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Abstract: Addressing the global energy crisis and excessive emissions has heightened the critical importance of

reducing energy consumption and carbon emissions in the building sector, making accurate building energy

forecasting a fundamental research focus. While existing methods predominantly prioritize forecasting accuracy by

advanced algorithms, considerations of computational efficiency and model interpretability remain scarce. To bridge

this gap, this study proposes a novel forecasting method that simultaneously optimizes for accuracy, efficiency, and

interpretability. The method integrates three strategies: (a) incorporating weighted occupant behavior probabilities as

novel inputs; (b) incorporating physics-informed loss function calculated by thermal resistance-capacitance (R-C)

models; and (c) developing a hybrid CNN-LSTM-Attention algorithm that integrates convolutional neural networks

and an attention mechanism with a long short-term memory network. Validation of 48 cases from four office buildings

shows the proposed method significantly enhances performance. These three strategies reduce the mean absolute

percentage error (MAPE) by 25.78% and the coefficient of variation of the root mean square error (CV-RMSE) by

21.31%, and average contributions are 40%, 15% and 45% for Strategies (a)–(c), respectively. Strategy (c) is the

primary contributor to efficiency gains, which can reduce time consumption by 7343.69s and 146.81s compared to

Transformer-LSTM-Adaboost and LSTM-SSA, respectively. Strategies (a) and (b) improve interpretability by

embedding occupant behavior patterns and thermal constraints. Moreover, the priority of these strategies for buildings

with varying behavioral and functional complexities is analyzed. In summary, based on theoretical considerations and

practical validation, the proposed method can improve the accuracy, efficiency, and interpretability simultaneously.

Keyword: Building energy consumption forecasting, Physics-informed algorithms, Occupant behavior probabilities,

Building thermal R-C network models, Attention mechanism
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Highlights:

1. This paper proposes a forecasting method with novel inputs, algorithm and loss function;

2. This paper uses thermal R-C models for physic-informed loss to enhance interpretability;

3. This paper uses weighted behavior probabilities as novel inputs to enhance accuracy;

4. This paper uses novel algorithms (CNN-LSTM-Attention) to enhance accuracy and efficiency;

5. This paper discusses the contribution and priority for different optimization strategies.



1 Introduction

Global energy consumption has consistently increased over the past three decades [1]. According to the National

Human Activity Pattern Survey (NHAPS), respondents spend an average of 87% of their time inside buildings [2].

Recent studies indicate that buildings account for 41% of total primary energy use in the U.S. and even up to 65% in

Europe [3]. In China, the building sector contributes 44.8% of the total national energy consumption; even when

considering only the operation phase, this value reaches 22.0% [4].

Consequently, low-carbon and energy-efficient building operations have become a global research priority, with

energy consumption forecasting serving as a foundational element [5]. Accurate hourly energy consumption forecasting

may be widely beneficial to groups and individuals. For example, by accurate forecasting, energy companies can

adjust energy pricing in real time, support demand response programs, and react more promptly and precisely to

extreme weather conditions [6]. Energy managers can optimize the schedules of energy storage and photovoltaic

systems to enhance supply and demand matching [7]. Additionally, energy users can shift flexible loads, such as

laundry operations, from high-price to low-price hours, thereby reducing energy costs [9]. Building energy

consumption forecasting methods are generally categorized into three types: physical modeling, data-driven, and

hybrid methods.

Regarding physical modeling methods, these methods involve simulation software, such as EnergyPlus, which

requires detailed inputs including climate data, building information, envelope and device performance, and operation

schedules. For example, Neto et al., developed an EnergyPlus model for a university office building, which shows a

forecasting error range of ±13% for 80% of the tested database [10]. However, these methods possess limited online

applicability and struggle to represent the complex and real-time interactions among occupants, indoor environment,

and energy-consuming devices accurately [11]. Furthermore, some researchers raised concerns regarding the common

accuracy of this method [12]. Consequently, for applications such as energy efficiency assessment and management,

data-driven and hybrid methods are often preferred over those relying solely on physical modeling.

Regarding Data-driven methods, these methods focus on two improvements including identifying optimal input

features and developing advanced training algorithms. For example, Wang et al. developed a novel federated learning

framework that integrates a sparse Mixture-of-Experts model with a lightweight MetaFormer model, reporting a

10–40% improvement in forecasting accuracy [13]. Feng et al. implemented adaptive LSTM networks optimized with a

beluga whale optimization algorithm, reducing the RMSE by 11% and the CV-RMSE by 6.3% [14]. Cao et al. proposed

a PSO-stacking ensemble model with priority feature selection, which achieved significant reductions in RMSE [15].

Zhang et al. proposed a suitable input selection method, which can reduce the MAPE by 13.94% on average in seven

buildings [16]. Zhang et al. proposed a short-term power load forecasting method for industrial buildings with temporal

convolutional network, informer, and bi-directional gated recurrent unit (GRU), which can reduce the mean absolute

error (MAE) by 48.54% on average [17]. Overall, common input features encompass factors influencing building

energy performance, such as physical properties, indoor and outdoor environmental conditions, occupant behaviors,



envelope and device performance, economic, and social factors [18]. And training algorithms frequently employ some

advanced machine learning algorithms such as LSTM and GRU [19], with further optimizations achieved through

swarm intelligence for hyperparameter optimization [20], Transformer frameworks for weight optimization [21], CNN

for data processing [22], and transfer learning to address data scarcity [23]. However, despite these advancements,

challenges in terms of technology remain. Accurately integrating complex, dynamic inputs such as detailed occupant

behavior and environmental fluctuations into models is still difficult. Moreover, while current research predominantly

focuses on improving predictive accuracy, other critical aspects such as computational efficiency and model

interpretability are often neglected.

Regarding hybrid methods, these methods are generally categorized into two approaches: the first extends

datasets using physical modeling for subsequent data-driven forecasting, while the second incorporates physical

models as the constraints or inputs into data-driven methods. For example, Ali et al. generated large-scale synthetic

building data through parametric simulation and integrated end-use demand segregation with ensemble learning,

achieving a forecasting accuracy of 91% compared to 76% for traditional methods [24]. Similarly, Song et al. used

building energy simulation software to generate data and employed the whale optimization algorithm to optimize

hyperparameters of the Bi-LSTM, resulting in the lowest MAPE among benchmark techniques [25]. Zhang et al.

introduced occupant energy-use behavior probability models as algorithm inputs, reducing the MAPE by 19.54% on

average [26]. Lee et al. developed a spatial-temporal graph neural network with an encoder-decoder framework that

embedded physical constraints from mass and energy conservation laws, which enhanced interpretability and

improved forecasting accuracy by 44.7% [27]. Michalakopoulos et al. applied a physics-informed neural network that

incorporated heat loss constraints, yielding the RMSE lower than purely data-driven equivalents [28]. Despite their

promising performance, hybrid methods often require complex validation and expertise across disciplines. A

significant technical challenge also remains the limited ability of existing methods to fully capture the complex and

real-time interactions among occupants, environment, and devices. Consequently, further simultaneous improvements

in the accuracy, efficiency, and interpretability of hybrid forecasting methods are necessary.

Among the hybrid methods, physics-informed neural network (PINN) has emerged as a promising paradigm that

seamlessly integrates physical principles with data-driven learning [29–31, 34]. In the context of building energy analyses,

common PINN practices may embed governing equations or thermodynamic constraints into the loss function or input

features. The PINN can improve generalizability beyond the training data distribution, improve interpretability by

grounding predictions in established physical laws, and reduce reliance on massive, high-quality datasets. However,

these benefits come also with inherent challenges. PINN increases model complexity and requires domain knowledge

to build physical constraints. Consequently, while the potential of PINN is widely recognized, verifying its

adaptability in buildings with different characteristics and achieving an optimal balance among accuracy, efficiency,

and interpretability are important.

To address these challenges and fill existing knowledge gaps, this study proposes a novel energy consumption



forecasting method for office buildings, designed to enhance efficiency, accuracy, and interpretability simultaneously.

The framework of the proposed method is shown in Figure 1, with the key components, objectives, and case studies.

The potential contributions and primary works are summarized as follows:

(1) Introducing the weighted occupant AC, light and plug usage behavior probabilities as the novel inputs, to

improve the interpretability and accuracy;

(2) Using the combined loss function with physical-informed (calculated by the thermal R-C network models)

and data-informed loss replacing the only data-informed loss function (MAE), to improve the interpretability;

(3) Proposing the algorithmic improved modules into the basic training algorithm LSTM, including CNN,

Attention, SSA, Transformer, etc., to improve the efficiency and accuracy;

(4) Comparing the performance with different optimization strategies in different buildings, and discussing the

contributions, suitability and prioritization.

The remaining sections of this paper are structured as follows: Section 2 details the methodology, encompassing

data collection, occupant behavior modeling, thermodynamic resistance-capacitance network modeling, and all the

algorithmic modules. Section 3 presents case studies and results, analyzing the performance improvements achieved

by different optimization strategies. Section 4 discusses the contributions and priority, compares the findings with

those of other recent studies, and notes the limitations of this study. Finally, Section 5 provides concluding remarks.

Figure 1 The framework of the proposed enhanced building energy consumption forecasting method

2 Methodology

2.1 Information of example buildings

The case studies comprise four office buildings on a campus in cold region in Dalian, China, characterized by a

coastal warm-temperate continental monsoon climate with a mean annual temperature of 10.4°C [32]. Building A

houses the school of environment and biology. Building B houses the school of economics and management, the skill

training center, and the international exchange office. Building C houses four schools including electrical engineering,

information and communication engineering, control science and engineering, and computer science and technology.

Building D houses the school of energy and power solely. All these office buildings contain professor's offices, student

workstations, conference rooms, lecture halls, and laboratories, etc. Indoor environment and electricity monitoring

systems are installed in these buildings, providing sufficient data for the case studies. The layout of the monitoring

systems is shown in Figure 2, and detailed building information is summarized in Table 1.



Table 1 Detailed information of typical office building

Codes Building function and energy-use branches Sizes Appearances

A

ACs: Common split ACs in almost all rooms

Lights: Fluorescent lamps and LED lamps

Plugs: computers, experiment devices, heaters, etc.

EUI: 65.79 kWh/m2

Length: 84.06 m (a), 75.06 m (b)

Width: 81.86 m (a), 67.86 m (b)

Height: 29.10 m (a), 23.60 m (b)

Area: 40324 m2

South W2W ratio: 0.20

B

ACs: VRF AC system

Lights: Fluorescent lamps and LED lamps

Plugs: computers, servers, printers, heaters, etc.

EUI: 29.88 kWh/m2

Length: 233.98 m

Width: 81.32 m

Height: 23.55 m

Area: 35998 m2

South W2W ratio: 0.18

C

ACs: Central AC system with screw-type chillers

Lights: Fluorescent lamps and LED lamps

Plugs: computers, servers, printers, heaters, etc.

EUI: 39.44 kWh/m2

Length: 15.30 m (a), 51.90 m (b)

Width: 40.20 m (a), 20.40 m (b)

Height: 85.80 m (a), 55.80 m (b)

Area: 36500 m2

South W2W ratio: 0.25

D

ACs: Common split ACs in almost all rooms

Lights: Fluorescent lamps and LED lamps

Plugs: computers, experiment devices, heaters, etc.

EUI: 90.20 kWh/m2

Length: 57.70 m

Width: 64.90 m

Height: 43.90 m

Area: 27500 m2

South W2W ratio: 0.22

Figure 2 The monitoring system for building energy consumption

Based on the monitored data, Figures 3(a)–3(d) shows the energy consumption fluctuation characteristics for

different buildings. Although these buildings are all offices, the energy consumption characteristics exhibit significant

variations. Given that environmental air temperatures and meteorological conditions are similar, it demonstrates that



existing prediction frameworks may struggle to achieve sufficient adaptability clearly. There is an urgent need for

improvements across various aspects, including algorithms and input data.

(a) for Building A (b) for Building B

(c) for Building C (d) for Building D

Figure 3 Annual energy consumption fluctuation characteristics for the four example buildings in 2021

2.2 Enhanced energy consumption forecasting

The proposed framework for building energy consumption forecasting incorporates three optimization strategies,

with the simplified complete process shown in Figure 1.

First, weighted occupant behavior (for AC, light, plug usage) probabilities are introduced as novel inputs. This

enhancement improves both the interpretability and accuracy of the forecast model [33].

Second, the physics-informed loss term, calculated using a building thermal R-C model, is integrated into the

training process alongside the traditional data-informed loss, which occurs a combined loss function shown in

equation (1). This enhancement improves the interpretability by grounding it in physical principles [34].

LOSStotal = λ1 × MSE (Ef, Ea) + λ2 × 1
n

× i=1
n (LOSSphysics)2� (1)

Where, LOSStotal is the total loss in algorithmic training process; MSE is the function to calculate mean-square error

which is the data-informed loss; LOSSphysics is the physical-informed loss; n is the number of the training point; λ1 ,



and λ2 are the weights of data-informed loss and physical-informed loss, which are all 0.5 in this paper; Ef, and Ea

are the forecast and actual values of energy consumption, kWh.

Third, a CNN module and an attention module are incorporated into the LSTM for data processing and dynamic

weight optimization. This enhancement improves accuracy and efficiency [35]. Furthermore, some additional

algorithmic modules, including SSA, transformer, etc., were also implemented for comparative performance analyses.

2.2.1 Occupant behavior probabilities and weights

Occupant behavior can be categorized into three types: environment-driven, time-driven, and random behaviors.

This study focuses on energy-related behaviors, including AC, light, and plug usage within buildings [36].

Environment-driven behavior is primarily initiated by environmental stimulus. The probability can be calculated

using equations (2–3). Equation (2) models behaviors triggered when an environmental stimulus exceeds a threshold,

such as AC activated due to indoor air temperature surpassing a threshold. Conversely, Equation (3) models behaviors

triggered when a stimulus falls below a threshold, such as turning on lights due to low indoor illuminance.

� = 1 + ��� − �− �−���
�

�
∆�, � ≥ ���

���, � < ���
(2)

� = 1 + ��� − �− ���−�
�

�
∆�, � ≤ ���

���, � > ���
(3)

Where, P is the behavior probabilities; X is the environment stimulus, such as indoor air temperature for AC-usage

behaviors [37] and outdoor solar radiation for light-usage behaviors [33]; Xsu is the threshold of stimulus; Psu is the

original probabilities, accounting for devices that remain normally operational, such as safety indicators; k, l, ∆τ are all

the fitting parameters, representing the occupant thermal sensitivity, the dimensionless constant, and the time-scale

parameter respectively.

Time-driven behavior is primarily initiated by specific times or events, such as turning off lights when leaving.

The probability can be calculated by equation (4).

� =
���, �ϵ [��, ��]
0, �∉ [��, ��] (4)

Where, t is the present moment; ta, and tb are the start and end moment for some time-driven behaviors.

Random behavior lacks explicit driving factors. Based on human dynamics theory [38], human behavior often

exhibits a pattern of a short-term burst followed by a long period of silence, showing a non-uniform temporal

distribution. Consequently, current behavior may be influenced by previous behaviors, and since energy consumption

reflects behavioral patterns, the probability of random behavior can be modeled using equation (5–6). Other recent

studies also suggest that random behavior can also be calculate by the number of occupants, or some similar

parameters such as occupancy and indoor CO2 concentration, which can indirectly model the random behaviors.

P = Bi-LSTM ( E�−1, E�−2, E�−3, t ) (5)

P = f (∆t ) (6)



Where, Bi-LSTM means a black-box algorithm; Et-1, Et-2, and Et-3 are the energy consumption at one, two, and three

previous time steps, kWh; f is a mapping relationship; ∆t is the time interval between two behaviors.

Based on the survey, in the office buildings examined in this study, AC and light usage behaviors are determined

by both environmental and temporal drivers. Plug usage is predominantly random, and some instances are also

time-influenced. As the contribution of AC, light, and plug usage to total building energy consumption may vary, the

weights of these behaviors are determined by multiple regression analysis, as shown in equation (7).

Ettotal = ε0 + ε1 PtAC + ε2 Pt
light + ε3 Pt

plug (7)

Where, PtAC, Pt
light, and Pt

plug are the probabilities of AC, light and plug usage at moment t; Ettotal is the building

energy consumption in moment t, kWh; the intercept ε0 represents the base energy load independent of occupant

behavior, kWh; while ε1, ε2, and ε3 quantify the sensitivity of the total energy consumption to the corresponding

behavior probabilities, effectively converting the dimensionless probabilities into energy contributions, kWh.

2.2.2 Building thermal network model (7R-3C)

The building thermal R-C model is employed to calculate the physics-informed loss term in equation (1). R-C

models are widely adopted for room-level thermodynamic simulation and exist in various configurations [34]. Common

variants include 3R-2C model for facade analyses and 5R-1C model for indoor air modeling [39–42]. As this study does

not focus on precise thermal control, the complex convective and radiation between internal and external surfaces will

be simplified. With assuming homogeneous thermal process, a simplified 7R-3C model will be used for building-level

thermal modeling, as shown in Figure 4 and equation (8), which can be transformed into the following equation (9).

Cbuild
dTin
dt

= Tout - Tin
Rwall

+ Tout - Tin
Rwindow

+ Tout - Tin
Rsoil

+ Tout - Tin
Rroof

+ T������, � - Tin
Rdevice

+ Tℎ����, � - Tin
Rℎ����

(8)

Cbuild
dTin
dt

= Tout - Tin
Rwall

+ Tout - Tin
Rsoil

+ Tout - Tin
Rroof

+ Qdevice + Qsolar + Qhuman (9)

Where, Tout, and Tin are the outdoor and indoor air temperature on average, ℃; Tdevice,s , and Thuman,s are the

average surface temperature of the devices and human, ℃; Cbuild is the overall heat capacitance of indoor air, kJ/K;

Rwall , Rwindow , Rsoil , Rroof , Rdevice, and Rhuman are the thermal resistance from facade walls, windows (including all

transparent envelope), floors, roofs, devices, and occupants to the indoor air, K/kW; Qdevice is the heat generation

from devices and AC heating provided, kW; Qsolar is solar radiation heat generation through transparent enclosures,

kW; Qhuman is the heat generation from human metabolism, kW.

Some terms in equation (9) can be further solved as follows.

Qdevice = ε1 × Pplug + ε2 × Plight + a × ε3 × Pac (10)

Qsolar = β × SHGC × Aw × Isolar (11)

Qhuman = N × γ (12)

1
Ro-envelope

= Rsoil Rroof + Rwall Rroof + Rwall Rsoil
Rwall Rsoil Rroof

(13)

Where, Pplug , Plight, and Pac are the power of plug, light, and AC usage, kW; ε1 , and ε2 are the heat generation

coefficient for electrical plug loads (such as computers) and lights; ε3 is the cooling or heating efficiency of AC



systems; a is the cooling-heating switching coefficient (+1 for heating and -1 for cooling); β is the ratio of solar

radiation heat gain absorbed by indoor thermal mass to the total solar radiation heat gain transmitted through

transparent windows; SHGC is the solar heat gain coefficient; Awis the window area, m²; Isolar is the solar radiation

intensity, kJ/m2; N is the number of occupants in the building; γ is the average metabolic heat per person, kW/person;

Ro-envelope is the total thermal resistance of the opaque envelope (including exterior walls, roof, and floor), K/kW.

If the occupant count is not directly measured, it can be estimated using design occupancy density or inferred

from dynamics indoor CO2 concentration, as shown in equations (14–15). Consequently, equation (8) is reformulated

as equation (16). When there are only building energy data instead of all device energy data, an experiment can be

conducted to comprehensively test the heat generated by lighting fixtures, electronic devices such as computers, and

the heating or cooling from ACs, converting these into the total thermal generation of all devices in buildings,

calculated by total energy consumption, shown in equation (17). Based on these equations, the physics-informed loss

in equation (1) can be calculated by equation (18).

N = ρ × Ab (14)

Vb
dCCO2

in

dt
= N × GCO2 + Qv × (CCO2

out - CCO2
in ) (15)

Cbuild
dTin
dt

= Tout - Tin
Ro-envelope

+ ε1 × Pplug + ε2 × Plight + a × ε3 × Pac + β × SHGC × A × Isolar + N × γ (16)

Cbuild
dTin
dt

= Tout - Tin
Ro-envelope

+ δ1 × Pbuild + δ2 × Isolar + δ3 × N (17)

LOSSphysics = Tout - Tin
Ro-envelope

+ ε1×Pplug + ε2×Plight + a×ε3×Pac + β ×SHGC ×A ×Isolar + ρ ×Ab×γ - Cbuild
dTin
dt

(18)

Where, ρ is the design occupancy density, person/m2; Ab is the building area, m2; Vb is the building volume, m³; Qv
is the ventilation volume, m3/h; CCO2

out , and CCO2
in are the outdoor and indoor CO2 concentration at moment t, ppm;

GCO2 is the metabolism CO2 production per person per hour, m3/(person·h); δ1, δ2, and δ3 are fitting parameters.

Referring to recent studies and the ASHRAE standard [43–45], ε1 is taken as 0.88, and ε2 is 0.60. Based on the

device performance and weather information, ε3 is taken as 4.0, and SHGC is 0.48. The area of buildings, walls and

windows are shown in Table 1. And the Tin , Tout , Pplug , Plight , Pac , and Isolar are monitored in real time. The

remaining unknown parameters, Cbuild and Ro-envelope , can be determined by nonlinear least-squares fitting to

minimize the LOSSphysics using lsqnonlin function in MATLAB 2024a [46], as shown in equation (18) and Figure 4.



Figure 4 The calculation process of R and C of the thermal R-C models

2.2.3 Training algorithm modules

The LSTM network serves as the foundational forecasting algorithm due to its proven efficacy in modeling

time-series data. To enhance its performance, several advanced algorithmic modules are integrated including CNN,

SSA, Transformer, and attention mechanism. This study proposes a CNN-LSTM-Attention as the forecast model. For

comparison, other advanced hybrid algorithms, including Transformer-LSTM-Adaboost and LSTM-SSA, are also

implemented [47–51], which incorporate SSA, Transformer, and Adaboost modules into the LSTM framework

incorporating optimization for hyperparameter tuning, weight adjustment, and data processing.

For CNN-LSTM-Attention, the CNN module performs feature extraction and dimensionality reduction to

improve generalization, and the attention mechanism dynamically assigns weights to different input feature channels,

enabling the model to focus on the most relevant information. This integration enhances prediction accuracy while

maintaining computational efficiency [33, 47–48]. The overall process is shown in Figure 5.

For LSTM-SSA, it uses SSA to optimize the key LSTM hyperparameters such as learning rate, the number of

iterations and the number of hidden units [49]. For Transformer-LSTM-Adaboost, the Transformer module employs

self-attention mechanism within an encoder-decoder structure, which uses query, key, and value matrices to capture

dependencies among different positions in the input sequence dynamically. The Adaboost module serves as a

meta-learner, adaptively adjusting weights by iterative training of the Transformer-LSTM (basic learner), to improve

the model generalization ability [50–51].



Figure 5 The process and connection of the CNN-LSTM-Attention with novel inputs and loss function

As these algorithmic are not novel contributions of this study, their detailed mathematical formulations are

omitted from the main text for brevity, provided in Appendix A. The key hyperparameters are shown in Table 2.

Table 2 The key hyperparameters of different algorithmic modules

Modules Hyperparameters Values Modules Hyperparameters Values

CNN Maximum number of iterations 100 LSTM Number of hidden layers 64

CNN Initial learning rate 0.005 WOA Population size 10

CNN Learning rate decay period 80 WOA Maximum number of iterations 20

CNN Learning rate decay coefficient 0.8 SSA Population size 10

CNN Minimum batch size 24 SSA Maximum number of iterations 20

CNN Activation function ReLU SSA Threshold of danger 70%

CNN Convolutional kernel size 64 SSA Proportion of producers 40%

LSTM Maximum number of iterations 1000 SSA Proportion of realizing danger 20%

LSTM Initial learning rate 0.01 Attention Activation function Sigmoid, ReLU

LSTM Learning rate decay period 800 Attention Number of neurons 128

LSTM Learning rate decay coefficient 0.8 Transformer Position encoding dimension 256

LSTM Minimum batch size 240 Transformer Number of self attention heads 4

LSTM Activation function (Output gate) Tanh Transformer Key/Value Vector Dimension 128

LSTM Activation function (Input/Forget gate) Sigmoid Adaboost Number of basic learners 10

LSTM Number of neurons 32 No Ratio of training to test 7:3

2.3 Evaluation parameters

The performance of the proposed method is evaluated using five indices: R2, MAE, MAPE, RMSE, and

CV-RMSE, computed using equations (19–23).

�2 �, � = 1 − 1
� (�−�)2�

1
� (�−��)2�

(19)



��� �, � = 1
� 1

� |� − �|� (20)

���� �, � = 1
� 1

� | �−�
�

× 100%|� (21)

���� �, � = 1
� 1

� (� − �)2� (22)

�� − ���� �, � = ����(�,�)
��

(23)

Where, X and Y is the forecast and actual energy consumption, kWh. �� is the average of the actual value, kWh. In

addition, it is important to evaluate the time required for implementation. In this study, the time consumption is

recorded using the timing program provided by MATLAB. The program runs on a fixed computer (Model: Lenovo,

TianYi 510 pro, RAM: 16GB; CPU: i7-13700; GPU: NVIDIA GeForce GT 730), with a consistent operator and other

influencing factors such as parameter selection kept constant throughout the analyses.

3 Cases and results

Comprehensive case studies were designed to evaluate forecasting performance, encompassing a total of 48

unique cases. These cases were generated by combining four variables: three forecasting algorithms, two kinds of loss

functions, two kinds of input features, and four different buildings. And the output is the building energy consumption.

The two kinds of inputs are traditional and novel. Traditional inputs include time, indoor air temperature and CO2

concentration, outdoor air temperature, solar radiation intensity, cloudiness, and historical energy consumption. Novel

inputs include all traditional inputs and weighted occupant AC, light, and plug usage behavior probabilities.

The three kinds of algorithms are Transformer-LSTM-Adaboost, CNN-LSTM-Attention, and LSTM-SSA.

The two kinds of loss functions are data-informed loss, and combined data-informed and physics-informed loss.

While the input features include historical energy consumption, the model is structured as a multi-variate

regression forecast model rather than a pure time-series forecast model. The lagged energy consumption is treated as a

supplementary static feature that provides valuable information about the building operation state, similar to indoor air

temperature and occupant behavior probabilities. The model learns a direct mapping from the feature vector at a given

time to the energy consumption at the same time. Consequently, since the prediction for each time step is made

independently based on its corresponding features, the entire dataset is partitioned into a training set (70%) and

a testing set (30%) randomly, and the results are the average results based on five-time simulation for each case.

3.1 Results on behavior probabilities

The probabilities for AC, light, and plug usage behaviors, calculated by equations (2–6), were categorized into

environment-driven, time-driven, and random types. Based on energy monitoring and field investigations, five

common behavioral modes were identified and summarized as follows:

Table 3 summarizes the predominant behavior modes identified for each building. For example, while lights in

Building C could be operated freely, field investigation revealed that occupants typically turned all lights on when

entering and off when leaving. Therefore, Mode b is selected for light usage behavior in Building B instead of Mode c.



It is important to note that energy-related behavior is defined broadly in this context. As the studied office buildings

include scientific laboratories, AC systems were sometimes used to maintain precise temperature and humidity levels

in unoccupied areas and time (for example, data centers, experimental animal facilities, and precision instrument

rooms). The resulting calculated behavior probabilities are shown in Figures 6–9.

Table 3 The energy usage modes and schedules in different buildings by field investigation

Building AC usage modes Light usage modes Plug usage modes

Building A
Heating: Mode a

Cooling: Mode a
Mode c Mode e

Building B
Heating: Mode a

Cooling: Mode a
Mode c Mode e

Building C
Heating: No usage

Cooling: Mode c
Mode b Mode e

Building D
Heating: No usage

Cooling: Mode a
Mode c Mode e

Mode a: Human tend to turn on, turn off, and adjust the devices only due to their own feelings influenced by
environment parameters;
Mode b: Human tend to turn on the devices when entering and off when leaving without adjustments;
Mode c: Human tend to turn on and adjust the devices due to their own feelings influenced by environment
parameters, and turn off the devices when leaving;
Mode d: Human tend to turn on and adjust the devices when entering, and turn off the devices only due to their own
feelings influenced by environment parameters, and turn off the devices when leaving.
Mode e: Human use the devices completely at random, unaffected by environment or time.

(a) AC usage in the heating season (b) AC usage in the cooling season



(c) Light usage during 18:00–next 7:00 (d) Light usage during 7:00–18:00

(e) Plug usage

Figure 6 The occupant behavior probabilities on average in Building A

(a) AC usage in the heating season (b) AC usage in the cooling season



(c) Light usage during 18:00–next 7:00 (d) Light usage during 7:00–18:00

(e) Plug usage

Figure 7 The occupant behavior probabilities on average in Building B

(a) AC usage (b) Light usage



(c) Plug usage

Figure 8 The occupant behavior probabilities on average in Building C

(a) AC usage (b) Light usage during 18:00–next 7:00

(c) Light usage during 7:00–18:00

Figure 9 The occupant behavior probabilities on average in Building D (plug usage calculated by Bi-LSTM rather than fitting)

The modeling accuracy for these behavior probabilities was quantitatively assessed, of which MAE ranges were



4.06%–7.47% (mean: 5.44%) for AC use, 5.84%–22.58% (mean: 13.78%) for light use, and 3.34%–25.90% (mean:

11.96%) for plug use. For comparison, based on the Design Standard for Energy Efficiency of Public Buildings (GB

50189-2015) in China [52], the MAE values between standardized schedules and actual probabilities are significantly

higher, which are 33.69% for AC use, 40.09% for light use, and 39.53% for plug use on average. A comparison of

MAE values between the proposed models and the standard schedules is shown in Figures 10(a)–10(b). It shows that

standard schedules fail to accurately reflect actual energy use patterns, particularly for specialized end-uses such as

safety lighting and HVAC for data centers or laboratories. These results substantiate the necessity of employing the

proposed occupant behavior modeling approach.

(a) The average MAE for the whole year

(b) For three consecutive days

Figure 10 Comparison of behavior probabilities calculated by standard schedules and the proposed models



3.2 Results on building energy consumption forecasting

Table 4 shows the forecast results of different cases with different inputs, algorithms, and loss functions.

Table 4 The forecast results of different cases with different inputs, algorithms, and loss functions

NO. Building Inputs Algorithms Loss MAE MAPE RMSE CV-RMSE R2 TIME(s)

1 A Traditional CNN-LSTM-Attention P-D loss 16.9023 5.73% 20.7442 0.0732 0.9002 534

2 A Novel CNN-LSTM-Attention P-D loss 16.525 5.59% 20.3085 0.0725 0.9119 525

3 A Traditional CNN-LSTM-Attention D loss 17.1762 5.92% 21.9923 0.0753 0.8995 514

4 A Novel CNN-LSTM-Attention D loss 16.8122 5.69% 21.9364 0.0737 0.9058 534

5 A Traditional LSTM-SSA P-D loss 17.8947 6.08% 22.7135 0.0758 0.8472 7230

6 A Novel LSTM-SSA P-D loss 16.915 5.74% 21.9661 0.0742 0.8514 7090

7 A Traditional LSTM-SSA D loss 18.2412 6.28% 24.2284 0.0783 0.8357 7450

8 A Novel LSTM-SSA D loss 17.8355 6.01% 23.7699 0.0782 0.8438 8840

9 A Traditional Transformer-LSTM-Adaboost P-D loss 17.9904 6.28% 23.7848 0.0774 0.8908 735

10 A Novel Transformer-LSTM-Adaboost P-D loss 17.9702 6.23% 23.584 0.0771 0.8926 703

11 A Traditional Transformer-LSTM-Adaboost D loss 19.0016 6.50% 24.6803 0.0815 0.8824 684

12 A Novel Transformer-LSTM-Adaboost D loss 18.0005 6.25% 23.9298 0.078 0.8895 666

13 B Traditional CNN-LSTM-Attention P-D loss 13.59 11.01% 21.3246 0.172 0.8872 407

14 B Novel CNN-LSTM-Attention P-D loss 13.1539 10.31% 20.3636 0.1466 0.8932 388

15 B Traditional CNN-LSTM-Attention D loss 14.8471 11.95% 23.3239 0.1922 0.8566 420

16 B Novel CNN-LSTM-Attention D loss 13.2646 10.60% 21.5031 0.1681 0.8926 412

17 B Traditional LSTM-SSA P-D loss 15.6603 12.77% 25.2528 0.2157 0.8197 7570

18 B Novel LSTM-SSA P-D loss 15.15 12.28% 23.3859 0.1848 0.8349 7490

19 B Traditional LSTM-SSA D loss 17.5397 13.35% 27.6699 0.2419 0.8127 8090

20 B Novel LSTM-SSA D loss 15.7739 13.10% 23.4475 0.2035 0.8346 6870

21 B Traditional Transformer-LSTM-Adaboost P-D loss 19.9723 18.42% 26.7767 0.2055 0.8154 566

22 B Novel Transformer-LSTM-Adaboost P-D loss 15.0608 12.75% 20.7797 0.1644 0.8888 554

23 B Traditional Transformer-LSTM-Adaboost D loss 22.4751 22.04% 28.8096 0.2142 0.7863 526

24 B Novel Transformer-LSTM-Adaboost D loss 15.4593 13.20% 21.5116 0.1681 0.8808 548

25 C Traditional CNN-LSTM-Attention P-D loss 13.0685 7.47% 22.841 0.146 0.8989 541

26 C Novel CNN-LSTM-Attention P-D loss 11.2351 6.46% 19.9104 0.1228 0.9254 584

27 C Traditional CNN-LSTM-Attention D loss 13.4631 7.92% 23.667 0.1479 0.8878 514

28 C Novel CNN-LSTM-Attention D loss 12.3376 7.43% 21.6855 0.1291 0.9129 552

29 C Traditional LSTM-SSA P-D loss 14.4486 8.88% 23.9846 0.1598 0.8693 6980

30 C Novel LSTM-SSA P-D loss 13.6927 7.40% 23.1098 0.1382 0.9046 7410

31 C Traditional LSTM-SSA D loss 14.4814 9.06% 27.2999 0.171 0.8306 8050

32 C Novel LSTM-SSA D loss 13.9669 7.69% 24.3809 0.1454 0.8908 9280



33 C Traditional Transformer-LSTM-Adaboost P-D loss 25.9803 17.24% 33.4838 0.1959 0.7938 674

34 C Novel Transformer-LSTM-Adaboost P-D loss 16.4865 9.73% 24.2819 0.1502 0.8916 728

35 C Traditional Transformer-LSTM-Adaboost D loss 26.6521 17.44% 35.0189 0.2044 0.7729 602

36 C Novel Transformer-LSTM-Adaboost D loss 16.5604 9.84% 25.665 0.1569 0.878 721

37 D Traditional CNN-LSTM-Attention P-D loss 13.2241 5.10% 18.1837 0.0706 0.8947 417

38 D Novel CNN-LSTM-Attention P-D loss 11.7376 4.50% 15.9993 0.0617 0.9203 416

39 D Traditional CNN-LSTM-Attention D loss 14.0007 5.47% 18.4779 0.071 0.8938 435

40 D Novel CNN-LSTM-Attention D loss 11.9814 4.59% 16.387 0.0628 0.9132 438

41 D Traditional LSTM-SSA P-D loss 14.0237 5.32% 19.1384 0.0751 0.8905 9880

42 D Novel LSTM-SSA P-D loss 11.839 4.66% 16.4688 0.0645 0.9161 5310

43 D Traditional LSTM-SSA D loss 15.72 6.31% 20.1459 0.0762 0.8689 8740

44 D Novel LSTM-SSA D loss 12.4199 4.76% 16.922 0.0655 0.9111 8850

45 D Traditional Transformer-LSTM-Adaboost P-D loss 16.1136 6.45% 20.5644 0.0776 0.8694 560

46 D Novel Transformer-LSTM-Adaboost P-D loss 13.5889 5.28% 17.975 0.0669 0.9015 604

47 D Traditional Transformer-LSTM-Adaboost D loss 16.367 6.64% 20.7385 0.0788 0.8635 504

48 D Novel Transformer-LSTM-Adaboost D loss 13.6328 5.37% 18.0387 0.0686 0.8949 605

Note: P-D loss mean the combined data-informed and physics-informed loss, while D loss is the data-informed loss.

To evaluate performance improvement achieved by incorporating behavior-related inputs, physics-informed loss,

and CNN-LSTM-Attention algorithm, the MAPE, CV-RMSE, and R2 were employed as evaluation metrics, since

these dimensionless metrics facilitate direct comparison with other studies.

(1) Regarding the proposed methods with all three optimization strategies (such as Case 10), it will be compared

to traditional methods (such as Cases 3, 7, and 11). The results show the enhancements across all these strategies.

For accuracy: The proposed method significantly improves forecasting accuracy, achieving an average reduction

in MAPE of 25.78%, a reduction in CV-RMSE of 21.31%, and an improvement in R² of 7.71%.

For efficiency: A substantial reduction in computational time was observed, with an average saving of 2566

seconds. Even after excluding the LSTM-SSA algorithm due to its high computational time consumption and the

CNN-LSTM-Attention own, the proposed method still yielded a net time saving of 101s on average, effectively

offsetting the additional overhead from introducing novel inputs and loss function.

For interpretability: The incorporation of occupant behavior rules and building thermodynamics can enhance the

model interpretability by providing a physical basis for the predictions.

In summary, the integrated method shows a balance among forecasting accuracy, computational efficiency, and

model interpretability. The average performance improvement in different buildings is shown in Figure 11.



Figure 11 The average performance improvement percentage in different buildings by using different optimization modules

(2) Regarding the proposed methods with individual optimization strategies, the contribution of each strategy

was isolated and analyzed as follows:

For accuracy: Comparing Case 1 to Case 2 and similar case combination, incorporating behavior-related inputs

can reduce MAPE by 0.78%–43.58% (mean: 14.84%), CV-RMSE by 0.19%–23.32% (mean: 12.15%), and R2 by

0.21%–13.60% (mean: 4.08%) on average. Comparing Case 1 to Case 3 and similar case combination, incorporating

physical-informed loss can reduce MAPE by 0.45%–16.40% (mean: 4.82%), CV-RMSE by 0.52%–12.78% (mean:

4.32%), and R2 by 0.03%–4.66% (mean: 1.33%) on average. Comparing Case 1 to Cases 5 and similar case

combination can find that incorporating CNN-LSTM-Attention can reduce MAPE by 2.65%–56.65% (mean: 17.10%),

CV-RMSE by 0%–27.64% (mean:10.81%), and R2 by 0.24%–14.87% (mean: 4.63%) on average. Figure 12 shows the

average performance improvement in different buildings by comparing the proposed methods and others.

For efficiency: Incorporating CNN-LSTM-Attention can reduce the time consumption by 7343.6875s compared

to Transformer-LSTM-Adaboost, and by 146.8125s compared to LSTM-SSA on average. Although the inclusion of

behavior-related inputs and the physics-informed loss increases the number of simulation steps, the associated rise in

computational time was not significant.

For interpretability: Similar to the integrated method, the individual introduction of behavior-related inputs and

the physics-informed loss function can improve model interpretability.

In conclusion, all three optimization strategies contribute to improved forecasting accuracy, with different

weights as shown in Figure 12. Furthermore, CNN-LSTM-Attention algorithm offers the additional advantage of

significantly enhancing computational efficiency. Finally, the behavior-related inputs and physics-informed loss can

all improve model interpretability without incurring substantial additional computational time consumption.



(a) The range of performance improvement in Building A (b) The range of performance improvement in Building B

(c) The range of performance improvement in Building C (d) The range of performance improvement in Building D

Figure 12 The range of performance improvement in different buildings through different improvement modules

4 Discussions

4.1 The contribution and priority of different enhanced strategies

As shown in Figures 11–12, the three optimization strategies collectively enhance both the accuracy and

efficiency of the model. Nevertheless, their relative contributions vary across different building types, as shown in

Figure 13.



Figure 13 The average contribution ration from different optimization modules in different buildings

In summary, behavior-related inputs contributed to 26.04–50.47% (mean: 38.39%) of the MAPE reduction,

17.12–60.48% (mean: 41.17%) of the CV-RMSE reduction, and 12.69–55.19% (mean: 38.53%) of the R²

improvement. Physics-informed loss function contributed to 8.22–20.86% (mean: 14.85%) of the MAPE reduction,

7.06–32.08% (mean: 17.89%) of the CV-RMSE reduction, and 12.18–14.70% (mean: 13.26%) of the R² improvement.

Finally, CNN-LSTM-Attention contributed to 34.18–53.10% (mean: 46.76%) of the MAPE reduction, 32.46–50.80%

(mean: 40.94%) of the CV-RMSE reduction, and 30.11–75.02% (mean: 48.21%) of the R² improvement. On average,

the contributions of behavior-related inputs, the physics-informed loss function, and the CNN-LSTM-Attention may

be approximately 40%, 15%, and 45%, respectively.

Among these strategies, the physics-informed loss function exhibited the most consistent contribution across

buildings. In contrast, although average contributions of behavior-related inputs and the CNN-LSTM-Attention

algorithm are around 40% and 45%, respectively, their impacts varied considerably. Specifically, behavior-related

inputs had a weaker effect in Building A but a stronger one in Building D, while the CNN-LSTM-Attention algorithm



showed the opposite trend. The contributions for Buildings B and C were closer to the average values.

The observed discrepancies can be attributed to the following factors. In Building A, occupant behavior is highly

irregular, and energy consumption is dominated by specialized equipment such as biological cultivation devices and

clean AC systems, of which operation is stochastic and less influenced by conventional environmental cues.

Consequently, behavior-related inputs offered limited forecasting accuracy improvement. Conversely, the

CNN-LSTM-Attention algorithm proves particularly effective in this context, as its attention mechanism can

dynamically weight temporal dependencies, capture long-range periodic patterns, and reduce information dilution. By

ensuring the forecasting for specific operational states (such as the peak hours for experiments) are primarily informed

by historically similar states, it can improve the accuracy significantly. While in Building D, which serves as a

conventional office space, occupant behavior is the primary determinant of energy usage, causing behavior-related

inputs highly important. Buildings B and C represent intermediate cases, with mixed usage patterns that neither fully

resemble pure office spaces nor contain high-energy specialized equipment. Thus, the effectiveness of each strategy

lies between those observed in Buildings A and D. Based on these findings, the priority of application for the three

strategies are shown in Figure 14.

Figure 14 The priority of these optimization strategies for accuracy, efficiency, and interpretability improvement

4.2 The performance level of the proposed energy consumption forecasting

To further evaluate the practical performance of the proposed forecasting method, a comparison with several

recently developed forecasting methods is shown in Table 5. Although direct identification of a superior method is

infeasible due to differences in building characteristics, weather conditions, and geographical locations, the proposed

method may achieve comparable accuracy to recent advanced methods. Furthermore, it is observed that most existing

studies focus primarily on algorithmic improvements to enhance accuracy, while few address input feature

optimization, and virtually none consider interpretability. This observation aligns with the literature review conducted

in this study and indirectly underscores the value of the proposed method, which balances accuracy, efficiency, and

interpretability.



Table 5Advanced hourly energy consumption or load forecasting methods in recent studies

Ref. The proposed forecasting method Forecasting performance

This study

Using a hybrid method with introducing occupant behavior probabilities as novel

input features, combined physics-informed and data-informed loss function, and

CNN-LSTM-Attention algorithm

MAPE: 4.50%–10.31%

CV-RMSE: 0.0617–0.1466

R2: 0.8932–0.9254

Ma et al. [53]
Using a hybrid algorithm with whale optimization, extreme gradient boosting, and

double Bi-LSTM attention Q-network (WXGB-DBAQN)
MAPE: 7.331%

Dong et al. [54]

Using a hybrid algorithm with introducing graph attention network and K-Medoids

algorithm with DDTW distance into LSTM (GAN-LSTM, K-Medoids-LSTM) for

different nodes in buildings

R2: 0.83, and 0.89 (different
conditions)

Jiang et al. [55]
Using a hybrid algorithm with CNN, and attention, and temporal distribution

characterization (TDC–CNN–AttLSTM)

CV-RMSE: 0.034–0.145

R2: 0.931–0.995

Ma et al. [56]

Using a hybrid algorithm with grey wolf optimizer, adaptive Neuro-Fuzzy inference

system, and recurrent deep deterministic policy gradient with dynamic action

adjustment (GWO-ANFIS-RD3PG).

MAPE: 11.29%

R2: 0.980

Yesilyurt et al. [57]
Using a hybrid algorithm with novel input feature named air conditioning demand (0

or 1) and the deep neural networks

MAPE: 5.095%–6.839%

R2: 0.939–0.971

Lian et al. [58]

Using a hybrid method with the physical model in EnergyPlus to generate database

(includes more than 25.14 million data cases) and the LightGBM algorithm to extract

feature variables and build the prediction model

MAPE: 12.42% (cooling)

MAPE: 7.97% (heating)

Wang et al. [59]
Using a hybrid method with random forest algorithm and considering the time

(holiday, etc.) and chilled plant start-up state optimization.

MAPE: 4.05%–8.40%

CV-RMSE: 0.0648–0.1719

4.3 Limitation and future directions

Despite the results shows the effectiveness of the proposed method, some limitations must be acknowledged.

First, treating the building as a single entity may oversimplify its dynamics and complex heat exchange processes in

the building, including combined convective and radiative heat transfer among the building envelope, internal thermal

mass, and indoor air. Second, although the three proposed optimization strategies can improve accuracy, efficiency,

and interpretability both theoretically and practically, the generalization of the priority framework requires further

validation. In addition, quantitative metrics for precisely evaluating functional and behavioral complexity remain

underdeveloped and should be established in future work. Finally, the proposed method relies building intelligence

system, including comprehensive energy and environmental monitoring, which may restrict its applicability in

buildings with limited sensor infrastructure or in non-public building types.

Future research will primarily focus on the following directions:

(1) Developing a suitable zoning method to partition the building into multiple thermal zones, constructing

detailed R-C models (such 8R-4C) for each typical thermal zone, and aggregating these into a full-building R-C



network using appropriate interconnection rules, as shown in Figure 15.

(2) Incorporating a wider range of buildings to validate the proposed framework, and establishing a classification

system based on quantitative parameters to confirm and refine the priority rules (Figure 15) to statistically confirm

and refine the prioritization spectrum, such as the proportion of some specific equipment energy consumption to total

energy consumption, the fluctuation of occupant behaviors.

Figure 15 The further detailed thermal R-C models for buildings with more than one zone

5 Conclusions

This study proposes a novel energy consumption forecasting method for office buildings that integrates three key

optimization strategies: weighted occupant behavior probabilities as novel input features, physics-informed loss

function derived from thermal R-C models, and CNN-LSTM-Attention algorithm. The integrated method effectively

balances forecasting accuracy, computational efficiency, and model interpretability. Validation across 48 test cases

shows that the proposed method can reduce MAPE by 25.78%, CV-RMSE by 21.31%, and improve R2 by 7.71% on

average, with minimum time consumption also.

The weighted occupant behavior probabilities and the physics-informed loss function enhances both accuracy

and interpretability, whereas the CNN-LSTM-Attention algorithm primarily improves efficiency and accuracy.

Although all three strategies contribute to predictive accuracy, their relative impacts differ. On average, the use of

behavior-related inputs, physics-informed loss, and CNN-LSTM-Attention algorithm account for 40%, 15%, and 45%

of the total accuracy improvement, respectively. In terms of efficiency, the CNN-LSTM-Attention is the dominant

contributor, reducing computational time by a7343.69s compared to the Transformer-LSTM-Adaboost and by 146.81s



compared to LSTM-SSA on average, which can fully offset the slight increase in time consumption caused by the

changes in the inputs and loss function. Regarding interpretability, behavior probabilities and thermodynamic

constraints can offer substantial improvements by incorporating domain knowledge and physical realism.

The highest overall performance is achieved when all the three strategies are combined. In cases where

simultaneous implementation is not feasible, priority should be given to the CNN-LSTM-Attention for buildings with

complex functions and high-energy equipment (such as experimental offices), due to its ability to capture dynamic

operational patterns. While for common office buildings, introducing occupant behavior probabilities may be

prioritized. Finally, the use of LSTM-SSA is generally not recommended due to its excessive computational

requirements during training.
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Appendix A

(1) CNN-LSTM-Attention

CNN-LSTM-Attention introduces the CNN and Attention modules into LSTM. The CNN module can reduce the

dimensionality and improve the generalization ability, while the Attention module can assign weights to each channel

of the input features, so the proposed algorithm can improve the prediction accuracy while ensuring the computational

efficiency [33, 47–48]. The mathematical process is as follows.

The CNN module has four steps:

Step 1 (Convolution Layer): CNN module begins with a convolutional layer, where filters are applied to perform

convolution operations on input data, extracting features at different spatial locations, as shown in equation (A.1).

Step 2 (Activation Layer): A non-linear transformation is applied to the output of the convolutional layer, using

the ReLU activation function.

Step 3 (Pooling Layer): The pooling layer reduces the spatial dimensions of the feature maps generated by the

convolutional layer, thereby decreasing computation complexity and mitigating over-fitting by max-pooling methods,

as shown in equation (A.2).

Step 4 (Flattening Layer): The outputs from the convolutional layers and pooling layers are flattened into a

one-dimensional vector, which serves as the input to the fully connected layers and is subsequently fed into the

following LSTM network.

Yi,j = m=1
M

n=1
N Wm,n · Xi+m-1, j+n-1�� (A.1)

Yi,j = MaxPooling Xi×s+m, j×s+n = MAXm, n (Xi×s+m, j×s+n) (A.2)

Where, Y represents the output of the convolutional layer, obtained by convolving the input features X with the sliding

filter W; s denotes the stride; m and n iterate over the pooling window.

The LSTM module has four steps:

Step 1 (Input Gate): The LSTM receives the input sequence and employs the sigmoid activation function to

determine which information to retain or discard. The input gate (it) regulates the incorporation of new input (xt) into

the memory cell (MC) state (Ct), as shown in equation (A.3).

Step 2 (Forget Gate): The forget gate decides which information from the cell state should be forgotten by using

the sigmoid activation function, which evaluates the extent to the previous cell outputs influences the current MC, as

shown in equation (A.5). The forget gate (ft) effectively preserves relevant portions of the previous cell state (Ct-1).

Step 3 (Update Gate): The sigmoid activation function is used to identify which values need to be updated. The

tanh activation function generates new candidate values, and using new information updating new cell state. The

update gate computes candidate values (Ct� ) for the new cell state (Ct), as shown in equations (A.6–A.7).

Step 4 (Output Gate): Based on the updated cell state, the output gate uses the sigmoid and tanh activation

functions to determine the final output information, as shown in equations (A.8–A.9). The output gate (ot) controls the

extent to the cell state (Ct) contributes to the next hidden state (ht).



it = sigmoid (Wix·xt + Wih·ht-1 + bi) (A.3)

sigmoid = (1 + e-x)-1 (A.4)

ft = sigmoid (Wfx·xt + Wfh·ht-1 + bf) (A.5)

Ct� = tanh (Wcx·xt +Wch·ht-1 + bc) (A.6)

Ct = Ct�⊙it + Ct-1⊙ft (A.7)

ot = sigmoid (Wox·xt +Woh·ht-1 + bo) (A.8)

Where, t is the current moment while (t-1) is the previous moment; it is the input gate; xt is the input data; Ct is the

cell state; ft is the forget gate; ht is the input of the hidden state; ot is the output gate; ⊙ is the Hadamard product;

tanh is the tangent activation function; sigmoid is the sigmoid activation function.

The Attention mechanism in this study is the squeeze-and-excitation attention mechanism, which has three steps:

Step 1 (Squeeze): While preserving the number of feature channels, features are compressed along the spatial

dimensions. Specifically, a global pooling operation is applied to the input features to obtain channel-wise statistics,

thereby capturing the importance of each channel. Each two-dimensional feature channel is compressed into a real

number Uk by using equation (A.9).

Step 2 (Excitation): A compact neural network is used to capture inter-channel dependencies. This network takes

the channel-wise statistics obtained from the squeeze step as input, and produces a set of channel-wise weights,

representing the significance of each channel, as shown in equation (A.10). this step involves the feature dimension

increase or decrease.

Step 3 (Re-weighting): The original feature maps are re-weighted using the attention scores (that are the weights)

from the excitation step, emphasizing informative features and suppressing less useful ones.

Uk = m=1
M

n=1
N um, n��

M × N
, m, n=1, 2, … (A.9)

S = Sigmoid [W2 × ReLU (W1 × U)] (A.10)

Where, Sigmoid and ReLU are used as the two activation functions; W1 and W2 denote two fully connected layers;

M and N denote the spatial dimensions.

(2) Transformer-LSTM-Adaboost

Transformer-LSTM-Adaboost introduces the Transformer module and Adaboost module into LSTM. The core of

Transformer is the self-attention mechanism, with an encoder-decoder structure. Transformer relies on the query, key,

and value matrix. By simulating the interaction among these three matrices, it can dynamically capture dependency

relationship of different positions in the input sequence. And the Adaboost module can adaptively adjust weights by

multiple training for the basic learner (Transformer-LSTM), thereby enhancing overall generalization capability [50–51].

The core of the Transformer is the self-attention mechanism, which relies on the query matrix (Q), key matrix (K),

and value matrix (V ). By simulating query-key-value interaction pattern, it can dynamically capture dependencies

among different positions in the input sequence. The overall framework of Transformer follows an encoder-decoder

structure. The multi-head self-attention mechanism can be viewed as the concatenation of outputs from multiple



self-attention mechanisms. The detailed computational procedure is given by equations (A.11–A.16).

Q = Xf WQ (A.11)

K = Xf WK (A.12)

V = Xf WV (A.13)

Attention (Q, K, V) = softmax ( Q KT

dk
) V (A.14)

hi = Attention (Q, K, V)i (A.15)

MultiHead (Q, K, V) = Concat ( i=1
m hi� ) (A.16)

Where, Q is the query matrix, used to compute similarity with the key matrix (K ) at other positions, determining

which parts of the input to attend to; K represents the key matrix, which matches with the query matrix (Q) to generate

attention weights; V stands for the value matrix, storing the actual information at each position. After weighting by the

attention weights, these values are aggregated to produce the final output. Xf is the input sequence matrix; WQ, WK,

and WV refer to the corresponding weight matrices, which are trainable parameters; dk denotes the dimension of the

matrices Q, K, and V; m is the number of attention heads; dk is the computation results of the ith attention head; the

softmax function is a normalized exponential function converting a real-valued vector into a probability distribution;

the Concat function is used to concatenate the outputs of the individual attention heads.

The LSTM process has been listed in equations (A.3–A.8).

In the AdaBoost process, the training dataset is first assigned initial weights. After being processed by a weak

classifier, the weight of this basic classifier is computed based on the classification error, and the algorithm proceeds

to the next iteration. The learning rate is adjusted in each round of training. Finally, a strong classifier is obtained by

summing all basic classifiers. This procedure adaptively adjusts sample weights, allowing the model to progressively

focus on samples that are difficult to classify correctly, thereby enhancing overall generalization capability.

Assuming the training set is the D={(x1,y1), (x2,y2), ... , (xN,yN)}, X is the training data, y is the forecast data, WD

is the weight matrix. The initial weight distribution of the training data is set as shown in equation (A.17). The basic

learner is trained to obtain a weak classifier Gt(xj) , and the error of this classifier is given by equation (A.18). The

weight of this current weak classifier in the final composite classifier is calculated via equation (A.19). The updated

sample weights are provided in equations (A.20–A.211). The above steps are repeated until all classifiers are assigned

weights. The final strong classifier is obtained by combining the weak classifiers through weighted majority voting, as

shown in equation (A.22).

wt=1(j) =
1
N

(A.17)

εt = P (Gt(xj) ≠ yj) = j=1
N wt� (j) II(Gt(xj) ≠ yj) (A.18)

αt =
1
2
ln ( 1 - εt

εt
) (A.19)

wt (j) =
wt(j)
zt(j)

exp (-αt yj Gt(xj)) (A.20)



zt(j) = j=1
j=N wt(j) exp (-αt yj Gt(xj))� (A.21)

G(xj) = sign ( t=1
t=T αt Gt(xj))� (A.22)

Where, t is the iteration count, t = 1, 2, ..., T; wt(j) is the sample weight at iteration t; N is the total number of samples;

P is the probability; εt is the error of the weak classifier (Gt) at iteration t; II is the indicator function, taking the value

1 for classification errors and 0 otherwise; αt is the classifier weight at iteration t; wt(j) is the weight corresponding

to the jth training sample at iteration t; zt(j) is the normalization factor, ensuring the sum of weights in equation (A.17)

equals 1; sign is the sign function.

(3) LSTM-SSA

LSTM-SSA introduces the SSA into LSTM, which can solve the optimal solutions of the learning rate, the

number of iterations and the number of hidden units in the LSTM process [49].

The LSTM process has been listed in equations (A.3–A.8).

The sparrow search algorithm (SSA) simulates the foraging behavior of sparrows, which includes food searching,

group cooperation, and information sharing. The position vectors of all sparrows are shown by equation (A.23), and

their corresponding fitness values are shown in equation (A.24). The sparrow population is divided into producers and

scroungers. Producers are responsible for seeking food and directing the movement of the population; their positions

are updated by using equation (A.25). Scroungers consistently monitor the producers and will move to contest if they

discover food. If successful, they acquire the food found by the producers; otherwise, they continue monitoring. The

position update rule of scroungers is shown in equation (A.26). Additionally, the algorithm considers sparrows that are

aware of danger, accounting for 20% of the population, which act as scouts. The initial positions of these scouts are

generated randomly, and their positions are updated using equation (A.28).

Xi =
x1,1 ⋯ x1,d
⋮ ⋱ ⋮

xn,1 ⋯ xn,d

(A.23)

FX =

f ([x1,1, x1,2, …, x1,d])
f ([x2,1, x2,2, …, x2,d])

…
f ([xn,1, xn,2, …, xn,d])

(A.24)

Xi,j(t+1) =
Xi,j(t) × exp -i

α×itermax
, if R2<ST

Xi,j(t) + Q × L, if R2≥ST
(A.25)

Xi,j(t+1) =
Q × exp Xworst(t)-Xi,j(t)

i2
, if i> n

2
Xp(t+1) + |Xi,j(t) - Xp(t+1)| × A+ × L, otherwise

(A.26)

A+ = AT (A AT )-1 (A.27)



Xi,j(t+1) =
Xbest(t) + β × |Xi,j(t)-Xbest(t)|, if fi>fg
Xi,j(t) + K × ( |Xi,j(t)-Xworst(t)|

fi-fw +ϵ
), if fi=fg

(A.28)

Where, n is the total number of sparrows; d is the dimension of the variables; each value (f([xn,1,xn,2,…,xn,d]) in the

matrix FX is the fitness value of an individual; Xi is the position vector of the ith sparrow; t is the current iteration; j

is the dimension (j = 1, 2, ..., d); i is the sparrow index (i = 1, 2, ..., n). Xi,jt is the position of the ith sparrow in the jth

dimension at iteration t. itermax is the maximum number of iterations; α is a random number between 0 and 1; R2 is

the alarm value (range: [0, 1]); ST is the safety threshold (range: [0.5, 1.0]); Q is a random number following the

normal distribution. When R2 < ST, it indicates that the producer enters a wide-area search mode with no danger

around; while when R2≥ ST, it means some sparrows find the danger, and all sparrows need to move to a safe region.

Xp is the best position currently occupied by the producer; Xworst is the current global worst position; A is a (1×d)

matrix where each element is randomly assigned as either 1 or -1; A+ is the resulting matrix after applying the

operation rule in equation (A.27). β is a step size control parameter (a random value from a normal distribution with

mean 0 and variance 1); K is a random number within the range [-1, 1]; fg and fw are the current global best and

worst fitness values, respectively; fi>fg means that the ith sparrow is at the edge of the population; Xbest(t) is the

central position of the population, which is considered safe; whereas fi=fg means that a sparrow located near the

center has detected danger and needs to move closer to other sparrows.
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