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Abstract: Addressing the global energy crisis and excessive emissions has heightened the critical importance of
reducing energy consumption and carbon emissions in the building sector, making accurate building energy
forecasting a fundamental research focus. While existing methods predominantly prioritize forecasting accuracy by
advanced algorithms, considerations of computational efficiency and model interpretability remain scarce. To bridge
this gap, this study proposes a novel forecasting method that simultaneously optimizes for accuracy, efficiency, and
interpretability. The method integrates three strategies: (a) incorporating weighted occupant behavior probabilities as
novel inputs; (b) incorporating physics-informed loss function calculated by thermal resistance-capacitance (R-C)
models; and (c) developing a hybrid CNN-LSTM-Attention algorithm that integrates convolutional neural networks
and an attention mechanism with a long short-term memory network. Validation of 48 cases from four office buildings
shows the proposed method significantly enhances performance. These three strategies reduce the mean absolute
percentage error (MAPE) by 25.78% and the coefficient of variation of the root mean square error (CV-RMSE) by
21.31%, and average contributions are 40%, 15% and 45% for Strategies (a)—(c), respectively. Strategy (c) is the
primary contributor to efficiency gains, which can reduce time consumption by 7343.69s and 146.81s compared to
Transformer-LSTM-Adaboost and LSTM-SSA, respectively. Strategies (a) and (b) improve interpretability by
embedding occupant behavior patterns and thermal constraints. Moreover, the priority of these strategies for buildings
with varying behavioral and functional complexities is analyzed. In summary, based on theoretical considerations and

practical validation, the proposed method can improve the accuracy, efficiency, and interpretability simultaneously.
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Highlights:

1. This paper proposes a forecasting method with novel inputs, algorithm and loss function;

2. This paper uses thermal R-C models for physic-informed loss to enhance interpretability;

3. This paper uses weighted behavior probabilities as novel inputs to enhance accuracy;

4. This paper uses novel algorithms (CNN-LSTM-Attention) to enhance accuracy and efficiency;

5. This paper discusses the contribution and priority for different optimization strategies.



1 Introduction

Global energy consumption has consistently increased over the past three decades . According to the National
Human Activity Pattern Survey (NHAPS), respondents spend an average of 87% of their time inside buildings 1.
Recent studies indicate that buildings account for 41% of total primary energy use in the U.S. and even up to 65% in
Europe Bl. In China, the building sector contributes 44.8% of the total national energy consumption; even when
considering only the operation phase, this value reaches 22.0% 1.

Consequently, low-carbon and energy-efficient building operations have become a global research priority, with
energy consumption forecasting serving as a foundational element [°]. Accurate hourly energy consumption forecasting
may be widely beneficial to groups and individuals. For example, by accurate forecasting, energy companies can
adjust energy pricing in real time, support demand response programs, and react more promptly and precisely to
extreme weather conditions [°l. Energy managers can optimize the schedules of energy storage and photovoltaic
systems to enhance supply and demand matching 7). Additionally, energy users can shift flexible loads, such as

laundry operations, from high-price to low-price hours, thereby reducing energy costs [l

Building energy
consumption forecasting methods are generally categorized into three types: physical modeling, data-driven, and
hybrid methods.

Regarding physical modeling methods, these methods involve simulation software, such as EnergyPlus, which
requires detailed inputs including climate data, building information, envelope and device performance, and operation
schedules. For example, Neto et al., developed an EnergyPlus model for a university office building, which shows a
forecasting error range of £13% for 80% of the tested database [ However, these methods possess limited online
applicability and struggle to represent the complex and real-time interactions among occupants, indoor environment,
and energy-consuming devices accurately ['!l. Furthermore, some researchers raised concerns regarding the common
accuracy of this method '?l. Consequently, for applications such as energy efficiency assessment and management,
data-driven and hybrid methods are often preferred over those relying solely on physical modeling.

Regarding Data-driven methods, these methods focus on two improvements including identifying optimal input
features and developing advanced training algorithms. For example, Wang et al. developed a novel federated learning
framework that integrates a sparse Mixture-of-Experts model with a lightweight MetaFormer model, reporting a
10-40% improvement in forecasting accuracy ['*]. Feng et al. implemented adaptive LSTM networks optimized with a
beluga whale optimization algorithm, reducing the RMSE by 11% and the CV-RMSE by 6.3% ['4l. Cao et al. proposed
a PSO-stacking ensemble model with priority feature selection, which achieved significant reductions in RMSE 31,
Zhang et al. proposed a suitable input selection method, which can reduce the MAPE by 13.94% on average in seven
buildings 1'%, Zhang et al. proposed a short-term power load forecasting method for industrial buildings with temporal
convolutional network, informer, and bi-directional gated recurrent unit (GRU), which can reduce the mean absolute
error (MAE) by 48.54% on average [7l. Overall, common input features encompass factors influencing building

energy performance, such as physical properties, indoor and outdoor environmental conditions, occupant behaviors,



envelope and device performance, economic, and social factors ['8]. And training algorithms frequently employ some

191 with further optimizations achieved through

advanced machine learning algorithms such as LSTM and GRU
swarm intelligence for hyperparameter optimization (), Transformer frameworks for weight optimization [>'l, CNN
for data processing %), and transfer learning to address data scarcity ?3. However, despite these advancements,
challenges in terms of technology remain. Accurately integrating complex, dynamic inputs such as detailed occupant
behavior and environmental fluctuations into models is still difficult. Moreover, while current research predominantly
focuses on improving predictive accuracy, other critical aspects such as computational efficiency and model
interpretability are often neglected.

Regarding hybrid methods, these methods are generally categorized into two approaches: the first extends
datasets using physical modeling for subsequent data-driven forecasting, while the second incorporates physical
models as the constraints or inputs into data-driven methods. For example, Ali et al. generated large-scale synthetic
building data through parametric simulation and integrated end-use demand segregation with ensemble learning,

(241 Similarly, Song et al. used

achieving a forecasting accuracy of 91% compared to 76% for traditional methods
building energy simulation software to generate data and employed the whale optimization algorithm to optimize
hyperparameters of the Bi-LSTM, resulting in the lowest MAPE among benchmark techniques 125 Zhang et al.
introduced occupant energy-use behavior probability models as algorithm inputs, reducing the MAPE by 19.54% on
average 2], Lee et al. developed a spatial-temporal graph neural network with an encoder-decoder framework that
embedded physical constraints from mass and energy conservation laws, which enhanced interpretability and
improved forecasting accuracy by 44.7% [>7). Michalakopoulos et al. applied a physics-informed neural network that
incorporated heat loss constraints, yielding the RMSE lower than purely data-driven equivalents 2%, Despite their
promising performance, hybrid methods often require complex validation and expertise across disciplines. A
significant technical challenge also remains the limited ability of existing methods to fully capture the complex and
real-time interactions among occupants, environment, and devices. Consequently, further simultaneous improvements
in the accuracy, efficiency, and interpretability of hybrid forecasting methods are necessary.

Among the hybrid methods, physics-informed neural network (PINN) has emerged as a promising paradigm that
seamlessly integrates physical principles with data-driven learning ?°3!-34], In the context of building energy analyses,
common PINN practices may embed governing equations or thermodynamic constraints into the loss function or input
features. The PINN can improve generalizability beyond the training data distribution, improve interpretability by
grounding predictions in established physical laws, and reduce reliance on massive, high-quality datasets. However,
these benefits come also with inherent challenges. PINN increases model complexity and requires domain knowledge
to build physical constraints. Consequently, while the potential of PINN is widely recognized, verifying its
adaptability in buildings with different characteristics and achieving an optimal balance among accuracy, efficiency,
and interpretability are important.

To address these challenges and fill existing knowledge gaps, this study proposes a novel energy consumption



forecasting method for office buildings, designed to enhance efficiency, accuracy, and interpretability simultaneously.
The framework of the proposed method is shown in Figure 1, with the key components, objectives, and case studies.
The potential contributions and primary works are summarized as follows:

(1) Introducing the weighted occupant AC, light and plug usage behavior probabilities as the novel inputs, to
improve the interpretability and accuracy;

(2) Using the combined loss function with physical-informed (calculated by the thermal R-C network models)
and data-informed loss replacing the only data-informed loss function (MAE), to improve the interpretability;

(3) Proposing the algorithmic improved modules into the basic training algorithm LSTM, including CNN,
Attention, SSA, Transformer, etc., to improve the efficiency and accuracy;

(4) Comparing the performance with different optimization strategies in different buildings, and discussing the
contributions, suitability and prioritization.

The remaining sections of this paper are structured as follows: Section 2 details the methodology, encompassing
data collection, occupant behavior modeling, thermodynamic resistance-capacitance network modeling, and all the
algorithmic modules. Section 3 presents case studies and results, analyzing the performance improvements achieved
by different optimization strategies. Section 4 discusses the contributions and priority, compares the findings with

those of other recent studies, and notes the limitations of this study. Finally, Section 5 provides concluding remarks.

Modeling weighted occupant AC/light/plug Accuracy
usage behavior probabilities (MAPE, CV, etc.)

Modeling thermal resistance—capacitance Efficiency
network equations (7R3C) (time consumption)

—

2 loss functions, 4 buildings)

L, Training by advanced algorithms (CNN-LSTM- Interpretability
Attention) (constrain)

Enhanced methods with three
optimization strategies
48 Cases (3 algorithms, 2 inputs,

Figure 1 The framework of the proposed enhanced building energy consumption forecasting method

2 Methodology
2.1 Information of example buildings

The case studies comprise four office buildings on a campus in cold region in Dalian, China, characterized by a
coastal warm-temperate continental monsoon climate with a mean annual temperature of 10.4°C 3%, Building A
houses the school of environment and biology. Building B houses the school of economics and management, the skill
training center, and the international exchange office. Building C houses four schools including electrical engineering,
information and communication engineering, control science and engineering, and computer science and technology.
Building D houses the school of energy and power solely. All these office buildings contain professor's offices, student
workstations, conference rooms, lecture halls, and laboratories, etc. Indoor environment and electricity monitoring
systems are installed in these buildings, providing sufficient data for the case studies. The layout of the monitoring

systems is shown in Figure 2, and detailed building information is summarized in Table 1.



Table 1 Detailed information of typical office building

Codes Building function and energy-use branches Sizes Appearances

Length: 84.06 m (a), 75.06 m (b)

) Width: 81.86 m (a), 67.86 m (b)
Lights: Fluorescent lamps and LED lamps )
A ) ) Height: 29.10 m (a), 23.60 m (b)
Plugs: computers, experiment devices, heaters, etc.
Area: 40324 m?

EUI: 65.79 kWh/m?
South W2W ratio: 0.20

ACs: Common split ACs in almost all rooms

Length: 233.98 m

) Width: 81.32 m
Lights: Fluorescent lamps and LED lamps )
B ) Height: 23.55m
Plugs: computers, servers, printers, heaters, etc.
Area: 35998 m?
EUI: 29.88 kWh/m?
South W2W ratio: 0.18
Length: 15.30 m (a), 51.90 m (b)
) Width: 40.20 m (a), 20.40 m (b)
Lights: Fluorescent lamps and LED lamps )
C ) Height: 85.80 m (a), 55.80 m (b)
Plugs: computers, servers, printers, heaters, etc.
Area: 36500 m?
EUI: 39.44 kWh/m?
South W2W ratio: 0.25
Length: 57.70 m
) Width: 64.90 m
Lights: Fluorescent lamps and LED lamps

D ) ) Height: 43.90 m
Plugs: computers, experiment devices, heaters, etc.
Area: 27500 m?

EUI: 90.20 kWh/m?
South W2W ratio: 0.22

ACs: VRF AC system

ACs: Central AC system with screw-type chillers

ACs: Common split ACs in almost all rooms
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Figure 2 The monitoring system for building energy consumption
Based on the monitored data, Figures 3(a)-3(d) shows the energy consumption fluctuation characteristics for
different buildings. Although these buildings are all offices, the energy consumption characteristics exhibit significant

variations. Given that environmental air temperatures and meteorological conditions are similar, it demonstrates that



existing prediction frameworks may struggle to achieve sufficient adaptability clearly. There is an urgent need for

improvements across various aspects, including algorithms and input data.
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Figure 3 Annual energy consumption fluctuation characteristics for the four example buildings in 2021

2.2 Enhanced energy consumption forecasting

The proposed framework for building energy consumption forecasting incorporates three optimization strategies,
with the simplified complete process shown in Figure 1.

First, weighted occupant behavior (for AC, light, plug usage) probabilities are introduced as novel inputs. This
enhancement improves both the interpretability and accuracy of the forecast model 331,

Second, the physics-informed loss term, calculated using a building thermal R-C model, is integrated into the
training process alongside the traditional data-informed loss, which occurs a combined loss function shown in

equation (1). This enhancement improves the interpretability by grounding it in physical principles 34,

LOSStotar= M x MSE (Ef Ep) + Ay % I'7,=1 (LO‘SIS‘physics)2 (1)

Where, LOSS,,,; is the total loss in algorithmic training process; MSE is the function to calculate mean-square error

which is the data-informed loss; LOSS,cs is the physical-informed loss; 7 is the number of the training point; 4,



and 4, are the weights of data-informed loss and physical-informed loss, which are all 0.5 in this paper; Ej and E,
are the forecast and actual values of energy consumption, kWh.

Third, a CNN module and an attention module are incorporated into the LSTM for data processing and dynamic
weight optimization. This enhancement improves accuracy and efficiency [*¥. Furthermore, some additional
algorithmic modules, including SSA, transformer, etc., were also implemented for comparative performance analyses.
2.2.1 Occupant behavior probabilities and weights

Occupant behavior can be categorized into three types: environment-driven, time-driven, and random behaviors.
This study focuses on energy-related behaviors, including AC, light, and plug usage within buildings 3¢,

Environment-driven behavior is primarily initiated by environmental stimulus. The probability can be calculated
using equations (2-3). Equation (2) models behaviors triggered when an environmental stimulus exceeds a threshold,
such as AC activated due to indoor air temperature surpassing a threshold. Conversely, Equation (3) models behaviors

triggered when a stimulus falls below a threshold, such as turning on lights due to low indoor illuminance.

)1+ - _(__)A => ()

— )1+ — _(__)A < (3)

Where, P is the behavior probabilities; X is the environment stimulus, such as indoor air temperature for AC-usage
behaviors [*7 and outdoor solar radiation for light-usage behaviors 33; X, is the threshold of stimulus; P, is the
original probabilities, accounting for devices that remain normally operational, such as safety indicators; &, /, At are all
the fitting parameters, representing the occupant thermal sensitivity, the dimensionless constant, and the time-scale
parameter respectively.

Time-driven behavior is primarily initiated by specific times or events, such as turning off lights when leaving.
The probability can be calculated by equation (4).

o T “
Where, ¢ is the present moment; #,, and #, are the start and end moment for some time-driven behaviors.

Random behavior lacks explicit driving factors. Based on human dynamics theory 3%, human behavior often
exhibits a pattern of a short-term burst followed by a long period of silence, showing a non-uniform temporal
distribution. Consequently, current behavior may be influenced by previous behaviors, and since energy consumption
reflects behavioral patterns, the probability of random behavior can be modeled using equation (5-6). Other recent
studies also suggest that random behavior can also be calculate by the number of occupants, or some similar
parameters such as occupancy and indoor CO; concentration, which can indirectly model the random behaviors.

P=Bi-LSTM(E_1,E_5 E_3,t) ®))
P =7(4r) (6)



Where, Bi-LSTM means a black-box algorithm; E,;, E,,, and E,; are the energy consumption at one, two, and three
previous time steps, kWh; fis a mapping relationship; At is the time interval between two behaviors.

Based on the survey, in the office buildings examined in this study, AC and light usage behaviors are determined
by both environmental and temporal drivers. Plug usage is predominantly random, and some instances are also
time-influenced. As the contribution of AC, light, and plug usage to total building energy consumption may vary, the
weights of these behaviors are determined by multiple regression analysis, as shown in equation (7).

Eletal = gy + ¢, PIC + ¢, Pﬁighl + &3 Plvlug @)
Where, PAC, Piight, and P/ "2 are the probabilities of AC, light and plug usage at moment #; E°“/ is the building
energy consumption in moment ¢, kWh; the intercept &) represents the base energy load independent of occupant
behavior, kWh; while ¢, &5, and &3 quantify the sensitivity of the total energy consumption to the corresponding
behavior probabilities, effectively converting the dimensionless probabilities into energy contributions, kWh.
2.2.2 Building thermal network model (7R-3C)

The building thermal R-C model is employed to calculate the physics-informed loss term in equation (1). R-C
models are widely adopted for room-level thermodynamic simulation and exist in various configurations 4. Common
variants include 3R-2C model for facade analyses and 5R-1C model for indoor air modeling B%#2. As this study does
not focus on precise thermal control, the complex convective and radiation between internal and external surfaces will
be simplified. With assuming homogeneous thermal process, a simplified 7R-3C model will be used for building-level

thermal modeling, as shown in Figure 4 and equation (8), which can be transformed into the following equation (9).

Cbui/d dTin — Tout' Tin + Tout' Tin + Tout' Tin + Tout' Tin + T , Tin + T , Tin (8)
at Ruwalr Rwindow Rsoit Rroof Raevice R
d Tin — Tout' Tin Tout' Tin Tout' Tin
Cbui/d a R + R + R + Odevice + Osa/ar"' Ohuman (9)
wall soil roof

Where, T,,, and T, are the outdoor and indoor air temperature on average, °C; Tyeices> AN Thymans are the
average surface temperature of the devices and human, °C; C,;; is the overall heat capacitance of indoor air, kJ/K;
Ryait> Ryvindow> Rsoits Rroofs Raevice» a0d Rpypgy are the thermal resistance from facade walls, windows (including all
transparent envelope), floors, roofs, devices, and occupants to the indoor air, K/kW; Q... 1S the heat generation
from devices and AC heating provided, kW; Oy, is solar radiation heat generation through transparent enclosures,
kW; Opuman 1S the heat generation from human metabolism, kW.

Some terms in equation (9) can be further solved as follows.

Qutevice = &1 X Ppiyg + & X Pljgns + a>x & % Py, (10)

Osotar = B> SHGC % Ay X lsopar (11)

Oruman = N>y (12)

1 — Rsoil Rroor + Rwall Rroof + Rwail Rsoil (1 3)
Roenve/ope Rwall Rsoit Rroof

Where, Ppq, Piigh» and P, are the power of plug, light, and AC usage, kW; ¢, and ¢, are the heat generation

coefficient for electrical plug loads (such as computers) and lights; &; 1is the cooling or heating efficiency of AC



systems; a is the cooling-heating switching coefficient (+1 for heating and -1 for cooling); f is the ratio of solar
radiation heat gain absorbed by indoor thermal mass to the total solar radiation heat gain transmitted through
transparent windows; SHGC is the solar heat gain coefficient; A,,is the window area, m?; [, is the solar radiation
intensity, kJ/m?; N is the number of occupants in the building; y is the average metabolic heat per person, kW/person;
Ry-envelope 18 the total thermal resistance of the opaque envelope (including exterior walls, roof, and floor), K/kW.

If the occupant count is not directly measured, it can be estimated using design occupancy density or inferred
from dynamics indoor CO» concentration, as shown in equations (14—15). Consequently, equation (8) is reformulated
as equation (16). When there are only building energy data instead of all device energy data, an experiment can be
conducted to comprehensively test the heat generated by lighting fixtures, electronic devices such as computers, and
the heating or cooling from ACs, converting these into the total thermal generation of all devices in buildings,
calculated by total energy consumption, shown in equation (17). Based on these equations, the physics-informed loss

in equation (1) can be calculated by equation (18).

N=px A, (14)
ack .
Vo —2 = Nx G, + Q, % (C24, - Clo,) (15)
d7—/’/7 —_ TOUt- 7-”7
Chuitd — = ER— + & X Pppyg+ & X Pligpe + ax &3 %X Py + B SHGCX AX gppqr + NX< y (16)
aTi _ Tou-T;
Couitd =5 = m + 01 X Ppuitg + O X Isojar + 03 X N (17)
LOSS pysivs = —2T 4 g X Pt &% Py + @XE3% Py + BXSHGC XA X oppor + P X Apx Y- Coirg 22 (18
physics — Reo-envelope & plug & light axé& ac ﬁ solar ¥ P p>V = Chuild dt ( )

Where, p is the design occupancy density, person/m?; A4, is the building area, m?; V, is the building volume, m*;, O,

is the ventilation volume, m*/h; C%’{SQ, and CiC"O2 are the outdoor and indoor CO> concentration at moment ¢, ppm;

Gco, is the metabolism CO; production per person per hour, m*/(person-h); d;, J,, and o5 are fitting parameters.
Referring to recent studies and the ASHRAE standard 3%, ¢, is taken as 0.88, and &, is 0.60. Based on the

device performance and weather information, &5 is taken as 4.0, and SHGC is 0.48. The area of buildings, walls and

windows are shown in Table 1. And the T;,, T,,, P

wiug> Llight> Pac» and Iy, are monitored in real time. The

remaining unknown parameters, Cp,iy and R, epeiope » €an be determined by nonlinear least-squares fitting to

minimize the LOSS,,;.s using Isqnonlin function in MATLAB 2024a ], as shown in equation (18) and Figure 4.
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Figure 4 The calculation process of R and C of the thermal R-C models
2.2.3 Training algorithm modules

The LSTM network serves as the foundational forecasting algorithm due to its proven efficacy in modeling
time-series data. To enhance its performance, several advanced algorithmic modules are integrated including CNN,
SSA, Transformer, and attention mechanism. This study proposes a CNN-LSTM-Attention as the forecast model. For
comparison, other advanced hybrid algorithms, including Transformer-LSTM-Adaboost and LSTM-SSA, are also
implemented #-5! which incorporate SSA, Transformer, and Adaboost modules into the LSTM framework
incorporating optimization for hyperparameter tuning, weight adjustment, and data processing.

For CNN-LSTM-Attention, the CNN module performs feature extraction and dimensionality reduction to
improve generalization, and the attention mechanism dynamically assigns weights to different input feature channels,
enabling the model to focus on the most relevant information. This integration enhances prediction accuracy while
maintaining computational efficiency [** 47481, The overall process is shown in Figure 5.

For LSTM-SSA, it uses SSA to optimize the key LSTM hyperparameters such as learning rate, the number of
iterations and the number of hidden units [*]. For Transformer-LSTM-Adaboost, the Transformer module employs
self-attention mechanism within an encoder-decoder structure, which uses query, key, and value matrices to capture
dependencies among different positions in the input sequence dynamically. The Adaboost module serves as a
meta-learner, adaptively adjusting weights by iterative training of the Transformer-LSTM (basic learner), to improve

the model generalization ability P31,
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Figure 5 The process and connection of the CNN-LSTM-Attention with novel inputs and loss function

As these algorithmic are not novel contributions of this study, their detailed mathematical formulations are

omitted from the main text for brevity, provided in Appendix A. The key hyperparameters are shown in Table 2.

Table 2 The key hyperparameters of different algorithmic modules

Modules  Hyperparameters Values Modules Hyperparameters Values
CNN Maximum number of iterations 100 LSTM Number of hidden layers 64
CNN Initial learning rate 0.005 WOA Population size 10
CNN Learning rate decay period 80 WOA Maximum number of iterations 20
CNN Learning rate decay coefficient 0.8 SSA Population size 10
CNN Minimum batch size 24 SSA Maximum number of iterations 20
CNN Activation function RelLU SSA Threshold of danger 70%
CNN Convolutional kernel size 64 SSA Proportion of producers 40%
LSTM Maximum number of iterations 1000 SSA Proportion of realizing danger 20%
LSTM Initial learning rate 0.01 Attention Activation function Sigmoid, ReLU
LSTM Learning rate decay period 800 Attention Number of neurons 128
LSTM Learning rate decay coefficient 0.8 Transformer  Position encoding dimension 256
LST™M Minimum batch size 240 Transformer  Number of self attention heads 4
LSTM Activation function (Output gate) Tanh Transformer  Key/Value Vector Dimension 128
LSTM Activation function (Input/Forget gate) Sigmoid ~ Adaboost Number of basic learners 10
LSTM Number of neurons 32 No Ratio of training to test 7:3

2.3 Evaluation parameters

The performance of the proposed method is evaluated using five indices: R?, MAE, MAPE, RMSE, and

CV-RMSE, computed using equations (19-23).
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Where, X and Y is the forecast and actual energy consumption, kWh. is the average of the actual value, kWh. In

addition, it is important to evaluate the time required for implementation. In this study, the time consumption is
recorded using the timing program provided by MATLAB. The program runs on a fixed computer (Model: Lenovo,
TianYi 510 pro, RAM: 16GB; CPU: i7-13700; GPU: NVIDIA GeForce GT 730), with a consistent operator and other
influencing factors such as parameter selection kept constant throughout the analyses.
3 Cases and results

Comprehensive case studies were designed to evaluate forecasting performance, encompassing a total of 48
unique cases. These cases were generated by combining four variables: three forecasting algorithms, two kinds of loss
functions, two kinds of input features, and four different buildings. And the output is the building energy consumption.

The two kinds of inputs are traditional and novel. Traditional inputs include time, indoor air temperature and CO»
concentration, outdoor air temperature, solar radiation intensity, cloudiness, and historical energy consumption. Novel
inputs include all traditional inputs and weighted occupant AC, light, and plug usage behavior probabilities.

The three kinds of algorithms are Transformer-LSTM-Adaboost, CNN-LSTM-Attention, and LSTM-SSA.

The two kinds of loss functions are data-informed loss, and combined data-informed and physics-informed loss.

While the input features include historical energy consumption, the model is structured as a multi-variate
regression forecast model rather than a pure time-series forecast model. The lagged energy consumption is treated as a
supplementary static feature that provides valuable information about the building operation state, similar to indoor air
temperature and occupant behavior probabilities. The model learns a direct mapping from the feature vector at a given
time to the energy consumption at the same time. Consequently, since the prediction for each time step is made
independently based on its corresponding features, the entire dataset is partitioned into a training set (70%) and
a testing set (30%) randomly, and the results are the average results based on five-time simulation for each case.
3.1 Results on behavior probabilities

The probabilities for AC, light, and plug usage behaviors, calculated by equations (2—6), were categorized into
environment-driven, time-driven, and random types. Based on energy monitoring and field investigations, five
common behavioral modes were identified and summarized as follows:

Table 3 summarizes the predominant behavior modes identified for each building. For example, while lights in
Building C could be operated freely, field investigation revealed that occupants typically turned all lights on when

entering and off when leaving. Therefore, Mode b is selected for light usage behavior in Building B instead of Mode c.



It is important to note that energy-related behavior is defined broadly in this context. As the studied office buildings
include scientific laboratories, AC systems were sometimes used to maintain precise temperature and humidity levels
in unoccupied areas and time (for example, data centers, experimental animal facilities, and precision instrument
rooms). The resulting calculated behavior probabilities are shown in Figures 6-9.

Table 3 The energy usage modes and schedules in different buildings by field investigation

Building AC usage modes Light usage modes Plug usage modes

Heating: Mode a
Building A Mode ¢ Mode e
Cooling: Mode a
Heating: Mode a
Building B Mode ¢ Mode e
Cooling: Mode a
Heating: No usage
Building C Mode b Mode e
Cooling: Mode ¢
Heating: No usage
Building D Mode ¢ Mode e
Cooling: Mode a
Mode a: Human tend to turn on, turn off, and adjust the devices only due to their own feelings influenced by
environment parameters;
Mode b: Human tend to turn on the devices when entering and off when leaving without adjustments;
Mode c¢: Human tend to turn on and adjust the devices due to their own feelings influenced by environment
parameters, and turn off the devices when leaving;
Mode d: Human tend to turn on and adjust the devices when entering, and turn off the devices only due to their own
feelings influenced by environment parameters, and turn off the devices when leaving.

Mode e: Human use the devices completely at random, unaffected by environment or time.

100 100 ; .
9 —+— 09:00-21:00 in heating season ) —+ 09:00-21:00 in cooling season
='v 90 F—e— (7:00-09:00 and 21:00-23:00 in heating season ’; 90 07:00-09:00 and 21.:00—2%:00 in cooling season
é g0 -~ 23:00— next 07:00 in heating season £ sof 23:00- next 07:00 in cooling season *
= i 2 L
E 70 = 70
S 60+ g 60
g 2
=
E sor g sof
£ 2
Z a0l E oa0p
Z El
= 30r = 30k
) &
Z 20r g 201
= =
&) - %—_—‘. —d &) L
= 10 = 10
0 1 1 1 1 1 0 1 1 1 1 1 L 1
22 23 24 25 26 27 28 28 29 30 31 32 33 34 35 36
Indoor air temperature ('C) Indoor air temperature ('C)

(a) AC usage in the heating season (b) AC usage in the cooling season



Light usage behavior probabilities (%)

AC usage behavior probabilities (%)

100
90
80
70

60

40
30
20

100
90
80
70
60
50
40
30
20

10

-

Light usage behavior
probability during this period
is independent of the time of
day and is affected by the

illumination level

i

1 1 1

1 1
10 12 14 16 18 20

g
Fes
on
e
]

Time in a day

(c) Light usage during 18:00—next 7:00

Light usage behavior probabilities (%)

—
=3
=

=3
=]

=)
=l

70

30

20

10

200 250 300 350 400 450 500 550 600 650

Outdoor solar radiation intensity (Wh/m*)

(d) Light usage during 7:00-18:00

100
90 -

80

Plug usage behavior probabilities (%)

0
380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680

Indoor CO2 concentration (ppm)

(e) Plug usage

Figure 6 The occupant behavior probabilities on average in Building A

700 750 800

- : 100
—— 09:00-21:00 in heating season . . % —+ 09:00-21:00 in cooling season
-7 07:00-09:00 and 21:00-23:00 in heating season % %01 . 07:00-09:00 and 21:00-23:00 in cooling season
| —=— 23:00— next 07:00 in heating season £ s 23:00— next 07:00 in cooling season
- ﬁ 70 -
=2
= ; 60
z
- & 40
£
- o 30 =
o0
= g 20+
*
& O o10r &
> P
1 1 I I I ! I 0 L 1 i i I 1
12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28

Indoor air temperature ('C)

(a) AC usage in the heating season

Indoor air temperature ('C)

(b) AC usage in the cooling season

29



Light usage behavior probabilities (%)

AC usage behavior probabilities (%)

100 ‘ 'y 7 . 100
[ I I s
90 I | | =~ 90+
[ I | g
wt : | £ e
L | Light behavi [ [ =
70 | lg. ! “Sﬂg(i 14 a.‘ 1or ) | | E 70 -
& | probability during this period | | =
b - =
} is independent of the time of : : f 60
50 - } day and is affected by the : : 2 50r
-
= I illumination level | | = [!
. | | | T W
e e EEEE—— | I =]
301 ‘ 0 i g 3¢
[ I I S
20 [ I I £ 20f
[ I I -
10 [ I | T
[ I I 5
0 b m om o || L 1 1 L | 1 ] 0 1 { | I 1 e | 1 | L1 1 1 | 1 1
2 4 6 8 10 12 14 16 18 20 22 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
Time in a day Outdoor solar radiation intensity (Wh/m’)
(c) Light usage during 18:00—next 7:00 (d) Light usage during 7:00-18:00
__ 100
=
< 90t
wn
o
E 80
< 70t
s
= 60
=
£ sof
e
= 40+ "
2
o 30 -
T3]
g 20l
=
-TH]
= 10
=
0 | Il 1 1 1 | | Il
350 400 450 500 550 600 650 700 750 800
Indoor CO2 concentration (ppm)
e) Plug usage
g usag
Figure 7 The occupant behavior probabilities on average in Building B
100 100 = osssssssssssay
—*= 09:00-21:00 in cooling season = I I
W0 07:00-09:00 and 21:00-23:00 in cooling season E 20 : :
80 - All other hours in a year = 80 | |
=
e N B | |
S I I
60 |- * E e0f | I
9 | |
50 2 s0F | |
- | |
40 E st ' !
< I I
= | |
30 g 0r [ |
G I I
20 | = 20 I [
- | |
10 =Rl : :
0 - 0 [ R VO R N | 1 1 1 1 I | ]
20 21 22 23 24 25 2 27 28 240 & I 2 0% 1o 18 20 22
Indoor air temperature ('C) Time in a day

(a) AC usage (b) Light usage



100
90
80
70
60
50
40
30
20 |

10

Plug usage behavior probabilities (%)

0
380 400 420 440 460 480 500 520 540 560 580 600
Indoor CO2z concentration (ppm)

(¢) Plug usage

Figure 8 The occupant behavior probabilities on average in Building C

AC usage behavior probabilities (%)

100 - 100 I i

—*= 09:00-21:00 in cooling season = % - : : :

90—+ 07:00-09:00 and 21:00-23:00 in cooling season 7 , | |

80 | 23:00- next 07:00 in cooling season E sof : : :

70 F —— All other hours in a year -l: -0k | Light usage behavior | |

= : probability during this period: :

60 g 60 : is independent of the time of: :

50 .E 50 | day and is affected by the | |

= | P I |

= | illumination level | |

40+ s T I ! !
2

I e E— | |

30 g 30r I I I

s I I |

20 = 201 I I I

- I I I

10 | = 1w I I |

3 I | [

0 A e A A A A A A A L S PO VI N 1 L 1 L | 1 L

30 31 32 33 34 35 36 37 38 39 40 2 4 6 3 10 12 14 16 13 20 2

Indoor air temperature ('C)

Time in a day

(a) AC usage (b) Light usage during 18:00-next 7:00
~ 100
3
>~ o0}
w
=
= sor
s 70-
=
£
= oor H—.*.\"'“—I.‘._.
T
2 50r
>
]
= 40
=
g 30r
a
- 20
= 10
'J 1 | 1 1 Il 1 Il 1 L 1 1 1 | 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
Outdoor solar radiation intensity (Wh/m’)

(¢) Light usage during 7:00—18:00
Figure 9 The occupant behavior probabilities on average in Building D (plug usage calculated by Bi-LSTM rather than fitting)

The modeling accuracy for these behavior probabilities was quantitatively assessed, of which MAE ranges were



4.06%—7.47% (mean: 5.44%) for AC use, 5.84%22.58% (mean: 13.78%) for light use, and 3.34%-25.90% (mean:
11.96%) for plug use. For comparison, based on the Design Standard for Energy Efficiency of Public Buildings (GB
50189-2015) in China 132, the MAE values between standardized schedules and actual probabilities are significantly
higher, which are 33.69% for AC use, 40.09% for light use, and 39.53% for plug use on average. A comparison of
MAE values between the proposed models and the standard schedules is shown in Figures 10(a)-10(b). It shows that
standard schedules fail to accurately reflect actual energy use patterns, particularly for specialized end-uses such as
safety lighting and HVAC for data centers or laboratories. These results substantiate the necessity of employing the

proposed occupant behavior modeling approach.
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3.2 Results on building energy consumption forecasting

Table 4 The forecast results of different cases with different inputs, algorithms, and loss functions

Table 4 shows the forecast results of different cases with different inputs, algorithms, and loss functions.

NO. Building Inputs Algorithms Loss MAE MAPE RMSE CV-RMSE R? TIMEC(s)
1 A Traditional CNN-LSTM-Attention P-Dloss 16.9023 5.73%  20.7442 0.0732 0.9002 534
2 Novel CNN-LSTM-Attention P-Dloss 16.525 5.59% 20.3085 0.0725 09119 525
3 A Traditional CNN-LSTM-Attention D loss 17.1762 5.92%  21.9923 0.0753 0.8995 514
4 A Novel CNN-LSTM-Attention D loss 16.8122 5.69% 219364 0.0737 0.9058 534
5 A Traditional LSTM-SSA P-Dloss 17.8947 6.08% 22.7135 0.0758 0.8472 7230
6 A Novel LSTM-SSA P-Dloss 16915 5.74% 21.9661 0.0742 0.8514 7090
7 A Traditional LSTM-SSA D loss 18.2412 6.28%  24.2284 0.0783 0.8357 7450
8 A Novel LSTM-SSA D loss 17.8355 6.01% 23.7699 0.0782 0.8438 8840
9 A Traditional Transformer-LSTM-Adaboost P-Dloss 17.9904 6.28%  23.7848 0.0774 0.8908 735
10 A Novel Transformer-LSTM-Adaboost P-Dloss 17.9702 6.23%  23.584 0.0771 0.8926 703
11 A Traditional Transformer-LSTM-Adaboost D loss 19.0016 6.50%  24.6803 0.0815 0.8824 684
12 A Novel Transformer-LSTM-Adaboost D loss 18.0005 6.25%  23.9298 0.078 0.8895 666
13 B Traditional CNN-LSTM-Attention P-Dloss 13.59 11.01% 21.3246 0.172 0.8872 407
14 B Novel CNN-LSTM-Attention P-Dloss 13.1539 10.31% 20.3636 0.1466 0.8932 388
15 B Traditional CNN-LSTM-Attention D loss 14.8471 11.95% 23.3239 0.1922 0.8566 420
16 B Novel CNN-LSTM-Attention D loss 13.2646 10.60% 21.5031 0.1681 0.8926 412
17 B Traditional LSTM-SSA P-Dloss 15.6603 12.77% 25.2528 0.2157 0.8197 7570
18 B Novel LSTM-SSA P-Dloss 15.15 12.28% 23.3859 0.1848 0.8349 7490
19 B Traditional LSTM-SSA D loss 17.5397 13.35% 27.6699 0.2419 0.8127 8090
20 B Novel LSTM-SSA D loss 15.7739 13.10% 23.4475 0.2035 0.8346 6870
21 B Traditional Transformer-LSTM-Adaboost P-Dloss 19.9723 18.42% 26.7767 0.2055 0.8154 566
22 B Novel Transformer-LSTM-Adaboost  P-D loss 15.0608 12.75% 20.7797 0.1644 0.8888 554
23 B Traditional Transformer-LSTM-Adaboost Dloss  22.4751 22.04% 28.8096 0.2142 0.7863 526
24 B Novel Transformer-LSTM-Adaboost D loss 15.4593 13.20% 21.5116 0.1681 0.8808 548
25 C Traditional CNN-LSTM-Attention P-Dloss 13.0685 7.47% 22.841 0.146 0.8989 541
26 C Novel CNN-LSTM-Attention P-Dloss 11.2351 6.46% 19.9104 0.1228 0.9254 584
27 C Traditional CNN-LSTM-Attention D loss 13.4631 7.92% 23.667 0.1479 0.8878 514
28 C Novel CNN-LSTM-Attention D loss 123376 7.43%  21.6855 0.1291 0.9129 552
29 C Traditional LSTM-SSA P-Dloss 14.4486 8.88%  23.9846 0.1598 0.8693 6980
30 C Novel LSTM-SSA P-Dloss 13.6927 7.40% 23.1098 0.1382 0.9046 7410
31 C Traditional LSTM-SSA D loss 14.4814 9.06% 27.2999 0.171 0.8306 8050
32 C Novel LSTM-SSA D loss 13.9669 7.69%  24.3809 0.1454 0.8908 9280




33 C Traditional Transformer-LSTM-Adaboost P-Dloss 25.9803 17.24% 33.4838 0.1959 0.7938 674
34 C Novel Transformer-LSTM-Adaboost P-Dloss 16.4865 9.73%  24.2819 0.1502 0.8916 728
35 C Traditional Transformer-LSTM-Adaboost Dloss  26.6521 17.44% 35.0189 0.2044 0.7729 602
36 C Novel Transformer-LSTM-Adaboost D loss 16.5604 9.84%  25.665 0.1569 0.878 721
37 D Traditional CNN-LSTM-Attention P-Dloss 13.2241 5.10% 18.1837 0.0706 0.8947 417
38 D Novel CNN-LSTM-Attention P-Dloss 11.7376 4.50%  15.9993 0.0617 0.9203 416
39 D Traditional CNN-LSTM-Attention D loss 14.0007 5.47% 18.4779 0.071 0.8938 435
40 D Novel CNN-LSTM-Attention D loss 11.9814 4.59% 16.387 0.0628 0.9132 438
41 D Traditional LSTM-SSA P-Dloss 14.0237 5.32% 19.1384 0.0751 0.8905 9880
42 D Novel LSTM-SSA P-Dloss 11.839 4.66% 16.4688 0.0645 0.9161 5310
43 D Traditional LSTM-SSA D loss 15.72 6.31% 20.1459 0.0762 0.8689 8740
44 D Novel LSTM-SSA D loss 12.4199 4.76% 16922  0.0655 09111 8850
45 D Traditional Transformer-LSTM-Adaboost P-Dloss 16.1136 6.45%  20.5644 0.0776 0.8694 560
46 D Novel Transformer-LSTM-Adaboost P-Dloss 13.5889 5.28% 17.975 0.0669 0.9015 604
47 D Traditional Transformer-LSTM-Adaboost D loss 16.367 6.64% 20.7385 0.0788 0.8635 504
48 D Novel Transformer-LSTM-Adaboost D loss 13.6328 5.37%  18.0387 0.0686 0.8949 605
Note: P-D loss mean the combined data-informed and physics-informed loss, while D loss is the data-informed loss.

To evaluate performance improvement achieved by incorporating behavior-related inputs, physics-informed loss,
and CNN-LSTM-Attention algorithm, the MAPE, CV-RMSE, and R? were employed as evaluation metrics, since
these dimensionless metrics facilitate direct comparison with other studies.

(1) Regarding the proposed methods with all three optimization strategies (such as Case 10), it will be compared
to traditional methods (such as Cases 3, 7, and 11). The results show the enhancements across all these strategies.

For accuracy: The proposed method significantly improves forecasting accuracy, achieving an average reduction
in MAPE of 25.78%, a reduction in CV-RMSE of 21.31%, and an improvement in R? of 7.71%.

For efficiency: A substantial reduction in computational time was observed, with an average saving of 2566
seconds. Even after excluding the LSTM-SSA algorithm due to its high computational time consumption and the
CNN-LSTM-Attention own, the proposed method still yielded a net time saving of 101s on average, effectively
offsetting the additional overhead from introducing novel inputs and loss function.

For interpretability: The incorporation of occupant behavior rules and building thermodynamics can enhance the
model interpretability by providing a physical basis for the predictions.

In summary, the integrated method shows a balance among forecasting accuracy, computational efficiency, and

model interpretability. The average performance improvement in different buildings is shown in Figure 11.
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Figure 11 The average performance improvement percentage in different buildings by using different optimization modules

(2) Regarding the proposed methods with individual optimization strategies, the contribution of each strategy
was isolated and analyzed as follows:

For accuracy: Comparing Case 1 to Case 2 and similar case combination, incorporating behavior-related inputs
can reduce MAPE by 0.78%43.58% (mean: 14.84%), CV-RMSE by 0.19%-23.32% (mean: 12.15%), and R? by
0.21%-13.60% (mean: 4.08%) on average. Comparing Case 1 to Case 3 and similar case combination, incorporating
physical-informed loss can reduce MAPE by 0.45%-16.40% (mean: 4.82%), CV-RMSE by 0.52%-12.78% (mean:
4.32%), and R? by 0.03%-4.66% (mean: 1.33%) on average. Comparing Case 1 to Cases 5 and similar case
combination can find that incorporating CNN-LSTM-Attention can reduce MAPE by 2.65%-56.65% (mean: 17.10%),
CV-RMSE by 0%-27.64% (mean:10.81%), and R? by 0.24%—14.87% (mean: 4.63%) on average. Figure 12 shows the
average performance improvement in different buildings by comparing the proposed methods and others.

For efficiency: Incorporating CNN-LSTM-Attention can reduce the time consumption by 7343.6875s compared
to Transformer-LSTM-Adaboost, and by 146.8125s compared to LSTM-SSA on average. Although the inclusion of
behavior-related inputs and the physics-informed loss increases the number of simulation steps, the associated rise in
computational time was not significant.

For interpretability: Similar to the integrated method, the individual introduction of behavior-related inputs and
the physics-informed loss function can improve model interpretability.

In conclusion, all three optimization strategies contribute to improved forecasting accuracy, with different
weights as shown in Figure 12. Furthermore, CNN-LSTM-Attention algorithm offers the additional advantage of
significantly enhancing computational efficiency. Finally, the behavior-related inputs and physics-informed loss can

all improve model interpretability without incurring substantial additional computational time consumption.
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Figure 12 The range of performance improvement in different buildings through different improvement modules
4 Discussions
4.1 The contribution and priority of different enhanced strategies
As shown in Figures 11-12, the three optimization strategies collectively enhance both the accuracy and
efficiency of the model. Nevertheless, their relative contributions vary across different building types, as shown in

Figure 13.
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Figure 13 The average contribution ration from different optimization modules in different buildings
In summary, behavior-related inputs contributed to 26.04-50.47% (mean: 38.39%) of the MAPE reduction,
17.12-60.48% (mean: 41.17%) of the CV-RMSE reduction, and 12.69-55.19% (mean: 38.53%) of the R2?
improvement. Physics-informed loss function contributed to 8.22-20.86% (mean: 14.85%) of the MAPE reduction,
7.06-32.08% (mean: 17.89%) of the CV-RMSE reduction, and 12.18-14.70% (mean: 13.26%) of the R? improvement.
Finally, CNN-LSTM-Attention contributed to 34.18-53.10% (mean: 46.76%) of the MAPE reduction, 32.46-50.80%
(mean: 40.94%) of the CV-RMSE reduction, and 30.11-75.02% (mean: 48.21%) of the R? improvement. On average,
the contributions of behavior-related inputs, the physics-informed loss function, and the CNN-LSTM-Attention may
be approximately 40%, 15%, and 45%, respectively.
Among these strategies, the physics-informed loss function exhibited the most consistent contribution across
buildings. In contrast, although average contributions of behavior-related inputs and the CNN-LSTM-Attention
algorithm are around 40% and 45%, respectively, their impacts varied considerably. Specifically, behavior-related

inputs had a weaker effect in Building A but a stronger one in Building D, while the CNN-LSTM-Attention algorithm



showed the opposite trend. The contributions for Buildings B and C were closer to the average values.

The observed discrepancies can be attributed to the following factors. In Building A, occupant behavior is highly
irregular, and energy consumption is dominated by specialized equipment such as biological cultivation devices and
clean AC systems, of which operation is stochastic and less influenced by conventional environmental cues.
Consequently, behavior-related inputs offered limited forecasting accuracy improvement. Conversely, the
CNN-LSTM-Attention algorithm proves particularly effective in this context, as its attention mechanism can
dynamically weight temporal dependencies, capture long-range periodic patterns, and reduce information dilution. By
ensuring the forecasting for specific operational states (such as the peak hours for experiments) are primarily informed
by historically similar states, it can improve the accuracy significantly. While in Building D, which serves as a
conventional office space, occupant behavior is the primary determinant of energy usage, causing behavior-related
inputs highly important. Buildings B and C represent intermediate cases, with mixed usage patterns that neither fully
resemble pure office spaces nor contain high-energy specialized equipment. Thus, the effectiveness of each strategy
lies between those observed in Buildings A and D. Based on these findings, the priority of application for the three

strategies are shown in Figure 14.

Complex Moderate Simple
Bailding function complexity with B
high energy-consuming devices
Experimental office, ... Multi-departmental hybrid office, ... Common office, ...
Using behavior-related inputs XXX ok XX
| | M
Using physical-informed loss x X *
function | M ™
Using CNN-LSTM-Attention
:

Legend: these symbols (3 for accuracy, [ for efficiency, M for interpretability) represent the priority of different strategies. In different

kinds of buildings, the higher number of the symbols indicates the higher priority, while the same number indicates similar priorities, and

the absence of a symbol indicates that this strategy is not relevant to this performance metric.

Figure 14 The priority of these optimization strategies for accuracy, efficiency, and interpretability improvement

4.2 The performance level of the proposed energy consumption forecasting

To further evaluate the practical performance of the proposed forecasting method, a comparison with several
recently developed forecasting methods is shown in Table 5. Although direct identification of a superior method is
infeasible due to differences in building characteristics, weather conditions, and geographical locations, the proposed
method may achieve comparable accuracy to recent advanced methods. Furthermore, it is observed that most existing
studies focus primarily on algorithmic improvements to enhance accuracy, while few address input feature
optimization, and virtually none consider interpretability. This observation aligns with the literature review conducted
in this study and indirectly underscores the value of the proposed method, which balances accuracy, efficiency, and

interpretability.



Table 5 Advanced hourly energy consumption or load forecasting methods in recent studies

Ref. The proposed forecasting method Forecasting performance
Using a hybrid method with introducing occupant behavior probabilities as novel MAPE: 4.50%—10.31%
This study input features, combined physics-informed and data-informed loss function, and CV-RMSE: 0.0617-0.1466

CNN-LSTM-Attention algorithm

R?: 0.8932-0.9254

Using a hybrid algorithm with whale optimization, extreme gradient boosting, and

Ma et al. [53] MAPE: 7.331%
double Bi-LSTM attention Q-network (WXGB-DBAQN)

Using a hybrid algorithm with introducing graph attention network and K-Medoids

2. :
algorithm with DDTW distance into LSTM (GAN-LSTM, K-Medoids-LSTM) for < - 083, and 0.89 (different

Dong et al. [54] conditions)

different nodes in buildings
CV-RMSE: 0.034-0.145
R2:0.931-0.995

Using a hybrid algorithm with CNN, and attention, and temporal distribution

Jiang et al. [55]
characterization (TDC—CNN-AttLSTM)

Using a hybrid algorithm with grey wolf optimizer, adaptive Neuro-Fuzzy inference
o ) ) ) ) ~ MAPE: 11.29%
system, and recurrent deep deterministic policy gradient with dynamic action

Ma et al. [56] R 0.980
adjustment (GWO-ANFIS-RD3PG). o

MAPE: 5.095%—6.839%
R?:0.939-0.971

) Using a hybrid algorithm with novel input feature named air conditioning demand (0
Yesilyurt et al. [57]
or 1) and the deep neural networks

Using a hybrid method with the physical model in EnergyPlus to generate database )
) . ) ) MAPE: 12.42% (cooling)
(includes more than 25.14 million data cases) and the LightGBM algorithm to extract

Lian et al. [58] .
MAPE: 7.97% (heating)

feature variables and build the prediction model

MAPE: 4.05%—-8.40%
CV-RMSE: 0.0648-0.1719

Using a hybrid method with random forest algorithm and considering the time
Wang et al. [59]
(holiday, etc.) and chilled plant start-up state optimization.

4.3 Limitation and future directions

Despite the results shows the effectiveness of the proposed method, some limitations must be acknowledged.
First, treating the building as a single entity may oversimplify its dynamics and complex heat exchange processes in
the building, including combined convective and radiative heat transfer among the building envelope, internal thermal
mass, and indoor air. Second, although the three proposed optimization strategies can improve accuracy, efficiency,
and interpretability both theoretically and practically, the generalization of the priority framework requires further
validation. In addition, quantitative metrics for precisely evaluating functional and behavioral complexity remain
underdeveloped and should be established in future work. Finally, the proposed method relies building intelligence
system, including comprehensive energy and environmental monitoring, which may restrict its applicability in
buildings with limited sensor infrastructure or in non-public building types.

Future research will primarily focus on the following directions:

(1) Developing a suitable zoning method to partition the building into multiple thermal zones, constructing

detailed R-C models (such 8R-4C) for each typical thermal zone, and aggregating these into a full-building R-C



network using appropriate interconnection rules, as shown in Figure 15.

(2) Incorporating a wider range of buildings to validate the proposed framework, and establishing a classification
system based on quantitative parameters to confirm and refine the priority rules (Figure 15) to statistically confirm
and refine the prioritization spectrum, such as the proportion of some specific equipment energy consumption to total

energy consumption, the fluctuation of occupant behaviors.

Qint,roof Qsol,roof
Rroof,in Rroaf
Qh Rwindow
uman
T
Qsol, mass I-mass  Ry-Mass Tin Rwall,in Ryau Rwall,out

Qint,mass

1L 1
Cl—muss RW—M Qint,Wllu Qsol,wall
| Q . | Ci" Qint,in | Cwall
—t devices —t —

¢ Ty (n=1,2,3..)) means indoor air temperature in Zone 1,2, 3, ...;
I Detailed Expansion *  Rip p-m (n,m=1, 2, 3..) means the thermal resistance from Zone n to m, ...;
Ryt in» Rwaits Rwati,our mean convective thermal resistance of the interior
Tin ” surface 'of the wall, copductive thermal re§istance within the wall, and '
4 convective thermal resistance of the exterior surface of the wall, respectively;
* Ryoofins Rrooss Rroof,out mean convective thermal resistance of the interior
" surface of the roof, conductive thermal resistance within the roof, and
convective thermal resistance of the exterior surface of the roof, respectively;

*  Ry-p means radiant thermal resistance from internal thermal mass to the

exterior wall and its inner surface;

*  R;_pqss means the thermal resistance from internal thermal mass to indoor air;
Ryyindow means the thermal resistance from window to indoor air;
Qint,mas.w Qinl,in’ Qint,wa[l’ Qint, roof mean heat gain absorbed of internal

thermal mass, indoor air, walls, and roof from indoor air

Figure 15 The further detailed thermal R-C models for buildings with more than one zone
5 Conclusions

This study proposes a novel energy consumption forecasting method for office buildings that integrates three key
optimization strategies: weighted occupant behavior probabilities as novel input features, physics-informed loss
function derived from thermal R-C models, and CNN-LSTM-Attention algorithm. The integrated method effectively
balances forecasting accuracy, computational efficiency, and model interpretability. Validation across 48 test cases
shows that the proposed method can reduce MAPE by 25.78%, CV-RMSE by 21.31%, and improve R? by 7.71% on
average, with minimum time consumption also.

The weighted occupant behavior probabilities and the physics-informed loss function enhances both accuracy
and interpretability, whereas the CNN-LSTM-Attention algorithm primarily improves efficiency and accuracy.
Although all three strategies contribute to predictive accuracy, their relative impacts differ. On average, the use of
behavior-related inputs, physics-informed loss, and CNN-LSTM-Attention algorithm account for 40%, 15%, and 45%
of the total accuracy improvement, respectively. In terms of efficiency, the CNN-LSTM-Attention is the dominant

contributor, reducing computational time by a7343.69s compared to the Transformer-LSTM-Adaboost and by 146.81s



compared to LSTM-SSA on average, which can fully offset the slight increase in time consumption caused by the
changes in the inputs and loss function. Regarding interpretability, behavior probabilities and thermodynamic
constraints can offer substantial improvements by incorporating domain knowledge and physical realism.

The highest overall performance is achieved when all the three strategies are combined. In cases where
simultaneous implementation is not feasible, priority should be given to the CNN-LSTM-Attention for buildings with
complex functions and high-energy equipment (such as experimental offices), due to its ability to capture dynamic
operational patterns. While for common office buildings, introducing occupant behavior probabilities may be
prioritized. Finally, the use of LSTM-SSA is generally not recommended due to its excessive computational

requirements during training.
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Appendix A

(1) CNN-LSTM-Attention

CNN-LSTM-Attention introduces the CNN and Attention modules into LSTM. The CNN module can reduce the
dimensionality and improve the generalization ability, while the Attention module can assign weights to each channel
of the input features, so the proposed algorithm can improve the prediction accuracy while ensuring the computational

33,4748] The mathematical process is as follows.

efficiency [

The CNN module has four steps:

Step 1 (Convolution Layer): CNN module begins with a convolutional layer, where filters are applied to perform
convolution operations on input data, extracting features at different spatial locations, as shown in equation (A.1).

Step 2 (Activation Layer): A non-linear transformation is applied to the output of the convolutional layer, using
the ReLU activation function.

Step 3 (Pooling Layer): The pooling layer reduces the spatial dimensions of the feature maps generated by the
convolutional layer, thereby decreasing computation complexity and mitigating over-fitting by max-pooling methods,
as shown in equation (A.2).

Step 4 (Flattening Layer): The outputs from the convolutional layers and pooling layers are flattened into a

one-dimensional vector, which serves as the input to the fully connected layers and is subsequently fed into the

following LSTM network.
M N
Yij= st nmt W™ Xitmot jine (A1)
Y,; = MaxPooling (Xixgim, jxsin) = MAX,, » Kixsim, jxsin) (A.2)

Where, Y represents the output of the convolutional layer, obtained by convolving the input features X with the sliding
filter W; s denotes the stride; m and » iterate over the pooling window.

The LSTM module has four steps:

Step 1 (Input Gate): The LSTM receives the input sequence and employs the sigmoid activation function to
determine which information to retain or discard. The input gate (7,) regulates the incorporation of new input (x,) into
the memory cell (MC) state (C,), as shown in equation (A.3).

Step 2 (Forget Gate): The forget gate decides which information from the cell state should be forgotten by using
the sigmoid activation function, which evaluates the extent to the previous cell outputs influences the current MC, as
shown in equation (A.5). The forget gate (f;) effectively preserves relevant portions of the previous cell state (C.;).

Step 3 (Update Gate): The sigmoid activation function is used to identify which values need to be updated. The
tanh activation function generates new candidate values, and using new information updating new cell state. The
update gate computes candidate values (C,) for the new cell state (C,), as shown in equations (A.6—A.7).

Step 4 (Output Gate): Based on the updated cell state, the output gate uses the sigmoid and tanh activation
functions to determine the final output information, as shown in equations (A.8—A.9). The output gate (o,) controls the

extent to the cell state (C,) contributes to the next hidden state (h,).



iy = sigmoid (Wix; + Winhyy + b;) (A.3)

sigmoid = (1 + e™)’! (A.4)

Ji = sigmoid (Wg-x;+ Wy hyy + by) (A.5)
C, = tanh (W x;+ Wa,-hyy + b,) (A.6)
C,=C0i+C.,0f, (A7)

o, = sigmoid (W, x,+ Wy, h.1 +b,) (A.8)

Where, ¢ is the current moment while (#-1) is the previous moment; i, is the input gate; x, is the input data; C, is the
cell state; f, is the forget gate; h, is the input of the hidden state; o, is the output gate; © is the Hadamard product;
tanh is the tangent activation function; sigmoid is the sigmoid activation function.

The Attention mechanism in this study is the squeeze-and-excitation attention mechanism, which has three steps:

Step 1 (Squeeze): While preserving the number of feature channels, features are compressed along the spatial
dimensions. Specifically, a global pooling operation is applied to the input features to obtain channel-wise statistics,
thereby capturing the importance of each channel. Each two-dimensional feature channel is compressed into a real
number U, by using equation (A.9).

Step 2 (Excitation): A compact neural network is used to capture inter-channel dependencies. This network takes
the channel-wise statistics obtained from the squeeze step as input, and produces a set of channel-wise weights,
representing the significance of each channel, as shown in equation (A.10). this step involves the feature dimension
increase or decrease.

Step 3 (Re-weighting): The original feature maps are re-weighted using the attention scores (that are the weights)

from the excitation step, emphasizing informative features and suppressing less useful ones.

M N u
— _m=l__n=1"Mmn —
U= ==l gy p=1,2, (A.9)
S = Sigmoid [W, x ReLU (W, x U)] (A.10)

Where, Sigmoid and ReLU are used as the two activation functions; W, and W, denote two fully connected layers;
M and N denote the spatial dimensions.

(2) Transformer-LSTM-Adaboost

Transformer-LSTM-Adaboost introduces the Transformer module and Adaboost module into LSTM. The core of
Transformer is the self-attention mechanism, with an encoder-decoder structure. Transformer relies on the query, key,
and value matrix. By simulating the interaction among these three matrices, it can dynamically capture dependency
relationship of different positions in the input sequence. And the Adaboost module can adaptively adjust weights by
multiple training for the basic learner (Transformer-LSTM), thereby enhancing overall generalization capability P01,

The core of the Transformer is the self-attention mechanism, which relies on the query matrix (@), key matrix (K),
and value matrix (V). By simulating query-key-value interaction pattern, it can dynamically capture dependencies
among different positions in the input sequence. The overall framework of Transformer follows an encoder-decoder

structure. The multi-head self-attention mechanism can be viewed as the concatenation of outputs from multiple



self-attention mechanisms. The detailed computational procedure is given by equations (A.11-A.16).

0=X, w? (A.11)
K=Xx, w* (A.12)
V=X w" (A.13)
. QKT
Attention (Q, K, V) = softmax ( YV (A.14)
Vei
h; = Attention (Q, K, V), (A.15)
MultiHead (Q, K, V) = Concat (", h;) (A.16)

Where, Q is the query matrix, used to compute similarity with the key matrix (K) at other positions, determining
which parts of the input to attend to; K represents the key matrix, which matches with the query matrix (Q) to generate
attention weights; V stands for the value matrix, storing the actual information at each position. After weighting by the
attention weights, these values are aggregated to produce the final output. X is the input sequence matrix; we, wx,
and W refer to the corresponding weight matrices, which are trainable parameters; d; denotes the dimension of the
matrices @, K, and V; m is the number of attention heads; d) is the computation results of the ith attention head; the
softmax function is a normalized exponential function converting a real-valued vector into a probability distribution;
the Concat function is used to concatenate the outputs of the individual attention heads.

The LSTM process has been listed in equations (A.3—A.8).

In the AdaBoost process, the training dataset is first assigned initial weights. After being processed by a weak
classifier, the weight of this basic classifier is computed based on the classification error, and the algorithm proceeds
to the next iteration. The learning rate is adjusted in each round of training. Finally, a strong classifier is obtained by
summing all basic classifiers. This procedure adaptively adjusts sample weights, allowing the model to progressively
focus on samples that are difficult to classify correctly, thereby enhancing overall generalization capability.

Assuming the training set is the D={(x;,)), (X2.)2), ... » (Xx2Vy)}, X is the training data, y is the forecast data, W”
is the weight matrix. The initial weight distribution of the training data is set as shown in equation (A.17). The basic
learner is trained to obtain a weak classifier G,(x;), and the error of this classifier is given by equation (A.18). The
weight of this current weak classifier in the final composite classifier is calculated via equation (A.19). The updated
sample weights are provided in equations (A.20-A.211). The above steps are repeated until all classifiers are assigned
weights. The final strong classifier is obtained by combining the weak classifiers through weighted majority voting, as

shown in equation (A.22).

werl) = 5 (A17)

6=P(Gx) £y = L wi()HGx) %) (A.18)
o= % In (%’) (A.19)

w, () =2 exp (-0, y; Gi(x7)) (A.20)

z(7)



2 =12 w) exp (-0, y; G(x) (A21)

G(x;) = sign ( ZT a; G(x))) (A.22)
Where, ¢ is the iteration count, 7 =1, 2, ..., T; w,(j) is the sample weight at iteration #; N is the total number of samples;
P is the probability; ¢, is the error of the weak classifier (G,) at iteration ¢; /I is the indicator function, taking the value
1 for classification errors and 0 otherwise; o, is the classifier weight at iteration # w,(j) is the weight corresponding
to the jth training sample at iteration #; z,(j) is the normalization factor, ensuring the sum of weights in equation (A.17)
equals 1; sign is the sign function.

(3) LSTM-SSA

LSTM-SSA introduces the SSA into LSTM, which can solve the optimal solutions of the learning rate, the
number of iterations and the number of hidden units in the LSTM process [,

The LSTM process has been listed in equations (A.3—A.8).

The sparrow search algorithm (SSA) simulates the foraging behavior of sparrows, which includes food searching,
group cooperation, and information sharing. The position vectors of all sparrows are shown by equation (A.23), and
their corresponding fitness values are shown in equation (A.24). The sparrow population is divided into producers and
scroungers. Producers are responsible for seeking food and directing the movement of the population; their positions
are updated by using equation (A.25). Scroungers consistently monitor the producers and will move to contest if they
discover food. If successful, they acquire the food found by the producers; otherwise, they continue monitoring. The
position update rule of scroungers is shown in equation (A.26). Additionally, the algorithm considers sparrows that are
aware of danger, accounting for 20% of the population, which act as scouts. The initial positions of these scouts are
generated randomly, and their positions are updated using equation (A.28).

X1 7 X4
Xi=| : : (A.23)
Xnl 7 Xnd

f([xl,ln X1,2 ~-~»x1,d])
FX: f([x2,lax2,2a --->x2,d]) (A24)

([xn,l s xn,Zﬂ s xn,d])

X, () x exp(—=——), if Ry<ST
X(t+h)={" () exp (“X””m) SR (A.25)
X, () + O x L, if R>ST
Xwor.vt(l)')(i /(l) e
X o W >
X, (t+1) = 0 e"p( 2 ) i3 (A.26)
X,(t+1) + X, (1) - X, (¢+1)] x A x L, otherwise

AT =AT (A AT)! (A.27)



Xpest(t) + B |X; {(O-Kpest (D], i 17/

|Xi '(t)'Xwars (t)‘ .
X,j(0) + K x (Sl ey,

X (tt1) = (A.28)

Where, n is the total number of sparrows; d is the dimension of the variables; each value (f{[x,, 1,X,2,....%,4]) in the
matrix Fy is the fitness value of an individual; X; is the position vector of the ith sparrow; ¢ is the current iteration; j
is the dimension (j =1, 2, ..., d); i is the sparrow index (i = 1, 2, ..., n). XﬁJ is the position of the ith sparrow in the jth
dimension at iteration ¢. iter,,,, isthe maximum number of iterations; a is a random number between 0 and 1; R, is
the alarm value (range: [0, 1]); ST is the safety threshold (range: [0.5, 1.0]); Q is a random number following the
normal distribution. When R, < ST, it indicates that the producer enters a wide-area search mode with no danger

around; while when R,> ST, it means some sparrows find the danger, and all sparrows need to move to a safe region.

X

» 1s the best position currently occupied by the producer; X, is the current global worst position; 4 is a (1xd)

matrix where each element is randomly assigned as either 1 or -1; 4" is the resulting matrix after applying the
operation rule in equation (A.27). § is a step size control parameter (a random value from a normal distribution with
mean 0 and variance 1); K is a random number within the range [-1, 1]; f, and f,, are the current global best and
worst fitness values, respectively; f>f, means that the ith sparrow is at the edge of the population; Xp.(?) is the
central position of the population, which is considered safe; whereas f=f, means that a sparrow located near the

center has detected danger and needs to move closer to other sparrows.
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