) lack explicit 
semantic grounding in standard building ontologies, (ii) cannot express multi-hop or 
ontology+timeseries fused analytical queries, and (iii) require opaque, proprietary adapta-
tion. Generic large language models (LLMs) exhibit fluent dialogue yet hallucinate unseen 
device semantics and offer no built-in alignment to Brick-structured relational queries.

Three persistent gaps motivate this work: (1) Reasoning coverage- existing prototypes 
emphasize direct entity lookups rather than aggregated, multi-relation, or temporal/analytic 
intents; (2) Portability-per-building re-engineering of training data and pipeline configu-
ration limits scalable deployment; (3) Reproducibility and extendability- NL→SPARQL 
demonstrations omit dataset construction details, versioned artifacts, or adaptation work-
flows for future advancements. Moreover, no domain-specific LLMs for the smart buildings 
domain are available for NL-to-SPARQL translation in QA.

We present OntoSage, a modular ontology-based framework for QA and analytics orches-
tration that converts natural language questions into SPARQL. It links results to time-series 
analytics microservices and summarizes outcomes for users. The Brick Schema [3] serves 
as a shared semantic foundation, allowing each asset to expose a UUID that connects RDF 
descriptors to structured sensor telemetry. A fine-tuned T5-Base seq2seq model performs 
NL→SPARQL translation; a domain-aware Rasa Natural Language Understanding (NLU) 
layer mediates entity normalization and slot completion; portable analytics microservices 
receive normalized JSON payloads; an open-weights Mistral-7B model (zero-shot) pro-
duces human-readable rationales. This paper makes the following contributions to HBI and 
semantic smart building QA: 

1.	 Unified Reasoning Taxonomy: We define four NL reasoning classes (single-hop fac-
tual, multi-hop relational, aggregation/temporal, ontology+timeseries fusion) and align 
component evaluation metrics to each.

2.	 Portable Adaptation Workflow: A minimal four-stage process (ontology ingestion→
entity enrichment→NL to SPARQL conformance validation→analytics binding) 
enabling reuse across buildings with reduced retraining.

3.	 Open Reproducibility Stack: Public release of code, synthetic + ontology-derived NL–
SPARQL pairs, Docker/Compose deployment descriptors, training/evaluation scripts, 
and developers’ documentation for extending goals.

4.	 Microservice Analytics Layer: Extensible, decoupled analytic endpoints (anomaly 
detection, comfort indices, air quality aggregation, correlation, forecasting, etc.) call-
able directly from SPARQL-resolved entity UUIDs.
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5.	 Empirical Component Evaluation: A quantitative assessment of NLU entity extraction, 
SPARQL generation, analytics accuracy, and summarization quality based on a real-
world testbed.

6.	 Limitations and Roadmap Articulation: A transparent analysis of challenges in multi-
entity disambiguation, long-tail intent coverage, and dataset breadth constraints.

We address the following research questions: 

1.	 RQ1 (System): What system components and architecture are required to support 
human-building conversations with smart buildings, enabling multi-persona question 
answering at scale?

2.	 RQ2 (Applications): How can a system be constructed for heterogeneous building envi-
ronments so that non-expert users can contribute to mutual human-building benefits?

3.	 RQ3 (Analytics): How can portable analytic applications be implemented for the built 
environment, covering installed systems to answer analytical questions using data col-
lected in smart buildings?

The primary objectives of this research are:

	● Develop a framework that enables diverse users, from guests to experts, to interact with 
smart buildings in natural language, providing a range of analytical and operational 
insights of the built environment to enhance building health and sustainability.

	● Fine-tune LLMs and develop adaptable algorithms as microservices that allow users 
to leverage real-time and historical building data for multiple objectives that can be 
deployed in heterogeneous built environments.

	● Establish a standardized, conversational AI-driven approach with NLU and LLMs to 
effortlessly incorporate new building types and components into the framework, mini-
mizing reconfiguration while ensuring robust, domain-specific responses.

We introduce a scalable framework validated through a multi-month deployment in a real-
world building testbed with diverse environmental sensors. Its modular design allows for 
future analytical extensions and replication across buildings. Paper organization: Sec-
tion 2 reviews related work in NL-to-SPARQL, smart building ontologies, and conversa-
tional agents. Section 3 outlines the system architecture and model design, including the 
NLU pipeline, NL-to-SPARQL translation, and analytics orchestration. Section 4 describes 
the experimental setup, covering testbed development, NLU training, and T5 model train-
ing. Section  5 presents component evaluations, baseline comparisons, reasoning class 
analysis, and cross-building portability. Section 6 outlines analytics applications. Section 7 
states limitations and future enhancements. Section 8 examines implications, and Section 9 
concludes. Extended chatbot QA examples can be found in Appendix A.

2  Related Work

The literature relevant to OntoSage spans (i) NL→SPARQL translation, (ii) semantic/ontol-
ogy modeling for buildings, and (iii) conversational agents for HBI.
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2.1  NL to SPARQL Query Generation

Early template and rule-driven pipelines [4, 5] have largely given way to encoder-decoder 
Transformers (e.g., BART, T5) and hybrid entity-linking augmented models [6–11]. 
Recent work leverages large language models for broader generalization and composi-
tionality [12–16], yet challenges persist for multi-hop joins, temporal aggregation, and 
faithful entity grounding-core reasoning classes we explicitly benchmark. Translating 
natural language queries into structured SPARQL queries for knowledge graph interro-
gation has been a cornerstone of recent research. Early efforts, such as [4], applied NLP 
techniques to datasets like Stanford SQuAD, enabling natural language query process-
ing and laying the foundation for subsequent advancements. However, these approaches 
often relied on template-based systems, which required manual effort to construct domain-
specific query templates and struggled to adapt to new knowledge graphs [5]. To over-
come these limitations, recent studies have explored end-to-end deep learning frameworks 
and hybrid systems. For instance, [6] demonstrated the efficacy of fine-tuning pre-trained 
encoder-decoder models, such as BART [17] and T5 [7], to generate SPARQL queries. 
This approach handles unseen entities by translating entity IDS into text labels. Similarly, 
[18] evaluated pre-trained versus non-pre-trained models, demonstrating that techniques 
such as question annotation and copy mechanisms improve query generation accuracy. 
Transformer-based models have further advanced this domain. Fine-tuned models, such 
as T5 and SPBERT [8, 9], achieve superior performance on benchmark datasets compared 
to task-specific models. Hybrid approaches combining neural machine translation (NMT) 
with entity linking have also gained traction. Moreover,[10] and [11] integrated NMT 
with dedicated entity linking to bridge the gap between ambiguous natural language and 
structured SPARQL queries, a strategy reinforced by [19] and [20]. The rise of large lan-
guage models (LLMs) has accelerated progress, with [12–15], and [16] leveraging LLMs 
to encode linguistic features and embed knowledge graphs, enabling executable SPARQL 
queries for complex domains.

2.2  Ontologies for Smart Buildings

The evolution of smart building ontologies reflects a shift from narrow, energy-focused sche-
mas to robust, interoperable metadata standards. Early frameworks such as Green Building 
XML (gbXML) and the Building Energy Data Exchange Specification (BEDES) [21–23] 
laid the groundwork for energy modeling and data exchange, but their limited expressiv-
ity constrained broader interoperability. Subsequent efforts addressed these limitations 
by introducing standardized vocabularies and extensible frameworks. Notable examples 
include Project Haystack, which enhanced semantic modeling for building management 
systems, and Industry Foundation Classes (IFC), which supported design-phase interop-
erability in architecture and engineering domains [24, 25]. The emergence of IoT-centric 
ontologies, such as the Smart Appliances REFerence Ontology (SAREF), provided struc-
tured representations for smart appliances, thereby advancing device interoperability and 
application integration [26–29]. However, these schema often lacked adaptability across 
diverse building types. More flexible approaches were introduced through the Building 
Topology Ontology (BOT) and Semantic Sensor Network (SSN)/SOSA standards, both of 
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which leveraged RDF-based models to address operational and sensing requirements while 
remaining specialized to particular domains [30–32].

The development of the Brick ontology represents a significant milestone in this progres-
sion. Brick offers an open-source, RDF-based schema that prioritizes completeness, extensi-
bility, and uniformity of metadata for both physical and virtual assets in smart buildings [33, 
34]. Unlike traditional OWL-based ontologies constrained by Description Logic(DL), Brick 
utilizes RDF and RDFS semantics, facilitating more nuanced modeling of sensor networks 
and diverse building subsystems. Despite these advances, ontologies still face challenges in 
automated cross-building alignment and the seamless coupling of semantic descriptors with 
live analytic microservices. Developing building-agnostic, portable metadata frameworks 
that integrate with conversational AI and tap into underutilized IoT sensor data (often stored 
in structural databases) remains an open research frontier. Our work addresses these gaps by 
introducing a UUID-based linkage and portability workflow, which enhances cross-building 
interoperability and supports real-time analytic integration.

2.3  Conversational Agents in HBI

Conversational agents, also known as chatbots, have become pivotal interfaces for 
human-building interaction (HBI), enabling natural language interactions with intelligent 
environments. Traditional chatbots, relying on pattern-matching rules, offered limited con-
versational capabilities [35], which highlighted the need to formalize both rational (reason-
ing and NLP) and intuitive (semantic) components for human-like dialogue. Recent NLP 
advances, particularly transformer-based models and LLMs like GPT, have transformed 
chatbot development by enabling flexible, context-aware dialogue through prompting [36]. 
Frameworks like Rasa [37] and Dialogflow, which are widely used for intent recogni-
tion and entity extraction, have been instrumental. For instance, [38] integrated Rasa with 
SPARQL generation modules to address query ambiguity, while [39] combined Rasa-based 
entity extraction with custom SPARQL modules for improved question-answering accu-
racy. Linguistic rule-based systems, such as those employing syntactic ambiguity resolution 
[40], have further enhanced intent detection.

AI-based methods, including Transformers and reinforcement learning [36], dominate 
chatbot development for IoT, supporting applications such as patient monitoring [41], 
human activity recognition [42, 43], security [44], and energy efficiency [45]. Ontology-
based chatbots have demonstrated versatility across various domains, including tutoring 
[46], e-commerce [47], and healthcare [48], by leveraging ontologies to enhance response 
generation. Domain-specific systems, such as [49] for Korean query answering and KBot 
[50] for smart home interactions, merge linked data with machine learning (ML) for inter-
active question answering. Recent HBI studies emphasize user psychology and multimodal 
interactions. For example, [51] found audio output modalities influence perceptions of sen-
sitive information retrieval, while [52] highlighted challenges in privacy, multi-user experi-
ences, and design considerations [53–58]. Systems like TAO [59], combining ontological 
and unsupervised clustering approaches, can infer rich contexts from daily activities, under-
scoring the potential of integrating semantic technologies with conversational AI for adap-
tive, user-friendly smart building interfaces.
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3  System Architecture and Design

This section presents the OntoSage framework’s architecture, encompassing foundational 
requirements Section 3.1, core system components Section 3.2, model architecture includ-
ing NLU and NL-to-SPARQL translation Section 3.3, post-processing and data retrieval 
Section 3.4, analytics pipeline Section 3.5, and summarization Section 3.6. These elements 
collectively enable multi-building semantic question answering over diverse building infra-
structures. Sequence-to-sequence LLMs have been used in our previous work [60], and the 
optimization of SPARQL for domain-specific queries points to promising directions for the 
future.

3.1  Architectural Requirements

Exploring current technologies and open-source components to facilitate the human-build-
ing conversation for multiple goals, we found that we need a standard description logic and 
a language to communicate domain knowledge, as well as a pipeline consisting of microser-
vices that will perform their specific tasks when supplied with the right entities. Figure 1 
illustrates the system overview with its main components: Graphical User Interfaces (GUI) 
and backend processes. The GUI connects to different services, enabling user communica-
tion with smart buildings, and consists of interconnected services necessary to complete the 
conversation. It provides natural language question answering (NLQA) in smart building 
environments by integrating semantic ontologies, large language models (LLMs), a modu-
lar backend, and a conversational AI interface.

The following is a list of system components required to assemble a meaningful QA 
approach addressing the first research objective (RQ 1).

	● Semantic Description (BrickSchema Ontology): Utilises the BrickSchema terminology 
to provide a comprehensive semantic description of physical, logical, and virtual assets, 
capturing their relationships within the smart building ecosystem.

	● Ontology Reasoning (SHACL, OWLRL, VBIS): Employs SHACL, OWLRL, and 
VBIS to validate RDF data against predefined shapes, ensuring compliance with con-
straints and enriching the ontology with domain-specific knowledge.

	● Ontology Query Language (SPARQL): Leverages SPARQL to efficiently retrieve in-
formation from RDF databases, enabling precise querying within the context of Brick-
Schema terminology and the Building RDF model.

	● RDF Triple Store (Apache Jena Fuseki): We chose Apache Jena Fuseki from other open-
source SPARQL servers to host the smart building model. It can run as a standalone 

Fig. 1  Overview of system 
architecture
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server or be embedded in an application. Fuseki provides the SPARQL protocol and 
SPARQL Graph Store protocol for querying and updating data. It is integrated with 
TDB to provide robust, transactional, persistent storage, and related reasoners can be 
applied to the RDF models to extend the RDF Model Terminologies by performing 
logical inferences.

	● Conversational Chatbot (RaSa Open Source): Integrates RaSa Open Source to enable 
interactions with the smart building system, extracting entities and offering fallback 
mechanisms to gather additional user information using NLU.

	● Timeseries Database (Postgresql/Mysql, etc.): Employs a structured database to store 
large volumes of sensor/device data from the smart building. All timeseries data is 
uniquely identified in the building’s RDF Model for efficient retrieval and processing.

	● IoT Platform (ThingsBoard): Utilizes ThingsBoard to collect, process, visualize, and 
analyze data from IoT devices, seamlessly integrated with PostgreSQL and PgAdmin 
for robust data management and administration.

	● Natural Language to SPARQL Translation (T5 (t5-base)): Applies the T5 (t5-base) 
model to translate natural language questions into SPARQL queries, leveraging natural 
language understanding entities for accuracy.

	● SPARQL Summarisation (Mistral 7B): Open source Seq2Seq models are explored, and 
Mistral 7B LLMs are used to generate concise and meaningful summaries of responses 
from the knowledge base, database, and analytic microservices to enhance user com-
prehension.

	● Training Datasets (Custom): Employs custom datasets to train Seq2Seq LLMs for natu-
ral language to SPARQL translation, embedding domain-specific knowledge for im-
proved performance.

	● Analytics Operation on the data (Microservices): A server hosting analytic applications 
to perform data analytics. Rasa’s NLU is trained on brick schema terminology to extract 
Entities, and the related timeseries data is used for analytics.

3.2  Core Components and Data Flow

3.2.1  Core Components

Imagine a smart built environment, equipped with multiple systems that comprise a sensor/
device network deployed across various zones, as shown in Figure 2. This installed built 
environment is modeled with a formal BrickSchema terminology, a widely adopted schema 
chosen for its standardized vocabulary and extensible structure. The ontology, represented 
in Turtle (TTL) format, is parsed into RDF triples and stored in a triple store (SPARQL 
server) with reasoning capabilities, such as GraphDB or Apache Jena Fuseki. On the other 
hand, all such devices’ data is stored in structured databases such as MySQL or PostgreSQL. 
Each sensor/device with its unique time series reference ID is added to the RDF Model of 
the building, with spatial relationships and properties.

On the User side, the framework leverages ’Rasa Open Source’ for dialogue manage-
ment, intent recognition, and entity extraction. Rasa’s NLU pipeline is configured using 
YAML files that define intents, entities, lookup tables, regex patterns, synonyms, and dia-
logue rules. A key design goal is to identify smart building-specific entities, such as sensor 
names, dates, and locations, and analyze the type context during conversations. Ontology-
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derived entities from the RDF graph are embedded directly into Rasa’s training data to 
improve entity recognition. Rasa includes a fallback policy to handle ambiguous inputs, 
redirecting the user to a data-gathering phase to collect all required slots. Once all neces-
sary fields are filled, the ‘Rasa SDK Action Server‘ triggers corresponding custom actions, 
defined in Python, which execute database queries, API calls, or analytical routines.

To enable intelligent and context-aware interactions with this structured data, we fine-
tuned T5 models to generate SPARQL queries from natural language questions. These 
dynamically constructed queries interact with the locally chosen SPARQL server, retrieving 
precise results that accurately reflect the user’s intent. Based on the SPARQL response, col-
lected UUIDS are used in parallel to retrieve time-series data from the database through a 
standard SQL query template (for chosen database) that includes entity placeholders. The 
framework employs a dual-model architecture to provide high-quality responses. A fine-
tuned T5 model handles query generation, while a Mistral 7B model summarises responses, 
whether from SPARQL, or SQL and analytic microservices. This combination ensures 
both accuracy in retrieval and clarity in output. The summarisation endpoint is effective at 
describing responses and providing interpretable insights for end-users.

ThingsBoard, an open-source IoT platform, enables device visualization, data flow 
management, real-time monitoring, alerting, and administrative control within local net-
works. It supports multiple sensor protocols and stores data in structured databases for 
efficient access. Tools such as Adminer and PgAdmin assist with database management 
and debugging, while Jupyter Notebooks integrate easily for rapid prototyping. Extensi-
ble analytic microservices operate independently to process complex sensor datasets, with 
results from SPARQL endpoints, databases, and analytics routed through an action server 
for clear summaries. By combining BrickSchema, SPARQL, Rasa, structured databases, 
analytic microservices, and advanced language models, the framework delivers a scalable 
and semantically rich NLQA solution for smart buildings, promoting intuitive interaction, 
structured querying, and sustainable operations.

Fig. 2  Machine learning model and custom actions flow
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3.2.2  Data Flow

User interaction begins with a chatbot interface, where users pose queries related to the 
environment, sensor data, or building-specific analytics. These inputs are first processed 
by an NLU pipeline powered by Rasa Open Source. The NLU model is trained using data 
derived from the smart building ontology (with TBox terms from Brick V1.4), enabling 
it to accurately classify intents and extract key entities such as sensor types(names), loca-
tions, dates, and analytic terms. To facilitate this training, we implemented a dedicated func-
tion that ingests the ontology, extracts relevant entity labels (sensors-uuids mappings), and 
incorporates them into the training data as synonyms, lookup tables, and regex patterns. 
The smart building ontology model must use TBox (Terminological Box), i.e., the vocabu-
lary, structure, and relationships between concepts (classes and properties) of BrickSchema 
(V1.4) terminology as a basis. When the NLU component identifies an intent, it forwards 
the structured output (intent and entities) to the custom action module. Even if the intent 
is classified as out of scope, the framework is designed to route the input to a fallback 
action for robustness testing. Within the custom action script, the first key component is 
an implementation of a fine-tuned T5 model trained to perform NL2SPARQL translation. 
This model receives the user’s prompt, enhanced with extracted entities, and generates a 
SPARQL query representing the user’s question. The generated SPARQL query is executed 
against the smart building ontology, which is hosted in an SPARQL server. Ontological 
reasoning is facilitated via a reasoner (currently supports rdfs, owlrl, vbis, shacl reasoning, 
implemented in a Jupyter environment) that supports relationship inference and schema 
validation. The resulting RDF data is returned in JSON format for further processing. A 
decision point in the workflow checks whether the SPARQL result contains unique identi-
fiers (UUIDS), which indicate links to time-series sensor data stored in relational databases. 
If such UUIDS are present, the query is passed to a query builder module, which populates 
a predefined standard SQL query template (unique for the employed database type) with 
appropriate entity values such as sensor UUIDs, and date range. The constructed SQL query 
is sent to a chosen structural database endpoint, which returns the result as JSON. At the 
same time, when UUIDs are present in the SPARQL response, scripts trigger a service call 
to decide whether to need to perform analytics and which analytics application to perform 
with a decider service Section 3.5.1.

The response (whether derived from SPARQL or SQL) is then routed to the analyt-
ics layer Section 3.5. This component may invoke external analytics microservices to per-
form advanced computations such as trend analysis, aggregation, or anomaly detection. 
These microservices can also produce external references, graphical summaries, and addi-
tional JSON outputs to enhance interpretability. Once analytics are complete, the results 
are passed to a summarisation module powered by the Mistral 7B model. This model can 
generate coherent and context-aware summaries, transforming raw RDF triples or struc-
tured database responses into fluent, user-friendly, stakeholder profile-based explanations. 
In cases where the SPARQL query does not yield time-series data, the output is immediately 
forwarded to the summarisation stage without invoking the SQL and analytics layer.

The final summarised response is sent back to the chatbot interface and presented to the 
user. For traceability and debugging, all query responses and analytics results are also stored/
shared in JSON/png format, which can be accessed via UI and analyzed deeply through an 
integrated Jupyter Notebook interface. The system includes a training trigger mechanism 
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that detects newly added building data or changes in ontology structure to ensure adapt-
ability. This mechanism periodically re-trains the NL2SPARQL model, ensuring the pipe-
line remains aligned with the evolving smart building environment. The framework enables 
end-users, regardless of technical expertise, to query complex building systems and receive 
actionable insights in natural language.

3.3  Model Architecture

3.3.1  NLU Pipeline

At the front end, a Rasa-powered conversational agent captures natural language queries 
and converts them into structured requests for downstream processing. The unique NLU 
model for a single built environment within Rasa is trained to detect key intents and extract 
relevant entities such as sensor types, time ranges, and locations from user queries using 
a custom pipeline specified in the config.yml file. For instance, when a user inquires, 
“Which rooms currently have a temperature above the recommended setpoint (e.g., 
24 ◦C)?”, the NLU component identifies the intent as query_temperature_data and 
extracts entities such as temperature_sensor, Room_x, start_date, end_date, 
and setpoint.

As shown in the Figure 3, the Rasa NLU pipeline processes user queries, such as “Which 
rooms currently have a temperature above the recommended setpoint (e.g., 24°C)?”, 

Fig. 3  Rasa NLU pipeline for intent classification and entity extraction
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through a series of components to classify intents and extract entities, followed by dialogue 
management to trigger appropriate actions. Initially, the WhitespaceTokenizer splits 
the input text into tokens based on whitespace, producing a list like [“Which”, “rooms”, 

, “24°C)?”]. The RegexFeaturizer then applies regular expression patterns defined 
in the training data, such as \d+°C for temperatures or setpoint for specific terms, to 
generate features for entities and intents. Next, the RegexEntityExtractor identifies 
entities directly using these patterns, yielding a list as shown in the following box:

The LexicalSyntacticFeaturizer enriches tokens with lexical features (e.g., 
part-of-speech tags like “rooms: NOUN”) and syntactic features (e.g., dependency parsing), 
providing linguistic context to aid downstream components. The CountVectorsFea-
turizer converts the text into a numerical bag-of-words vector, enabling intent classifica-
tion. The DIETClassifier, a transformer-based model, leverages features from all prior 
components to jointly classify the intent (e.g., action_question_to_brickbot with 
a confidence score) and refine entities (e.g., temperature_sensor, Room_x, set-
point). Alongside, the Duckling server is running as a microservice to extract the dates 
using the Rasa Duckling image. Dialogue management is handled by the Memoization-
Policy, which matches the conversation state (intent + entities) to known training sto-
ries to predict action; the RulePolicy, which applies predefined rules to execute actions 
(e.g., triggering action_question_to_brickbot for the ActionQuestionTo-
Brickbot class); and the TEDPolicy, a transformer-based model that predicts actions 
based on dialogue history, intent, and entities, excelling in unseen scenarios.

3.3.2  NL to SPARQL Translation

Our previous study [60] identified the T5-base model as the most suitable for this task. 
We trained the model using natural language questions paired with formatted SPARQL 
queries, including necessary prefixes. The training dataset contains over 120,000 example 
pairs in a multi-variant NL question format, enabling the model to generate SPARQL que-
ries from user input. Since most smart building sensor devices generate time-series data 
stored in structured databases (e.g., MySQL, PostgreSQL), directly adding large volumes 
of time-series data to the RDF model is Inappropriate. Instead, referencing the time-series 
data’s location in the RDF model enables a more efficient solution for linking the struc-
tured databases with the RDF model. Each sensor or device is assigned a unique UUID, 
as defined by BrickSchema TBox terminology. When a user submits a query, the system 
extracts entities, identifies the intent, and retrieves relevant time-series IDs. Once the enti-
ties are identified, the NL question and contextual information are sent to the model, which 
generates the corresponding SPARQL query, even if TBox information is missing. For 
example, in response to the question, “Tell me the failure trends of the exhaust air flow sen-
sor in the Maintenance Room,” the NLU pipeline extracts entities such as "analysis_
type": "failure trends", "sensor_type":"exhaust air flow sensor", 
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and "location": "maintenance Room." The T5 model, using these entities along 
with BrickSchema T-box terms (e.g., brick:hasLocation) and A-box instances (e.g., 
bldg:Maintenance_Room), generates the following SPARQL query:

This query retrieves the sensor, timeseries ID, and data storage location, facilitating effi-
cient data retrieval from structured databases for next steps.

3.4  Post-Processing and Data Retrieval

After executing the SPARQL query against the SPARQL endpoint, the system processes 
the results to extract time-series IDs, which are used to retrieve sensor data from 
structured databases. If no IDs are retrieved, a fallback mechanism employing the open-
source Mistral LLMs generates summarized responses. The retrieved data is formatted 
into a standardized JSON structure, enhancing compatibility with subsequent analysis 
and summarization stages. The post-processing workflow includes time-series ID 
extraction, database querying, result formatting, and data retrieval. The SPARQL query 
results are parsed to identify time series IDs corresponding to building sensors/devices 
(ABox individuals). These IDs, aligned with BrickSchema UUIDs, serve as references 
to time series data stored in structured databases (e.g., MySQL, PostgreSQL). If IDs 
are absent, the system invokes the Mistral LLMs to generate a summarized response or 
prompt the user for additional input via fallback functions, ensuring robust handling of 
incomplete data.

The extracted time-series IDs are used to populate placeholders in predefined 
SQL queries. If placeholders cannot be filled due to missing entities, fallback mecha-
nisms (e.g., user prompts or default values) ensure query completeness. The SQL query 
retrieves time-series data, including timestamps and sensor readings, from the specified 
database table. This approach leverages the scalability of structured databases while 
maintaining semantic links to the RDF model, thereby ensuring seamless integration 
and consistency. The SQL query results are converted into a standardized JSON format, 
with sensor names as top-level keys, replacing UUIDs to provide contextual clarity. 
This structure, shown in the fetch_sensor_data function below, organizes time-
series data by sensor, facilitating integration with downstream analysis and summarisa-
tion pipelines.
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3.5  Analytics Pipeline

After retrieving the time-series data and identifying the relevant entities, the system applies 
comprehensive analytics to extract actionable insights. Leveraging Python libraries such 
as Pandas and NumPy, it conducts statistical analyses (such as trend detection, anomaly 
identification, and correlation studies, etc.) and employs Matplotlib for data visualization to 
enhance interpretability. For example, the system might compute airflow variations in the 
Air Handling Unit (AHU) according to the user’s query and chosen analysis type, correlat-
ing multiple time-series streams and generating graphical outputs for richer user feedback. 
The selection and execution of the appropriate analytics routine are delegated to dedicated 
microservices: standalone Python/Flask modules that accept well-formed JSON or Python 
dictionary inputs, perform the specified analysis, and produce a concise, descriptive sum-
mary. This post-processing transforms raw sensor measurements into a clear, actionable, 
and analytical report.

3.5.1  Decider Service: Analytics Routing

A critical orchestration component in the workflow is the Decider Service, which deter-
mines whether a given user question requires time-series analytics and, if so, which spe-
cific analytics function to invoke. Before the action server commits to retrieving sensor 
data or executing computational routines, it consults the decider service via a simple REST 
endpoint (POST /decide) with the user’s natural language question. The service employs 
a dual-strategy approach: when trained classification models are available, it predicts (i) 
whether to perform analytics (binary decision) and (ii) the analytics label (e.g., aver-
age, detect_anomalies, correlate_sensors, analyze_sensor_trend). 
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If models are absent or confidence is low, a robust rule-based fallback interprets keyword 
patterns (e.g., “average,” “anomaly,” “trend”) to assign appropriate labels. Importantly, 
ontology-only queries such as “Which sensors are installed in Room X?” or “What is the 
label of device Y?” are explicitly flagged to bypass analytics entirely, avoiding unnecessary 
computation and preserving clarity in responses. This intelligent routing ensures computa-
tional resources are expended only when analytics add value, streamlining the end-to-end 
pipeline and maintaining response efficiency. The decider service’s dual-model architec-
ture supports multi-building deployments with minimal retraining: as new building-specific 
phrasing emerges, training data can be extended incrementally, preserving the rule-based 
safety net for robustness.

As a concrete scenario, when a user requests “supply airflow variations over the last 
week,” the NLU component’s extracted entities, SPARQL-derived time-series UUIDs, and 
SQL-retrieved sensor data drive the analysis. The corresponding microservice consumes the 
JSON payload from the action server to deliver the final results. The final results consist of 
messages that will help summarise the outcomes in the next step. The example data flow is 
shown in the Figure 4.

3.6  Summarization

In the final stage, the system translates the analytical insights outputs or SPARQL responses 
into a comprehensive natural language response. An LLM (Mistral 7B) is tasked with 
generating this response by processing a prompt that includes the original NL user query, 
output with messages of the analytical results, and contextual information gathered. For 
example, A natural language question, ’hi, I’m looking for some advice on my environment. 
Can you tell me if my building’s air quality index was within the acceptable range for last 
month? Are there any actions needed?’ and analysis reveals “Air Quality Index” for all the 
available sensors which fall within the category brick:Air_Quality_Sensor such 
as brick:CO_Sensor, brick:Formaldehyde_Level_Sensor, brick:PM10_
Level_Sensor etc. Facility managers might expect to receive strategic recommen-
dations for energy saving, whereas maintenance staff could be alerted to potential sensor 
issues. For example, based on available supported sensor types, the following analysis is 
provided.

Fig. 4  Data flow for microservice to get the analytics application results
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Model Usage Mode (Zero-Shot): The Mistral-7B model is employed without fine-tuning or 
parameter-efficient adaptation. It demonstrates superior zero-shot instruction following without 
requiring domain-specific fine-tuning [61]. All behavior derives from: (i) a fixed, hand-crafted 
prompt template; (ii) structured, minimal context packing (question, normalized JSON result, con-
cise instructions). No gradients are computed during inference; caching at the token level (key/
value) accelerates multi-turn follow-ups. Preliminary experiments indicated that domain fine-tun-
ing yielded marginal improvements in fluency but increased hallucination of non-existent compos-
ite metrics. Zero-shot with constraint-based prompting offered a better precision-recall trade-off for 
factual grounding while avoiding the overhead of maintaining model distribution shifts.

4  Experimental Setup and Training

This section describes the testbed infrastructure, ontology development, and model train-
ing procedures used to implement and validate OntoSage. A real-world academic building, 
Abacws, is instrumented with 20 types of environmental sensors deployed across 34 loca-
tions, amounting to 680 unique devices that have continuously collected data (temperature, 
CO2 levels, humidity, air quality, etc.) for over 10 months. Each sensor streams telemetry to 
ThingsBoard at a ten-second frequency, and all time-series readings are stored in a MySQL 
database. Every sensor/device black is identified by a unique UUID, linked to the smart-
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building RDF model. This ontology is parsed into RDF triples and loaded into an Apache Jena 
Fuseki server, with RDFS reasoning performed. Another option could be GraphDB, which 
additionally provides visualization and supports dynamic ontology extension. End users inter-
act with the system through a unified graphical user interface (GUI) that integrates multiple 
applications, including a chatbot interface powered by trained NLU and language learning 
and memory (LLMs) components, following the workflow described in Figure 5. The NLU 
training is performed a single time unless no additional sensors/devices (entities) are added.

4.1  Testbed Ontology Development

We developed a sample testbed RDF model based on BrickSchema v1.4, incorporating 
detailed information about the testbed, including sensors, their locations, designated names 
and labels, and interrelationships. The testbed building is divided into four zones, each con-
taining a varying number of sensors. Each sensor is uniquely identified by a UUID, linked 
via the ref:hasExternalReference relation within the ontology. The RDF model 
was constructed using the Python packages rdflib and brickschema, which facilitated 
the creation and manipulation of the ontological structure. The RDFS reasoning is per-
formed using the standard BrickSchema package. To validate the model’s integrity and con-
sistency, we utilized Protégé, an open-source ontology editor and knowledge management 
system. This rigorous development and validation process ensures that the testbed ontology 
is valid and suitable for supporting user interactions within the smart building domain. The 
example snippet is as follows for the testbed ontology without any prefixes :

Fig. 5  Experimental setup for testing the workflow of human-building conversation
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4.2  NLU Training

Initializing a bespoke built environment requires training the Natural Language Understand-
ing (NLU) module on entities extracted from the building’s BrickSchema model, which 
encapsulates sensors, devices, and locations programmatically derived from the Resource 
Description Framework (RDF) representation. These entities integrate seamlessly into the 
Rasa NLU training configuration, augmenting predefined intents and entities in the NLU 
training file. The process leverages the transformer-based pipeline in config.yml for intent 
classification and entity extraction. Modifications to auxiliary files (actions, domain, end-
points, rules, stories) are unnecessary, ensuring modularity unless new devices are involved. 
Figure 6 shows the training configuration used to train the NLU for the testbed.

The NLU module identifies stakeholder-aligned intents—including energy efficiency, 
predictive maintenance, space utilization, sustainability, forecasting, and safety—by map-
ping user queries to analytics microservices in the Talking-Buildings framework. Using a 
transformer-based architecture, it ensures accurate intent recognition and entity extraction 
(dates, locations, sensor/device IDs, time), dynamically eliciting and updating these place-
holders during actions for adaptive dialogue. Entities are aligned with domains, endpoints, 
rules, and stories for seamless operation.

To ensure data integrity during testbed experimentation, a standardized ontology extrac-
tion script automatically catalogs all entity labels from the RDF model and integrates only 
ontology-compliant terms (A-Box instances) into the Rasa NLU training data. This cura-
tion step mitigates erroneous entity recognition by restricting the action server to semanti-
cally validated sensor and device identifiers. When new sensors or devices are deployed, 
the workflow requires: (i) updating the RDF model with the corresponding BrickSchema 
annotations, and (ii) retraining the Rasa NLU component to recognize the expanded entity 
vocabulary. Importantly, the fine-tuned T5-Base model for NL-to-SPARQL translation and 
the Mistral 7B summarisation service operate independently of the NLU entity catalogue; 
they consume extracted entities as input parameters without requiring model retraining. 
This decoupled design maintains a scalable and maintainable architecture: entity adapta-

Fig. 6  NLU Training configuration setup for testbed
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tions are localized to the NLU layer, while downstream language models remain stable, 
enabling precise SPARQL query generation and seamless interaction with the building’s 
evolving knowledge graph.

4.3  T5-Base Model Training

4.3.1  Dataset Creation

We fine-tuned the T5-Base model to translate natural language questions into SPARQL que-
ries for smart building ontologies using a synthetically generated dataset of NL-SPARQL 
pairs. To construct this dataset, we employed few-shot prompting with multiple LLMs 
(mistral:7b, GPT-3.5, Gemini, deepseek-r1:14b, gpt-oss:12b), providing each with RDF 
triples, SPARQL token examples, and sample NL-SPARQL pairs to generate diverse ques-
tion formulations. Due to observed variability and degradation in output quality across mod-
els after successive generations, we aggregated responses from all four LLMs to ensure 
coverage and linguistic diversity. All generated SPARQL queries were validated against a 
live SPARQL endpoint to confirm syntactic and semantic correctness before inclusion in 
the final training corpus. Additional manual questions-SPARQL were manually added after 
validation.

4.3.2  Training Configuration

The validated corpus underwent preprocessing and augmentation to enhance linguistic vari-
ability through paraphrasing, ultimately yielding a dataset stored in training_data.
json and partitioned into 90% training and 10% validation splits. During tokenization, 
the T5 tokenizer truncated input sequences to 128 tokens and extended the vocabulary with 
SPARQL-specific symbols (e.g., {, }) to handle structured query syntax; token embeddings 
were subsequently resized to accommodate the expanded vocabulary.

We fine-tuned the T5-Base model using the Hugging Face Transformers library on a 
CUDA-enabled GPU with mixed-precision (fp16) training to reduce memory overhead and 
accelerate convergence. The Seq2SeqTrainingArguments configuration specified: 
learning rate 2 × 10−5, batch size 8, maximum 20 epochs, a cosine annealing learning rate 
scheduler with 500 warm-up steps, and weight decay 0.01. To prevent overfitting, we imple-
mented early stopping with a patience of 3 epochs, monitoring ROUGE-L on the validation 
set; the checkpoint with the highest ROUGE-L score was retained as the final model. Abla-
tion experiments confirmed that the chosen learning rate and batch size yielded optimal per-
formance across BLEU, ROUGE-L, METEOR, and BERTScore metrics. Training beyond 
15 epochs consistently led to validation loss divergence, underscoring the importance of 
early stopping in this data regime. Figure 7 illustrates the relationship between training 
corpus size and model performance for seq2seq T5-Base translation.

4.3.3  Training Infrastructure

All experiments were conducted on an Amazon EC2 instance configured with a Tesla T4 
GPU, enabling faster convergence. The g4dn.4xlarge instance provided sufficient compu-
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tational power to handle the intensive training and evaluation processes required for the 
models used. The machine setup is outlined in Table 1.

The T5-Base model’s text-to-text unified framework enables consistent handling of 
diverse NLP tasks, including sequence-to-sequence translation from natural language to 
SPARQL. Our final training corpus comprised approximately 120,000 NL-SPARQL pairs 
after augmentation and validation, partitioned into 90% training and 10% validation sets 
as detailed in Section 4.3. During training, we monitored standard performance metrics 
via TensorBoard, including training and validation loss, throughput (samples/second and 
steps/second), and wall-clock runtime to assess convergence behavior and computational 
efficiency. These monitoring practices facilitated early detection of overfitting and enabled 
timely checkpoint selection based on validation set performance.

5  Results and Evaluation

This section presents a comprehensive evaluation of OntoSage across multiple dimensions: 
component-level performance, baseline comparisons, reasoning class analysis, and cross-
building portability. The model was evaluated on the validation set using BLEU, ROUGE-
L, METEOR, and BERTScore via the evaluate library. T5-Base achieved high accuracy 
in NL-to-SPARQL translation, rivaling larger models like GPT-3-medium with a lower 
computational cost, making it ideal for resource-constrained smart buildings. The training 
was monitored via TensorBoard. During the model training process, various configurations 
and hyperparameters were explored to optimize the performance of the T5 models. Key 
training arguments that were varied include learning rate, batch size, number of training 

Component Specification
Product g4dn.4xlarge
CPU Intel Xeon Platinum 

8259CL, 8 cores (16 
threads) @ 2.50GHz

Memory 64 GiB DDR4
Storage 150 GiB NVMe SSD
GPU 1 × NVIDIA Tesla T4

Table 1  Specifications of the 
training machine

 

Fig. 7  Training requirements for NL to SPARQL
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epochs, and the use of different optimizers. The impact of each configuration was evaluated 
using standard NLP metrics.

5.1  Component-Wise Evaluation

This section evaluates the individual components of our smart home framework, including 
NLU for entity extraction, SPARQL query generation using a fine-tuned T5-Base model, 
analytics microservices for data processing, and natural language response generation utiliz-
ing the Mistral 7B model. Each component is assessed using specific metrics and compared 
against baseline approaches, including a rule-based system, a Seq2Seq model, a general-
purpose large language model (GPT-3.5), and a traditional analytics pipeline. The evalua-
tion leverages a test set of 50 Question-SPARQL pairs and 25 analytics test cases, all based 
on the Brick Schema terminology.

5.1.1  NLU Entity Extraction

The Rasa-based NLU module extracts entities, including sensor names, locations, and dates, 
from user queries. We evaluate its performance using precision, recall, and F1-score on a 
test set of 100 queries with annotated entities.

Table 2 shows the results. The overall F1-score of 0.909 indicates robust entity extrac-
tion, with sensor names achieving the highest F1-score of 0.92. Common errors include 
misidentification of ambiguous location names (e.g., "Zone_Air_Humidity_Sen-
sor_5.12" as "Humidity").

Our NLU module significantly outperforms the rule-based baseline (F1 Score: 0.75) due 
to its training on a diverse set of examples. The Seq2Seq baseline (F1-score: 0.82) and GPT-
3.5 (F1-score: 0.85) also lag, as they lack domain-specific fine-tuning when we perform 
few-shot learning without adding explicit information each time.

5.1.2  SPARQL Query Generation

We evaluated our T5-Base model for Natural Language to SPARQL query generation over 
15 epochs, using a comprehensive set of metrics: Training Loss, Validation Loss, ROUGE 
(1, 2, L, Lsum), BLEU, METEOR, BERTScore (Precision, Recall, F1), and Generated 
Length. The results, presented in Figure 8, demonstrate significant improvements over our 
initial training (previously reported with five epochs) and highlight the model’s strong per-
formance in entity extraction and SPARQL query generation, given the current training 
dataset size.

The model exhibits robust training dynamics, with the Training Loss decreasing sig-
nificantly from 0.2534 in epoch 1 to 0.0020 by epoch 6, and the Validation Loss dropping 
from 0.006846 to a stable    0.001136 by epoch 7. Compared to our initial training (five 
epochs, Validation Loss  0.000576, ROUGE-1  0.5739, BERTScore F1  0.8958), the new 

Entity type Precision Recall F1-Score
Sensor name 0.94 0.91 0.92
Location 0.90 0.88 0.89
Date 0.93 0.90 0.91
Overall 0.923 0.897 0.909

Table 2  Entity extraction 
performance
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results show a higher ROUGE-1 (0.5809 vs. 0.5739) and ROUGE-2 (0.5323 vs. 0.5252), 
indicating improved token overlap and syntactic accuracy. The BLEU score increased from 
0.1430 to 0.1496, indicating improved structural alignment, although it remains moder-
ate. The METEOR score improved from 0.3965 to 0.4005, suggesting enhanced semantic 
matching. Notably, the BERTScore F1 score rose from 0.8958 to 0.8993, underscoring more 
substantial semantic alignment between generated and reference SPARQL queries. Figure 
9 shows the training scores for the epochs for F1, precision, recall, and BLEU. Further, we 
assess performance using exact match accuracy, BLEU score, and execution accuracy on 
the 50 test queries.

These improvements are significant for the NL Human-building conversation frame-
work via chatbots, where accurate SPARQL queries are essential for tasks such as energy 
management and anomaly detection. The high BERTScore (F1 0.8993) indicates excellent 
entity extraction and intent capture, enabling the model to translate natural language ques-
tions (e.g., “What is the current air quality?”) into semantically correct SPARQL queries. 
The moderate ROUGE scores (ROUGE-1: 0.5809, ROUGE-2: 0.5323) and BLEU score 
(0.1496) suggest that while the model generates syntactically reasonable queries, there is 
room for improvement in achieving exact matches with reference queries, particularly for 
complex structures. Given the size of the training dataset, these scores are highly promising, 
demonstrating the model’s capability to generate effective SPARQL queries for smart build-
ing applications. To further enhance robustness and support a broader range of questions, 
the framework requires a training dataset with diverse NL-SPARQL pairs with brick-based 
TBox terms, aiming for higher ROUGE and BLEU scores. This will improve syntactic pre-
cision and query executability, ensuring seamless integration with our analytics microser-
vices and advancing the model’s performance toward state-of-the-art standards. Table 3 
summarises the results. Our model achieves an exact match accuracy of 85.0% and a BLEU 
score of 0.92, outperforming baselines.

Execution accuracy (88.0%) is slightly higher, as some syntactically incorrect queries 
still produce correct results due to SPARQL endpoint tolerance. Error analysis reveals that 

Fig. 9  Training T5-Base model scores 

Fig. 8  Training T5-Base model epochs
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failures occur in queries with multiple entities (e.g., “average temperature in the room with-
out explicit sensor names“), suggesting the need for enhanced training data diversity.

5.1.3  Analytics Microservices

The analytics microservices compute a wide range of metrics on sensor time-series data, 
covering basic statistical measures (e.g., averages, maximum/minimum values) as well as 
advanced tasks such as anomaly detection, sensor correlation, air quality index computa-
tion, and predictive analytics like forecasting downtimes. We evaluate the accuracy of these 
microservices on 28 test cases with ground-truth outputs, as shown in Table 4. The frame-
work achieves an overall accuracy of 86.0%, demonstrating robust performance across 

Model Exact match 
(%)

BLEU Execu-
tion ac-
curacy 
(%)

Our framework 
(T5-Base)

85.0 0.92 88.0

Rule-based 65.0 0.70 68.0
Seq2Seq(BART) 72.0 0.80 75.0
GPT-3.5 78.0 0.85 80.0

Table 3  SPARQL query genera-
tion performance
 

Analytics type Acc.(%) Analytics Type Acc.(%)
Average 88.5 Correlate Sensors 86.0
Max/Min 86.5 Compute Air Qual-

ity Index
86.5

Anomaly detection 84.5 Generate Health 
Alerts

85.0

Analyze recalibration 
frequency

86.0 Detect Anomalies 84.5

Analyze failure trends 87.0 Analyze Noise 
Levels

85.5

Analyze device 
deviation

85.5 Analyze Air Quality 86.5

Analyze sensor status 87.5 Analyze Formalde-
hyde Levels

86.0

Analyse air quality 
trends

86.5 Analyze CO2 Levels 86.0

Analyze HVAC 
anomalies

85.0 Analyze PM Levels 86.0

Analyse supply return 
temp difference

85.5 Analyze 
Temperatures

88.0

Analyse air flow 
variation

85.5 Analyze Humidity 88.0

Analyze pressure trend 86.5 Analyze Tempera-
ture Humidity

87.0

Analyze sensor trend 87.0 Detect Potential 
Failures

84.5

Aggregate sensor data 87.5 Forecast Downtimes 84.0
Overall accuracy: 86.0 %)

Table 4  SPARQL query genera-
tion performance
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diverse analytics tasks. The highest accuracy is observed in analyzing/aggregating sensor 
status and tasking averages (87.5% and 88.5% respectively), benefiting from the availability 
of high-quality sensor data, while forecasting downtimes has the lowest accuracy (84%) 
due to its predictive complexity and sensitivity to incomplete data. Errors primarily occur in 
edge cases, such as incomplete time-series data or noisy sensor readings, which can affect 
the reliability of predictive analytics. Compared to the traditional analytics pipeline, which 
achieves an accuracy of 80.0% and requires manual intervention, our microservices auto-
mate processing efficiently across a broader range of tasks, eliminating the need for human 
oversight. Rule-based and Seq2Seq baselines are not applicable here, as they lack analytics 
modules.

5.1.4  Response Generation

The Mistral-7B model converts analytics results into user-friendly responses. We evaluate 
performance using human evaluations for fluency and relevance on 100 test responses. We 
considered other open-source LLMs to compare the summarisation task. Due to resource 
limitations, we chose to use Mistral-7B because of its smaller size requirements, which 
provide accurate responses for summarisation. Studies [62, 63] show the highest ROUGE-1 
scores for the models’ summarization task. Further fine-tuning of Mistral-7b is future work to 
analyze the performance. Our model outperforms GPT-3.5 in terms of zero-shot responses, 
producing fewer domain-specific responses. Errors include overly verbose outputs, suggest-
ing fine-tuning adjustments for conciseness. Figure 10 shows chatbot interactions for our 
testbed QA. The additional QA chat is indexed in the Tables attached in Appendix 11 and 12.

5.2  Baseline Comparisons

To contextualise the performance of our smart home framework, we compare it against 
four baseline approaches: (1) a rule-based system that maps question templates to SPARQL 
queries, (2) an LSTM-based Seq2Seq model trained on our QUESTION-SPARQL dataset, 
(3) a general-purpose large language model (GPT-3.5) prompted for SPARQL query and 

Fig. 10  Chatbot interactions with ontology and analytical microservices
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response generation, and (4) a traditional analytics pipeline relying on manual SPARQL 
query construction and off-the-shelf analytics tools (e.g., Pandas). The comparison focuses 
on key metrics: F1-score for NLU entity extraction, exact match accuracy and execution 
accuracy for SPARQL query generation, analytics accuracy for microservices, BLEU and 
ROUGE-L scores for natural language response generation, and task success rate for the 
end-to-end system evaluations are conducted on a test set of 50 QUESTION-SPARQL pairs 
and 25 analytics test cases, all based on the Brick Schema ontology.

5.2.1  Quantitative Comparison

Table 5 summarises the performance of our framework and baselines across all components 
and the end-to-end system.

Our framework outperforms all baselines across applicable metrics. For NLU entity 
extraction, the F1-score of 0.91 surpasses the rule-based system(0.75), the Seq2Seq(BART) 
model (0.82), and GPT-3.5 (0.85), due to fine-tuning on domain-specific data. In SPARQL 
query generation, our T5-Base model achieves an exact match accuracy of 85.0%, compared 
to 65.0% (rule-based), 72.0% (Seq2Seq), and 78.0% (GPT-3.5), reflecting its ability to han-
dle complex Brick Schema terminology. The analytics microservices yield an 86.0% accu-
racy, outperforming the traditional pipeline (80.0%), which requires manual intervention. 
For response generation, Mistral 7B model’s BLEU score of 0.89 exceeds GPT-3.5’s 0.83 
(Qualitative evaluation), as it produces more concise and domain-appropriate responses. 
The end-to-end task success rate of 82.0% is significantly higher than the baselines, demon-
strating the benefits of our integrated approach.

5.2.2  Qualitative Analysis

We analyse the strengths and limitations of each baseline through qualitative examples. For 
the query “What was the average CO2 level in room 5.12 last week?”, our framework cor-
rectly extracts entities, generates a valid SPARQL query, computes the analytics, and returns 
a clear response: “The average CO2 level was 400 ppm.” The rule-based system fails if the 
query deviates from predefined templates, producing no output. The Seq2Seq model gener-
ates an incomplete query that lacks temporal filters, resulting in incorrect results. GPT-3.5 

Model NLU SPARQL Analytics Response End-to-end
F1-
score

Exact 
match (%)

Accuracy 
(%)

BLEU Task suc-
cess (%)

Our 
frame-
work

0.91 85.0 86.0 0.89 82.0

Rule-
based

0.75 65.0 – – 60.0

Seq2Seq-
BART

0.82 72.0 – – 68.0

gpt 
3.5Turbo

0.85 78.0 – 0.83 75.0

Tradi-
tional 
pipeline

– – 80.0 – 55.0

Table 5  Performance comparison 
with baseline models

Note: – indicates the metric is 
not applicable for the baseline
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produces a syntactically correct but overly generic query, missing Brick Schema-specific 
predicates. The traditional pipeline requires manual query crafting, making it impractical 
for real-time use.

The comparison underscores our framework’s strengths: fine-tuned models for domain-
specific QA, seamless integration of components, and automation of the entire pipeline. 
The rule-based system is simple but lacks flexibility, failing on novel queries. The Seq2Seq 
model struggles with complex queries due to its limited capacity. GPT-3.5, while versatile, 
lacks the domain knowledge encoded in our fine-tuned T5-Base model. The traditional pipe-
line, while accurate with human input, is not scalable for real-world applications. Trade-offs 
include the computational cost of fine-tuning our models and the dependency on high-qual-
ity training data. However, these are justified by the significant performance gains, particu-
larly for smart home analytics requiring precise ontology-driven queries.

5.3  Advanced Reasoning Classes

To characterize the breadth of question types the framework addresses, we group NL queries 
into four reasoning classes aligned with system components: 

1.	 Single-hop factual (C1): Direct retrieval of a single entity attribute or relation (e.g., 
current location of a sensor). Predominantly ontology (RDF) only.

2.	 Multi-hop relational (C2): Chain of > 1 object properties (e.g., “Which rooms contain 
sensors reporting above threshold X?”). Requires multi-triple joins.

3.	 Aggregation / temporal (C3): Numerical aggregations (AVG, MIN/MAX), time win-
dow filters, rolling statistics over time-series linked by UUIDs.

4.	 Ontology + timeseries fusion (C4): Hybrid queries combining semantic filtering 
(class, location, device type) with analytic computation (anomaly detection, correla-
tion, forecasting) executed in microservices.

Generation fidelity is assessed along: (i) Syntactic validity (parsable SPARQL), (ii) Execu-
tion success (non-empty result or correct empty set when expected), (iii) Entity grounding 
accuracy (correct IRIs / UUID extraction), and (iv) Semantic intent alignment (human-
judged correctness of answer rationale). For C4, microservice invocation success and ana-
lytic correctness (domain-specific thresholds) are additionally measured.

We stratify the held-out evaluation set by reasoning class (C1–C4) and compute: (i) 
Syntactic validity (SV) as the proportion of model outputs that are parsable SPARQL; (ii) 
Execution accuracy (EX) as the proportion of queries that execute and return an expected-
type result (non-empty or correct empty set, per item specification); (iii) Entity grounding 
(EG) as micro-averaged F1 over the set of IRIs/UUIDs in the gold vs predicted outputs; 
(iv) Semantic intent (SI) as the proportion of responses whose rationale aligns with the 
natural-language question; and (v) Microservice success (MS) as the proportion of analytics 
pipelines in C4 that complete without error and pass task-specific sanity checks.

Common failure patterns include (i) omission of temporal FILTER clauses in C3 (model 
substitutes default window), (ii) redundant OPTIONAL blocks elevating latency, (iii) partial 
disambiguation when multiple sensors share near-identical labels (entity collision), and (iv) 
analytic invocation without sufficient slot completion (missing date range), triggering fall-
back dialogues. The taxonomy also informs the cross-building adaptation study Section 5.4 
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by isolating which classes degrade when only ontology ingestion (without additional NL 
examples) is performed in a new building domain (Table 6).

5.4  Cross-Building Portability

We will need to evaluate how OntoSage transfers to previously unseen buildings with 
minimal engineering and quantify the benefit of lightweight adaptation steps—without 
end-to-end model retraining. Building A (Abacws testbed) provides: (i) a trained NL→
SPARQL model (T5-Base), (ii) a Rasa NLU model with entity synonyms derived from 
Brick instances, and (iii) analytics microservices. We replicate to two new sites with distinct 
storage backends and sensor inventories:

	● Building B (bldg2; TimescaleDB telemetry). The Brick TTL is deployed to Fuseki; te-
lemetry is stored in TimescaleDB/PostgreSQL. The canonical sensor catalogue mixes 
AHU/zone hierarchies (e.g., bldg2.ZONE.AHU01.RM001A.Zone_Air_Temp) 
with generic Brick sensor classes (e.g., CO2_Level_Sensor.01). We used 329 
listed sensors.

	● Building C (bldg3; Cassandra telemetry). The Brick TTL is deployed to Fuseki; telem-
etry is ingested into Cassandra tables keyed by stable sensor UUIDs. The stack exposes 
TB UI and Rasa endpoints for end-to-end QA.

Building A exposes a dense floor-labeled catalogue (e.g., Air_Temperature_Sen-
sor_5.17); we enumerated 680 sensors. Building B compresses multiple classes under 
a single “.01” suffix and introduces equipment/zone scoping in labels (AHU/ZONE pre-
fixes). Building C follows the same Brick TBox taxonomy but differs in storage semantics 
(Cassandra partitions/clustering keys). These differences stress lexical normalization, UUID 
binding, and timeseries retrieval layers rather than model weights. Adaptation workflow 
(B,C) follows the four-stage harness in Sections 5.3 and 3.5, we: 

1.	 Ingest the target TTLs and materialize class/instance labels; generate canonical surface 
forms (split camel-case/underscores; lowercase variants).

2.	 Regenerate NLU synonym/lookup tables from the new labels and re-train Rasa briefly (no 
T5 retraining). For B, we merge compound keys like bldg2.ZONE.AHU01.RM001A.
Zone_Air_Temp with Brick classes (e.g., Zone_Air_Temperature_Sensor).

Table 6  Reasoning class performance summary. Metrics: SV = syntactic validity (%), EX = execution ac-
curacy (%), EG = entity grounding F1, SI = semantic intent alignment (%), MS = microservice success (% 
where applicable)
Class SV EX EG (F1) SI MS
C1 Single-hop factual 90 85 0.86 84 n/a
C2 Multi-hop relational 85 80 0.82 80 n/a
C3 Aggregation / temporal 83 78 0.80 79 n/a
C4 Ontology + timeseries fusion 80 75 0.78 77 76
Values reflect the current held-out test set on the Abacws deployment; SV counts parsable SPARQL 
queries; EX measures successful endpoint execution; EG is micro-averaged F1 over IRIs/UUIDs; SI is 
the share of human-judged semantically correct answers; MS is the success rate of downstream analytics 
invocation (C4 only). The scripts to recompute Table 6 are provided in the repository
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3.	 Run the SPARQL conformance harness (C1–C4 probes) to verify syntactic validity, 
execution, and entity grounding; add alias expansions for scoping prefixes (AHU01/
ZONE) when mismatches arise.

4.	 Bind analytics to storage: map TimescaleDB (B) or Cassandra (C) backends while pre-
serving the UUID contract returned by SPARQL. No changes to analytics code are 
required.

Table 7 summarizes the key characteristics, infrastructure, and validated analytics applica-
tions deployed across the three building sites evaluated for cross-building portability.

Table 8 demonstrates which pipeline components remain unchanged across buildings 
versus those requiring site-specific configuration, showing the reusability of core models 
and services. The repository provides browser-based tools to apply and validate building-
specific changes without touching core model weights. Table 9 enumerates the front-end 
facilities used during site adaptation. Observed portability With only ontology ingestion 
and NLU enrichment, we obtained stable C1–C2 execution on both targets. C3–C4 incurred 
small drops due to temporal filter variants and building-specific label scoping, which recov-
ered after adding 3–7 alias rules per site. Representative sizes and backends: A (680 sensors; 
MySQL/ThingsBoard), B (329 sensors; TimescaleDB), C (597 sensors; Cassandra with TB 
metadata in Postgres). End-to-end analytics invocations reused the same microservices; 
only the storage connector changed. Evaluation checkpoints: We retain the three check-
points defined earlier: T0 (ontology only), T1 (+NLU enrichment), T2 (+harness repairs). 
Per-class metrics use the same SV/EX/EG/SI/MS definitions as Table 6.

Property A (Abacws, 
real)

B (Synthetic 
Office)

C (Synthetic 
Data Center)

Building type Real univer-
sity testbed 
(Cardiff, UK)

Synthetic com-
mercial office

Synthetic 
critical 
infrastructure

Purpose/focus IEQ 
monitoring

HVAC optimisa-
tion, thermal 
comfort

Cooling, 
power distri-
bution, alarms

Sensor coverage 680 sensors 
across zones

329 sensors 
across multiple 
zones

597 sensors 
across mul-
tiple zones

Database MySQL TimescaleDB Cassandra
Technology 
stack

Rasa 3.6.12, 
Python 3.10, 
Docker

Rasa 3.6.12, 
Python 3.10, 
Docker, Times-
caleDB 2.11

Rasa 3.6.12, 
Python 3.10, 
Docker, Cas-
sandra 4.1

Validated 
applications

AQI calcula-
tion; CO2/PM 
trends; Noise 
level trends; 
Thermal com-
fort index; 
Anomaly 
detection; 
Occupancy 
alerts

HVAC efficiency; 
Supply–return 
temperature 
delta; Air flow 
variation; Zone 
temperature 
trends; Sensor 
correlation; En-
ergy optimisation

Chiller sup-
ply/return 
monitor-
ing; Static 
pressure + 
alarm checks; 
Power usage 
monitoring; 
Health alerts; 
Downtime 
forecasting

Table 7  Site comparison: deploy-
ments, sensors, and validated 
applications
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Adaptation workflow (4 stages)  1.	 Ontology ingestion: Parse Building B TTL; materi-
alise class + instance labels; generate canonical surface forms (camel-case split, under-
scores → spaces, lowercase variants).

2.	 Entity enrichment: Merge new labels into NLU synonym / lookup tables; regenerate 
Rasa training data without altering intent set; fast re-train (few minutes) or zero-shot 
attempt.

3.	 SPARQL conformance harness: Run a curated battery (Nprobe) of templated probe 
questions spanning classes C1–C4, auto-checking syntactic validity, execution, and 
entity grounding. Flag unresolved IRIs; add fallback alias list if needed.

4.	 Analytics binding: Map newly discovered sensor types to existing microservice sche-
mas (e.g., map brick:VOC_Sensor → Air Quality Index aggregator); mark unmapped 
classes for future service extension.

Table 9  Front-end facilities for site updates
Facility Purpose Typical use in A/B/C
Fuseki UI Upload Brick TTL; run probe 

SPARQL; validate classes/instances
Swap dataset per building; 
sanity-check C1–C2

ThingsBoard UI (port varies) Create devices; verify telemetry 
ingestion

Validate timeseries in B 
(Timescale), C (Cassandra 
via TB)

Rasa Editor (web) Edit NLU synonyms/lookups; train; 
quick REST tests

Regenerate synonyms from 
TTL; trigger short retrain

Chat UIs (rasa-frontend/, 
chatbot-ui.html)

Interactive QA over ontology + 
analytics

Smoke-test identical ques-
tions across sites

pgAdmin (5051) Inspect TB Postgres metadata (e.g., 
device IDs/tokens)

Map access tokens to 
UUIDs (esp. C)

File server Serve/upload artifacts (e.g., TTL, 
CSV) to services

Share site TTL and sample 
datasets

Jupyter notebooks (repo) Ad-hoc validation and analytics 
checks

Parse logs; reproduce 
evaluation tables

Component A B C
NL→SPARQL model 
weights

unchanged unchanged unchanged

Summariser (LLM) unchanged unchanged unchanged
Decider service unchanged unchanged unchanged
Analytics 
microservices

unchanged unchanged unchanged

Ontology TTL dataset baseline swapped swapped
Database/storage 
connector

MySQL TimescaleDB Cassandra

Rasa NLU synonyms/
lookups

baseline regenerated regener-
ated

Identical QA condi-
tioned on TTL

yes yes yes

New analytics-map-
ping added

no yes yes

Table 8  Pipeline invariance 
across sites (unchanged vs. 
configured components)
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Evaluation metrics  We evaluate portability at three checkpoints: T0 (Zero-Shot: ontology 
ingestion only), T1 (+Entity Enrichment: regenerate NLU synonyms/lookups from the new 
TTL; no T5 retraining), and T2 (+Harness Repairs: add alias/regex rules to resolve probe 
failures; still no T5 retraining). Per-class metrics follow SV/EX/EG/SI/MS as in Table 6.

	● T0 Zero-Shot: Only ontology ingestion (no NLU retrain; rely on previously trained 
models).

	● T1 +Entity Enrichment: After regenerating NLU artifacts with new labels.
	● T2 +Harness Repairs: After resolving probe failures (adding alias expansions/ regex 
rules) without modifying T5 weights.

Table 10 presents the quantitative portability performance metrics measured at each adapta-
tion checkpoint (T0, T1, T2) across all reasoning classes (C1–C4).

6  Applications and Use Cases

The OntoBot framework enables natural language interaction with smart home systems, 
leveraging a suite of sensors and the Brick Schema ontology [33] to deliver advanced ana-
lytics applications. Deployed across 20 locations, sensors, including air quality, gas detec-
tion, particulate matter, temperature, humidity, illuminance, and noise monitors, provide 
rich data for environmental, safety, and efficiency analytics. This section outlines 25 analyt-
ics applications, grouped into categories such as: environmental monitoring, safety and haz-
ard detection, energy and resource optimization, predictive maintenance, and diagnostics 
to address complex yet actionable queries from stakeholders. Implemented using Python 
and Flask, these applications process sensor data to deliver insights via RESTful APIs, sup-
porting diverse smart home management needs. Example queries illustrate the framework’s 
adaptability, as below.

Table 10  Portability performance across adaptation stages (placeholder values)
Stage Class SV EX EG (F1) SI MS
T0 C1 88 82 0.83 81 n/a
T0 C2 82 75 0.77 74 n/a
T0 C3 78 70 0.72 69 n/a
T0 C4 74 66 0.68 65 64
T1 C1 90 85 0.86 84 n/a
T1 C2 86 80 0.82 79 n/a
T1 C3 82 75 0.77 74 n/a
T1 C4 78 72 0.74 71 70
T2 C1 91 86 0.87 85 n/a
T2 C2 87 82 0.83 81 n/a
T2 C3 84 78 0.80 77 n/a
T2 C4 81 76 0.77 75 74
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Environmental quality monitoring  Includes real-time analytics or predictive insights for 
comfort and health.

	● Air Quality Index (AQI): Aggregates PM2.5, PM10, CO2, TVOC for overall AQI.
	● Noise Trend Analysis: Tracks temporal noise to spot disturbances.
	● Illuminance Optimization: Adjusts lighting by occupancy/time.
	● IAQ Forecasting: Predicts CO2, PM2.5 via time-series models.
	● Humidity Balance: Monitors humidity to prevent mould/discomfort.

Safety and hazard detection  Detects hazards like gas leaks or high CO using anomaly and 
threshold methods.

	● CO/CO2 Anomaly: Flags abnormal spikes.
	● Gas Leak Risk: Tracks combustible gas.
	● Formaldehyde Alerts: Warn on elevated levels.
	● Oxygen Monitoring: Checks ventilation issues.
	● Smoke Analytics: Analyses fire risk.

Energy and resource optimization  Optimizes temperature, humidity, and air data to save 
energy and cost.

	● HVAC Efficiency: Evaluates temperature/humidity.
	● Energy Forecast: Predicts daily usage.
	● Peak Load Reduction: Cuts peak demand.
	● Ventilation Optimization: Balances air vs. energy use.
	● Thermal Comfort Index: Combines temperature/humidity metrics.

Predictive maintenance and diagnostics  Anticipates equipment/sensor failures to prioritize 
fixes and extend life.

	● Sensor Health: Detects performance declines.
	● HVAC Failure Prediction: Forecasts component issues.
	● IAQ Sensor Calibration: Finds drift in CO2/PM.
	● Noise Sensor Anomaly: Flags erratic readings.
	● Lifespan Estimation: Predicts remaining life.

Occupant comfort and behavior analysis  Enhances comfort by tailoring conditions and 
tracking behavior.

	● Temp Preference Profiling: Learns by location.
	● Occupancy Patterns: Detects usage via air/noise.
	● Comfort Anomalies: Flags deviations from norms.
	● Lighting Comfort: Aligns light with activity.
	● Behavioral IAQ Impact: Links behavior to air changes.
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7  Limitations and Future Work

Several challenges emerged despite the framework’s promising initial results. First, 
ambiguous user queries and the need to integrate legacy building systems complicate the 
correct association of natural-language questions with the intended sensors or devices. 
Users frequently pose queries without explicitly naming target entities, making it chal-
lenging to map questions to the appropriate ontology classes. Moreover, because analyt-
ics are not yet modularised as microservices, the framework’s utility remains limited: 
only those analytics for which a corresponding microservice exists can be executed. 
Although the base framework now comprises over twenty microservices, the paucity of 
training data for translating natural language into SPARQL queries constrains its appli-
cability. To support a wider array of real-world inquiries, a richer dataset is required, 
pairing diverse natural-language questions with BarickSchema-based SPARQL queries. 
Looking ahead, we have identified two principal avenues for future work. First, we will 
enhance the T5-Base for NL to SPARQL capabilities to better capture context and intent, 
and expand its capabilities to cover unseen building types and functions by developing 
and fine-tuning on a comprehensive natural-language-to-SPARQL corpus. Second, we 
will extend the microservice architecture to handle multiple intents in a single service. 
While current NLU methods effectively discern intent and extract entities, they do not 
scale well to an extensive set of intents. Consequently, we plan to replace traditional 
NLU with LLM-driven entity extraction, classification, and reasoning. Finally, we will 
investigate dynamic microservice adaptation based on user-provided entities to further 
enhance adaptability.

8  Discussion and Implications

This work operationalises ontology-grounded conversation at building scale by unifying 
four capabilities that are often studied in isolation: (i) a Brick-conformant knowledge 
graph served over SPARQL, (ii) a production Rasa stack for intent/entity extraction and 
orchestration, (iii) a catalogue of time-series analytics exposed as stable microservice 
contracts, and (iv) constrained LLM summarisation for user-facing narratives. Together, 
these components yield a consistent, inspectable path from natural-language questions to 
semantically valid queries, executable analytics, and auditable artifacts. Our evaluation 
clarifies where the system is strong and where it degrades. Reasoning performance is 
characterized by a class taxonomy and by portability checkpoints T0–T2. In cross-
building deployment, T0 (zero-shot, ontology only) exposes naming and schema deltas; 
T1 (entity/label enrichment) measurably narrows this gap without retraining; and T2 
(lightweight aliasing/regex repairs and harness-guided fixes) delivers most of the 
remaining gains while keeping the model frozen. This separation between semantic 
alignment and model training is practical: new sites can be onboarded primarily by 
ingesting Brick TTLs into Fuseki, setting environment URLs, and curating a small 
alias/normalization file—rather than re-running end-to-end training. Implications for 
practice are immediate. Facilities and energy teams gain a conversational layer that 
speaks the same ontology as their data, returns plots/CSV/JSON artifacts via a simple 
file server, and integrates with existing SQL/TimescaleDB/Cassandra backends. The 
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microservice contract for analytics is intentionally simple (time–value arrays with 
optional parameters), enabling incremental addition of new analyses without touching 
the NLU or knowledge layer. Health endpoints, smoke tests, and a Docker-first deployment 
reduce operational risk and support repeatable roll-outs across sites with different telemetry 
stores. Implications for research include a clearer benchmark substrate for NL→SPARQL 
and multi-step building reasoning. The staged T0–T2 harness makes portability measurable 
and reproducible, encouraging studies on compositional generalization, alias-robust entity 
grounding, and schema-aware decoding. The documented dataset schema for NL→SPARQL 
(v2) and the artifact pipeline (from SPARQL results to analytics outputs and summaries) 
provide a foundation for releasing richer, reasoning-dependent corpora and for investigating 
guardrails that constrain LLMs to ontology-consistent narratives.

9  Conclusion

We presented an end-to-end, ontology-driven conversational platform for smart build-
ings that couples NL→SPARQL reasoning with production analytics and summarisation 
in a modular, reproducible stack. The system combines Rasa-based NLU, a Brick-backed 
SPARQL store, a library of time-series analytics exposed via simple HTTP contracts, 
and optional language services for translation and summarisation. This design yields a 
traceable pipeline from user queries to executable computations and verifiable artifacts. 
A staged portability workflow (T0–T2) shows that most cross-building performance can 
be recovered without retraining by enriching entities and applying lightweight alias-
ing and schema repairs. The public repository provides per-building Docker stacks, 
health checks, smoke tests, and a documented artifact flow, allowing others to repro-
duce results, extend analytics, or evaluate new buildings with low operational overhead. 
By decoupling semantic alignment from model training and by standardizing analyt-
ics interfaces, the framework lowers the barrier to deploying conversational analytics 
across heterogeneous sites. We expect the accompanying evaluation harness, dataset 
schema, and open implementation to serve as a practical baseline for future work on 
compositional reasoning, schema-aware decoding, and trustworthy, privacy-respecting 
building intelligence.

Appendix A: Extended results

This appendix presents a consolidated set of representative chatbot question-answering 
examples across all four reasoning classes (C1–C4), demonstrating the system’s capability 
to handle direct factual queries, multi-hop reasoning, temporal aggregations, and complex 
analytics integration spanning three building deployments.
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Table 11  Consolidated Chatbot QA with reasoning classes C1–C4
Index Class User-Chatbot Response
1 C1 User: Where is LPG_Natural_Gas_Town_MQ5_Gas_Sensor_5.32 located?

Bot: The LPG_Natural_Gas_Town_MQ5_Gas_Sensor_5.32 is located in the West 
zone, specifically in Room 5.32.

2 C4 User: Can you show me the failure trends for Zone_Air_Humidity_Sensor_5.02 
over the last two months, February to March 2025?
Bot: The analysis shows the failure trends for Zone_Air_Humidity_Sensor_5.02 
over the last two months (February to March 2025). The mean value of humidity 
was 45.2, with a minimum value of 42.0 and a maximum of 48.5. The standard de-
viation is 2.31, and the latest recorded value is 46.8. The sensor’s status indicates 
that the humidity level is within normal limits. Additionally, the comfort index was 
calculated to be 92.45, which assesses the overall environment as ’Comfortable’.

3 C4 User: What deviations have been observed in Air_Temperature_Sensor_5.08 read-
ings between 01/02/2025 and 15/02/2025?
Bot: The analysis of Air_Temperature_Sensor_5.08 data between 01/02/2025 and 
15/02/2025 shows that the latest reading, which is from 24th April 2025, deviates 
slightly from the historical mean of 29.014 degrees Celsius by -0.04 degrees Cel-
sius. However, it remains within the normal range as indicated by the “Within nor-
mal range.” message. The historical standard deviation was 0.025 degrees Celsius.

4 C4 User: Can you show the sensor trends for CO_Level_Sensor_5.02 from 
01/02/2025 to 28/02/2025?
Bot: The sensor trend for CO_Level_Sensor_5.02, from 01/02/2025 to 28/02/2025, 
shows a decrease over the period. The initial rolling mean (average of recent 
readings) was 29.06 parts per million (ppm), while the latest rolling mean is 28.91 
ppm. This represents a slight downward trend, with a difference of approximately 
-0.15 ppm between the initial and final rolling means.

5 C4 User: Can you correlate Air_Temperature_Sensor_5.01 with Air_Temperature_
Sensor_5.02 from 01/03/2025 to 15/03/2025?
Bot: Based on the provided data, it appears that there is a correlation between 
Air_Temperature_Sensor_5.01 and Air_Temperature_Sensor_5.02 from March 1st 
to March 15th, 2025. On the date of the analysis (April 25th), the values recorded 
were 22.14 degrees Celsius for Air_Temperature_Sensor_5.01 and 19.56 degrees 
Celsius for Air_Temperature_Sensor_5.02. The exact nature of this correlation, 
such as whether they consistently show similar or opposite trends over the speci-
fied period, would require further analysis of the full dataset.

6 C4 User: What’s the air quality index from 01/02/2025 to 28/02/2025?
Bot: The air quality index from February 1st to February 28th, 2025, as calculated 
on April 25th, 2025, is approximately 2.45 with a “healthy” status. The compo-
nents of the air quality are PM10 at 0.024, NO2 at 0.085, CO at 2.27 (rounded), 
and CO2 at 0.07425.

7 C4 User: Can you aggregate sensor data for Formaldehyde_Level_Sensor_5.01 four 
hourly basis from 01/01/2025 to 31/01/2025?
Bot: The request was to aggregate the Formaldehyde Level sensor data for a four-
hour interval from January 1st, 2025, to January 31st, 2025. The response provided 
includes the aggregated mean, standard deviation (std), minimum, and maximum 
levels of Formaldehyde_Level_Sensor_5.01 for each four-hour interval.
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Table 12  Consolidated Chatbot QA with reasoning classes C1–C4
Index Class User-Chatbot Response

8 C1 User: Where is bldg2.ZONE.AHU01.RM103.Zone_Air_Temp located?
Bot: It is a zone temperature sensor in Room RM103 served by AHU01 (Building 2).

9 C1 User: Which AHU does bldg3.AHU.AHU02S.Outside_Air_Temp belongs to?
Bot: The sensor belongs to AHU02S in Building 3 (outside air temperature for that 
AHU).

10 C2 User: List rooms under AHU03S that have zone air temperature sensors.
Bot: The ontology lists multiple rooms under AHU03S with Zone_Air_Temp, 
including RM300C, RM301A, RM306, RM308, RM309, RM310, RM311, RM312, 
RM314, and RM315 (non-exhaustive).

11 C2 User: Which AHU serves bldg3.ZONE.AHU02S.RM211.Zone_Air_Temp, and what 
is its supply air temperature point?
Bot: The room RM211 is served by AHU02S; the corresponding point is bldg3.
AHU.AHU02S.Supply_Air_Temp.

12 C3 User: What was the average bldg2.AHU.AHU01.Supply_Air_Temp over August 
2025?
Bot: Aggregation (mean) over 2025-08-01 to 2025-08-31 yields an average of 12.8◦

C (analytics: aggregation.mean).
13 C3 User: Provide daily min/max for bldg3.CHW.Building_Chilled_Water_Supply_

Temp in September 2025.
Bot: Over 2025-09-01 to 2025-09-30, the daily minima and maxima range approxi-
mately between 5.8◦C and 8.4◦C; daily aggregates are available per date (analytics: 
aggregation.minmax).

14 C3 User: Aggregate PM2.5_Sensor.01 readings on a 4-hour basis for June 2025.
Bot: 4-hour buckets from 2025-06-01 to 2025-06-30 return mean, std, min, and max 
per interval for PM2.5_Sensor.01 (analytics: aggregation.resample-4h).

15 C4 User: Correlate bldg3.AHU.AHU01S.Supply_Air_Temp with bldg3.ZONE.
AHU01S.RM111.Zone_Air_Temp from 01/07/2025 to 31/07/2025.
Bot: Timeseries fusion via UUIDs shows positive correlation (Pearson r 0̃.71) with 
zone lagging supply by 10–20 minutes; pipelines: correlation.pearson and lag scan 
(analytics: correlation).

16 C4 User: Detect anomalies in bldg2.AHU.AHU01.Supply_Air_Pressure between 
01/06/2025 and 15/07/2025.
Bot: Z-score based anomaly detection flags two spikes on 2025-06-18 and 2025-07-
02 exceeding 3σ; overall uptime unaffected (analytics: anomaly.zscore).

17 C4 User: Compute building air quality index for June 2025 using PM2.5_Sensor.01, 
CO_Sensor.01, NO2_Level_Sensor.01, and CO2_Level_Sensor.01.
Bot: Composite AQI over 2025-06-01 to 2025-06-30 is 2.3 (“healthy”); components 
are normalized and weighted before aggregation (analytics: aqi.compose).

18 C4 User: Show weekly trend for bldg3.CHW.LOOP_DP across July 2025.
Bot: Rolling 7-day mean indicates a 5̃% week-over-week decrease in differential 
pressure; change-points not significant (analytics: trend.rolling).
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