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Abstract: This paper proposes an active yaw control strategy for the hybrid
offshore wind farms to enhance the offshore wind farm’s total power
generation. Firstly, a three dimensional yawed wake model is applied for
calculating the power output of different types of wind turbines under active
yaw control and the whole offshore wind farm. Next, the architecture of the
proposed active yaw control system is demonstrated, and an optimization
model is formulated. To solve this optimization problem, the quantum genetic
algorithm 1s employed. Simulation results on a simplified layout of three
wind turbines in a row and the Guishan offshore wind farm under three
typical wind conditions demonstrate that the proposed strategy can effectively
mitigate the inner-array wake effect in hybrid offshore wind farms. The
results also suggest that applying active yaw control in the non-dominant
wind directions and for small wind turbines in a hybrid offshore wind farm

should be prioritized which yields the most significant improvements in
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overall offshore wind farm power output. Additionally, the quantum genetic

algorithm is shown to be an efficient and robust optimization tool for solving

the optimal active yaw control problem in hybrid offshore wind farms.

Keywords: Mixed installation of wind turbines; hybrid offshore wind farm;

active yaw control; 3D yawed wake model; quantum genetic algorithm;

various wind conditions.
Nomenclature

Acronyms

AEP  Annual energy production
AGC Automatic generation control
Al Artificial intelligence
AYC Active yaw control

CF Capacity factor

DE  Differential evolution
DEL Damage equivalent load
DL  Deep learning

GA  Genetic algorithm

GNN  Graph neural network

ML  Machine learning

MPC Model predictive control

Variables

c Personal learning coefficient
1 in PSO

c Global learning coefficient in
2 PSO

ck Power coefficient at zero yaw
po angle of the k-th type of WT

c WT thrust coefficient under
‘ AYC

c WT thrust coefficient at zero
to

yaw angle

MPPT

OWF
PSO
2D
3D
QGA
RAM
RL
TLBO
WT

Maximum power point tracking
Neural network

Offshore wind farm

Particle swarm optimization
Two dimensional

Three dimensional

Quantum genetic algorithm
Random access memory
Reinforcement learning
Teaching learning-based optimization
Wind turbine

Wind velocity at the position

U.
! of the i-th WT
Wind velocity at the position
U. of the i-th WT considering
ot only the wake of the j-th WT
exists
AU Velocity deficit in the wake
Velocity deficit in 3D space
at the i-th WT position
AU;i(x,y, Dy
(6, 2) considering only the wake of
the j-th upstream WT exists
U Inflow wind speed
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MaxIt
nPop

Ny
Pc
Pm

POWF

k
Pwt,r

Capacity factor of a hybrid
OWF

WT rotor diameter

Rotor diameter of the k-th
type of WT

Distance between the WT
rotor center and the tower
center

WT hub height

Hub height of the k-th type of
WT

Total number of WT types

Maximum iteration number

Population size of the
optimization algorithm

Total number of the k-th type
of WTs

Crossover rate in GA

Mutation rate in QGA and GA

Output power of a hybrid
OWF

The output power of the k-th
type of WT under yaw
condition

Rated power of the k-th type
of WT

WT rotor radius

Span-wise spacing between
WTs

Inflow wind velocity

uzref

(x,y)

(Xe» y@)

Yoffset

Zref

<

Wind speed measured at the
hub height of the k-th type
of WT

Cut-in wind speed of the WT
Cut-out wind speed of the
WT

Rated wind speed of the WT

Wind speed measured at the
mast height

WT original coordinates

WT rotated coordinates
under inflow wind direction
0

Span-wise location of the
wake center

Reference height

Wind shear index

WT yaw angle

Scale factor in the wake
offset model

Expansion factor in the wake
offset model

Cosine exponent related to
the decay rate of the power
coefficient

Inflow wind direction
Wake growth rate

Air density
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1. Introduction

Offshore wind energy has emerged as a pivotal component of global
sustainable energy portfolios, with increasing investments in large-scale
offshore wind farms (OWFs) to meet decarbonization targets. To remain
within the climate-critical 1.5°C global warming threshold, terawatt-scale
wind capacity must be deployed globally by 2030. Annual offshore wind
installations are projected to triple from 10.8 GW in 2023 to over 32 GW by
2028 [1].

Traditionally, OWFs have adopted homogeneous wind turbine (WT)
configurations, installing identical WTs to simplify layout design, operation,
and maintenance [2]-[7]. However, this approach may limit energy yield and
economic efficiency, particularly in sites with varying water depths, wind
conditions, and seabed properties. In response, recent research has increasingly
explored hybrid OWFs that incorporate multiple types of WTs with different
geometric and technical parameters [8]-[21]. Real-world implementations,
such as the Borssele I1I/IV OWF in Netherlands, the Arkona OWF in Germany,
and the Guishan OWF in China, have validated its feasibility of such
heterogeneous configurations. Emerging wind farm optimization frameworks
now systematically address heterogenecous WT configurations taking the
selection and mixed-installation of WTs with diverse physical dimensions and
various power curves into consideration [8]-[21]. These studies reveal that

heterogeneous OWF configuration can yield multiple benefits, including
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increased total power output [8]-[10][15][20], lower energy costs
[9][9][11]-[14][16]-[21], improved efficiency [8] or capacity factor (CF)
[8][14][18], and more homogenized fatigue damages [8][17]. It has been noted
in [10], when the vertical staggering between upstream and downstream WTs
exceeds a critical threshold, strategically lowering downstream WT hub
heights induces accelerated wake recovery which can yield enhanced power
output that surpasses baseline configurations with identical WT hub height
through optimized aerodynamic decoupling. Typically, the optimization
applying larger WTs usually results in higher CF due to increased hub height
and reduced wake effects through wider spacing. However, the feasibility of
mixed-installations heavily depends on the WT mean capital costs difference
[12].

The co-existence of multiple WT types with different geometric dimensions,
i.e., rotor diameters and hub heights in an OWF introduces unprecedented
challenges in aerodynamic interaction, wake management, and load mitigation
[8]. In an OWF, once WT positions are fixed, adjusting the wake distribution
through WT control is an effective way to mitigate wake effects and fatigue
load and to enhance power generation [22]. To alleviate the adverse effects
induced by wake effect on the power reduction in OWFs, the active yaw
control (AYC) strategy is proposed and widely applied [22]-[42]. This strategy
intentionally misaligns upstream WTs via rotating their nacelles to steer wakes

away from downstream ones, reducing energy losses. Using sensors and
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predictive models, optimal yaw angles are calculated in real time to achieve the
goal of balancing between power gains from redirected wakes and slight
individual WT power losses. By applying the AYC, the kinetic energy
extraction ratio of the upstream and downstream WTs can be allocated and the
overall efficiency of OWFs can be significantly improved [25]. For instance,
Dou investigated the Horns Rev I OWF in Denmark and found that the AYC
strategy exhibits superior optimization efficacy in directions experiencing
acute wake deficit conditions [26]. In 2022, He developed a multivariate
prediction framework employing machine learning-based fatigue loads and
power prediction method for the AYC system and found that large yaw angles
and high wind speeds can enhance prediction fidelity [27]. In 2023, Dong
proposed a reinforcement learning (RL)-based AYC strategy which can
enhance the long-term farm-level power production subject to strong wake
effects without requiring analytical OWF models [31][31]. In 2024, Wang
proposed a cooperative control strategy combined with start/stop control, AYC,
and WT position optimization which outperforms using the aforementioned
three control strategies separately [33]. A novel analytical model for yawed
WTs, considering the effects of yaw angle, turbulence intensity and thrust
coefficient was developed to predict the velocity deficit and the wake
deflection in [34]. A data-driven model was put forward by Li to provide
accurate predictions for the power generation of OWFs with arbitrary WT

layouts, yaw angles and inflow wind conditions by encoding the OWF into a
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fully connected graph and processing through a graph transformer [35]. While
this model [35] provides an efficient tool for optimal AYC of WTs, its validity
remains unproven in hybrid OWFs with multiple WT types. More recently, Tu
proposed a multi-fidelity framework based on the co-Kriging algorithm for
predicting OWF power under yaw misalignment, finding that the positive yaw
angles can significantly boost output and in a tandem configuration of WTs,
the optimal distribution of yaw angles appears a decreasing trend from
upstream to downstream [38]. The aforementioned studies demonstrate that
integrating artificial intelligence (AI) techniques such as the machine learning
(ML) techniques for improved wake modelling and prediction of WT response
[27], deep learning (DL) for reduced-order modeling [23][36][42], RL for
adaptive control strategies [31][31], neural network (NN) [32], graph neural
network (GNN) [35] and surrogate model [36]-[39] for faster computation
significantly enhances the efficiency and accuracy of AYC in OWFs and help
WTs adapt to complex and dynamic wind conditions [40]. The objectives of
the AYC optimization model majorly include the maximization of OWF total
power generation [22][24]-[27][30]-[36][38] or OWF annual energy
production (AEP) [7][37], the minimization of OWF power tracking error [23],
the minimization of WT average fatigue load coefficient [24] or the WT
damage equivalent load (DEL) [28][28] and to track the Automatic Generation
Control (AGC) power signal [39]. However, current AYC methods are

primarily designed for homogeneous OWFs and do not account for
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heterogeneous WT configurations [22]-[41]. This oversight can lead to
sub-optimal yaw coordination and reduced overall OWF efficiency. Yaw angle
optimization realized by AYC is vital in hybrid OWFs utilizing multiple types
of WTs due to the compounded challenges of heterogeneous wake interactions
and varying operational characteristics. Current methodologies exhibit
significant limitations in resolving this problem due to the following critical
factors. Firstly, existing techniques primarily employ two-dimensional (2D)
yawed wake models [29] to calculate wake losses which can achieve sufficient
accuracy for uniform OWFs. However, in hybrid OWFs, the coexistence of
multiple WT types introduces significant variability in power curves, rotor
diameters, and thrust coefficients. This heterogeneity results in asymmetric
wake interactions, where larger upstream WTs can substantially diminish the
energy yield of smaller downstream WTs. Although, conventional 2D wake
models [29] can provide sufficient accuracy for uniform OWFs, they cannot
adequately characterize vertical wake losses in hybrid OWFs, making them
inapplicable for AYC optimization. Secondly, current investigations of AYC
in OWFs typically examine system performance under simplified wind
conditions, i.e., either constant wind speed or unidirectional inflow conditions.
The simplified wind condition analysis is only viable for uniform OWF with
regular shapes and symmetrical layouts as it has minor effect on AYC
optimization results. However, for hybrid OWFs mixed-installed with multiple

types of WTs, it is highly possible that the OWFs have irregular shapes and
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asymmetrical layouts. Under this circumstance, wind comes from different
directions with different speeds will have significant impacts on the AYC
optimization results. Although there are are infinite combinations of wind
speed and direction, at least the typical wind conditions analysis should be
taken into account for the AYC optimization of the hybrid OWF.
Uncoordinated AYC causes sub-optimal wake steering, resulting in
significant energy losses and accelerated fatigue damage, particularly for less
robust WTs. To address these challenges, strategic yaw angle optimization
dynamically direct wakes away from high-sensitivity WTs and balance total
OWF output against component stress. Proper coordination unlocks 1-5%
additional AEP for the OWF and extends WTs’ lifespan-thereby enhancing
project economics. Therefore, novel AYC strategies and algorithms are
required for handling heterogeneous OWEF while maintaining wake
management benefits. Notably, there remains a significant absence in
published articles addressing wake steering AYC strategies for hybrid OWFs
with mixed-WT installations. The lack of theoretical models and validated
control algorithms for the hybrid OWFs presents both a critical research
challenge and an opportunity for innovation in OWF control optimization
which are also the major contributions of this study. To fill this gap, this paper
proposes a novel AYC strategy for the hybrid OWF for increasing power
generation. The main contribution and novelty of this paper can be

summarized as follows. Firstly, a three dimensional (3D) yawed wake model is
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used to estimate wake deficit considering WT size difference. Secondly, the
QGA is used to solve the proposed hybrid OWF AYC optimization model.
Thirdly, the effectiveness of the proposed AYC strategy for different types of
WTs arranged in a straight line and in a real-world hybrid OWF is tested under
typical inflow wind conditions.

The rest of this article is arranged as follows. The 3D yawed wake model
and multiple wake synthesis method for the hybrid OWF AYC model are
introduced and validated in Section 2. The optimization model and solution
algorithm for the hybrid OWF under different wind conditions are proposed in
Section 3. Case studies are carried out in Section 4, followed by Section 5, the
conclusions.

2. Hybrid OWF AYC model
2.1. The 3D yawed wake model

In hybrid OWFs, WTs with various hub heights and rotor diameters are
installed and therefore the vertical wind speed variations must be explicitly
considered when estimating wake loss. To address this, the 3D yawed wake
model proposed by Dou [26] is applied in this study, which can be described
by (1). This model has taken wind shear into account and has been
experimentally validated and therefore is suitable for the AYC modeling in
the hybrid OWF. This model incorporates the effect of wind shear and has
been experimentally validated, making it well-suitable for the AYC modeling

in hybrid OWFs.
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AU C; cos 1 y-Y 2 1 z—h 2
— = 1 — 1 — t—y exp — > ( offset_z) - — (_0) (1)
Up 80yqw0z 205qw dgcosy 207 do

where
rO-yaw = kx/(dy cosy) + \/E/S
o, = kx/d, +\/E/5
B=(1+,1-C,cosy)/(2,/1—C;cosy)
] . 1 zZ — ho 2
Yoffset_z = (Yoffset — dy¢ sin y)exp — 5 2 ( ) + dye
202\ d,
Yoffset/do = S(Cto sin V)Z COSZ(YV x/do + drt sin V/do
\5 = 60 * leO
where AU i1s the velocity deficit in the wake, U, is the incoming wind

velocity, C, is the WT thrust coefficient under AYC, C, = Cp - cos?y, Cyq
1s the WT thrust coefficient at zero yaw angle, y is the WT yaw angle, k is
the wake growth rate, d,; is the distance between the WT rotor center and
the tower center, d, and h, are the WT rotor diameter and hub height,
respectively, § and { are the scale and expansion factors in the wake offset
model, { =0.75, §, 1s an empirical parameter, §, = 0.607, [ is a
parameter of the Gaussian wake model, Y,frs; 1s the span-wise location of

the wake center.

2.2. Validation of the 3D yawed wake model

The accuracy of the 3D yawed wake model has been validated in the
horizontal and vertical planes by comparing with the wind tunnel measured
data [26] as shown in Figs. 1 and 2. It can be seen that the 3D yawed wake

model agrees well with the experimental measurements especially in the far



208 wake region and it performs better under large yaw angles. As shown in Fig. 2,
209 the wake shape in the wind tunnel experiments is not symmetrical about the
210 hub height plane due to the interaction of the wake rotation with the tower

211 shadow or ground.
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Fig. 1. Comparison of the 3D yawed wake model predicted value and wind

tunnel measured data [26] in horizontal plane.
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Fig. 2. Comparison of the 3D yawed wake model predicted value and wind

tunnel measured data [26] in vertical plane.

2.3. Multiple wake synthesis method

For any inflow wind direction 6, the positional relationships between any
upstream and downstream WT pairs are determined by rotating their original
coordinates (x,y) to (xg,Vg), by multiplying the transformation matrix in (2)
[27].

Vo (2)

A downstream WT in the OWF is expected to be affected by the wakes of

ol =[ame cosol b

multiple upstream WTs. In this study, a linear superposition of the square of

the velocity deficits is applied to synthesize the wakes generated by multiple
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upstream WTs, as given by (3) [26].

(Uo = U? = %;(Uo — Up)’ 3)
where Uj; denotes the wind velocity at the position of the i-th WT
considering that only the wake of the j-th WT exists, U; represents the wind
velocity at the position of the i-th WT.

The average stream-wise wake velocity at the position of the downstream

WT behind yawed upstream WTs can be calculated by (4) [26].

b+S
wi(x) =uo — [, J1)% AUji(x,y, 2)dy dz (4)

where a = \/(dO/Z)Z — [(y — Sy)/cos y]z, b=dycosy, AU;(x,y,z) is

the velocity deficit in 3D space at the i-th WT position considering only the
wake of the j-th upstream WT exists, S, is the span-wise spacing between

WTs.

2.4. WT and OWF output power calculation

Taking wind shear into consideration, before calculating the WT output

power, the wind speed is firstly converted from the reference height z..r to

its hub height k% by (5).

rk \¢
uhg = quef <_0> (5)

Zref
where u, y and Upk are the wind speeds measured at the mast height and the
hub height of the k-th type of WT, respectively, a is the wind shear index
whose value is 0.1 in this study.

Suppose that there are M types of WTs installed in the hybrid OWF. The
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output power of the k-th type of WT under yaw condition, Pk, (uhg, y) can
be calculated by (6) [27].

Pl (wpv) = pm(dl) Clgul(cosy)T (©6)
where p is the air density, d¥ is the rotor diameter of the k-th type of WT,
C;’fo is the power coefficient at zero yaw angle of the k-th type of WT and 7
is the cosine exponent related to the decay rate of the power coefficient which
is 1.88 [27] in this study.

Suppose the total number of the k-th type of WTs is N, the output power
of a hybrid OWF installed with M types of WTs under AYC, Py r can be
obtained by summing up the output power of each WT, under their inflow
wind speed Upk; and yaw angle y; as expressed by (7).

Powr = 2y %42 Pl (wysoo 1) (7)

The CF of a wind farm is a measure of its actual energy output over a given
period compared to its maximum possible output if it could be operated at full

capacity continuously. The CF of a hybrid OWF, CF,,r is defined by (8).

_ Powr 0
CRowr = e X 100% (8)

where the denominator is the rated capacity of the OWF, and Pv’lit'r is the rated

power of the k-th type of WT.

2.5. The hybrid OWF AYC system

The block diagram of the hybrid OWF AYC system is shown in Fig. 3.
This control system operates as follows. Firstly, at each time interval of the

control horizon, the inflow wind speed u, and wind direction 6 are
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measured and fed into the farm-level controller. Based on these inputs, the
controller computes the optimal yaw angle for each WT in the OWF. This
optimization is carried out using the 3D yawed wake model and is solved by

the quantum genetic algorithm (QGA) [43].

Wind Condition OWF Power Maximization
A
Up, 0 ‘} P OWF
Farm-level Controller | The 3D yawed > The QGA Optimal yaw angle
wake model [ optimization calculation
Turbine-level
Type 1 WT | Controllers| Typeki WT Type M WT
main controller main controller main controller
Y1~VN, VN #17¥ Ny, VYNy-1+1~Y Ny
A Y y
Yaw _ Yaw _ Yaw
controller " |_controller | _controller
Yaw Yaw Yaw
actuator actuator actuator
| ' | | A~

| [

Fig. 3. Block diagram of the hybrid OWF AYC system.

The central controller determines the optimal yaw angle for each WT and
transmits the corresponding command signals to the turbine-level controllers.
These signals are then distributed to the main controllers of the different
types of WTs. Each WT’s yaw controller interprets the received command
and directs the yaw actuator to adjust the nacelle orientation accordingly. The
adjustment aligns the WT at a specified deflection angle relative to the
incoming wind direction and maintains this position for optimal energy

capture.
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3. Optimization model and solution algorithm

3.1. Optimization model

Considering a hybrid OWF installed with M types of WTs, denoted as
WTy, -, WTy,, -\ WTy,, -, WTy,,_ ., WTy,,, the objective of its AYC is
to maximize the total power generation by coordinating the yaw angle of each
type of WT. Specifically, when yaw angles exceed 30°, the power loss of a
yawed WT cannot be compensated by the power enhancement from
downstream WTs [28]. Therefore, in this study, the yaw angle operating
range is strictly limited to +30° also to prevent structural overload on the
WT nacelle, which can be expressed by (9).

N

y* = argmax T 5" Pl (ungo 1) 9)

l

s.t. y; €[=30°+30°] i=1,2,-,Y¥ N,
3.2. Solution algorithm

The QGA is a meta-heuristic optimization algorithm that integrates the
principles of quantum computing with genetic algorithms (GAs). It is designed
to enhance the performance of the GAs by leveraging the properties of
quantum computation, particularly the superposition state characteristic of
quantum bits (qubits). By utilizing qubits, the QGA enables a more efficient
parallel search within the solution space. This parallelism significantly
improves the algorithm’s ability to avoid local optima and accelerates the
convergence toward a global optimum. The key components of the QGA as

follows: 1) Quantum Encoding: The QGA employs qubits as fundamental
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units for information storage. By utilizing the superposition state of qubits, it
represents the superposition of multiple states, thereby enabling more efficient
parallel search within the solution space; 2) Quantum Rotation Gate
Operation: The QGA applies the quantum rotation gate operation to enhance
the breadth and depth of the search, optimizing the evolutionary process of
chromosomes; 3) Quantum Crossover and Mutation Operations: The QGA
utilizes quantum crossover and mutation operations to generate new quantum
individuals. This increases the diversity of the search and helps prevent
premature convergence to local optima.

The key steps of the QGA are summarized as follows.
Stepl. Initialization.: Create population of quantum chromosomes.
Step2. Observation: Generate classical solutions by measuring qubits.
Step3. Evaluation: Calculate fitness of each solution.
Step4. Update: Use quantum gates to evolve the population.
Step5. Termination: Check stopping criteria.

The pseudo code of the QGA in Algorithm 1 demonstrates its selection,

crossover and mutation subroutines [43].

Algorithm 1 QGA

Hp «— problem Hamiltonian
n <— number of registers
c «— number of qubits per register

Initialization of the population




repeat
sort registers 1 to n according to Hp
reset registers n/2 to n
forr=1,2,...,n/2
pseudo-clone register r to register n/2 + r.
end for
fori=1,2,..,n/4
swap the last ¢/2 qubits of register n/2 + 2i-1
with the last ¢/2 qubits of register n/2 + 2i.
end for
mutate each qubit with probability p,,

until ending criteria is met VG generations

329 The solution procedure of the hybrid OWF AYC optimization model by the

330 QGA 1s shown in Fig. 4.
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Fig. 4. Solution procedure of the hybrid OWF AYC optimization model by

Quantum selection subroutine

the QGA [43].

4. Case study

4.1. Test cases

The location and the layout of the Guishan OWF is shown in Fig. 5, which is
located in  Zhuhai, Guangdong Province of China (Latitude:
22°05'01"N~22°08'55"N, Longitude: 113°41'21"E~113°4529"E), at a
distance of about 20 km to the shore. There are thirty-four MySE3.0-112,

seven MySE6.45-180, and eight D7000-186 WTs mixed-installed in this



341 hybrid OWF and its total capacity is 203.15 MW. The WT types and positions

342 in this case study are consistent with real-world engineering designs.

343

344  Fig. 5. Profile of the Zhuhai Guishan OWF [44].
345 Three types of WTs [45] are installed in the OWF, each with distinct thrust
346 and power coefficients characteristics, as illustrated in Fig. 6. The geometric

347  and technical parameters of these WTs are summarized in Table 1.

1 T T T T T 0-5
0.9
S 0.8 104 =)
=9
; 0.7 O
2 0.6 103 5
g b
3 05 s
S04r 102 S
> )
£03; z
=02t 101 &
0.1
0 0
0 5 10 15 20 25 30

Wind speed u [m/s]

MySE3.0-112 +=sssees MySE6.45-180 — = D7000-186

348

349 Fig. 6. Thrust and power coefficients curves of the three types of WTs [45].
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Table 1

Geometric and technical parameters of the three types of WTs

Rated power | Rotor Hub | Cut-in wind | Rated wind |Cut-out wind
WT type p (MW) diameter | height speed speed speed
wer do (m) |ho (m)| usy (m/s) | uy (M/S) | Upyr (M/5)
MySE3.0-112 3.00 112 90 3.0 11.0 25.0
MySE6.45-180 6.45 180 114 3.0 9.0 25.0
D7000-186 7.00 186 120 3.0 10.5 25.0

The parameters setting of the QGA are as follows. The population contains
4 individuals each with a chromosome length of 2 qubits and the population
is therefore encoded as 8 qubits in total. The mutation probability of the
chromosomes is set p,,, = i, which means a mutation occurs in one of the 8

qubits, on average, every third generation.

4.2. Results and discussion
1) Optimal AYC of multi-types of WTs in a line

As demonstrated in Fig. 7, the test WTs are arranged in a straight line,
ordered by their upwind sequence as WT1, WT2, and WT3. There are totally
six possible combinations of WT sequences as listed in Table 2. The spacing of
each WT pair is seven times of the front WT rotor diameter, i.e., Dy, = 7dg,
and D,3 = 7d,,. The inflow wind speed u, measured at z..r = 100 m is
categorized into three levels: low wind speed at 6 m/s, medium wind speed at 8

m/s, and high wind speed at 10 m/s.
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Table 2
WT upwind sequence combinations
Sequence No. WTI1 WT2 WT3
| MySE3.0-112 MySE6.45-180 D7000-186
2 MySE3.0-112 D7000-186 MySE6.45-180
3 MySE6.45-180 MySE3.0-112 D7000-186
4 MySE6.45-180 D7000-186 MySE3.0-112
5 D7000-186 MySE3.0-112 MySE6.45-180
6 D7000-186 MySE6.45-180 MySE3.0-112

The output power of each WT before and after AYC in the six arrangements
under the three typical inflow wind speeds are illustrated in Fig. 8. Their
comparative wake contour maps are shown in Fig. 9 and the corresponding
optimal WT yaw angles and power increment percentages brought about by
AYC are given in Table 3.

It can be inferred from Fig. 8 that under the inflow wind speed u, = 6 m/s,
the WTs arranged as Sequence No. 3 can produce the maximum total power
(Pwr1 + Pwrz + Pyrs = 2,432.68 kW) after AYC, while under the inflow
wind speeds uy = 8 m/s and u, = 10 m/s the WTs arranged as Sequence

No. 5 can produce the maximum total powers (Pyrq + Pyra + Pyrs =
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6,289.60 kW and Pyri + Pyre + Pyrs = 16,782.367 KW, respectively)
after AYC. It should be noted that WT3 in Sequences 4 and 6 is basically in a
newly-powered-on state. This phenomenon can be explained with the help of
the wake contours in Fig. 9(a) and the optimal yaw angles in Table 3. Firstly, in
Sequences 4 and 6, the WT in the last row is the smallest one, MySE3.0-112,
which is prone to be totally merged in the wakes of the larger WTs,
MySE6.45-180 and D7000-186 in the front rows. Although, under the AYC
strategy, the total power generations of the WT sequences can be improved,
this 1s based on the sacrifice of the power production of the smallest WT in the
last row. As larger WTs have stronger abilities to capture more wind energy,
the optimal yaw angles of the WTs in the medium row are not very large (+8.3°
and -7.1°) in Sequences 4 and 6 to give their priority to produce more power.
Secondly, the inflow wind speed in this case is relatively low (u, = 6m/s)
which is much lower that the rated power of MySE3.0-112 WT (u, =
11.0 m/s). Due to the unavoidable wake effects generated by the two large
WTs in the front, the inflow wind speed of the WT in the last row will be

decreased dramatically to be close to its cut-in wind speed (u;;, = 3.0 m/s).
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Fig. 9. Comparative wake contour maps of the WT sequence at maximum

power output under different inflow wind levels.

Table 3

Optimal yaw angles and power increment percentages of the WT sequences

Inflow wind speed Optimal WT yaw angle Power increment
Uy =6m/s Y1 Vs V3 percentage
1 -30° -22.2° 0° 34.57%
S 2 -30° 22.1° 0° 38.15%
é 3 -20.1° -29.3° 0° 13.29%
3 4 +21.5° +8.3° 0° 9.15%
3 5 -20.9° +28.2° 0° 14.34%
6 -22° -7.1° 0° 9.34%
Inflow wind speed Optimal WT yaw angle Power increment
Uy =8m/s Vi Vs 12 percentage
1 +30° -21.5° 0° 27.97%
S 2 +30° -18.5° 0° 28.90%
é 3 -20.9° -28.4° 0° 13.17%
3 4 -23.2° 0° 0° 11.32%
g)'; 5 -13.9° -26.8° 0° 6.72%
6 -15.6° -9.1° 0° 0.09%
Inflow wind speed Optimal WT yaw angle Power increment
Uy =10m/s Y1 Vs Vs percentage
1 -27.6° -19.8° 0° 17.43%
S 2 +26.2° 0° 0° 11.11%
§ 3 -20.2° -25.3° 0° 10.06%
3 4 +22.2° 0° 0° 6.04%
3 5 0° 310 0° 7.09%
6 0° -10.6° 0° 0.10%

Firstly, under the low inflow wind speed u, = 6 m/s, the total output
powers of the WTs arranged as Sequences No. 2 and No. 4 increase the
largest and lowest percentages (38.15% and 9.15%), respectively due to AYC.
Under the medium inflow wind speed u, = 8 m/s, the total output powers of
the WTs arranged as Sequences No. 2 and No. 6 increase the largest and

lowest percentages (28.90% and 0.09%), respectively due to AYC. Under the
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high inflow wind speed u, = 10 m/s, the total output powers of the WTs
arranged as Sequence No. 1 and No. 6 increase the largest and lowest
percentage (17.43% and 0.10%) due to AYC, respectively. This demonstrates
that AYC achieves maximum effectiveness for the smallest WT in the front
row, while showing negligible impact for the largest WT in equivalent
positions as for large-scale WTs, broader wake propagation limits the overall
optimization benefits from yaw adjustments. Secondly, AYC demonstrates
superior power enhancement efficacy at below-rated wind speeds (uy <
8 m/s), where wake effects are more persistent and energy recovery is
critically needed. The lower the inflow wind speed is, the more pronounced
the power gains from AYC. Thirdly, under the three inflow wind conditions,
the optimal yaw angles of the WTs in the last row are all zero. Since the wake
generated from the WT in the last row does not impact downstream WTs, there
is no benefit in sacrificing its power output via yaw misalignment to enhance
the overall WT string’s efficiency. For an individual WT, the application of the
maximum power point tracking (MPPT) strategy achieves optimal
performance at zero yaw angle, i.e., perfect alignment with the wind direction,
maximizing energy capture efficiency. Lastly, under the high inflow wind
speed u, = 10 m/s, some of the optimal yaw angles of the front and the
intermediate WTs are zero. This can be explained as follows. On one hand,
under high wind speed conditions, wake recovery accelerates. Wake recovery

velocity increases by 20-30% at above-rated wind speeds, significantly
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shortening the downstream stabilization distance. On the other hand,
according to Fig. 4, under high inflow wind speeds, the WT thrust coefficient
asymptotically approaches a stable plateau, resulting in significantly reduced
sensitivity of wake steering effectiveness to yaw angle variations.
2) Optimal AYC of the Hybrid OWF

The wind rose of the Guishan OWF is shown in Fig. 10 where the met mast
height is z.,r =100 m. According to Fig. 10, the three typical wind
directions (6 = W, ESE, NNE) which represent the rare, medium and dominant
wind directions and their corresponding wind speeds (ug = 6,8,10 m/s)
which represent the low, medium and high wind speeds of this OWF are
chosen as the three typical inflow wind conditions in this study and are

demonstrated in Fig. 11.
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Fig. 10. Wind rose (1/Jan/2024-31/Dec/2024) [46].



453

454

455

456

457

458

459

N

Fig. 11. Three typical wind conditions of the Guishan OWF.

The wake contours of the Guishan OWF without AYC under the three
typical wind speeds and directions are shown in Fig. 12. In this scenario, each
WT utilizes passive yaw control strategy, ensuring self-alignment with the
wind direction. As a result, the yaw angle remains zero for each WT under all

inflow wind conditions.
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Fig. 12. Wake contours of the Guishan OWF without AYC under typical wind

speeds and wind directions.

The optimal WT yaw angles and wake contours of the Guishan OWF under

the three typical wind speeds and directions are shown in Fig. 13. The

corresponding output powers and CFs of the Guishan OWF under the three

typical inflow wind conditions are given in Table 4.

Table 4

Output powers and CFs of the Guishan OWF before and after AYC

Wind condition Before AYC After AYC Power increment
Powr MW) | CFowr | Powr MW) | CFowr percentage
Case 1 23.30 11.47% 29.11 14.33% 24.89%
Case 2 83.50 41.10% 85.28 41.98% 2.13%
Case 3 156.11 76.84% 159.97 78.74% 2.47%
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486  Fig. 13. Optimal WT wake contours and yaw angles of the Guishan OWF

487  under typical wind speeds and wind directions.
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Firstly, in the dominant wind direction and under the high wind speed (Case
3: 8 = NNE,u, =10 m/s), the hybrid OWF can produce the maximum
power after AYC which is an evident outcome. Within operational limits,
higher wind speed enables WTs to capture more wind energy and generate

ba

greater electricity which follows the “P,,; o ug” relationship until reaching the
rated power. However, the power increment percentage reaches the maximum
(24.89%) after AYC in the rare wind direction and under the low wind speed
(Case 1: 8 =W,u, =6m/s) which means AYC demonstrates more
pronounced effects in the non-dominant wind directions. This can be explained
by taking two aspects into account. On one hand, there exists marginal benefit
differences in wake management among different wind directions. The OWF
layout is aerodynamically optimized in the dominant wind directions via
staggered configurations where wake effects are already mitigated, leaving
marginal (1-2%) energy capture improvement potential through AYC. In
contrast, for the non-dominant wind directions where the OWF layout is
sub-optimal, wake steering via AYC can mitigate 10-20% of the otherwise
occurring downstream power deficits. On the other hand, in the non-dominant
wind directions, the power response to yaw misalignment is more gradual due
to pre-reduced aerodynamic efficiency, while wake deflection exhibits

heightened sensitivity, i.e., each degree of yaw generates proportionally

greater wake redirection.
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Secondly, as shown clearly in Fig. 13 that the optimal yaw angles of the
WTs in the last row remain zero under the three typical inflow wind directions.
This finding is consistent with the previous test cases of three WTs aligned in a
row. Three key factors contributed to this outcome. First, the WTs in the last
row at the far downstream end of the OWF experience no wake interference on
subsequent WTs, eliminating the need for AYC. Aligning perfectly with the
incoming wind direction (y = 0°) can maximize their own energy capture
efficiency. Maintaining zero yaw angle for the last row of WTs reduces lateral
wake interference in downstream WT-free areas, preventing unnecessary
energy losses. Applying dynamic AYC across all WTs in the whole OWF
might induce system oscillations or instability. Fixing the last-row WTs at zero
yaw angle can reduce control dimensionality and enhance system robustness.

Finally, Cases 1 and 3 demonstrate that the front-row WTs, which are the
first to encounter incoming wind flows exhibit significantly larger optimal yaw
angles in smaller models (MySE3.0-112) compared to their utility-scale
counterparts (MySE6.45-180 and D7000-186) as shown in Figs. 12 (a)(c). This
is in accordance with the conclusion obtained from the previous test cases of
three WTs aligned in a row which further validates that the application of AYC
for small WTs is more cost-effective than that for the large WTs in a hybrid
OWF.

The convergence performance of the QGA when solving the hybrid OWF

AYC optimization problems in Fig. 13 is compared with the GA, the particle
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swarm optimization (PSO), the differential evolution (DE) [41], and the
teaching learning-based optimization (TLBO) [22] algorithms. The
population size nPop and the maximum iteration number MaxIt are set
200 and 300 respectively for all the algorithms. In the GA and DE algorithms,
the crossover rate is set p. = 0.75 and the mutation probability is set p,, =
i which is the same as those in the QGA. In the PSO algorithm, the personal
learning coefficient is set ¢; = 1.5 and the global learning coefficient is set
c, = 2.0. The best fitness evaluations in each iteration for solving the hybrid
OWF AYC model after 20 times of executing these five algorithms are
shown and compared in Fig. 14 and Table 5. The computations are carried
out on a Windows 10 laptop with 8.0 GB RAM and a 2.40 GHz Intel

Dual-Core processor and the simulation software is MATLAB 2024b.
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Fig. 14. Convergence curves of the QGA, GA, PSO, DE and TLBO algorithms

in solving the hybrid OWF AYC optimization problems in Fig. 13.

Table 5

Comparison of the QGA, GA, PSO, DE and TLBO algorithms in solving the

hybrid OWF AYC optimization problems in Fig. 13.

Wind condition Algorithm Power increment percentage | Running time (min)
QGA +24.89% 17.83
Case 1: B = GA +17.45% 25.78
m ise_' T PSO +17.92% 23.11
o DE +16.98% 20.96
TLBO +21.19% 19.04
QGA +2.13% 20.12
GA -0.479 28.31

Case2: 0 = /o

ESE, 1, = 8 m/s PSO -0.30% 25.98
o DE +0.48% 23.66
TLBO +1.99% 21.97
QGA +2.47% 19.30
Case3: 0 = GA -0.88% 27.76
NNE, uy = PSO -1.44% 24.58
10 m/s DE +1.07% 22.61
TLBO +1.71% 20.97

As shown in Fig. 14 the QGA outperforms both the other four algorithms
in terms of producing the best results. By integrating quantum computing
principles, the QGA enhances the efficiency and effectiveness of the
optimization process. Specifically, it leverages quantum operations to address
challenges inherent in classical heuristic methods. One such operation is
reverse quantum annealing, which enables quasi-local or quasi-nonlocal
searches initiated from a classical state. This process utilizes quantum
fluctuations as a novel mutation mechanism, while classical crossover

operations are retained. These quantum enhancements are the primary
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reasons for the QGA’s superior optimization capability. For the real-time
control of OWFs, a fast and efficient optimizer is critical. As wind speed and
direction fluctuate, the AYC system must rapidly solve the optimization
model and transmit updated control parameters to the WTs for yaw angle
adjustment which is a process requiring completion within seconds. The high
efficiency of the QGA is therefore essential for this application.

As shown in Table 5, the QGA achieves the highest OWF power increment
percentage while requiring the shortest running time among all five
algorithms. The TLBO and DE algorithms rank as the second and third
best-performing methods, respectively, while the GA and PSO algorithms
demonstrate comparatively poorer performance. What should be noticed is
that in Cases 2 and 3, the GA and the PSO algorithms even produce results
with negative power increment percentages which means they may stuck in
the local optimal and fail to find the global optimum. This verifies that the
QGA and TLBO are superior optimization tools for hybrid OWF AYC
optimization problems, while GA and PSO prove incompetent.

From the above simulations and existing literature [22]-[42], it can be
concluded that AYC generally leads to an increase in OWF power output.
The three lined-up WTs and the irregular-shaped Guishan OWF tested in this
paper have already validated the effectiveness of the proposed AYC strategy.
For OWFs with other complex layouts, such as square [24][31][39], triangle

[23][25][32], parallelogram [22][26][32][34][35][39], and other irregular
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shapes [24][25][30][31][33][35][36][37][41][42], AYC proves capable of
boosting power generation in both large-scale and multi-scenario cases.
5. Conclusions

This paper proposes an AYC strategy specifically designed for the hybrid
OWF where multiple types of WTs are installed. To achieve the goal of OWF
output power maximization, a 3D yawed wake model is utilized and the QGA
is applied for solving the AYC optimization models. The key findings from
the simulation results of the case study and their implications for engineering
applications can be summarized as follows.

1) The primary objective of AYC is to optimize the overall OWF power
production. For the upstream WTs, active yaw misalignment (e.g., y = +£30°)
can deflect wakes away from critical downstream paths, minimizing impact
on subsequent WTs. For the downstream WTs, priority shifts to maximizing
individual energy capture, as wake steering provides no further benefit.
Especially, no active yaw misalignment should be applied to the WTs in the
last row (y = 0°).

2) AYC is more effective when inflow wind speed is at low level and in
the non-dominant wind direction of an OWF. In the Guishan OWEF, it
produces 24.89% power increment under the wind condition of 8 = W, u, =
6 m/s, much higher than those (2.13% and 2.47%) obtained under the wind
conditions of 6 = ESE,u; =8 m/s and 8 = NNE,u, = 10 m/s. Although

non-prevailing winds occur infrequently (e.g., only 10% of annual operating
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time), they may account for 25-40% of total energy losses in a hybrid OWF.
Under these wind directions, wake overlap is more severe because WT
sub-optimal layout and conventional yaw systems exhibit delayed response.
Therefore, the application of AYC in the non-dominant wind directions of
hybrid OWFs should be prioritized for the technical and economic
considerations.

3) For three WTs with different types in a line, by applying the AYC
strategy to the sequences with the smallest WT being the first, the maximal
power increment percentages 38.15%, 28.90%, and 17.43% can be achieved
for uy =6m/s, 8m/s and 10 m/s, respectively. For a hybrid OWF
mixed-installed with multiple types of WTs, the AYC should be
preferentially applied to the small WTs. By prioritizing AYC of small WTs,
e.g., actively deflecting them at specific angles, the wake can be dispersed or
redirected, thereby mitigating its shading effect on downstream large WTs.
Specifically, in a hybrid OWF, small WTs can act as ‘wake regulators’
dynamically adjusting their yaw to optimize the overall OWF flow field,
while large WTs maintain stable operation to ensure the baseline power
output of the OWF.

4) The QGA proves to be an efficient heuristic algorithm for solving the
hybrid OWF AYC optimization problem. Compared with the GA, PSO, DE
and TLBO algorithms, the QGA can produce the best optimization results by

taking the least running time of 17.83 min, 20.12 min, and 19.30 min for the
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three simulation cases, respectively, while the GA and PSO algorithms are
easier to fall into local optimum. Particularly, in large-scale OWFs with
multiple types and numbers of WTs, the computational burden stems
primarily from the iterative calculation of wake deficits required to explore
potential yaw angles. These significantly increased computational demands
necessitate the development and utilization of highly efficient optimization
algorithms capable of rapid convergence and the discovery of superior
solutions.

However, this study still has some limitations. Firstly, the effectiveness of
the proposed AYC strategy is highly related to the layout and shape of the
hybrid OWF. For larger OWFs of complex layouts and installed with more
WTs, the applicability of the proposed method has not been verified.
Secondly, only three typical wind conditions are considered and the real-time
control with smaller timescale wind data have not been tested in this study.
Future research should focus on the development of more advanced AYC
strategies for the hybrid OWF power increasing. The hierarchical control
strategy is an ideal solution for coordinated AYC for the small and large WTs
which means that the large ones employ the conventional yaw control, e.g.,
based on average wind direction, while the small ones utilize advanced
control algorithms, e.g., the model predictive control (MPC) for dynamic
optimization. The synergy between these approaches may enhance the overall

efficiency of the hybrid OWF.
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