World Wide Web (2026) 29:17
https://doi.org/10.1007/511280-026-01403-0

RESEARCH |

®)

Check for
updates

OntoSage: Intelligent Human-Building Smartbot for
Semantic Smart Building Question Answering

Suhas Devmane' - Omer Rana' - Charith Perera’

Received: 30 April 2025 / Revised: 13 October 2025 / Accepted: 6 January 2026
©The Author(s) 2026

Abstract

Smart buildings remain heterogeneous across sensing infrastructure, metadata quality,
legacy protocols, and analytics requirements, hindering reusable human-building natu-
ral language interfaces. We present OntoSage, a modular framework for ontologically
grounded question answering (QA) and fulfillment of analytic intents over smart build-
ing data. The framework (i) leverages Brick Schema-based RDF model with reasoning
capabilities, (ii) translates natural language (NL) questions into executable SPARQL via a
fine-tuned seq2seq model (T5-Base), and (iii) orchestrates portable analytics microservices
that operate on time-series sensor data referenced through ontology-linked UUIDs. A sum-
marization component (open-weights Mistral-7B, zero-shot) converts structured SPARQL/
SQL/analytic outputs into concise stakeholder-aware responses without requiring task-
specific fine-tuning. We categorize QA complexity into four reasoning classes and report
component-level execution metrics supporting these categories. To address portability,
we formalize a lightweight adaptation workflow (ontology ingestion—entity enrichment
for NLU—-NL2SPARQL validity checks—analytics binding) designed to minimize per-
building retraining. Reproducibility is enabled through public source code, synthetic and
ontology-derived datasets, Docker/Compose service descriptors, and documented support-
ing scripts “(https://github.com/suhasdevmane/OntoBot)”. The developers’ documentation
is publicly accessible “(https://ontosage-docs.github.i0)”.

Keywords Human-Building Interaction (HBI) - Internet of Things (IoT) - Smart
Buildings - Semantic Web - Ontologies - Large Language Models(LLMs)

P< Suhas Devmane
DevmaneSP1@cardiff.ac.uk

Omer Rana
RanaOF @cardiff.ac.uk

Charith Perera
PereraC@cardiff.ac.uk

' School of Computer Science and Informatic, Cardiff University, Cathays, Cardiff CF24 4AG,
Wales, UK

Published online: 20 January 2026 @ Springer

https://doi.org/10.1007/s11280-026-01403-0
https://github.com/suhasdevmane/OntoBot
https://ontosage-docs.github.io
http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-026-01403-0&domain=pdf&date_stamp=2026-1-17

17 Page 2 of 38 World Wide Web (2026) 29:17

1 Introduction

Human—Building Interaction (HBI) studies how occupants, cyber-physical infrastructure,
and data services co-evolve in intelligent built environments [1, 2]. Contemporary smart
buildings integrate heterogeneous sensing (environmental, HVAC, air quality, etc.), var-
ied middleware, inconsistent metadata curation, and siloed Building Management Sys-
tems (BMS). This fragmentation impedes the development of universal, reusable natural
language (NL) interfaces that would allow stakeholders (facility managers, sustainability
officers, maintenance staff, visitors, etc.) to interrogate both semantic knowledge (ontolo-
gies) and live/historical time-series data. Commodity voice/NL platforms (Alexa, Google
Home, HomeKit, SmartThings) provide intent execution abstractions but (i) lack explicit
semantic grounding in standard building ontologies, (ii) cannot express multi-hop or
ontology-+timeseries fused analytical queries, and (iii) require opaque, proprietary adapta-
tion. Generic large language models (LLMs) exhibit fluent dialogue yet hallucinate unseen
device semantics and offer no built-in alignment to Brick-structured relational queries.

Three persistent gaps motivate this work: (1) Reasoning coverage- existing prototypes
emphasize direct entity lookups rather than aggregated, multi-relation, or temporal/analytic
intents; (2) Portability-per-building re-engineering of training data and pipeline configu-
ration limits scalable deployment; (3) Reproducibility and extendability- NL—SPARQL
demonstrations omit dataset construction details, versioned artifacts, or adaptation work-
flows for future advancements. Moreover, no domain-specific LLMs for the smart buildings
domain are available for NL-to-SPARQL translation in QA.

We present OntoSage, a modular ontology-based framework for QA and analytics orches-
tration that converts natural language questions into SPARQL. It links results to time-series
analytics microservices and summarizes outcomes for users. The Brick Schema [3] serves
as a shared semantic foundation, allowing each asset to expose a UUID that connects RDF
descriptors to structured sensor telemetry. A fine-tuned T5-Base seq2seq model performs
NL—SPARQL translation; a domain-aware Rasa Natural Language Understanding (NLU)
layer mediates entity normalization and slot completion; portable analytics microservices
receive normalized JSON payloads; an open-weights Mistral-7B model (zero-shot) pro-
duces human-readable rationales. This paper makes the following contributions to HBI and
semantic smart building QA:

1. Unified Reasoning Taxonomy: We define four NL reasoning classes (single-hop fac-
tual, multi-hop relational, aggregation/temporal, ontology-+timeseries fusion) and align
component evaluation metrics to each.

2. Portable Adaptation Workflow: A minimal four-stage process (ontology ingestion—
entity enrichment—NL to SPARQL conformance validation—analytics binding)
enabling reuse across buildings with reduced retraining.

3. Open Reproducibility Stack: Public release of code, synthetic + ontology-derived NL—
SPARQL pairs, Docker/Compose deployment descriptors, training/evaluation scripts,
and developers’ documentation for extending goals.

4. Microservice Analytics Layer: Extensible, decoupled analytic endpoints (anomaly
detection, comfort indices, air quality aggregation, correlation, forecasting, etc.) call-
able directly from SPARQL-resolved entity UUIDs.

@ Springer

World Wide Web (2026) 29:17 Page 3 of 38 17

5. Empirical Component Evaluation: A quantitative assessment of NLU entity extraction,
SPARQL generation, analytics accuracy, and summarization quality based on a real-
world testbed.

6. Limitations and Roadmap Articulation: A transparent analysis of challenges in multi-
entity disambiguation, long-tail intent coverage, and dataset breadth constraints.

We address the following research questions:

1. RQI1 (System): What system components and architecture are required to support
human-building conversations with smart buildings, enabling multi-persona question
answering at scale?

2. RQ2 (Applications): How can a system be constructed for heterogeneous building envi-
ronments so that non-expert users can contribute to mutual human-building benefits?

3. RQ3 (Analytics): How can portable analytic applications be implemented for the built
environment, covering installed systems to answer analytical questions using data col-
lected in smart buildings?

The primary objectives of this research are:

o Develop a framework that enables diverse users, from guests to experts, to interact with
smart buildings in natural language, providing a range of analytical and operational
insights of the built environment to enhance building health and sustainability.

e Fine-tune LLMs and develop adaptable algorithms as microservices that allow users
to leverage real-time and historical building data for multiple objectives that can be
deployed in heterogeneous built environments.

e Establish a standardized, conversational Al-driven approach with NLU and LLMs to
effortlessly incorporate new building types and components into the framework, mini-
mizing reconfiguration while ensuring robust, domain-specific responses.

We introduce a scalable framework validated through a multi-month deployment in a real-
world building testbed with diverse environmental sensors. Its modular design allows for
future analytical extensions and replication across buildings. Paper organization: Sec-
tion 2 reviews related work in NL-to-SPARQL, smart building ontologies, and conversa-
tional agents. Section 3 outlines the system architecture and model design, including the
NLU pipeline, NL-to-SPARQL translation, and analytics orchestration. Section 4 describes
the experimental setup, covering testbed development, NLU training, and TS model train-
ing. Section 5 presents component evaluations, baseline comparisons, reasoning class
analysis, and cross-building portability. Section 6 outlines analytics applications. Section 7
states limitations and future enhancements. Section 8 examines implications, and Section 9
concludes. Extended chatbot QA examples can be found in Appendix A.

2 Related Work

The literature relevant to OntoSage spans (i) NL—SPARQL translation, (ii) semantic/ontol-
ogy modeling for buildings, and (iii) conversational agents for HBI.

@ Springer

17 Page 4 of 38 World Wide Web (2026) 29:17

2.1 NL to SPARQL Query Generation

Early template and rule-driven pipelines [4, 5] have largely given way to encoder-decoder
Transformers (e.g., BART, T5) and hybrid entity-linking augmented models [6—11].
Recent work leverages large language models for broader generalization and composi-
tionality [12—16], yet challenges persist for multi-hop joins, temporal aggregation, and
faithful entity grounding-core reasoning classes we explicitly benchmark. Translating
natural language queries into structured SPARQL queries for knowledge graph interro-
gation has been a cornerstone of recent research. Early efforts, such as [4], applied NLP
techniques to datasets like Stanford SQuAD, enabling natural language query process-
ing and laying the foundation for subsequent advancements. However, these approaches
often relied on template-based systems, which required manual effort to construct domain-
specific query templates and struggled to adapt to new knowledge graphs [5]. To over-
come these limitations, recent studies have explored end-to-end deep learning frameworks
and hybrid systems. For instance, [6] demonstrated the efficacy of fine-tuning pre-trained
encoder-decoder models, such as BART [17] and T5 [7], to generate SPARQL queries.
This approach handles unseen entities by translating entity IDS into text labels. Similarly,
[18] evaluated pre-trained versus non-pre-trained models, demonstrating that techniques
such as question annotation and copy mechanisms improve query generation accuracy.
Transformer-based models have further advanced this domain. Fine-tuned models, such
as TS5 and SPBERT [8, 9], achieve superior performance on benchmark datasets compared
to task-specific models. Hybrid approaches combining neural machine translation (NMT)
with entity linking have also gained traction. Moreover,[10] and [11] integrated NMT
with dedicated entity linking to bridge the gap between ambiguous natural language and
structured SPARQL queries, a strategy reinforced by [19] and [20]. The rise of large lan-
guage models (LLMs) has accelerated progress, with [12—15], and [16] leveraging LLMs
to encode linguistic features and embed knowledge graphs, enabling executable SPARQL
queries for complex domains.

2.2 Ontologies for Smart Buildings

The evolution of smart building ontologies reflects a shift from narrow, energy-focused sche-
mas to robust, interoperable metadata standards. Early frameworks such as Green Building
XML (gbXML) and the Building Energy Data Exchange Specification (BEDES) [21-23]
laid the groundwork for energy modeling and data exchange, but their limited expressiv-
ity constrained broader interoperability. Subsequent efforts addressed these limitations
by introducing standardized vocabularies and extensible frameworks. Notable examples
include Project Haystack, which enhanced semantic modeling for building management
systems, and Industry Foundation Classes (IFC), which supported design-phase interop-
erability in architecture and engineering domains [24, 25]. The emergence of IoT-centric
ontologies, such as the Smart Appliances REFerence Ontology (SAREF), provided struc-
tured representations for smart appliances, thereby advancing device interoperability and
application integration [26-29]. However, these schema often lacked adaptability across
diverse building types. More flexible approaches were introduced through the Building
Topology Ontology (BOT) and Semantic Sensor Network (SSN)/SOSA standards, both of

@ Springer

World Wide Web (2026) 29:17 Page 5 of 38 17

which leveraged RDF-based models to address operational and sensing requirements while
remaining specialized to particular domains [30-32].

The development of the Brick ontology represents a significant milestone in this progres-
sion. Brick offers an open-source, RDF-based schema that prioritizes completeness, extensi-
bility, and uniformity of metadata for both physical and virtual assets in smart buildings [33,
34]. Unlike traditional OWL-based ontologies constrained by Description Logic(DL), Brick
utilizes RDF and RDFS semantics, facilitating more nuanced modeling of sensor networks
and diverse building subsystems. Despite these advances, ontologies still face challenges in
automated cross-building alignment and the seamless coupling of semantic descriptors with
live analytic microservices. Developing building-agnostic, portable metadata frameworks
that integrate with conversational Al and tap into underutilized IoT sensor data (often stored
in structural databases) remains an open research frontier. Our work addresses these gaps by
introducing a UUID-based linkage and portability workflow, which enhances cross-building
interoperability and supports real-time analytic integration.

2.3 Conversational Agents in HBI

Conversational agents, also known as chatbots, have become pivotal interfaces for
human-building interaction (HBI), enabling natural language interactions with intelligent
environments. Traditional chatbots, relying on pattern-matching rules, offered limited con-
versational capabilities [35], which highlighted the need to formalize both rational (reason-
ing and NLP) and intuitive (semantic) components for human-like dialogue. Recent NLP
advances, particularly transformer-based models and LLMs like GPT, have transformed
chatbot development by enabling flexible, context-aware dialogue through prompting [36].
Frameworks like Rasa [37] and Dialogflow, which are widely used for intent recogni-
tion and entity extraction, have been instrumental. For instance, [38] integrated Rasa with
SPARQL generation modules to address query ambiguity, while [39] combined Rasa-based
entity extraction with custom SPARQL modules for improved question-answering accu-
racy. Linguistic rule-based systems, such as those employing syntactic ambiguity resolution
[40], have further enhanced intent detection.

Al-based methods, including Transformers and reinforcement learning [36], dominate
chatbot development for IoT, supporting applications such as patient monitoring [41],
human activity recognition [42, 43], security [44], and energy efficiency [45]. Ontology-
based chatbots have demonstrated versatility across various domains, including tutoring
[46], e-commerce [47], and healthcare [48], by leveraging ontologies to enhance response
generation. Domain-specific systems, such as [49] for Korean query answering and KBot
[50] for smart home interactions, merge linked data with machine learning (ML) for inter-
active question answering. Recent HBI studies emphasize user psychology and multimodal
interactions. For example, [51] found audio output modalities influence perceptions of sen-
sitive information retrieval, while [52] highlighted challenges in privacy, multi-user experi-
ences, and design considerations [53—58]. Systems like TAO [59], combining ontological
and unsupervised clustering approaches, can infer rich contexts from daily activities, under-
scoring the potential of integrating semantic technologies with conversational Al for adap-
tive, user-friendly smart building interfaces.

@ Springer

17 Page 6 of 38 World Wide Web (2026) 29:17

3 System Architecture and Design

This section presents the OntoSage framework’s architecture, encompassing foundational
requirements Section 3.1, core system components Section 3.2, model architecture includ-
ing NLU and NL-to-SPARQL translation Section 3.3, post-processing and data retrieval
Section 3.4, analytics pipeline Section 3.5, and summarization Section 3.6. These elements
collectively enable multi-building semantic question answering over diverse building infra-
structures. Sequence-to-sequence LLMs have been used in our previous work [60], and the
optimization of SPARQL for domain-specific queries points to promising directions for the
future.

3.1 Architectural Requirements

Exploring current technologies and open-source components to facilitate the human-build-
ing conversation for multiple goals, we found that we need a standard description logic and
a language to communicate domain knowledge, as well as a pipeline consisting of microser-
vices that will perform their specific tasks when supplied with the right entities. Figure 1
illustrates the system overview with its main components: Graphical User Interfaces (GUI)
and backend processes. The GUI connects to different services, enabling user communica-
tion with smart buildings, and consists of interconnected services necessary to complete the
conversation. It provides natural language question answering (NLQA) in smart building
environments by integrating semantic ontologies, large language models (LLMs), a modu-
lar backend, and a conversational Al interface.

The following is a list of system components required to assemble a meaningful QA
approach addressing the first research objective (RQ 1).

e Semantic Description (BrickSchema Ontology): Utilises the BrickSchema terminology
to provide a comprehensive semantic description of physical, logical, and virtual assets,
capturing their relationships within the smart building ecosystem.

® Ontology Reasoning (SHACL, OWLRL, VBIS): Employs SHACL, OWLRL, and
VBIS to validate RDF data against predefined shapes, ensuring compliance with con-
straints and enriching the ontology with domain-specific knowledge.

o Ontology Query Language (SPARQL): Leverages SPARQL to efficiently retrieve in-
formation from RDF databases, enabling precise querying within the context of Brick-
Schema terminology and the Building RDF model.

e RDF Triple Store (Apache Jena Fuseki): We chose Apache Jena Fuseki from other open-
source SPARQL servers to host the smart building model. It can run as a standalone

Fig. 1 Overview of system
. Buildir
architecture ooy ||

BE) oo Summary) Wicroservies

Results
Rasa SDK
. Custom
Action Server ————> Actions

e Tﬂ Action 1
Action 2

Rasa Open-Source Action 3

Agent Dialogue Policies .
Action n
NLU Pipeline

@ Springer

World Wide Web (2026) 29:17 Page 7 of 38 17

server or be embedded in an application. Fuseki provides the SPARQL protocol and
SPARQL Graph Store protocol for querying and updating data. It is integrated with
TDB to provide robust, transactional, persistent storage, and related reasoners can be
applied to the RDF models to extend the RDF Model Terminologies by performing
logical inferences.

e Conversational Chatbot (RaSa Open Source): Integrates RaSa Open Source to enable
interactions with the smart building system, extracting entities and offering fallback
mechanisms to gather additional user information using NLU.

o Timeseries Database (Postgresql/Mysql, etc.): Employs a structured database to store
large volumes of sensor/device data from the smart building. All timeseries data is
uniquely identified in the building’s RDF Model for efficient retrieval and processing.

e [oT Platform (ThingsBoard): Utilizes ThingsBoard to collect, process, visualize, and
analyze data from IoT devices, seamlessly integrated with PostgreSQL and PgAdmin
for robust data management and administration.

e Natural Language to SPARQL Translation (TS5 (t5-base)): Applies the TS (t5-base)
model to translate natural language questions into SPARQL queries, leveraging natural
language understanding entities for accuracy.

o SPARQL Summarisation (Mistral 7B): Open source Seq2Seq models are explored, and
Mistral 7B LLMs are used to generate concise and meaningful summaries of responses
from the knowledge base, database, and analytic microservices to enhance user com-
prehension.

e Training Datasets (Custom): Employs custom datasets to train Seq2Seq LLMs for natu-
ral language to SPARQL translation, embedding domain-specific knowledge for im-
proved performance.

e Analytics Operation on the data (Microservices): A server hosting analytic applications
to perform data analytics. Rasa’s NLU is trained on brick schema terminology to extract
Entities, and the related timeseries data is used for analytics.

3.2 Core Components and Data Flow
3.2.1 Core Components

Imagine a smart built environment, equipped with multiple systems that comprise a sensor/
device network deployed across various zones, as shown in Figure 2. This installed built
environment is modeled with a formal BrickSchema terminology, a widely adopted schema
chosen for its standardized vocabulary and extensible structure. The ontology, represented
in Turtle (TTL) format, is parsed into RDF triples and stored in a triple store (SPARQL
server) with reasoning capabilities, such as GraphDB or Apache Jena Fuseki. On the other
hand, all such devices’ data is stored in structured databases such as MySQL or PostgreSQL.
Each sensor/device with its unique time series reference ID is added to the RDF Model of
the building, with spatial relationships and properties.

On the User side, the framework leverages ’Rasa Open Source’ for dialogue manage-
ment, intent recognition, and entity extraction. Rasa’s NLU pipeline is configured using
YAML files that define intents, entities, lookup tables, regex patterns, synonyms, and dia-
logue rules. A key design goal is to identify smart building-specific entities, such as sensor
names, dates, and locations, and analyze the type context during conversations. Ontology-

@ Springer

17 Page 8 of 38 World Wide Web (2026) 29:17

Reasoner m

l) Query
Smart Building ———SPARQL Results——UUIDs: Yes—)» Builder Query

Onfology €—SPARQL Query A

= o Results
Built Environment UUIDs: No

Analytics

Analytics <— .
" Microservices

T5 trained Mistral 7B |

{NLZSPARQL} Fummarization #—Resu"s
A

Entities

Train on
new data
trigger

NLU model

Entitie:

.0
- " ﬂ(—}
[3 ' i
User G q
seroups Summar‘y < Docs
Action Pripeline workflow

Fig. 2 Machine learning model and custom actions flow

derived entities from the RDF graph are embedded directly into Rasa’s training data to
improve entity recognition. Rasa includes a fallback policy to handle ambiguous inputs,
redirecting the user to a data-gathering phase to collect all required slots. Once all neces-
sary fields are filled, the ‘Rasa SDK Action Server* triggers corresponding custom actions,
defined in Python, which execute database queries, API calls, or analytical routines.

To enable intelligent and context-aware interactions with this structured data, we fine-
tuned T5 models to generate SPARQL queries from natural language questions. These
dynamically constructed queries interact with the locally chosen SPARQL server, retrieving
precise results that accurately reflect the user’s intent. Based on the SPARQL response, col-
lected UUIDS are used in parallel to retrieve time-series data from the database through a
standard SQL query template (for chosen database) that includes entity placeholders. The
framework employs a dual-model architecture to provide high-quality responses. A fine-
tuned TS5 model handles query generation, while a Mistral 7B model summarises responses,
whether from SPARQL, or SQL and analytic microservices. This combination ensures
both accuracy in retrieval and clarity in output. The summarisation endpoint is effective at
describing responses and providing interpretable insights for end-users.

ThingsBoard, an open-source IoT platform, enables device visualization, data flow
management, real-time monitoring, alerting, and administrative control within local net-
works. It supports multiple sensor protocols and stores data in structured databases for
efficient access. Tools such as Adminer and PgAdmin assist with database management
and debugging, while Jupyter Notebooks integrate easily for rapid prototyping. Extensi-
ble analytic microservices operate independently to process complex sensor datasets, with
results from SPARQL endpoints, databases, and analytics routed through an action server
for clear summaries. By combining BrickSchema, SPARQL, Rasa, structured databases,
analytic microservices, and advanced language models, the framework delivers a scalable
and semantically rich NLQA solution for smart buildings, promoting intuitive interaction,
structured querying, and sustainable operations.

@ Springer

World Wide Web (2026) 29:17 Page 9 of 38 17

3.2.2 Data Flow

User interaction begins with a chatbot interface, where users pose queries related to the
environment, sensor data, or building-specific analytics. These inputs are first processed
by an NLU pipeline powered by Rasa Open Source. The NLU model is trained using data
derived from the smart building ontology (with TBox terms from Brick V1.4), enabling
it to accurately classify intents and extract key entities such as sensor types(names), loca-
tions, dates, and analytic terms. To facilitate this training, we implemented a dedicated func-
tion that ingests the ontology, extracts relevant entity labels (sensors-uuids mappings), and
incorporates them into the training data as synonyms, lookup tables, and regex patterns.
The smart building ontology model must use TBox (Terminological Box), i.e., the vocabu-
lary, structure, and relationships between concepts (classes and properties) of BrickSchema
(V1.4) terminology as a basis. When the NLU component identifies an intent, it forwards
the structured output (intent and entities) to the custom action module. Even if the intent
is classified as out of scope, the framework is designed to route the input to a fallback
action for robustness testing. Within the custom action script, the first key component is
an implementation of a fine-tuned T5 model trained to perform NL2SPARQL translation.
This model receives the user’s prompt, enhanced with extracted entities, and generates a
SPARQL query representing the user’s question. The generated SPARQL query is executed
against the smart building ontology, which is hosted in an SPARQL server. Ontological
reasoning is facilitated via a reasoner (currently supports rdfs, owlrl, vbis, shacl reasoning,
implemented in a Jupyter environment) that supports relationship inference and schema
validation. The resulting RDF data is returned in JSON format for further processing. A
decision point in the workflow checks whether the SPARQL result contains unique identi-
fiers (UUIDS), which indicate links to time-series sensor data stored in relational databases.
If such UUIDS are present, the query is passed to a query builder module, which populates
a predefined standard SQL query template (unique for the employed database type) with
appropriate entity values such as sensor UUIDs, and date range. The constructed SQL query
is sent to a chosen structural database endpoint, which returns the result as JSON. At the
same time, when UUIDs are present in the SPARQL response, scripts trigger a service call
to decide whether to need to perform analytics and which analytics application to perform
with a decider service Section 3.5.1.

The response (whether derived from SPARQL or SQL) is then routed to the analyt-
ics layer Section 3.5. This component may invoke external analytics microservices to per-
form advanced computations such as trend analysis, aggregation, or anomaly detection.
These microservices can also produce external references, graphical summaries, and addi-
tional JSON outputs to enhance interpretability. Once analytics are complete, the results
are passed to a summarisation module powered by the Mistral 7B model. This model can
generate coherent and context-aware summaries, transforming raw RDF triples or struc-
tured database responses into fluent, user-friendly, stakeholder profile-based explanations.
In cases where the SPARQL query does not yield time-series data, the output is immediately
forwarded to the summarisation stage without invoking the SQL and analytics layer.

The final summarised response is sent back to the chatbot interface and presented to the
user. For traceability and debugging, all query responses and analytics results are also stored/
shared in JSON/png format, which can be accessed via UI and analyzed deeply through an
integrated Jupyter Notebook interface. The system includes a training trigger mechanism

@ Springer

17 Page 10 of 38 World Wide Web (2026) 29:17

that detects newly added building data or changes in ontology structure to ensure adapt-
ability. This mechanism periodically re-trains the NL2SPARQL model, ensuring the pipe-
line remains aligned with the evolving smart building environment. The framework enables
end-users, regardless of technical expertise, to query complex building systems and receive
actionable insights in natural language.

3.3 Model Architecture

3.3.1 NLU Pipeline

At the front end, a Rasa-powered conversational agent captures natural language queries
and converts them into structured requests for downstream processing. The unique NLU
model for a single built environment within Rasa is trained to detect key intents and extract
relevant entities such as sensor types, time ranges, and locations from user queries using
a custom pipeline specified in the config.yml file. For instance, when a user inquires,
“Which rooms currently have a temperature above the recommended setpoint (e.g.,
24°C)?”, the NLU component identifies the intent as query temperature data and
extracts entities such as temperature sensor,Room x,start date,end date,
and setpoint.

As shown in the Figure 3, the Rasa NLU pipeline processes user queries, such as “Which
rooms currently have a temperature above the recommended setpoint (e.g., 24°C)?”,

Which rooms currently have a temperature
above the recommended setpoint (e.g., 24°C)?

Raw Text

WhitespaceTokenizer

Tokens Tokens

Token: [Which', 'rooms’,"24'", *°C', '?']

Tokens
RegexFeaturizer CountVectorFeaturizer
ixicalSyntacticFeaturizer

Regex Features

RegexEntityExtractor

Regex Features Lex/Syn Features BoW Vectors
— - Entities
Entities : {setpoint: '24 °C'}
DucklingEntityExtractor
DIETClassifier

(Processing Intent and Entities j IRER(E EQreTy (BmperEiiie G

"Entities:"

"temperature_sensor: 'temperature™
Fig. 3 Rasa NLU pipeline for intent classification and entity extraction

"Room_x: 'rooms"
"setpoint: '24°C"

"analysis_type: setpoint_check"
"start date: None"
"end date: None"

@ Springer

World Wide Web (2026) 29:17 Page 11 of 38 17

through a series of components to classify intents and extract entities, followed by dialogue
management to trigger appropriate actions. Initially, the WhitespaceTokenizer splits
the input text into tokens based on whitespace, producing a list like [“Which”, “rooms”,

, “24°C)?”’]. The RegexFeaturizer then applies regular expression patterns defined
in the training data, such as \d+°C for temperatures or setpoint for specific terms, to
generate features for entities and intents. Next, the RegexEntityExtractor identifies
entities directly using these patterns, yielding a list as shown in the following box:

[
{"entity”: "temperature", "value": "20", "start": 45, "end": 47},
{"entity”: "setpoint ™", "value": "25", "gtart": 33, "end": 35}
]

The LexicalSyntacticFeaturizer enriches tokens with lexical features (e.g.,
part-of-speech tags like “rooms: NOUN”) and syntactic features (e.g., dependency parsing),
providing linguistic context to aid downstream components. The CountVectorsFea-
turizer converts the text into a numerical bag-of-words vector, enabling intent classifica-
tion. The DIETClassifier, a transformer-based model, leverages features from all prior
components to jointly classify the intent (e.g., action question to brickbot with
a confidence score) and refine entities (e.g., temperature sensor, Room x, set-
point). Alongside, the Duckling server is running as a microservice to extract the dates
using the Rasa Duckling image. Dialogue management is handled by the Memoization-
Policy, which matches the conversation state (intent + entities) to known training sto-
ries to predict action; the RulePolicy, which applies predefined rules to execute actions
(e.g., triggering action question to brickbot for the ActionQuestionTo-
Brickbot class); and the TEDPolicy, a transformer-based model that predicts actions
based on dialogue history, intent, and entities, excelling in unseen scenarios.

3.3.2 NL to SPARQL Translation

Our previous study [60] identified the T5-base model as the most suitable for this task.
We trained the model using natural language questions paired with formatted SPARQL
queries, including necessary prefixes. The training dataset contains over 120,000 example
pairs in a multi-variant NL question format, enabling the model to generate SPARQL que-
ries from user input. Since most smart building sensor devices generate time-series data
stored in structured databases (e.g., MySQL, PostgreSQL), directly adding large volumes
of time-series data to the RDF model is Inappropriate. Instead, referencing the time-series
data’s location in the RDF model enables a more efficient solution for linking the struc-
tured databases with the RDF model. Each sensor or device is assigned a unique UUID,
as defined by BrickSchema TBox terminology. When a user submits a query, the system
extracts entities, identifies the intent, and retrieves relevant time-series IDs. Once the enti-
ties are identified, the NL question and contextual information are sent to the model, which
generates the corresponding SPARQL query, even if TBox information is missing. For
example, in response to the question, “Tell me the failure trends of the exhaust air flow sen-
sor in the Maintenance Room,” the NLU pipeline extracts entities such as "analysis
type": "failure trends", "sensor type":"exhaust air flow sensor",

@ Springer

17 Page 12 of 38 World Wide Web (2026) 29:17

and "location”: "maintenance Room." The T5 model, using these entities along
with BrickSchema T-box terms (e.g., brick:hasLocation) and A-box instances (e.g.,
bldg:Maintenance Room), generates the following SPARQL query:

{

"question": "Tell me the failure trends of the exhaust air flow
<> sensor in the Maintenance Room.",

"entity": "bldg:Maintenance Room \n

brick:Exhaust_ Air_Flow_Sensor",

"spargl": "
SELECT ?sensor ?timeseriesId ?storedAt
WHERE {

?sensor a brick:Exhaust_Air_ Flow_Sensor ;
brick:hasLocation bldg:Maintenance_Room ;
ref:hasExternalReference ?ref

?ref a ref:TimeseriesReference

ref:hasTimeseriesId ?timeseriesId
ref:storedAt ?storedAt

}u

This query retrieves the sensor, timeseries ID, and data storage location, facilitating effi-
cient data retrieval from structured databases for next steps.

3.4 Post-Processing and Data Retrieval

After executing the SPARQL query against the SPARQL endpoint, the system processes
the results to extract time-series IDs, which are used to retrieve sensor data from
structured databases. If no IDs are retrieved, a fallback mechanism employing the open-
source Mistral LLMs generates summarized responses. The retrieved data is formatted
into a standardized JSON structure, enhancing compatibility with subsequent analysis
and summarization stages. The post-processing workflow includes time-series ID
extraction, database querying, result formatting, and data retrieval. The SPARQL query
results are parsed to identify time series IDs corresponding to building sensors/devices
(ABox individuals). These IDs, aligned with BrickSchema UUIDs, serve as references
to time series data stored in structured databases (e.g., MySQL, PostgreSQL). If IDs
are absent, the system invokes the Mistral LLMs to generate a summarized response or
prompt the user for additional input via fallback functions, ensuring robust handling of
incomplete data.

The extracted time-series IDs are used to populate placeholders in predefined
SQL queries. If placeholders cannot be filled due to missing entities, fallback mecha-
nisms (e.g., user prompts or default values) ensure query completeness. The SQL query
retrieves time-series data, including timestamps and sensor readings, from the specified
database table. This approach leverages the scalability of structured databases while
maintaining semantic links to the RDF model, thereby ensuring seamless integration
and consistency. The SQL query results are converted into a standardized JSON format,
with sensor names as top-level keys, replacing UUIDs to provide contextual clarity.
This structure, shown in the fetch sensor data function below, organizes time-
series data by sensor, facilitating integration with downstream analysis and summarisa-
tion pipelines.

@ Springer

World Wide Web (2026) 29:17 Page 13 of 38 17

def fetch_sensor_data(timeseries_sensors_map, start_time, end_time,
~— table_name, return_json=True):
W
Fetches sensor data for multiple sensors dynamically, without
<> grouping by timeseries IDs.
Parameters:
timeseries_sensors_map: Dict mapping timeseries IDs to lists
~— of sensor names.
start_time: Start timestamp (e.g., '2025-02-10 00:00:00") .
end _time: End timestamp (e.g., '2025-02-20 23:59:59"').
table_name: Database table name (e.g., 'sensor_data').
return_json: If True, returns JSON string; else, returns dict.
Returns:
Tuple (results, error) where results is a JSON/dict of sensor
data.
W
{
"Air Temperature Sensor x":
"timeseries data": [
{“datetime”: "2025-02-10 05:31:59", "reading_value":
20.99},
{“datetime”: "2025-02-10 05:32:00", "reading_value":
21.10} ...
]
},....break
}

3.5 Analytics Pipeline

After retrieving the time-series data and identifying the relevant entities, the system applies
comprehensive analytics to extract actionable insights. Leveraging Python libraries such
as Pandas and NumPy, it conducts statistical analyses (such as trend detection, anomaly
identification, and correlation studies, etc.) and employs Matplotlib for data visualization to
enhance interpretability. For example, the system might compute airflow variations in the
Air Handling Unit (AHU) according to the user’s query and chosen analysis type, correlat-
ing multiple time-series streams and generating graphical outputs for richer user feedback.
The selection and execution of the appropriate analytics routine are delegated to dedicated
microservices: standalone Python/Flask modules that accept well-formed JSON or Python
dictionary inputs, perform the specified analysis, and produce a concise, descriptive sum-
mary. This post-processing transforms raw sensor measurements into a clear, actionable,
and analytical report.

3.5.1 Decider Service: Analytics Routing

A critical orchestration component in the workflow is the Decider Service, which deter-
mines whether a given user question requires time-series analytics and, if so, which spe-
cific analytics function to invoke. Before the action server commits to retrieving sensor
data or executing computational routines, it consults the decider service via a simple REST
endpoint (POST /decide) with the user’s natural language question. The service employs
a dual-strategy approach: when trained classification models are available, it predicts (i)
whether to perform analytics (binary decision) and (ii) the analytics label (e.g., aver-
age, detect anomalies, correlate sensors, analyze sensor_ trend).

@ Springer

17 Page 14 of 38 World Wide Web (2026) 29:17

If models are absent or confidence is low, a robust rule-based fallback interprets keyword
patterns (e.g., “average,” “anomaly,” “trend”) to assign appropriate labels. Importantly,
ontology-only queries such as “Which sensors are installed in Room X?” or “What is the
label of device Y?” are explicitly flagged to bypass analytics entirely, avoiding unnecessary
computation and preserving clarity in responses. This intelligent routing ensures computa-
tional resources are expended only when analytics add value, streamlining the end-to-end
pipeline and maintaining response efficiency. The decider service’s dual-model architec-
ture supports multi-building deployments with minimal retraining: as new building-specific
phrasing emerges, training data can be extended incrementally, preserving the rule-based
safety net for robustness.

As a concrete scenario, when a user requests “supply airflow variations over the last
week,” the NLU component’s extracted entities, SPARQL-derived time-series UUIDs, and
SQL-retrieved sensor data drive the analysis. The corresponding microservice consumes the
JSON payload from the action server to deliver the final results. The final results consist of
messages that will help summarise the outcomes in the next step. The example data flow is
shown in the Figure 4.

EEINT3

3.6 Summarization

In the final stage, the system translates the analytical insights outputs or SPARQL responses
into a comprehensive natural language response. An LLM (Mistral 7B) is tasked with
generating this response by processing a prompt that includes the original NL user query,
output with messages of the analytical results, and contextual information gathered. For
example, A natural language question, ’hi, I’'m looking for some advice on my environment.
Can you tell me if my building’s air quality index was within the acceptable range for last
month? Are there any actions needed?’ and analysis reveals “Air Quality Index” for all the
available sensors which fall within the category brick:Air Quality Sensor such
as brick:CO_Sensor, brick:Formaldehyde Level Sensor,brick:PM10
Level Sensor etc. Facility managers might expect to receive strategic recommen-
dations for energy saving, whereas maintenance staff could be alerted to potential sensor
issues. For example, based on available supported sensor types, the following analysis is
provided.

Timeseries

Enties NLto
| NL Question (< NLU' 1 11eq cansor types) ™ SPARGL™ ids <o

{

"Air_Flow_Sensor_1": { [sample json={(
"mean_airflow": 99.67, TimeSeries Data | | a1 tce ype | |"Alr_Flow_Sensor_t": {
"std_dev_airflow": 1.53, Json timeseries_data"; [
"cosfficient_of_variation”: 0.02, {"datetime" "2025-02-10 05:31:59", "value": 100},
"message”: "Air_Flow_Sensor coefficient of variation: {"datetime": "2025-02-10 05:32:59", "value": 98},
0.02. Stable airflow.” {"datetime": "2025-02-10 05:33:59", "value": 101},
5 1}
() "Air_Flow_Sensor_2": {
"Air_Flow_Sensor_2" f i "timeseries_data" [
"mean_airflow" z’zo,o(‘ Microservice {"datetime": "2025-02-10 05:31:59", "value": 200},
"std_dev_airflow": 26.46, {"datetime" "2025-02-10 05:32:59", "value": 210},
"coefficient_of_variation: 0.12, {"datetime": "2025-02-10 05:33:59", "value": 250,

“message": "Air_Flow_Sensor coefficient of variation: }, #Large variation
0.12. High variation detected."]
n

Fig. 4 Data flow for microservice to get the analytics application results

@ Springer

World Wide Web (2026) 29:17 Page 15 of 38 17

inputs

question = "Hi, I am looking for any recommendations needed for
<~ my environment .

Can you tell me if my building is within the air quality index
<> range over the last month, and are there any actions needed?"
spargl_response = """{

"AQI": 2.4499166666666667,
"Status": "healthy",
"Components":
"PM10_Level_Sensor_Standard": 0.024,
"NO2_ Level_Sensor": 0.085,
"CO_Level_Sensor": 2.2666666666666666,
"CO2_Level_Sensor": 0.07425

}

Juown

prompt = (

"Instructions: Read the following smart building data
< received from an RDF Model ontology created using
<> BrickSchema Or received from SQL sensor data or
< analytics output received and provide a short
— summary.\n"

f"Question: {gquestion}\n"

£"SPARQL/SQL/analytics Response: {spargl response}\n\n"

"Explanation:"

)

Received Summary: The air gquality in your building is within the
<> healthy range according to the Air Quality Index (AQI) of 2
— .44 for the last one month. However, it's important to note
<~ that while CO levels are still within a healthy range (2.26),
< the NO2 and PM10 levels slightly exceed their respective
<~ sensors' standards: 0.085 for NO2 and 0.024 for PM10. It is
< recommended to monitor these two components closely to
< maintain optimal air quality. No immediate actions are
<~ required at this time, but regular checks and potential
<> adjustments to your building's filtration system may be
< necessary in the future.

Model Usage Mode (Zero-Shot): The Mistral-7B model is employed without fine-tuning or
parameter-efficient adaptation. It demonstrates superior zero-shot instruction following without
requiring domain-specific fine-tuning [61]. All behavior derives from: (i) a fixed, hand-crafted
prompt template; (ii) structured, minimal context packing (question, normalized JSON result, con-
cise instructions). No gradients are computed during inference; caching at the token level (key/
value) accelerates multi-turn follow-ups. Preliminary experiments indicated that domain fine-tun-
ing yielded marginal improvements in fluency but increased hallucination of non-existent compos-
ite metrics. Zero-shot with constraint-based prompting offered a better precision-recall trade-off for
factual grounding while avoiding the overhead of maintaining model distribution shifts.

4 Experimental Setup and Training

This section describes the testbed infrastructure, ontology development, and model train-
ing procedures used to implement and validate OntoSage. A real-world academic building,
Abacws, is instrumented with 20 types of environmental sensors deployed across 34 loca-
tions, amounting to 680 unique devices that have continuously collected data (temperature,
CO;, levels, humidity, air quality, etc.) for over 10 months. Each sensor streams telemetry to
ThingsBoard at a ten-second frequency, and all time-series readings are stored in a MySQL
database. Every sensor/device black is identified by a unique UUID, linked to the smart-

@ Springer

17 Page 16 of 38 World Wide Web (2026) 29:17

building RDF model. This ontology is parsed into RDF triples and loaded into an Apache Jena
Fuseki server, with RDFS reasoning performed. Another option could be GraphDB, which
additionally provides visualization and supports dynamic ontology extension. End users inter-
act with the system through a unified graphical user interface (GUI) that integrates multiple
applications, including a chatbot interface powered by trained NLU and language learning
and memory (LLMs) components, following the workflow described in Figure 5. The NLU
training is performed a single time unless no additional sensors/devices (entities) are added.

4.1 Testbed Ontology Development

We developed a sample testbed RDF model based on BrickSchema v1.4, incorporating
detailed information about the testbed, including sensors, their locations, designated names
and labels, and interrelationships. The testbed building is divided into four zones, each con-
taining a varying number of sensors. Each sensor is uniquely identified by a UUID, linked
via the ref:hasExternalReference relation within the ontology. The RDF model
was constructed using the Python packages rdflib and brickschema, which facilitated
the creation and manipulation of the ontological structure. The RDFS reasoning is per-
formed using the standard BrickSchema package. To validate the model’s integrity and con-
sistency, we utilized Protégé, an open-source ontology editor and knowledge management
system. This rigorous development and validation process ensures that the testbed ontology
is valid and suitable for supporting user interactions within the smart building domain. The
example snippet is as follows for the testbed ontology without any prefixes :

bldg:PM1_Level_Sensor_Atmospheric_5.10 a
< brick:PM1_Level_Sensor, brick:Sensor
rdfs:label "PM10_Level Sensor_ Atmospheric_5.10"@en ;
brick:hasLocation bldg:west-Zone
ref :hasExternalReference [
a ref:TimeseriesReference ;
ref:hasTimeseriesId "b6556f5d-4636-46ee-987f-e4b87ee710a0"
ref:storedAt bldg:databasel

A N
A B e
Environmental Jd Ml__jzl L
Sensors Network ThingsBoard
\ sQL
Testbed N °
X ° <[>
Environment I—Testbed Ontology—> lJenq ..Q €—SPARQL
: L GraphDB)
- - -Entities - - - -
L2 Train LR

Summarization |

"a b—» GUI . —> _)Y‘NLU; <—T i

'x Chatbot " Actions } .Analyticfs
User - Microservices |

Fig.5 Experimental setup for testing the workflow of human-building conversation

@ Springer

World Wide Web (2026) 29:17 Page 17 of 38 17

4.2 NLU Training

Initializing a bespoke built environment requires training the Natural Language Understand-
ing (NLU) module on entities extracted from the building’s BrickSchema model, which
encapsulates sensors, devices, and locations programmatically derived from the Resource
Description Framework (RDF) representation. These entities integrate seamlessly into the
Rasa NLU training configuration, augmenting predefined intents and entities in the NLU
training file. The process leverages the transformer-based pipeline in config. ym1 for intent
classification and entity extraction. Modifications to auxiliary files (actions, domain, end-
points, rules, stories) are unnecessary, ensuring modularity unless new devices are involved.
Figure 6 shows the training configuration used to train the NLU for the testbed.

The NLU module identifies stakeholder-aligned intents—including energy efficiency,
predictive maintenance, space utilization, sustainability, forecasting, and safety—by map-
ping user queries to analytics microservices in the Talking-Buildings framework. Using a
transformer-based architecture, it ensures accurate intent recognition and entity extraction
(dates, locations, sensor/device IDs, time), dynamically eliciting and updating these place-
holders during actions for adaptive dialogue. Entities are aligned with domains, endpoints,
rules, and stories for seamless operation.

To ensure data integrity during testbed experimentation, a standardized ontology extrac-
tion script automatically catalogs all entity labels from the RDF model and integrates only
ontology-compliant terms (A-Box instances) into the Rasa NLU training data. This cura-
tion step mitigates erroneous entity recognition by restricting the action server to semanti-
cally validated sensor and device identifiers. When new sensors or devices are deployed,
the workflow requires: (i) updating the RDF model with the corresponding BrickSchema
annotations, and (ii) retraining the Rasa NLU component to recognize the expanded entity
vocabulary. Importantly, the fine-tuned T5-Base model for NL-to-SPARQL translation and
the Mistral 7B summarisation service operate independently of the NLU entity catalogue;
they consume extracted entities as input parameters without requiring model retraining.
This decoupled design maintains a scalable and maintainable architecture: entity adapta-

Fig. 6 NLU Training configuration setup for testbed

@ Springer

17 Page 18 of 38 World Wide Web (2026) 29:17

tions are localized to the NLU layer, while downstream language models remain stable,
enabling precise SPARQL query generation and seamless interaction with the building’s
evolving knowledge graph.

4.3 T5-Base Model Training
4.3.1 Dataset Creation

We fine-tuned the T5-Base model to translate natural language questions into SPARQL que-
ries for smart building ontologies using a synthetically generated dataset of NL-SPARQL
pairs. To construct this dataset, we employed few-shot prompting with multiple LLMs
(mistral:7b, GPT-3.5, Gemini, deepseek-rl1:14b, gpt-oss:12b), providing each with RDF
triples, SPARQL token examples, and sample NL-SPARQL pairs to generate diverse ques-
tion formulations. Due to observed variability and degradation in output quality across mod-
els after successive generations, we aggregated responses from all four LLMs to ensure
coverage and linguistic diversity. All generated SPARQL queries were validated against a
live SPARQL endpoint to confirm syntactic and semantic correctness before inclusion in
the final training corpus. Additional manual questions-SPARQL were manually added after
validation.

4.3.2 Training Configuration

The validated corpus underwent preprocessing and augmentation to enhance linguistic vari-
ability through paraphrasing, ultimately yielding a dataset stored in training data.
json and partitioned into 90% training and 10% validation splits. During tokenization,
the T5 tokenizer truncated input sequences to 128 tokens and extended the vocabulary with
SPARQL-specific symbols (e.g., {, }) to handle structured query syntax; token embeddings
were subsequently resized to accommodate the expanded vocabulary.

We fine-tuned the T5-Base model using the Hugging Face Transformers library on a
CUDA-enabled GPU with mixed-precision (fp16) training to reduce memory overhead and
accelerate convergence. The Segq2SegTrainingArguments configuration specified:
learning rate 2 x 1072, batch size 8, maximum 20 epochs, a cosine annealing learning rate
scheduler with 500 warm-up steps, and weight decay 0.01. To prevent overfitting, we imple-
mented early stopping with a patience of 3 epochs, monitoring ROUGE-L on the validation
set; the checkpoint with the highest ROUGE-L score was retained as the final model. Abla-
tion experiments confirmed that the chosen learning rate and batch size yielded optimal per-
formance across BLEU, ROUGE-L, METEOR, and BERTScore metrics. Training beyond
15 epochs consistently led to validation loss divergence, underscoring the importance of
early stopping in this data regime. Figure 7 illustrates the relationship between training
corpus size and model performance for seq2seq TS5-Base translation.

4.3.3 Training Infrastructure

All experiments were conducted on an Amazon EC2 instance configured with a Tesla T4
GPU, enabling faster convergence. The g4dn.4xlarge instance provided sufficient compu-

@ Springer

World Wide Web (2026) 29:17 Page 19 of 38 17

Natural Language BrickSchema V1.4
Question :
SPARQL Query Built Env. Entities

oS
Entities from

Seg-to-Seq SPARQL Tokens Smarthome Ontologies
LLM(T5-base)

Training Dataset

K Doméin Knowledge j

Fig. 7 Training requirements for NL to SPARQL

tational power to handle the intensive training and evaluation processes required for the
models used. The machine setup is outlined in Table 1.

The T5-Base model’s text-to-text unified framework enables consistent handling of
diverse NLP tasks, including sequence-to-sequence translation from natural language to
SPARQL. Our final training corpus comprised approximately 120,000 NL-SPARQL pairs
after augmentation and validation, partitioned into 90% training and 10% validation sets
as detailed in Section 4.3. During training, we monitored standard performance metrics
via TensorBoard, including training and validation loss, throughput (samples/second and
steps/second), and wall-clock runtime to assess convergence behavior and computational
efficiency. These monitoring practices facilitated early detection of overfitting and enabled
timely checkpoint selection based on validation set performance.

5 Results and Evaluation

This section presents a comprehensive evaluation of OntoSage across multiple dimensions:
component-level performance, baseline comparisons, reasoning class analysis, and cross-
building portability. The model was evaluated on the validation set using BLEU, ROUGE-
L, METEOR, and BERTScore via the evaluate library. T5-Base achieved high accuracy
in NL-to-SPARQL translation, rivaling larger models like GPT-3-medium with a lower
computational cost, making it ideal for resource-constrained smart buildings. The training
was monitored via TensorBoard. During the model training process, various configurations
and hyperparameters were explored to optimize the performance of the TS models. Key
training arguments that were varied include learning rate, batch size, number of training

Table 1 Specifications of the

DIe ! Component Specification
training machine Product g4dn.4xlarge
CPU Intel Xeon Platinum
8259CL, 8 cores (16
threads) @ 2.50GHz
Memory 64 GiB DDR4
Storage 150 GiB NVMe SSD
GPU 1 X NVIDIA Tesla T4

@ Springer

17 Page 20 of 38 World Wide Web (2026) 29:17

epochs, and the use of different optimizers. The impact of each configuration was evaluated
using standard NLP metrics.

5.1 Component-Wise Evaluation

This section evaluates the individual components of our smart home framework, including
NLU for entity extraction, SPARQL query generation using a fine-tuned T5-Base model,
analytics microservices for data processing, and natural language response generation utiliz-
ing the Mistral 7B model. Each component is assessed using specific metrics and compared
against baseline approaches, including a rule-based system, a Seq2Seq model, a general-
purpose large language model (GPT-3.5), and a traditional analytics pipeline. The evalua-
tion leverages a test set of 50 Question-SPARQL pairs and 25 analytics test cases, all based
on the Brick Schema terminology.

5.1.1 NLU Entity Extraction

The Rasa-based NLU module extracts entities, including sensor names, locations, and dates,
from user queries. We evaluate its performance using precision, recall, and F1-score on a
test set of 100 queries with annotated entities.

Table 2 shows the results. The overall F1-score of 0.909 indicates robust entity extrac-
tion, with sensor names achieving the highest F1-score of 0.92. Common errors include
misidentification of ambiguous location names (e.g., "Zone Air Humidity Sen-
sor 5.12" as "Humidity").

Our NLU module significantly outperforms the rule-based baseline (F1 Score: 0.75) due
to its training on a diverse set of examples. The Seq2Seq baseline (F1-score: 0.82) and GPT-
3.5 (Fl-score: 0.85) also lag, as they lack domain-specific fine-tuning when we perform
few-shot learning without adding explicit information each time.

5.1.2 SPARQL Query Generation

We evaluated our T5-Base model for Natural Language to SPARQL query generation over
15 epochs, using a comprehensive set of metrics: Training Loss, Validation Loss, ROUGE
(1, 2, L, Lsum), BLEU, METEOR, BERTScore (Precision, Recall, F1), and Generated
Length. The results, presented in Figure 8, demonstrate significant improvements over our
initial training (previously reported with five epochs) and highlight the model’s strong per-
formance in entity extraction and SPARQL query generation, given the current training
dataset size.

The model exhibits robust training dynamics, with the Training Loss decreasing sig-
nificantly from 0.2534 in epoch 1 to 0.0020 by epoch 6, and the Validation Loss dropping
from 0.006846 to a stable 0.001136 by epoch 7. Compared to our initial training (five
epochs, Validation Loss 0.000576, ROUGE-1 0.5739, BERTScore F1 0.8958), the new

Table2 Entity extraction Entity type Precision Recall F1-Score

performance Sensor name 0.94 0.91 0.92
Location 0.90 0.88 0.89
Date 0.93 0.90 0.91
Overall 0.923 0.897 0.909

@ Springer

World Wide Web (2026) 29:17 Page 21 of 38 17

Epoch Tning Validation pouget Rouge2 Rougel Rougelsum Bleu Meteor et vy TS Genlen
1 0253400 0006846 0574252 0518756 0573549 0573584 0146905 0395164 0927387 0871168 0898194 19.000000
2 0.007600 0.002875 0577766 0.526023 0.577251 0577282 0.148315 0397764 0.927993 0.871786 0.898809 19.000000
3 0003900 0001983 0579755 0529805 0579265 0579319 0.149012 0399361 0928329 0871997 0899077 19.000000
4 0.002600 0.001178 0.580604 0.531337 0.580047 0.580066 0.149339 0400220 0.928457 0.872052 0.899167 19.000000
5 0.002100 0.001217 0580914 0532284 0.580428 0.580472 0.149603 0.400486 0.928553 0.872114 0.899244 19.000000
6 0002000 0001135 0580907 0532264 0580445 0580487 0149619 0400517 0.928564 0872122 0899253 19.000000
7 0.002000 0.001136 0.580933 0.532286 0.580456 0.580504 0.149627 0.400548 0.928563 0872122 0.899253 19.000000
8 0002000 0001136 0580933 0532286 0580456 0580504 0.149627 0400548 0928563 0872122 0899253 19.000000
9 0.002000 0.001137 0.580933 0.532286 0.580456 0.580504 0.149627 0.400548 0.928563 0.872122 0.899253 19.000000

10 0.002000 0.001138 0580923 0.532221 0.580426 0.580467 0.149625 0.400535 0.928558 0.872119 0.899249 19.000000

Fig. 8 Training T5-Base model epochs

results show a higher ROUGE-1 (0.5809 vs. 0.5739) and ROUGE-2 (0.5323 vs. 0.5252),
indicating improved token overlap and syntactic accuracy. The BLEU score increased from
0.1430 to 0.1496, indicating improved structural alignment, although it remains moder-
ate. The METEOR score improved from 0.3965 to 0.4005, suggesting enhanced semantic
matching. Notably, the BERTScore F1 score rose from 0.8958 to 0.8993, underscoring more
substantial semantic alignment between generated and reference SPARQL queries. Figure
9 shows the training scores for the epochs for F1, precision, recall, and BLEU. Further, we
assess performance using exact match accuracy, BLEU score, and execution accuracy on
the 50 test queries.

These improvements are significant for the NL Human-building conversation frame-
work via chatbots, where accurate SPARQL queries are essential for tasks such as energy
management and anomaly detection. The high BERTScore (F1 0.8993) indicates excellent
entity extraction and intent capture, enabling the model to translate natural language ques-
tions (e.g., “What is the current air quality?”) into semantically correct SPARQL queries.
The moderate ROUGE scores (ROUGE-1: 0.5809, ROUGE-2: 0.5323) and BLEU score
(0.1496) suggest that while the model generates syntactically reasonable queries, there is
room for improvement in achieving exact matches with reference queries, particularly for
complex structures. Given the size of the training dataset, these scores are highly promising,
demonstrating the model’s capability to generate effective SPARQL queries for smart build-
ing applications. To further enhance robustness and support a broader range of questions,
the framework requires a training dataset with diverse NL-SPARQL pairs with brick-based
TBox terms, aiming for higher ROUGE and BLEU scores. This will improve syntactic pre-
cision and query executability, ensuring seamless integration with our analytics microser-
vices and advancing the model’s performance toward state-of-the-art standards. Table 3
summarises the results. Our model achieves an exact match accuracy of 85.0% and a BLEU
score of 0.92, outperforming baselines.

Execution accuracy (88.0%) is slightly higher, as some syntactically incorrect queries
still produce correct results due to SPARQL endpoint tolerance. Error analysis reveals that

Toin vs. Eval Loss ROUGE, BERTScore, METEOR Scores. BLEU Score

Fig. 9 Training T5-Base model scores SR

@ Springer

17 Page 22 of 38

Table 3 SPARQL query genera-
tion performance

World Wide Web (2026) 29:17
Model Exact match BLEU Execu-
(%) tion ac-
curacy
(%)
Our framework 85.0 0.92 88.0
(T5-Base)
Rule-based 65.0 0.70 68.0
Seq2Seq(BART) 72.0 0.80 75.0
GPT-3.5 78.0 0.85 80.0

failures occur in queries with multiple entities (e.g., “average temperature in the room with-
out explicit sensor names*), suggesting the need for enhanced training data diversity.

5.1.3 Analytics Microservices

The analytics microservices compute a wide range of metrics on sensor time-series data,
covering basic statistical measures (e.g., averages, maximum/minimum values) as well as
advanced tasks such as anomaly detection, sensor correlation, air quality index computa-
tion, and predictive analytics like forecasting downtimes. We evaluate the accuracy of these
microservices on 28 test cases with ground-truth outputs, as shown in Table 4. The frame-
work achieves an overall accuracy of 86.0%, demonstrating robust performance across

Table 4 SPARQL query genera-
tion performance

@ Springer

Analytics type Acc.(%) Analytics Type Acc.(%)

Average 88.5 Correlate Sensors 86.0

Max/Min 86.5 Compute Air Qual- 86.5
ity Index

Anomaly detection 84.5 Generate Health 85.0
Alerts

Analyze recalibration ~ 86.0 Detect Anomalies 84.5

frequency

Analyze failure trends 87.0 Analyze Noise 85.5
Levels

Analyze device 85.5 Analyze Air Quality 86.5

deviation

Analyze sensor status ~ 87.5 Analyze Formalde- 86.0
hyde Levels

Analyse air quality 86.5 Analyze CO2 Levels 86.0

trends

Analyze HVAC 85.0 Analyze PM Levels 86.0

anomalies

Analyse supply return ~ 85.5 Analyze 88.0

temp difference Temperatures

Analyse air flow 85.5 Analyze Humidity ~ 88.0

variation

Analyze pressure trend 86.5 Analyze Tempera- 87.0
ture Humidity

Analyze sensor trend 87.0 Detect Potential 84.5
Failures

Aggregate sensor data 87.5 Forecast Downtimes 84.0

Opverall accuracy: 86.0 %)

World Wide Web (2026) 29:17 Page 23 of 38 17

diverse analytics tasks. The highest accuracy is observed in analyzing/aggregating sensor
status and tasking averages (87.5% and 88.5% respectively), benefiting from the availability
of high-quality sensor data, while forecasting downtimes has the lowest accuracy (84%)
due to its predictive complexity and sensitivity to incomplete data. Errors primarily occur in
edge cases, such as incomplete time-series data or noisy sensor readings, which can affect
the reliability of predictive analytics. Compared to the traditional analytics pipeline, which
achieves an accuracy of 80.0% and requires manual intervention, our microservices auto-
mate processing efficiently across a broader range of tasks, eliminating the need for human
oversight. Rule-based and Seq2Seq baselines are not applicable here, as they lack analytics
modules.

5.1.4 Response Generation

The Mistral-7B model converts analytics results into user-friendly responses. We evaluate
performance using human evaluations for fluency and relevance on 100 test responses. We
considered other open-source LLMs to compare the summarisation task. Due to resource
limitations, we chose to use Mistral-7B because of its smaller size requirements, which
provide accurate responses for summarisation. Studies [62, 63] show the highest ROUGE-1
scores for the models’ summarization task. Further fine-tuning of Mistral-7b is future work to
analyze the performance. Our model outperforms GPT-3.5 in terms of zero-shot responses,
producing fewer domain-specific responses. Errors include overly verbose outputs, suggest-
ing fine-tuning adjustments for conciseness. Figure 10 shows chatbot interactions for our
testbed QA. The additional QA chat is indexed in the Tables attached in Appendix 11 and 12.

5.2 Baseline Comparisons

To contextualise the performance of our smart home framework, we compare it against
four baseline approaches: (1) a rule-based system that maps question templates to SPARQL
queries, (2) an LSTM-based Seq2Seq model trained on our QUESTION-SPARQL dataset,
(3) a general-purpose large language model (GPT-3.5) prompted for SPARQL query and

OntoBot + 8 OntoBot + @
Hi ® Hi, | am looking for any reccommendat
oss00¢ R7Y for my environment. Can you tell me |
from
Hi, How are you
08:50:057

‘within the air quallty index range-
oo
Toree e sirquaty i your bing s witin e healhy range
s accoring o e A Guaty Indx (AQ) of 2443316 for e

Iactne month However, s mpotant o nle that whe CO

S levels are stil vithin a healthy range (2.2666666666665666),
o e S S s

: Sonsors sandards: 0085 fo NO2 and 0.0
can you descre ‘o components o

Formaldehyde,_Level_Sensor_5.23
sensor?.
085020

maintain optimal ar

req.
‘adjustments o your buiding’s fiation system may be
necessary in the future

The Formaldehyde_ Level_Sensor_5.23is @ sensor
designed to measuro formaldehyd levels,
‘common volatie organic compound found i the air
of buldings. This specic sensor is ocated within
the north-east Zone of the building according to the

rmance is stable with a coeffcientof variation of only

sensaor's performar

e 0.0013. Thisindicates that the sensor eadings are consitent and
relfabe, suggesting no need for caratin at this ime. However,
rogular monitoring should continue fo ensure long-term accuracy.
065302

2. Love.
DIdg.CO2 Level S
dioxida lovels in the east-z0na of the building.

Fig. 10 Chatbot interactions with ontology and analytical microservices

@ Springer

17 Page 24 of 38 World Wide Web (2026) 29:17

response generation, and (4) a traditional analytics pipeline relying on manual SPARQL
query construction and off-the-shelf analytics tools (e.g., Pandas). The comparison focuses
on key metrics: Fl-score for NLU entity extraction, exact match accuracy and execution
accuracy for SPARQL query generation, analytics accuracy for microservices, BLEU and
ROUGE-L scores for natural language response generation, and task success rate for the
end-to-end system evaluations are conducted on a test set of 50 QUESTION-SPARQL pairs
and 25 analytics test cases, all based on the Brick Schema ontology.

5.2.1 Quantitative Comparison

Table 5 summarises the performance of our framework and baselines across all components
and the end-to-end system.

Our framework outperforms all baselines across applicable metrics. For NLU entity
extraction, the F1-score of 0.91 surpasses the rule-based system(0.75), the Seq2Seq(BART)
model (0.82), and GPT-3.5 (0.85), due to fine-tuning on domain-specific data. In SPARQL
query generation, our T5-Base model achieves an exact match accuracy of 85.0%, compared
to 65.0% (rule-based), 72.0% (Seq2Seq), and 78.0% (GPT-3.5), reflecting its ability to han-
dle complex Brick Schema terminology. The analytics microservices yield an 86.0% accu-
racy, outperforming the traditional pipeline (80.0%), which requires manual intervention.
For response generation, Mistral 7B model’s BLEU score of 0.89 exceeds GPT-3.5’s 0.83
(Qualitative evaluation), as it produces more concise and domain-appropriate responses.
The end-to-end task success rate of 82.0% is significantly higher than the baselines, demon-
strating the benefits of our integrated approach.

5.2.2 Qualitative Analysis

We analyse the strengths and limitations of each baseline through qualitative examples. For
the query “What was the average CO2 level in room 5.12 last week?”, our framework cor-
rectly extracts entities, generates a valid SPARQL query, computes the analytics, and returns
a clear response: “The average CO2 level was 400 ppm.” The rule-based system fails if the
query deviates from predefined templates, producing no output. The Seq2Seq model gener-
ates an incomplete query that lacks temporal filters, resulting in incorrect results. GPT-3.5

Table 5 Performance comparison \odel NLU SPARQL Analytics Response End-to-end
with baseline models

Fl1- Exact Accuracy BLEU Task suc-
score match (%) (%) cess (%)
Our 091 85.0 86.0 0.89 82.0
frame-
work
Rule- 0.75 65.0 - - 60.0
based
Seq2Seq- 0.82 72.0 - - 68.0
BART
gpt 0.85 78.0 - 0.83 75.0
3.5Turbo
Tradi- - - 80.0 - 55.0
Note: — indicates the metric is tional
pipeline

not applicable for the baseline

@ Springer

World Wide Web (2026) 29:17 Page 25 of 38 17

produces a syntactically correct but overly generic query, missing Brick Schema-specific
predicates. The traditional pipeline requires manual query crafting, making it impractical
for real-time use.

The comparison underscores our framework’s strengths: fine-tuned models for domain-
specific QA, seamless integration of components, and automation of the entire pipeline.
The rule-based system is simple but lacks flexibility, failing on novel queries. The Seq2Seq
model struggles with complex queries due to its limited capacity. GPT-3.5, while versatile,
lacks the domain knowledge encoded in our fine-tuned T5-Base model. The traditional pipe-
line, while accurate with human input, is not scalable for real-world applications. Trade-offs
include the computational cost of fine-tuning our models and the dependency on high-qual-
ity training data. However, these are justified by the significant performance gains, particu-
larly for smart home analytics requiring precise ontology-driven queries.

5.3 Advanced Reasoning Classes

To characterize the breadth of question types the framework addresses, we group NL queries
into four reasoning classes aligned with system components:

1. Single-hop factual (C1): Direct retrieval of a single entity attribute or relation (e.g.,
current location of a sensor). Predominantly ontology (RDF) only.

2. Multi-hop relational (C2): Chain of > 1 object properties (e.g., “Which rooms contain
sensors reporting above threshold X?”’). Requires multi-triple joins.

3. Aggregation / temporal (C3): Numerical aggregations (AVG, MIN/MAX), time win-
dow filters, rolling statistics over time-series linked by UUIDs.

4. Ontology + timeseries fusion (C4): Hybrid queries combining semantic filtering
(class, location, device type) with analytic computation (anomaly detection, correla-
tion, forecasting) executed in microservices.

Generation fidelity is assessed along: (i) Syntactic validity (parsable SPARQL), (ii) Execu-
tion success (non-empty result or correct empty set when expected), (iii) Entity grounding
accuracy (correct IRIs / UUID extraction), and (iv) Semantic intent alignment (human-
judged correctness of answer rationale). For C4, microservice invocation success and ana-
Iytic correctness (domain-specific thresholds) are additionally measured.

We stratify the held-out evaluation set by reasoning class (C1-C4) and compute: (i)
Syntactic validity (SV) as the proportion of model outputs that are parsable SPARQL; (ii)
Execution accuracy (EX) as the proportion of queries that execute and return an expected-
type result (non-empty or correct empty set, per item specification); (iii) Entity grounding
(EG) as micro-averaged F1 over the set of IRIs/UUIDs in the gold vs predicted outputs;
(iv) Semantic intent (SI) as the proportion of responses whose rationale aligns with the
natural-language question; and (v) Microservice success (MS) as the proportion of analytics
pipelines in C4 that complete without error and pass task-specific sanity checks.

Common failure patterns include (i) omission of temporal FILTER clauses in C3 (model
substitutes default window), (ii) redundant OPTIONAL blocks elevating latency, (iii) partial
disambiguation when multiple sensors share near-identical labels (entity collision), and (iv)
analytic invocation without sufficient slot completion (missing date range), triggering fall-
back dialogues. The taxonomy also informs the cross-building adaptation study Section 5.4

@ Springer

17 Page 26 of 38 World Wide Web (2026) 29:17

by isolating which classes degrade when only ontology ingestion (without additional NL
examples) is performed in a new building domain (Table 6).

5.4 Cross-Building Portability

We will need to evaluate how OntoSage transfers to previously unseen buildings with
minimal engineering and quantify the benefit of lightweight adaptation steps—without
end-to-end model retraining. Building A (Abacws testbed) provides: (i) a trained NL—
SPARQL model (T5-Base), (ii) a Rasa NLU model with entity synonyms derived from
Brick instances, and (iii) analytics microservices. We replicate to two new sites with distinct
storage backends and sensor inventories:

e Building B (bldg2; TimescaleDB telemetry). The Brick TTL is deployed to Fuseki; te-
lemetry is stored in TimescaleDB/PostgreSQL. The canonical sensor catalogue mixes
AHU/zone hierarchies (e.g., bldg2.ZONE.AHUO1.RMOO1A.Zone Air Temp)
with generic Brick sensor classes (e.g., CO2 Level Sensor.01). We used 329
listed sensors.

e Building C (bldg3; Cassandra telemetry). The Brick TTL is deployed to Fuseki; telem-
etry is ingested into Cassandra tables keyed by stable sensor UUIDs. The stack exposes
TB UI and Rasa endpoints for end-to-end QA.

Building A exposes a dense floor-labeled catalogue (e.g., Air Temperature Sen-
sor 5.17); we enumerated 680 sensors. Building B compresses multiple classes under
a single “.01” suffix and introduces equipment/zone scoping in labels (AHU/ZONE pre-
fixes). Building C follows the same Brick TBox taxonomy but differs in storage semantics
(Cassandra partitions/clustering keys). These differences stress lexical normalization, UUID
binding, and timeseries retrieval layers rather than model weights. Adaptation workflow
(B,C) follows the four-stage harness in Sections 5.3 and 3.5, we:

1. Ingest the target TTLs and materialize class/instance labels; generate canonical surface
forms (split camel-case/underscores; lowercase variants).

2. Regenerate NLU synonym/lookup tables from the new labels and re-train Rasa briefly (no
TS5 retraining). For B, we merge compound keys likeb1dg2 . ZONE . AHUO1 .RMOO1A.
zZone Air Temp with Brick classes (e.g., Zone Air Temperature Sensor).

Table 6 Reasoning class performance summary. Metrics: SV = syntactic validity (%), EX = execution ac-
curacy (%), EG = entity grounding F1, SI = semantic intent alignment (%), MS = microservice success (%
where applicable)

Class SV EX EG (F1) SI MS
Cl1 Single-hop factual 90 85 0.86 84 n/a
C2 Multi-hop relational 85 80 0.82 80 n/a
C3 Aggregation / temporal 83 78 0.80 79 n/a
C4 Ontology + timeseries fusion 80 75 0.78 77 76

Values reflect the current held-out test set on the Abacws deployment; SV counts parsable SPARQL
queries; EX measures successful endpoint execution; EG is micro-averaged F1 over IRIs/UUIDs; SI is
the share of human-judged semantically correct answers; MS is the success rate of downstream analytics
invocation (C4 only). The scripts to recompute Table 6 are provided in the repository

@ Springer

World Wide Web (2026) 29:17 Page 27 of 38 17

3. Run the SPARQL conformance harness (C1-C4 probes) to verify syntactic validity,
execution, and entity grounding; add alias expansions for scoping prefixes (AHUO1/
ZONE) when mismatches arise.

4. Bind analytics to storage: map TimescaleDB (B) or Cassandra (C) backends while pre-
serving the UUID contract returned by SPARQL. No changes to analytics code are
required.

Table 7 summarizes the key characteristics, infrastructure, and validated analytics applica-
tions deployed across the three building sites evaluated for cross-building portability.

Table 8 demonstrates which pipeline components remain unchanged across buildings
versus those requiring site-specific configuration, showing the reusability of core models
and services. The repository provides browser-based tools to apply and validate building-
specific changes without touching core model weights. Table 9 enumerates the front-end
facilities used during site adaptation. Observed portability With only ontology ingestion
and NLU enrichment, we obtained stable C1—-C2 execution on both targets. C3—C4 incurred
small drops due to temporal filter variants and building-specific label scoping, which recov-
ered after adding 3—7 alias rules per site. Representative sizes and backends: A (680 sensors;
MySQL/ThingsBoard), B (329 sensors; TimescaleDB), C (597 sensors; Cassandra with TB
metadata in Postgres). End-to-end analytics invocations reused the same microservices;
only the storage connector changed. Evaluation checkpoints: We retain the three check-
points defined earlier: TO (ontology only), T1 (+NLU enrichment), T2 (+harness repairs).

Per-class metrics use the same SV/EX/EG/SI/MS definitions as Table 6.

Table7 Site comparison: deploy- property A (Abacws, B (Synthetic C (Synthetic
ments, sensors, and validated real) Office) Data Center)
applications Building type Real univer- Synthetic com- Synthetic
sity testbed mercial office critical
(Cardiff, UK) infrastructure
Purpose/focus 1EQ HVAC optimisa- Cooling,
monitoring tion, thermal power distri-

Sensor coverage

680 sensors
across zones

comfort

329 sensors
across multiple
zones

bution, alarms
597 sensors
across mul-
tiple zones

Database MySQL TimescaleDB Cassandra
Technology Rasa3.6.12, Rasa3.6.12, Rasa 3.6.12,
stack Python 3.10, Python 3.10, Python 3.10,
Docker Docker, Times- Docker, Cas-
caleDB 2.11 sandra 4.1
Validated AQI calcula- HVAC efficiency; Chiller sup-
applications tion; CO2/PM Supply—return ply/return
trends; Noise temperature monitor-
level trends; delta; Air flow ing; Static
Thermal com- variation; Zone pressure +

fort index; temperature alarm checks;
Anomaly trends; Sensor Power usage
detection; correlation; En- monitoring;
Occupancy ergy optimisation Health alerts;
alerts Downtime
forecasting

@ Springer

17 Page 28 of 38

World Wide Web

(2026) 29:17

Table 8 .Pipeline invariance Component A B C
22;?;;;;5;:;;};%%1?2)“' NL.—>SPARQL model unchanged unchanged unchanged
weights
Summariser (LLM) unchanged unchanged unchanged
Decider service unchanged unchanged unchanged
Analytics unchanged unchanged unchanged
microservices
Ontology TTL dataset baseline swapped swapped
Database/storage MySQL TimescaleDB Cassandra
connector
Rasa NLU synonyms/ baseline regenerated regener-
lookups ated
Identical QA condi- yes yes yes
tioned on TTL
New analytics-map- no yes yes
ping added
Table 9 Front-end facilities for site updates
Facility Purpose Typical use in A/B/C
Fuseki UI Upload Brick TTL; run probe Swap dataset per building;

ThingsBoard UI (port varies)

Rasa Editor (web)

Chat Uls (rasa-frontend/,
chatbot-ui.html)
pgAdmin (5051)

File server

Jupyter notebooks (repo)

SPARQL; validate classes/instances

Create devices; verify telemetry
ingestion

Edit NLU synonyms/lookups; train;
quick REST tests

Interactive QA over ontology +
analytics

Inspect TB Postgres metadata (e.g.,
device IDs/tokens)

Serve/upload artifacts (e.g., TTL,
CSV) to services

Ad-hoc validation and analytics
checks

sanity-check C1-C2
Validate timeseries in B
(Timescale), C (Cassandra
via TB)

Regenerate synonyms from
TTL; trigger short retrain
Smoke-test identical ques-
tions across sites

Map access tokens to
UUIDs (esp. C)

Share site TTL and sample
datasets

Parse logs; reproduce
evaluation tables

Adaptation workflow (4 stages) 1.

Ontology ingestion: Parse Building B TTL; materi-

alise class + instance labels; generate canonical surface forms (camel-case split, under-
scores — spaces, lowercase variants).
2. Entity enrichment: Merge new labels into NLU synonym / lookup tables; regenerate
Rasa training data without altering intent set; fast re-train (few minutes) or zero-shot

attempt.

3. SPARQL conformance harness: Run a curated battery (Np.o5c) of templated probe
questions spanning classes C1-C4, auto-checking syntactic validity, execution, and
entity grounding. Flag unresolved IRIs; add fallback alias list if needed.

4. Analytics binding: Map newly discovered sensor types to existing microservice sche-
mas (e.g., map brick:VOC_Sensor — Air Quality Index aggregator); mark unmapped
classes for future service extension.

@ Springer

World Wide Web (2026) 29:17 Page 29 of 38 17

Evaluation metrics We evaluate portability at three checkpoints: TO (Zero-Shot: ontology
ingestion only), T1 (+Entity Enrichment: regenerate NLU synonyms/lookups from the new
TTL; no TS retraining), and T2 (+Harness Repairs: add alias/regex rules to resolve probe
failures; still no TS5 retraining). Per-class metrics follow SV/EX/EG/SI/MS as in Table 6.

e TO Zero-Shot: Only ontology ingestion (no NLU retrain; rely on previously trained
models).
T1 +Entity Enrichment: After regenerating NLU artifacts with new labels.
T2 +Harness Repairs: After resolving probe failures (adding alias expansions/ regex
rules) without modifying TS5 weights.

Table 10 presents the quantitative portability performance metrics measured at each adapta-
tion checkpoint (TO, T1, T2) across all reasoning classes (C1-C4).

6 Applications and Use Cases

The OntoBot framework enables natural language interaction with smart home systems,
leveraging a suite of sensors and the Brick Schema ontology [33] to deliver advanced ana-
Iytics applications. Deployed across 20 locations, sensors, including air quality, gas detec-
tion, particulate matter, temperature, humidity, illuminance, and noise monitors, provide
rich data for environmental, safety, and efficiency analytics. This section outlines 25 analyt-
ics applications, grouped into categories such as: environmental monitoring, safety and haz-
ard detection, energy and resource optimization, predictive maintenance, and diagnostics
to address complex yet actionable queries from stakeholders. Implemented using Python
and Flask, these applications process sensor data to deliver insights via RESTful APIs, sup-
porting diverse smart home management needs. Example queries illustrate the framework’s
adaptability, as below.

Table 10 Portability performance across adaptation stages (placeholder values)

Stage Class SV EX EG (F1) SI MS
TO Cl 88 82 0.83 81 n/a
T0 C2 82 75 0.77 74 n/a
TO C3 78 70 0.72 69 n/a
TO C4 74 66 0.68 65 64

Tl Cl 90 85 0.86 84 n/a
T1 C2 86 80 0.82 79 n/a
T1 C3 82 75 0.77 74 n/a
T1 C4 78 72 0.74 71 70

T2 Cl 91 86 0.87 85 n/a
T2 C2 87 82 0.83 81 n/a
T2 C3 84 78 0.80 77 n/a
T2 C4 81 76 0.77 75 74

@ Springer

17 Page 30 of 38 World Wide Web (2026) 29:17

Environmental quality monitoring Includes real-time analytics or predictive insights for
comfort and health.

Air Quality Index (AQI): Aggregates PM2.5, PM10, CO2, TVOC for overall AQI.
Noise Trend Analysis: Tracks temporal noise to spot disturbances.

Illuminance Optimization: Adjusts lighting by occupancy/time.

IAQ Forecasting: Predicts CO2, PM2.5 via time-series models.

Humidity Balance: Monitors humidity to prevent mould/discomfort.

Safety and hazard detection Detects hazards like gas leaks or high CO using anomaly and
threshold methods.

CO/CO2 Anomaly: Flags abnormal spikes.
Gas Leak Risk: Tracks combustible gas.
Formaldehyde Alerts: Warn on elevated levels.
Oxygen Monitoring: Checks ventilation issues.
Smoke Analytics: Analyses fire risk.

Energy and resource optimization Optimizes temperature, humidity, and air data to save
energy and cost.

HVAC Efficiency: Evaluates temperature/humidity.

Energy Forecast: Predicts daily usage.

Peak Load Reduction: Cuts peak demand.

Ventilation Optimization: Balances air vs. energy use.

Thermal Comfort Index: Combines temperature/humidity metrics.

Predictive maintenance and diagnostics Anticipates equipment/sensor failures to prioritize
fixes and extend life.

Sensor Health: Detects performance declines.

HVAC Failure Prediction: Forecasts component issues.
TIAQ Sensor Calibration: Finds drift in CO2/PM.

Noise Sensor Anomaly: Flags erratic readings.
Lifespan Estimation: Predicts remaining life.

Occupant comfort and behavior analysis Enhances comfort by tailoring conditions and
tracking behavior.

Temp Preference Profiling: Learns by location.
Occupancy Patterns: Detects usage via air/noise.
Comfort Anomalies: Flags deviations from norms.
Lighting Comfort: Aligns light with activity.
Behavioral IAQ Impact: Links behavior to air changes.

@ Springer

World Wide Web (2026) 29:17 Page 31 of 38 17

7 Limitations and Future Work

Several challenges emerged despite the framework’s promising initial results. First,
ambiguous user queries and the need to integrate legacy building systems complicate the
correct association of natural-language questions with the intended sensors or devices.
Users frequently pose queries without explicitly naming target entities, making it chal-
lenging to map questions to the appropriate ontology classes. Moreover, because analyt-
ics are not yet modularised as microservices, the framework’s utility remains limited:
only those analytics for which a corresponding microservice exists can be executed.
Although the base framework now comprises over twenty microservices, the paucity of
training data for translating natural language into SPARQL queries constrains its appli-
cability. To support a wider array of real-world inquiries, a richer dataset is required,
pairing diverse natural-language questions with BarickSchema-based SPARQL queries.
Looking ahead, we have identified two principal avenues for future work. First, we will
enhance the T5-Base for NL to SPARQL capabilities to better capture context and intent,
and expand its capabilities to cover unseen building types and functions by developing
and fine-tuning on a comprehensive natural-language-to-SPARQL corpus. Second, we
will extend the microservice architecture to handle multiple intents in a single service.
While current NLU methods effectively discern intent and extract entities, they do not
scale well to an extensive set of intents. Consequently, we plan to replace traditional
NLU with LLM-driven entity extraction, classification, and reasoning. Finally, we will
investigate dynamic microservice adaptation based on user-provided entities to further
enhance adaptability.

8 Discussion and Implications

This work operationalises ontology-grounded conversation at building scale by unifying
four capabilities that are often studied in isolation: (i) a Brick-conformant knowledge
graph served over SPARQL, (ii) a production Rasa stack for intent/entity extraction and
orchestration, (iii) a catalogue of time-series analytics exposed as stable microservice
contracts, and (iv) constrained LLM summarisation for user-facing narratives. Together,
these components yield a consistent, inspectable path from natural-language questions to
semantically valid queries, executable analytics, and auditable artifacts. Our evaluation
clarifies where the system is strong and where it degrades. Reasoning performance is
characterized by a class taxonomy and by portability checkpoints TO-T2. In cross-
building deployment, TO (zero-shot, ontology only) exposes naming and schema deltas;
T1 (entity/label enrichment) measurably narrows this gap without retraining; and T2
(lightweight aliasing/regex repairs and harness-guided fixes) delivers most of the
remaining gains while keeping the model frozen. This separation between semantic
alignment and model training is practical: new sites can be onboarded primarily by
ingesting Brick TTLs into Fuseki, setting environment URLs, and curating a small
alias/normalization file—rather than re-running end-to-end training. Implications for
practice are immediate. Facilities and energy teams gain a conversational layer that
speaks the same ontology as their data, returns plots/CSV/JSON artifacts via a simple
file server, and integrates with existing SQL/TimescaleDB/Cassandra backends. The

@ Springer

17 Page 32 of 38 World Wide Web (2026) 29:17

microservice contract for analytics is intentionally simple (time—value arrays with
optional parameters), enabling incremental addition of new analyses without touching
the NLU or knowledge layer. Health endpoints, smoke tests, and a Docker-first deployment
reduce operational risk and support repeatable roll-outs across sites with different telemetry
stores. Implications for research include a clearer benchmark substrate for NL—SPARQL
and multi-step building reasoning. The staged TO-T2 harness makes portability measurable
and reproducible, encouraging studies on compositional generalization, alias-robust entity
grounding, and schema-aware decoding. The documented dataset schema for NL—-SPARQL
(v2) and the artifact pipeline (from SPARQL results to analytics outputs and summaries)
provide a foundation for releasing richer, reasoning-dependent corpora and for investigating
guardrails that constrain LLMs to ontology-consistent narratives.

9 Conclusion

We presented an end-to-end, ontology-driven conversational platform for smart build-
ings that couples NL—-SPARQL reasoning with production analytics and summarisation
in a modular, reproducible stack. The system combines Rasa-based NLU, a Brick-backed
SPARQL store, a library of time-series analytics exposed via simple HTTP contracts,
and optional language services for translation and summarisation. This design yields a
traceable pipeline from user queries to executable computations and verifiable artifacts.
A staged portability workflow (T0-T2) shows that most cross-building performance can
be recovered without retraining by enriching entities and applying lightweight alias-
ing and schema repairs. The public repository provides per-building Docker stacks,
health checks, smoke tests, and a documented artifact flow, allowing others to repro-
duce results, extend analytics, or evaluate new buildings with low operational overhead.
By decoupling semantic alignment from model training and by standardizing analyt-
ics interfaces, the framework lowers the barrier to deploying conversational analytics
across heterogeneous sites. We expect the accompanying evaluation harness, dataset
schema, and open implementation to serve as a practical baseline for future work on
compositional reasoning, schema-aware decoding, and trustworthy, privacy-respecting
building intelligence.

Appendix A: Extended results

This appendix presents a consolidated set of representative chatbot question-answering
examples across all four reasoning classes (C1-C4), demonstrating the system’s capability
to handle direct factual queries, multi-hop reasoning, temporal aggregations, and complex
analytics integration spanning three building deployments.

@ Springer

World Wide Web

(2026) 29:17 Page330f38 17

Table 11 Consolidated Chatbot QA with reasoning classes C1-C4

Index Class

User-Chatbot Response

1 Cl

User: Where is LPG_Natural Gas_Town MQS5_ Gas_Sensor 5.32 located?

Bot: The LPG_Natural Gas Town MQS5_Gas_Sensor_5.32 is located in the West
zone, specifically in Room 5.32.

User: Can you show me the failure trends for Zone Air Humidity Sensor 5.02
over the last two months, February to March 2025?

Bot: The analysis shows the failure trends for Zone Air Humidity Sensor 5.02
over the last two months (February to March 2025). The mean value of humidity
was 45.2, with a minimum value of 42.0 and a maximum of 48.5. The standard de-
viation is 2.31, and the latest recorded value is 46.8. The sensor’s status indicates
that the humidity level is within normal limits. Additionally, the comfort index was
calculated to be 92.45, which assesses the overall environment as ’Comfortable’.

User: What deviations have been observed in Air_Temperature Sensor 5.08 read-
ings between 01/02/2025 and 15/02/2025?

Bot: The analysis of Air_Temperature_Sensor_5.08 data between 01/02/2025 and
15/02/2025 shows that the latest reading, which is from 24th April 2025, deviates
slightly from the historical mean of 29.014 degrees Celsius by -0.04 degrees Cel-
sius. However, it remains within the normal range as indicated by the “Within nor-
mal range.” message. The historical standard deviation was 0.025 degrees Celsius.
User: Can you show the sensor trends for CO_Level Sensor 5.02 from
01/02/2025 to 28/02/2025?

Bot: The sensor trend for CO_Level Sensor 5.02, from 01/02/2025 to 28/02/2025,
shows a decrease over the period. The initial rolling mean (average of recent
readings) was 29.06 parts per million (ppm), while the latest rolling mean is 28.91
ppm. This represents a slight downward trend, with a difference of approximately
-0.15 ppm between the initial and final rolling means.

User: Can you correlate Air_Temperature_Sensor 5.01 with Air_Temperature
Sensor_5.02 from 01/03/2025 to 15/03/2025?

Bot: Based on the provided data, it appears that there is a correlation between
Air_Temperature Sensor 5.01 and Air_Temperature Sensor 5.02 from March 1st
to March 15th, 2025. On the date of the analysis (April 25th), the values recorded
were 22.14 degrees Celsius for Air_ Temperature Sensor 5.01 and 19.56 degrees
Celsius for Air_Temperature_Sensor_5.02. The exact nature of this correlation,
such as whether they consistently show similar or opposite trends over the speci-
fied period, would require further analysis of the full dataset.

User: What’s the air quality index from 01/02/2025 to 28/02/2025?

Bot: The air quality index from February 1st to February 28th, 2025, as calculated
on April 25th, 2025, is approximately 2.45 with a “healthy” status. The compo-
nents of the air quality are PM10 at 0.024, NO2 at 0.085, CO at 2.27 (rounded),
and CO2 at 0.07425.

User: Can you aggregate sensor data for Formaldehyde Level Sensor 5.01 four
hourly basis from 01/01/2025 to 31/01/2025?

Bot: The request was to aggregate the Formaldehyde Level sensor data for a four-
hour interval from January 1st, 2025, to January 31st, 2025. The response provided
includes the aggregated mean, standard deviation (std), minimum, and maximum
levels of Formaldehyde Level Sensor 5.01 for each four-hour interval.

@ Springer

17 Page 34 of 38 World Wide Web (2026) 29:17

Table 12 Consolidated Chatbot QA with reasoning classes C1-C4
Index Class User-Chatbot Response

8 C1 User: Where is bldg2.ZONE.AHUO1.RM103.Zone_Air_Temp located?
Bot: It is a zone temperature sensor in Room RM103 served by AHUO! (Building 2).
9 Cl1 User: Which AHU does bldg3.AHU.AHUO02S.Outside_Air_Temp belongs to?
Bot: The sensor belongs to AHUO2S in Building 3 (outside air temperature for that
AHU).
10 C2 User: List rooms under AHUO3S that have zone air temperature sensors.

Bot: The ontology lists multiple rooms under AHUO3S with Zone Air Temp,
including RM300C, RM301A, RM306, RM308, RM309, RM310, RM311, RM312,
RM314, and RM315 (non-exhaustive).

11 C2 User: Which AHU serves bldg3.ZONE.AHUO02S.RM211.Zone_Air Temp, and what
is its supply air temperature point?
Bot: The room RM211 is served by AHU02S; the corresponding point is bldg3.
AHU.AHUO02S.Supply_Air_Temp.

12 C3 User: What was the average bldg2. AHU.AHUO1.Supply Air Temp over August
20257
Bot: Aggregation (mean) over 2025-08-01 to 2025-08-31 yields an average of 12.8°
C (analytics: aggregation.mean).

13 C3 User: Provide daily min/max for bldg3.CHW.Building_Chilled Water Supply
Temp in September 2025.
Bot: Over 2025-09-01 to 2025-09-30, the daily minima and maxima range approxi-
mately between 5.8°C and 8.4°C; daily aggregates are available per date (analytics:
aggregation.minmax).

14 C3 User: Aggregate PM2.5_Sensor.01 readings on a 4-hour basis for June 2025.
Bot: 4-hour buckets from 2025-06-01 to 2025-06-30 return mean, std, min, and max
per interval for PM2.5_Sensor.01 (analytics: aggregation.resample-4h).

15 C4 User: Correlate bldg3.AHU.AHUO1S.Supply_Air Temp with bldg3.ZONE.
AHUOIS.RM111.Zone_Air_Temp from 01/07/2025 to 31/07/2025.

Bot: Timeseries fusion via UUIDs shows positive correlation (Pearson r 0.71) with
zone lagging supply by 10-20 minutes; pipelines: correlation.pearson and lag scan
(analytics: correlation).

16 C4 User: Detect anomalies in bldg2. AHU.AHUO1.Supply_Air_Pressure between
01/06/2025 and 15/07/2025.
Bot: Z-score based anomaly detection flags two spikes on 2025-06-18 and 2025-07-
02 exceeding 307; overall uptime unaffected (analytics: anomaly.zscore).

17 C4 User: Compute building air quality index for June 2025 using PM2.5_Sensor.01,
CO_Sensor.01, NO2_Level Sensor.01, and CO2_Level Sensor.01.
Bot: Composite AQI over 2025-06-01 to 2025-06-30 is 2.3 (“healthy”); components
are normalized and weighted before aggregation (analytics: agi.compose).

18 C4 User: Show weekly trend for bldg3.CHW.LOOP_DP across July 2025.

Bot: Rolling 7-day mean indicates a 5% week-over-week decrease in differential
pressure; change-points not significant (analytics: trend.rolling).

Acknowledgements This work is supported in part by the EPSRC PETRAS (Grant No. EP/S035362/1), the
GCHQ National Resilience Fellowship, and ARCCA at Cardiff University.

Author Contributions All authors contributed equally to this work.
Funding Not applicable.

Data Availability All the datasets are publicly available, and the links are attached at https://github.com/suh
asdevmane/OntoBot.

@ Springer

https://github.com/suhasdevmane/OntoBot
https://github.com/suhasdevmane/OntoBot

World Wide Web (2026) 29:17 Page 35 of 38 17

Declarations
Competing interests The authors declare no competing interests.

Ethics approval and consent The research project is approved under the ethics reference COMSC/Eth-
ics/2023/009. Consent is taken when needed from the users.

Consent for publication Authors consent for publications.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alavi, H.S., Churchill, E.F., Wiberg, M., Lalanne, D., Dalsgaard, P., Schieck, A.F.G., Rogers, Y.: Intro-
duction to human-building interaction (HBI): Interfacing HCI with architecture and urban design. ACM
Trans. Comput. Interact. 26(2) (2019)

2. Alavi, H.S., Churchill, E., Kirk, D., Nembrini, J., Lalanne, D.: Deconstructing human-building interac-
tion. Interactions 23(6), 60-62 (2016)

3. Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen, A., Koh, J., Ploennigs, J.,
Agarwal, Y., Berges, M., Culler, D., Gupta, R., Kjergaard, M.B., Srivastava, M., Whitehouse, K.: Brick:
Towards a unified metadata schema for buildings. In: Proceedings of the 3rd ACM Conference on Sys-
tems for Energy-Efficient Built Environments, BuildSys 2016, pp. 41-50. Association for Computing
Machinery, Inc, (2016)

4. Nageeb, A.A., Mahmoud, A.S., Omar, Y.K.: An approach for building a framework for applying natural
language queries on rdf database. In: Hassanien, A.E., Snasel, V., Tang, M., Sung, T.-W., Chang, K.-C.
(eds.) Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics
2022, pp. 627-638. Springer, Cham (2023)

5. Reif, I, Jeleniewski, T., Gill, M.S., Gehlhoft, F., Fay, A.: Chatbot-based ontology interaction using large
language models and domain-specific standards. (2024). https://doi.org/10.1109/ETFA61755.2024.107
11065

6. Yao, Y., Huang, L., He, Y., Ma, Z., Xu, X., Mi, H.: Reviewing and reflecting on smart home research
from the human-centered perspective. In: Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. CHI ’23. Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3544548.3580842

7. Lecorvé, G., Veyret, M., Brabant, Q., Rojas Barahona, L.M.: SPARQL-to-text question generation
for knowledge-based conversational applications. In: Proceedings of the 2nd Conference of the Asia-
Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Con-
ference on NLP (Volume 1: Long Papers), pp. 131-147 (2022)

8. Tran, H., Phan, L., Anibal, J., Nguyen, B.T., Nguyen, T.-S.: SPBERT: An Efficient Pre-training BERT
on SPARQL Queries for Question Answering over Knowledge Graphs (2021)

9. Tran, H., Phan, L., Anibal, J., Nguyen, B.T., Nguyen, T.-S.: Spbert: An efficient pre-training bert on
sparql queries for question answering over knowledge graphs. (2021)

10. Diomedi, D., Hogan, A.: Entity linking and filling for question answering over knowledge graphs.
Technical report (2022)

11. Diomedi, D., Hogan, A.: Question answering over knowledge graphs with neural machine translation
and entity linking. (2021)

12. Rony, M.R.A.H., Kumar, U., Teucher, R., Kovriguina, L., Lehmann, J.: Sgpt: A generative approach for
sparql query generation from natural language questions. IEEE Access 10, 70712-70723 (2022). https:
//doi.org/10.1109/ACCESS.2022.3188714

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ETFA61755.2024.10711065
https://doi.org/10.1109/ETFA61755.2024.10711065
https://doi.org/10.1145/3544548.3580842
https://doi.org/10.1109/ACCESS.2022.3188714
https://doi.org/10.1109/ACCESS.2022.3188714

17

Page 36 of 38 World Wide Web (2026) 29:17

13.

14.

16.

17.

18.

24.
25.

26.
217.

28.

29.

30.

31.
32.

33.

34.
35.

36.

37.

38.

39.

Avila, C.V.S., Vidal, V.M.P., Franco, W., Casanova, M.A.: Experiments with text-to-sparql based on
chatgpt. In: Proceedings - IEEE International Conference on Semantic Computing, ICSC, pp. 277-284.
Institute of Electrical and Electronics Engineers Inc., (2024). https://doi.org/10.1109/ICSC59802.2024.
00050

Rangel, J.C., Farias, T.M.D., Sima, A.C., Kobayashi, N.: Sparql generation: an analysis on fine-tuning
openllama for question answering over a life science knowledge graph. Technical report (2024). http://
ceur-ws.org

Xu, S., Liu, S., Culhane, T., Pertseva, E., Wu, M.-H., Semnani, S., Lam, M.: Fine-tuned LLMs know
more, hallucinate less with few-shot sequence-to-sequence semantic parsing over Wikidata. In: Boua-
mor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5778-5791. Association for Computational Linguistics, Singapore (2023). h
ttps://doi.org/10.18653/v1/2023.emnlp-main.353 . https://aclanthology.org/2023.emnlp-main.353/
Brei, F., Frey, J., Meyer, L.-P.: Leveraging small language models for text2sparql tasks to improve the
resilience of ai assistance. (2024)

Wang, R., Zhang, Z., Rossetto, L., Ruosch, F., Bernstein, A.: NLQxform: A Language Model-based
Question to SPARQL Transformer (2023)

Diallo, PA.K.K., Reyd, S., Zouaq, A.: A comprehensive evaluation of neural sparql query generation
from natural language questions. (2023)

Lin, J.H., Lu, E.J.L.: Sparql generation with an nmt-based approach. J. Web Eng. 21, 1471-1490 (2022).
https://doi.org/10.13052/jwe1540-9589.2155

Yin, X., Gromann, D., Rudolph, S.: Neural machine translating from natural language to sparql. (2019)
Green Building XML (gbXML): gbXML. Accessed on 7 Jan 2026

Building Energy Data Exchange Specification (BEDES): BEDES. Accessed on 7 Jan 2026

Jia, J., Ma, H., Zhang, Z.: Integration of industry foundation classes and ontology: Data, applications,
modes, challenges, and opportunities. Buildings 14(4) (2024)

Project Haystack: Project Haystack. Accessed on 7 Jan 2026

Borrmann, A., Konig, M., Koch, C., Beetz, J.: In: Borrmann, A., Konig, M., Koch, C., Beetz, J. (eds.)
Building Information Modeling: Why? What? How?, pp. 1-24. Springer, Cham (2018)

ETSI: Smart Applications REFerence Ontology (SAREF) and Extensions. Accessed on 7 Jan 2026
Moreno-Munoz, A., Giacomini, N.: Energy Smart Appliances: Applications, Methodologies, and Chal-
lenges, 1st edn. Wiley, Newark (2023)

Daniele, L., Hartog, F., Roes, J.: Created in close interaction with the industry: The smart appliances
reference (saref) ontology. In: Formal Ontologies Meet Industry, pp. 100—-112. Springer, Cham (2015)
Hwerbi, K.: An ontology-based chatbot for crises management: use case coronavirus. (2020)
arXiv:2011.02340

Janowicz, K., Rasmussen, M.H., Lefrangois, M., Schneider, G.F., Pauwels, P.: BOT: The building topol-
ogy ontology of the W3C linked building data group. Semant. Web. 12(1), 143-161 (2020)

World Wide Web Consortium (W3C): Semantic Sensor Network Ontology. Accessed on 7 Jan 2026
Haller, A., Janowicz, K., Cox, S.J.D., Lefrangois, M., Taylor, K., Le Phuoc, D., Lieberman, J., Garcia-
Castro, R., Atkinson, R., Stadler, C.: The modular SSN ontology: A joint W3C and OGC standard
specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web. 10(1), 9-32
(2018)

Balaji, B., Bhattacharya, A., Fierro, G., Gao, J., Gluck, J., Hong, D., Johansen, A., Koh, J., Ploennigs,
J., Agarwal, Y., Bergés, M., Culler, D., Gupta, R.K., Kjergaard, M.B., Srivastava, M., Whitehouse, K.:
Brick: Metadata schema for portable smart building applications. Appl. Energy 226, 1273-1292 (2018).
https://doi.org/10.1016/j.apenergy.2018.02.091

BuildingSync: BuildingSync. Accessed on 7 Jan 2026

Augello, A., Pilato, G., Vassallo, G., Gaglio, S.: In: Gaglio, S., Lo Re, G. (eds.) Chatbots as Interface to
Ontologies, pp. 285-299. Springer, Cham (2014)

Gallo, S., Paterno, F., Malizia, A.: Conversational interfaces in iot ecosystems: Where we are, what is
still missing. In: ACM International Conference Proceeding Series, pp. 273-287. Association for Com-
puting Machinery, (2023). https://doi.org/10.1145/3626705.3627775

Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: Open source language understanding and
dialogue management. (2017)

Mishra, D.S., Agarwal, A., Swathi, B.P., Akshay, K.C.: Natural language query formalization to sparql
for querying knowledge bases using rasa. Prog. Artif. Intell. 11, 193-206 (2022). https://doi.org/10.100
7/s13748-021-00271-1

Rajosoa, M., Hantach, R., Abbe¢s, S.B., Calvez, P., Calvez, P.: Hybrid question answering system based
on natural language processing and sparql query. (2019). https://api.semanticscholar.org/CorpusID:208
194622

@ Springer

https://doi.org/10.1109/ICSC59802.2024.00050
https://doi.org/10.1109/ICSC59802.2024.00050
http://ceur-ws.org
http://ceur-ws.org
https://doi.org/10.18653/v1/2023.emnlp-main.353
https://doi.org/10.18653/v1/2023.emnlp-main.353
https://aclanthology.org/2023.emnlp-main.353/
https://doi.org/10.13052/jwe1540-9589.2155
http://arxiv.org/abs/2011.02340
https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/10.1145/3626705.3627775
https://doi.org/10.1007/s13748-021-00271-1
https://doi.org/10.1007/s13748-021-00271-1
https://api.semanticscholar.org/CorpusID:208194622
https://api.semanticscholar.org/CorpusID:208194622

World Wide Web (2026) 29:17 Page 37 of 38 17

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Saini, A., Verma, A., Arora, A., Gupta, C.: Linguistic rule-based ontology-driven chatbot system. In:
Bhatia, S.K., Tiwari, S., Mishra, K.K., Trivedi, M.C. (eds.) Advances in Computer Communication and
Computational Sciences, pp. 47-57. Springer, Singapore (2019)

Lamiae, E., Hicham, G.T., Fatiha, E., Mohammed, B., Hajoub, M.W.: Patient smart home monitoring
using vision neural network transformers. In: Proceedings of the 6th International Conference on Net-
working, Intelligent Systems & Security. NISS ’23. Association for Computing Machinery, New York,
NY, USA (2023)

Lee, T.-H., Kim, H., Lee, D.: Transformer based early classification for real-time human activity recog-
nition in smart homes. In: Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing.
SAC "23, pp. 410-417. Association for Computing Machinery, New York, NY, USA (2023)

Huang, X., Zhang, S.: Human activity recognition based on transformer in smart home. In: Proceedings
of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning. CACML 23, pp.
520-525. Association for Computing Machinery, New York, NY, USA (2023)

Wang, M., Yang, N., Weng, N.: Securing a smart home with a transformer-based iot intrusion detection
system. Electronics 12(9) (2023)

Gokhale, G., Van Gompel, J., Claessens, B., Develder, C.: Transfer learning in transformer-based
demand forecasting for home energy management system. In: Proceedings of the 10th ACM Interna-
tional Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. BuildSys ’23,
pp. 458-462. Association for Computing Machinery, New York, NY, USA (2023)

Nguyen, H.D., Tran, T.V., Pham, X.T., Huynh, A.T., Do, N.V.: Ontology-based integration of knowl-
edge base for building an intelligent searching chatbot. Sensors Mater. 33(9), 3101-3123 (2021)
Vegesna, A., Jain, P., Porwal, D.: Ontology based Chatbot (For E-commerce Website). Int. J. Comput.
Appl. 179(14), 51-55 (2018)

Avila, C.V.S., Calixto, A.B., Rolim, T.V,, Franco, W., Venceslau, A.D.P., Vidal, V.M.P., Pequeno, V.M.,
De Moura, F.F.: Medibot: An ontology based chatbot for Portuguese speakers drug’s users. In: ICEIS
2019 - Proc. 21st Int. Conf. Enterp. Inf. Syst. vol. 1, pp. 25-36 (2019)

Jung, H., Kim, W.: Automated conversion from natural language query to sparql query. J. Intell. Inf.
Syst. 55, 501-520 (2020). https://doi.org/10.1007/s10844-019-00589-2

Ait-Mlouk, A., Jiang, L.: Kbot: A knowledge graph based chatbot for natural language understanding over
linked data. IEEE Access 8, 149220-149230 (2020). https://doi.org/10.1109/ACCESS.2020.3016142
Cho, E.: Hey google, can i ask you something in private? In: Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. CHI 19, pp. 1-9. Association for Computing Machinery,
New York, NY, USA (2019)

Folstad, A., Araujo, T., Law, E.L.C., Brandtzaeg, P.B., Papadopoulos, S., Reis, L., Baez, M., Laban,
G., McAllister, P, Ischen, C., Wald, R., Catania, F., Meyer von Wolff, R., Hobert, S., Luger, E.: Future
directions for chatbot research: an interdisciplinary research agenda. Computing 103(12), 2915-2942
(2021)

Fitton, D., Read, J.C., Sim, G., Cassidy, B.: Co-designing voice user interfaces with teenagers in the
context of smart homes. In: Proceedings of the 17th ACM Conference on Interaction Design and Chil-
dren. IDC 18, pp. 55-66. Association for Computing Machinery, New York, NY, USA (2018)

Frens, J., Funk, M., Hout, B., Le Blanc, J.: Designing the iot sandbox. In: Proceedings of the 2018
Designing Interactive Systems Conference. DIS ’18, pp. 341-354. Association for Computing Machin-
ery, New York, NY, USA (2018)

Heck, M., Shon, S.H., Becker, C.: Does using voice authentication in multimodal systems correlate
with increased speech interaction during non-critical routine tasks? In: 27th International Conference
on Intelligent User Interfaces. IUI °22, pp. 868—877. Association for Computing Machinery, New York,
NY, USA (2022)

Koshy, V., Park, J.S.S., Cheng, T.-C., Karahalios, K.: “we just use what they give us”: Understanding
passenger user perspectives in smart homes. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems. CHI 21. Association for Computing Machinery, New York, NY, USA
(2021)

Louis, J., Rashid, K.: Utilizing building information models as operating systems for smart homes. In:
Proceedings of the Workshop on Human-Habitat for Health (H3): Human-Habitat Multimodal Interac-
tion for Promoting Health and Well-Being in the Internet of Things Era. H3 *18. Association for Com-
puting Machinery, New York, NY, USA (2018)

Salovaara, A., Bellucci, A., Vianello, A., Jacucci, G.: Programmable smart home toolkits should better
address households’ social needs. In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. CHI "21. Association for Computing Machinery, New York, NY, USA (2021)
Boovaraghavan, S., Patidar, P., Agarwal, Y.: TAO: Context Detection from Daily Activity Patterns
Using Temporal Analysis and Ontology. Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol.
7(3) (2023)

@ Springer

https://doi.org/10.1007/s10844-019-00589-2
https://doi.org/10.1109/ACCESS.2020.3016142

17 Page 38 of 38 World Wide Web (2026) 29:17

60. Suhas, D., Rana, O., Lannon, S., Perera, C.: Talking buildings: Interactive human-building smart-bot
for smart buildings. In: WISE 2024, December 2-5, 2024, Proceedings, Part I, pp. 399-415.
Springer, Berlin, Heidelberg (2024). https://doi.org/10.1007/978-981-96-0579-8 28

61. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T.,
Lacroix, T., Sayed, W.E.: Mistral 7B (2023). https://arxiv.org/abs/2310.06825

62. Li, M., Yang, H., Liu, Z., Alam, M.M., Ebrahim, Sack, H., Gesese, G.A.: KGMistral: Towards boosting
the performance of large language models for question answering with knowledge graph integration.
In: Workshop on Deep Learning and Large Language Models for Knowledge Graphs (2024). https://op
enreview.net/forum?id=JzLOgm3YAS

63. Gashkov, A., Perevalov, A., Eltsova, M., Both, A.: SPARQL Query Generation with LLMs: Measuring
the Impact of Training Data Memorization and Knowledge Injection (2025). https://arxiv.org/abs/2507
13859

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1007/978-981-96-0579-8_28
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=JzL0qm3YA8
https://openreview.net/forum?id=JzL0qm3YA8
https://arxiv.org/abs/2507.13859
https://arxiv.org/abs/2507.13859

	﻿OntoSage: Intelligent Human-Building Smartbot for Semantic Smart Building Question Answering
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Related Work
	﻿2.1﻿ ﻿NL to SPARQL Query Generation
	﻿2.2﻿ ﻿Ontologies for Smart Buildings
	﻿2.3﻿ ﻿Conversational Agents in HBI

	﻿﻿3﻿ ﻿System Architecture and Design
	﻿﻿3.1﻿ ﻿Architectural Requirements
	﻿﻿3.2﻿ ﻿Core Components and Data Flow
	﻿3.2.1﻿ ﻿Core Components
	﻿3.2.2﻿ ﻿Data Flow

	﻿﻿3.3﻿ ﻿Model Architecture
	﻿3.3.1﻿ ﻿NLU Pipeline
	﻿3.3.2﻿ ﻿NL to SPARQL Translation

	﻿﻿3.4﻿ ﻿Post-Processing and Data Retrieval
	﻿﻿3.5﻿ ﻿Analytics Pipeline
	﻿﻿3.5.1﻿ ﻿Decider Service: Analytics Routing

	﻿﻿3.6﻿ ﻿Summarization
	﻿﻿4﻿ ﻿Experimental Setup and Training
	﻿4.1﻿ ﻿Testbed Ontology Development
	﻿4.2﻿ ﻿NLU Training
	﻿﻿4.3﻿ ﻿T5-Base Model Training
	﻿4.3.1﻿ ﻿Dataset Creation
	﻿4.3.2﻿ ﻿Training Configuration
	﻿4.3.3﻿ ﻿Training Infrastructure

	﻿﻿5﻿ ﻿Results and Evaluation
	﻿5.1﻿ ﻿Component-Wise Evaluation
	﻿5.1.1﻿ ﻿NLU Entity Extraction
	﻿5.1.2﻿ ﻿SPARQL Query Generation
	﻿5.1.3﻿ ﻿Analytics Microservices
	﻿5.1.4﻿ ﻿Response Generation

	﻿5.2﻿ ﻿Baseline Comparisons
	﻿5.2.1﻿ ﻿Quantitative Comparison
	﻿5.2.2﻿ ﻿Qualitative Analysis

	﻿﻿5.3﻿ ﻿Advanced Reasoning Classes
	﻿﻿5.4﻿ ﻿Cross-Building Portability
	﻿﻿6﻿ ﻿Applications and Use Cases
	﻿﻿7﻿ ﻿Limitations and Future Work
	﻿﻿8﻿ ﻿Discussion and Implications
	﻿﻿9﻿ ﻿Conclusion
	﻿﻿Appendix A: Extended results
	﻿References

