

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/183630/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Tao, Siyu, Yang, Jisheng, Jiang, Fuqing, Yang, Hongxing, Zheng, Gang, Feijóo-Lorenzo, Andrés E. and He, Ruiyang 2026. Active yaw control strategy for a hybrid offshore wind farm under typical wind conditions. *Renewable Energy* 259, 125122. 10.1016/j.renene.2025.125122

Publishers page: <https://doi.org/10.1016/j.renene.2025.125122>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 Active yaw control strategy for a hybrid offshore

2 wind farm under typical wind conditions

3 Siyu Tao^{1,2*}, Fuqing Jiang¹, Jisheng Yang¹, Hongxing Yang^{2*}, Gang Zheng³,
4 Andrés E. Feijóo-Lorenzo⁴, Ruiyang He⁵

5 1. College of Automation Engineering, Nanjing University of Aeronautics and
6 Astronautics, Nanjing, 211106, China.

7 2. Department of Building Environment and Energy Engineering, Hong Kong Polytechnic
8 University, Hong Kong, 999077, China.

9 3. Monash Biomedical Imaging, Monash University, Clayton, Victoria, 3800, Australia.

10 4. Department of Electrical Engineering, University of Vigo, Vigo, 36310, Spain.

11 5. School of Engineering, Cardiff University, Cardiff, CF243AA, U.K.

12 **Corresponding Author:** Siyu Tao (e-mail: taosiyu@nuaa.edu.cn)

13 **Abstract:** This paper proposes an active yaw control strategy for the hybrid
14 offshore wind farms to enhance the offshore wind farm's total power
15 generation. Firstly, a three dimensional yawed wake model is applied for
16 calculating the power output of different types of wind turbines under active
17 yaw control and the whole offshore wind farm. Next, the architecture of the
18 proposed active yaw control system is demonstrated, and an optimization
19 model is formulated. To solve this optimization problem, the quantum genetic
20 algorithm is employed. Simulation results on a simplified layout of three
21 wind turbines in a row and the Guishan offshore wind farm under three
22 typical wind conditions demonstrate that the proposed strategy can effectively
23 mitigate the inner-array wake effect in hybrid offshore wind farms. The
24 results also suggest that applying active yaw control in the non-dominant
25 wind directions and for small wind turbines in a hybrid offshore wind farm
26 should be prioritized which yields the most significant improvements in

27 overall offshore wind farm power output. Additionally, the quantum genetic
 28 algorithm is shown to be an efficient and robust optimization tool for solving
 29 the optimal active yaw control problem in hybrid offshore wind farms.

30 **Keywords:** Mixed installation of wind turbines; hybrid offshore wind farm;
 31 active yaw control; 3D yawed wake model; quantum genetic algorithm;
 32 various wind conditions.

33 **Nomenclature**

34 *Acronyms*

AEP	Annual energy production	MPPT	Maximum power point tracking
AGC	Automatic generation control	NN	Neural network
AI	Artificial intelligence	OWF	Offshore wind farm
AYC	Active yaw control	PSO	Particle swarm optimization
CF	Capacity factor	2D	Two dimensional
DE	Differential evolution	3D	Three dimensional
DEL	Damage equivalent load	QGA	Quantum genetic algorithm
DL	Deep learning	RAM	Random access memory
GA	Genetic algorithm	RL	Reinforcement learning
GNN	Graph neural network	TLBO	Teaching learning-based optimization
ML	Machine learning	WT	Wind turbine
MPC	Model predictive control		

35 *Variables*

c_1	Personal learning coefficient in PSO	U_i	Wind velocity at the position of the i -th WT
c_2	Global learning coefficient in PSO	U_{ji}	Wind velocity at the position of the i -th WT considering only the wake of the j -th WT exists
C_{p0}^k	Power coefficient at zero yaw angle of the k -th type of WT	ΔU	Velocity deficit in the wake
C_t	WT thrust coefficient under AYC	$\Delta U_{ji}(x, y, z)$	Velocity deficit in 3D space at the i -th WT position considering only the wake of the j -th upstream WT exists
C_{t0}	WT thrust coefficient at zero yaw angle	u_0	Inflow wind speed

CF_{OWF}	Capacity factor of a hybrid OWF	$u_{h_0}^k$	Wind speed measured at the hub height of the k -th type of WT
d_0	WT rotor diameter	u_{in}	Cut-in wind speed of the WT
d_0^k	Rotor diameter of the k -th type of WT	u_{out}	Cut-out wind speed of the WT
d_{rt}	Distance between the WT rotor center and the tower center	u_r	Rated wind speed of the WT
h_0	WT hub height	$u_{z_{ref}}$	Wind speed measured at the mast height
h_0^k	Hub height of the k -th type of WT	(x, y)	WT original coordinates
M	Total number of WT types	(x_θ, y_θ)	WT rotated coordinates under inflow wind direction θ
$MaxIt$	Maximum iteration number	Y_{offset}	Span-wise location of the wake center
$nPop$	Population size of the optimization algorithm	z_{ref}	Reference height
N_k	Total number of the k -th type of WTs	α	Wind shear index
p_c	Crossover rate in GA	γ	WT yaw angle
p_m	Mutation rate in QGA and GA	δ	Scale factor in the wake offset model
P_{OWF}	Output power of a hybrid OWF	ζ	Expansion factor in the wake offset model
$P_{wt}^k(u_{h_0}^k, \gamma)$	The output power of the k -th type of WT under yaw condition	η	Cosine exponent related to the decay rate of the power coefficient
$P_{wt,r}^k$	Rated power of the k -th type of WT	θ	Inflow wind direction
r_0	WT rotor radius	κ	Wake growth rate
S_y	Span-wise spacing between WTs	ρ	Air density
U_0	Inflow wind velocity		

37 **1. Introduction**

38 Offshore wind energy has emerged as a pivotal component of global
39 sustainable energy portfolios, with increasing investments in large-scale
40 **offshore wind farms (OWFs)** to meet decarbonization targets. To remain
41 within the climate-critical 1.5°C global warming threshold, terawatt-scale
42 wind capacity must be deployed globally by 2030. Annual offshore wind
43 installations are projected to triple from 10.8 GW in 2023 to over 32 GW by
44 2028 [1].

45 Traditionally, OWFs have adopted homogeneous **wind turbine (WT)**
46 configurations, installing identical WTs to simplify layout design, operation,
47 and maintenance [2]-[7]. However, this approach may limit energy yield and
48 economic efficiency, particularly in sites with varying water depths, wind
49 conditions, and seabed properties. In response, recent research has increasingly
50 explored hybrid OWFs that incorporate multiple types of WTs with different
51 geometric and technical parameters [8]-[21]. Real-world implementations,
52 such as the Borssele III/IV OWF in Netherlands, the Arkona OWF in Germany,
53 and the Guishan OWF in China, have validated its feasibility of such
54 heterogeneous configurations. Emerging wind farm optimization frameworks
55 now systematically address heterogeneous WT configurations taking the
56 selection and mixed-installation of WTs with diverse physical dimensions and
57 various power curves into consideration [8]-[21]. These studies reveal that
58 heterogeneous OWF configuration can yield multiple benefits, including

59 increased total power output [8]-[10][15][20], lower energy costs
60 [9][9][11]-[14][16]-[21], improved efficiency [8] or capacity factor (CF)
61 [8][14][18], and more homogenized fatigue damages [8][17]. It has been noted
62 in [10], when the vertical staggering between upstream and downstream WTs
63 exceeds a critical threshold, strategically lowering downstream WT hub
64 heights induces accelerated wake recovery which can yield enhanced power
65 output that surpasses baseline configurations with identical WT hub height
66 through optimized aerodynamic decoupling. Typically, the optimization
67 applying larger WTs usually results in higher CF due to increased hub height
68 and reduced wake effects through wider spacing. However, the feasibility of
69 mixed-installations heavily depends on the WT mean capital costs difference
70 [12].

71 The co-existence of multiple WT types with different geometric dimensions,
72 *i.e.*, rotor diameters and hub heights in an OWF introduces unprecedented
73 challenges in aerodynamic interaction, wake management, and load mitigation
74 [8]. In an OWF, once WT positions are fixed, adjusting the wake distribution
75 through WT control is an effective way to mitigate wake effects and fatigue
76 load and to enhance power generation [22]. To alleviate the adverse effects
77 induced by wake effect on the power reduction in OWFs, the **active yaw**
78 **control (AYC)** strategy is proposed and widely applied [22]-[42]. This strategy
79 intentionally misaligns upstream WTs via rotating their nacelles to steer wakes
80 away from downstream ones, reducing energy losses. Using sensors and

predictive models, optimal yaw angles are calculated in real time to achieve the goal of balancing between power gains from redirected wakes and slight individual WT power losses. By applying the AYC, the kinetic energy extraction ratio of the upstream and downstream WTs can be allocated and the overall efficiency of OWFs can be significantly improved [25]. For instance, Dou investigated the Horns Rev I OWF in Denmark and found that the AYC strategy exhibits superior optimization efficacy in directions experiencing acute wake deficit conditions [26]. In 2022, He developed a multivariate prediction framework employing machine learning-based fatigue loads and power prediction method for the AYC system and found that large yaw angles and high wind speeds can enhance prediction fidelity [27]. In 2023, Dong proposed a reinforcement learning (RL)-based AYC strategy which can enhance the long-term farm-level power production subject to strong wake effects without requiring analytical OWF models [31][31]. In 2024, Wang proposed a cooperative control strategy combined with start/stop control, AYC, and WT position optimization which outperforms using the aforementioned three control strategies separately [33]. A novel analytical model for yawed WTs, considering the effects of yaw angle, turbulence intensity and thrust coefficient was developed to predict the velocity deficit and the wake deflection in [34]. A data-driven model was put forward by Li to provide accurate predictions for the power generation of OWFs with arbitrary WT layouts, yaw angles and inflow wind conditions by encoding the OWF into a

103 fully connected graph and processing through a graph transformer [35]. While
104 this model [35] provides an efficient tool for optimal AYC of WTs, its validity
105 remains unproven in hybrid OWFs with multiple WT types. More recently, Tu
106 proposed a multi-fidelity framework based on the co-Kriging algorithm for
107 predicting OWF power under yaw misalignment, finding that the positive yaw
108 angles can significantly boost output and in a tandem configuration of WTs,
109 the optimal distribution of yaw angles appears a decreasing trend from
110 upstream to downstream [38]. The aforementioned studies demonstrate that
111 integrating artificial intelligence (AI) techniques such as the machine learning
112 (ML) techniques for improved wake modelling and prediction of WT response
113 [27], deep learning (DL) for reduced-order modeling [23][36][42], RL for
114 adaptive control strategies [31][31], neural network (NN) [32], graph neural
115 network (GNN) [35] and surrogate model [36]-[39] for faster computation
116 significantly enhances the efficiency and accuracy of AYC in OWFs and help
117 WTs adapt to complex and dynamic wind conditions [40]. The objectives of
118 the AYC optimization model majorly include the maximization of OWF total
119 power generation [22][24]-[27][30]-[36][38] or OWF annual energy
120 production (AEP) [7][37], the minimization of OWF power tracking error [23],
121 the minimization of WT average fatigue load coefficient [24] or the WT
122 damage equivalent load (DEL) [28][28] and to track the Automatic Generation
123 Control (AGC) power signal [39]. However, current AYC methods are
124 primarily designed for homogeneous OWFs and do not account for

125 heterogeneous WT configurations [22]-[41]. This oversight can lead to
126 sub-optimal yaw coordination and reduced overall OWF efficiency. Yaw angle
127 optimization realized by AYC is vital in hybrid OWFs utilizing multiple types
128 of WTs due to the compounded challenges of heterogeneous wake interactions
129 and varying operational characteristics. Current methodologies exhibit
130 significant limitations in resolving this problem due to the following critical
131 factors. Firstly, existing techniques primarily employ two-dimensional (2D)
132 yawed wake models [29] to calculate wake losses which can achieve sufficient
133 accuracy for uniform OWFs. However, in hybrid OWFs, the coexistence of
134 multiple WT types introduces significant variability in power curves, rotor
135 diameters, and thrust coefficients. This heterogeneity results in asymmetric
136 wake interactions, where larger upstream WTs can substantially diminish the
137 energy yield of smaller downstream WTs. Although, conventional 2D wake
138 models [29] can provide sufficient accuracy for uniform OWFs, they cannot
139 adequately characterize vertical wake losses in hybrid OWFs, making them
140 inapplicable for AYC optimization. Secondly, current investigations of AYC
141 in OWFs typically examine system performance under simplified wind
142 conditions, *i.e.*, either constant wind speed or unidirectional inflow conditions.
143 The simplified wind condition analysis is only viable for uniform OWF with
144 regular shapes and symmetrical layouts as it has minor effect on AYC
145 optimization results. However, for hybrid OWFs mixed-installed with multiple
146 types of WTs, it is highly possible that the OWFs have irregular shapes and

147 asymmetrical layouts. Under this circumstance, wind comes from different
148 directions with different speeds will have significant impacts on the AYC
149 optimization results. Although there are are infinite combinations of wind
150 speed and direction, at least the typical wind conditions analysis should be
151 taken into account for the AYC optimization of the hybrid OWF.

152 Uncoordinated AYC causes sub-optimal wake steering, resulting in
153 significant energy losses and accelerated fatigue damage, particularly for less
154 robust WTs. To address these challenges, strategic yaw angle optimization
155 dynamically direct wakes away from high-sensitivity WTs and balance total
156 OWF output against component stress. Proper coordination unlocks 1-5%
157 additional AEP for the OWF and extends WTs' lifespan-thereby enhancing
158 project economics. Therefore, novel AYC strategies and algorithms are
159 required for handling heterogeneous OWF while maintaining wake
160 management benefits. Notably, there remains a significant absence in
161 published articles addressing wake steering AYC strategies for hybrid OWFs
162 with mixed-WT installations. The lack of theoretical models and validated
163 control algorithms for the hybrid OWFs presents both a critical research
164 challenge and an opportunity for innovation in OWF control optimization
165 which are also the major contributions of this study. To fill this gap, this paper
166 proposes a novel AYC strategy for the hybrid OWF for increasing power
167 generation. The main contribution and novelty of this paper can be
168 summarized as follows. Firstly, a three dimensional (3D) yawed wake model is

169 used to estimate wake deficit considering WT size difference. Secondly, the
170 QGA is used to solve the proposed hybrid OWF AYC optimization model.
171 Thirdly, the effectiveness of the proposed AYC strategy for different types of
172 WTs arranged in a straight line and in a real-world hybrid OWF is tested under
173 typical inflow wind conditions.

174 The rest of this article is arranged as follows. The 3D yawed wake model
175 and multiple wake synthesis method for the hybrid OWF AYC model are
176 introduced and validated in Section 2. The optimization model and solution
177 algorithm for the hybrid OWF under different wind conditions are proposed in
178 Section 3. Case studies are carried out in Section 4, followed by Section 5, the
179 conclusions.

180 **2. Hybrid OWF AYC model**

181 *2.1. The 3D yawed wake model*

182 In hybrid OWFs, WTs with various hub heights and rotor diameters are
183 installed and therefore the vertical wind speed variations must be explicitly
184 considered when estimating wake loss. To address this, the 3D yawed wake
185 model proposed by Dou [26] is applied in this study, which can be described
186 by (1). This model has taken wind shear into account and has been
187 experimentally validated and therefore is suitable for the AYC modeling in
188 the hybrid OWF. This model incorporates the effect of wind shear and has
189 been experimentally validated, making it well-suitable for the AYC modeling
190 in hybrid OWFs.

191
$$\frac{\Delta U}{U_0} = \left(1 - \sqrt{1 - \frac{C_t \cos \gamma}{8\sigma_{yaw}\sigma_z}}\right) \exp \left[-\frac{1}{2\sigma_{yaw}^2} \left(\frac{y - Y_{offset_z}}{d_0 \cos \gamma} \right)^2 - \frac{1}{2\sigma_z^2} \left(\frac{z - h_0}{d_0} \right)^2 \right] \quad (1)$$

192 where

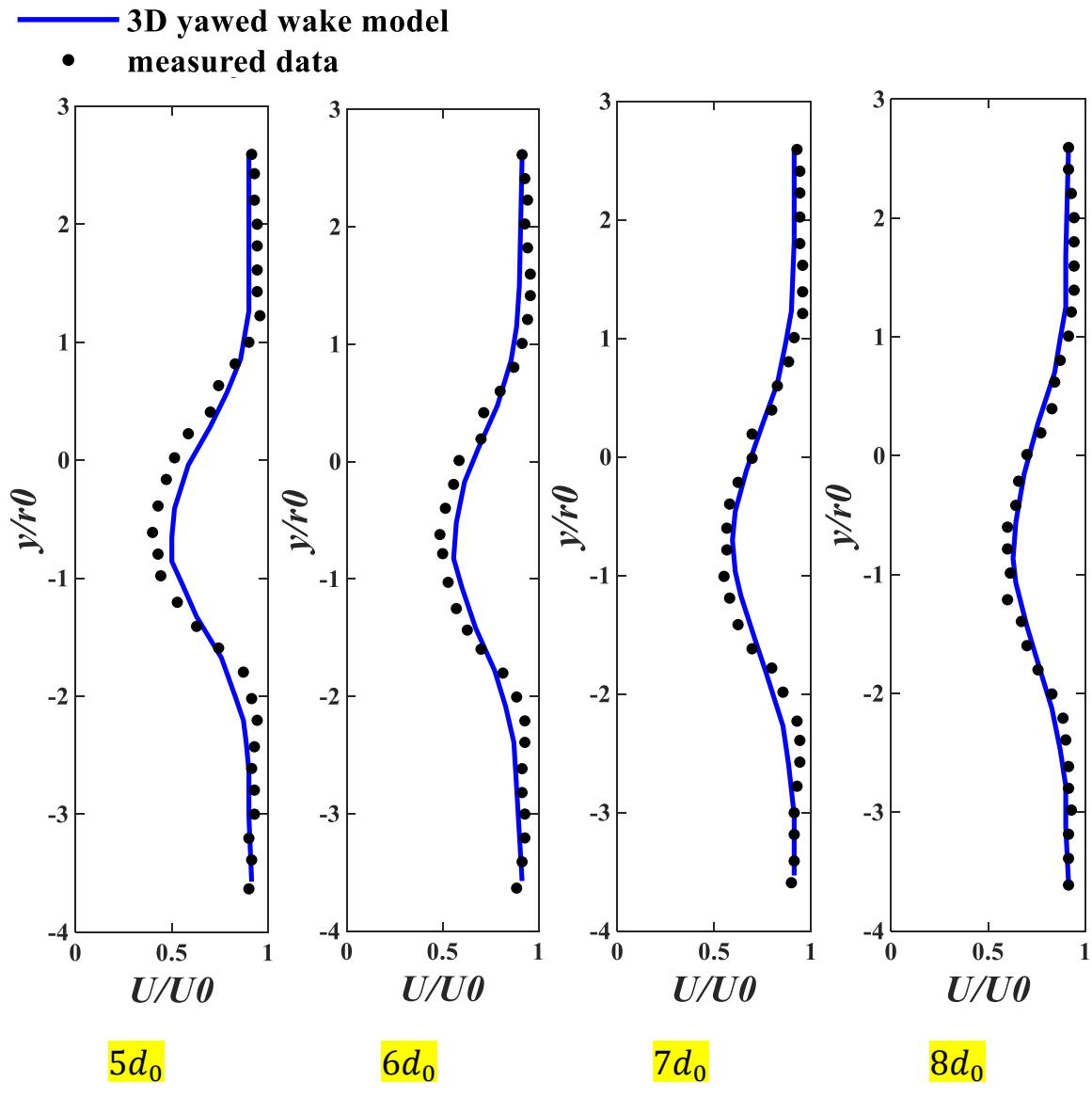
193
$$\begin{cases} \sigma_{yaw} = \kappa x / (d_0 \cos \gamma) + \sqrt{\beta} / 5 \\ \sigma_z = \kappa x / d_0 + \sqrt{\beta} / 5 \\ \beta = (1 + \sqrt{1 - C_t \cos \gamma}) / (2\sqrt{1 - C_t \cos \gamma}) \\ Y_{offset_z} = (Y_{offset} - d_{rt} \sin \gamma) \exp \left[-\frac{1}{2\sigma_z^2} \left(\frac{z - h_0}{d_0} \right)^2 \right] + d_{rt} \\ Y_{offset} / d_0 = \delta (C_{t0} \sin \gamma)^\zeta \cos^{2\zeta} \gamma \sqrt{x/d_0} + d_{rt} \sin \gamma / d_0 \\ \delta = \delta_0 \cdot C_{t0} \end{cases}$$

194 where ΔU is the velocity deficit in the wake, U_0 is the incoming wind
 195 velocity, C_t is the WT thrust coefficient under AYC, $C_t = C_{t0} \cdot \cos^2 \gamma$, C_{t0}
 196 is the WT thrust coefficient at zero yaw angle, γ is the WT yaw angle, κ is
 197 the wake growth rate, d_{rt} is the distance between the WT rotor center and
 198 the tower center, d_0 and h_0 are the WT rotor diameter and hub height,
 199 respectively, δ and ζ are the scale and expansion factors in the wake offset
 200 model, $\zeta = 0.75$, δ_0 is an empirical parameter, $\delta_0 = 0.607$, β is a
 201 parameter of the Gaussian wake model, Y_{offset} is the span-wise location of
 202 the wake center.

203 **2.2. Validation of the 3D yawed wake model**

204 The accuracy of the 3D yawed wake model has been validated in the
 205 horizontal and vertical planes by comparing with the wind tunnel measured
 206 data [26] as shown in Figs. 1 and 2. It can be seen that the 3D yawed wake
 207 model agrees well with the experimental measurements especially in the far

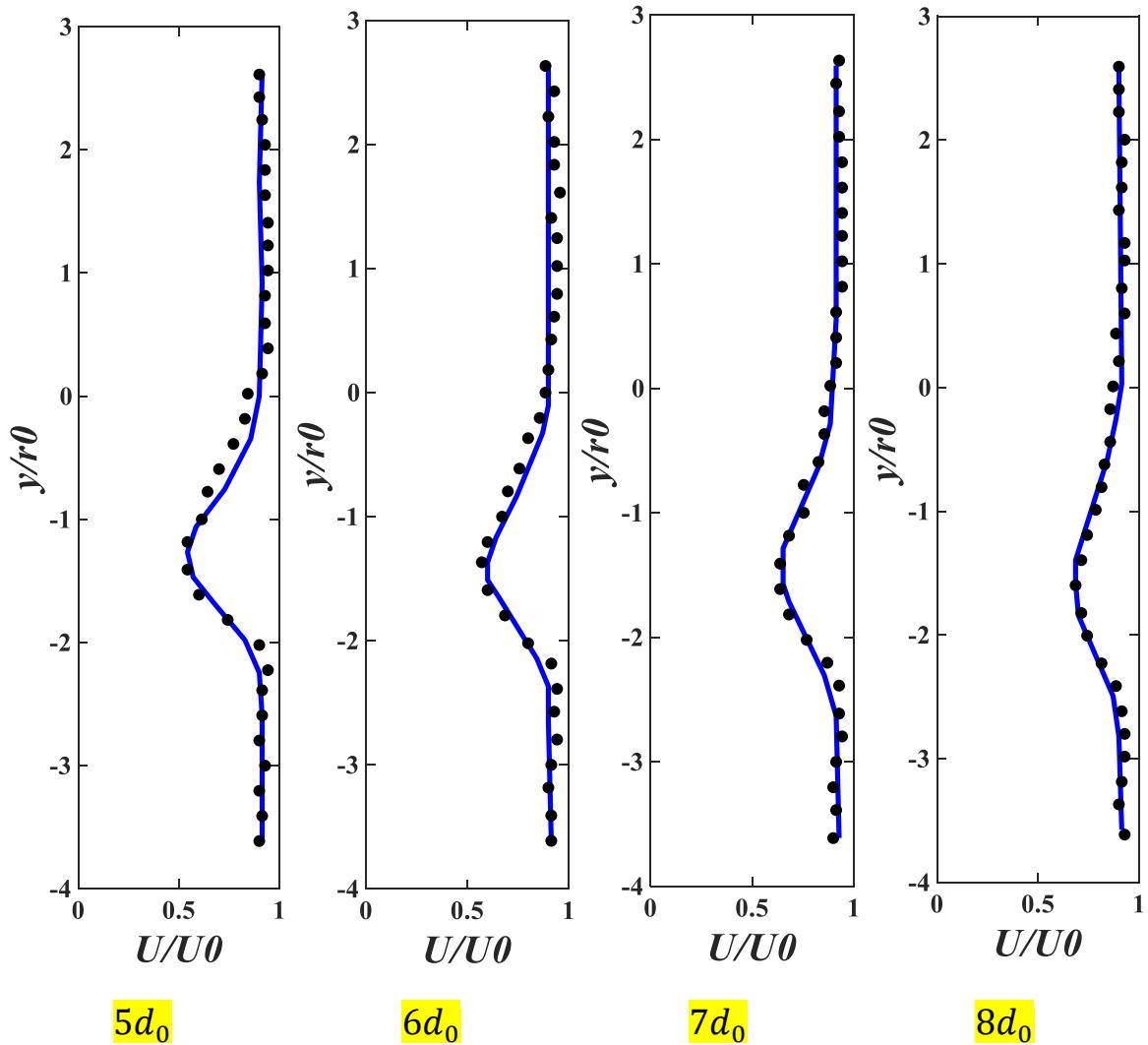
208 wake region and it performs better under large yaw angles. As shown in Fig. 2,
 209 the wake shape in the wind tunnel experiments is not symmetrical about the
 210 hub height plane due to the interaction of the wake rotation with the tower
 211 shadow or ground.



212

213

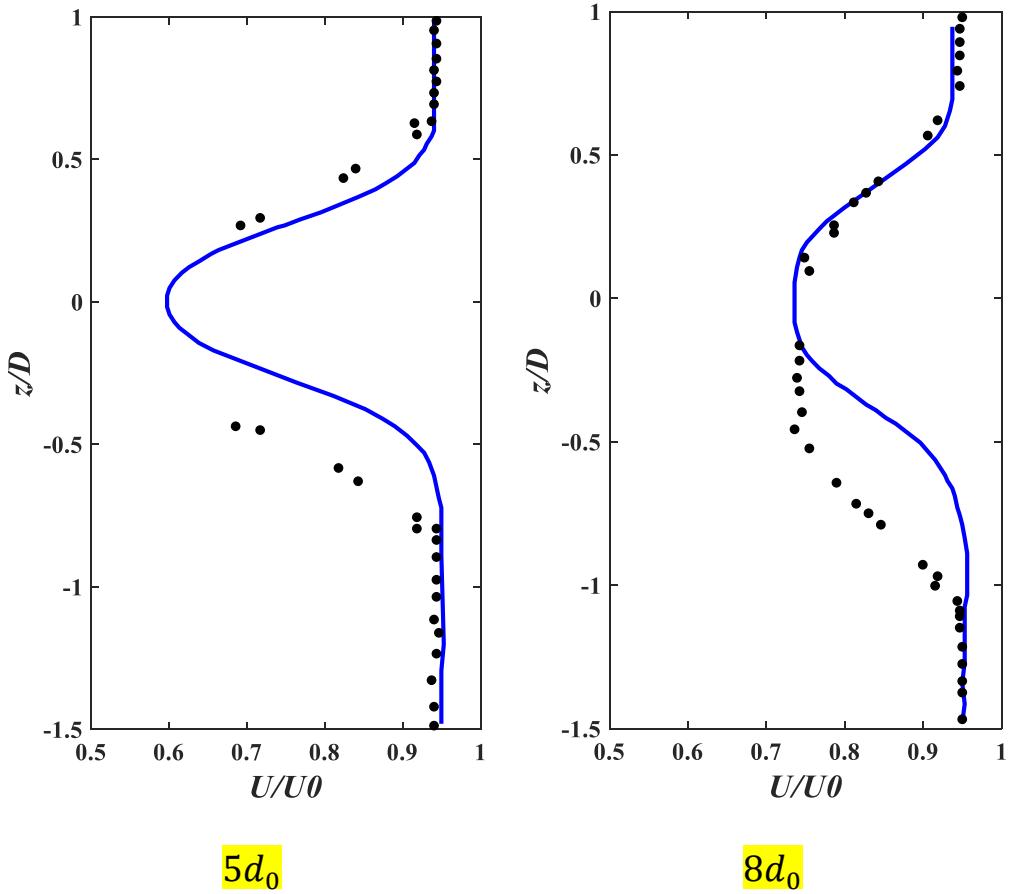
3D yawed wake model
 • **measured data**



(b) $\gamma = 32^\circ$

Fig. 1. Comparison of the 3D yawed wake model predicted value and wind tunnel measured data [26] in horizontal plane.

— 3D yawed wake model
 • measured data



222 **Fig. 2.** Comparison of the 3D yawed wake model predicted value and wind
 223 tunnel measured data [26] in vertical plane.

224 **2.3. Multiple wake synthesis method**

225 For any inflow wind direction θ , the positional relationships between any
 226 upstream and downstream WT pairs are determined by rotating their original
 227 coordinates (x, y) to (x_θ, y_θ) , by multiplying the transformation matrix in (2)
 228 [27].

$$\begin{bmatrix} x_\theta \\ y_\theta \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad (2)$$

230 A downstream WT in the OWF is expected to be affected by the wakes of
 231 multiple upstream WTs. In this study, a linear superposition of the square of
 232 the velocity deficits is applied to synthesize the wakes generated by multiple

233 upstream WTs, as given by (3) [26].

234

$$(U_0 - U_i)^2 = \sum_j (U_0 - U_{ji})^2 \quad (3)$$

235 where U_{ji} denotes the wind velocity at the position of the i -th WT
236 considering that only the wake of the j -th WT exists, U_i represents the wind
237 velocity at the position of the i -th WT.

238 The average stream-wise wake velocity at the position of the downstream
239 WT behind yawed upstream WTs can be calculated by (4) [26].

240

$$u_{ji}(x) = u_0 - \int_{-a}^a \int_{-b+S_y}^{b+S_y} \Delta U_{ji}(x, y, z) dy dz \quad (4)$$

241 where $a = \sqrt{(d_0/2)^2 - [(y - S_y)/\cos \gamma]^2}$, $b = d_0 \cos \gamma$, $\Delta U_{ji}(x, y, z)$ is
242 the velocity deficit in 3D space at the i -th WT position considering only the
243 wake of the j -th upstream WT exists, S_y is the span-wise spacing between
244 WTs.

245 **2.4. WT and OWF output power calculation**

246 Taking wind shear into consideration, before calculating the WT output
247 power, the wind speed is firstly converted from the reference height z_{ref} to
248 its hub height h_0^k by (5).

249

$$u_{h_0^k} = u_{z_{ref}} \left(\frac{h_0^k}{z_{ref}} \right)^\alpha \quad (5)$$

250 where $u_{z_{ref}}$ and $u_{h_0^k}$ are the wind speeds measured at the mast height and the
251 hub height of the k -th type of WT, respectively, α is the wind shear index
252 whose value is 0.1 in this study.

253 Suppose that there are M types of WTs installed in the hybrid OWF. The

254 output power of the k -th type of WT under yaw condition, $P_{wt}^k(u_{h_0^k}, \gamma)$ can
 255 be calculated by (6) [27].

256
$$P_{wt}^k(u_{h_0^k}, \gamma) = \frac{1}{4} \rho \pi (d_0^k)^2 C_{p0}^k u_{h_0^k}^3 (\cos \gamma)^\eta \quad (6)$$

257 where ρ is the air density, d_0^k is the rotor diameter of the k -th type of WT,
 258 C_{p0}^k is the power coefficient at zero yaw angle of the k -th type of WT and η
 259 is the cosine exponent related to the decay rate of the power coefficient which
 260 is 1.88 [27] in this study.

261 Suppose the total number of the k -th type of WTs is N_k , the output power
 262 of a hybrid OWF installed with M types of WTs under AYC, P_{OWF} can be
 263 obtained by summing up the output power of each WT, under their inflow
 264 wind speed $u_{h_0^k i}$ and yaw angle γ_i as expressed by (7).

265
$$P_{OWF} = \sum_{k=1}^M \sum_{i=1}^{N_k} P_{wt}^k(u_{h_0^k i}, \gamma_i) \quad (7)$$

266 The CF of a wind farm is a measure of its actual energy output over a given
 267 period compared to its maximum possible output if it could be operated at full
 268 capacity continuously. The CF of a hybrid OWF, CF_{OWF} is defined by (8).

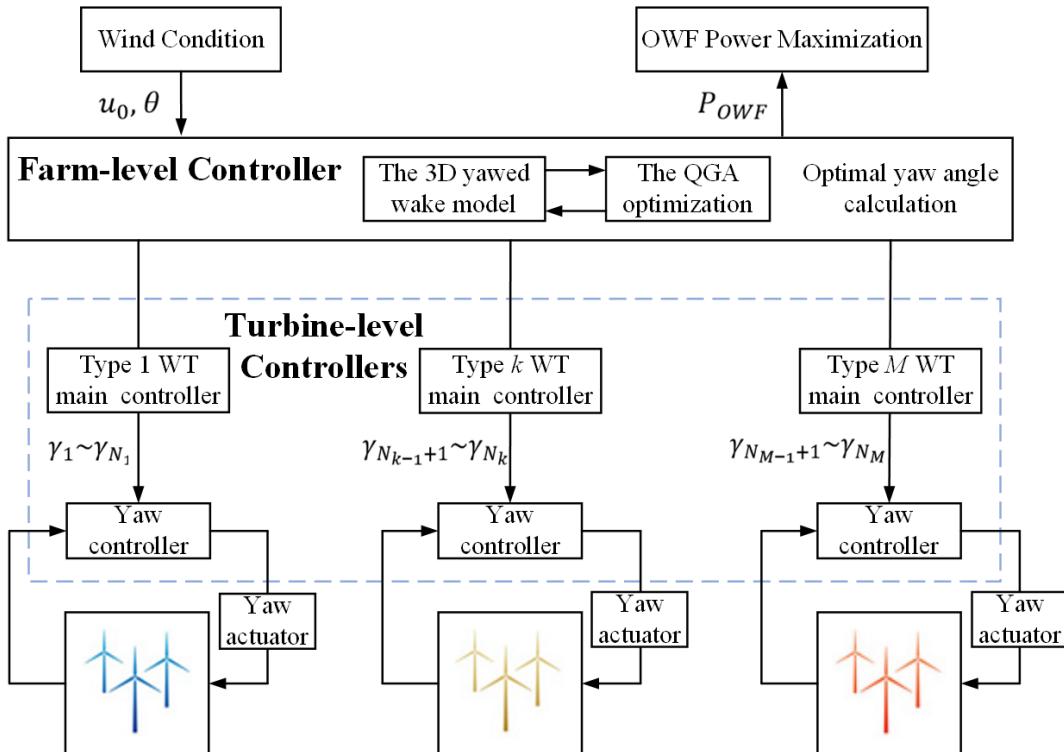
269
$$CF_{OWF} = \frac{P_{OWF}}{\sum_k^M N_k \cdot P_{wt,r}^k} \times 100\% \quad (8)$$

270 where the denominator is the rated capacity of the OWF, and $P_{wt,r}^k$ is the rated
 271 power of the k -th type of WT.

272 **2.5. The hybrid OWF AYC system**

273 The block diagram of the hybrid OWF AYC system is shown in Fig. 3.
 274 This control system operates as follows. Firstly, at each time interval of the
 275 control horizon, the inflow wind speed u_0 and wind direction θ are

276 measured and fed into the farm-level controller. Based on these inputs, the
 277 controller computes the optimal yaw angle for each WT in the OWF. This
 278 optimization is carried out using the 3D yawed wake model and is solved by
 279 the quantum genetic algorithm (QGA) [43].



280 **Fig. 3.** Block diagram of the hybrid OWF AYC system.

281 The central controller determines the optimal yaw angle for each WT and
 282 transmits the corresponding command signals to the turbine-level controllers.
 283 These signals are then distributed to the main controllers of the different
 284 types of WTs. Each WT's yaw controller interprets the received command
 285 and directs the yaw actuator to adjust the nacelle orientation accordingly. The
 286 adjustment aligns the WT at a specified deflection angle relative to the
 287 incoming wind direction and maintains this position for optimal energy
 288 capture.

290 **3. Optimization model and solution algorithm**

291 *3.1. Optimization model*

292 Considering a hybrid OWF installed with M types of WTs, denoted as
293 $WT_1, \dots, WT_{N_1}, \dots, WT_{N_k}, \dots, WT_{N_{M-1}}, \dots, WT_{N_M}$, the objective of its AYC is
294 to maximize the total power generation by coordinating the yaw angle of each
295 type of WT. Specifically, when yaw angles exceed 30° , the power loss of a
296 yawed WT cannot be compensated by the power enhancement from
297 downstream WTs [28]. Therefore, in this study, the yaw angle operating
298 range is strictly limited to $\pm 30^\circ$ also to prevent structural overload on the
299 WT nacelle, which can be expressed by (9).

300
$$\gamma^* = \arg \max_{\gamma_i} \sum_k^M \sum_i^{N_k} P_{wt}^k \left(u_{h_0^k i}, \gamma_i \right) \quad (9)$$

301
$$s.t. \quad \gamma_i \in [-30^\circ, +30^\circ] \quad i = 1, 2, \dots, \sum_{k=1}^M N_k$$

302 *3.2. Solution algorithm*

303 The QGA is a meta-heuristic optimization algorithm that integrates the
304 principles of quantum computing with genetic algorithms (GAs). It is designed
305 to enhance the performance of the GAs by leveraging the properties of
306 quantum computation, particularly the superposition state characteristic of
307 quantum bits (qubits). By utilizing qubits, the QGA enables a more efficient
308 parallel search within the solution space. This parallelism significantly
309 improves the algorithm's ability to avoid local optima and accelerates the
310 convergence toward a global optimum. The key components of the QGA as
311 follows: **1) Quantum Encoding:** The QGA employs qubits as fundamental

312 units for information storage. By utilizing the superposition state of qubits, it
313 represents the superposition of multiple states, thereby enabling more efficient
314 parallel search within the solution space; 2) **Quantum Rotation Gate**
315 **Operation:** The QGA applies the quantum rotation gate operation to enhance
316 the breadth and depth of the search, optimizing the evolutionary process of
317 chromosomes; 3) **Quantum Crossover and Mutation Operations:** The QGA
318 utilizes quantum crossover and mutation operations to generate new quantum
319 individuals. This increases the diversity of the search and helps prevent
320 premature convergence to local optima.

321 The key steps of the QGA are summarized as follows.

322 **Step1. Initialization:** Create population of quantum chromosomes.

323 **Step2. Observation:** Generate classical solutions by measuring qubits.

324 **Step3. Evaluation:** Calculate fitness of each solution.

325 **Step4. Update:** Use quantum gates to evolve the population.

326 **Step5. Termination:** Check stopping criteria.

327 The pseudo code of the QGA in Algorithm 1 demonstrates its selection,
328 crossover and mutation subroutines [43].

Algorithm 1 QGA

$H_P \leftarrow \text{problem_Hamiltonian}$

$n \leftarrow \text{number_of_registers}$

$c \leftarrow \text{number_of_qubits_per_register}$

Initialization of the population

repeat

sort registers 1 to n according to H_P

reset registers $n/2$ to n

for $r = 1, 2, \dots, n/2$

pseudo-clone register r to register $n/2 + r$.

end for

for $i = 1, 2, \dots, n/4$

swap the last $c/2$ qubits of register $n/2 + 2i-1$

 with the last $c/2$ qubits of register $n/2 + 2i$.

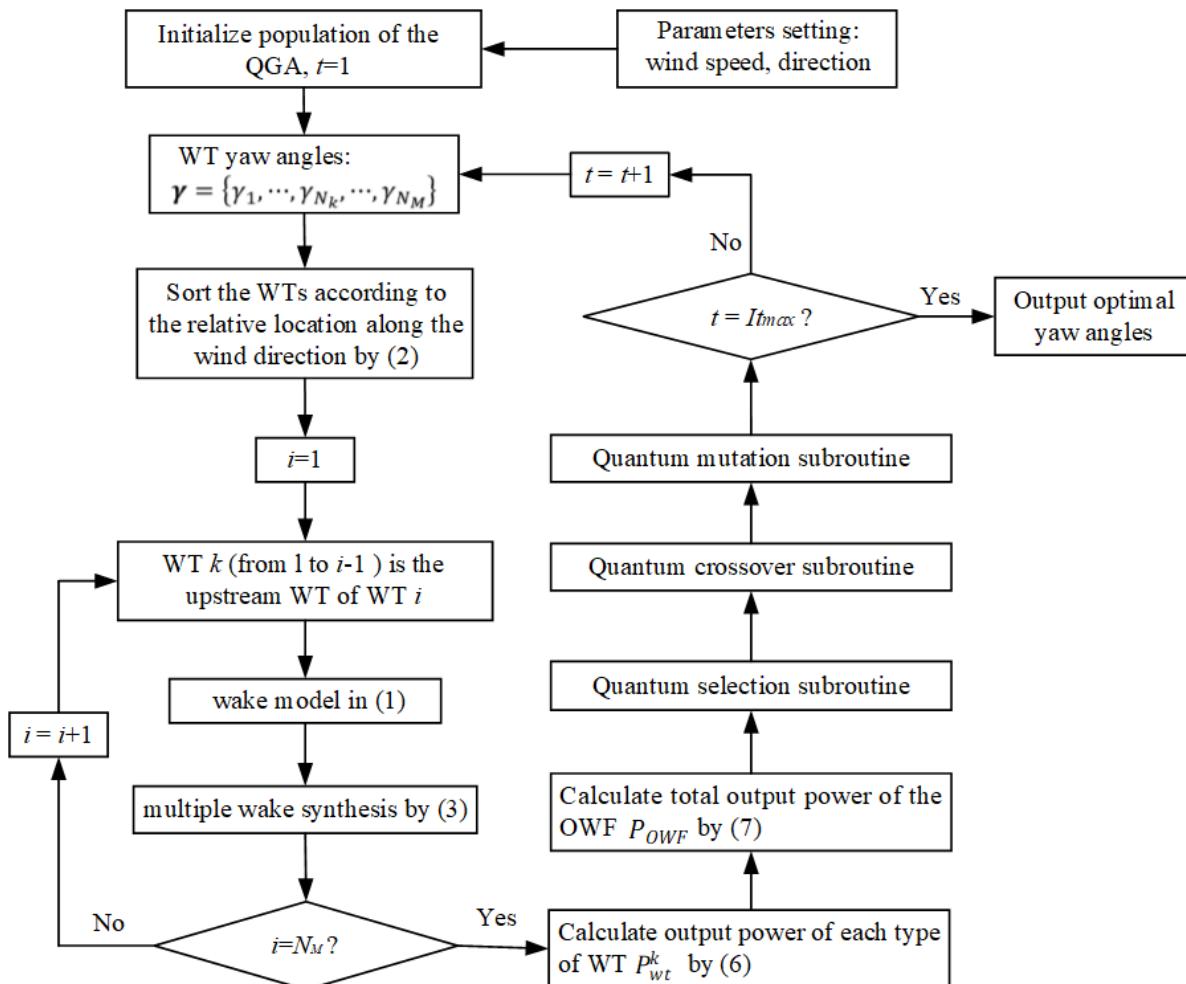
end for

mutate each qubit with probability p_m

until ending criteria is met ∇G generations

329 The solution procedure of the hybrid OWF AYC optimization model by the

330 QGA is shown in Fig. 4.



331

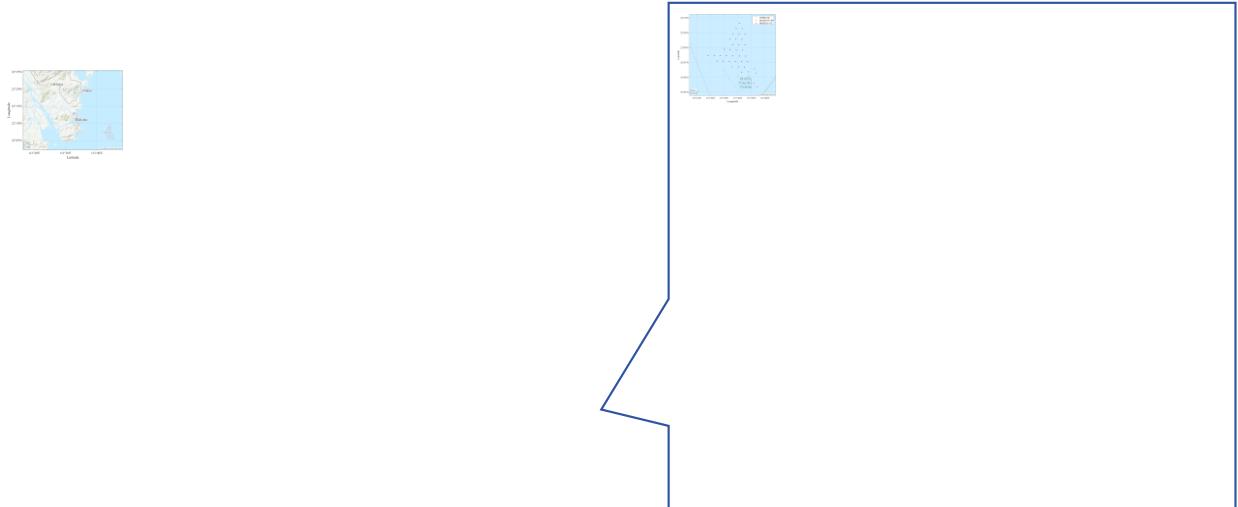
332 **Fig. 4.** Solution procedure of the hybrid OWF AYC optimization model by
 333 the QGA [43].

334 **4. Case study**

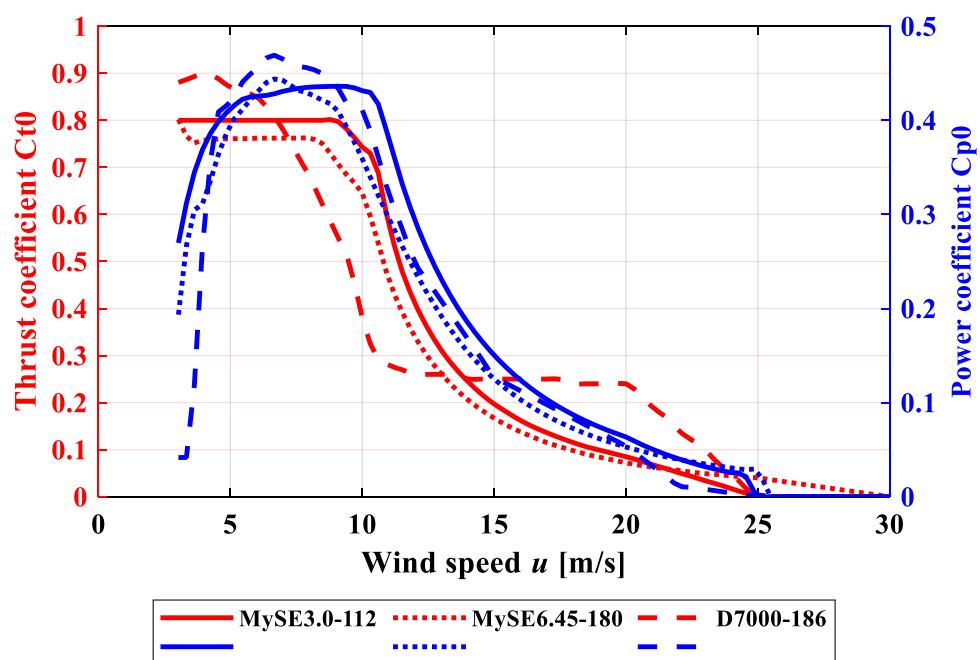
335 **4.1. Test cases**

336 The location and the layout of the Guishan OWF is shown in Fig. 5, which is
 337 located in Zhuhai, Guangdong Province of China (Latitude:
 338 22°05'01"N~22°08'55"N, Longitude: 113°41'21"E~113°45'29"E), at a
 339 distance of about 20 km to the shore. There are thirty-four MySE3.0-112,
 340 seven MySE6.45-180, and eight D7000-186 WTs mixed-installed in this

341 hybrid OWF and its total capacity is 203.15 MW. The WT types and positions
342 in this case study are consistent with real-world engineering designs.



343
344 **Fig. 5.** Profile of the Zhuhai Guishan OWF [44].
345 Three types of WTs [45] are installed in the OWF, each with distinct thrust
346 and power coefficients characteristics, as illustrated in Fig. 6. The geometric
347 and technical parameters of these WTs are summarized in Table 1.



348
349 **Fig. 6.** Thrust and power coefficients curves of the three types of WTs [45].

350 **Table 1**

351 Geometric and technical parameters of the three types of WTs

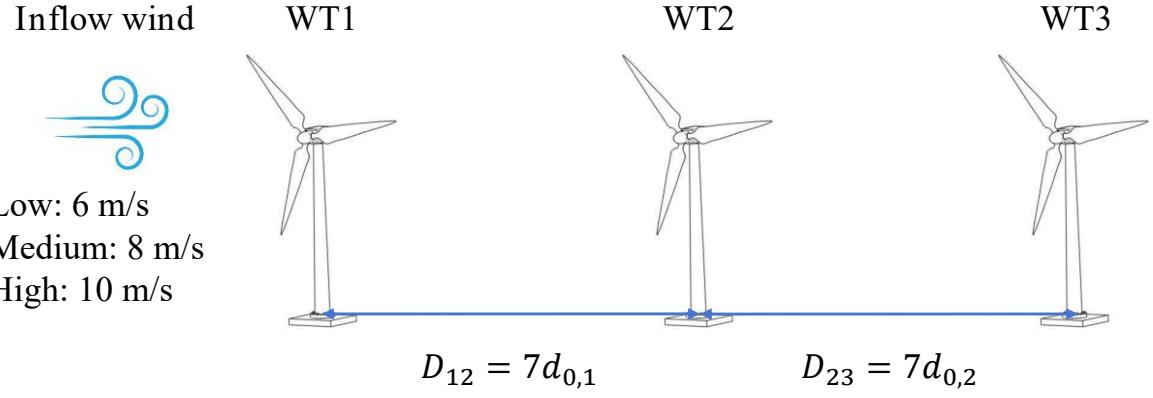
WT type	Rated power $P_{wt,r}$ (MW)	Rotor diameter d_0 (m)	Hub height h_0 (m)	Cut-in wind speed u_{in} (m/s)	Rated wind speed u_r (m/s)	Cut-out wind speed u_{out} (m/s)
MySE3.0-112	3.00	112	90	3.0	11.0	25.0
MySE6.45-180	6.45	180	114	3.0	9.0	25.0
D7000-186	7.00	186	120	3.0	10.5	25.0

352 The parameters setting of the QGA are as follows. The population contains
 353 4 individuals each with a chromosome length of 2 qubits and the population
 354 is therefore encoded as 8 qubits in total. The mutation probability of the
 355 chromosomes is set $p_m = \frac{1}{24}$, which means a mutation occurs in one of the 8
 356 qubits, on average, every third generation.

357 *4.2. Results and discussion*

358 *1) Optimal AYC of multi-types of WTs in a line*

359 As demonstrated in Fig. 7, the test WTs are arranged in a straight line,
 360 ordered by their upwind sequence as WT1, WT2, and WT3. There are totally
 361 six possible combinations of WT sequences as listed in Table 2. The spacing of
 362 each WT pair is seven times of the front WT rotor diameter, *i.e.*, $D_{12} = 7d_{0,1}$
 363 and $D_{23} = 7d_{0,2}$. The inflow wind speed u_0 measured at $z_{ref} = 100$ m is
 364 categorized into three levels: low wind speed at 6 m/s, medium wind speed at 8
 365 m/s, and high wind speed at 10 m/s.



366 **Fig. 7.** WT ranking and spacing according to upwind sequence.

368 **Table 2**

369 WT upwind sequence combinations

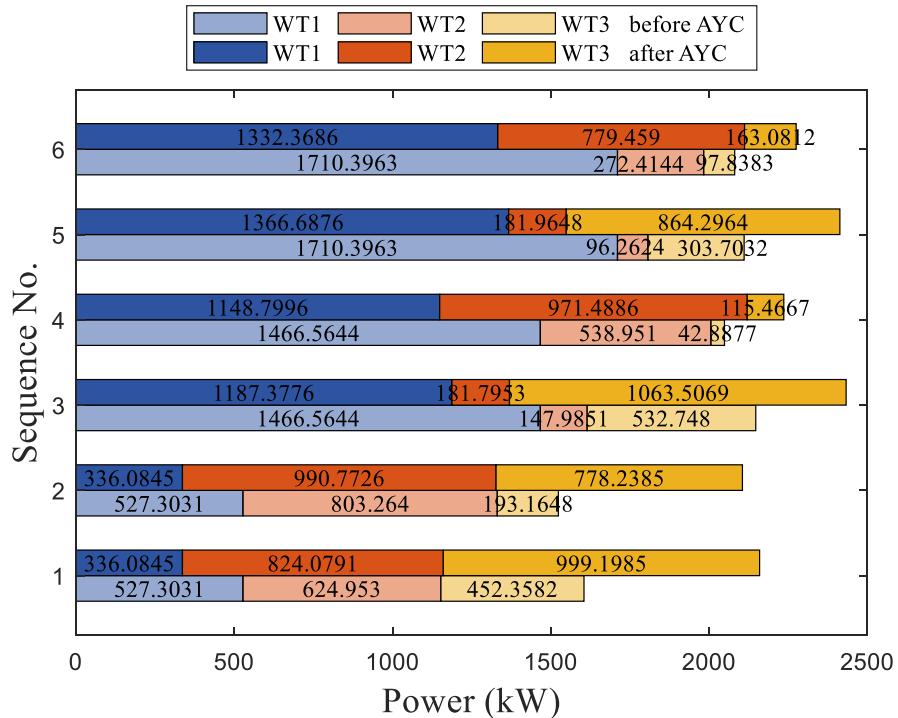
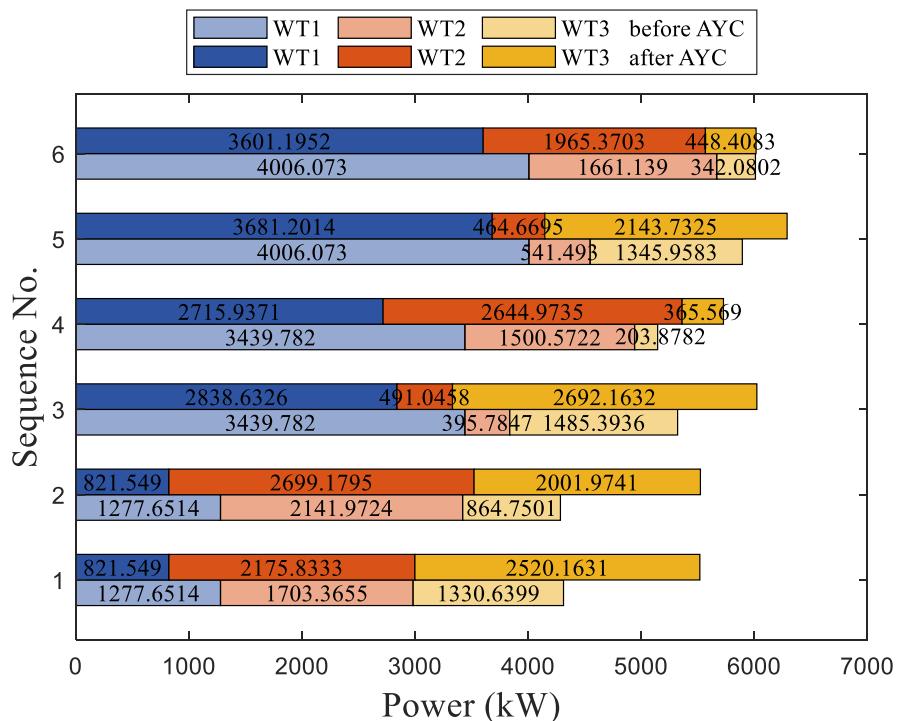
Sequence No.	WT1	WT2	WT3
1	MySE3.0-112	MySE6.45-180	D7000-186
2	MySE3.0-112	D7000-186	MySE6.45-180
3	MySE6.45-180	MySE3.0-112	D7000-186
4	MySE6.45-180	D7000-186	MySE3.0-112
5	D7000-186	MySE3.0-112	MySE6.45-180
6	D7000-186	MySE6.45-180	MySE3.0-112

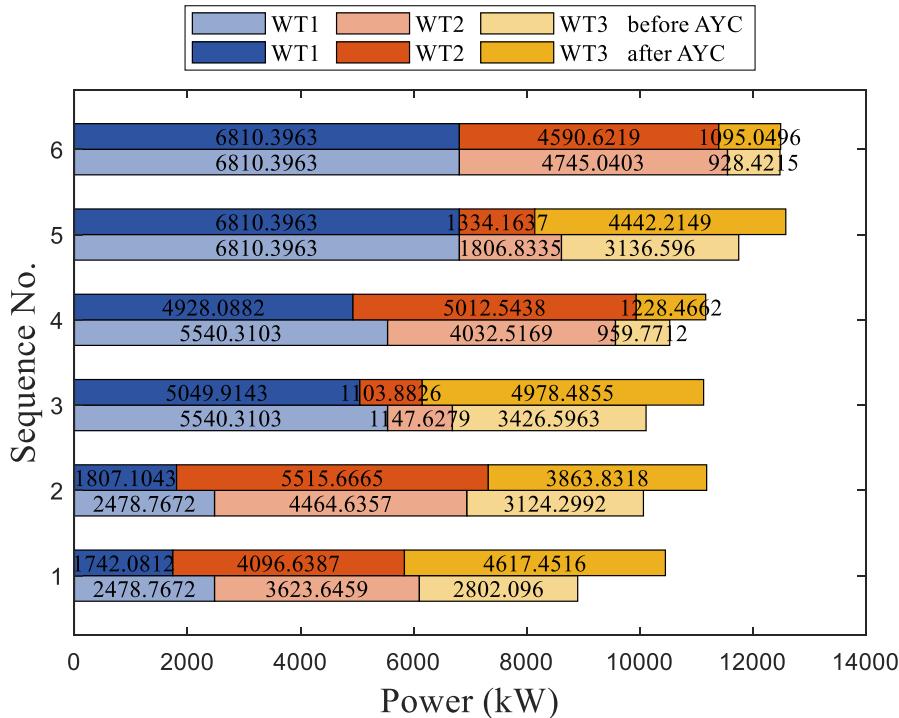
370 The output power of each WT before and after AYC in the six arrangements

371 under the three typical inflow wind speeds are illustrated in Fig. 8. Their
 372 comparative wake contour maps are shown in Fig. 9 and the corresponding
 373 optimal WT yaw angles and power increment percentages brought about by
 374 AYC are given in Table 3.

375 It can be inferred from Fig. 8 that under the inflow wind speed $u_0 = 6 \text{ m/s}$,
 376 the WTs arranged as Sequence No. 3 can produce the maximum total power
 377 ($P_{WT1} + P_{WT2} + P_{WT3} = 2,432.68 \text{ kW}$) after AYC, while under the inflow
 378 wind speeds $u_0 = 8 \text{ m/s}$ and $u_0 = 10 \text{ m/s}$ the WTs arranged as Sequence
 379 No. 5 can produce the maximum total powers ($P_{WT1} + P_{WT2} + P_{WT3} =$

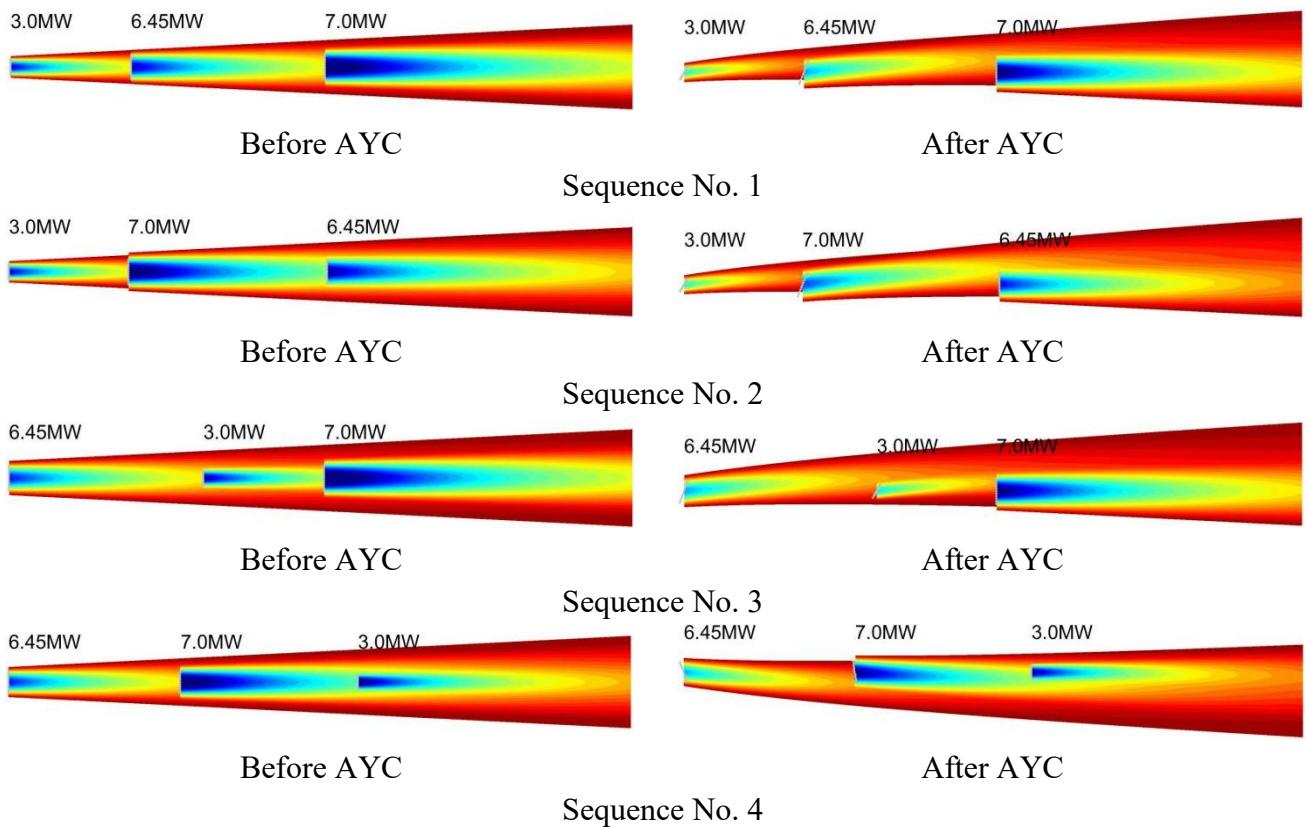
380 6,289.60 kW and $P_{WT1} + P_{WT2} + P_{WT3} = 16,782.367$ kW, respectively)
381 after AYC. It should be noted that WT3 in Sequences 4 and 6 is basically in a
382 newly-powered-on state. This phenomenon can be explained with the help of
383 the wake contours in Fig. 9(a) and the optimal yaw angles in Table 3. Firstly, in
384 Sequences 4 and 6, the WT in the last row is the smallest one, MySE3.0-112,
385 which is prone to be totally merged in the wakes of the larger WTs,
386 MySE6.45-180 and D7000-186 in the front rows. Although, under the AYC
387 strategy, the total power generations of the WT sequences can be improved,
388 this is based on the sacrifice of the power production of the smallest WT in the
389 last row. As larger WTs have stronger abilities to capture more wind energy,
390 the optimal yaw angles of the WTs in the medium row are not very large ($+8.3^\circ$
391 and -7.1°) in Sequences 4 and 6 to give their priority to produce more power.
392 Secondly, the inflow wind speed in this case is relatively low ($u_0 = 6$ m/s)
393 which is much lower than the rated power of MySE3.0-112 WT ($u_r =$
394 11.0 m/s). Due to the unavoidable wake effects generated by the two large
395 WTs in the front, the inflow wind speed of the WT in the last row will be
396 decreased dramatically to be close to its cut-in wind speed ($u_{in} = 3.0$ m/s).

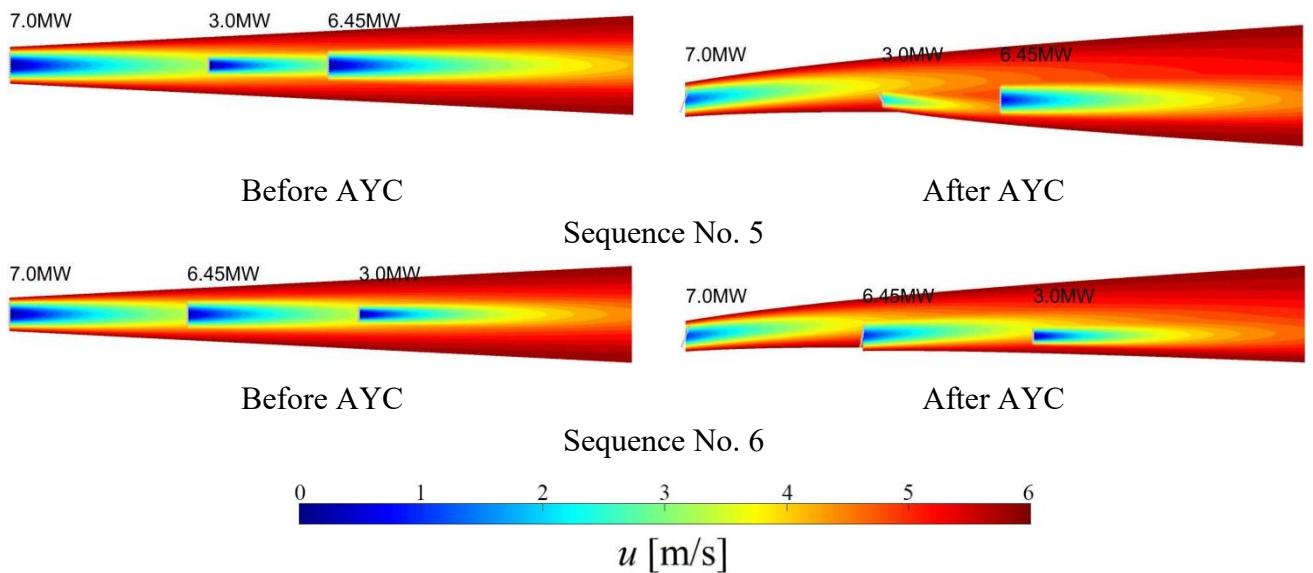
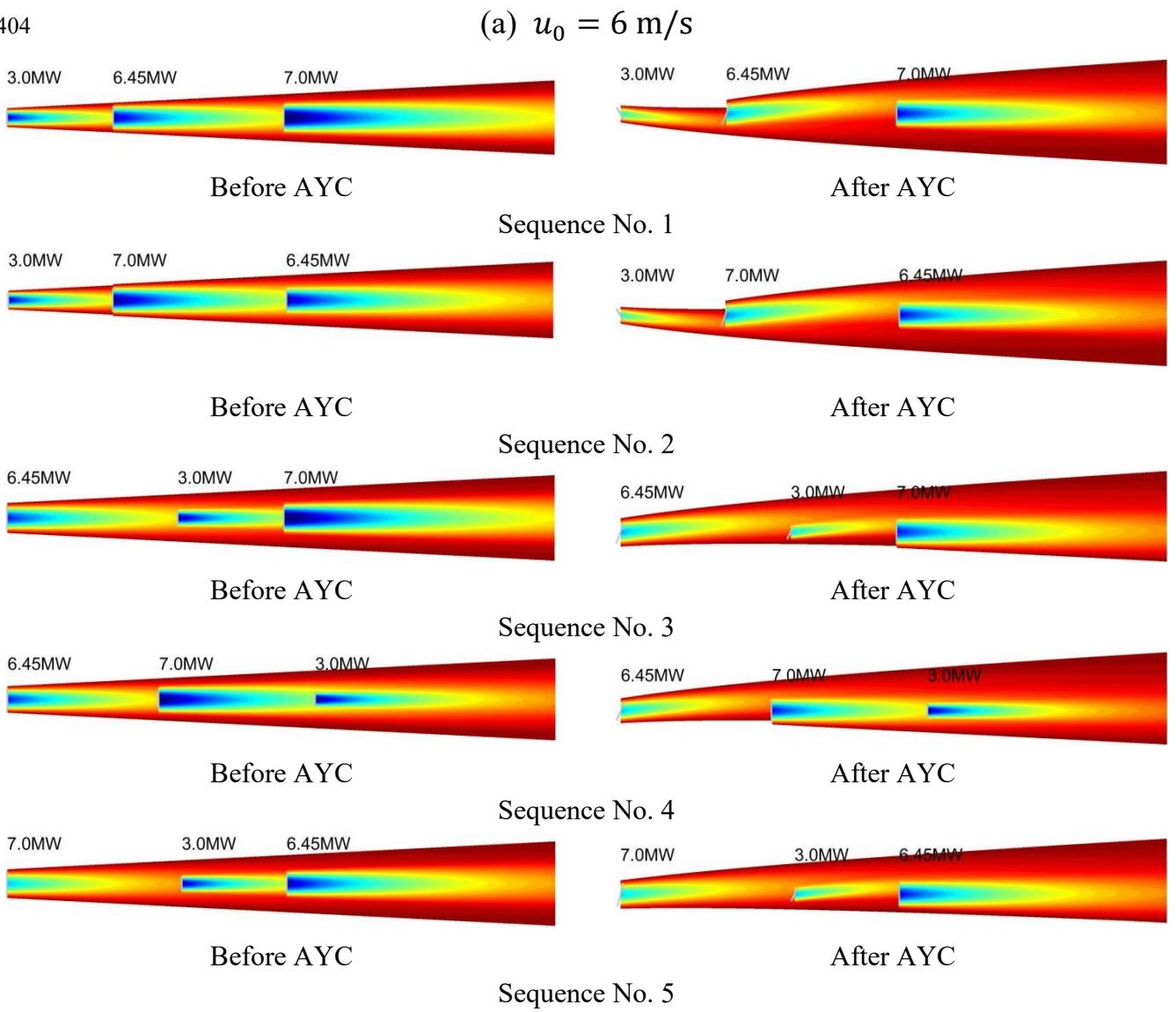


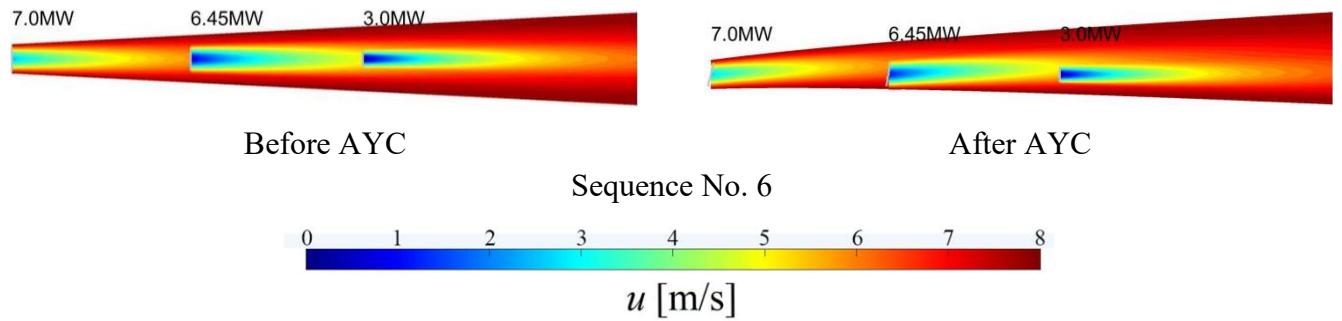


401

402

(c) $u_0 = 10 \text{ m/s}$ 403 **Fig. 8.** Output powers of the six WT sequences before and after AYC.

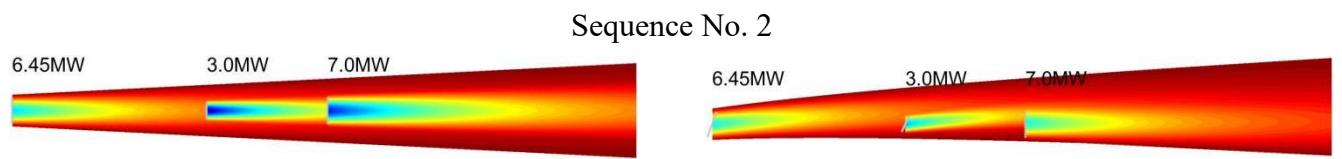




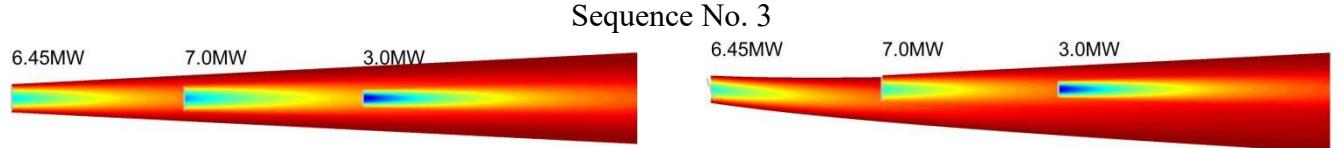
405 (b) $u_0 = 8$ m/s



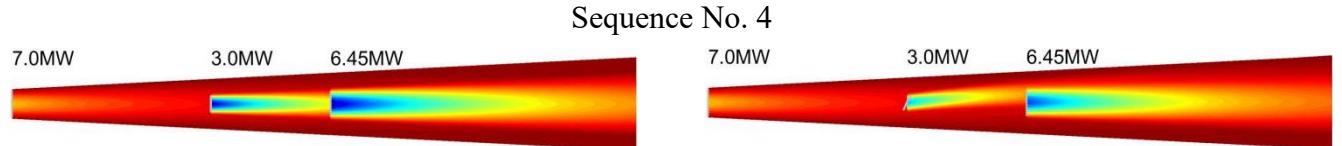
Before AYC After AYC



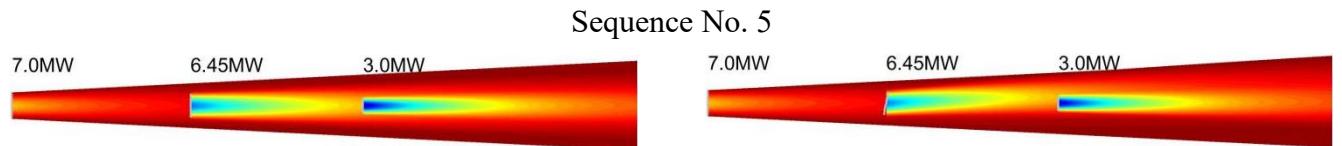
Before AYC After AYC



Before AYC After AYC

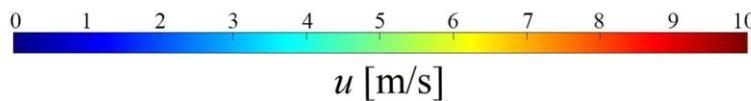


Before AYC After AYC



Before AYC After AYC

Sequence No. 6



406 (c) $u_0 = 10$ m/s

407 **Fig. 9.** Comparative wake contour maps of the WT sequence at maximum
 408 power output under different inflow wind levels.

409 **Table 3**

410 Optimal yaw angles and power increment percentages of the WT sequences

Inflow wind speed		Optimal WT yaw angle			Power increment percentage
$u_0 = 6 \text{ m/s}$		γ_1^*	γ_2^*	γ_3^*	
Sequence No.	1	-30°	-22.2°	0°	34.57%
	2	-30°	-22.1°	0°	38.15%
	3	-20.1°	-29.3°	0°	13.29%
	4	+21.5°	+8.3°	0°	9.15%
	5	-20.9°	+28.2°	0°	14.34%
	6	-22°	-7.1°	0°	9.34%
Inflow wind speed		Optimal WT yaw angle			Power increment percentage
$u_0 = 8 \text{ m/s}$		γ_1^*	γ_2^*	γ_3^*	
Sequence No.	1	+30°	-21.5°	0°	27.97%
	2	+30°	-18.5°	0°	28.90%
	3	-20.9°	-28.4°	0°	13.17%
	4	-23.2°	0°	0°	11.32%
	5	-13.9°	-26.8°	0°	6.72%
	6	-15.6°	-9.1°	0°	0.09%
Inflow wind speed		Optimal WT yaw angle			Power increment percentage
$u_0 = 10 \text{ m/s}$		γ_1^*	γ_2^*	γ_3^*	
Sequence No.	1	-27.6°	-19.8°	0°	17.43%
	2	+26.2°	0°	0°	11.11%
	3	-20.2°	-25.3°	0°	10.06%
	4	+22.2°	0°	0°	6.04%
	5	0°	-25.1°	0°	7.09%
	6	0°	-10.6°	0°	0.10%

411 Firstly, under the low inflow wind speed $u_0 = 6 \text{ m/s}$, the total output
 412 powers of the WTs arranged as Sequences No. 2 and No. 4 increase the
 413 largest and lowest percentages (38.15% and 9.15%), respectively due to AYC.

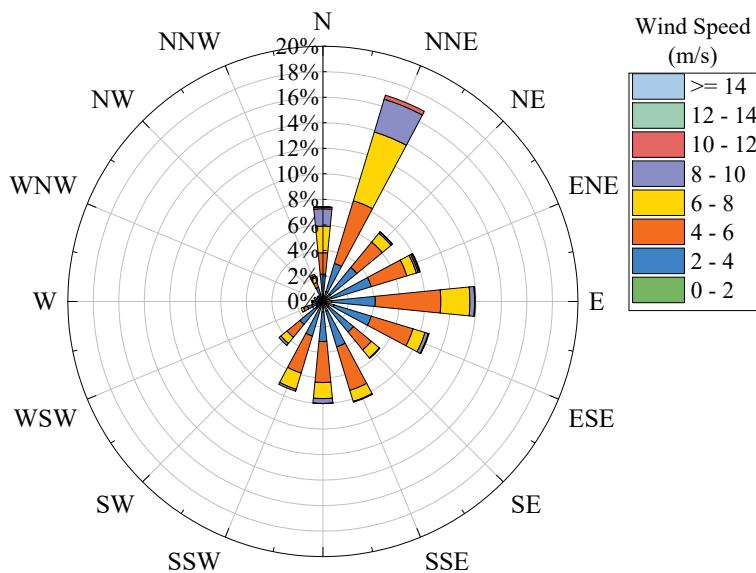
414 Under the medium inflow wind speed $u_0 = 8 \text{ m/s}$, the total output powers of
 415 the WTs arranged as Sequences No. 2 and No. 6 increase the largest and
 416 lowest percentages (28.90% and 0.09%), respectively due to AYC. Under the

417 high inflow wind speed $u_0 = 10$ m/s, the total output powers of the WTs
418 arranged as Sequence No. 1 and No. 6 increase the largest and lowest
419 percentage (17.43% and 0.10%) due to AYC, respectively. This demonstrates
420 that AYC achieves maximum effectiveness for the smallest WT in the front
421 row, while showing negligible impact for the largest WT in equivalent
422 positions as for large-scale WTs, broader wake propagation limits the overall
423 optimization benefits from yaw adjustments. Secondly, AYC demonstrates
424 superior power enhancement efficacy at below-rated wind speeds ($u_0 \leq$
425 8 m/s), where wake effects are more persistent and energy recovery is
426 critically needed. The lower the inflow wind speed is, the more pronounced
427 the power gains from AYC. Thirdly, under the three inflow wind conditions,
428 the optimal yaw angles of the WTs in the last row are all zero. Since the wake
429 generated from the WT in the last row does not impact downstream WTs, there
430 is no benefit in sacrificing its power output via yaw misalignment to enhance
431 the overall WT string's efficiency. For an individual WT, the application of the
432 maximum power point tracking (MPPT) strategy achieves optimal
433 performance at zero yaw angle, *i.e.*, perfect alignment with the wind direction,
434 maximizing energy capture efficiency. Lastly, under the high inflow wind
435 speed $u_0 = 10$ m/s, some of the optimal yaw angles of the front and the
436 intermediate WTs are zero. This can be explained as follows. On one hand,
437 under high wind speed conditions, wake recovery accelerates. Wake recovery
438 velocity increases by 20-30% at above-rated wind speeds, significantly

439 shortening the downstream stabilization distance. On the other hand,
 440 according to Fig. 4, under high inflow wind speeds, the WT thrust coefficient
 441 asymptotically approaches a stable plateau, resulting in significantly reduced
 442 sensitivity of wake steering effectiveness to yaw angle variations.

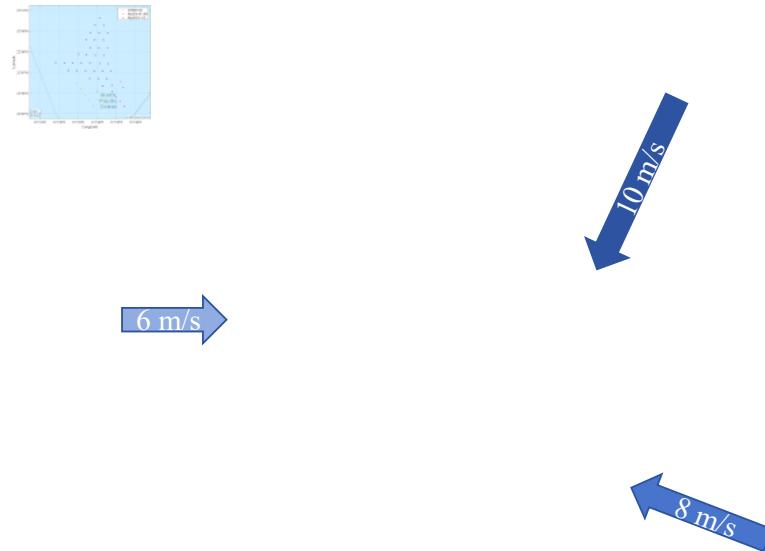
443 2) *Optimal AYC of the Hybrid OWF*

444 The wind rose of the Guishan OWF is shown in Fig. 10 where the met mast
 445 height is $z_{ref} = 100$ m. According to Fig. 10, the three typical wind
 446 directions ($\theta = W, ESE, NNE$) which represent the rare, medium and dominant
 447 wind directions and their corresponding wind speeds ($u_0 = 6, 8, 10$ m/s)
 448 which represent the low, medium and high wind speeds of this OWF are
 449 chosen as the three typical inflow wind conditions in this study and are
 450 demonstrated in Fig. 11.



451

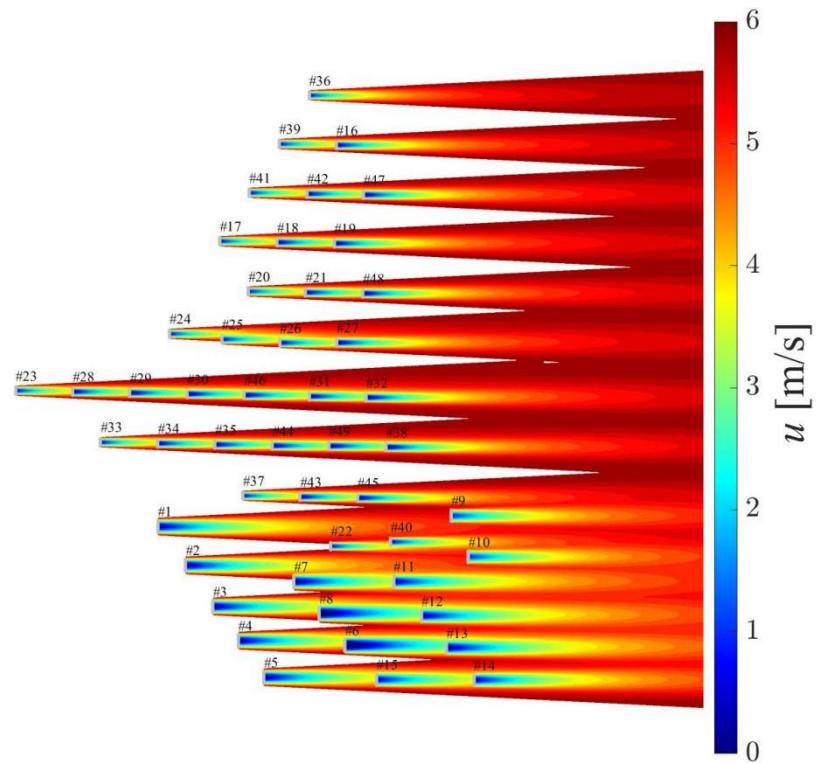
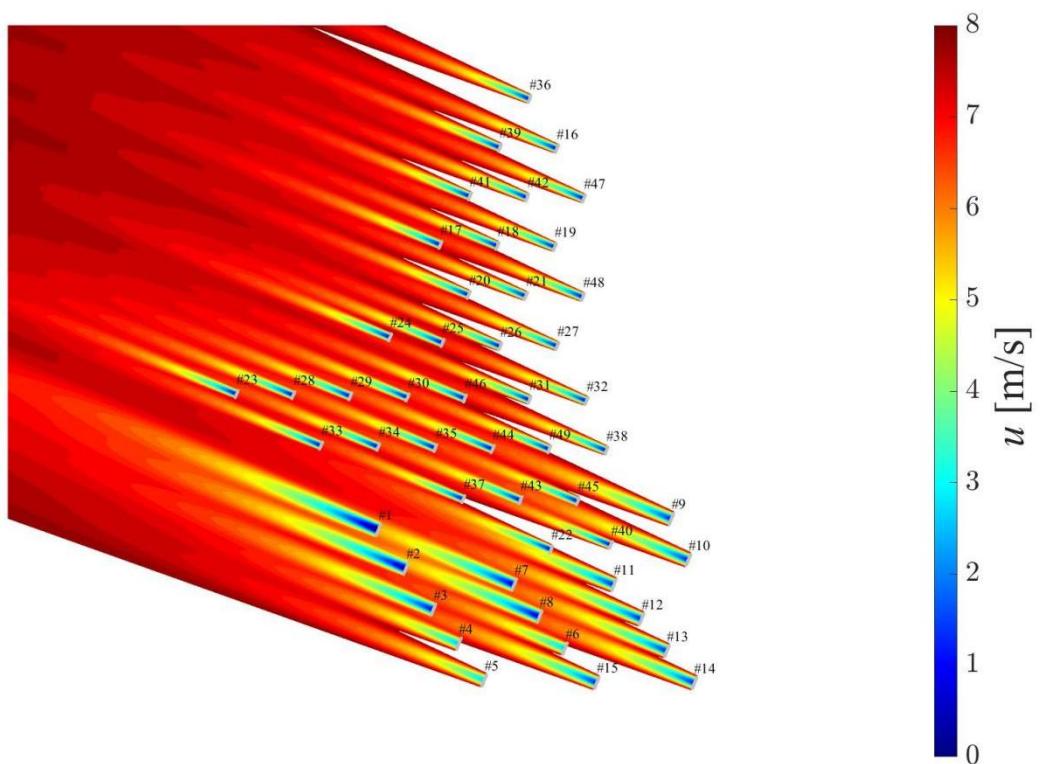
452 **Fig. 10.** Wind rose (1/Jan/2024-31/Dec/2024) [46].

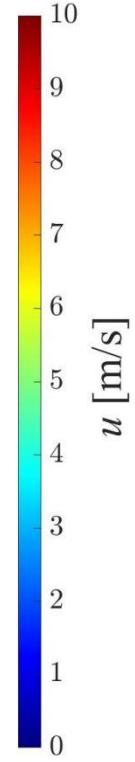


453

454 **Fig. 11.** Three typical wind conditions of the Guishan OWF.

455 The wake contours of the Guishan OWF without AYC under the three
 456 typical wind speeds and directions are shown in Fig. 12. In this scenario, each
 457 WT utilizes passive yaw control strategy, ensuring self-alignment with the
 458 wind direction. As a result, the yaw angle remains zero for each WT under all
 459 inflow wind conditions.





464
465 (c) Case 3: $\theta = \text{NNE}$, $u_0 = 10 \text{ m/s}$

466 **Fig. 12.** Wake contours of the Guishan OWF without AYC under typical wind

467 speeds and wind directions.

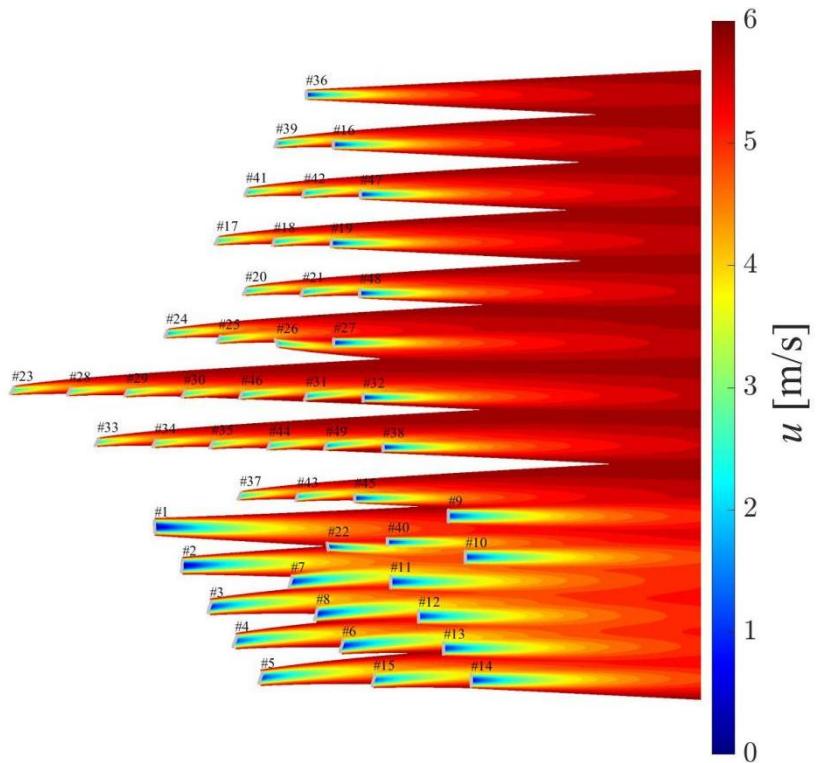
468 The optimal WT yaw angles and wake contours of the Guishan OWF under
469 the three typical wind speeds and directions are shown in Fig. 13. The
470 corresponding output powers and CFs of the Guishan OWF under the three
471 typical inflow wind conditions are given in Table 4.

472 **Table 4**

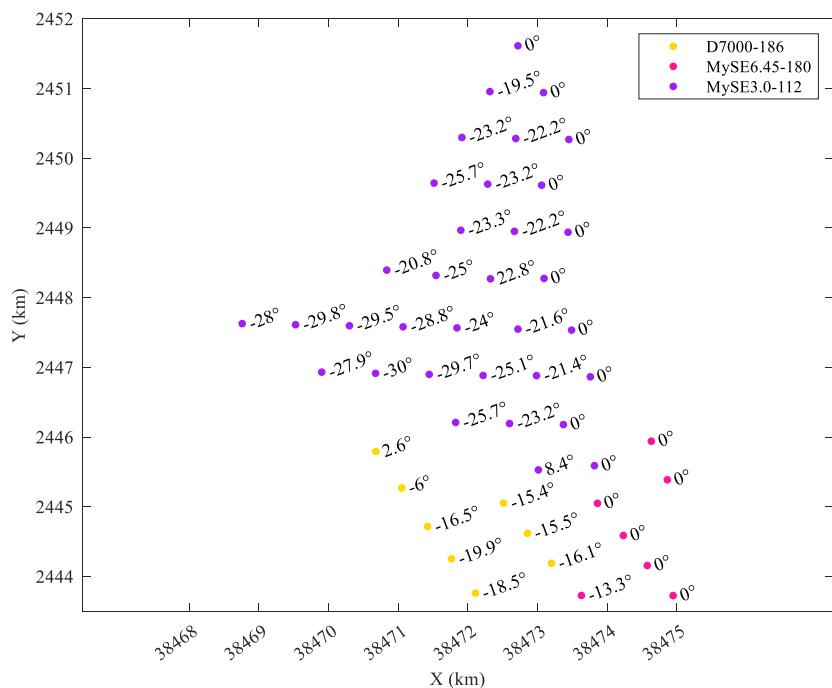
473 Output powers and CFs of the Guishan OWF before and after AYC

Wind condition	Before AYC		After AYC		Power increment percentage
	P_{OWF} (MW)	CF_{OWF}	P_{OWF} (MW)	CF_{OWF}	
Case 1	23.30	11.47%	29.11	14.33%	24.89%
Case 2	83.50	41.10%	85.28	41.98%	2.13%
Case 3	156.11	76.84%	159.97	78.74%	2.47%

474



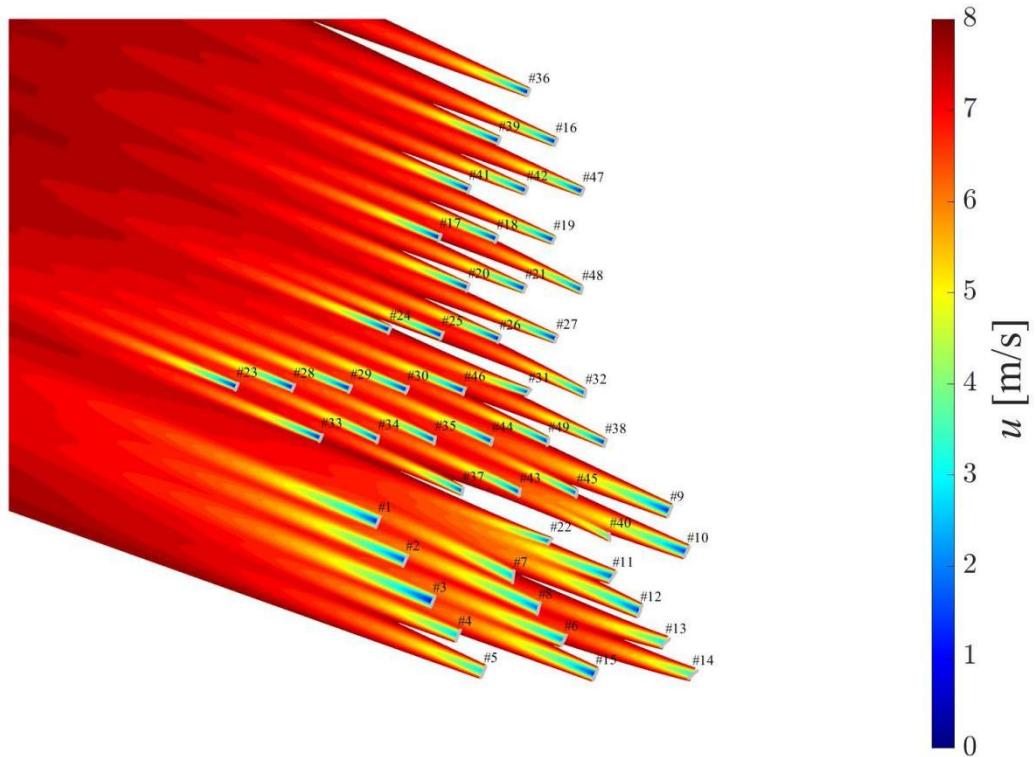
475



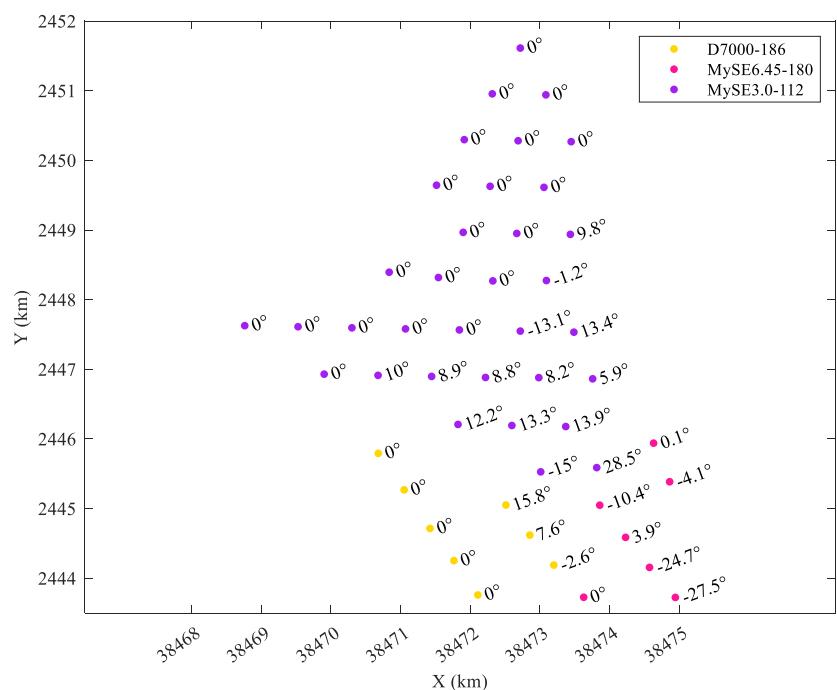
476

477

(a) Case 1: $\theta = W, u_0 = 6 \text{ m/s}$



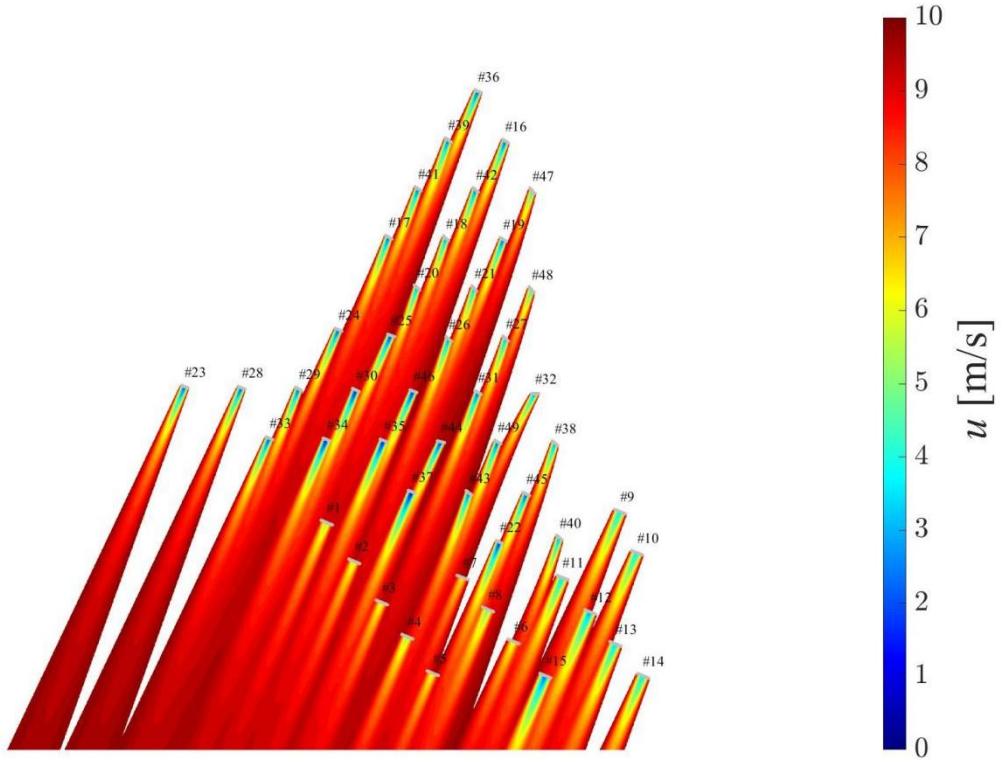
479



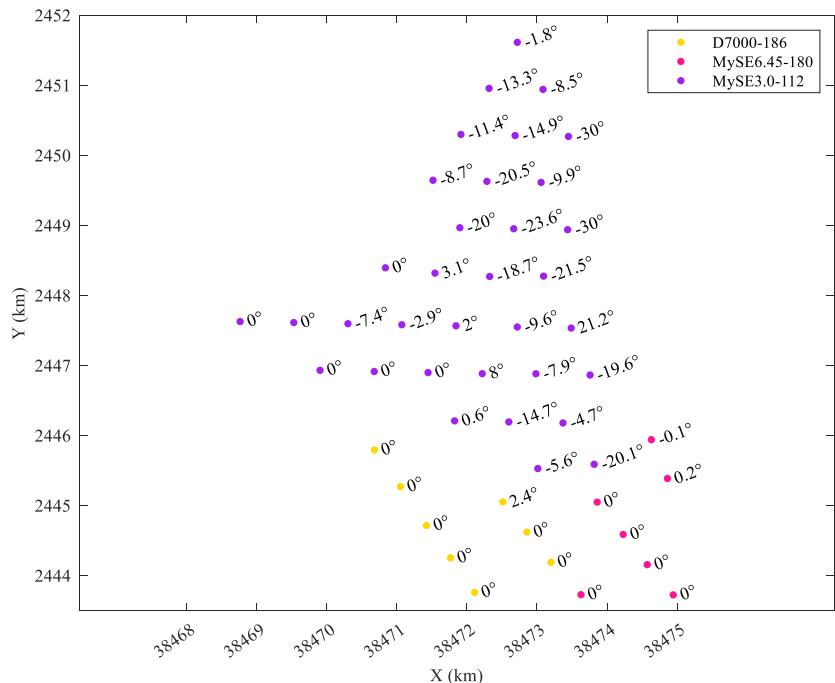
480

481 (b) Case 2: $\theta = \text{ESE}$, $u_0 = 8 \text{ m/s}$

482



483



484

485

(c) Case 3: $\theta = \text{NNE}$, $u_0 = 10 \text{ m/s}$

486

487

Fig. 13. Optimal WT wake contours and yaw angles of the Guishan OWF

487

under typical wind speeds and wind directions.

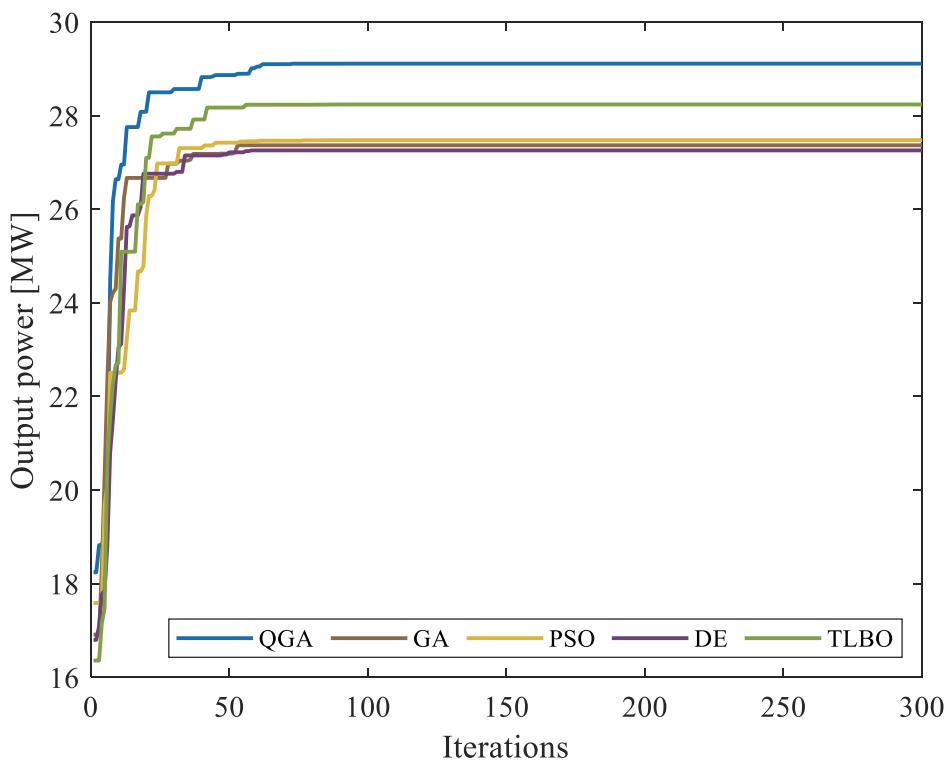
488 Firstly, in the dominant wind direction and under the high wind speed (Case
489 3: $\theta = \text{NNE}$, $u_0 = 10 \text{ m/s}$), the hybrid OWF can produce the maximum
490 power after AYC which is an evident outcome. Within operational limits,
491 higher wind speed enables WTs to capture more wind energy and generate
492 greater electricity which follows the " $P_{wt} \propto u_0^3$ " relationship until reaching the
493 rated power. However, the power increment percentage reaches the maximum
494 (24.89%) after AYC in the rare wind direction and under the low wind speed
495 (Case 1: $\theta = \text{W}$, $u_0 = 6 \text{ m/s}$) which means AYC demonstrates more
496 pronounced effects in the non-dominant wind directions. This can be explained
497 by taking two aspects into account. On one hand, there exists marginal benefit
498 differences in wake management among different wind directions. The OWF
499 layout is aerodynamically optimized in the dominant wind directions via
500 staggered configurations where wake effects are already mitigated, leaving
501 marginal (1-2%) energy capture improvement potential through AYC. In
502 contrast, for the non-dominant wind directions where the OWF layout is
503 sub-optimal, wake steering via AYC can mitigate 10-20% of the otherwise
504 occurring downstream power deficits. On the other hand, in the non-dominant
505 wind directions, the power response to yaw misalignment is more gradual due
506 to pre-reduced aerodynamic efficiency, while wake deflection exhibits
507 heightened sensitivity, *i.e.*, each degree of yaw generates proportionally
508 greater wake redirection.

509 Secondly, as shown clearly in Fig. 13 that the optimal yaw angles of the
510 WTs in the last row remain zero under the three typical inflow wind directions.
511 This finding is consistent with the previous test cases of three WTs aligned in a
512 row. Three key factors contributed to this outcome. First, the WTs in the last
513 row at the far downstream end of the OWF experience no wake interference on
514 subsequent WTs, eliminating the need for AYC. Aligning perfectly with the
515 incoming wind direction ($\gamma = 0^\circ$) can maximize their own energy capture
516 efficiency. Maintaining zero yaw angle for the last row of WTs reduces lateral
517 wake interference in downstream WT-free areas, preventing unnecessary
518 energy losses. Applying dynamic AYC across all WTs in the whole OWF
519 might induce system oscillations or instability. Fixing the last-row WTs at zero
520 yaw angle can reduce control dimensionality and enhance system robustness.

521 Finally, Cases 1 and 3 demonstrate that the front-row WTs, which are the
522 first to encounter incoming wind flows exhibit significantly larger optimal yaw
523 angles in smaller models (MySE3.0-112) compared to their utility-scale
524 counterparts (MySE6.45-180 and D7000-186) as shown in Figs. 12 (a)(c). This
525 is in accordance with the conclusion obtained from the previous test cases of
526 three WTs aligned in a row which further validates that the application of AYC
527 for small WTs is more cost-effective than that for the large WTs in a hybrid
528 OWF.

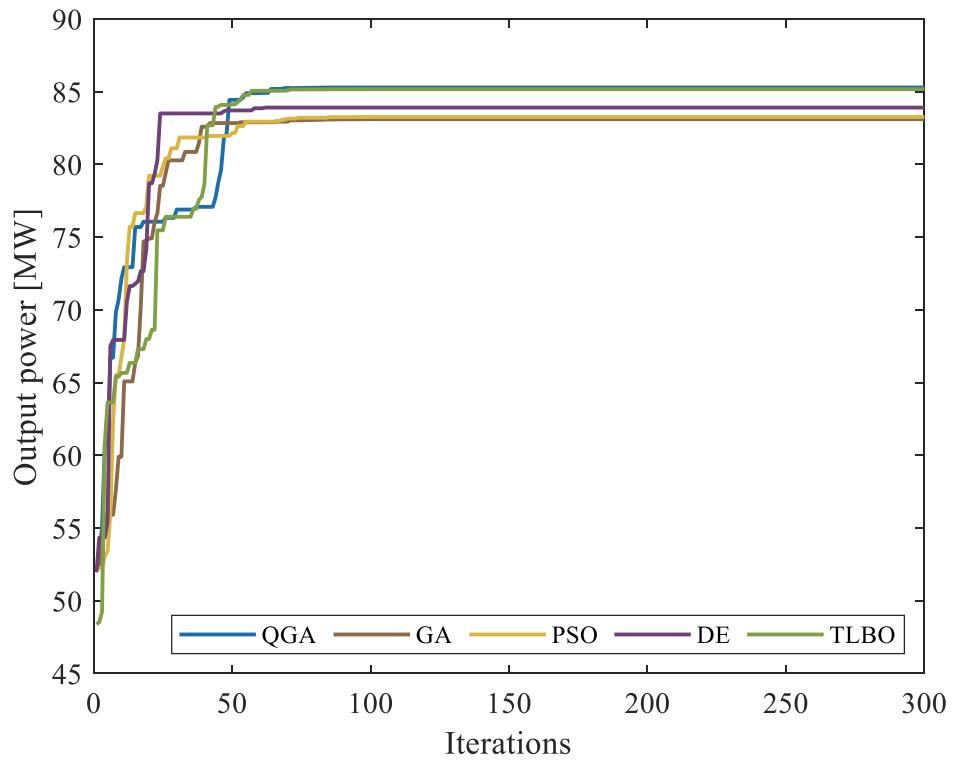
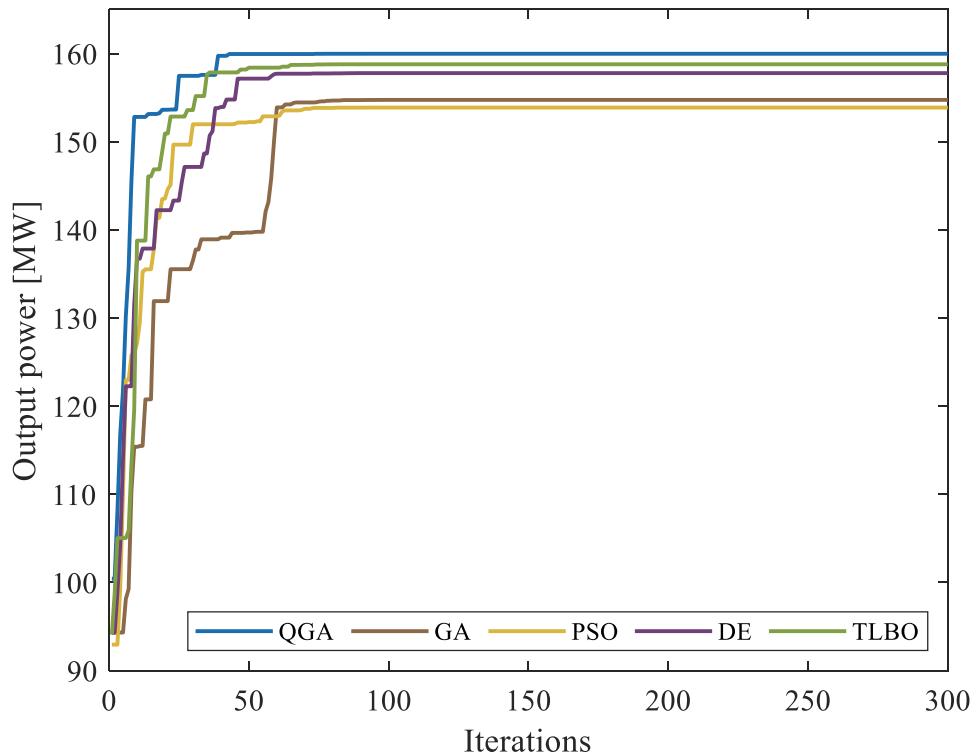
529 The convergence performance of the QGA when solving the hybrid OWF
530 AYC optimization problems in Fig. 13 is compared with the GA, the particle

531 swarm optimization (PSO), the differential evolution (DE) [41], and the
 532 teaching learning-based optimization (TLBO) [22] algorithms. The
 533 population size $nPop$ and the maximum iteration number $MaxIt$ are set
 534 200 and 300 respectively for all the algorithms. In the GA and DE algorithms,
 535 the crossover rate is set $p_c = 0.75$ and the mutation probability is set $p_m =$
 536 $\frac{1}{24}$ which is the same as those in the QGA. In the PSO algorithm, the personal
 537 learning coefficient is set $c_1 = 1.5$ and the global learning coefficient is set
 538 $c_2 = 2.0$. The best fitness evaluations in each iteration for solving the hybrid
 539 OWF AYC model after 20 times of executing these five algorithms are
 540 shown and compared in Fig. 14 and Table 5. The computations are carried
 541 out on a Windows 10 laptop with 8.0 GB RAM and a 2.40 GHz Intel
 542 Dual-Core processor and the simulation software is MATLAB 2024b.



543

544 (a) Case 1: $\theta = W, u_0 = 6$ m/s



549 **Fig. 14.** Convergence curves of the QGA, GA, PSO, DE and TLBO algorithms

550 in solving the hybrid OWF AYC optimization problems in Fig. 13.

551 **Table 5**

552 Comparison of the QGA, GA, PSO, DE and TLBO algorithms in solving the

553 hybrid OWF AYC optimization problems in Fig. 13.

Wind condition	Algorithm	Power increment percentage	Running time (min)
Case 1: $\theta = W, u_0 = 6 \text{ m/s}$	QGA	+24.89%	17.83
	GA	+17.45%	25.78
	PSO	+17.92%	23.11
	DE	+16.98%	20.96
	TLBO	+21.19%	19.04
Case 2: $\theta = \text{ESE}, u_0 = 8 \text{ m/s}$	QGA	+2.13%	20.12
	GA	-0.47%	28.31
	PSO	-0.30%	25.98
	DE	+0.48%	23.66
	TLBO	+1.99%	21.97
Case 3: $\theta = \text{NNE}, u_0 = 10 \text{ m/s}$	QGA	+2.47%	19.30
	GA	-0.88%	27.76
	PSO	-1.44%	24.58
	DE	+1.07%	22.61
	TLBO	+1.71%	20.97

554 As shown in Fig. 14 the QGA outperforms both the other four algorithms

555 in terms of producing the best results. By integrating quantum computing

556 principles, the QGA enhances the efficiency and effectiveness of the

557 optimization process. Specifically, it leverages quantum operations to address

558 challenges inherent in classical heuristic methods. One such operation is

559 reverse quantum annealing, which enables quasi-local or quasi-nonlocal

560 searches initiated from a classical state. This process utilizes quantum

561 fluctuations as a novel mutation mechanism, while classical crossover

562 operations are retained. These quantum enhancements are the primary

563 reasons for the QGA's superior optimization capability. For the real-time
564 control of OWFs, a fast and efficient optimizer is critical. As wind speed and
565 direction fluctuate, the AYC system must rapidly solve the optimization
566 model and transmit updated control parameters to the WTs for yaw angle
567 adjustment which is a process requiring completion within seconds. The high
568 efficiency of the QGA is therefore essential for this application.

569 As shown in Table 5, the QGA achieves the highest OWF power increment
570 percentage while requiring the shortest running time among all five
571 algorithms. The TLBO and DE algorithms rank as the second and third
572 best-performing methods, respectively, while the GA and PSO algorithms
573 demonstrate comparatively poorer performance. What should be noticed is
574 that in Cases 2 and 3, the GA and the PSO algorithms even produce results
575 with negative power increment percentages which means they may stuck in
576 the local optimal and fail to find the global optimum. This verifies that the
577 QGA and TLBO are superior optimization tools for hybrid OWF AYC
578 optimization problems, while GA and PSO prove incompetent.

579 From the above simulations and existing literature [22]-[42], it can be
580 concluded that AYC generally leads to an increase in OWF power output.
581 The three lined-up WTs and the irregular-shaped Guishan OWF tested in this
582 paper have already validated the effectiveness of the proposed AYC strategy.
583 For OWFs with other complex layouts, such as square [24][31][39], triangle
584 [23][25][32], parallelogram [22][26][32][34][35][39], and other irregular

585 shapes [24][25][30][31][33][35][36][37][41][42], AYC proves capable of
586 boosting power generation in both large-scale and multi-scenario cases.

587 **5. Conclusions**

588 This paper proposes an AYC strategy specifically designed for the hybrid
589 OWF where multiple types of WTs are installed. To achieve the goal of OWF
590 output power maximization, a 3D yawed wake model is utilized and the QGA
591 is applied for solving the AYC optimization models. The key findings from
592 the simulation results of the case study and their implications for engineering
593 applications can be summarized as follows.

594 1) The primary objective of AYC is to optimize the overall OWF power
595 production. For the upstream WTs, active yaw misalignment (*e.g.*, $\gamma = \pm 30^\circ$)
596 can deflect wakes away from critical downstream paths, minimizing impact
597 on subsequent WTs. For the downstream WTs, priority shifts to maximizing
598 individual energy capture, as wake steering provides no further benefit.
599 Especially, no active yaw misalignment should be applied to the WTs in the
600 last row ($\gamma = 0^\circ$).

601 2) AYC is more effective when inflow wind speed is at low level and in
602 the non-dominant wind direction of an OWF. In the Guishan OWF, it
603 produces 24.89% power increment under the wind condition of $\theta = W, u_0 =$
604 6 m/s, much higher than those (2.13% and 2.47%) obtained under the wind
605 conditions of $\theta = \text{ESE}, u_0 = 8 \text{ m/s}$ and $\theta = \text{NNE}, u_0 = 10 \text{ m/s}$. Although
606 non-prevailing winds occur infrequently (*e.g.*, only 10% of annual operating

607 time), they may account for 25-40% of total energy losses in a hybrid OWF.
608 Under these wind directions, wake overlap is more severe because WT
609 sub-optimal layout and conventional yaw systems exhibit delayed response.
610 Therefore, the application of AYC in the non-dominant wind directions of
611 hybrid OWFs should be prioritized for the technical and economic
612 considerations.

613 3) For three WTs with different types in a line, by applying the AYC
614 strategy to the sequences with the smallest WT being the first, the maximal
615 power increment percentages 38.15%, 28.90%, and 17.43% can be achieved
616 for $u_0 = 6 \text{ m/s}$, 8 m/s and 10 m/s , respectively. For a hybrid OWF
617 mixed-installed with multiple types of WTs, the AYC should be
618 preferentially applied to the small WTs. By prioritizing AYC of small WTs,
619 e.g., actively deflecting them at specific angles, the wake can be dispersed or
620 redirected, thereby mitigating its shading effect on downstream large WTs.
621 Specifically, in a hybrid OWF, small WTs can act as ‘wake regulators’
622 dynamically adjusting their yaw to optimize the overall OWF flow field,
623 while large WTs maintain stable operation to ensure the baseline power
624 output of the OWF.

625 4) The QGA proves to be an efficient heuristic algorithm for solving the
626 hybrid OWF AYC optimization problem. Compared with the GA, PSO, DE
627 and TLBO algorithms, the QGA can produce the best optimization results by
628 taking the least running time of 17.83 min, 20.12 min, and 19.30 min for the

629 three simulation cases, respectively, while the GA and PSO algorithms are
630 easier to fall into local optimum. Particularly, in large-scale OWFs with
631 multiple types and numbers of WTs, the computational burden stems
632 primarily from the iterative calculation of wake deficits required to explore
633 potential yaw angles. These significantly increased computational demands
634 necessitate the development and utilization of highly efficient optimization
635 algorithms capable of rapid convergence and the discovery of superior
636 solutions.

637 However, this study still has some limitations. Firstly, the effectiveness of
638 the proposed AYC strategy is highly related to the layout and shape of the
639 hybrid OWF. For larger OWFs of complex layouts and installed with more
640 WTs, the applicability of the proposed method has not been verified.
641 Secondly, only three typical wind conditions are considered and the real-time
642 control with smaller timescale wind data have not been tested in this study.
643 Future research should focus on the development of more advanced AYC
644 strategies for the hybrid OWF power increasing. The hierarchical control
645 strategy is an ideal solution for coordinated AYC for the small and large WTs
646 which means that the large ones employ the conventional yaw control, *e.g.*,
647 based on average wind direction, while the small ones utilize advanced
648 control algorithms, *e.g.*, the model predictive control (MPC) for dynamic
649 optimization. The synergy between these approaches may enhance the overall
650 efficiency of the hybrid OWF.

651 References

652 [1] Global Offshore Wind Report. Global Wind Energy Council, 1000 Brussels, Belgium,
653 2024 [Online]. Available:
654 <https://www.apren.pt/contents/publications/others/gwec-gowr-2024-digital-final-2-compact-edition-1.pdf>.

656 [2] S. Tao, J. Yang, G. Zheng, et al. A two-stage optimization model for floating offshore
657 wind farm layout and control. *Renewable Energy* 253(2025) 123614.

658 [3] B. Lu, X. Shen, Y. Du, et al. Offshore wind farm micro-siting based on two-phase
659 hybrid optimization. *Applied Energy* 381(2025) 125105.

660 [4] P. Li, Y. Che, A. Hua, et al. A data-physics hybrid-driven layout optimization
661 framework for large-scale wind farms. *Applied Energy* 392(2025) 125908.

662 [5] S. Tao, A. Feijóo-Lorenzo. Optimal layout of offshore wind farm cluster: A three-stage
663 game model with priori coalition. *IEEE Transactions on Industrial Informatics*
664 20(7)(2024) 9225-9234.

665 [6] L. Shen, P. Zhou, Y. Han, et al. Wind farm layout optimization based on dynamic Levy
666 sparrow search algorithm: A multi-parameter analysis with active yaw control. *Energy*
667 324(2025) 135989.

668 [7] Y. Zhang, Z. Zhang, R. Zhong, et al. Under complex wind scenarios: Considering
669 large-scale wind turbines in wind farm layout optimization via self-adaptive optimal
670 fractional-order guided differential evolution. *Energy* 323(2025) 135866.

671 [8] S. Tao, Q. Xu, A. Feijóo, et al. Nonuniform wind farm layout optimization: a
672 state-of-the-art review. *Energy* 209(2020) 118339.

673 [9] M. Abdulrahman, D. Wood. Investigating the power-COE trade-off for wind farm
674 layout optimization considering commercial turbine selection and hub height variation.
675 *Renewable Energy* 102(2017) 267-278.

676 [10] A. Vasel-Be-Hagh, C. Archer. Wind farm hub height optimization. *Applied Energy*
677 195(2017) 905-921.

678 [11] M. Song, K. Chen, J. Wang. Three-dimensional wind turbine positioning using
679 Gaussian particle swarm optimization with differential evolution. *Journal of Wind
680 Engineering and Industrial Aerodynamics* 172(2018) 317-324.

681 [12] J. Feng, W. Shen. Design optimization of offshore wind farms with multiple types of
682 wind turbines. *Applied Energy* 205(2018) 1283-1297.

683 [13] L. Wang, M. Cholette, Y. Fu, et al. Combined optimization of continuous wind turbine
684 placement and variable hub height. *Journal of Wind Engineering and Industrial
685 Aerodynamics* 180(2018) 136-147.

686 [14] S. Tao, C. Zhang, A. Feijóo-Lorenzo, et al. Wind farm repowering optimization: a
687 techno-economic-aesthetic approach. *IET Renewable Power Generation* 17(8)(2023)
688 2137-3147.

689 [15] H. Sun, H. Yang, X. Gao. Investigation into spacing restriction and layout optimization
690 of wind farm with multiple types of wind turbines. *Energy* 168(2019) 637-650.

691 [16] A. Stanley, A. Ning. Coupled wind turbine design and layout optimization with
692 nonhomogeneous wind turbines. *Wind Energy Science* 4(2019) 99-114.

693 [17] L. Huang, H. Tang, K. Zhang, et al. 3-D layout optimization of wind turbines
694 considering fatigue distribution. *IEEE Transactions on Sustainable Energy* 11(2020)
695 126-135.

696 [18] A. Ribeiro, P. Hallak, A. Lemonge, et al. Automatic grouping of wind turbine types via
697 multi-objective formulation for nonuniform wind farm layout optimization using an
698 analytical wake model. *Energy Conversion and Management* 315(2024) 118759.

699 [19] D. Zhang, Z. Liu, Y. Liang, et al. Bilevel optimization of non-uniform offshore wind
700 farm layout and cable routing for the refined LCOE using an enhanced PSO. *Ocean
701 Engineering* 299(2024) 117244.

702 [20] H. Sun, H. Yang. Wind farm layout and hub height optimization with a novel wake
703 model. *Applied Energy* 348(2023) 121554.

704 [21] A. de Moura Ribeiro, P. Hallak, A. de Castro Lemonge, et al. Automatic grouping of
705 wind turbine types via multi-objective formulation for nonuniform wind farm layout
706 optimization using an analytical wake model. *Energy Conversion and Management*
707 315(2024) 118759.

708 [22] R. Balakrishnan, E. Son, S. Hur. Optimization of wind farm power output using wake
709 redirection control. *Renewable Energy* 235(2024) 121357.

710 [23] K. Chen, J. Lin, Y. Qiu, et al. Model predictive control for wind farm power tracking
711 with deep learning-based reduced order modeling. *IEEE Transactions on Industrial
712 Informatics* 18(11)(2022) 7484-7493.

713 [24] W. Cai, Y. Hu, F. Fang, et al. Wind farm power production and fatigue load
714 optimization based on dynamic partitioning and wake redirection of wind turbines.
715 *Applied Energy* 339(2023) 121000.

716 [25] B. Li, J. He, M. Ge. Study of three wake control strategies for power maximization of
717 offshore wind farms with different layouts. *Energy Conversion and Management*
718 368(2022) 116059.

719 [26] B. Dou, T. Qu, L. Lei, et al. Optimization of wind turbine yaw angles in a wind farm
720 using a three-dimensional yawed wake model. *Energy* 209(2020) 118415.

721 [27] R. He, H. Yang, S. Sun, et al. A machine learning-based fatigue loads and power
722 prediction method for wind turbines under yaw control. *Applied Energy* 326(2022)
723 120013.

724 [28] R. He, H. Yang, L. Lu. Optimal yaw strategy and fatigue analysis of wind turbines
725 under the combined effects of wake and yaw control. *Applied Energy* 337(2023)
726 120878.

727 [29] W. Shen, J. Lin, Y. Jiang, et al. A novel yaw wake model for wind farm control
728 applications. *Renewable Energy* 218(2023) 119465.

729 [30] H. Dong, X. Zhao. Reinforcement learning-based wind farm control: Toward large
730 farm applications via automatic grouping and transfer learning. *IEEE Transactions on
731 Industrial Informatics* 19(12)(2023) 11833-11845.

732 [31] H. Dong, X. Zhao. Data-driven wind farm control via multiplayer deep reinforcement
733 learning. *IEEE Transactions on Control Systems Technology* 31(3)(2023) 1468-1475.

734 [32] Y. Wang, S. Wei, W. Yang, et al. Adaptive economic predictive control for offshore
735 wind farm active yaw considering generation uncertainty. *Applied Energy* 352(2023)
736 121849.

737 [33]Q. Wang, T. Xu, D. Terzi, et al. Synchronized optimization of wind farm start-stop and
738 yaw control based on 3D wake model. *Renewable Energy* 223(2024) 120044.

739 [34]Z. Zhang, P. Huang, G. Bitsuamlak, et al. Analytical solutions for yawed wind-turbine
740 wakes with application to wind-farm power optimization by active yaw control. *Ocean
741 Engineering* 304(2024) 117691.

742 [35]S. Li, A. Robert, A. Aldo Faisal, et al. Learning to optimise wind farms with graph
743 transformers. *Applied Energy* 359(2024) 122758.

744 [36]N. Kayedpour, J. Kooning, A. Samani, et al. An optimal wind farm operation strategy
745 for the provision of frequency containment reserve incorporating active wake control.
746 *IEEE Transactions on Sustainable Energy* 15(1)(2024) 276-289.

747 [37]A. Hosseini, D. Cannon, A. Vasel-Be-Hagh. Wind farm active wake control via
748 concurrent yaw and tip-speed ratio optimization. *Applied Energy* 377(2025) 124625.

749 [38]Y. Tu, Y. Chen, K. Zhang, et al. A multi-fidelity framework for power prediction of
750 wind farm under yaw misalignment. *Applied Energy* 377(2025) 124600.

751 [39]Z. Huang, W. Wu. Dual-stage MPC-based AGC for wind farm considering
752 aerodynamic interactions. *IEEE Transactions on Sustainable Energy* 16(2)(2025)
753 1098-1113.

754 [40]T. Göçmen, J. Liew, E. Kadoche, et al. Data-driven wind farm flow control and
755 challenges towards field implementation: A review. *Renewable and Sustainable Energy
756 Reviews* 216(2025) 115605.

757 [41]Y. Wang, Z. Liu. Fatigue analysis of wind turbine and load reduction through
758 wind-farm-level yaw control. *Energy* 326(2025) 136266.

759 [42]S. He, H. Wang, J. Yan, et al. A low-computational physics-guided deep learning
760 model for wind farm flow control under time-varying wind conditions. *Energy* 332(2025)
761 137048.

762 [43]R. Ibarrondo, G. Gatti, M. Sanz. Quantum genetic algorithm with individuals in
763 multiple registers. *IEEE Transactions on Evolutionary Computation* 28(3)(2024)
764 788-797.

765 [44]Global Offshore Map. 4C Offshore. [Online]. Available:
766 <https://map.4coffshore.com/offshorewind/>.

767 [45]Wind Turbine Models. [Online]. Available: <https://wind-turbine-models.com>.

768 [46]Xihe Energy Meteorological Big Data Platform. [Online]. Available:
769 <https://xihe-energy.com/>.