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Abstract. We prove that the group of isometries preserving a metric foliation on a closed
Alexandrov space X is a closed subgroup of the isometry group of X. We obtain a sharp
upper bound for the dimension of this subgroup and show that, when equality holds, the
foliations that realize this upper bound are induced by fiber bundles whose fibers are round
spheres or projective spaces. As a corollary, singular Riemannian foliations that realize
the upper bound are induced by smooth fiber bundles whose fibers are round spheres or
projective spaces.
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1 Main results

The Myers—Steenrod theorem [47] states that the isometry group of a Riemannian n-manifold is
a Lie group whose dimension is at most n(n+1)/2. When the manifold is compact, its isometry
group must also be compact, as established by van Dantzig and van der Waerden [50]. The ap-
plication of the theory of compact transformation groups in Riemannian geometry [1, 10, 26, 33]
is grounded on these two fundamental results, which also hold for other classes of metric spaces,
such as Finsler manifolds [17], Alexandrov spaces [22, 23] or RCD spaces [29, 49].

Singular Riemannian foliations generalize both isometric compact Lie group actions and Rie-
mannian submersions, which induce decompositions into embedded submanifolds of lower dimen-
sion, and represent a generalized notion of symmetry on Riemannian manifolds [3, 13, 16, 24, 46].
Not all singular Riemannian foliations stem from Lie group actions (see, for example, [48]).
Nevertheless, certain isometries of a Riemannian manifold M with a singular Riemannian fo-
liation F may induce residual symmetry by preserving the foliation’s leaves. These foliated
isometries generate isometries of the leaf space M/F. Our first main result is an analog of the
Myers—Steenrod theorem for the group of foliated isometries of a Riemannian manifold with
a singular Riemannian foliation.

Theorem A. Let (M,F) be a singular Riemannian foliation with closed leaves on a complete
connected Riemannian manifold. Then the following assertions hold:

(i) The group Isom(M, F) of foliated isometries is a Lie group and is compact if M is compact.
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(#i) If M has dimension n > 1 and F has codimension 0 < k < n, then

k(k+1) (n—Fk)(n—k+1)
2 * 2 ’

dim(Isom(M, F)) < (a)

(7i1) If equality holds in inequality (a), then M is foliated-diffeomorphic to a fiber bundle F —
M — B, where B is diffeomorphic to R, RP*, or S*, and the fibers are round spheres or
real projective spaces, Euclidean space, or a hyperbolic space. Moreover, when equipped with
the leaf-projection metric induced by M, the base space B is isometric to k-dimensional
Euclidean space, hyperbolic space with constant negative sectional curvature, a round real
projective space, or a round sphere.

The leaf space M/ F of a singular Riemannian foliation (M, F) with closed leaves has a natural
distance function that makes M/F a locally compact length space. The curvature of M/F is
locally bounded from below in the triangle comparison sense, which links the geometry of the
leaf space with that of the manifold. This fact plays a central role in proving Theorem A. For
an isometric action of a compact Lie group G on a complete Riemannian manifold M with
sectional curvature uniformly bounded from below by k € R, the orbit space M/G equipped
with the orbital distance function is an Alexandrov space with curvature bounded below by k.
Imposing further conditions, such as positive or non-negative sectional curvature on M, leads
to significant constraints on the manifold’s topology and has been an active research topic in
Riemannian geometry [26, 27, 51]. Note that the orbit projection map 7: M — M /G is a proper
submetry, i.e., for every p € M, any closed metric ball B(p,r) of radius r centered at p maps onto
the metric ball B(w(p),r) in M/G. Submetries, introduced by Berestovskii in [5] as a metric
generalization of Riemannian submersions, have been the focus of systematic study in metric
geometry [8, 30, 32, 36, 37, 39].

Motivated by the preceding considerations, we also investigate the foliated isometries of the
metric foliations F whose leaves are the fibers of a submetry 7: X — Y between Alexandrov
spaces. Each leaf 7=1(y) is closed, since it is the inverse image of the closed set {y} under
the continuous map m. We consider the group Isom(X, F) of foliated isometries and obtain the
following analog of Theorem A. For parts (ii)—(iii), we assume 7 is proper, in which case every
fiber is compact.

Theorem B. Let m: X — Y be a submetry between connected Alexandrov spaces and set F =
{m=Y(y) |y € Y}. Then the following assertions hold:

(i) The group Isom(X,F) of foliated isometries of (X, F) is a Lie group and is compact if X
18 compact.

Assume further that 7 is proper for parts (it) and (iii).

(7i) If X has dimension n > 1 and Y has dimension 0 < k < n, then

k(k+1) (n—k)(n—k%—l).

dim(Isom(X, F)) < 5+ 5

(b)

(7i1) If equality holds in inequality (b), then m is the composition of a submetry 7: X — Z
with connected fibers, and a submetry mp: Z — Y whose fibers are finite discrete spaces.
The spaces X, Y, Z are Riemannian manifolds, X is homogeneous, and the submetry
7: X — Z is a smooth Riemannian submersion. Moreover, the conclusions of Theo-
rem A (iii) hold for the foliation induced by 7. In general the fibers of m are a finite
disjoint union of round spheres or projective spaces, the base space Y 1is isometric to the
k-dimensional Fuclidean space, hyperbolic space with constant negative sectional curvature,
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a round real projective space, or a round sphere. More specifically, when Y is homeomor-
phic to RF for k > 0, or Y is homeomorphic to S* for k > 2, then the fibers of ™ are
connected. When Y is homeomorphic to RP* for k > 2, the fibers of © have at most two
connected components. When Y is homeomorphic to S', then the fibers of © can have
m > 1 connected components.

The upper bound for the dimension of the group of foliated isometries in Theorems A and B
consists of two summands. The first summand, k(k + 1)/2, bounds the dimension of the image
of the Lie group morphism ¥: Isom(M,F) — Isom(M/F) induced by the projection 7 (see
Section 2.7). This image consists of the isometries of M that descend to non-trivial isometries
of the leaf space. The second summand, (n—k)(n—k+1)/2, bounds the dimension of the group
of foliated isometries h that leave the leaves invariant, i.e., h(L) C L for any leaf L € F.

Applying Theorem A to the trivial foliations F = {M} or F = {p | p € M} consisting,
respectively, of a single leaf or leaves that contain only one point, yields the classical upper
bound n(n + 1)/2 in the Riemannian Myers—Steenrod theorem. For Alexandrov spaces, Theo-
rem B applied to the trivial submetries id: X — X and 7: X — {pt} yields the bound n(n+1)/2
in the Myers—Steenrod theorem for Alexandrov spaces in [23].

As in the Myers—Steenrod theorem for the setting of Riemannian, Alexandrov, and RCD-
spaces, the upper bound in Theorems A and B is sharp. Let (M,g) be the Riemannian
product (N x P, g1 x g2) of two Riemannian manifolds (N n=k, gl)7 (P’“, gg) isometric to round
spheres or round projective spaces with k,n—k > 1, and the Riemannian foliation F whose leaves
are N. Then dim(Isom(M,g)) = dim(Isom(NV, g1)) + dim(Isom(P, g2)) (see [19, Corollary 1)),
and thus dim(Isom(M, F)) = dim(Isom(M)). This realizes the upper bound in Theorem A (a)
and Theorem B (b).

As a nontrivial bundle example, consider the Hopf fibration F given by the orbits of the scalar
multiplication action of S! C C on the unit sphere S C C2. Since this S'-action commutes
with the standard U(2)-action on S%, we have U(2) C Isom(S5®, F). By Theorem A (ii),

dim U(2) = 4 < dim(Isom($?, F)) < 4.

Hence, Isom(Sg,}") has maximal dimension while the foliation is given by a nontrivial fiber
bundle.

When equality holds in inequality (a), M is a fiber bundle F — M — B and we may
assume that the leaves F' carry a metric of constant sectional curvature equal to one. The main
theorems in [14, 20] imply that, when B is not diffeomorphic to R*, the bundle has a linear
structure group. In particular, when the leaves are diffeomorphic to S™~*, the classification of
such bundles is the same as the classification of vector bundles over B. In the case when the
leaves are diffeomorphic to RP™ ¥ in some cases depending on the values of k, we can show that
the conditions of [4, Theorem 1] hold, and thus the classification reduces to the classification
of vector bundles over B. In general when the leaves are diffeomorphic to RP™* by [14], the
structure group is the so-called projective orthogonal group PO(n — k) = O(n — k)/{Id, —1d},
and thus the classification corresponds to [B, BPO(n — k)], the collection of maps from B to the
classifying space BPO(n — k) up to homotopy.

When B is diffeomorphic to R¥, the manifold M is diffeomorphic to RP" ¥ x R* or S7~* x R¥,
since R¥ is contractible. Observe that in Theorem B (744) in the case when Y is homeomorphic
to R¥, we conclude that X is homeomorphic to S** x RF or RP"* x RF,

The map ¥: Isom(M,F) — Isom(M/F) is generally not surjective. However, if M is an
n-dimensional Euclidean vector space with a foliation F induced by a linear isometric ac-
tion by a compact Lie group G, any isometry in Isom(M/G)? lifts to a foliated isometry
in Isom(M, G) [43]. Here, Isom(M/G)° denotes the connected component containing the iden-
tity. The proof of Theorem B yields an upper bound on the dimension of the orbits of G in
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terms of the dimension of M/G. Specifically, if M /G has dimension 0 < k < n, then an orbit
has dimension at most (n — k)(n — k 4+ 1)/2.

Remark 1.1. We point out that in the proof of Theorem A, we only use the transnormal
properties of the closed foliation. Nonetheless, we state our results for singular Riemannian
foliations, as there are no known examples of transnormal systems that are not smooth foliations,
and it is conjectured that any transnormal system is a singular Riemannian foliation (see [51,
Final remarks]). See also the work of Lytchak and Wilking [39] for the smoothness of submetries
between Riemannian manifolds.

Remark 1.2. In the proof of Theorems A (i) and B (i), we crucially rely on the assumption
that the leaf and fiber spaces are Hausdorff (see, for example, the proof of Proposition 2.23).
To prove Theorem A (7i), we require the leaf space to be an Alexandrov space. Both conditions
are satisfied if the singular Riemannian foliation has closed leaves. However, this requirement
can be relaxed by asking that the leaves of the foliation be globally equidistant instead of just
locally equidistant.

Remark 1.3. We do not know if the upper bound on the dimension stated in Theorem A (i7)
holds for singular Riemannian foliations without closed leaves. Even if such a bound exists, we
cannot obtain a rigidity conclusion as in Theorem A (7i7). This is illustrated by the irrational
flow on the 2-dimensional flat torus: the group of foliated isometries has dimension two, which is
the dimension of the isometry group of the 2-dimensional flat torus. In contrast, when we assume
that the leaves are closed and the singular Riemannian foliation is not trivial, Theorem A (ii7)
implies that the foliation is given by a circle bundle over the circle.

Remark 1.4. In Theorem B (iii), there are examples of foliations with disconnected fibers.
Namely, consider the product of a round 2-sphere with a round 3-sphere, and consider the 3-
sphere as leaves. As remarked above, the group of foliated isometries has maximal dimension.
Now consider the antipodal action of Zy on S?. With this, we get a fibration of S% x §% over RP?
whose fibers are two disjoint copies of a round S2. The difference with Theorem A is that we
ask the leaves of a singular Riemannian foliation to be connected.

Remark 1.5. We note a natural classification problem: classify, up to foliated isometry, all
pairs (X, F) with Isom(X, F) of mazimal dimension. Our results provide initial structure con-
straints for this question.

Our article is organized as follows. Section 2 presents basic material on singular Riemannian
foliations, Alexandrov spaces, and submetries, as well as auxiliary results used in the proofs of
our main theorems. Section 3 contains the proof of Theorem A. Finally, in Section 4, we prove
Theorem B.

2 Preliminaries

In this section, we collect basic definitions and results on singular Riemannian foliations, Alexan-
drov spaces, and submetries we will use in the proof of our main theorems. We refer the reader
to [2, 11, 25, 32, 36] for further basic results on these subjects. We will assume all spaces are
connected, unless stated otherwise.

2.1 Singular Riemannian foliations

A singular Riemannian foliation (M,F) on a complete Riemannian manifold M is a partition
of the manifold into a collection F = {L, | x € M} of disjoint connected, complete, immersed
submanifolds L., called leaves, satisfying the following conditions:
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(i) If v: [a,b] — M is a geodesic perpendicular to the leaf L
to Ly for all t € [a, b].

+(a)» then v is perpendicular

(ii) For each p € M, there exists local smooth vector fields spanning the tangent spaces of the
leaves.

We call any leaf of maximal dimension a regular leaf; leaves that are not regular are called
singular. Given any Riemannian manifold M, the foliation consisting of one leaf 7 = {M} and
the foliation where each leaf consists of just a point F = {{z} | x € M} are trivial examples
of singular Riemannian foliations. Other examples of singular Riemannian foliations are given
by the partition of a complete Riemannian manifold M by the orbits of an isometric action of
a compact Lie group. The partition of M into the fibers of a Riemannian submersion f: M — N
yields a further example of a singular Riemannian foliation. Note that there are infinitely many
examples of singular Riemannian foliations which are not given by group actions nor from
Riemannian submersions [21, 48].

Let (M, F) be a singular Riemannian foliation. Then we have a singular distribution H C M,
called the horizontal distribution, given by setting H, = v, L,, the normal tangent space to the
leaf L, at x. The codimension of the foliation, denoted by codim(F), is the codimension of any
regular leaf in M. We say (M, F) is closed if all leaves are closed in M. The leaf space of the
foliation is the set of equivalence classes M* = M /F equipped with the quotient topology. We
have a natural projection map n: M — M™* which is continuous with respect to the quotient
topology. Given a subset A C M, we let A* = w(A).

Let (M, F) be a closed singular Riemannian foliation. Fix x € M and consider the nor-
mal space v,L, to the tangent space T,L, C T,M at x. Next, for ¢ > 0 sufficiently small,
define VL, = (vyLy) N B:(0), where B:(0) is the closed ball of radius ¢ in T, M. Set S, =
exp, (V5 Ly). The intersection of the leaves of F with S, induces a foliation F|g, on S, whose
leaves are the connected components of the intersection between the leaves of F and S,. Al-
though Flg, may not be a singular Riemannian foliation with respect to the induced metric
of M on S; (the leaves of F|g, may not be equidistant with respect to the induced metric),
the pull-back foliation F* = expk(F|g,) is a singular Riemannian foliation on v;L, equipped
with the Euclidean metric gi- := (gs)|,,1, (see [45, Proposition 6.5]). The foliation (vL,, F?®)
is called the infinitesimal foliation at x.

The infinitesimal foliation (5L, F*) is invariant under homotheties fixing the origin (see [45,
Lemma 6.2]). Furthermore, the origin {0} C vSL, is a leaf of the infinitesimal foliation. Since the
leaves of F* are equidistant, the origin being a leaf implies that any leaf of F* is at a constant
distance from {0}. Therefore, each leaf of the infinitesimal foliation is contained in a round
sphere centered at the origin. Hence, we may consider the infinitesimal foliation restricted to
the unit normal sphere of v, L,, denoted by Sy, resulting in a foliated round sphere (S’j, .7-"””)
with respect to the standard round metric of Si-. This foliation is also called the infinitesimal
foliation. Henceforth, when referring to the “infinitesimal foliation”, we will mean (Sj,]:x).
Note that there is no loss of generality in doing so, since (v Ly, F*) is invariant under homothetic
transformations and thus one may recover it from (S;-, F*).

Let L be a closed leaf of a singular Riemannian foliation (M, F), and «y: [0, 1] — L a piecewise
smooth curve with v(0) = x. By [43], there exists a continuous map G': [0, 1] x v,L — vL such
that

(a) G(t,v) € vyy)L for every (t,v) € [0,1] x v L.

(b) For every t € [0, 1], the restriction G|g)xy, 1,0 VLl — vy L is a linear isometry preserving
the leaves of v L.

(c) For every s € R, exp. ;) (sG(t,v)) belongs to the same leaf as exp,(sv).
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We denote by O(Sj, ]-“f”) the group of foliated isometries of the infinitesimal foliation,
i.e., the isometries which preserve the infinitesimal foliation. For each loop v at x, the map
Gy : vyl — v, L given by G, (v) = G(1,v) is a foliated linear isometry (see [44, Corollary 15]).
Therefore, we have a group homomorphism p: Q(L, x) — O(SIL, ]-'x) from the loop space of L,
at = to the foliated isometries of the infinitesimal foliation by setting p(v) = G,.

An isometry in O(le, ]:x) may map a leaf to a different leaf. By O(F?) we denote the foliated
isometries preserving the foliation, i.e., isometries f € O(Sj,]—"z) such that for any leaf £
of (S5, F%), we have f(£) C £. The natural action of O(S;, ) on the quotient Si-/F* has
kernel O(F7*). Using the fact that if two loops 1 and ~y, based at x are homotopic, then G;ll oG,
is in the kernel of the action of O(Sj, ]:“7) on Sy /F®, one may show that there is a well-defined
group homomorphism

p: m(L,x) — O(Si‘,]:x)/o(]:x)a

given by p[y] = [G,] (see, for example, [13, Lemma 2.4 and Proposition 2.5]). We define the
holonomy of the leaf L as the image I';, < O(S;, F*)/O(F*) of m1(L,z) under the homomor-
phism p. When we consider the holonomy of a leaf L, through a point x € M, we denote
it by I'z. A regular leaf L is a principal leaf if its holonomy group is trivial, and exceptional
otherwise. The set M, C M consisting of the union of principal leaves is an open and dense
subset of M (see for example [13, Proposition 2.8]).

2.2 Alexandrov spaces

An Alexzandrov space (X,d) with curvature bounded below by k € R is a complete length space
of finite Hausdorff dimension with curvature bounded below in the triangle comparison sense.
Namely, for each z € X, there is an open neighborhood U C X of z, such that, for each geodesic
triangle A contained in U, there exists a geodesic triangle A in M ,?, the 2-dimensional model
space of constant sectional curvature k, with edges having the same lengths as the edges of A
satisfying the following condition: If y is a vertex of A, ¥y is the corresponding vertex in A,
and w is any point in the opposing edge in A with corresponding point w in the opposing edge
in A, then d(y,w) > dpp2 (y,w). As is customary, we will abbreviate curvature bounded below
by k by writing curv > k. A complete Riemannian manifold M with a uniform lower bound for
the sectional curvature is an example of an Alexandrov space.

Let (X,d) be a metric space and fix three points z,y,z € X. We define the comparison
angle £(yxz) at x as

d($, y)2 + d(l’, 2)2 — d(ya Z)Q) ]

£(y,x,z) = arccos ( 2d(z, )d(z.7)

Now consider two continuous curves ¢p: [0,1] — X and c¢: [0,1] — X with ¢1(0) = ¢2(0) =
x € X. We define the angle between c1 and co as

L(cr, ) = Sggoé(cl(s), x,ca(t)),
provided the limit exists. When X is an Alexandrov space and the curves ¢; and co are geodesics,
the angle Z(c1, c2) exists (see [11, Proposition 4.3.2]).

Given two geodesics ¢;: [0,1] — X and co: [0,1] — X in an Alexandrov space X with
common start point z € X, we say that ¢ is equivalent to co if Z(c1,c2) = 0. Let f]x(X) the set
of equivalence classes of geodesics starting at . We define a metric on this set by setting the
distance between two classes to be the angle formed between any two representatives of each
class. The space of directions ¥,(X) of X at x is the metric completion of 3,(X). By [12,
Corollaries 7.10 and 7.11], the metric space ¥;(X) is an Alexandrov space of curv > 1.
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By [11, Theorem 10.4.1], any Alexandrov space ¥ with curv > 1 has diam(X) < 7. Let (X, d)
be a metric space with diam(X) < w. The FEuclidean cone over X, denoted by CX, is the
set X x [0,00)/(z,0) ~ (y,0) equipped with the metric

de([z, ], [y, s]) = /12 + 52 — 2ts cos(d(z, y)).

Given an Alexandrov space X and a point x € X, we define the tangent cone of X at x as
T, X = C¥,(X). We denote the vertex of T, X by 0.

The following basic example illustrates a connection between the theories of Alexandrov
spaces and of closed singular Riemannian foliations.

Example 2.1. The leaf space M* of a singular Riemannian foliation (M, F) on a complete
Riemannian manifold with closed leaves inherits a complete metric d* from M, known as the leaf-
projection metric. For x*,y* € M*, the distance d*(z*,y*) is defined as d*(«*,y*) = d(La, Ly),
the distance between the leaves L, and L, considered as subsets of M. Equipped with the
metric d*, the leaf space M* has curvature locally bounded below in the triangle comparison
sense discussed above. Specifically, if U C M is an open neighborhood with sectional curvature
bounded below by ky € R, then the projection U* C M™ has curvature bounded below by ki;
(see [38]). The Hausdorff dimension of M* is equal to the codimension of F. Hence, if M
has sectional curvature uniformly bounded below by & € R, and F is closed, then M* is an
Alexandrov space with curv > k.

2.3 Submetries from proper metric spaces

Below, we collect several results from [36] on general submetries between Alexandrov spaces (see
also [30] and [32]).

A map p: X — Y between two metric spaces is a submetry if, for any € > 0 and any x € X,
we have p(B:(x)) = B:(p(x)). In other words, p maps closed balls of radius ¢ in X onto closed
balls of radius € in Y. Recall that a metric space X is proper if every closed ball in X is compact.
Every proper metric space is complete.

Let (X, d) be a metric space and F = {L, | @ € A} a partition of X.

The foliation F is equidistant if for all leaves Ly, Lg € F and all € Ly, we have d(Lq, Lg) =
d(z, Lg), where the first distance is the distance between subsets of M. We will say that F is
a metric foliation if it is an equidistant partition.

An element L, € F of a metric foliation is a leaf. For any z € X, we denote by L, the leaf of F
containing z, and refer to L, as the leaf through x. The leaf space is the quotient space X/F
whose elements are the leaves of the foliation. As for singular Riemannian foliations, we set
X* = X/F. We define a metric on X* by letting d(z*,y*) = d(Lg, Ly) for any z*,y* € X*. The
leaf-projection map p: X — X* is then a submetry.

When X is a proper metric space, the leaves of a metric foliation of X are closed subsets
of X. Moreover, if p: X — Y is a submetry between metric spaces, then the partition F =
{p~(y) | y € Y} is a metric foliation of X with closed leaves (see [36, p. 19]).

Lemma 2.2 ([36, Lemma 4.7]). Let p: X — Y be a submetry. If X is a proper metric space,
then the following assertions are equivalent:

(1) The map p is proper.
(2) The fibers of p are compact.
(3) There is a compact fiber.
Let p: X — Y be a submetry between two metric spaces. Two points z1,z9 € X are near

(with respect to p) if d(x1,x2) = d(p(x1),p(xz2)). The points 1, zo are near if and only if they
realize the distance between the leaves L,, and L., in X.
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Consider a length space X, a metric space Y, and a submetry p: X — Y. Let v be a geodesic
in Y through a point y € Y. Givenx € p~!(y), there exists a geodesic 7 through z that is mapped
by p isometrically onto v. We call 4 the horizontal lift of v. A geodesic in X is horizontal if it is
mapped by p isometrically onto a geodesic in Y. A shortest path between two points x1,x9 € X
is horizontal if and only if the points 1, xo are near (see [36, p. 21]).

Theorem 2.3 ([36, Theorem 7.2]). Let p: X — Y be a submetry between metric spaces. Then
the following assertions hold:

(1) The components of each fiber F, = p~(y) are at distance at least £(y) from one another.

(2) The intrinsic metric on each component of a fiber F, is locally Lipschitz-equivalent to the
induced metric.

2.4 Submetries between Alexandrov spaces

When the metric space X is an Alexandrov space, we may gain further insight into the local
structure of submetries. To do so, we first recall several notions and results that will enable us
to describe the space of directions of a family of leaves. We follow [36].

Recall that a map f: (X,dx) — (Y,dy) between metric spaces is Lipschitz if there exists
a real number K > 0 such that dy (f(x1), f(z2)) < Kdx(z1,x2) for any z1,z2 € X. In this case,
we say f is K-Lipschitz.

Let ¥ be an n-dimensional Alexandrov space with curvature bounded below by 1. Given
A C X, we let

Pol(A) = {v e X | ds(v,A) > w/2}

and refer to it as the polar set of A. Two points v,w € ¥ are antipodal if dy(v,w) = .
Toponogov’s comparison theorem implies that Pol(A) is a totally convex subset of 3. Hence,
Pol(A) is an Alexandrov space with curv > 1.

Let X and Y be metric spaces, and let CX and CY be their respective topological cones.
A map f: CX — CY is homogeneous if f([t,x]) = [t, f(x)] for all t € [0,00), and all z € X. As
mentioned in Section 2.2, if X is an n-dimensional Alexandrov space with curv > 1, then CX
may be endowed with a metric d such that (C3,d) is an (n + 1)-dimensional Alexandrov space
of non-negative curvature. We call (CX,d) the Euclidean cone over ¥.. We will refer to points
in CY as vectorsand to points in ¥ as directions. Given a vector v = [t,u] in (C3,d), we will
refer to ¢t as the magnitude of v and will set [v| =¢. Let p: CX — CT be a submetry between
Euclidean cones. A vector h € C¥ is horizontal (with respect to p) if [p(h)| = |h|. A subset A
of an Alexandrov space X is totally convez if, for any two points =,y € A, every (minimizing)
geodesic joining x and y is contained in A. If curv(X) > 1, we require this only for pairs
with d(z,y) < 7. In particular, S is always a totally convex subset in any round unit sphere.

Proposition 2.4 ([36, Proposition 6.4 and Lemma 6.5]). Let ¥ and T be Alexandrov spaces
with curv > 1 and let CX, and C'T be their respective Fuclidean cones. If p: C¥X — CT is
a homogeneous submetry, then the following assertions hold:

(1) The preimage of the vertex o € CT is a totally conver subcone CV of CY defined over
a totally convex subset V C X.

(2) The cone CH C C% over H = Pol(V) C %, the polar set of V', is the set of horizontal
vectors.

(3) Let H =Pol(V) as in item (2). Then Pol(H) =V
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Let V and H be as in Proposition 2.4. Given v € V', consider the set
H’ ={h e X |ds(h,v) =m/2}.

Since v € V' C ¥ and dx(h,v) = 7/2 implies dx(h, V) > 7/2, we have H” C Pol(V) = H. Thus,
every h € H" is a horizontal direction.

The set H = Noey HY is the set of all points h € H that have distance equal to 7/2 to
any point in V. Since H and V are totally convex subsets of 3, they are Alexandrov spaces
of curv > 1. Thus, their spherical join H %V is again an Alexandrov space with curv > 1.

Moreover, there exists a 1-Lipschitz map Pg: ¥ — H * V for which the following assertions
are equivalent.

Proposition 2.5 ([36, Proposition 6.14 |). The following assertions are equivalent:

(1) Py is surjective.
(2) H=H.
(3) Py is a submetry.

If the 1-Lipschitz map Pr: % — H * V satisfies any of the conditions in Proposition 2.5, we
say that the set H C X is almost spanning. Moreover, if Py is an isometry, we say that H is
spanning. We call a homogeneous submetry p: C¥ — CT (almost) spanning if the horizontal
set H C ¥ is (almost) spanning.

By considering the Euclidean cones over the spaces ¥, H «V, H, and T, and the maps
between them discussed above, we may represent a homogeneous submetry p: C¥ — CT as
a composition

oy P o x ov ¥ cg Py o,

where pro g is the projection onto the first factor of the metric product CH x C'V, and observe
that prog and p are submetries.

Lemma 2.6 ([36, Lemma 6.15]). Let p: C¥ — CT be a homogeneous submetry and let H C X
be the set of horizontal directions. If the restriction p|,: H — T is an isometry, then H is
almost-spanning.

A homogeneous submetry p: C¥ — CT is regular if p: H — T is an isometry.

Following [36, Definition 2.5], we will say that ¥ is Riemannian if it is isometric to the
unit round n-sphere S™. If vol(X) > (1 — p) vol(S™) for a fixed and sufficiently small positive
real number p = p(n), we refer to X as extremely thick. If there exist n + 2 points v; € ¥
with d(vi,v;) > 7/2, we call ¥ thick. Additionally, we say ¥ is round if rad(X) > 7/2,
where rad(X), the radius of ¥, is given by

rad(X) = inf sup d(v,w).
vEX ey

By Grove and Petersen’s radius sphere theorem, every round Alexandrov space is homeomorphic
to a sphere (see [28]).

Proposition 2.7 ([36, Proposition 6.16]). Let p: C¥ — CT be a homogeneous submetry. Then
the following assertions hold:

(1) If either V' or H is a round space, then p is spanning.

(2) If T is a round space, then p is reqular and spanning.
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We now recall the definition of differentiability for Lipschitz functions between Alexandrov
spaces (cf. [36, Section 3]). Given a metric space (X, d) and a real number r > 0, we denote by rX
the metric space (X,rd). Let {(X;,z;)}2; and (X, z) be pointed proper metric spaces. The
sequence {(X;, x;)} converges in the pointed Gromov—Hausdorff sense to (X, x) if, for each R > 0,
the sequence of closed balls { Br(x;)} converges to Br(x) in the Gromov—Hausdorff sense. The
following theorem gives an alternative characterization of the tangent cone of an Alexandrov
space to the one in Section 2.2.

Theorem 2.8 ([12, Theorem 7.8.1]). Let X be an Alexandrov space, fix v € X, and let T, X =
CY(X) be the tangent cone to X at x. Then the pointed metric spaces (AX, ) converge in the
pointed Gromov—Hausdorff sense to (T, X,0) as A — oo.

Let X, and Y be Alexandrov spaces, U an open subset of X, and fix z € U. Let f: U — Y be
a Lipschitz map and let {r;} be a sequence of positive real numbers such that r; — 0 as j — oo.
Then there exists a limit map

feryy =1m(f): To X = T Y,

where f; is the rescaled function

=1 <:]X:v> N (éY,f(:p)).

We say that f is differentiable at x, if the map f( ) is independent of the sequence {r;}.
We call this uniquely defined Lipschitz function the differential of f at x, and denote it by
dfz: TuX — Ty,)Y. If the differential of f exists at every point = € U, then we say that f is
differentiable. If f is differentiable at x € U, then its differential d f, is homogeneous. That is,
dfs(tv) = tdf(v) for each real number ¢ > 0 and each v € T, X.

The following proposition shows that submetries may transfer geometric properties from the
total space to the base space.

Proposition 2.9 ([36, Proposition 4.4]). Given a submetry p: X — Y, the space Y is an
Alexandrov space when X is an Alexandrov space.

Moreover, a submetry p: X — Y from an Alexandrov space has a well-defined differential.

Proposition 2.10 ([36, Proposition 5.1]). Let p: X — Y be a submetry from an Alexandrov
space X toY a metric space. Then p is differentiable and each differential dfy: ToX — Tp)Y
1s a homogeneous submetry.

Let p: X — Y be a submetry from an Alexandrov space X to Y a metric space. A vector
v € T, X is vertical if df,(v) = 0. We call v horizontal if |df,(v)| = |v|. From the homogeneity
of the differential, one may show that the set of vertical vectors forms a subcone C'V, of T, X,
where V, C ¥, X C T, X. Similarly, the set of horizontal vectors forms a subcone CH, of T, X,
where H, C X, X C T, X.

A submetry p: X — Y between arbitrary Alexandrov spaces is regular at a point z € X if
the homogeneous submetry dp,: T X — Tp;,)Y is regular. We call the leaf L, a regular leaf.
Similarly, p: X — Y is (almost) spanning at x € X if dp,: T X — Tp,)Y is (almost) spanning.
A point xz € X is round if ¥,(X) is a round space. The following corollary follows immediately
from Proposition 2.7.

Corollary 2.11. A submetry p: X — Y from an Alexandrov space X is reqular over each round
point y € Y.
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The following theorem tells us that every Alexandrov space has a dense subset of points
whose space of directions is a unit round sphere, and are therefore round points (in the sense
defined before Proposition 2.4).

Theorem 2.12 ([11, Theorem 10.8.5] and [11, Corollary 10.9.13]). If X is an n-dimensional
Alexandrov space, then the set of points whose space of directions is a unit round sphere (or,
equivalently, whose tangent cone is Fuclidean space) is dense in X.

Recall that, given a submetry p: X — Y between metric spaces, the intrinsic metric on the
fiber L = p~1(y) is locally Lipschitz-equivalent to the induced metric on L (see Theorem 2.3).

The following proposition allows us to identify, for any x € X, the space of vertical direc-
tions V, C ¥, X with ¥, (L), the space of directions of the leaf L through x.

Proposition 2.13 ([36, Proposition 5.2]). Let p: X — Y be a submetry between Alexandrov
spaces. Then, for any fiber L = p~'(y) and any point x € L, the tangent cone T,L is the
cone CV,.

Let I be a closed interval. Given f: X — Y and a: I — Y, acurve a: I — X is a lift of «
if foa=a.

Lemma 2.14 (existence of geodesic lifts: [30, Lemma 1] and [8, Lemma 2.1]). Let f: X — Y be
a submetry between Alezandrov spaces. For any geodesic a: [0,a] — Y, and any x € f~((0)),
there is a geodesic lift &: [0,a] — X of a starting at x, with length equal to that of a. Moreover,
if the geodesic a between «(0) and a(a) is unique, then the lift & is unique.

2.5 Holonomy maps of a submetry between Alexandrov spaces

Let f: X — Y be a submetry between Alexandrov spaces. Assume we have a geodesic a: [0,b] —
Y with a(0) =y, a(b) = z, and initial direction w € ¥,Y. By [36, Lemma 5.4] for x € f~1(y)
fixed, for each h € H, with df,(h) = w, there exists a unique geodesic ay: [0,b] — X starting
at x with initial direction h, such that fody, = «a. If there exists a unique direction w € H, such
that df, () = w, then we have a well-defined map po: f~(y) = f~1(2) given by pa(z) = ag(b).
This map is called the holonomy map of .

Consider a geodesic a: [0,b] — Y such that, for each x € f~!(a(0)) the initial direction of «
has a unique lift in H, and p, is well defined. As observed in [36, Section 7.3] for Z € f~!(a(b)),
the set p_ ' (Z) corresponds to the endpoints of all geodesics of X starting at Z which are horizontal
lifts of the geodesic a™!(t) = a(b—t) and whose initial direction is a horizontal lift of the initial
direction of o~ 1.

Proposition 2.15. Let f: X — Y be a submetry between Alexandrov spaces and suppose
a: [0,b] =Y is a geodesic such that for each x € f~((0)) its initial direction has a unique lift
i Hy, and the holonomy map ps is well defined. Then the holonomy map ps is continuous and
surjective.

Proof. We first prove the surjectivity of the holonomy map p,. Consider z € f~1(a(b)).
For the geodesic a~!(t) = a(b — t), there exists a horizontal lift a~! in X with a=1(0) = z.
Set x = a~1(b), and observe that f(z) = a(0) by construction. The geodesic (oﬁl)_l(t) =
a~1(b—t) is a horizontal lift of « starting at x. Since the horizontal lifts of o are unique by
hypothesis, we conclude that p,(z) = a=1(0) = 2.

We now prove that p, is continuous. Fix x € f~1(a(0)) and let {x;};en C f1((0)) be
a sequence converging to x in the intrinsic metric of the fiber. By Theorem 2.3, the intrinsic
and the induced metric are locally Lipschitz equivalent on the fiber, hence also dx (z;,x) — 0
asi — 0o. Let &;: [0,b] — X be the unique horizontal lift of o with &;(0) = z;. Let &: [0,b] — X
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be the unique lift of o with @(0) = z. To simplify the notation, set y; = po(x;) = &;(b)
and y = po(x) = a(b). We will show that y; — y.
For each ¢ € [0, b],

dx(a;(t),x) < dx(&(t), z;) + dx(zix) < b+ dx(z,x;).

Thus, for all sufficiently large i, we have that &;([0,0]) is contained in the closed ball By, 1(x),
which is a compact subset of X. In particular, {y;};cn is contained in a compact subset of X.

Let {yi, }ien be an arbitrary convergent subsequence with y;, — y' in X. Let us show
that ¢/ =y. Since the geodesics @y, : [0,0] — Byyi(z) C X have the same length and are
contained in a compact subset of X, the Arzela—Ascoli theorem (see [11, Theorem 2.5.14]) implies
that there exists a sub-subsequence (which we will not relabel) &;; that converges uniformly to
a curve (3: [0,b] — X, which must necessarily be a geodesic (see [11, Proposition 2.5.17]). By
the continuity of f,

fopB=lim foda;, = lim a=a.
J—00 J—00

Hence, 3 is a horizontal lift of c. Observe now that

B(0) = lim &;,(0) = lim z;, = =.

j—oo 7 Jj—00

Since we have assumed that lifts starting at the same point are unique, we must have 5 = a.
Taking endpoints, we get

y' = lim y;; = lim &;,(b) = (b) = a(b) = .
j—o0 j—o0

Therefore, every convergent subsequence of {y;};cn converges to y. Since {y; };cn is contained in

a compact subset of X it follows that y; — vy, i.e., po(z;) = pa(z). Thus, p, is continuous. M

Corollary 2.16. Let f: X — Y be a submetry between Alexandrov spaces. If ac: [0,b] — Y is
a geodesic whose endpoints are reqular points, then the holonomy map p. is well defined and is
a homeomorphism.

Proof. Let y = a(0) and z = a(b). By definition, for x € f~!(y) we have df,: H, — %,Y is an
isometry. Thus, the holonomy map p, is well defined. Moreover, for Z € f~!(z), the holonomy
map p,-1 is also well defined for the geodesic a=(t) = a(b — t). Additionally, p,-1(pa(z)) = z
by construction. By Proposition 2.15, both p, and p,-1 are continuous. Thus, the conclusion
follows. |

The following assertion is now an immediate consequence of Corollary 2.16.
Corollary 2.17. Let f: X — Y be a submetry between Alexandrov spaces. Then the reqular
fibers of f are homeomorphic.
2.6 Isometry groups of Alexandrov spaces

As for Riemannian manifolds, the isometry group of an Alexandrov space admits a Lie group
structure. Additionally, there is an optimal upper bound on the dimension of the isometry group
and a rigidity result holds when this bound is attained.

Theorem 2.18 (][22, Theorem 1.1] and [23, Theorems 3.1 and 4.1]). Let (X,d) be an n-
dimensional Alexandrov space. Then the following assertions hold:

(1) The group G of isometries of X is a Lie group and is compact if X is compact.
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(2) The dimension of G satisfies dim(G) < n(n+1)/2.

(3) Ifdim(G) = n(n+1)/2, then X is a Riemannian manifold isometric to one of the following
spaces of constant sectional curvature: the m-dimensional Fuclidean space, an n-dimen-
stonal round sphere, an n-dimensional round real projective space, or an n-dimensional
hyperbolic space with constant negative sectional curvature.

Remark 2.19. The conclusions of Theorem 2.18 (1) also hold for a complete length space (X, d)
which is locally an Alexandrov space. That is, for each x € X, there exist a neighborhood U, C X
and a real number k, such that (Uy,d|;; ) is an Alexandrov space with curv > k.

Let g: X — X be an isometry of an Alexandrov space X, and suppose that there exists x € X
such that g(x) = x. Then the differential dg, : T, X — T, X induces an isometry on the space of
directions ¥;(X) C T, X = C¥;(X). Let G C Isom(X) be a group acting on X isometrically.
Given z € X, we define the orbit of G through x as G(z) = {g-x | g € G}. The isotropy
subgroup at x is the group G, = {g € G | g - = x}. The isotropy representation of G, into
Isom (3, (X)) is given by setting g-v = dg,(v) for g € G, and v € ¥,(X). The action of G on X
is effective if (,cx Gz = {e}. The following lemma implies that, if G acts effectively on X, then
for any x € X the action of G, on ¥, (X) given by the isotropy representation is also effective.

Lemma 2.20 ([23, Lemma 3.2]). Let X be an Alexandrov space and let g: X — X an isometry.
If there is some xy € X such that g(xo) = xo and dgsz,: Xuo(X) — 2 (X) is the identity,
then g(z) = x for all x € X.

Let Z be a connected locally compact metric space (in particular, any Alexandrov space).
The action of Isom(Z) on Z is proper when Isom(Z) is equipped with the topology of pointwise
convergence (see [42, Proposition in Section 4, p. 11]). This topology agrees with the compact-
open topology, which in turn is equivalent to the topology of uniform convergence over compact
subsets (see, for example, [41]). Hence, the action is proper for the compact-open topology as
well. We record this fact for use in the proof of Theorem B, and note that one may also prove it
for Alexandrov spaces by adapting the Riemannian proof (see, for example, [1, Proposition 3.62]
and cf. [18]).

Proposition 2.21. Let X be a connected Alexandrov space. Then the action of Isom(X) (with
the compact-open topology) on X is proper.

2.7 Foliated maps

To conclude this section, let us recall some results on foliated homeomorphisms (cf. [40, Sec-
tion 3]). Let p: X — Y be a quotient map between two topological spaces X and Y. Denote
by F = {p~'(y) | y € Y} the partition of X induced by the pointwise preimages of p. A continu-
ousmap h: X — X is foliated if, for any L € F, we have h(L) C L’ for some L’ € F. Thus, every
foliated map h: X — X induces a well-defined map U(h): Y — Y given by ¥(h)(p(x)) = p(h(z))
making the following diagram commute

X I, x

| I

y 2y

We denote by Homeo(X, F) the group of all foliated homeomorphisms (i.e., all foliated
maps with an inverse map which is also foliated). We let Homeo(Y') be the group of all self-
homeomorphisms of Y. We have a group homomorphism ¥: Homeo(X, F) — Homeo(Y") given
by f+— U(f). The map p: X — Y admits local cross-sections if, for any y € Y, there exists an
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open neighborhood V' C Y and a continuous map o: V' — X such that poo = Idy. When Y is
locally compact and Hausdorff, the following theorem guarantees the continuity of ¥ when we
equip both Homeo(X, F) and Homeo(Y') with the compact-open topology.

Theorem 2.22 ([40, Corollary 3.4]). Let X and Y be topological spaces with Y locally compact
and Hausdorff. If p: X — Y is a quotient map, then each of the following conditions implies
that the homomorphism V: Homeo(X, F) — Homeo(Y) is continuous:

(1) The map p is proper.
(2) The map p is open and admits local cross-sections.

(3) The map p is a locally trivial fibration.

Suppose now that X is a metric space, the fibers of the quotient map p: X — Y are closed
and equidistant (i.e., dr, is constant on L;, for 4, j = 1,2), and the quotient space Y = X/F is
equipped with the quotient metric defined by

dy (p(L1),p(L2)) = inf{dx (21, 22) | ¥; € L;}

for fibers L1, Ly € F. Denote by Isom(X, F) the group of foliated isometries, i.e., isometries
of X sending leaves to leaves. Then the map ¥(f) € Homeo(Y') is an isometry of Y. Indeed,
let y; = p(L;) with leaves L; € F, and fix x; € L;, i = 1,2. Then

dy (Y(f) (1), ¥(f)(y2)) = dy (p(f (1)), p(f(22))) = dx (f(L1), f(L2))
= dx (L1, Ly) = dy (p(L1), p(L2)) = dy (y1,y2)-

Thus, ¥(f) € Isom(Y'). Consequently, ¥: Isom(X,F) — Isom(Y") is a group homomorphism.
We conclude this section with the following general facts, which we will use in the proofs of
Theorems A and B.

Proposition 2.23. Let p: X — Y be a continuous surjective map between metric spaces
and set F ={p~*(y) |y € Y}. Then the group Isom(X,F) of foliated isometries is closed in
Isom(X).

Proof. Recall that Isom(X) is equipped with the compact-open topology. For each ordered
pair (z,2') € X x X with p(z) = p(a’), define

Pyt Isom(X) =Y XY, g (p(gz), p(ga’)).

In the compact-open topology, for each point x € X, the Myers—Steenrod map (i.e., the evalua-
tion map)

fe: Isom(X) — X, g gr

is continuous (cf. [23, 29]). Therefore, the map ®, ,» = (p o pz) X (p o pyr) is continuous.

Since Y is a metric space (hence Hausdorff), the diagonal Ay = {(y,y) € Y x Y} is closed
inY xY. An isometry g € Isom(X) is foliated if and only if, for all z,2’ € X, p(x) = p(2) im-
plies that p(gz) = p(ga’), i.e., if and only if &, ,+(g) € Ay for every pair (z, z') with p(z) = p(z’).
Therefore,

Isom(X, F) = HQ;L(AY%

where the intersection is taken over the set of all pairs (z,2') € X x X with p(z) = p(a/).
Since Ay is closed and ®, . is continuous, each preimage q);i,(Ay) is closed in Isom(X).
Hence, Isom(X, F) is a closed subgroup of Isom(X). [
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Since a closed subgroup of a Lie group is itself a Lie group, Proposition 2.23 yields the
following corollary.

Corollary 2.24. Let p: X — Y be a continuous surjective map between metric spaces and
set F={p~'(y) |y € Y}. IfIsom(X) admits a Lie group structure with respect to the compact-
open topology, then Isom(X, F) is a Lie group.

3 Proof of Theorem A

We will prove each item in Theorem A separately.

3.1 Proof of Theorem A (i)

By the classical Myers—Steenrod theorem, Isom(M) is a Lie group and is compact if M is
compact. The conclusion now follows from Corollary 2.24.

3.2 Proof of Theorem A (ii)

Recall that M, C M, the set of points in principal leaves, is an open and dense subset
of M (see Section 2.1). Hence, My, is a Riemannian manifold foliated by the principal leaves
of F, and the quotient Mpyin/F is also a Riemannian manifold. Moreover, the leaf-projection
map 7: Mpin = Mprin/F is surjective and continuous. By the classical Myers—Steenrod theo-
rem, Isom(Mpin) is a Lie group with respect to the compact-open topology. Hence, by Corol-
lary 2.24, Isom(Mpyin, F) is a Lie group.

Consider the group homomorphism

P: Isom(M,F) — Isom(Mpyin, F)

given by P(f) = flum,,,- Note that P(f) € Isom(Mpn,F), since foliated isometries send
principal leaves to principal leaves. Furthermore, P is continuous and, therefore, smooth by [31,
Corollary 3.50]. Hence, P is a Lie group homomorphism.

Since Mpyin/F is a Riemannian manifold, Isom(Mpyin/F) is a Lie group, by the classical
Myers—Steenrod theorem. Consider the group homomorphism

Uorin:  Isom(Mpyin, F) — Isom(Mpyin/F),

where Wpin(f) is given by Wpin(f)(m(z)) = w(f(x)) (cf. Section 2.7). The leaf-projection
map m: Mprin = Mpyin/F is a fiber bundle with (n — k)-dimensional fibers (see [44, Theorem A]
and [13, p. 41]). By Theorem 2.22, W4, is continuous and, therefore, smooth. Hence Wiy, is
a Lie group homomorphism.

Consider now the Lie group homomorphism

O = Wpin 0 P: Isom(M, F) — Isom(Mppin/F).
By the first isomorphism theorem for Lie groups,
dim(Isom(M, F)) = dim(ker(®)) + dim (P (Isom(M, F)). (3.1)

Since ®(Isom(M,F)) is a Lie subgroup of Isom(Mpin/F) and Mpyin/F is a k-dimensional
Riemannian manifold, by [33, Chapter II, Theorem 3.1],
k(k+1)

dim(®(Isom(M, F))) < dim(Isom(Mpin/F)) < — (3.2)
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Let G = ker(®) < Isom(M,F) and observe that g € G if and only if g(L) = L for any
principal leaf L. Fix p € My, and write T,M = V, ® H,, where V,, = T,,L is the vertical
space and Hj, = Vpl is the horizontal space. For any g € GG, we have m o ¢ = m, which implies
that dm, o dg, = dmp. Since m: Mppin — Mprin/F is a Riemannian submersion, drp| H, is a linear
isomorphism onto T,,(p)(Mprin/}" ), and therefore dgy| m, = Id. Hence, G), the isotropy group
at p, acts trivially on H,, and orthogonally on V. Therefore,

(n—k:)(n—k:—l).

dim(Gp) < dim(O(V})) < 5 (3.3)
Since the orbit G(p) of G through p is contained in the principal leaf containing p,

dim(G(p)) <n —k. (3.4)
Since dim(G) = dim(G(p)) + dim(G)), inequalities (3.3) and (3.4) imply that

dim(ker(®)) = dim(G) < n — PR ZEZY_ nZ PO kL) (3.5)

Combining equation (3.1) with inequalities (3.2) and (3.5), we obtain

dim(Tsom(M, F)) < k(k; D G k)(z_ k1) (3.6)
thus verifying inequality (a).
3.3 Proof of Theorem A (iii)
Assume equality holds in inequality (a), i.e.,

dim(Isom(M, F)) = k(k; D + (n = k)(T;_ s 1).
Then, by equation (3.1) and inequalities (3.2) and (3.5), we must have

dim(®(Isom(M, F))) = k(k;l), (3.7)
and

dim(ker(@)) = (N= R —k+ D) (3.8)

2

Inequality (3.2) and equation (3.7) imply that dim(Isom(Mpyin/F)) = k(k + 1)/2. Since
Mpyin/F is a k-dimensional Riemannian manifold, by [33, Chapter II, Theorem 3.1], Mpyin/F is
isometric to one of the following k-dimensional space forms: Euclidean space, hyperbolic space,
a round sphere, or round real projective space. In particular, Mpyin/F is complete. Since M/F
is the metric completion of Mp,in/F, it follows that M/F = Mpin/F. Therefore, the foliation
is regular and all the leaves are principal.

Since ker(®) acts effectively by isometries on any leaf and leaves are (n — k)-dimensional,
equation (3.8) implies that the isometry group of any leaf has maximal possible dimension.
Hence, by [33, Chapter II, Theorem 3.1], that all the leaves are isometric to a round S™%,
a round RP" % Euclidean space R**, or a hyperbolic space H"*.

Recall that the leaf-projection map m: Mpyin — Mprin/F is a smooth Riemannian submersion.
Since all the leaves are principal, 7: M — M /F is a fiber bundle, and thus the desired conclusion
follows.
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4 Proof of Theorem B

We will prove each item in Theorem B separately. Throughout this section, we let 7: X — Y
be a submetry between Alexandrov spaces and set F = {77 !(y) | y € Y}. In the proofs of
items (iz) and (7i7) we assume 7 is proper.

4.1 Proof of Theorem B (i)

By Theorem 2.18 (1), Isom(X) is a Lie group and is compact if X is compact. The conclusion
now follows from Corollary 2.24.

4.2 Proof of Theorem B (i7)

We now compute the upper bound on the dimension of the Lie group Isom(X, F). Recall that
from now on and in the rest of the section we assume that the submetry 7: X — Y is proper.
Suppose that X has dimension n > 1 and Y has dimension 0 < k < n, so that the regular leaves
of the foliation F have dimension n — k. We will show that

. k(k;l)Jr(n—k)('r;—kJrl)

dim(Isom(X, F)) )
Recall that a point y € Y is regular with respect to 7 if 7 is regular at each z € 77 1(y)
(see [36, Definition 6.5]). The set of regular points

Yiee = {y € Y | y is regular with respect to 7}

contains the open and dense subset of thick points (see [36, end of Section 6]). Consequently,
the set Xice = {z € X | x is regular} contains an open and dense subset. Let

Rx = {:1: € X | ¥, X is isometric to the unit round S"_l}.

By Theorem 2.12, Ry is dense. Hence, Rx N X,¢g # .

Fix £ € Rx N Xyeg. We may choose T so that Y (Y is isometric to the unit round Sk—1.
since the set of points in Y whose space of directions is isometric to the unit round S¥~! is dense
in Y and Y,ee contains an open subset. Since Z is regular,

dfﬂ”Ha—c . Hz — ZW(E)Y

is an isometry (see Section 2.4). Moreover, since X (7Y is round, there exists an isometry
between ¥z X and the spherical join Hz * V. Since ¥z X is isometric to the unit round S7~!
and Hz is isometric to the unit round S¥=1, we conclude that Vi is isometric to the unit
round S™ k1,

Since Y is an Alexandrov space, Isom(Y') is a Lie group, by Theorem 2.18. Consider the group
homomorphism ¥: Isom(X,F) — Isom(Y"), where ¥(f) is given by ¥(f)(n(z)) = n(f(x)) (cf.
Section 2.7). We assume m: X — Y is proper. Hence, Theorem 2.22 implies that ¥ is continuous,
and thus it is a Lie group homomorphism.

Set G = ker(¥). Given f € G, we have f(z) € 7 1(n(z)), allowing us to identify the
differential dz f: ¥z X — ¥ X (which is an isometry) with an isometry

(dzf)1* (dzf)2: Hz* Vi — Hpz) * Vi)

Since G acts on 7~ !(7(Z)), we may consider the isotropy group Gz. For f € Gz, we have then
that (dzf)1 = Idg, and (dzf)2: Vz — Vi is an isometry. Thus, Gz acts by isometries on the unit
round S™ %=1, Moreover, this action is effective. Indeed, if (dzf)s = Idy,, then dzf = Ids. x.
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Since f(z) = Z and f is an isometry of the Alexandrov space X, then [23, Lemma 3.2] implies
that f = Idx. Hence, by the Myers—Steenrod theorem,

(n—k—l)(n—k‘)'

i 7) <
dim(Gz) < 5

Now we consider the orbit G(z) C 7~ !(n(Z)). By [36, Korollar 7.5], the Hausdorff dimension
of 7= Y(m(%)) is n — k. Thus, we conclude that the dimension of G(z) = G/Gz is bounded above
by n — k. It follows that

m—k-=1)(n—-k) (n—kn-k+1)

dim(G) = dim(G(z)) + dim(Gz) <n —k + 5 = 5 . (4.0)

Next, observe that ¥(Isom(X,F)) is a Lie subgroup of Isom(Y’). Since Y is an Alexandrov
space of dimension k, Theorem 2.18 implies that

dim(¥(Isom(X, F))) < k(k +1)/2. (4.2)

Then, by the first isomorphism theorem for Lie groups, inequalities (4.1) and (4.2), and recalling
that G = ker(¥),

n—Fk)(n—k+1) k(k+1)
2 + 2

dim(Isom(X, F)) = dim(G) + dim(¥(Isom(X, F))) < ( . (4.3)
Remark 4.1. The conclusions of Theorem A (ii) do not follow directly from the conclusions of
Theorem B (i), since the leaf space of a closed singular Riemannian foliation F on a complete
manifold M is only locally an Alexandrov space of bounded curvature (see [38, p. 119]). This is
because the local lower curvature bound on M/F is given by a local lower sectional curvature
bound on M. When M is not compact, it may happen that M does not have a global lower
sectional curvature bound, and thus in this case M/F does not have a lower curvature bound
in the sense of Alexandrov.

Remark 4.2. Due to the lack of a slice theorem for submetries between Alexandrov spaces,
we need properness of 7: X — Y to guarantee that ¥U: Isom(X,F) — Isom(Y) is continuous,
and thus a Lie group homeomorphism, to be able to say that dim(Isom(X, F)) = dim(ker ¥) +
dim(Image(¥)).

4.3 Proof of Theorem B (ii7)

Recall our standing assumption that m: X — Y is a proper submetry between Alexandrov
spaces. Assume that equality holds in (4.3), i.e.,

E(k+1) (n—Fk)(n—Fk+1)
2 + 2 ’

dim(Isom(X, F)) =

where dim(X) = n and dim(Y) = k£ with 0 < k < n. We first determine the topology of the
base space Y.

Lemma 4.3. The base space Y is isometric to k-dimensional Fuclidean space, hyperbolic space
with constant negative sectional curvature, a round real projective space, or a round sphere.

Proof. Since Y is k-dimensional, Theorem 2.18 implies that dim(Isom(Y)) < k(k + 1)/2.
Since dim(Isom (X, F)) is maximal, it follows from the proof of Theorem B (i7) that the sub-
group VU(Isom(X,F)) C Isom(Y) has dimension k(k + 1)/2. Thus, Isom(Y) has dimension
k(k +1)/2 and the conclusion follows from Theorem 2.18. [



Myers—Steenrod Theorems for Metric and Singular Riemannian Foliations 19

We now determine the topology of the fibers. Consider the Lie group homomorphism
U: Isom(X,F) — Isom(Y) with ¥(f) given by U(f)(m(z)) = n(f(x)) and set G = ker(¥) C
Isom(X, F).

Lemma 4.4. For any v € X, the orbit G(z) C 7~ (n(z)) is a compact subset.

Proof. Fix x € X and let d; be the intrinsic metric on L, = 7~ (7 (z)) induced by d|;,x1,. We
first prove that G C Isom(L,,dr). Let : [0,1] — L, be a rectifiable curve. Since G C Isom(X),
for any g € G, L(g o) = L(y) < oo, where L(-) denotes length. By definition,

dr(xz,y) = inf{L(~) | 7v: [0,1] — L is rectifiable with v(0) = x, v(1) = y}.
Thus, dr(g(x),g(y)) < dr(z,y). Since g is arbitrary,

dr(z,y) =di (g7 (9(2)), 97 (9(y))) < di(g(x), 9(y)).

Thus, G C Isom(L,,dy).

By construction, G(x) C L;. We now show that G(x) is closed. Consider {g;}iey C G
with lim; ,~ gi(z) = y € X. By Proposition 2.21, the action of Isom(X) on X is proper. Then,
there exists a subsequence {g;, }ren converging to some g € Isom(X) (see [35, Proposition 21.5],
whose proof is purely topological, and cf. [15, Proposition 2.2] or [18]). Recall that the map ¥ is
continuous. Hence, G = ker(V) is closed in Isom(X, F), and Isom(X,F) is closed in Isom(X).
Therefore, g € G. By the continuity of the action of G on X, y = g(x) € G(z). Thus, the
G-orbits are closed in X. Since 7: X — Y is proper, L, is compact, and since G(z) C L, is
closed, G(x) is also compact. [

Connected fiber case
We first consider the case where m has connected fibers.

Lemma 4.5. If all fibers of m: X — Y are connected, then (with the intrinsic metric) each fiber
1s isometric to a round sphere or a round real projective space.

Proof. As stated in the proof of Theorem B (i), we may fix z € X such that ¥z(X) is isometric
to a unit round S”~! and Y (Y) is isometric to a unit round Sk=1. From our hypotheses
and the proof of Theorem B (ii), we observe that dimy(G(z)) = n — k = dimg(Lz), where
Lz = 7~ Y(m(z)) is the fiber containing Z and dim(-) denotes Hausdorff dimension.

Endow the orbit space X/G with the orbital distance d* and consider the submetry 7o : (X,
dx) — (X/G,d*). Since the orbits of G are contained in the fibers of 7 (i.e., G(z) C 7! (r(z))
for any z € X), we obtain a well-defined map 7p: (X/G,d*) — (Y, dy) with m = mpom¢. Since 7
and 7w are submetries, 7p is also a submetry. Hence, dimy (X/G) = n—(n—k) = k. This implies
that the submetry 7p has discrete fibers, and thus 7! (7(z)) = |lientzj}. Since 7 = 7p o g,
it follows that Lz = | |;cy G(;). By [36, Theorem 7.2], the connected components of each fiber
of 7 have positive distance to one another. By hypothesis, Lz is connected. Hence, for G° C G,
the connected component of the identity, we have that G(z) = G°(z), 7 = g, and Lz = G°(Z).
Thus, Lz with the intrinsic metric is a compact homogeneous inner metric space.

Since Isom(X) is a Lie group, G" is a Lie subgroup. Hence, Lz = G%(z) = G°/(G?)_ is
a manifold and, in particular, locally compact and locally contractible. We also have dimgop Lz =
dimyg Lz = n — k. By [9] (cf. [7, Theorem 13]), (Lz,dr) is a homogeneous Finsler manifold.
Moreover, at Z, the space of directions ¥zLz is isometric to the unit round S® *~! and the
metric tangent cone is isometric to the (n — k)-dimensional Euclidean space. Since G° acts
transitively and by isometries on Lz, this holds at every point in Lz. Therefore, the Finsler
norm is Euclidean, and it follows that (Lz,d;) is a homogeneous Riemannian manifold (see
also [6, Theorem 7]).
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Therefore, Lz is a union of Riemannian manifolds and, hence, a compact Riemannian manifold
with finitely many connected components. By hypothesis, the isometry group of Lz has maximal
dimension (n — k)(n — k + 1)/2. Hence, by [33, Chapter II, Theorem 3.1], Lz is isometric to
a round S™ % or a round RP™ %,

By Lemma 4.3, the space Y is a Riemannian manifold. Thus, every point y € Y is a regular
point of m = 7mg. From the definition of regular point, we conclude that given z* € X/G,
the set of horizontal directions Hy«(mp) of mp is isometric to X )Y = Sk=1_ Moreover,
H,-(mp) = ¥;+(X/G). This implies that all fibers of m = 7g are regular. By Corollary 2.17,
each fiber of 7 is homeomorphic to Lz = G(z). That is, all the fibers are homogeneous spaces
isometric to round spheres or round real projective spaces. |

Lemma 4.6. If the fibers of m: X — Y are connected, then Isom(X, F) acts transitively on X.

Proof. By Theorem B (ii) and equality in (4.3), the image ¥(Isom(X,F)) C Isom(Y) has
the same dimension as Isom(Y"). Hence, ¥(Isom(X,F)) contains Isom(Y)’, the identity com-
ponent of Isom(Y). By Lemma 4.3, YV is isometric to R¥, H* a round S* or a round RP*.
Thus, Isom(Y)? is isomorphic to R¥ x SO(k) (Euclidean space), SO(k, 1) (hyperbolic space), or
SO(k + 1) (sphere and real projective space). In each case, Isom(Y)? acts transitively on Y.
Therefore, ¥(Isom(X, F)) acts transitively on Y.

Let z,Z € X and choose h € Isom(X, F) with ¥(h)(7(x)) = w(Z). Then, by the definition
of ¥, we have h(x) € n1(n(Z)). Since G C Isom(X,F) acts transitively on 7~ 1(7(z)) by
the proof of Lemma 4.5, there exists ¢ € G = ker(V¥) with g(h(x)) = &. Thus, we conclude
that Isom(X, F) acts transitively on X. [

Lemma 4.7. If all fibers of m: X — Y are connected, then X andY are Riemannian manifolds,
and m: X =Y s a smooth Riemannian submersion.

Proof. By Lemma 4.6, X is a homogeneous Alexandrov space. Hence, by [6, Theorem 7], X
is isometric to a homogeneous Riemannian manifold (M, g). By Lemma 4.5, each fiber is an
orbit G%(z) of G = ker(¥) C Isom(X,F). Since X is now Riemannian and G C Isom(X) acts
by isometries, each fiber is a smooth embedded submanifold of X. Finally, by [39, Lemma 13.1]
implies that 7: X — Y is a smooth map. |

4.4 Disconnected fiber case

Suppose now that the fibers of 7: X — Y have one or more connected components. Recall our
standing assumption that the submetry m: X — Y is proper and equality in (4.3) holds. Recall
that by Lemma 4.3, Y is a k-dimensional Riemannian manifold isometric to Euclidean space,
hyperbolic space, a round sphere, or a round real projective space. We distinguish two cases,
depending on whether Y is compact.

Lemma 4.8. If the fibers of m: X — Y are possibly disconnected and Y is isometric to Fuclidean
or hyperbolic space, then X is homeomorphic to Y x F with I either a round sphere or a round
real projective space.

Proof. By the factorization of submetries between Alexandrov spaces [36, Theorem 10.1], there
exist submetries 7: X — Z with connected fibers and 7p: Z — Y with discrete fibers such
that m = wp o 7.

Set F = {7 Y& (z)) | z € X}. Let us verify that Isom(X, F) C Isom(X, F). Fixy € Y and
let f € Isom(X,F). Since f preserves 7~ !(y) and
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with each 7?_1~(z) a connected component of 71 (y), f must map 7 *(z) to some 7~ !(z'). Hence,
f € Isom(X, F).
Since dim(Z) = dim(Y') = k, we have

E(k+1) (n—k)(n—k+1)
2 + 2

= dim(Isom(X, F)) < dim(Isom(X, .7:-))

< k(k;l)_ﬁ_(n—k)(r;—k—i—l),

where the upper bound follows from Theorem B (i7). Thus, Isom(X, F) has maximal dimension.

By Lemma 4.5, each fiber of F (with the intrinsic metric) is isometric to a round sphere or
a round real projective space. Therefore, each fiber of 7 is a disjoint union of round spheres or
real projective spaces. Since 7 is proper, each fiber 7—!(y) is compact, hence consists of finitely
many connected components.

By Lemma 4.7, 7: X — Z is a smooth Riemannian submersion. Since mp: Z — Y has
discrete fibers, mp is a (Riemannian) covering map (see [34, Theorem 1.2]). Since Y is simply-
connected, the covering np: Z — Y is trivial. Thus, Z = Y and 7p is an isometry. Hence,
m = 7 is a smooth Riemannian submersion with connected fibers (see also [39]). In particular,
m: X — Y is a fiber bundle with fiber F' a single round sphere or real projective space. Since Y
is contractible, the bundle is trivial and X must be homeomorphic to Y x F. |

Lemma 4.9. If the fibers of m: X — Y are possibly disconnected and Y is S* or RPF,
then for k > 2 either each fiber has exactly two connected components and Y 1is isometric to
a round RP¥, or each fiber is connected and Y is isometric to a round S* or a round RP*.
For k =1, the fibers can have m > 1 connected components.

Proof. Factor m = mp o7 with 7: X — Z a submetry with connected fibers, and 7p: Z = Y
a submetry with discrete fibers. Arguing as in the proof of Lemma 4.8, each fiber of 7 is isometric
to a round sphere or a round real projective space and np: Z — Y is a Riemannian covering
map with Y isometric to a round S* or a round RP*. As Y is connected, the number of sheets
of the covering mp is constant. Therefore, the number of connected components of the fibers
of 7 is constant on Y.

If k > 2, then either Z =Y = S* and 7p is an isometry, or Z = S* and Y = RP* with mp
the standard two-fold covering. If mp is an isometry, then m = 7 and the fibers are connected.
Hence, m = 7 is a smooth Riemannian submersion. In particular, 7: X — Y is a fiber bundle,
with fiber a round sphere or real projective space and base a sphere. If mp is the two-fold
cover S¥ — RP*, then for each y € Y, 7T51 consists of two points and 7~ !(y) has exactly two
connected components.

If £ = 1, in addition to the identity S* — S' and the two-fold covering S' — RP!, one
must also consider the standard m-fold Riemannian coverings S' — S given by cyclic rotation
groups of order m. |
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