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Abstract: This paper proposes an active yaw control strategy for the hybrid 13 

offshore wind farms to enhance the offshore wind farm’s total power 14 

generation. Firstly, a three dimensional yawed wake model is applied for 15 

calculating the power output of different types of wind turbines under active 16 

yaw control and the whole offshore wind farm. Next, the architecture of the 17 

proposed active yaw control system is demonstrated, and an optimization 18 

model is formulated. To solve this optimization problem, the quantum genetic 19 

algorithm is employed. Simulation results on a simplified layout of three 20 

wind turbines in a row and the Guishan offshore wind farm under three 21 

typical wind conditions demonstrate that the proposed strategy can effectively 22 

mitigate the inner-array wake effect in hybrid offshore wind farms. The 23 

results also suggest that applying active yaw control in the non-dominant 24 

wind directions and for small wind turbines in a hybrid offshore wind farm 25 

should be prioritized which yields the most significant improvements in 26 
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overall offshore wind farm power output. Additionally, the quantum genetic 27 

algorithm is shown to be an efficient and robust optimization tool for solving 28 

the optimal active yaw control problem in hybrid offshore wind farms. 29 

Keywords: Mixed installation of wind turbines; hybrid offshore wind farm; 30 

active yaw control; 3D yawed wake model; quantum genetic algorithm; 31 

various wind conditions. 32 

Nomenclature 33 

Acronyms 34 

AEP Annual energy production MPPT Maximum power point tracking 

AGC Automatic generation control NN Neural network 

AI Artificial intelligence OWF Offshore wind farm 

AYC Active yaw control PSO Particle swarm optimization 

CF Capacity factor 2D Two dimensional 

DE Differential evolution 3D Three dimensional 

DEL Damage equivalent load QGA Quantum genetic algorithm 

DL Deep learning RAM Random access memory 

GA Genetic algorithm RL Reinforcement learning 

GNN Graph neural network TLBO Teaching learning-based optimization 

ML Machine learning WT Wind turbine 

MPC Model predictive control   

Variables 35 

𝑐1 
Personal learning coefficient 

in PSO 
𝑈𝑖 

Wind velocity at the position 

of the 𝑖-th WT 

𝑐2 
Global learning coefficient in 

PSO 
𝑈𝑗𝑖  

Wind velocity at the position 

of the 𝑖-th WT considering 

only the wake of the 𝑗-th WT 

exists 

𝐶𝑝0
𝑘  

Power coefficient at zero yaw 

angle of the 𝑘-th type of WT 
∆𝑈 Velocity deficit in the wake 

𝐶𝑡 
WT thrust coefficient under 

AYC 
𝛥𝑈𝑗𝑖(𝑥, 𝑦, 𝑧) 

Velocity deficit in 3D space 

at the 𝑖-th WT position 

considering only the wake of 

the 𝑗-th upstream WT exists 

𝐶𝑡0 
WT thrust coefficient at zero 

yaw angle 
𝑢0 Inflow wind speed 



𝐶𝐹𝑂𝑊𝐹 
Capacity factor of a hybrid 

OWF 
𝑢ℎ0
𝑘  

Wind speed measured at the 

hub height of the 𝑘-th type 

of WT 

𝑑0 WT rotor diameter 𝑢𝑖𝑛 Cut-in wind speed of the WT 

𝑑0
𝑘 

Rotor diameter of the 𝑘-th 

type of WT 
𝑢𝑜𝑢𝑡 

Cut-out wind speed of the 

WT 

𝑑𝑟𝑡 

Distance between the WT 

rotor center and the tower 

center 

𝑢𝑟 Rated wind speed of the WT 

ℎ0 WT hub height 𝑢𝑧𝑟𝑒𝑓  
Wind speed measured at the 

mast height 

ℎ0
𝑘 

Hub height of the 𝑘-th type of 

WT 
(𝑥, 𝑦) WT original coordinates 

𝑀 Total number of WT types (𝑥𝜃, 𝑦𝜃) 

WT rotated coordinates 

under inflow wind direction 

𝜃 

𝑀𝑎𝑥𝐼𝑡 Maximum iteration number 𝑌𝑜𝑓𝑓𝑠𝑒𝑡 
Span-wise location of the 

wake center 

𝑛𝑃𝑜𝑝 
Population size of the 

optimization algorithm 
𝑧𝑟𝑒𝑓 Reference height 

𝑁𝑘 
Total number of the 𝑘-th type 

of WTs 
𝛼 Wind shear index 

𝑝𝑐 Crossover rate in GA 𝛾 WT yaw angle 

𝑝𝑚 Mutation rate in QGA and GA 𝛿 
Scale factor in the wake 

offset model 

𝑃𝑂𝑊𝐹 
Output power of a hybrid 

OWF 
𝜁 

Expansion factor in the wake 

offset model 

𝑃𝑤𝑡
𝑘 (𝑢ℎ0

𝑘 , 𝛾) 

The output power of the 𝑘-th 

type of WT under yaw 

condition 

𝜂 

Cosine exponent related to 

the decay rate of the power 

coefficient 

𝑃𝑤𝑡,𝑟
𝑘  

Rated power of the 𝑘-th type 

of WT 
𝜃 Inflow wind direction 

𝑟0 WT rotor radius 𝜅 Wake growth rate 

𝑆𝑦 
Span-wise spacing between 

WTs 
𝜌 Air density 

𝑈0 Inflow wind velocity   
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1. Introduction 37 

Offshore wind energy has emerged as a pivotal component of global 38 

sustainable energy portfolios, with increasing investments in large-scale 39 

offshore wind farms (OWFs) to meet decarbonization targets. To remain 40 

within the climate-critical 1.5°C global warming threshold, terawatt-scale 41 

wind capacity must be deployed globally by 2030. Annual offshore wind 42 

installations are projected to triple from 10.8 GW in 2023 to over 32 GW by 43 

2028 [1]. 44 

Traditionally, OWFs have adopted homogeneous wind turbine (WT) 45 

configurations, installing identical WTs to simplify layout design, operation, 46 

and maintenance [2]-[7]. However, this approach may limit energy yield and 47 

economic efficiency, particularly in sites with varying water depths, wind 48 

conditions, and seabed properties. In response, recent research has increasingly 49 

explored hybrid OWFs that incorporate multiple types of WTs with different 50 

geometric and technical parameters [8]-[21]. Real-world implementations, 51 

such as the Borssele III/IV OWF in Netherlands, the Arkona OWF in Germany, 52 

and the Guishan OWF in China, have validated its feasibility of such 53 

heterogeneous configurations. Emerging wind farm optimization frameworks 54 

now systematically address heterogeneous WT configurations taking the 55 

selection and mixed-installation of WTs with diverse physical dimensions and 56 

various power curves into consideration [8]-[21]. These studies reveal that 57 

heterogeneous OWF configuration can yield multiple benefits, including 58 



increased total power output [8]-[10][15][20], lower energy costs 59 

[9][9][11]-[14][16]-[21], improved efficiency [8] or capacity factor (CF) 60 

[8][14][18], and more homogenized fatigue damages [8][17]. It has been noted 61 

in [10], when the vertical staggering between upstream and downstream WTs 62 

exceeds a critical threshold, strategically lowering downstream WT hub 63 

heights induces accelerated wake recovery which can yield enhanced power 64 

output that surpasses baseline configurations with identical WT hub height 65 

through optimized aerodynamic decoupling. Typically, the optimization 66 

applying larger WTs usually results in higher CF due to increased hub height 67 

and reduced wake effects through wider spacing. However, the feasibility of 68 

mixed-installations heavily depends on the WT mean capital costs difference 69 

[12]. 70 

The co-existence of multiple WT types with different geometric dimensions, 71 

i.e., rotor diameters and hub heights in an OWF introduces unprecedented 72 

challenges in aerodynamic interaction, wake management, and load mitigation 73 

[8]. In an OWF, once WT positions are fixed, adjusting the wake distribution 74 

through WT control is an effective way to mitigate wake effects and fatigue 75 

load and to enhance power generation [22]. To alleviate the adverse effects 76 

induced by wake effect on the power reduction in OWFs, the active yaw 77 

control (AYC) strategy is proposed and widely applied [22]-[42]. This strategy 78 

intentionally misaligns upstream WTs via rotating their nacelles to steer wakes 79 

away from downstream ones, reducing energy losses. Using sensors and 80 



predictive models, optimal yaw angles are calculated in real time to achieve the 81 

goal of balancing between power gains from redirected wakes and slight 82 

individual WT power losses. By applying the AYC, the kinetic energy 83 

extraction ratio of the upstream and downstream WTs can be allocated and the 84 

overall efficiency of OWFs can be significantly improved [25]. For instance, 85 

Dou investigated the Horns Rev I OWF in Denmark and found that the AYC 86 

strategy exhibits superior optimization efficacy in directions experiencing 87 

acute wake deficit conditions [26]. In 2022, He developed a multivariate 88 

prediction framework employing machine learning-based fatigue loads and 89 

power prediction method for the AYC system and found that large yaw angles 90 

and high wind speeds can enhance prediction fidelity [27]. In 2023, Dong 91 

proposed a reinforcement learning (RL)-based AYC strategy which can 92 

enhance the long-term farm-level power production subject to strong wake 93 

effects without requiring analytical OWF models [31][31]. In 2024, Wang 94 

proposed a cooperative control strategy combined with start/stop control, AYC, 95 

and WT position optimization which outperforms using the aforementioned 96 

three control strategies separately [33]. A novel analytical model for yawed 97 

WTs, considering the effects of yaw angle, turbulence intensity and thrust 98 

coefficient was developed to predict the velocity deficit and the wake 99 

deflection in [34]. A data-driven model was put forward by Li to provide 100 

accurate predictions for the power generation of OWFs with arbitrary WT 101 

layouts, yaw angles and inflow wind conditions by encoding the OWF into a 102 



fully connected graph and processing through a graph transformer [35]. While 103 

this model [35] provides an efficient tool for optimal AYC of WTs, its validity 104 

remains unproven in hybrid OWFs with multiple WT types. More recently, Tu 105 

proposed a multi-fidelity framework based on the co-Kriging algorithm for 106 

predicting OWF power under yaw misalignment, finding that the positive yaw 107 

angles can significantly boost output and in a tandem configuration of WTs, 108 

the optimal distribution of yaw angles appears a decreasing trend from 109 

upstream to downstream [38]. The aforementioned studies demonstrate that 110 

integrating artificial intelligence (AI) techniques such as the machine learning 111 

(ML) techniques for improved wake modelling and prediction of WT response 112 

[27], deep learning (DL) for reduced-order modeling [23][36][42], RL for 113 

adaptive control strategies [31][31], neural network (NN) [32], graph neural 114 

network (GNN) [35] and surrogate model [36]-[39] for faster computation 115 

significantly enhances the efficiency and accuracy of AYC in OWFs and help 116 

WTs adapt to complex and dynamic wind conditions [40]. The objectives of 117 

the AYC optimization model majorly include the maximization of OWF total 118 

power generation [22][24]-[27][30]-[36][38] or OWF annual energy 119 

production (AEP) [7][37], the minimization of OWF power tracking error [23], 120 

the minimization of WT average fatigue load coefficient [24] or the WT 121 

damage equivalent load (DEL) [28][28] and to track the Automatic Generation 122 

Control (AGC) power signal [39]. However, current AYC methods are 123 

primarily designed for homogeneous OWFs and do not account for 124 



heterogeneous WT configurations [22]-[41]. This oversight can lead to 125 

sub-optimal yaw coordination and reduced overall OWF efficiency. Yaw angle 126 

optimization realized by AYC is vital in hybrid OWFs utilizing multiple types 127 

of WTs due to the compounded challenges of heterogeneous wake interactions 128 

and varying operational characteristics. Current methodologies exhibit 129 

significant limitations in resolving this problem due to the following critical 130 

factors. Firstly, existing techniques primarily employ two-dimensional (2D) 131 

yawed wake models [29] to calculate wake losses which can achieve sufficient 132 

accuracy for uniform OWFs. However, in hybrid OWFs, the coexistence of 133 

multiple WT types introduces significant variability in power curves, rotor 134 

diameters, and thrust coefficients. This heterogeneity results in asymmetric 135 

wake interactions, where larger upstream WTs can substantially diminish the 136 

energy yield of smaller downstream WTs. Although, conventional 2D wake 137 

models [29] can provide sufficient accuracy for uniform OWFs, they cannot 138 

adequately characterize vertical wake losses in hybrid OWFs, making them 139 

inapplicable for AYC optimization. Secondly, current investigations of AYC 140 

in OWFs typically examine system performance under simplified wind 141 

conditions, i.e., either constant wind speed or unidirectional inflow conditions. 142 

The simplified wind condition analysis is only viable for uniform OWF with 143 

regular shapes and symmetrical layouts as it has minor effect on AYC 144 

optimization results. However, for hybrid OWFs mixed-installed with multiple 145 

types of WTs, it is highly possible that the OWFs have irregular shapes and 146 



asymmetrical layouts. Under this circumstance, wind comes from different 147 

directions with different speeds will have significant impacts on the AYC 148 

optimization results. Although there are are infinite combinations of wind 149 

speed and direction, at least the typical wind conditions analysis should be 150 

taken into account for the AYC optimization of the hybrid OWF.  151 

Uncoordinated AYC causes sub-optimal wake steering, resulting in 152 

significant energy losses and accelerated fatigue damage, particularly for less 153 

robust WTs. To address these challenges, strategic yaw angle optimization 154 

dynamically direct wakes away from high-sensitivity WTs and balance total 155 

OWF output against component stress. Proper coordination unlocks 1-5% 156 

additional AEP for the OWF and extends WTs’ lifespan-thereby enhancing 157 

project economics. Therefore, novel AYC strategies and algorithms are 158 

required for handling heterogeneous OWF while maintaining wake 159 

management benefits. Notably, there remains a significant absence in 160 

published articles addressing wake steering AYC strategies for hybrid OWFs 161 

with mixed-WT installations. The lack of theoretical models and validated 162 

control algorithms for the hybrid OWFs presents both a critical research 163 

challenge and an opportunity for innovation in OWF control optimization 164 

which are also the major contributions of this study. To fill this gap, this paper 165 

proposes a novel AYC strategy for the hybrid OWF for increasing power 166 

generation. The main contribution and novelty of this paper can be 167 

summarized as follows. Firstly, a three dimensional (3D) yawed wake model is 168 



used to estimate wake deficit considering WT size difference. Secondly, the 169 

QGA is used to solve the proposed hybrid OWF AYC optimization model. 170 

Thirdly, the effectiveness of the proposed AYC strategy for different types of 171 

WTs arranged in a straight line and in a real-world hybrid OWF is tested under 172 

typical inflow wind conditions. 173 

The rest of this article is arranged as follows. The 3D yawed wake model 174 

and multiple wake synthesis method for the hybrid OWF AYC model are 175 

introduced and validated in Section 2. The optimization model and solution 176 

algorithm for the hybrid OWF under different wind conditions are proposed in 177 

Section 3. Case studies are carried out in Section 4, followed by Section 5, the 178 

conclusions. 179 

2. Hybrid OWF AYC model 180 

2.1. The 3D yawed wake model 181 

In hybrid OWFs, WTs with various hub heights and rotor diameters are 182 

installed and therefore the vertical wind speed variations must be explicitly 183 

considered when estimating wake loss. To address this, the 3D yawed wake 184 

model proposed by Dou [26] is applied in this study, which can be described 185 

by (1). This model has taken wind shear into account and has been 186 

experimentally validated and therefore is suitable for the AYC modeling in 187 

the hybrid OWF. This model incorporates the effect of wind shear and has 188 

been experimentally validated, making it well-suitable for the AYC modeling 189 

in hybrid OWFs. 190 



∆𝑈

𝑈0
= (1 − √1 −

𝐶𝑡 cos 𝛾
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1
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 𝜎𝑦𝑎𝑤 = 𝜅𝑥 (𝑑0 cos 𝛾)⁄ + √𝛽 5⁄
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1
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2
(
𝑧 − ℎ0
𝑑0

)
2

] + 𝑑𝑟𝑡

𝑌𝑜𝑓𝑓𝑠𝑒𝑡 𝑑0⁄ = 𝛿(𝐶𝑡0 sin 𝛾)
𝜁 cos2𝜁 𝛾 √𝑥 𝑑0⁄ + 𝑑𝑟𝑡 sin 𝛾 𝑑0⁄

𝛿 = 𝛿0 ∙ 𝐶𝑡0

 193 

where ∆𝑈 is the velocity deficit in the wake, 𝑈0 is the incoming wind 194 

velocity, 𝐶𝑡 is the WT thrust coefficient under AYC, 𝐶𝑡 = 𝐶𝑡0 ∙ cos
2 𝛾, 𝐶𝑡0 195 

is the WT thrust coefficient at zero yaw angle, 𝛾 is the WT yaw angle, 𝜅 is 196 

the wake growth rate, 𝑑𝑟𝑡 is the distance between the WT rotor center and 197 

the tower center, 𝑑0 and ℎ0 are the WT rotor diameter and hub height, 198 

respectively, 𝛿 and 𝜁 are the scale and expansion factors in the wake offset 199 

model, 𝜁 = 0.75 , 𝛿0  is an empirical parameter, 𝛿0 = 0.607 , 𝛽  is a 200 

parameter of the Gaussian wake model, 𝑌𝑜𝑓𝑓𝑠𝑒𝑡 is the span-wise location of 201 

the wake center. 202 

2.2. Validation of the 3D yawed wake model 203 

The accuracy of the 3D yawed wake model has been validated in the 204 

horizontal and vertical planes by comparing with the wind tunnel measured 205 

data [26] as shown in Figs. 1 and 2. It can be seen that the 3D yawed wake 206 

model agrees well with the experimental measurements especially in the far 207 



wake region and it performs better under large yaw angles. As shown in Fig. 2, 208 

the wake shape in the wind tunnel experiments is not symmetrical about the 209 

hub height plane due to the interaction of the wake rotation with the tower 210 

shadow or ground. 211 
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(b) 𝛾 = 32° 214 

Fig. 1. Comparison of the 3D yawed wake model predicted value and wind 215 

tunnel measured data [26] in horizontal plane. 216 
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Fig. 2. Comparison of the 3D yawed wake model predicted value and wind 222 

tunnel measured data [26] in vertical plane. 223 

2.3. Multiple wake synthesis method 224 

For any inflow wind direction 𝜃, the positional relationships between any 225 

upstream and downstream WT pairs are determined by rotating their original 226 

coordinates (𝑥, 𝑦) to (𝑥𝜃 , 𝑦𝜃), by multiplying the transformation matrix in (2) 227 

[27]. 228 

[
𝑥𝜃
𝑦𝜃
] = [

cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

] [
𝑥
𝑦]      (2) 229 

A downstream WT in the OWF is expected to be affected by the wakes of 230 

multiple upstream WTs. In this study, a linear superposition of the square of 231 

the velocity deficits is applied to synthesize the wakes generated by multiple 232 



upstream WTs, as given by (3) [26]. 233 

(𝑈0 − 𝑈𝑖)
2 = ∑ (𝑈0 − 𝑈𝑗𝑖)

2
𝑗       (3) 234 

where 𝑈𝑗𝑖  denotes the wind velocity at the position of the 𝑖 -th WT 235 

considering that only the wake of the 𝑗-th WT exists, 𝑈𝑖 represents the wind 236 

velocity at the position of the 𝑖-th WT. 237 

The average stream-wise wake velocity at the position of the downstream 238 

WT behind yawed upstream WTs can be calculated by (4) [26]. 239 

𝑢𝑗𝑖(𝑥) = 𝑢0 − ∫ ∫ ∆𝑈𝑗𝑖(𝑥, 𝑦, 𝑧)𝑑𝑦
𝑏+𝑆𝑦
−𝑏+𝑆𝑦

𝑑𝑧
𝑎

−𝑎
       (4) 240 

where 𝑎 = √(𝑑0 2⁄ )2 − [(𝑦 − 𝑆𝑦) 𝑐𝑜𝑠 𝛾⁄ ]
2

, 𝑏 = 𝑑0 𝑐𝑜𝑠 𝛾 , ∆𝑈𝑗𝑖(𝑥, 𝑦, 𝑧)  is 241 

the velocity deficit in 3D space at the 𝑖-th WT position considering only the 242 

wake of the 𝑗-th upstream WT exists, 𝑆𝑦 is the span-wise spacing between 243 

WTs. 244 

2.4. WT and OWF output power calculation 245 

Taking wind shear into consideration, before calculating the WT output 246 

power, the wind speed is firstly converted from the reference height 𝑧𝑟𝑒𝑓 to 247 

its hub height ℎ0
𝑘 by (5). 248 

𝑢ℎ0𝑘 = 𝑢𝑧𝑟𝑒𝑓 (
ℎ0
𝑘

𝑧𝑟𝑒𝑓
)
𝛼

        (5) 249 

where 𝑢𝑧𝑟𝑒𝑓 and 𝑢ℎ0𝑘 are the wind speeds measured at the mast height and the 250 

hub height of the 𝑘-th type of WT, respectively, 𝛼 is the wind shear index 251 

whose value is 0.1 in this study. 252 

Suppose that there are 𝑀 types of WTs installed in the hybrid OWF. The 253 



output power of the 𝑘-th type of WT under yaw condition, 𝑃𝑤𝑡
𝑘 (𝑢ℎ0𝑘 , 𝛾) can 254 

be calculated by (6) [27]. 255 

𝑃𝑤𝑡
𝑘 (𝑢ℎ0𝑘 , 𝛾) =

1

4
𝜌𝜋(𝑑0

𝑘)
2
𝐶𝑝0
𝑘 𝑢

ℎ0
𝑘
3 (cos 𝛾)𝜂         (6) 256 

where 𝜌 is the air density, 𝑑0
𝑘 is the rotor diameter of the 𝑘-th type of WT, 257 

𝐶𝑝0
𝑘  is the power coefficient at zero yaw angle of the 𝑘-th type of WT and 𝜂 258 

is the cosine exponent related to the decay rate of the power coefficient which 259 

is 1.88 [27] in this study. 260 

Suppose the total number of the 𝑘-th type of WTs is 𝑁𝑘, the output power 261 

of a hybrid OWF installed with 𝑀 types of WTs under AYC, 𝑃𝑂𝑊𝐹  can be 262 

obtained by summing up the output power of each WT, under their inflow 263 

wind speed 𝑢ℎ0𝑘𝑖 and yaw angle 𝛾𝑖 as expressed by (7). 264 

𝑃𝑂𝑊𝐹 = ∑ ∑ 𝑃𝑤𝑡
𝑘 (𝑢ℎ0𝑘𝑖 , 𝛾𝑖)

𝑁𝑘
𝑖=1

𝑀
𝑘=1       (7) 265 

The CF of a wind farm is a measure of its actual energy output over a given 266 

period compared to its maximum possible output if it could be operated at full 267 

capacity continuously. The CF of a hybrid OWF, 𝐶𝐹𝑂𝑊𝐹  is defined by (8). 268 

𝐶𝐹𝑂𝑊𝐹 =
𝑃𝑂𝑊𝐹

∑ 𝑁𝑘∙𝑃𝑤𝑡,𝑟
𝑘𝑀

𝑘

× 100%             (8) 269 

where the denominator is the rated capacity of the OWF, and 𝑃𝑤𝑡,𝑟
𝑘  is the rated 270 

power of the 𝑘-th type of WT. 271 

2.5. The hybrid OWF AYC system 272 

The block diagram of the hybrid OWF AYC system is shown in Fig. 3. 273 

This control system operates as follows. Firstly, at each time interval of the 274 

control horizon, the inflow wind speed 𝑢0  and wind direction 𝜃  are 275 



measured and fed into the farm-level controller. Based on these inputs, the 276 

controller computes the optimal yaw angle for each WT in the OWF. This 277 

optimization is carried out using the 3D yawed wake model and is solved by 278 

the quantum genetic algorithm (QGA) [43]. 279 

 280 

Fig. 3. Block diagram of the hybrid OWF AYC system. 281 

The central controller determines the optimal yaw angle for each WT and 282 

transmits the corresponding command signals to the turbine-level controllers. 283 

These signals are then distributed to the main controllers of the different 284 

types of WTs. Each WT’s yaw controller interprets the received command 285 

and directs the yaw actuator to adjust the nacelle orientation accordingly. The 286 

adjustment aligns the WT at a specified deflection angle relative to the 287 

incoming wind direction and maintains this position for optimal energy 288 

capture. 289 



3. Optimization model and solution algorithm 290 

3.1. Optimization model 291 

Considering a hybrid OWF installed with 𝑀 types of WTs, denoted as 292 

𝑊𝑇1, ⋯ ,𝑊𝑇𝑁1 , ⋯ ,𝑊𝑇𝑁𝑘 , ⋯ ,𝑊𝑇𝑁𝑀−1 , ⋯ ,𝑊𝑇𝑁𝑀, the objective of its AYC is 293 

to maximize the total power generation by coordinating the yaw angle of each 294 

type of WT. Specifically, when yaw angles exceed 30°, the power loss of a 295 

yawed WT cannot be compensated by the power enhancement from 296 

downstream WTs [28]. Therefore, in this study, the yaw angle operating 297 

range is strictly limited to ±30° also to prevent structural overload on the 298 

WT nacelle, which can be expressed by (9). 299 

𝛾∗ = 𝑎𝑟𝑔max
𝛾𝑖

∑ ∑ 𝑃𝑤𝑡
𝑘 (𝑢ℎ0𝑘𝑖 , 𝛾𝑖)

𝑁𝑘
𝑖

𝑀
𝑘        (9) 300 

𝑠. 𝑡. 𝛾𝑖 ∈ [−30°,+30°] 𝑖 = 1, 2,⋯ ,∑ 𝑁𝑘
𝑀
𝑘=1   301 

3.2. Solution algorithm 302 

The QGA is a meta-heuristic optimization algorithm that integrates the 303 

principles of quantum computing with genetic algorithms (GAs). It is designed 304 

to enhance the performance of the GAs by leveraging the properties of 305 

quantum computation, particularly the superposition state characteristic of 306 

quantum bits (qubits). By utilizing qubits, the QGA enables a more efficient 307 

parallel search within the solution space. This parallelism significantly 308 

improves the algorithm’s ability to avoid local optima and accelerates the 309 

convergence toward a global optimum. The key components of the QGA as 310 

follows: 1) Quantum Encoding: The QGA employs qubits as fundamental 311 



units for information storage. By utilizing the superposition state of qubits, it 312 

represents the superposition of multiple states, thereby enabling more efficient 313 

parallel search within the solution space; 2) Quantum Rotation Gate 314 

Operation: The QGA applies the quantum rotation gate operation to enhance 315 

the breadth and depth of the search, optimizing the evolutionary process of 316 

chromosomes; 3) Quantum Crossover and Mutation Operations: The QGA 317 

utilizes quantum crossover and mutation operations to generate new quantum 318 

individuals. This increases the diversity of the search and helps prevent 319 

premature convergence to local optima. 320 

The key steps of the QGA are summarized as follows. 321 

Step1. Initialization: Create population of quantum chromosomes. 322 

Step2. Observation: Generate classical solutions by measuring qubits. 323 

Step3. Evaluation: Calculate fitness of each solution. 324 

Step4. Update: Use quantum gates to evolve the population. 325 

Step5. Termination: Check stopping criteria. 326 

The pseudo code of the QGA in Algorithm 1 demonstrates its selection, 327 

crossover and mutation subroutines [43]. 328 

Algorithm 1 QGA 

HP ← problem_Hamiltonian       

n ← number_of_registers      

c ← number_of _qubits_per_register      

Initialization of the population 



repeat 

sort registers 1 to n according to HP 

reset registers n/2 to n 

for r = 1, 2, ..., n/2 

pseudo-clone register r to register n/2 + r. 

end for 

for i = 1, 2, ..., n/4 

swap the last c/2 qubits of register n/2 + 2i-1 

with the last c/2 qubits of register n/2 + 2i. 

end for 

mutate each qubit with probability pm 

until ending criteria is met ⋁G generations 

The solution procedure of the hybrid OWF AYC optimization model by the 329 

QGA is shown in Fig. 4. 330 



 331 

Fig. 4. Solution procedure of the hybrid OWF AYC optimization model by 332 

the QGA [43]. 333 

4. Case study 334 

4.1. Test cases 335 

The location and the layout of the Guishan OWF is shown in Fig. 5, which is 336 

located in Zhuhai, Guangdong Province of China (Latitude: 337 

22°05'01"N~22°08'55"N, Longitude: 113°41'21"E~113°45'29"E), at a 338 

distance of about 20 km to the shore. There are thirty-four MySE3.0-112, 339 

seven MySE6.45-180, and eight D7000-186 WTs mixed-installed in this 340 



hybrid OWF and its total capacity is 203.15 MW. The WT types and positions 341 

in this case study are consistent with real-world engineering designs. 342 

 343 

Fig. 5. Profile of the Zhuhai Guishan OWF [44]. 344 

Three types of WTs [45] are installed in the OWF, each with distinct thrust 345 

and power coefficients characteristics, as illustrated in Fig. 6. The geometric 346 

and technical parameters of these WTs are summarized in Table 1. 347 

 348 

Fig. 6. Thrust and power coefficients curves of the three types of WTs [45]. 349 



Table 1 350 

Geometric and technical parameters of the three types of WTs 351 

WT type 
Rated power 

𝑃𝑤𝑡,𝑟  (MW) 

Rotor 

diameter 

𝑑0 (m) 

Hub 

height 

ℎ0 (m) 

Cut-in wind 

speed 

𝑢𝑖𝑛 (m s⁄ ) 

Rated wind 

speed 

𝑢𝑟 (m s⁄ ) 

Cut-out wind 

speed 

𝑢𝑜𝑢𝑡 (m s⁄ ) 

MySE3.0-112 3.00 112 90 3.0 11.0 25.0 

MySE6.45-180 6.45 180 114 3.0 9.0 25.0 

D7000-186 7.00 186 120 3.0 10.5 25.0 

The parameters setting of the QGA are as follows. The population contains 352 

4 individuals each with a chromosome length of 2 qubits and the population 353 

is therefore encoded as 8 qubits in total. The mutation probability of the 354 

chromosomes is set 𝑝𝑚 =
1

24
, which means a mutation occurs in one of the 8 355 

qubits, on average, every third generation. 356 

4.2. Results and discussion 357 

1) Optimal AYC of multi-types of WTs in a line 358 

As demonstrated in Fig. 7, the test WTs are arranged in a straight line, 359 

ordered by their upwind sequence as WT1, WT2, and WT3. There are totally 360 

six possible combinations of WT sequences as listed in Table 2. The spacing of 361 

each WT pair is seven times of the front WT rotor diameter, i.e., 𝐷12 = 7𝑑0,1 362 

and 𝐷23 = 7𝑑0,2. The inflow wind speed 𝑢0 measured at 𝑧𝑟𝑒𝑓 = 100 m is 363 

categorized into three levels: low wind speed at 6 m/s, medium wind speed at 8 364 

m/s, and high wind speed at 10 m/s. 365 



 366 

Fig. 7. WT ranking and spacing according to upwind sequence. 367 

Table 2 368 

WT upwind sequence combinations 369 

Sequence No. WT1 WT2 WT3 

1 MySE3.0-112 MySE6.45-180 D7000-186 

2 MySE3.0-112 D7000-186 MySE6.45-180 

3 MySE6.45-180 MySE3.0-112 D7000-186 

4 MySE6.45-180 D7000-186 MySE3.0-112 

5 D7000-186 MySE3.0-112 MySE6.45-180 

6 D7000-186 MySE6.45-180 MySE3.0-112 

The output power of each WT before and after AYC in the six arrangements 370 

under the three typical inflow wind speeds are illustrated in Fig. 8. Their 371 

comparative wake contour maps are shown in Fig. 9 and the corresponding 372 

optimal WT yaw angles and power increment percentages brought about by 373 

AYC are given in Table 3. 374 

It can be inferred from Fig. 8 that under the inflow wind speed 𝑢0 = 6 m/s, 375 

the WTs arranged as Sequence No. 3 can produce the maximum total power 376 

(𝑃𝑊𝑇1 + 𝑃𝑊𝑇2 + 𝑃𝑊𝑇3 = 2,432.68 kW) after AYC, while under the inflow 377 

wind speeds 𝑢0 = 8 m/s and 𝑢0 = 10 m/s the WTs arranged as Sequence 378 

No. 5 can produce the maximum total powers (𝑃𝑊𝑇1 + 𝑃𝑊𝑇2 + 𝑃𝑊𝑇3 =379 

Inflow wind WT1 WT2 WT3

Low: 6 m/s

Medium: 8 m/s

High: 10 m/s

𝐷12 = 7𝑑0,1 𝐷23 = 7𝑑0,2



6,289.60 kW  and 𝑃𝑊𝑇1 + 𝑃𝑊𝑇2 + 𝑃𝑊𝑇3 = 16,782.367 kW , respectively) 380 

after AYC. It should be noted that WT3 in Sequences 4 and 6 is basically in a 381 

newly-powered-on state. This phenomenon can be explained with the help of 382 

the wake contours in Fig. 9(a) and the optimal yaw angles in Table 3. Firstly, in 383 

Sequences 4 and 6, the WT in the last row is the smallest one, MySE3.0-112, 384 

which is prone to be totally merged in the wakes of the larger WTs, 385 

MySE6.45-180 and D7000-186 in the front rows. Although, under the AYC 386 

strategy, the total power generations of the WT sequences can be improved, 387 

this is based on the sacrifice of the power production of the smallest WT in the 388 

last row. As larger WTs have stronger abilities to capture more wind energy, 389 

the optimal yaw angles of the WTs in the medium row are not very large (+8.3° 390 

and -7.1°) in Sequences 4 and 6 to give their priority to produce more power. 391 

Secondly, the inflow wind speed in this case is relatively low (𝑢0  = 6m/s) 392 

which is much lower that the rated power of MySE3.0-112 WT (𝑢𝑟  =393 

11.0 m/s). Due to the unavoidable wake effects generated by the two large 394 

WTs in the front, the inflow wind speed of the WT in the last row will be 395 

decreased dramatically to be close to its cut-in wind speed (𝑢𝑖𝑛  = 3.0 m/s). 396 



 397 

(a) 𝑢0 = 6 m/s 398 

 399 

(b) 𝑢0 = 8 m/s 400 



 401 

(c) 𝑢0 = 10 m/s 402 

Fig. 8. Output powers of the six WT sequences before and after AYC. 403 
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(b) 𝑢0 = 8 m/s 405 
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(c)  𝑢0 = 10 m/s 406 



Fig. 9. Comparative wake contour maps of the WT sequence at maximum 407 

power output under different inflow wind levels. 408 

Table 3 409 

Optimal yaw angles and power increment percentages of the WT sequences 410 

Inflow wind speed Optimal WT yaw angle Power increment 

percentage 𝑢0 = 6 m/s 𝛾1
∗ 𝛾2

∗ 𝛾3
∗ 

S
eq

u
en

ce
 N

o
. 

1 -30° -22.2° 0° 34.57% 

2 -30° -22.1° 0° 38.15% 

3 -20.1° -29.3° 0° 13.29% 

4 +21.5° +8.3° 0° 9.15% 

5 -20.9° +28.2° 0° 14.34% 

6 -22° -7.1° 0° 9.34% 

Inflow wind speed Optimal WT yaw angle Power increment 

percentage 𝑢0 = 8 m/s 𝛾1
∗ 𝛾2

∗ 𝛾3
∗ 

S
eq

u
en

ce
 N

o
. 

1 +30° -21.5° 0° 27.97% 

2 +30° -18.5° 0° 28.90% 

3 -20.9° -28.4° 0° 13.17% 

4 -23.2° 0° 0° 11.32% 

5 -13.9° -26.8° 0° 6.72% 

6 -15.6° -9.1° 0° 0.09% 

Inflow wind speed Optimal WT yaw angle Power increment 

percentage 𝑢0 = 10 m/s 𝛾1
∗ 𝛾2

∗ 𝛾3
∗ 

S
eq

u
en

ce
 N

o
. 

1 -27.6° -19.8° 0° 17.43% 

2 +26.2° 0° 0° 11.11% 

3 -20.2° -25.3° 0° 10.06% 

4 +22.2° 0° 0° 6.04% 

5 0° -25.1° 0° 7.09% 

6 0° -10.6° 0° 0.10% 

Firstly, under the low inflow wind speed 𝑢0 = 6 m/s, the total output 411 

powers of the WTs arranged as Sequences No. 2 and No. 4 increase the 412 

largest and lowest percentages (38.15% and 9.15%), respectively due to AYC. 413 

Under the medium inflow wind speed 𝑢0 = 8 m/s, the total output powers of 414 

the WTs arranged as Sequences No. 2 and No. 6 increase the largest and 415 

lowest percentages (28.90% and 0.09%), respectively due to AYC. Under the 416 



high inflow wind speed 𝑢0 = 10 m/s, the total output powers of the WTs 417 

arranged as Sequence No. 1 and No. 6 increase the largest and lowest 418 

percentage (17.43% and 0.10%) due to AYC, respectively. This demonstrates 419 

that AYC achieves maximum effectiveness for the smallest WT in the front 420 

row, while showing negligible impact for the largest WT in equivalent 421 

positions as for large-scale WTs, broader wake propagation limits the overall 422 

optimization benefits from yaw adjustments. Secondly, AYC demonstrates 423 

superior power enhancement efficacy at below-rated wind speeds (𝑢0 ≤424 

8 m/s), where wake effects are more persistent and energy recovery is 425 

critically needed. The lower the inflow wind speed is, the more pronounced 426 

the power gains from AYC. Thirdly, under the three inflow wind conditions, 427 

the optimal yaw angles of the WTs in the last row are all zero. Since the wake 428 

generated from the WT in the last row does not impact downstream WTs, there 429 

is no benefit in sacrificing its power output via yaw misalignment to enhance 430 

the overall WT string’s efficiency. For an individual WT, the application of the 431 

maximum power point tracking (MPPT) strategy achieves optimal 432 

performance at zero yaw angle, i.e., perfect alignment with the wind direction, 433 

maximizing energy capture efficiency. Lastly, under the high inflow wind 434 

speed 𝑢0 = 10 m/s, some of the optimal yaw angles of the front and the 435 

intermediate WTs are zero. This can be explained as follows. On one hand, 436 

under high wind speed conditions, wake recovery accelerates. Wake recovery 437 

velocity increases by 20-30% at above-rated wind speeds, significantly 438 



shortening the downstream stabilization distance. On the other hand, 439 

according to Fig. 4, under high inflow wind speeds, the WT thrust coefficient 440 

asymptotically approaches a stable plateau, resulting in significantly reduced 441 

sensitivity of wake steering effectiveness to yaw angle variations. 442 

2) Optimal AYC of the Hybrid OWF 443 

The wind rose of the Guishan OWF is shown in Fig. 10 where the met mast 444 

height is 𝑧𝑟𝑒𝑓 = 100 m . According to Fig. 10, the three typical wind 445 

directions (𝜃 = W, ESE, NNE) which represent the rare, medium and dominant 446 

wind directions and their corresponding wind speeds (𝑢0 =  6, 8, 10 m/s) 447 

which represent the low, medium and high wind speeds of this OWF are 448 

chosen as the three typical inflow wind conditions in this study and are 449 

demonstrated in Fig. 11. 450 

 451 

Fig. 10. Wind rose (1/Jan/2024-31/Dec/2024) [46]. 452 
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 453 

Fig. 11. Three typical wind conditions of the Guishan OWF. 454 

The wake contours of the Guishan OWF without AYC under the three 455 

typical wind speeds and directions are shown in Fig. 12. In this scenario, each 456 

WT utilizes passive yaw control strategy, ensuring self-alignment with the 457 

wind direction. As a result, the yaw angle remains zero for each WT under all 458 

inflow wind conditions. 459 
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 460 

(a)  Case 1: 𝜃 = W, 𝑢0 = 6 m/s 461 

 462 

(b) Case 2: 𝜃 = ESE, 𝑢0 = 8 m/s 463 



 464 

(c)  Case 3: 𝜃 = NNE, 𝑢0 = 10 m/s 465 

Fig. 12. Wake contours of the Guishan OWF without AYC under typical wind 466 

speeds and wind directions. 467 

The optimal WT yaw angles and wake contours of the Guishan OWF under 468 

the three typical wind speeds and directions are shown in Fig. 13. The 469 

corresponding output powers and CFs of the Guishan OWF under the three 470 

typical inflow wind conditions are given in Table 4. 471 

Table 4 472 

Output powers and CFs of the Guishan OWF before and after AYC 473 

Wind condition 
Before AYC After AYC Power increment 

percentage  𝑃𝑂𝑊𝐹 (MW) 𝐶𝐹𝑂𝑊𝐹 𝑃𝑂𝑊𝐹 (MW) 𝐶𝐹𝑂𝑊𝐹 

Case 1 23.30 11.47% 29.11 14.33% 24.89% 

Case 2 83.50 41.10% 85.28 41.98% 2.13% 

Case 3 156.11 76.84% 159.97 78.74% 2.47% 

 474 



475 

 476 

(a)  Case 1: 𝜃 = W, 𝑢0 = 6 m/s 477 

 478 



479 

 480 

(b) Case 2: 𝜃 = ESE, 𝑢0 = 8 m/s 481 

 482 



483 

 484 

(c)  Case 3: 𝜃 = NNE, 𝑢0 = 10 m/s 485 

Fig. 13. Optimal WT wake contours and yaw angles of the Guishan OWF 486 

under typical wind speeds and wind directions. 487 



Firstly, in the dominant wind direction and under the high wind speed (Case 488 

3: 𝜃 = NNE, 𝑢0 = 10 m/s ), the hybrid OWF can produce the maximum 489 

power after AYC which is an evident outcome. Within operational limits, 490 

higher wind speed enables WTs to capture more wind energy and generate 491 

greater electricity which follows the “𝑃𝑤𝑡 ∝ 𝑢0
3” relationship until reaching the 492 

rated power. However, the power increment percentage reaches the maximum 493 

(24.89%) after AYC in the rare wind direction and under the low wind speed 494 

(Case 1: 𝜃 = W, 𝑢0 = 6 m/s ) which means AYC demonstrates more 495 

pronounced effects in the non-dominant wind directions. This can be explained 496 

by taking two aspects into account. On one hand, there exists marginal benefit 497 

differences in wake management among different wind directions. The OWF 498 

layout is aerodynamically optimized in the dominant wind directions via 499 

staggered configurations where wake effects are already mitigated, leaving 500 

marginal (1-2%) energy capture improvement potential through AYC. In 501 

contrast, for the non-dominant wind directions where the OWF layout is 502 

sub-optimal, wake steering via AYC can mitigate 10-20% of the otherwise 503 

occurring downstream power deficits. On the other hand, in the non-dominant 504 

wind directions, the power response to yaw misalignment is more gradual due 505 

to pre-reduced aerodynamic efficiency, while wake deflection exhibits 506 

heightened sensitivity, i.e., each degree of yaw generates proportionally 507 

greater wake redirection. 508 



Secondly, as shown clearly in Fig. 13 that the optimal yaw angles of the 509 

WTs in the last row remain zero under the three typical inflow wind directions. 510 

This finding is consistent with the previous test cases of three WTs aligned in a 511 

row. Three key factors contributed to this outcome. First, the WTs in the last 512 

row at the far downstream end of the OWF experience no wake interference on 513 

subsequent WTs, eliminating the need for AYC. Aligning perfectly with the 514 

incoming wind direction (𝛾 = 0°) can maximize their own energy capture 515 

efficiency. Maintaining zero yaw angle for the last row of WTs reduces lateral 516 

wake interference in downstream WT-free areas, preventing unnecessary 517 

energy losses. Applying dynamic AYC across all WTs in the whole OWF 518 

might induce system oscillations or instability. Fixing the last-row WTs at zero 519 

yaw angle can reduce control dimensionality and enhance system robustness. 520 

Finally, Cases 1 and 3 demonstrate that the front-row WTs, which are the 521 

first to encounter incoming wind flows exhibit significantly larger optimal yaw 522 

angles in smaller models (MySE3.0-112) compared to their utility-scale 523 

counterparts (MySE6.45-180 and D7000-186) as shown in Figs. 12 (a)(c). This 524 

is in accordance with the conclusion obtained from the previous test cases of 525 

three WTs aligned in a row which further validates that the application of AYC 526 

for small WTs is more cost-effective than that for the large WTs in a hybrid 527 

OWF. 528 

The convergence performance of the QGA when solving the hybrid OWF 529 

AYC optimization problems in Fig. 13 is compared with the GA, the particle 530 



swarm optimization (PSO), the differential evolution (DE) [41], and the 531 

teaching learning-based optimization (TLBO) [22] algorithms. The 532 

population size 𝑛𝑃𝑜𝑝 and the maximum iteration number 𝑀𝑎𝑥𝐼𝑡 are set 533 

200 and 300 respectively for all the algorithms. In the GA and DE algorithms, 534 

the crossover rate is set 𝑝𝑐 = 0.75 and the mutation probability is set 𝑝𝑚 =535 

1

24
 which is the same as those in the QGA. In the PSO algorithm, the personal 536 

learning coefficient is set 𝑐1 = 1.5 and the global learning coefficient is set 537 

𝑐2 = 2.0. The best fitness evaluations in each iteration for solving the hybrid 538 

OWF AYC model after 20 times of executing these five algorithms are 539 

shown and compared in Fig. 14 and Table 5. The computations are carried 540 

out on a Windows 10 laptop with 8.0 GB RAM and a 2.40 GHz Intel 541 

Dual-Core processor and the simulation software is MATLAB 2024b. 542 

 543 

(a)  Case 1: 𝜃 = W, 𝑢0 = 6 m/s 544 



 545 

(b) Case 2: 𝜃 = ESE, 𝑢0 = 8 m/s 546 

 547 

(c)  Case 3: 𝜃 = NNE, 𝑢0 = 10 m/s 548 



Fig. 14. Convergence curves of the QGA, GA, PSO, DE and TLBO algorithms 549 

in solving the hybrid OWF AYC optimization problems in Fig. 13. 550 

Table 5 551 

Comparison of the QGA, GA, PSO, DE and TLBO algorithms in solving the 552 

hybrid OWF AYC optimization problems in Fig. 13. 553 

Wind condition Algorithm Power increment percentage Running time (min) 

Case 1: 𝜃 =

W, 𝑢0 = 6 m/s 

QGA +24.89% 17.83 

GA +17.45% 25.78 

PSO +17.92% 23.11 

DE +16.98% 20.96 

TLBO +21.19% 19.04 

Case 2: 𝜃 =

ESE, 𝑢0 = 8 m/s 

QGA +2.13% 20.12 

GA -0.47% 28.31 

PSO -0.30% 25.98 

DE +0.48% 23.66 

TLBO +1.99% 21.97 

Case 3: 𝜃 =

NNE, 𝑢0 =

10 m/s 

QGA +2.47% 19.30 

GA -0.88% 27.76 

PSO -1.44% 24.58 

DE +1.07% 22.61 

TLBO +1.71% 20.97 

As shown in Fig. 14 the QGA outperforms both the other four algorithms 554 

in terms of producing the best results. By integrating quantum computing 555 

principles, the QGA enhances the efficiency and effectiveness of the 556 

optimization process. Specifically, it leverages quantum operations to address 557 

challenges inherent in classical heuristic methods. One such operation is 558 

reverse quantum annealing, which enables quasi-local or quasi-nonlocal 559 

searches initiated from a classical state. This process utilizes quantum 560 

fluctuations as a novel mutation mechanism, while classical crossover 561 

operations are retained. These quantum enhancements are the primary 562 



reasons for the QGA’s superior optimization capability. For the real-time 563 

control of OWFs, a fast and efficient optimizer is critical. As wind speed and 564 

direction fluctuate, the AYC system must rapidly solve the optimization 565 

model and transmit updated control parameters to the WTs for yaw angle 566 

adjustment which is a process requiring completion within seconds. The high 567 

efficiency of the QGA is therefore essential for this application. 568 

As shown in Table 5, the QGA achieves the highest OWF power increment 569 

percentage while requiring the shortest running time among all five 570 

algorithms. The TLBO and DE algorithms rank as the second and third 571 

best-performing methods, respectively, while the GA and PSO algorithms 572 

demonstrate comparatively poorer performance. What should be noticed is 573 

that in Cases 2 and 3, the GA and the PSO algorithms even produce results 574 

with negative power increment percentages which means they may stuck in 575 

the local optimal and fail to find the global optimum. This verifies that the 576 

QGA and TLBO are superior optimization tools for hybrid OWF AYC 577 

optimization problems, while GA and PSO prove incompetent. 578 

From the above simulations and existing literature [22]-[42], it can be 579 

concluded that AYC generally leads to an increase in OWF power output. 580 

The three lined-up WTs and the irregular-shaped Guishan OWF tested in this 581 

paper have already validated the effectiveness of the proposed AYC strategy. 582 

For OWFs with other complex layouts, such as square [24][31][39], triangle 583 

[23][25][32], parallelogram [22][26][32][34][35][39], and other irregular 584 



shapes [24][25][30][31][33][35][36][37][41][42], AYC proves capable of 585 

boosting power generation in both large-scale and multi-scenario cases. 586 

5. Conclusions 587 

This paper proposes an AYC strategy specifically designed for the hybrid 588 

OWF where multiple types of WTs are installed. To achieve the goal of OWF 589 

output power maximization, a 3D yawed wake model is utilized and the QGA 590 

is applied for solving the AYC optimization models. The key findings from 591 

the simulation results of the case study and their implications for engineering 592 

applications can be summarized as follows. 593 

1) The primary objective of AYC is to optimize the overall OWF power 594 

production. For the upstream WTs, active yaw misalignment (e.g., 𝛾 = ±30°) 595 

can deflect wakes away from critical downstream paths, minimizing impact 596 

on subsequent WTs. For the downstream WTs, priority shifts to maximizing 597 

individual energy capture, as wake steering provides no further benefit. 598 

Especially, no active yaw misalignment should be applied to the WTs in the 599 

last row (𝛾 = 0°). 600 

2) AYC is more effective when inflow wind speed is at low level and in 601 

the non-dominant wind direction of an OWF. In the Guishan OWF, it 602 

produces 24.89% power increment under the wind condition of 𝜃 = W, 𝑢0 =603 

6 m/s, much higher than those (2.13% and 2.47%) obtained under the wind 604 

conditions of 𝜃 = ESE, 𝑢0 = 8 m/s and 𝜃 = NNE, 𝑢0 = 10 m/s. Although 605 

non-prevailing winds occur infrequently (e.g., only 10% of annual operating 606 



time), they may account for 25-40% of total energy losses in a hybrid OWF. 607 

Under these wind directions, wake overlap is more severe because WT 608 

sub-optimal layout and conventional yaw systems exhibit delayed response. 609 

Therefore, the application of AYC in the non-dominant wind directions of 610 

hybrid OWFs should be prioritized for the technical and economic 611 

considerations. 612 

3) For three WTs with different types in a line, by applying the AYC 613 

strategy to the sequences with the smallest WT being the first, the maximal 614 

power increment percentages 38.15%, 28.90%, and 17.43% can be achieved 615 

for 𝑢0 = 6 m/s , 8 m/s  and 10 m/s , respectively. For a hybrid OWF 616 

mixed-installed with multiple types of WTs, the AYC should be 617 

preferentially applied to the small WTs. By prioritizing AYC of small WTs, 618 

e.g., actively deflecting them at specific angles, the wake can be dispersed or 619 

redirected, thereby mitigating its shading effect on downstream large WTs. 620 

Specifically, in a hybrid OWF, small WTs can act as ‘wake regulators’ 621 

dynamically adjusting their yaw to optimize the overall OWF flow field, 622 

while large WTs maintain stable operation to ensure the baseline power 623 

output of the OWF. 624 

4) The QGA proves to be an efficient heuristic algorithm for solving the 625 

hybrid OWF AYC optimization problem. Compared with the GA, PSO, DE 626 

and TLBO algorithms, the QGA can produce the best optimization results by 627 

taking the least running time of 17.83 min, 20.12 min, and 19.30 min for the 628 



three simulation cases, respectively, while the GA and PSO algorithms are 629 

easier to fall into local optimum. Particularly, in large-scale OWFs with 630 

multiple types and numbers of WTs, the computational burden stems 631 

primarily from the iterative calculation of wake deficits required to explore 632 

potential yaw angles. These significantly increased computational demands 633 

necessitate the development and utilization of highly efficient optimization 634 

algorithms capable of rapid convergence and the discovery of superior 635 

solutions. 636 

However, this study still has some limitations. Firstly, the effectiveness of 637 

the proposed AYC strategy is highly related to the layout and shape of the 638 

hybrid OWF. For larger OWFs of complex layouts and installed with more 639 

WTs, the applicability of the proposed method has not been verified. 640 

Secondly, only three typical wind conditions are considered and the real-time 641 

control with smaller timescale wind data have not been tested in this study. 642 

Future research should focus on the development of more advanced AYC 643 

strategies for the hybrid OWF power increasing. The hierarchical control 644 

strategy is an ideal solution for coordinated AYC for the small and large WTs 645 

which means that the large ones employ the conventional yaw control, e.g., 646 

based on average wind direction, while the small ones utilize advanced 647 

control algorithms, e.g., the model predictive control (MPC) for dynamic 648 

optimization. The synergy between these approaches may enhance the overall 649 

efficiency of the hybrid OWF.  650 
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