

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:<https://orca.cardiff.ac.uk/id/eprint/183642/>

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Vaz, Vinícius S.A., de A.F.F. Finger, Jéssica, Pereira, Raul F., Derami, Mariana S., Maillard, Jean-Yves and Nascimento, Maristela S. 2026. Dry surface biofilm of *Salmonella* and *Cronobacter sakazakii*: a real concern for the low moisture food industry. *Food Microbiology* 136 , 105013. 10.1016/j.fm.2025.105013

Publishers page: <https://doi.org/10.1016/j.fm.2025.105013>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See <http://orca.cf.ac.uk/policies.html> for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 **Dry surface biofilm of *Salmonella* and *Cronobacter sakazakii*: a real
2 concern for the low moisture food industry**

3

4 Vinícius S. A. Vaz^{a#}, Jéssica de A.F.F. Finger^{a#}, Raul F. Pereira^a, Mariana S.
5 Derami^a, Jean-Yves Maillard^b, Maristela S. Nascimento^{a*}

6

7 ^aDepartamento de Engenharia e Tecnologia de Alimentos, Faculdade de
8 Engenharia de Alimentos, Universidade Estadual de Campinas, Unicamp,
9 Campinas, SP, Brasil.

10 ^bSchool of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff,
11 UK.

12

13 [#]These authors contributed equally.

14

15 ***Corresponding author:** Maristela S. Nascimento, Departamento de
16 Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos,
17 Universidade Estadual de Campinas, Unicamp, Rua Monteiro Lobato n° 80,
18 Campinas, São Paulo, 13083-862, Brasil. E-mail address: mnasci@unicamp.br.

19 **Abstract**

20 *Salmonella* and *Cronobacter sakazakii* have been associated with outbreaks
21 linked to low-moisture foods (LMF). Their persistence under desiccation stress
22 can contribute to biofilm formation. This study evaluated different dry surface
23 biofilm (DSB) formation protocols on stainless steel (SS) and polypropylene (PP),
24 which differ with the combination of their hydrated (from 24 to 48h) and dry phase
25 (from 48 to 120h). For *Salmonella*, cultivable sessile cells (CSC) and viable
26 sessile cells (VSC; corresponding to CSC and viable but non-culturable (VBNC)
27 cells) reached up to 7.2 and 8.6 log CFU/cm², respectively, while *C. sakazakii*
28 exhibited higher concentrations, up to 8.1 log CFU/cm² (CSC) and 9.0 log
29 CFU/cm² (VSC). A combination of 8h wet + 120h dry phases resulted in the
30 lowest counts ($p < 0.05$), with CSC ranging from 3.7 to 5.5 log CFU/cm² for
31 *Salmonella* and 4.5 to 6.3 log CFU/cm² for *C. sakazakii*. The duration of the wet
32 phase was the main factor influencing DSB formation. The lowest difference
33 between CSC and VSC (1.1 and 0.6 log CFU/cm² respectively) was noted with a
34 combination of 24h wet + 72h dry phases, whereas the largest difference (2.8
35 and 2.2 log CFU/cm² for *Salmonella* and *C. sakazakii*, respectively) occurred with
36 the combination of 8h wet + 120h dry phases. Confocal laser scanning
37 microscopy showed the DSB thickness was impacted by the DSB formation
38 protocol: from 10.4-12.7 μ m thickness with a combination of 48h wet + 48h dry
39 phases or 24h wet + 120h dry phases, 3.3-7.1 μ m with a combination of 24h wet
40 + 72 h dry phases. Morphological changes such as elongation, spherical shape,
41 desiccation, and cell lysis were observed in all biofilms. Regardless of the
42 protocol used, both bacteria were able to form DSB with the presence of VBNC
43 cells, highlighting the importance of strict moisture control and effective sanitation
44 in LMF plants.

45 **Keywords:** Food safety; biofilm; low-moisture food; hygiene.

46 **1. Introduction**

47 Biofilms are complex microbial communities, composed of either a single
48 species or multiple, and are adhered on abiotic or biotic surfaces (Sadiq et al.,
49 2023). They may or may not be embedded in a matrix composed of a wide variety
50 of extracellular polymeric substances (EPS) (Karygianni et al., 2020; Sadiq et al.,
51 2023; Sauer et al., 2022). Biofilms pose a major public health concern due to their
52 remarkable capacity for dissemination and survival under adverse environmental
53 conditions, displaying resistance to physical, chemical, and mechanical agents
54 (Dallal et al., 2023; Lories et al., 2020). Consequently, they are estimated to have
55 a global economic impact of approximately US\$5 trillion (Cámara et al., 2022),
56 affecting sectors such as agriculture (Rodrigues et al., 2008), maritime transport
57 (Akuzov et al., 2013), water quality and safety (Learbuchi et al., 2019), the food
58 industry (Alonso et al., 2023; Alvarez-Ordóñez et al., 2019; Galié et al., 2018) and
59 healthcare (Abdallah et al., 2014; Weber et al., 2023). In the food industry,
60 biofilms lead to economic losses due to product spoilage and are also linked to
61 outbreaks of foodborne diseases (Dass and Wang, 2022). However, most studies
62 are focusing on hydrated (wet) biofilms, and little is known on biofilm grown in dry
63 environment. The presence of Dry Surface Biofilms (DSB) was first reported in
64 Australia in the medical setting, and revealed the persistence of *Staphylococcus*
65 *aureus* biofilms on dry hospital surfaces (Vickery et al., 2012). Since then, DSB
66 have been widely reported in healthcare settings (Almatroudi et al., 2016;
67 Chowdhury et al., 2018; Ledwoch et al., 2018; Ledwoch et al., 2019). While the
68 term DSB was coined in 2015 (Almatroudi et al., 2015), there is not yet an official
69 definition of DSB. Nevertheless, according to Ledwoch et al. (2022) DSB are
70 biofilms present in a desiccated state on environmental surfaces exposed to low-
71 moisture conditions. In general, DSB tend to be thinner, have a more
72 heterogeneous distribution across surfaces and have thinner EPS when
73 compared to hydrated biofilms (Ledwoch et al., 2022). In addition, DSB are not
74 reliably detected by conventional wet-swabbing procedures and exhibit greater
75 resistance to disinfection than biofilms formed under hydrated condition
76 (Almatroudi et al., 2015; Ledwoch et al., 2018).

77 In the low-moisture food (LMF) processing environment, DSB can
78 represent a significant risk of contamination (Chaggar et al., 2024); pose an
79 additional challenge for microbiological control and food safety management

80 (Alonso et al., 2023). Studies have shown that foodborne pathogens, such as
81 *Salmonella* spp. (Anderson et al., 2017; Ly et al., 2019; Maćkiw et al., 2024) and
82 *Cronobacter sakazakii* (Beuchat et al., 2013; Sawale et al., 2022), can survive for
83 prolonged periods in LMF, such as infant formula, chocolate, cereals, flour, pasta,
84 and spices; as well as in food processing environments (Amaeze et al., 2024; Liu
85 et al., 2022; Ly et al., 2019). It has also been shown that *Salmonella* spp. can
86 form DSB on different surfaces, although direct comparisons between surfaces
87 are lacking. Chaggar et al. (2024) observed DSB formation on borosilicate glass
88 coupons, while Duggan et al. (2024) reported that *Salmonella* Typhimurium DSB
89 are less susceptible to disinfection than hydrated biofilms. Likewise, Lin et al.
90 (2024) demonstrated that *Salmonella* Typhimurium DSB exhibits greater
91 tolerance to sanitization compared to biofilms formed on moist surfaces. The
92 ability of *C. sakazakii* to form DSB has not been reported, nor its behavior on
93 different surfaces.

94 Fluctuation between high and low water activity as observed in a LMF
95 processing plant after sanitation can drive bacterial adaptative response, leading
96 to a greater tolerance and biofilm formation (Eriksson de Rezende et al. 2001).
97 In addition bacteria can enter a Viable But Non-Culturable (VBNC) state due to
98 stress conditions (starvation and desiccation) (Chen et al., 2021). VBNC state is
99 characterized as cells that lose their culturability on nutrient media while
100 maintaining the metabolic activity, including their virulence potential, and their
101 membrane integrity. However, VBNC cells can be resuscitated under favorable
102 conditions (Truchado et al., 2023; Zhang et al., 2021). Catalase has been
103 successfully used to resuscitate VBNC cells (Abdelhamid and Yousef, 2020; Ma
104 et al., 2024; Morishige et al., 2017). Catalase is crucial for counteracting oxidative
105 stress and resuscitating cells from a non-culturable to a culturable state (Borisov
106 et al., 2021; Morishige et al., 2017). In general, VBNC cells exhibit increased
107 tolerance to sanitizing agents such as chlorine-based and quaternary ammonium
108 compounds (Highmore et al., 2018), which makes them particularly relevant for
109 food processing environments. This poses a significant challenge for existing
110 cleaning and disinfection protocols, as routine monitoring may under estimated
111 the bacterial population (Chen et al., 2021). Although VBNC induction has been
112 documented under desiccation and sanitizer exposure, and a significant fraction
113 of DSB population may exist in the VBNC state Lin et al. (2024), no study has

114 specifically quantified VBNC cells within DSB formed by foodborne pathogens.

115 Currently, there is no standard methodology for DSB formation. The first
116 experimental model described by Almatroudi et al. (2015) was based on the use
117 of the CDC reactor alternating successive hydrated and dry phases every 48h for
118 12 days. The CDC reactor approach has been used by others (Chaggar et al.,
119 2024), while a sedimentation biofilm approach also using successive hydrated
120 and dry phases for 12 days has been adopted by Maillard's group in Wales
121 (Centeleghe et al., 2023; Ledwoch et al., 2018; Ledwoch et al., 2019). Other DSB
122 formation protocols have been reported with the aim to mimic better the
123 environment (Esther et al. 2023; Lin et al., 2024). Hydrated–dry cycle
124 combinations also varied depending on the study, ranging from a single cycle
125 (Chaggar et al., 2024) to two (Lin et al., 2024), three (Ledwoch et al., 2019), or
126 even four cycles (Almatroudi et al., 2015; Rahman et al., 2022). The duration of
127 each phase also differs considerably, with hydrated phases lasting from 6 to 48
128 h and dry phases extending up to 72 h (Almatroudi et al., 2015; Chaggar et al.,
129 2024; Ledwoch et al., 2018; Lin et al., 2024). Variation in methodology influences
130 the type and extent of DSB formation, making direct comparisons difficult.

131 In this context, the present study aims to evaluate the ability of *Salmonella*
132 spp. and *C. sakazakii* to form DSB on stainless steel (SS) and polypropylene (PP)
133 coupons, materials commonly used in the food industry. In addition, we
134 investigated the presence of the VBNC state, morphological changes in bacterial
135 cells, and the spatial dimension of these biofilms.

137 **2. Materials and methods**

138

139 **2.1 Bacterial strains and preparation of inocula**

140 Four *Salmonella* spp. strains, isolated from the peanut production chain in
141 Brazil, and five strains of *C. sakazakii* isolated from LMF processing environment
142 were used in this study (Table 1). All *C. sakazakii* and *Salmonella* strains
143 demonstrated their ability to form a biofilm under hydrated conditions (Umeda et
144 al., 2017; von Hertwig et al., 2022).

145

146

147

149 **Table 1.** Details about *Salmonella* spp. and *C. sakazakii* strains.

Code	Source of isolation	Identification	Reference and/or source
<i>Salmonella</i> spp.			
P03.2 FEA	Peanuts (primary production)	Serovar Muenster	
P6.1 FEA	Peanuts (processing)	Javiana	Nascimento et al (2018)
P07.1 FEA	Peanuts (processing)	Oranienburg	and von Hertwig et al (2019)
P10.5 FEA	Peanuts (primary production)	Miami	
<i>C. sakazakii</i>			Biogroup
P4499	Milk powder	8a	
P4787	Pre-cooked rice-based cereal	2	
P4791	Ground ginger	3	INCQS ^a
P4795	Rice / oat cereal mix	1	
P4798	Breadcrumbs	5	

150 ^aStrain bank of the National Institute for Quality Control in Health (INCQS) of the Oswaldo Cruz
 151 Foundation, Rio de Janeiro, RJ, Brazil.

152

153 *Salmonella* spp. and *C. sakazakii* strains were stored in a -80 °C ultra-low
 154 temperature freezer. For reactivation, a glass bead containing the microorganism
 155 was transferred to 5 mL of Brain Heart Infusion (BHI; Difco, Sparks, MD, USA)
 156 and incubated at 37 °C for 18-20 h. Subsequently, the strains were streaked onto
 157 slanted Trypticase Soy Agar (TSA; Difco, Sparks, MD, USA), incubated again at
 158 37 °C for the same duration; and then stored at 4 °C for further use.

159 At the time of the experiment, the strains underwent two successive
 160 subcultures in BHI, with incubation at 37 °C for 18-24 h for each passage.
 161 Following this process, strains were again streaked onto TSA and incubated for
 162 24 h at 37 °C. A loopful of each strain was then transferred to tubes containing
 163 0.85% saline solution (Synth, Brazil), and turbidity adjusted to 0.5 on the
 164 McFarland scale. Decimal dilutions were prepared in 0.1% peptone water (Difco,
 165 Sparks, MD, USA) and subsequently inoculated into Tryptic Soy Broth (TSB;

166 Difco, Sparks, MD, USA) to achieve a final concentration of approximately 6 log
167 CFU/mL (Test suspension).

168

169 **2.2 Preparation of the coupon**

170 To assess adhesion and dry biofilm formation of *Salmonella* spp. and *C.*
171 *sakazakii*, SS and PP coupons measuring 1 cm² were used. Prior to each
172 experiment, the coupons underwent a cleaning procedure adapted from Rosado
173 (2009). First, coupons were subjected to an ultrasonic bath (Ultronique, Brazil)
174 for 15 min at 40 kHz. Next, coupons were immersed in an anionic surfactant
175 detergent solution, manually scrubbed, and rinsed with distilled water. They were
176 then immersed in 70% ethanol for 2 h, followed by another rinse with distilled
177 water. Finally, the cleaned coupons were sterilized at 121 °C for 30 min.

178

179 **2.3 DSB formation**

180 Five distinct protocols (T1-T5) were evaluated for the formation of DSB.
181 Each protocol consisted of two consecutive cycles, and each cycle included a
182 hydrated phase followed by a dry phase (Table 2).

183

184 **Table 2.** DSB formation protocols.

Microorganism	Protocol number	Incubation time (h)				Total period *	
		Cycle 1		Cycle 2			
		Wet phase	Dry phase	Wet phase	Dry phase		
<i>Salmonella</i> spp. and <i>C. sakazakii</i>	T1	48	48	48	48	192	
<i>Salmonella</i> spp.	T2 [#]	24	48	24	48	144	
<i>Salmonella</i> spp. and <i>C. sakazakii</i>	T3	24	72	24	72	192	
<i>Salmonella</i> spp. and <i>C. sakazakii</i>	T4	24	120	24	120	288	
<i>Salmonella</i> spp. and <i>C. sakazakii</i>	T5	8	48	8	48	112	

185 *After two sequential DSB formation cycles.
186 # Protocol T2 (24 h wet + 48 h dry) was evaluated exclusively for *Salmonella* spp.
187 and not for *C. sakazakii*.

188

189 The DSB formation protocols were established based on varying exposure
190 times to moisture and water restriction, simulating typical conditions found in food
191 processing environments. Each cycle consisted of one hydrated phase followed
192 by one dry phase, and each protocol comprised two cycles (adapted from
193 Ledwoch et al., 2019). SS and PP coupons were placed in flat-bottom 24-well
194 plates (Costar®, Kennebunk, ME, USA) and inoculated with 1 mL of TSB
195 containing the *Salmonella* spp. and *C. sakazakii* test suspensions (section 2.1).
196 The coupons were then incubated at room temperature under gentle agitation
197 using an Orbit P2 shaker (Labnet International, Edison, NJ, USA) for 8, 24, or 48
198 h, characterizing the hydrated phase of cycle 1. After this period, the culture
199 medium was carefully removed using a micropipette, and the plates were
200 incubated at 25 °C under static conditions for 48, 72, or 120 h, corresponding to
201 the dry phase of cycle 1. After that, 1 mL of TSB solution only was added to the
202 wells and incubated as described above for the first hydrated phase of cycle 2.
203 After 8, 24, or 48 h, all media was drained out, and the plates were incubated for
204 an additional 48, 72, or 120 h at 25 °C under static conditions, corresponding to
205 the dry phase of cycle 2.

206

207 **2.3.1 Microbial quantification**

208 After each cycle, counts of cultivable sessile cells (CSC) and VBNC cells
209 were determined. Total viable sessile count (VSC) represents the sum of CSC
210 and VBNC cells.

211 Coupons were transferred to tubes containing 10 mL of 0.85% saline
212 solution and left in contact for 30 s to remove planktonic cells. Each coupon was
213 then transferred to a tube containing 5 mL of 0.85% saline solution and 10 glass
214 beads, followed by vortexing for 1 min (adapted from Ziech et al., 2016).
215 Subsequently, decimal dilutions were prepared and plated on TSA, followed by
216 incubation at 37 °C for 24 h to determine CSC.

217 To recover VBNC cells, 1 mL of the 0.85% saline solution was transferred
218 to tubes containing 1 mL of minimal medium (M9 broth without glucose; Sigma,

219 St. Louis, MO, USA) supplemented with 10,000 U of bovine liver catalase (Sigma,
220 St. Louis, MO, USA) and incubated at 37 °C for 6 h. After incubation, the solution
221 was plated on TSA and incubated at 37 °C for 24 h (Morishige et al., 2017).
222 Results were expressed as log CFU/cm².

223

224 **2.4 Scanning Electron Microscopy (SEM)**

225 For SEM analysis, one coupon from each DSB formation protocol was
226 immersed in 10 mL of 0.85% saline solution for 30 s to remove planktonic cells.
227 The coupons were then fixed in 2 mL of 0.1 M phosphate buffer solution
228 supplemented with 2% glutaraldehyde for 3 h. After this period, the coupons were
229 washed twice with 0.1 M phosphate buffer and subjected to a gradual dehydration
230 process using analytical grade ethanol, as described by Lou et al. (2013).

231 To remove alcohol completely, the coupons were transferred to a Critical
232 Point Dryer (Balzers, model CPD-030, Liechtenstein), using carbon dioxide as
233 the transitional agent. Subsequently, the coupons were coated with gold for 180
234 s using a Sputter Coater (Balzers, model SCD-50, Liechtenstein) and analyzed
235 using a Scanning Electron Microscope (ThermoFisher Scientific, Quattro S,
236 Czech Republic).

237

238 **2.5 CLSM analysis**

239 The spatial distribution and topography of biofilms were analyzed using
240 Confocal Laser Scanning Microscopy (CLSM) with the FilmTracer™
241 LIVE/DEAD® Biofilm Viability Kit (Invitrogen, Eugene, OR, USA) at a 1:1000
242 dilution. The fluorophores SYTO® 9 and propidium iodide were excited/emitted
243 at 482/500 nm and 490/635 nm, respectively. At the end of each DSB formation
244 protocol, one SS and one PP coupon were stained for 10 min, washed with PBS,
245 and kept in the dark until image acquisition. DSB samples were imaged using a
246 Zeiss LSM780-NLO confocal microscope coupled to an Axio Observer Z.1
247 microscope (Carl Zeiss AG, Germany), equipped with a 40×/0.6 water-immersion
248 objective.

249 Three-dimensional reconstruction, as well as analysis of the topography
250 and spatial distribution of DSB cells, was performed using FIJI software (ImageJ,
251 <https://imagej.net/ij/index.html>). Three-dimensional images were acquired in
252 separate channels for each fluorophore, using Z-stack mode with ~1.4 μm

253 spacing between planes throughout the entire depth of the biofilm, over a
254 scanning area of 212 x 212 μm . Biofilm thickness was determined by visualization
255 in the ZY plane, based on 1.4 μm intervals, according to a methodology adapted
256 from Capita et al. (2019). Measurements were taken at three points along the Y-
257 axis (30 μm , central region ~106 μm , and 180 μm), centered on the X-axis. The
258 Z-axis represented the depth (μm). Thickness was expressed as the mean \pm
259 standard deviation. For topographic analysis, images were rendered in 3D with
260 superimposition of the Z-stack planes. The X and Y axes represent the scanned
261 area (μm), while the Z-axis indicates luminance, corresponding to the intensity of
262 the fluorescent signal. The COMSTAT2 program (www.comstat.dk, Heydorn,
263 2000; Vorregaard, 2008) was used to evaluate the maximum biofilm thickness
264 (μm) and biofilm biomass ($\mu\text{m}^2/\mu\text{m}^3$) obtained from each channel (green/red). The
265 COMSTAT2 was used as a plugin in ImageJ (<https://imagej.net/ij/>).

266

267 **2.6 Statistical analysis**

268 Each experiment was performed in three independent replicates. The CSC
269 and VSC counts were analyzed by one-way ANOVA and Tukey's test to
270 determine the influence of DSB protocols, surface materials and DSB cycle
271 number on these parameters ($p \leq 0.05$) Statistical analyses were performed using
272 the Statistical Analysis System software (SAS v.9.4, Cary, NC, USA).

273

274 **3. Results**

275

276 **3.1 DSB enumeration**

277 In this study, the biofilm-forming capacity of DSB by *Salmonella* spp. and
278 *C. sakazakii* on SS and PP coupons was evaluated. Five DSB formation protocols
279 were tested for *Salmonella* spp., and four for *C. sakazakii*. Each protocol
280 consisted of two hydration and dehydration cycles with varying durations (Table
281 2).

282 For *Salmonella*, no significant difference ($p > 0.05$) was observed between
283 cycle 1 and cycle 2 for both CSC (catalase non-treated) and VSC (catalase-
284 treated) counts. There were no significant differences in CSC or VSC ($p > 0.05$)
285 on SS between T1 and T4 DSB protocols. By the end of cycle 2, CSC counts
286 reached 6.5 log CFU/cm² for T1, 6.7 log CFU/cm² for T2, 6.8 log CFU/cm² for T3,

287 6.5 log CFU/cm² for T4, but only 3.7 log CFU/cm² for T5. A significant difference
288 in CSC and VSC ($p < 0.05$) was detected on PP between T3-cycle 2 and T5-cycle
289 2, with counts of 7.2 and 5.0 log CFU/cm², respectively, while CSC and VSC
290 counts following cycle 2 from other protocols were around 6.5 log CFU/cm². In
291 addition, for this cell group, a significant difference ($p < 0.05$) between surfaces
292 was observed for T5 (3.7 log CFU/cm²) on SS-cycle 1 and SS-cycle 2 compared
293 top 5.5 log CFU/cm² on PP-cycle 1.

294 Catalase treatment led to a significant increase ($p < 0.05$) in the biofilm
295 population recovered on both surfaces, suggesting the presence of VBNC state.
296 On SS, the lowest VSC count was noted for T5 (5.9–6.5 log CFU/cm²), whereas
297 other protocols ranged from 7.7 to 8.6 log CFU/cm². There was a significant
298 difference in VSC ($p < 0.05$) between T5-cycle 1 and cycle 1 or cycle 2 for other
299 protocols. On PP, there was no significant difference ($p > 0.05$) in VSC counts
300 (ranging from 7.4 to 8.3 log CFU/cm²). There was no significant difference ($p >$
301 0.05) in VSC count from T5 between PP and SS, despite the observed 1.5 log
302 difference in number. The greatest raise in the DSB population after catalase
303 resuscitation were obtained for T5-cycle 2 (2.4 log CFU/cm² on PP and 2.8 log
304 CFU/cm² on SS), whereas other protocols ranged from 1.1 to 1.9 log CFU/cm².

305 There was no significant difference in CSC or VSC for *C. sakazakii*
306 between both cycles for any protocol ($p > 0.05$). The lowest CSC count was
307 observed in T5-cycle on SS (4.5 log CFU/cm²), and the highest in T3-cycle on SS
308 (8.1 log CFU/cm²). CSC from other protocols ranged from 6.3 to 7.6 log CFU/cm².
309 There was no significant difference ($p < 0.05$) only between T5-C1-SS and all
310 other protocols, except T1-C2-SS.

311 Regarding the surface material, there was significant difference ($p < 0.05$)
312 only between T5-C1-SS and T5-C2-PP, 4.5 log CFU/cm² versus 7.1 log CFU/cm².
313 For VSC, no significant differences ($p > 0.05$) were detected among protocols or
314 surfaces. The counts ranged from 7.2 to 9.0 log CFU/cm² on SS and from 8.3 to
315 8.7 log CFU/cm² on PP. The highest increase in the DSB counts after catalase
316 treatment was observed for T5-C1-SS (2.7 log CFU/cm²), followed by T5-C1-PP
317 and T1-C2-SS (2.2 log CFU/cm²), whereas T3-C1-SS exhibited the smallest
318 value (0.6 log CFU/cm²), and all other protocols ranged from 1.0 to 1.9 log
319 CFU/cm².

320

321

322

323 **3.2 DSB cell morphology**

324 Phenotypic changes in the morphology of both bacterial species were
325 observed. The most frequently observed phenomena included cell elongation
326 and filamentation, the latter distinguished by the presence of visible septa within
327 long-chain cell structures (Figures 3 and 4, yellow arrow). Furthermore, many
328 cells exhibited coccoid morphology (Figure 3 and 4, blue arrow) or signs of
329 reduced turgor, as evidenced by cell shrinkage or wilting (Figure 3 and 4, red
330 arrow). Membrane rupture was also verified in some cells, indicating possible cell
331 lysis (Figure 3 and 4, orange arrow). In addition, these morphological alterations
332 were more frequently observed in *Salmonella* DSB. SEM images revealed the
333 formation of bacterial biofilms, with the production of an EPS matrix (Figures 3
334 and 4, green arrow) on both SS and PP coupons across all DSB formation
335 protocols evaluated.

336

337 **3.3 CLSM analysis**

338 The analyses of the CLSM images revealed that the thickest *Salmonella*
339 DSB were observed on PP, with T1 ($12.7 \pm 2.3 \mu\text{m}$) followed by T4 ($9.4 \pm 0.7 \mu\text{m}$).
340 On SS, the highest average values were for T1 and T2 (both $8.5 \pm 1.2 \mu\text{m}$). The
341 densest biofilms were found in T3 on PP ($3.3 \pm 0.7 \mu\text{m}$) and in T5, $4.7 \pm 0.7 \mu\text{m}$ on
342 SS and $4.2 \pm 1.2 \mu\text{m}$ on PP (Table 3). For *C. sakazakii*, the variation in DSB
343 thickness across protocols was less pronounced. The greatest average thickness
344 values were recorded in T4 on PP and T1 on SS, both measuring $10.4 \mu\text{m}$
345 (Figures 7 and 8). The lowest values were observed in T3, $5.7 \pm 0.2 \mu\text{m}$ on PP
346 and $7.1 \pm 1.2 \mu\text{m}$ on SS. On the other hand, the maximum thickness was more
347 similar among *Salmonella* than *C. sakazakii* DSB protocols, except in T5 (Table
348 3). In terms of spatial distribution, DSB formed on SS were generally more
349 homogeneous than those on PP for both bacterial species (Figure 5 and 6). The
350 biomass of live (green signal) and dead (red signal) cells did not follow a standard
351 pattern (Supp. 1). For *Salmonella* T1, T2 and T3 showed a higher percent of dead
352 cells on SS, whereas in T4 and T5 this predominance occurred on PP (Table 3).
353 In contrast, the opposite was noted for *C. sakazakii*.

355 **Table 3.** Characterization of DSB formed by *Salmonella* and *C. sakazakii* in SS
 356 and PP surfaces.

Inoculum	DSB protocol	Surface material	Thickness (μm)		Cell biomass (μm ³ /μm ²) ³	
			Average ¹	Maximum ²	% Dead cells (red)	% Live cells (green)
<i>Salmonella</i>	T1	PP	12.7 ± 2.3	15.6	29.4	70.6
		SS	8.5 ± 1.2	9.9	50.5	49.5
	T2	PP	6.1 ± 0.7	15.6	14.6	85.4
		SS	8.5 ± 1.2	15.6	43.8	56.2
	T3	PP	3.3 ± 0.7	14.1	7.8	92.2
		SS	6.8 ± 2.0	15.6	44.7	55.3
	T4	PP	9.4 ± 0.7	15.6	38.5	61.5
		SS	6.6 ± 1.3	15.6	9.0	91.0
	T5	PP	4.2 ± 1.2	9.9	61.6	38.4
		SS	4.7 ± 0.7	9.9	32.7	67.3
<i>C. sakazakii</i>	T1	PP	9.6 ± 0.4	9.7	56.0	44.0
		SS	10.4 ± 0.7	14.1	31.1	68.9
	T3	PP	5.7 ± 2.0	17.0	46.5	53.5
		SS	7.1 ± 1.2	22.6	25.8	74.2
	T4	PP	10.4 ± 1.8	15.6	48.1	51.9
		SS	9.7 ± 2.9	15.6	71.0	29.0
	T5	PP	7.5 ± 1.3	15.5	27.9	72.1
		SS	9.1 ± 1.0	12.7	40.1	59.9

T1 – 48 h wet + 48 h dry; T2 – 24 h wet + 48 h dry; T3 – 24 h wet+ 72 h dry; T4 – 24 h wet + 120 h dry; T5 – 8 h wet + 48 h dry. ¹Values are arithmetic mean with a standard deviation of three replicates. ²Calculated using COMSTAT2. ³Cell biomass = Biomass of live or dead cells/ (Biomass of live cells + Biomass of dead cells), calculated using COMSTAT2.

357 **4. Discussion**

358 This is the first study to evaluate different conditions for DSB formation by
 359 *Salmonella* and *C. sakazakii* strains, isolated from LMF processing environments,

360 on surfaces commonly used in the food industry (SS and PP). This study also
361 investigated the presence of VBNC cells in DSB. The experimental protocols
362 were adapted from Ledwoch et al. (2019), with each DSB protocol comprising
363 two hydrated and dry cycles, as detailed in Table 2. Whilst we did not use any
364 bovine serum albumin (BSA) in the hydrated phase, which helped with the
365 viability of *Staphylococcus aureus* during DSB formation (Ledwoch et al., 2019),
366 CSC obtained in most our protocols were > 6 log CFU/cm². These counts were
367 similar to the *Salmonella* Typhimurium counts reported by Duggan et al. (2024)
368 who used six wet-dry cycles over a period of 12 days and BSA in each hydrated
369 phase.

370 The majority of *Salmonella* DSB protocols (T1 to T4) resulted in CSC
371 counts between 6 and 7 log CFU/cm², reaching up to 8.6 log CFU/cm² after
372 catalase resuscitation (VSC, Figure 1). Chaggar et al. (2024) reported similar
373 results with counts from 6.3 to 7.1 log CFU/coupon for *S. Typhimurium* ATCC
374 14028 biofilms on borosilicate glass, using a 24-h hydrated phase followed by
375 dehydration for 24, 48, and 72 h. Lin et al. (2024) also evaluated *S. Typhimurium*
376 ATCC 14028 DSB formation on Petri dishes under a single condition (48 h wet +
377 48 h dry + 6 h wet + 66 h dry) and reported approximately 6.0 log CFU/plate. In
378 addition, T5 (8-h wet + 48-h dry) yielded the lowest counts, with a significant
379 difference ($p < 0.05$) compared with other protocols, especially on SS (Figure 1).
380 This suggests that the duration of moisture exposure plays a crucial role in the
381 *Salmonella* DSB formation on abiotic surfaces, while water restriction during the
382 dry phase has a lesser impact on the number of cells. It is well known that
383 desiccation stress induces molecular defense responses in the *Salmonella* cells,
384 including the accumulation of trehalose and other compatible solutes, along with
385 synthesis of stress proteins such as heat-shock proteins and chaperones
386 (Gruzdev et al., 2012; Wang et al., 2021). Nonetheless, there is a lack of data on
387 the molecular mechanisms involved in DSB formation and persistence. Notably,
388 *C. sakazakii* exhibited CSC counts up to 1.0 log CFU/cm² higher than those
389 observed for *Salmonella* in T1, T3 and T4, and > 2 log CFU/cm² in T5 (Figure 1
390 and 2). It suggests a greater adaptability capacity of this pathogen to conditions
391 of nutrient and water restrictions, as well as a greater rate of biofilm formation.
392 However, to date, no published studies have addressed DSB formation or
393 persistence by *C. sakazakii*, limiting direct comparisons. The ability of *C.*

394 *sakazakii* to survive in powdered infant formula (PIF) for extended periods and its
395 association with severe infections in neonates have been reported (Beuchat et
396 al., 2013; FAO/WHO, 2006; Strysko et al., 2020). Indeed, our results have critical
397 implications for PIF manufacturing plants, since evidence that the presence of
398 DSB can increase the risk of cross-contamination in final product. Another
399 noteworthy finding is the ability of both pathogens to form DSB even after a single
400 exposure to high humidity (cycle 1, Figure 1 and 2). In fact, accidental leaks or
401 residual moisture post-sanitation can suffice to initiate biofilm formation. These
402 results align with the Code of Hygienic Practices for LMF of Codex Alimentarius
403 (CXC 75-2015, 2018), which recommends strict humidity control in processing
404 environments to prevent microbial growth. The LMF processing plants should
405 minimize water use in production areas and promptly remove any leaks or
406 condensation. In particular, wet sanitation should be avoided whenever possible,
407 and if performed, surfaces must be dried immediately to prevent microbial growth
408 (Beuchat et al., 2013; ICMSF, 2011).

409 The VBNC state is recognized as a microbial survival strategy under
410 stresses such as dehydration, nutrient limitation, and sanitizer exposure
411 (Balagurusamy et al., 2024; Kunadu et al., 2024). VBNC cells, although
412 metabolically active and potentially pathogenic, do not form colonies under
413 routine conditions and therefore may escape detection, leading to a false
414 negative result (Foddai and Grant, 2020). Liu et al. (2023) proposed the term
415 “viable cells with loss of culturability” to describe VBNC cells. The inability of
416 VBNC cells to detoxify lethal free radicals either induced by the cells themselves
417 or present in the culture medium is one of the main reasons for the non-
418 culturability. This process may be due to the repression of periplasmic catalase,
419 which breaks down toxic peroxide (Morishige et al., 2017). As a result, several
420 proteins have been shown to play a significant role in the formation of VBNC cells;
421 these include superoxide dismutase (SodA), catalases KatA and KatG, RNA
422 polymerase sigma S (RpoS), alkyl hydroperoxide reductase subunit C (AhpC),
423 sensory histidine kinase (EnvZ), and a LysRtype transcriptional regulator (OxyR)
424 (İzgördü et al., 2022; Ma et al., 2024). In the current study, VBNC cells were
425 defined as the population capable of resuscitation in the presence of catalase;
426 however, no complementary assessments of metabolic activity or membrane
427 integrity were conducted. According to our data, adaptation to DSB induced a

428 transition to the VBNC state, as evidenced by the resuscitate effect of catalase.
429 The culturability increased between 1.1 and 2.8 log CFU/cm² for *Salmonella* and
430 0.6 to 2.2 log CFU/cm² for *C. sakazakii* after catalase treatment (VSC, Figures 1
431 and 2). This method has also been shown to successfully resuscitate *Salmonella*
432 cells in the VBNC state following desiccation stress (Abdelhamid and Yousef,
433 2020; Morishige et al., 2017). Furthermore, T5 showed the largest differences
434 between CSC and VSC for both species (Figures 1 and 2). The desiccation stress
435 experienced by the bacteria following the brief hydrated phase (8 h) likely
436 triggered defense mechanisms, resulting in a greater presence of VBNC cells in
437 both pathogens. Lin et al. (2024) also suggested that a significant portion of the
438 DSB population likely exists in the VBNC state. Thus, the occurrence of the VBNC
439 state or injured cells in the LMF processing environment poses a considerable
440 challenge to the validation of hygiene protocols. Routine verification of sanitation
441 efficacy typically relies on conventional culture methods, which fail to detect
442 bacteria in the VBNC state (Kazemzadeh-Narbat et al., 2021). Our data indicate
443 that this limitation may lead to false-negative results during environmental
444 monitoring, corroborating with Foddai and Grant (2020). Furthermore, they
445 highlight the need for developing rapid and reliable detection methods capable of
446 identifying VBNC cells, which can be integrated into routine monitoring within food
447 manufacturing facilities.

448 The surface material only significantly impacted ($p<0.05$) the T5 protocol
449 for both pathogens, with greater CSC counts on PP than SS (Figure 1 and 2).
450 Factors such as surface roughness and hydrophobicity impact moisture retention
451 and bacterial adhesion, influencing cell physiology (Ivers et al., 2024; Lehner et
452 al., 2005). Hydrophobic materials like PP tend to promote the initial attachment
453 of cells by reducing repulsive electrostatic interactions, while smoother and more
454 hydrophilic surfaces such as stainless steel generally limit irreversible adhesion
455 but may support more uniform film formation once attachment occurs (Carniello
456 et al., 2018; Zhang et al., 2016; Wu et al., 2018). In addition, the DSB average
457 thicknesses and the biomass of live and dead cells also varied according to the
458 microorganism, surface type, and protocol, with values ranging from 3.3 to
459 12.7 μ m and 29 to 92.2% (Table 3). However, it was not possible to establish a
460 standard behavior of the DSB evaluated. In fact, it emphasizes the complex
461 nature of biofilm formation, which depends on multiple environmental and

462 biological factors (Flemming et al., 2023; Sauer et al., 2022). In general, T1
463 resulted in greater surface coverage, reflecting more favorable conditions for
464 microbial growth due to extended hydrated phase exposure (Figure 5 and 6).
465 Interestingly, T3 (24-h wet + 72-h dry) produced the densest biofilm (except for
466 *Salmonella* on SS), despite having similar microbial counts to T1 (Figure 1 and
467 2), suggesting an adaptive response to desiccation stress. Although T5 showed
468 thickness close to T3, the spatial distribution (Figure 5 and 6) and the CSC counts
469 (Figure 1 and 2) indicate a softer and less dense biofilm, emphasizing the critical
470 influence of the hydrated phase on the DSB structure. Furthermore, *Salmonella*
471 DSB showed more heterogeneous surface coverage and biomass thickness
472 (Figure 5). Lin et al. (2024) similarly reported that *S. Typhimurium* DSB exhibited
473 a heterogeneous vertical distribution with a thickness of around 15 μm . Capita et
474 al. (2019) evaluated hydrated biofilms formed by *Salmonella* on polystyrene at
475 37 $^{\circ}\text{C}$ for 24 h, and obtained thicknesses between 15.7 and 53.3 μm . In contrast,
476 *C. sakazakii* formed biofilms with more uniform spatial distribution across
477 protocols (Figure 6), emphasizing greater adaptability and potential for biofilm
478 formation under extreme conditions.

479 Previous studies describe DSB EPS as dense and compact, with fewer
480 filaments compared to hydrated surface biofilms (WSB) (Lin et al., 2024; Rahman
481 et al., 2022). The EPS matrix is vital for desiccation protection, by retaining
482 moisture and shielding cells from physical and chemical damage, contributing to
483 biofilm persistence in industrial settings (Greffé and Michiels, 2020; Iibuchi et al.,
484 2010; Machado et al., 2012). In the current study, the presence of EPS was
485 confirmed in all DSB by SEM, with filamentous EPS more prominent in
486 *Salmonella* (Figure 3, green arrow). SEM imaging also revealed typical
487 desiccation-related morphological changes in *Salmonella* and *C. sakazakii* cells,
488 including cell lysis, reduced turgor pressure, and membrane damage (Figures 3
489 and 4). High intracellular osmolyte concentrations, produced in response to
490 desiccation, drive water efflux; forcing bacteria to adopt energy-intensive
491 mechanisms to maintain turgor (Ebelin et al., 2018). Although essential for
492 survival, these adaptations are energetically costly. When osmolyte biosynthesis
493 or uptake becomes too costly, energy depletion reduces turgor pressure (Craig
494 et al., 2021). This combined energy and desiccation stress impairs cell division
495 by inhibiting septation and inducing bacterial filamentation (Burgess et al., 2016;

496 Yan et al., 2024); observed in all evaluated DSB (Figures 3 and 4). Filamentation
497 increases biomass without a corresponding increase in cell number, possibly
498 reflecting an adaptive advantage or survival strategy. Stackhouse et al. (2012)
499 reported that filamentation enhances desiccation tolerance. In addition, changes
500 in cell shape, including a shift toward coccoid morphology (more frequent in
501 *Salmonella* biofilms), may represent further structural adaptation to desiccation
502 stress and may indicate a transition to the VBNC state (Ma et al., 2024). Dong et
503 al. (2020) linked coccoid forms in VBNC *Salmonella* cells to cell wall alterations.

504 In conclusion, this study demonstrated that both *Salmonella* and *C. sakazakii* can form DSB on SS and PP even under moisture-limited conditions.
505 The duration of the hydrated phase emerged as a critical factor influencing both
506 the extent of biofilm formation and the induction of the VBNC state. In addition,
507 *C. sakazakii* exhibited a greater capacity for DSB formation compared to
508 *Salmonella*, suggesting higher adaptability to desiccation stress conditions.
509 These findings emphasize the importance of strict hygiene and moisture control
510 measures in LMF processing environments to prevent biofilm establishment and
511 pathogen persistence. Furthermore, risk monitoring approaches that consider the
512 induction of the VBNC state and the potential resurrection of these cells should
513 be integrated into prerequisite programs and hazard analysis and critical control
514 points (HACCP). Moreover, these data may contribute to risk assessment studies
515 to establish more effective control measures for ensuring the safety of LMF.
516 However, despite these relevant contributions, the study has some limitations,
517 such as the use of a limited number of bacterial strains and surface types.
518 Therefore, future studies assessing the long-term survival of DSB, as well as their
519 resistance to both dry and wet sanitizers routinely applied in the food industry
520 across different surface types are needed. In addition, transcriptomic analysis to
521 determine mechanisms involved in transition to VBNC in DSB shall be
522 investigated.

524

525 **CRediT authorship contribution statement**

526 **Vinícius S. A. Vaz:** Writing – original draft, Visualization, Investigation, Formal
527 analysis, Data curation. **Jéssica de A.F.F. Finger:** Writing – original draft,
528 Visualization, Formal analysis, Data curation. **Raul F. Pereira:** Methodology,
529 Investigation, Formal analysis. **Mariana S. Derami:** Visualization, Investigation.

530 **Jean-Yves Maillard:** Methodology, Writing – review & editing. **Maristela S.**
531 **Nascimento:** Writing – review & editing, Resources, Project administration,
532 Methodology, Funding acquisition, Conceptualization, Data curation.

533

534 **Declaration of competing interest**

535 The authors declare that they have no known competing financial interests or
536 personal relationships that could have appeared to influence the work reported in
537 this paper.

538

539 **Acknowledgements**

540 The authors acknowledge financial support from Fundação de Amparo à
541 Pesquisa do Estado de São Paulo (FAPESP; 2021/06809-2 and 2023/03076-0),
542 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq;
543 305702/2021-1), and Coordenação de Aperfeiçoamento de Pessoal de Nível
544 Superior – Brazil (CAPES; Finance Code 001). The authors also thank the
545 National Institute of Science and Technology on Photonics Applied to Cell Biology
546 (INFABC) at the State University of Campinas for providing access to CLSM
547 equipment and technical support (FAPESP; 2014/50938-8 and CNPq;
548 465699/2014-6).

549

550 **References**

551 Abdallah, M., Benoliel, C., Drider, D., Dhuister, P., Chihib, N. E., 2014.
552 Biofilm formation and persistence on abiotic surfaces in the context of food and
553 medical environments. *Arch. Microbiol.* 196, 453-472.
554 <https://doi.org/10.1007/s00203-014-0983-1>.

555 Abdelhamid, A. G., Yousef, A. E., 2020. Collateral adaptive responses
556 induced by desiccation stress in *Salmonella enterica*. *LWT* 133, 110089.
557 <https://doi.org/10.1016/j.lwt.2020.110089>.

558 Akuzov, D., Brümmer, F., Vladkova, T., 2013. Some possibilities to reduce
559 the biofilm formation on transparent siloxane coatings. *Colloids Surf. B:*
560 *Biointerfaces* 104, 303-310. <https://doi.org/10.1016/j.colsurfb.2012.09.036>.

561 Almatroudi A, Hu H, Deva A, Gosbell IB, Jacombs A, Jensen SO, et al. A
562 new dry-surface biofilm model: An essential tool for efficacy testing of hospital
563 surface decontamination procedures. *J Microbiol Methods*. 2015; **117**:171–176.

564 Alonso, V. P. P., Gonçalves, M. P. M., de Brito, F. A. E., Barboza, G. R.,
565 Rocha, L. D. O., Silva, N. C. C., 2023. Dry surface biofilms in the food processing
566 industry: An overview on surface characteristics, adhesion and biofilm formation,
567 detection of biofilms, and dry sanitization methods. *Compr. Rev. Food Sci. Food*
568 *Saf.* 22, 688-713. <https://doi.org/10.1111/1541-4337.13089>.

569 Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R., Cotter, P. D., 2019.
570 Biofilms in food processing environments: challenges and opportunities. *Annu.*
571 *Rev. Food Sci. Technol.* 10, 173-195. <https://doi.org/10.1146/annurev-food-032818-121805>.

572 Amaeze, N., Akinbobola, A. B., Kean, R., Ramage, G., Williams, C.,
573 Mackay, W., 2024. Transfer of microorganisms from dry surface biofilms and the
574 influence of long survival under conditions of poor nutrition and moisture on the
575 virulence of *Staphylococcus aureus*. *J. Hosp. Infect.* 150, 34-39.
576 <https://doi.org/10.1016/j.jhin.2024.03.023>.

577 Anderson, D., Anderson, N., Harris, L. J., Ocasio, W., 2017. Validation
578 Requirements in Heat-Processed Low-Moisture Foods. In: *Control of Salmonella*
579 and Other Bacterial Pathogens in Low Moisture Foods, pp. 149–173.
580 <https://doi.org/10.1002/9781119071051.CH7>.

581 Balagurusamy, R., Gopi, L., Kumar, D. S. S., Viswanathan, K.,
582 Meganathan, V., Sathiyamurthy, K., Athmanathan, B., 2024. Significance of
583 Viable But Non-culturable (VBNC) state in vibrios and other pathogenic bacteria:
584 induction, detection and the role of resuscitation promoting factors (Rpf). *Curr.*
585 *Microbiol.* 81, 417. <https://doi.org/10.1007/s00284-024-03947-8>.

586 Beuchat, L. R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon,
587 F., Fanning, S., ..., Ter Kuile, B. H., 2013. Low-water activity foods: increased
588 concern as vehicles of foodborne pathogens. *J. Food Prot.* 76, 150-172.
589 <https://doi.org/10.4315/0362-028X.JFP-12-211>.

590 Borisov, V. B., Siletsky, S. A., Nastasi, M. R., Forte, E., 2021. ROS
591 defense systems and terminal oxidases in bacteria. *Antioxidants* 10, 839.
592 <https://doi.org/10.3390/antiox10060839>.

593 Burgess, C. M., Gianotti, A., Gruzdev, N., Holah, J., Knøchel, S., Lehner,
594 A., ..., Tresse, O., 2016. The response of foodborne pathogens to osmotic and
595 desiccation stresses in the food chain. *Int. J. Food Microbiol.* 221, 37-53.
596 <https://doi.org/10.1016/j.ijfoodmicro.2015.12.014>.

598 Câmara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R.,
599 Richardson, M. C., ..., Webb, J. S., 2022. Economic significance of biofilms: a
600 multidisciplinary and cross-sectoral challenge. *NPJ Biofilms Microbiomes* 8, 42.
601 <https://doi.org/10.1038/s41522-022-00306-y>.

602 Capita, R., Fernández-Pérez, S., Buzón-Durán, L., Alonso-Calleja, C.,
603 2019. Effect of sodium hypochlorite and benzalkonium chloride on the structural
604 parameters of the biofilms formed by ten *Salmonella enterica* serotypes.
605 *Pathogens* 8, 154. <http://dx.doi.org/10.3390/pathogens8030154>.

606 Carniello, V., Peterson, B. W., van der Mei, H. C., Busscher, H. J., 2018.
607 Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm
608 growth. *Adv. Colloid Interface Sci.* 261, 1-14.
609 <https://doi.org/10.1016/j.cis.2018.10.005>.

610 Centeleghe, I., Norville, P., Hughes, L., Maillard, J. Y. 2023. *Klebsiella*
611 *pneumoniae* survives on surfaces as a dry biofilm. *American Journal of Infection*
612 *Control* 51, 1157-1162. <https://doi.org/10.1016/j.ajic.2023.02.009>.

613 Chaggar, G. K., Bryant, D. B., Chen, R., Fajardo, D., Jules-Culver, Z. A.,
614 Drolia, R., Oliver, H. F., 2024. Development of *Salmonella enterica* serovar
615 *Typhimurium*, *Listeria monocytogenes*, and *Pseudomonas aeruginosa* multi-
616 species in vitro dry surface biofilm models: Insights into resilience and
617 persistence in low-moisture environments. *Food Control* 166, 110703.
618 <https://doi.org/10.1016/j.foodcont.2024.110703>.

619 Chen, G., Lin, M., Chen, Y., Xu, W., Zhang, H., 2021. Induction of a viable
620 but nonculturable state, thermal and sanitizer tolerance, and gene expression
621 correlation with desiccation-adapted biofilm and planktonic *Salmonella* in
622 powdered infant formula. *J. Food Prot.* 84, 1194-1201.

623 Chowdhury, D., Tahir, S., Legge, M., Hu, H., Prvan, T., Johani, K., ... ,
624 Vickery, K., 2018. Transfer of dry surface biofilm in the healthcare environment:
625 the role of healthcare workers' hands as vehicles. *J. Hosp. Infect.* 100, e85-e90.
626 <https://doi.org/10.1016/j.jhin.2018.06.021>.

627 Codex Alimentarius, 2018. Code of Hygienic Practice for Low-Moisture
628 Foods. CXC 75-2015. <https://www.fao.org/fao-who-codexalimentarius/codextexts/codes-of-practice/en/> (accessed 21 February
629 2025).

630 Craig, K., Johnson, B. R., Grunden, A., 2021. Leveraging *Pseudomonas*

632 stress response mechanisms for industrial applications. *Front. Microbiol.* 12,
633 660134. <https://doi.org/10.3389/fmicb.2021.660134>.

634 Dallal, M. M. S., Kelishomi, F. Z., Nikkhahi, F., Salehi, T. Z., Fardsanei, F.,
635 Peymani, A., 2023. Biofilm formation, antimicrobial resistance genes, and genetic
636 diversity of *Salmonella enterica* subspecies *enterica* serotype Enteritidis isolated
637 from food and animal sources in Iran. *J. Glob. Antimicrob. Resist.* 34, 240-246.
638 <https://doi.org/10.1016/j.jgar.2023.08.004>.

639 Dass, S. C., Wang, R., 2022. Biofilm through the looking glass: A microbial
640 food safety perspective. *Pathogens* 11, 346.
641 <https://doi.org/10.3390/pathogens11030346>.

642 Dong, K., Pan, H., Yang, D., Rao, L., Zhao, L., Wang, Y., Liao, X., 2020.
643 Induction, detection, formation, and resuscitation of viable but non-culturable
644 state microorganisms. *Compr. Rev. Food Sci. Food Saf.* 19, 149-183.
645 <https://doi.org/10.1111/1541-4337.12513>.

646 Duggan, K., Shepherd, M., Maillard, J. Y., 2024. Susceptibility of
647 *Salmonella enterica* Typhimurium dry surface biofilms to disinfection. *J. Food Saf.*
648 44, e13117. <https://doi.org/10.1111/jfs.13117>.

649 Eriksson de Rezende, C. L., Mallinson, E. T., Gupte, A., Joseph, S. W.
650 2001. *Salmonella* spp. are affected by different levels of water activity in closed
651 microcosms. *J. Ind. Microbiol. Biotechnol.* 26, 222-225.
652 <https://doi.org/10.1038/sj.jim.7000116>.

653 Esbelin, J., Santos, T., Hébraud, M., 2018. Desiccation: an environmental
654 and food industry stress that bacteria commonly face. *Food Microbiol.* 69, 82-88.
655 <https://doi.org/10.1016/j.fm.2017.07.017>.

656 Esther C, Olive C, Louisin M, Dramé M, Marion-Sánchez K. A new spray-
657 based method for the in-vitro development of dry-surface biofilms. *Microbiol*
658 *Open*. 2023; **12**:e1330.

659 FAO/WHO, 2006. *Enterobacter sakazakii* and *Salmonella* in powdered
660 infant formula. Microbiological Risk Assessment Series No. 10. Rome. 52.
661 <https://www.who.int/publications/i/item/9241563311>.

662 Flemming, H. C., van Hullebusch, E. D., Neu, T. R., Nielsen, P. H.,
663 Seviour, T., Stoodley, P., ..., Wuertz, S., 2023. The biofilm matrix: multitasking in
664 a shared space. *Nat. Rev. Microbiol.* 21, 70-86. <https://doi.org/10.1038/s41579-022-00791-0>.

666 Foddai, A. C., Grant, I. R., 2020. Methods for detection of viable foodborne
667 pathogens: Current state-of-art and future prospects. *Appl. Microbiol. Biotechnol.*
668 104, 4281-4288. <https://doi.org/10.1007/s00253-020-10542-x>.

669 Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., Lombó, F.,
670 2018. Biofilms in the food industry: health aspects and control methods. *Front. in*
671 *Microbiol.* 9, 1-18. <https://doi.org/10.3389/fmicb.2018.00898>.

672 Greffe, V. R. G., Michiels, J., 2020. Desiccation-induced cell damage in
673 bacteria and the relevance for inoculant production. *Appl. Microbiol. Biotechnol.*
674 104, 3757–3770. <https://doi.org/10.1007/s00253-020-10501-6>

675 Gruzdev, N., McClelland, M., Porwollik, S., Ofaim, S., Pinto, R., Saldinger-
676 Sela, S., 2012. Global transcriptional analysis of dehydrated *Salmonella enterica*
677 serovar Typhimurium. *Appl. Environ. Microbiol.* 78, 7866-7875.
678 <https://doi.org/10.1128/aem.01822-12>.

679 Han, L., Wang, K., Ma, L., Delaquis, P., Bach, S., Feng, J., Lu, X., 2020. Viable but nonculturable *Escherichia coli* O157: H7 and *Salmonella enterica* in
680 fresh produce: Rapid determination by loop-mediated isothermal amplification
681 coupled with a propidium monoazide treatment. *Appl. Environ. Microbiol.* 86,
682 e02566-19. <https://doi.org/10.1128/AEM.02566-19>.

683 Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M.,
684 Ersbøll, B. K., Molin, S. 2000. Quantification of biofilm structures by the novel
685 computer program COMSTAT. *Microbiology* 146, 2395-2407.
686 <https://doi.org/10.1099/00221287-146-10-2395>.

687 Iibuchi, R., Hara-Kudo, Y., Hasegawa, A., Kumagai, S., 2010. Survival of
688 *Salmonella* on a polypropylene surface under dry conditions in relation to biofilm-
689 formation capability. *J. Food Prot.* 73, 1506-1510. <https://doi.org/10.4315/0362-028X-73.8.1506>.

690 International Commission on Microbiological Specifications for Foods
691 (ICMSF), 2011. *Microorganisms in Foods 8: Use of Data for Assessing Process*
692 *Control and Product Acceptance*. Springer. ISBN 978-1-4419-9373-1.

693 Ivers, C., Kaya, E. C., Yucel, U., Boyle, D., Trinetta, V., 2024. Evaluation
694 of *Salmonella* biofilm attachment and hydrophobicity characteristics on food
695 contact surfaces. *BMC Microbiol.* 24, 387. <https://doi.org/10.1186/s12866-024-03556-2>.

699 Izgördü, Ö. K., Darcan, C., Kariptaş, E., 2022. Overview of VBNC, a
700 survival strategy for microorganisms. *3 Biotech* 12, 307.
701 <https://doi.org/10.1007/s13205-022-03371-4>.

702 Karygianni, L., Ren, Z., Koo, H., Thurnheer, T., 2020. Biofilm matrixome:
703 extracellular components in structured microbial communities. *Trends Microbiol.*
704 28, 668-681. <https://doi.org/10.1016/j.tim.2020.03.016>

705 Kazemzadeh-Narbat, M., Cheng, H., Chabok, R., Alvarez, M. M., De La
706 Fuente-Nunez, C., Phillips, K. S., Khademhosseini, A., 2021. Strategies for
707 antimicrobial peptide coatings on medical devices: A review and regulatory
708 science perspective. *Crit. Rev. Biotechnol.* 41, 94-120.
709 <https://doi.org/10.1080/07388551.2020.1828810>.

710 Kunadu, A. P. H., Nyamekye, M. A., Gosu-Attapkah, C., 2024. Bacteria
711 stress adaptation: Implication and control. In O. A. Ijabadeniyi and O. F. Olagunju
712 (Eds.), *Food safety and toxicology: Present and future perspectives*, Berlin: De
713 Gruyter, pp. 127–148. <https://doi.org/10.1515/9783110748345-006>.

714 Learbuch, K. L. G., Lut, M. C., Liu, G., Smidt, H., van der Wielen, P. W. J.
715 J., 2019. Legionella growth potential of drinking water produced by a reverse
716 osmosis pilot plant. *Water Res.* 157, 55-63.
717 <https://doi.org/10.1016/j.watres.2019.03.037>.

718 Ledwoch, K., Dancer, S. J., Otter, J. A., Kerr, K., Roposte, D., Rushton, L.,
719 ... , Maillard, J. Y., 2018. Beware biofilm! Dry biofilms containing bacterial
720 pathogens on multiple healthcare surfaces; a multi-centre study. *J. Hosp. Infect.*
721 100, e47-e56. <https://doi.org/10.1016/j.jhin.2018.06.028>.

722 Ledwoch, K., Said, J., Norville, P., Maillard, J. Y., 2019. Artificial dry
723 surface biofilm models for testing the efficacy of cleaning and disinfection. *Lett.
724 Appl. Microbiol.* 68, 329-336. <https://doi.org/10.1111/lam.13143>.

725 Ledwoch, K., Vickery, K., Maillard, J. Y., 2022. Dry surface biofilms: what
726 you need to know. *Br. J. Hosp. Med.* 83, 1-3.
727 <https://doi.org/10.12968/hmed.2022.0274>.

728 Lee, H., Beuchat, L. R., Ryu, J. H., Kim, H., 2018. Inactivation of
729 *Salmonella* Typhimurium on red chili peppers by treatment with gaseous chlorine
730 dioxide followed by drying. *Food Microbiol.* 76, 78-82.
731 <https://doi.org/10.1016/j.fm.2018.04.016>.

732 Lehner, A., Riedel, K., Eberl, L., Breeuwer, P., Diep, B., Stephan, R., 2005.

733 Biofilm formation, extracellular polysaccharide production, and cell-to-cell
734 signaling in various *Enterobacter sakazakii* strains: aspects promoting
735 environmental persistence. *J. Food Prot.* 68, 2287-2294.
736 <https://doi.org/10.4315/0362-028X-68.11.2287>.

737 Lin, Z., Liang, Z., He, S., Chin, F. W. L., Huang, D., Hong, Y., ..., Li, D.,
738 2024. *Salmonella* dry surface biofilm: morphology, single-cell landscape, and
739 sanitization. *Appl. Environ. Microbiol.* 90, e01623-24.
740 <https://doi.org/10.1128/aem.01623-24>.

741 Liu, J., Yang, L., Kjellerup, B. V., Xu, Z., 2023. Viable but nonculturable
742 (VBNC) state, an underestimated and controversial microbial survival strategy.
743 *Trends Microbiol.* 31, 1013-1023. <https://doi.org/10.1016/j.tim.2023.04.009>.

744 Liu, S., Roopesh, M. S., Tang, J., Wu, Q., Qin, W., 2022. Recent
745 development in low-moisture foods: Microbial safety and thermal process. *Food*
746 *Res. Int.* 155, 111072. <https://doi.org/10.1016/j.foodres.2022.111072>.

747 Lories, B., Belpaire, T. E., Yssel, A., Ramon, H., Steenackers, H. P., 2020.
748 Agaric acid reduces *Salmonella* biofilm formation by inhibiting flagellar motility.
749 *Biofilm* 2, 100022. <https://doi.org/10.1016/j.bioflm.2020.100022>.

750 Lou, Z., Song, X., Hong, Y., Wang, H., Lin, Y., 2013. Separation and
751 enrichment of burdock leaf components and their inhibition activity on biofilm
752 formation of *E. coli*. *Food Control* 32, 270-274.
753 <https://doi.org/10.1016/j.foodcont.2012.11.020>.

754 Ly, V., Parreira, V. R., Farber, J. M., 2019. Current understanding and
755 perspectives on *Listeria monocytogenes* in low-moisture foods. *Curr. Opin. Food*
756 *Sci.* 26, 18-24. <https://doi.org/10.1016/j.cofs.2019.02.012>.

757 Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A., Keevil, C. W.,
758 2018. Viable-but-nonculturable *Listeria monocytogenes* and *Salmonella enterica*
759 serovar Thompson induced by chlorine stress remain infectious. *MBio* 9, 10-
760 1128. <https://doi.org/10.1128/mbio.00540-18>.

761 Ma, Z., Xu, W., Li, S., Chen, S., Yang, Y., Li, Z., ..., Zhang, H., 2024. Effect
762 of RpoS on the survival, induction, resuscitation, morphology, and gene
763 expression of viable but non-culturable *Salmonella Enteritidis* in powdered infant
764 formula. *Int. J. Food Microbiol.* 410, 110463.
765 <https://doi.org/10.1016/j.ijfoodmicro.2023.110463>.

766 Machado, I., Lopes, S. P., Sousa, A. M., Pereira, M. O., 2012. Adaptive
767 response of single and binary *Pseudomonas aeruginosa* and *Escherichia coli*
768 biofilms to benzalkonium chloride. *J. Basic Microbiol.* 52, 43-52.
769 <https://doi.org/10.1002/jobm.201100137>.

770 Maćkiw, E., Kowalska, J., Korsak, D., Stasiak, M., Antoszewska, A.,
771 Ławrynowicz-Paciorek, M., Postupolski, J., 2024. Thermal resistance of selected
772 strains of *Salmonella* spp. isolated from eggs and sesame seeds. *LWT* 198,
773 115907. <https://doi.org/10.1016/j.lwt.2024.115907>.

774 Morishige, Y., Koike, A., Tamura-Ueyama, A., Amano, F., 2017. Induction
775 of viable but nonculturable *Salmonella* in exponentially grown cells by exposure
776 to a low-humidity environment and their resuscitation by catalase. *J. Food Prot.*
777 80, 288-294. <https://doi.org/10.4315/0362-028x.jfp-16-183>.

778 Nascimento, M. S., Carminati, J. A., Silva, I. C. R. N., Silva, D. L., Bernardi,
779 A. O., Copetti, M. V., 2018. *Salmonella*, *Escherichia coli* and *Enterobacteriaceae*
780 in the peanut supply chain: From farm to table. *Food Res. Int.* 105, 930-935.
781 <https://doi.org/10.1016/j.foodres.2017.12.021>.

782 Pan, H., Ren, Q., 2022. Wake up! Resuscitation of viable but nonculturable
783 bacteria: mechanism and potential application. *Foods* 12, 82.
784 <https://doi.org/10.3390/foods12010082>.

785 Rahman, M. A., Amirkhani, A., Parvin, F., Chowdhury, D., Molloy, M. P.,
786 Deva, A. K., Vickery, K., Hu, H., 2022. One Step Forward with Dry Surface Biofilm
787 (DSB) of *Staphylococcus aureus*: TMT-Based Quantitative Proteomic Analysis
788 Reveals Proteomic Shifts between DSB and Hydrated Biofilm. *Int. J. Mol. Sci.* 23,
789 12238. <https://doi.org/10.3390/ijms232012238>.

790 Rodrigues, C. M., Takita, M. A., Coletta-Filho, H. D., Olivato, J. C.,
791 Caserta, R., Machado, M. A., De Souza, A. A., 2008. Copper resistance of biofilm
792 cells of the plant pathogen *Xylella fastidiosa*. *App. Microbiol. Biotechnol.* 77,
793 1145-1157. <https://doi.org/10.1007/s00253-007-1232-1>.

794 Rosado, M. S., 2009. Biofilme de *Enterococcus faecium* em superfície de
795 aço inoxidável: caracterização tecnológica, modelagem e controle por agentes
796 sanitizantes. Dissertação (Mestre em Tecnologia de Alimentos) - Faculdade de
797 Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas (SP),
798 84p.

799 Sadiq, F. A., De Reu, K., Burmølle, M., Maes, S., Heyndrickx, M., 2023.
800 Synergistic interactions in multispecies biofilm combinations of bacterial isolates
801 recovered from diverse food processing industries. *Front. Microbiol.* 14, 1159434.
802 <https://doi.org/10.3389/fmicb.2023.1159434>.

803 Salive, A. F. V., Prudêncio, C. V., Baglinière, F., Oliveira, L. L., Ferreira,
804 S. O., Vanetti, M. C. D., 2020. Comparison of stress conditions to induce viable
805 but non-cultivable state in *Salmonella*. *Braz. J. Microbiol.* 51, 1269-1277.
806 <https://doi.org/10.1007/s42770-020-00261-w>.

807 Sauer, K., Stoodley, P., Goeres, D. M., Hall-Stoodley, L., Burmølle, M.,
808 Stewart, P. S., Bjarnsholt, T., 2022. The biofilm life cycle: expanding the
809 conceptual model of biofilm formation. *Nat. Rev. Microbiol.* 20, 608-620.
810 <https://doi.org/10.1038/s41579-022-00767-0>.

811 Sawale, M., Ozadali, F., Valentine, C. J., Benyathiar, P., Drolia, R., Mishra,
812 D. K., 2022. Impact of bovine lactoferrin fortification on pathogenic organisms to
813 attenuate the risk of infection for infants. *Food Control* 139, 109078.
814 <https://doi.org/10.1016/j.foodcont.2022.109078>.

815 Stackhouse, R. R., Faith, N. G., Kaspar, C. W., Czuprynski, C. J., Wong,
816 A. C., 2012. Survival and virulence of *Salmonella enterica* serovar enteritidis
817 filaments induced by reduced water activity. *App. Environ. Microbiol.* 78, 2213–
818 2220. <https://doi.org/10.1128/aem.06774-11>.

819 Strysko, J., Cope, J. R., Martin, H., Tarr, C., Hise, K., Collier, S., Bowen,
820 A., 2020. Food safety and invasive *Cronobacter* infections during early infancy,
821 1961–2018. *Emerg. Infect. Dis.* 26, 857. <https://doi.org/10.3201/eid2605.190858>.

822 Umeda, N. S., de Filippis, I., Forsythe, S. J., Brandão, M. L. L., 2017.
823 Phenotypic characterization of *Cronobacter* spp. strains isolated from foods and
824 clinical specimens in Brazil. *Food Res. Int.* 102, 61-67.
825 <https://doi.org/10.1016/j.foodres.2017.09.083>.

826 Vickery, K., Deva, A., Jacombs, A., Allan, J., Valente, P., Gosbell, I. B.,
827 2012. Presence of biofilm containing viable multiresistant organisms despite
828 terminal cleaning on clinical surfaces in an intensive care unit. *J. Hosp. Infect.* 80,
829 52-55. <https://doi.org/10.1016/j.jhin.2011.07.007>.

830 von Hertwig, A. M., Neto, D. P. A., de Almeida, E. A., Casas, M. R. T., do
831 Nascimento, M. D. S., 2019. Genetic diversity, antimicrobial resistance and
832 virulence profile of *Salmonella* isolated from the peanut supply chain.

833 International J. Food Microbiol. 294, 50-54. DOI:
834 [10.1016/j.ijfoodmicro.2019.02.005](https://doi.org/10.1016/j.ijfoodmicro.2019.02.005).

835 von Hertwig, A. M., Prestes, F. S., Nascimento, M. S., 2022. Biofilm
836 formation and resistance to sanitizers by *Salmonella* spp. Isolated from the
837 peanut supply chain. Food Res. Int. 152, 110882.
838 <https://doi.org/10.1016/j.foodres.2021.110882>.

839 Vorregaard, M. 2008. *Comstat2-a modern 3D image analysis environment*
840 for biofilms (Master's thesis, Technical University of Denmark, DTU, DK-2800
841 Kgs. Lyngby, Denmark).

842 Wang, Z., Zhu, T., Chen, Z., Meng, J., Simpson, D. J., Gänzle, M. G., 2021.
843 Genetic determinants of stress resistance in desiccated *Salmonella enterica*.
844 *Appl. Environ. Microbiol.* 87, e01683-21. <https://doi.org/10.1128/aem.01683-21>.

845 Weber, D. J., Rutala, W. A., Anderson, D. J., Sickbert-Bennett, E. E., 2023.
846 Biofilms on medical instruments and surfaces: Do they interfere with instrument
847 reprocessing and surface disinfection. *Am. J. Infect. Control* 51, A114-A119.
848 <https://doi.org/10.1016/j.ajic.2023.04.158>.

849 Wu, S., Altenried, S., Zogg, A., Zuber, F., Maniura-Weber, K., Ren, Q.,
850 2018. Role of the surface nanoscale roughness of stainless steel on bacterial
851 adhesion and microcolony formation. *ACS omega* 3, 6456-6464.
852 <https://doi.org/10.1021/acsomega.8b00769>.

853 Yan, Y., Cao, M., Ma, J., Suo, J., Bai, X., Ge, W., ..., Yang, B., 2024.
854 Mechanisms of thermal, acid, desiccation and osmotic tolerance of *Cronobacter*
855 spp. *Crit. Rev. Food Sci. Nutr.* 1-23.
856 <https://doi.org/10.1080/10408398.2024.2447304>.

857 Zhang, X. H., Ahmad, W., Zhu, X. Y., Chen, J., Austin, B., 2021. Viable but
858 nonculturable bacteria and their resuscitation: implications for cultivating
859 uncultured marine microorganisms. *MLST* 3, 189-203.
860 <https://doi.org/10.1007/s42995-020-00041-3>.

861 Zhang, G., Wang, H., Chen, S., Yang, X., Xie, W., He, Y., 2016. Effect of
862 tribocharger material on the triboelectric characteristics of coal and mineral
863 particles. *Particul. Sci. Technol.* 35, 583-588.
864 <https://doi.org/10.1080/02726351.2016.1184729>.

865 Ziech, R., Perin, A. P., Lampugnani, C., Serreno, M. J., Viana, C., Soares,
866 V. M., Pereira, J. G., Pinto, J. P. A. N., Bersot, L. S., 2016. Biofilm-producing

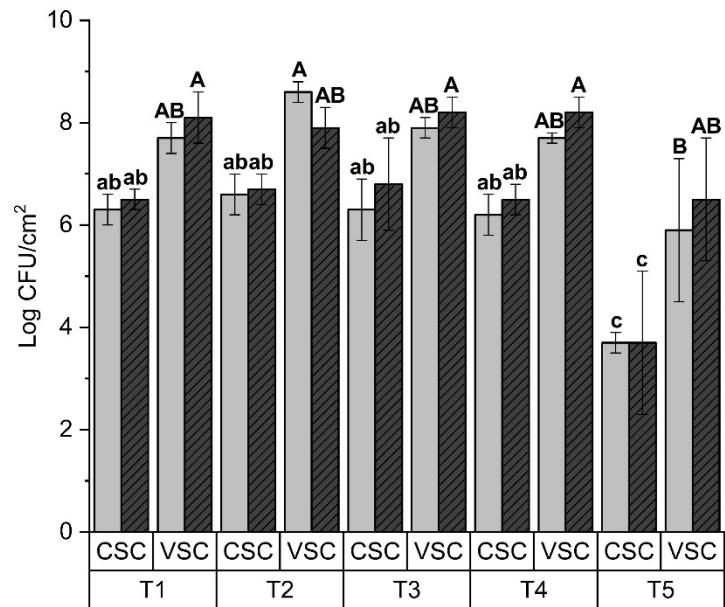
867 ability and tolerance to industrial sanitizers in *Salmonella* spp. isolated from
868 Brazilian poultry processing plants. *LWT* 68.
869 <https://doi.org/10.1016/j.lwt.2015.12.021>.

870 **FIGURE CAPTIONS**

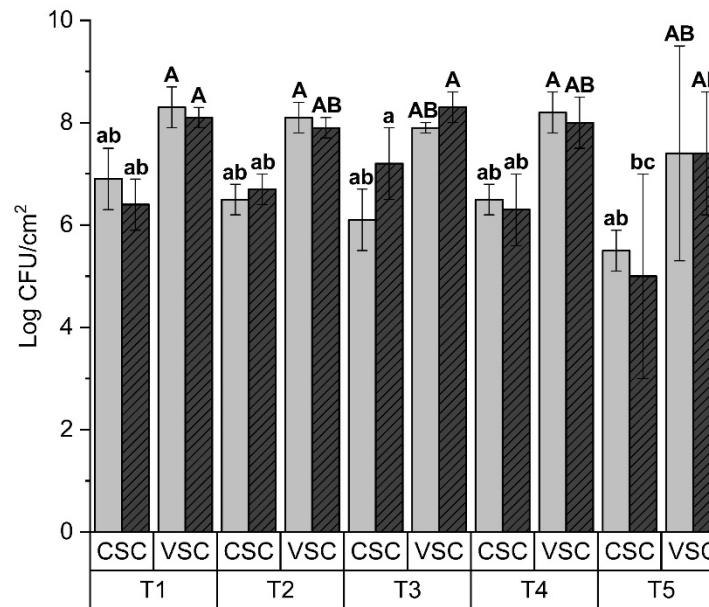
871 **Figure 1.** Counts of culturable sessile cells (CSC) and viable sessile cells (VSC)
872 of *Salmonella* spp. dry surface biofilms (DSB) formed on stainless steel (SS) and
873 polypropylene (PP) under protocols T1–T5: T1 (48 h wet/48 h dry), T2 (24 h
874 wet/48 h dry), T3 (24 h wet/72 h dry), T4 (24 h wet/120 h dry), and T5 (8 h wet/48
875 h dry).

876
877 **Figure 2.** Counts of culturable sessile cells (CSC) and viable sessile cells (VSC)
878 of *C. sakazakii* dry surface biofilms (DSB) formed on stainless steel (SS) and
879 polypropylene (PP) under protocols T1 (48 h wet/48 h dry), T3 (24 h wet/72 h
880 dry), T4 (24 h wet/120 h dry), and T5 (8 h wet/48 h dry).

881
882 **Figure 3.** Morphological changes in *Salmonella* cells in dry surface biofilms
883 (DSB). Images correspond to protocols: (A) T1 – PP (48 h wet/48 h dry), (B) T2
884 – PP (24 h wet/48 h dry), (C) T3 – PP (24 h wet/72 h dry), (D) T4 – PP (24 h
885 wet/120 h dry), and (E) T5 – SS (8 h wet/48 h dry). Yellow arrows indicate cell
886 elongation, red arrows indicate cells showing wrinkling/loss of turgor, blue arrows
887 indicate coccoid forms, green arrows indicate extracellular polymeric substances
888 (EPS) formation, and orange arrows indicate lysed cells.

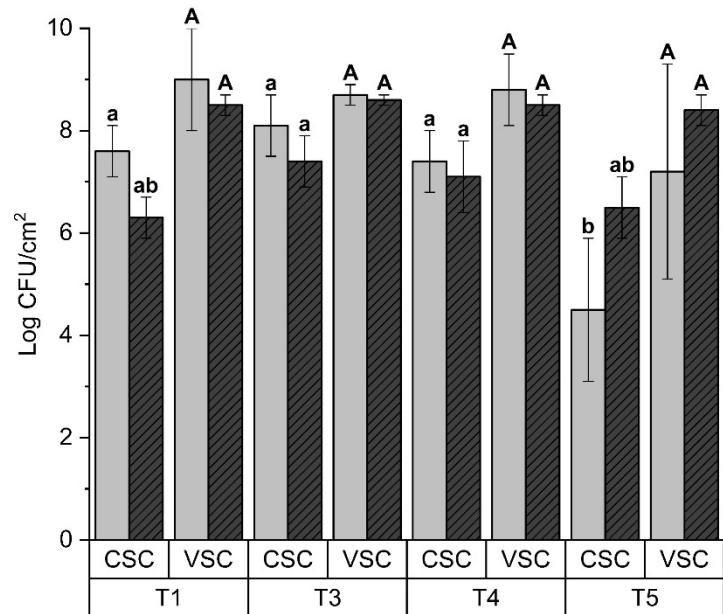

889
890 **Figure 4.** Morphological changes in *C. sakazakii* cells in dry surface biofilms
891 (DSB). Images correspond to protocols: (A) T1 – PP (48 h wet/48 h dry), (B) T3
892 – SS (24 h wet/72 h dry), (C) T4 – PP (24 h wet/120 h dry), and (D) T5 – SS (8 h
893 wet/48 h dry). Yellow arrows indicate cell elongation, red arrows indicate cells
894 showing wrinkling/loss of turgor, blue arrows indicate coccoid forms, green
895 arrows indicate extracellular polymeric substances (EPS) formation, and orange
896 arrows indicate lysed cells.

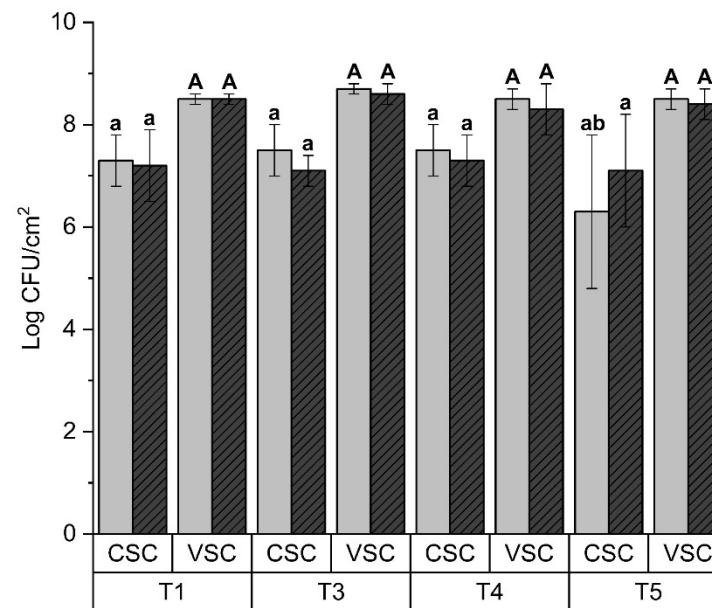
897
898 **Figure 5.** Three-dimensional surface plot of dry surface biofilms (DSB) formed by
899 *Salmonella* on stainless steel (SS) and polypropylene (PP) under different
900 protocols (wet phase/dry phase): T1 (48 h wet/48 h dry), T2 (24 h wet/48 h dry),
901 T3 (24 h wet/72 h dry), T4 (24 h wet/120 h dry), and T5 (8 h wet/48 h dry). Includes
902 mean height (3 points), standard deviation, and thickest point. Dark-colored
903 regions indicate absence of cells; light-colored regions indicate presence. X and
904 Y axes (μm); Z axis (intensity).


905
906 **Figure 6.** Three-dimensional surface plot of dry surface biofilms (DSB) formed by
907 *C. sakazakii* on stainless steel (SS) and polypropylene (PP) under different
908 protocols (wet phase/dry phase): T1 (48 h wet/48 h dry), T3 (24 h wet/72 h dry),
909 T4 (24 h wet/120 h dry), and T5 (8 h wet/48 h dry). Includes mean height (3
910 points), standard deviation, and thickest point. Dark-colored regions indicate
911 absence of cells; light colors indicate presence. X and Y axes (μm); Z axis
912 (intensity).

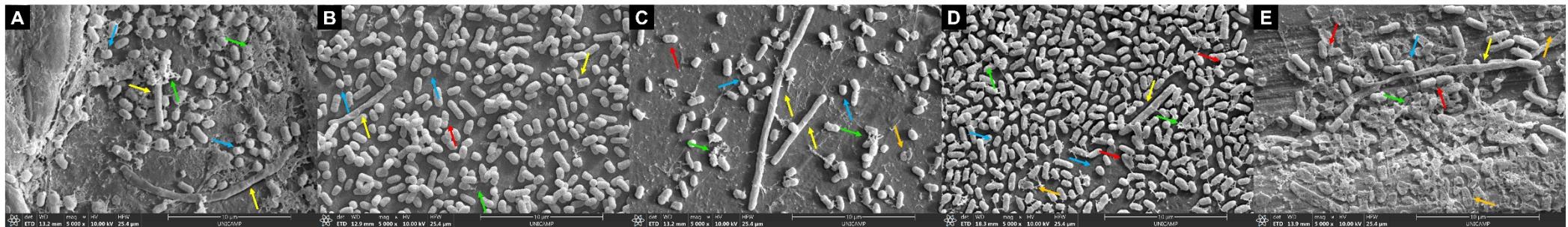
Salmonella

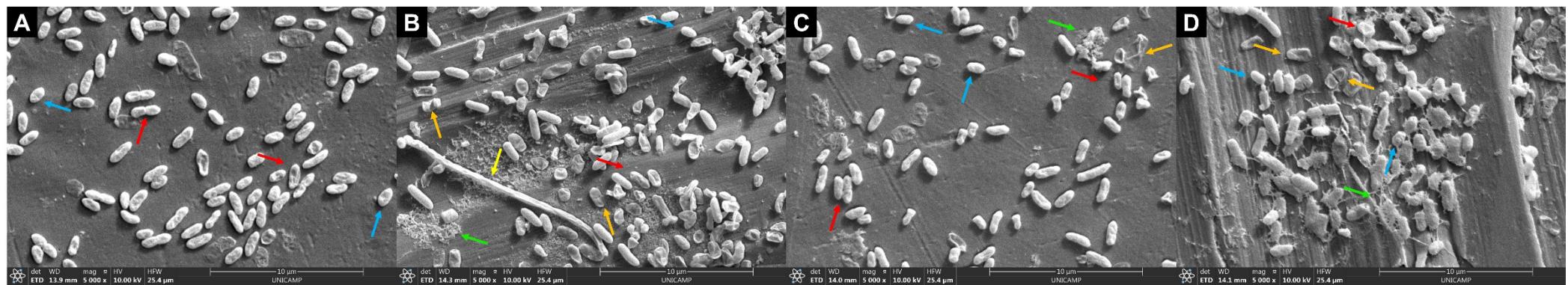
(a) SS

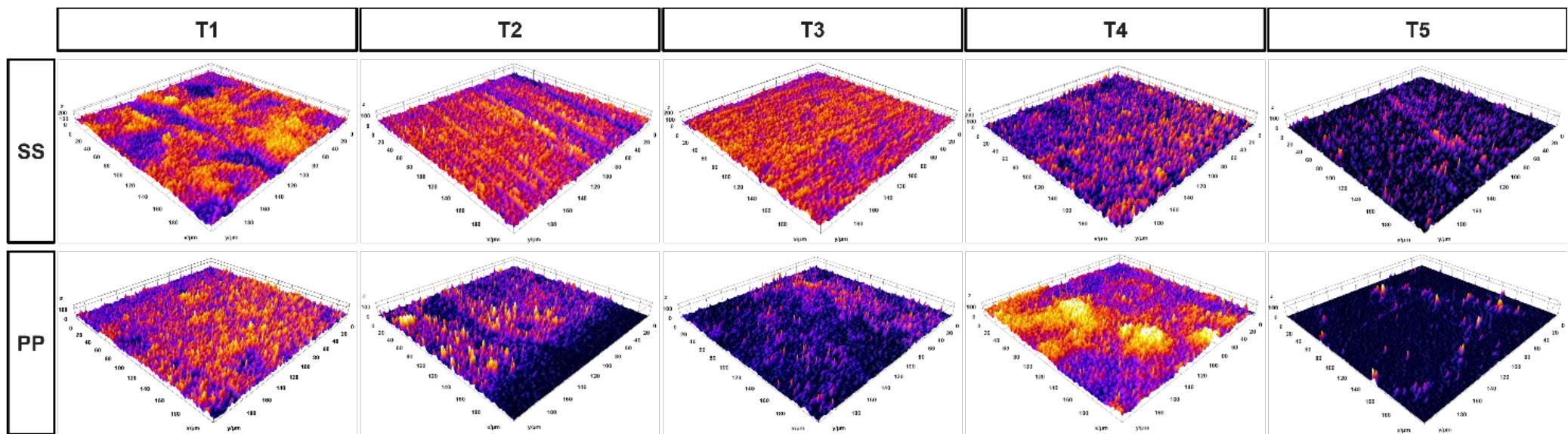

(b) PP


Figure 1

Cronobacter


(a) SS


(b) PP


Figure 2

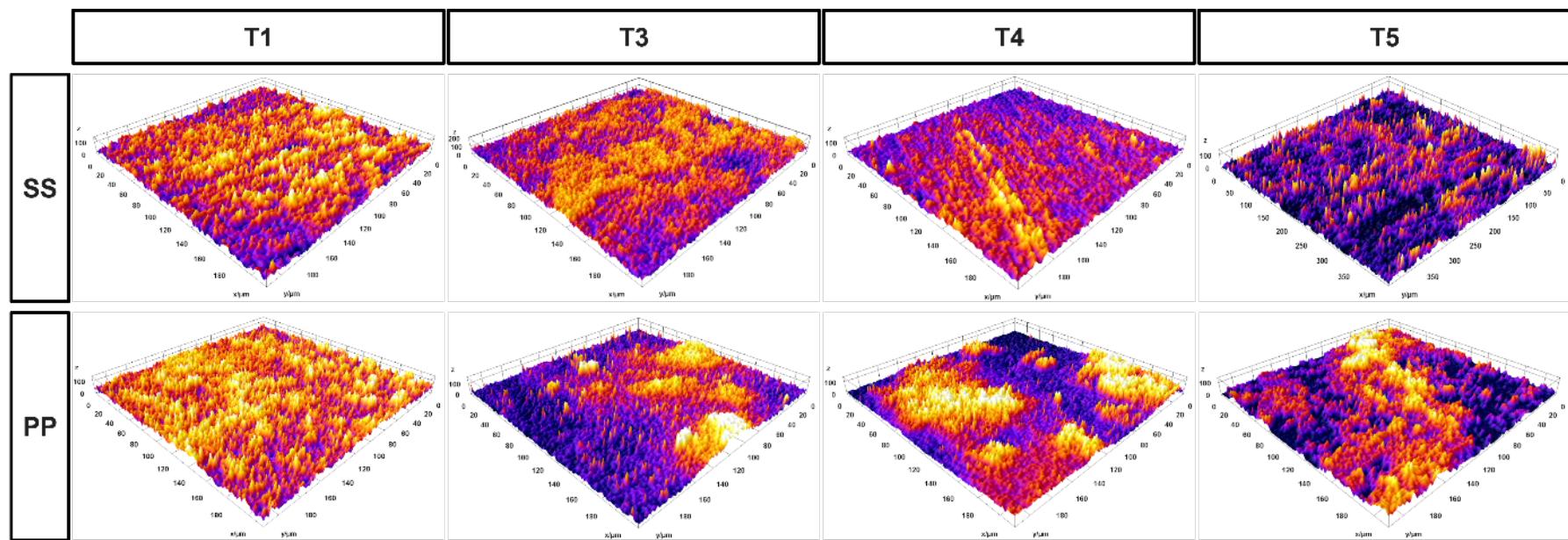

FIGURE 3

FIGURE 4

Figure 5

Figure 6